

����	��� ���
����	��
�������������

1994 PC Systems Logic Products

Reference
Guide

Printed in U.S.A.
1094–IP

SRZU006D

1994

B
ook

Type

G
uide

R
eference

��
�
�
	
�
�
�
��
�
�
�

��
�
�
	
�
�

�
�
��
�
��

�
�
�
�
��

����	��� ���
����	��
�������������

1994 PC Systems Logic Products

Printed in U.S.A.
1094–IP

SRZU006D

1994

B
ook

Type

��
�
�
	
�
�
�
��
�
�
�

��
�
�
	
�
�

�
�
��
�
��

�
�
�
�
��

Reference
Guide

B
ook

Type

G
uide

R
eference

B
ook

Type

TI486SXLC and TI486SXL
Microprocessors

Reference Guide

October 1994

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1994, Texas Instruments Incorporated

 About This Manual

iii

Preface

Read This First

About This Manual

This manual describes the TI486SXL(C) microprocessor product family. Each
chapter except for chapters 3 and 4 covers all versions of the TI486SXLC and
the TI486SXL microprocessors. Chapter 3 explicitly covers the TI486SXLC
series and chapter 4 explicitly covers the TI486SXL series.

How to Use This Manual

 This document contains the following chapters:

Chapter 1 Product Overview

Chapter 1 introduces the features of the TI486SXLC and TI486SXL micropro-
cessor series and defines the differences between them. A functional block
diagram, logic symbol, and I/O signal identifications are provided for each of
the two series of microprocessors. Additional material describes selected
system architectures such as the execution pipeline, the on-chip cache
memory, and the power-management techniques.

Chapter 2 Programming Interface

Chapter 2 describes the internal operations of the TI486SXL(C) family of mi-
croprocessors mainly from an application programmer’s point of view. In-
cluded in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Chapter 3 TI486SXLC Microprocessor Bus Interface

Chapter 3 provides a summary of the TI486SXLC series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in-
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

About This Manual

iv

Chapter 4 TI486SXL Microprocessor Bus Interface

Chapter 4 provides a summary of the TI486SXL series processor signals and
descriptions of all inputs/outputs, functional timing and bus operations (includ-
ing pipelined and nonpipelined addressing), various interfaces, and power
management.

Chapter 5 Electrical Specifications

Chapter 5 provides electrical specifications for the TI486SXL(C) family, includ-
ing specifications for the 3.3-volt versions. The specifications include electrical
connection requirements for all package pins, maximum ratings, recom-
mended operating conditions, dc electrical characteristics, and ac characteris-
tics.

Chapter 6 Mechanical Specifications

Chapter 6 provides mechanical specifications for the TI486SXL(C) family that
include pin assignments, package physical dimensions, and package thermal
characteristics.

Chapter 7 Instruction Set

Chapter 7 summarizes the instruction set for the TI486SXL(C) family and pro-
vides detailed information of the instruction encoding. The instruction set is the
same for all TI486SXL(C) microprocessors. Instructions are listed in an
instruction set summary table that provides information on the flags affected
and the instruction clock counts for each instruction.

Appendix A Programming System Management Mode (SMM)

Appendix A provides detailed information including examples pertinent to pro-
gramming the TI486SXL(C) system management mode (SMM). Included are
implementing system-management interrupt (SMI), testing/debugging SMM
code, utilizing power management, loading SMM programs, detecting the type
of CPU, detecting the presence of SMM-capable devices, creating macros,
and altering SMM code limits.

Appendix B BIOS Modifications Guide

Appendix B discusses types of BIOS changes to be considered by the PC de-
signer. The topics are power-on and hard reset, protected-mode to real-mode
switching, and soft reset. Examples of assembler code for turning the cache
on and off are provided.

Appendix C Design Considerations and Cache Flush

Appendix C provides design considerations, address bit A20 masking, and
general cache invalidation procedures.

 About This Manual / Style and Symbol Conventions

v Read This First

Appendix D OEM Modifications for 168-Pin CPGA

Appendix D describes the potential modifications an OEM needs to implement
on an existing 486SX/DX/DX4 motherboard to take advantage of the
TI486SXL 168 pin ceramic pin grid array (CPGA). A system implementation
is described for a 3.3-V system that supports a 5-V industry standard architec-
ture (ISA) and a 3.3-V VL (VESA, Video Electronics Specifications Association
local bus), and another implementation is described for a mixed 3.3-V/5-V sys-
tem that supports a 5-V ISA and a 5-V VL bus.

Appendix E Thermal Management in Microprocessor-Based Systems

Appendix E provides the reader with basic thermal concepts and the relation-
ship between thermal measurements and the system. In addition, problems
associated with comparing thermal specifications from different manufactur-
ers are discussed. Finally, corrective activity within JEDEC is detailed.

Appendix F Ordering Information

Appendix F provides detailed ordering information showing the meaning of the
components of the part number and a description of each microprocessor of-
fered.

Appendix G Glossary

Appendix G contains explanations for the terms, abbreviations, and acronyms
used in this manual.

Notational Conventions

This document uses the following conventions.

� Program code listings and program code examples are shown in a spe-
cial typeface similar to a typewriter’s.

Here is a sample assembler code program listing:

CLI
MOV EAX, CR0 ; set bit 30, turn off cache
OR EAX, 40000000h ; for external cache coherency

� In the instruction syntax descriptions, the instruction is in a bold typeface
and a description of the instruction is in italic typeface. Here is an example
of an instruction syntax and description:

RSM Resume from SMM Mode

Information About Cautions and Warnings / Trademarks

vi

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

Trademarks

AMD is a trademark of Advanced Micro Devices, Inc.

EPIC is a trademark of Texas Instruments Incorporated.

HP is a trademark of Hewlett-Packard Co.

Intel is a trademark of Intel Corporation.

 Running Title—Attribute Reference

vii Chapter Title—Attribute Reference

Contents

1 Product Overview 1-1.
1.1 Features 1-2.
1.2 Introduction 1-4.
1.3 TI486SXLC Series Overview 1-5.
1.4 TI486SXL Series Overview 1-9.
1.5 Differences Between the TI486SXLC Series and TI486SXL Series 1-15.
1.6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC Family 1-16.
1.7 Execution Pipeline 1-17.
1.8 On-Chip Cache 1-17.
1.9 Clock-Doubled Mode 1-18.
1.10 Power Management 1-18.

1.10.1 System-Management Mode (SMM) 1-18.
1.10.2 Suspend Mode and Static Operation 1-18.
1.10.3 3.3-V Operation 1-19.
1.10.4 Mixed 3.3-V and 5-V Operation 1-19.

2 Programming Interface 2-1.
2.1 Processor Initialization 2-2.
2.2 Real Mode Versus Protected Mode 2-5.
2.3 Instruction-Set Overview 2-6.

2.3.1 Lock Prefix 2-7.
2.3.2 Register Sets 2-7.
2.3.3 Address Spaces 2-8.

2.4 Application Register Set 2-10.
2.4.1 General Purpose Registers 2-11.
2.4.2 Segment Registers and Selectors 2-12.
2.4.3 Instruction Pointer Register 2-14.
2.4.4 Flag Word Register 2-14.

2.5 System Register Set 2-16.
2.5.1 Control Registers 2-18.
2.5.2 Descriptor-Table Registers and Descriptors 2-19.
2.5.3 Task Register 2-23.
2.5.4 Configuration Registers 2-26.
2.5.5 Debug Registers 2-31.
2.5.6 Test Registers 2-33.

2.6 Memory Address Space 2-37.
2.6.1 Offset Mechanism 2-37.
2.6.2 Real-Mode Memory Addressing 2-38.
2.6.3 Protected-Mode Memory Addressing 2-39.

Contents

viii

2.7 Interrupts and Exceptions 2-43.
2.7.1 Interrupts 2-43.
2.7.2 Exceptions 2-44.
2.7.3 Interrupt Vectors 2-45.
2.7.4 Interrupt and Exception Priorities 2-46.
2.7.5 Exceptions in Real Mode 2-47.
2.7.6 Error Codes 2-48.

2.8 System-Management Mode 2-49.
2.8.1 SMM Operations 2-50.
2.8.2 SMM Memory Space Header 2-51.
2.8.3 SMM Instructions 2-52.
2.8.4 SMM Memory Space 2-54.
2.8.5 SMI Service Routine Execution 2-54.
2.8.6 CPU States Related to SMM and Suspend Mode 2-55.

2.9 Shutdown and Halt 2-57.
2.10 Protection 2-57.

2.10.1 Privilege Levels 2-58.
2.10.2 I/O Privilege Levels 2-58.
2.10.3 Privilege Level Transfers 2-58.
2.10.4 Initialization and Transition to Protected Mode 2-59.

2.11 Virtual-8086 Mode 2-60.
2.11.1 Memory Addressing 2-60.
2.11.2 Protection 2-60.
2.11.3 Interrupt Handling 2-60.
2.11.4 Entering and Leaving V86 Mode 2-61.

3 TI486SXLC Microprocessor Bus Interface 3-1.
3.1 Input/Output Signals 3-2.

3.1.1 TI486SXLC Terminal Function Descriptions 3-4.
3.1.2 Signal States During Reset and Hold Acknowledge 3-12.

3.2 Bus-Cycle Definition 3-13.
3.2.1 Clock Doubling Using Software Control 3-13.
3.2.2 Power Management 3-15.

3.3 Reset Timing and Internal Clock Synchronization 3-17.
3.4 Bus Operation and Functional Timing 3-19.

3.4.1 Bus Cycles Using Nonpipelined Addressing 3-20.
3.4.2 Bus Cycles Using Pipelined Addressing 3-24.
3.4.3 Locked Bus Cycles 3-31.
3.4.4 Interrupt-Acknowledge Cycles 3-31.
3.4.5 Halt and Shutdown Cycles 3-33.
3.4.6 Internal Cache Interface 3-36.
3.4.7 Address Bit-20 Masking 3-38.
3.4.8 Hold-Acknowledge State 3-39.
3.4.9 Coprocessor Interface 3-42.
3.4.10 SMM Interface 3-43.
3.4.11 Power Management 3-44.
3.4.12 Float 3-48.

 Contents

ix Table of Contents

4 TI486SXL Microprocessor Bus Interface 4-1.
4.1 Input/Output Signals 4-2.

4.1.1 TI486SXL Terminal Function Descriptions 4-4.
4.1.2 Byte Enable Line Definitions 4-12.
4.1.3 Write Duplication as a Function of BE3# – BE0# 4-13.
4.1.4 Generating A1 – A0 Using BE3# – BE0# 4-13.
4.1.5 Signal States During Reset and Hold Acknowledge 4-13.

4.2 Bus-Cycle Definition 4-15.
4.2.1 Clock Doubling Using Software Control 4-15.
4.2.2 Power Management 4-17.

4.3 Reset Timing and Internal Clock Synchronization 4-19.
4.4 Bus Operation and Functional Timing 4-21.

4.4.1 Bus Cycles Using Nonpipelined Addressing 4-22.
4.4.2 Bus Cycles Using Pipelined Addressing 4-26.
4.4.3 Bus Cycles Using BS16# 4-33.
4.4.4 Locked Bus Cycles 4-36.
4.4.5 Interrupt-Acknowledge Cycles 4-36.
4.4.6 Halt and Shutdown Cycles 4-38.
4.4.7 Internal Cache Interface 4-41.
4.4.8 Address Bit-20 Masking 4-44.
4.4.9 Hold Acknowledge State 4-45.
4.4.10 Coprocessor Interface 4-48.
4.4.11 SMM Interface 4-49.
4.4.12 Power Management 4-50.
4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only) 4-54.

5 Electrical Specifications 5-1.
5.1 Electrical Connections 5-2.

5.1.1 Power and Ground Connections and Decoupling 5-2.
5.1.2 Pullup/Pulldown Resistors 5-2.
5.1.3 NC Designated Terminals 5-3.
5.1.4 Unused Signal Input Terminals 5-3.

5.2 Absolute Maximum Ratings 5-4.
5.3 Recommended Operating Conditions 5-5.

5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os 5-5. . . .
5.3.2 3.3-Volt Microprocessors 5-6.
5.3.3 5-Volt Microprocessors 5-6.

5.4 DC Electrical Characteristics 5-7.
5.4.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs 5-7.
5.4.2 3.3-Volt Microprocessors 5-9.
5.4.3 5-Volt Microprocessors 5-12.

5.5 AC Characteristics 5-16.
5.5.1 Measurement Points for AC Characteristics 5-16.
5.5.2 CLK2 Timing Measurement Points 5-19.
5.5.3 AC Data Characteristics Tables 5-19.
5.5.4 RESET Setup and Hold Timing 5-29.
5.5.5 TI486SXLC Switching Waveforms 5-29.
5.5.6 TI486SXL Switching Waveforms 5-32.

Contents

x

6 Mechanical Specifications 6-1.
6.1 Terminal Assignments 6-2.
6.2 Package Dimensions 6-13.
6.3 Thermal Characteristics 6-18.

6.3.1 Airflow Measurement Setup 6-20.
6.3.2 Thermal Parameter Definitions 6-21.

7 Instruction Set 7-1.
7.1 General Instruction Format 7-2.
7.2 Instruction Fields 7-3.

7.2.1 Prefixes 7-4.
7.2.2 Opcode Field 7-5.
7.2.3 w Field 7-5.
7.2.4 d Field 7-6.
7.2.5 reg Field 7-6.
7.2.6 mod and r/m Fields 7-7.
7.2.7 mod and base Fields 7-9.
7.2.8 ss Field 7-10.
7.2.9 index Field 7-10.
7.2.10 sreg2 Field 7-10.
7.2.11 sreg3 Field 7-11.
7.2.12 eee Field 7-11.

7.3 Flags 7-12.
7.4 Clock-Count Summary 7-13.

7.4.1 Assumptions 7-13.
7.4.2 Abbreviations 7-13.

7.5 Instruction Set 7-13.

A Programming System Management Mode (SMM) A-1.
A.1 SMM Overview A-2.

A.1.1 Introduction A-2.
A.1.2 SMM Implementation A-2.

A.2 TI486SXL(C) Microprocessor Power Management Features A-3.
A.2.1 Reducing the Clock Frequency A-3.
A.2.2 Suspend Mode A-3.

A.3 SMM Feature Comparison A-4.
A.4 SMM Hardware Considerations A-5.

A.4.1 SMM Pins A-5.
A.4.2 SMI# Pin Timing A-5.
A.4.3 Address Strobes A-5.
A.4.4 Chipset READY# A-6.

A.5 SMM Software Considerations A-7.
A.5.1 Exiting the SMI Handler A-9.
A.5.2 Accessing Main Memory At the Same Address as SMM Code A-9.
A.5.3 Miscellaneous Execution Details A-9.

A.6 Enabling SMM A-11.
A.7 SMM Instruction Summary and Macros A-12.
A.8 SMI Handler Example A-17.
A.9 Loading SMM Memory With an SMM Program From Main Memory A-22.
A.10 Detection of a TI Microprocessor A-26.
A.11 Detection of SMM Capable Version A-28.

 Contents

xi Table of Contents

A.12 Format of Data Used by SVDC/RSDC Instructions A-32.
A.13 Altering SMM Code Limits A-34.
A.14 Testing/Debugging SMM Code A-35.

A.14.1 Software Only Debugging A-35.
A.14.2 Software Debugging Example A-36.
A.14.3 Clearing the VM Flag Bit A-42.

B BIOS Modifications Guide B-1.
B.1 Differences Between the TI486SLC/DLC BIOS and the TI486SXL(C) BIOS B-2.
B.2 Power-Up and Hard Reset B-3.
B.3 Protected-Mode to Real-Mode Switching B-3.
B.4 Soft Reset B-4.
B.5 Turning the Internal Cache On and Off B-4.

C Design Considerations and Cache Flush C-1.
C.1 Design Conventions C-2.
C.2 Address Bit A20 Masking C-3.
C.3 General Cache Invalidation C-4.

C.3.1 Systems With No Secondary Cache or With a Parallel Secondary Cache C-4. . .
C.3.2 Systems With a Serial Secondary Cache C-5.

D OEM Modifications for 168-Pin CPGA D-1.
D.1 Boards Supporting TI486SXL and Intel D-2.
D.2 Boards Supporting TI486SXL and a 486DX D-5.
D.3 Boards Supporting TI486SXL and a 486DX4 D-6.
D.4 Boards Supporting the VL Bus D-7.

D.4.1 Cache Snooping D-7.
D.4.2 VL-Bus Clock D-7.
D.4.3 VL-Bus Slot ID Settings D-8.

D.5 Power Planes for 3.3-V and 3.3-V/5-V Systems Using TI486SXL or 486DX4 D-9.
D.5.1 Power Planes for 3.3-V Systems D-9.
D.5.2 Power Planes for Mixed 3.3-V/5-V Systems D-10.

D.6 Chipset Support D-11.

E Thermal Management in Microprocessor-Based Systems E-1.
E.1 Introduction E-2.

E.1.1 Thermal Impedance E-3.
E.1.2 Power E-3.
E.1.3 Junction Temperature E-3.

E.2 Modes of Heat Transfer E-4.
E.2.1 Integrated Circuit Thermal Resistance E-5.
E.2.2 PWB Conductivity E-7.
E.2.3 Proximity of Integrated Circuit on Board E-8.
E.2.4 Airflow E-8.

E.3 Thermal Specifications of Integrated Circuits E-9.
E.3.1 System Dependence of RQJA and RQCA E-9.
E.3.2 Measurement of TA E-10.
E.3.3 Definition of Q E-10.

E.4 TI Thermal Specification Methodology E-11.
E.5 Guidelines E-14.
E.6 Current Trends and Theory of Correction E-14.
E.7 Conclusions E-15.

Contents

xii

F Ordering Information F-1.
F.1 Part Number Components F-1.
F.2 Part Numbers for Microprocessors Offered F-2.

G Glossary G-1.

 Running Title—Attribute Reference

xiii Contents

Figures

1–1 TI486SXLC Functional Block Diagram 1-6.
1–2 TI486SXLC Logic Symbol† 1-7.
1–3 TI486SXLC Input and Output Signals 1-8.
1–4 TI486SXL Functional Block Diagram 1-10.
1–5 TI486SXL Logic Symbol (132-Pin PGA Package) 1-11.
1–6 TI486SXL Logic Symbol (144-Pin QFP and 168-Pin PGA Packages) 1-12.
1–7 TI486SXL Input and Output Signals for 132-Pin PGA Package 1-13.
1–8 TI486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package 1-14.
2–1 TI486SXLC Memory and I/O Address Spaces 2-8.
2–2 TI486SXL Memory and I/O Address Spaces 2-8.
2–3 Application Register Set 2-10.
2–4 General Purpose Registers 2-11.
2–5 Segment Selector Register 2-12.
2–6 EFLAGS Register 2-14.
2–7 System Register Set 2-17.
2–8 Control Registers 2-18.
2–9 Descriptor-Table (System-Address) Registers 2-20.
2–10 Application- and System-Segment Descriptors 2-21.
2–11 Gate Descriptor 2-23.
2–12 Task (System-Address) Register 2-23.
2–13 32-Bit Task-State Segment (TSS) Table 2-24.
2–14 16-Bit Task-State Segment (TSS) Table 2-25.
2–15 TI486SXLC Address Region Registers (ARR1–ARR4) 2-29.
2–16 TI486SXL Address Region Registers (ARR1–ARR4) 2-30.
2–17 TI486SXLC Debug Registers 2-31.
2–18 TI486SXL Debug Registers 2-32.
2–19 Test Registers 2-33.
2–20 Offset Address Calculation 2-37.
2–21 Real-Mode Address Calculation 2-38.
2–22 Protected-Mode Address Calculation 2-39.
2–23 Selector Mechanism 2-40.
2–24 Paging Mechanism 2-41.
2–25 Directory- and Page-Table Entry (DTE and PTE) Format 2-41.
2–26 Error-Code Format 2-48.
2–27 TI486SXLC Memory and I/O Address Spaces 2-49.
2–28 TI486SXL Memory and I/O Address Spaces 2-50.
2–29 SMM Execution Flow Diagram 2-51.
2–30 SMM Memory Space Header 2-52.
2–31 SMM and Suspended-Mode Flow Diagram 2-56.

Figures

xiv

3–1 TI486SXLC Functional Signal Groupings 3-2.
3–2 TI486SXLC Internal Processor Clock Synchronization 3-17.
3–3 TI486SXLC Bus Activity From RESET Until First Code Fetch 3-18.
3–4 TI486SXLC Fastest Nonpipelined Read Cycles 3-20.
3–5 TI486SXLC Various Nonpipelined Bus Cycles (No Wait States) 3-21.
3–6 TI486SXLC Various Nonpipelined Bus Cycles With Different Numbers of Wait States 3-22.
3–7 TI486SXLC Nonpipelined Bus States 3-23.
3–8 TI486SXLC Fastest Pipelined Read Cycles 3-25.
3–9 TI486SXLC Various Pipelined Cycles (One Wait State) 3-27.
3–10 TI486SXLC Fastest Transition to Pipelined Address Following Bus-Idle State 3-28.
3–11 TI486SXLC Transition to Pipelined Address During Burst of Bus Cycles 3-29.
3–12 TI486SXLC Complete Bus States 3-30.
3–13 TI486SXLC Interrupt-Acknowledge Cycles 3-32.
3–14 TI486SXLC Nonpipelined Halt Cycle 3-34.
3–15 TI486SXLC Pipelined Shutdown Cycle 3-35.
3–16 TI486SXLC Nonpipelined Cache Fills Using KEN#

 (With Different Numbers of Wait States) 3-36.
3–17 TI486SXLC Pipelined Cache Fills Using KEN#

 (With Different Numbers of Wait States) 3-37.
3–18 TI486SXLC Masking A20 Using A20M# During Burst of Bus Cycles 3-38.
3–19 TI486SXLC Requesting Hold From Bus-Idle State 3-40.
3–20 TI486SXLC Requesting Hold From Active Nonpipelined Bus 3-41.
3–21 TI486SXLC Requesting Hold From Active Pipelined Bus 3-42.
3–22 TI486SXLC SMI# Timing 3-43.
3–23 TI486SXLC I/O Trap Timing 3-44.
3–24 TI486SXLC SUSP#-Initiated Suspend Mode 3-45.
3–25 TI486SXLC HALT-Initiated Suspend Mode 3-46.
3–26 TI486SXLC Stopping CLK2 During Suspend Mode 3-47.
3–27 TI486SXLC Entering and Exiting Float 3-48.
4–1 TI486SXL Functional Signal Groupings 4-2.
4–2 TI486SXL Internal Processor Clock Synchronization 4-19.
4–3 TI486SXL Bus Activity From RESET Until First Code Fetch 4-20.
4–4 TI486SXL Fastest Nonpipelined Read Cycles 4-22.
4–5 TI486SXL Various Nonpipelined Bus Cycles (No Wait States) 4-23.
4–6 TI486SXL Various Nonpipelined Bus Cycles With Different Numbers of Wait States 4-24. . .
4–7 TI486SXL Nonpipelined Bus States 4-25.
4–8 TI486SXL Fastest Pipelined Read Cycles 4-27.
4–9 TI486SXL Various Pipelined Cycles (One Wait State) 4-29.
4–10 TI486SXL Fastest Transition to Pipelined Address Following Bus-Idle State 4-30.
4–11 TI486SXL Transition to Pipelined Address During Burst of Bus Cycles 4-31.
4–12 TI486SXL Complete Bus States 4-32.
4–13 Nonpipelined Bus Cycles Using BS16# 4-34.
4–14 Pipelining and BS16# 4-35.
4–15 TI486SXL Interrupt-Acknowledge Cycles 4-37.
4–16 TI486SXL Nonpipelined Halt Cycle 4-39.
4–17 TI486SXL Pipelined Shutdown Cycle 4-40.
4–18 Nonpipelined Cache Fills Using KEN# 4-41.
4–19 Nonpipelined Cache Fills Using KEN# and BS16# 4-42.
4–20 Pipelined Cache Fills Using KEN# 4-43.
4–21 TI486SXL Masking A20 Using A20M# During Burst of Bus Cycles 4-44.
4–22 TI486SXL Requesting Hold From Bus-Idle State 4-46.
4–23 TI486SXL Requesting Hold From Active Nonpipelined Bus 4-47.

 Figures

xv Table of Contents

4–24 TI486SXL Requesting Hold from Active Pipelined Bus 4-48.
4–25 TI486SXL SMI# Timing 4-49.
4–26 TI486SXL I/O Trap Timing 4-50.
4–27 TI486SXL SUSP#-Initiated Suspend Mode 4-51.
4–28 TI486SXL HALT-Initiated Suspend Mode 4-52.
4–29 TI486SXL Stopping CLK2 During Suspend Mode 4-53.
4–30 TI486SXL Entering and Exiting Float 4-54.
5–1 Internal Pullup/Pulldown-IV Characteristic 5-3.
5–2 TI486SXLC Drive Level and Measurement Points for AC Characteristics 5-17.
5–3 TI486SXL Drive Level and Measurement Points for AC Characteristics 5-18.
5–4 CLK2 Timing Measurement Points 5-19.
5–5 RESET Setup and Hold Timing 5-29.
5–6 TI486SXLC Input Signal Setup and Hold Timing 5-29.
5–7 TI486SXLC Output Signal Valid Delay Timing 5-30.
5–8 TI486SXLC Data Write Cycle Valid Delay Timing 5-30.
5–9 TI486SXLC Data Write Cycle Hold Timing 5-31.
5–10 TI486SXLC Output Signal Float Delay and HLDA Valid Delay Timing 5-31.
5–11 TI486SXL Input Signal Setup and Hold Timing 5-32.
5–12 TI486SXL Output Signal Valid Delay Timing 5-33.
5–13 TI486SXL Data Write Cycle Valid Delay Timing 5-33.
5–14 TI486SXL Data Write Cycle Hold Timing 5-34.
5–15 TI486SXL Output Signal Float Delay and HLDA Valid Delay Timing 5-34.
6–1 TI486SXLC Terminal Assignments 6-2.
6–2 132-Pin PGA TI486SXL Package Terminals (Bottom View) 6-4.
6–3 132-Pin PGA TI486SXL Package Terminals (Top View) 6-5.
6–4 144-Pin QFP TI486SXL Package Terminals (Top View) 6-7.
6–5 168-Pin PGA TI486SXL Package Terminals (Bottom View) 6-9.
6–6 168-Pin PGA TI486SXL Package Terminals (Top View) 6-10.
6–7 100-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC) 6-13.
6–8 132-Pin Ceramic PGA Package Dimensions (TI486SXL) 6-14.
6–9 144-Pin Plastic QFP Dimensions (TI486SXL) 6-15.
6–10 144-Pin Ceramic QFP Dimensions (TI486SXL) 6-16.
6–11 168-Pin Ceramic PGA Package Dimensions (TI486SXL) 6-17.
6–12 Wind Tunnel Schematic Diagram 6-20.
7–1 General Instruction Format 7-2.
A–1 SMI# Pin Timing A-5.
A–2 SMM Header A-8.
C–1 Cache Invalidation for the TI486SXLC and the 132-pin TI486SXL C-4.
C–2 Cache Invalidation for the 144- and the 168-Pin TI486SXL C-5.
C–3 FLUSH# Logic With a Serial Secondary Cache C-5.
D–1 FLUSH# for 144-Pin and 168-Pin TI486SXL D-2.
D–2 FLUSH# Logic With Level-2 Serial Cache D-3.
D–3 Hardware Flush D-7.
D–4 3.3-V VL-Bus Implementation D-9.
D–5 Mixed 3.3-V/5-V VL-Bus Implementation D-10.
E–1 Effect of Component Operating Temperature on Component Failure Rate† E-2.
E–2 Die Using a Temperature-Sensitive Electrical Parameter E-4.
E–3 Diode Voltage Versus Temperature for a Typical Bipolar Device E-4.
E–4 Metal Within Projected Footprint of Integrated Circuit E-8.
E–5 Plotted Die Thermal Data E-13.
E–6 Wind Tunnel Schematic E-13.

Running Title—Attribute Reference

xvi

Tables

1–1 TI486SXLC Product Offering 1-3.
1–2 TI486SXL Product Offering 1-3.
1–3 TI486SXLC Microprocessors 1-5.
1–4 TI486SXL Microprocessors 1-9.
1–5 TI486SXLC and TI486SXL Signal Differences 1-15.
1–6 TI486SXL and TI486SLC/DLC Feature Differences 1-16.
2–1 TI486SXLC Initialized Register Contents 2-3.
2–2 TI486SXL Initialized Register Contents 2-4.
2–3 Comparison of Real Mode and Protected Mode 2-5.
2–4 Segment Register Selection Rules 2-13.
2–5 EFLAGS Definitions 2-15.
2–6 CR0 Bit Definitions 2-19.
2–7 Segment Descriptor Bit Definitions 2-22.
2–8 Gate Descriptor Bit Definitions 2-23.
2–9 TI486SXLC Configuration Control Registers 2-26.
2–10 TI486SXL Configuration Control Registers 2-26.
2–11 CCR0 Bit Definitions 2-27.
2–12 CCR1 Bit Definitions 2-28.
2–13 ARR1–ARR4 Block Size Field 2-30.
2–14 DR6 and DR7 Field Definitions 2-32.
2–15 TR6 and TR7 Bit Definitions 2-34.
2–16 TR6 Attribute Bit Pairs 2-34.
2–17 TR3–TR5 Bit Definitions 2-36.
2–18 Memory Addressing Modes 2-38.
2–19 Directory- and Page-Table Entry (DTE and PTE) Bit Definitions 2-42.
2–20 Interrupt-Vector Assignments 2-46.
2–21 Interrupt and Exception Priorities 2-47.
2–22 Exception Changes in Real Mode 2-47.
2–23 Error-Code Bit Definitions 2-48.
2–24 SMM Memory Space Header 2-52.
2–25 SMM Instruction Set 2-53.
2–26 Descriptor Types Used for Control Transfer 2-59.
3–1 TI486SXLC Signal Summary 3-3.
3–2 TI486SXLC Terminal Functions 3-4.
3–3 TI486SXLC Signal States During Reset and Hold Acknowledge 3-12.
3–4 TI486SXLC Bus Cycle Types 3-13.
3–5 TI486SXLC Signal States During Suspend Mode 3-16.

 Tables

xvii Table of Contents

4–1 TI486SXL Signal Summary 4-3.
4–2 TI486SXL Terminal Functions 4-4.
4–3 Byte Enable Line Definitions 4-12.
4–4 Write Duplication as a Function of BE3#–BE0# 4-13.
4–5 Generating A1–A0 Using BE3#–BE0# 4-13.
4–6 TI486SXL Signal States During RESET and Hold Acknowledge 4-14.
4–7 TI486SXL Bus-Cycle Types 4-15.
4–8 TI486SXL Signal States During Suspend Mode 4-18.
5–1 Terminals Connected to Internal Pullup and Pulldown Resistors 5-2.
5–2 Terminals Requiring External Pullup Resistors 5-3.
5–3 Absolute Maximum Ratings Over Operating Free-Air Temperature Range 5-4.
5–4 TI486SXL-G Recommended Operating Conditions 5-5.
5–5 TI486SXLC-V and TI486SXL-V Recommended Operating Conditions 5-6.
5–6 TI486SXLC and TI486SXL Recommended Operating Conditions 5-6.
5–7 TI486SXL-G40 Electrical Characteristics at Recommended Operating Conditions 5-7.
5–8 TI486SXL2-G50 Electrical Characteristics at Recommended Operating Conditions 5-8. . . .
5–9 TI486SXLC-V25 Electrical Characteristics at Recommended Operating Conditions 5-9. . . .
5–10 TI486SXL-V40 Electrical Characteristics at Recommended Operating Conditions 5-10. . . .
5–11 TI486SXL2-V50 Electrical Characteristics at Recommended Operating Conditions 5-11. . .
5–12 TI486SXLC-040 Electrical Characteristics at Recommended Operating Conditions 5-12. . .
5–13 TI486SXLC2-050 Electrical Characteristics at Recommended Operating Conditions 5-13. .
5–14 TI486SXL-040 Electrical Characteristics at Recommended Operating Conditions 5-14.
5–15 TI486SXL2-050 Electrical Characteristics at Recommended Operating Conditions 5-15. . . .
5–16 Measurement Points for AC Characteristics 5-16.
5–17 AC Characteristics for TI486SXL-G40 5-20.
5–18 AC Characteristics for TI486SXL2-G50 5-21.
5–19 AC Characteristics for TI486SXLC-V25 5-22.
5–20 AC Characteristics for TI486SXL-V40 5-23.
5–21 AC Characteristics for TI486SXL2-V50 5-24.
5–22 AC Characteristics for TI486SXLC-040 5-25.
5–23 AC Characteristics for TI486SXLC2–050 5-26.
5–24 AC Characteristics for TI486SXL-040 5-27.
5–25 AC Characteristics for TI486SXL2-050 5-28.
6–1 TI486SXLC Signal Names Sorted by Terminal Number 6-3.
6–2 TI486SXLC Terminal Numbers Sorted by Signal Name 6-3.
6–3 132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number 6-6.
6–4 132-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name 6-6.
6–5 144-Pin QFP TI486SXL Signal Names Sorted by Terminal Number 6-8.
6–6 144-Pin QFP TI486SXL Terminal Numbers Sorted by Signal Name 6-8.
6–7 168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number 6-11.
6–8 168-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name 6-11.
6–9 TI486SXL Signal Summary for 168-Pin PGA Pinout 6-12.
6–10 TI486SXLC 100-Pin PQFP Thermal Resistance and Airflow 6-18.
6–11 TI486SXL 132-Pin CPGA Thermal Resistance and Airflow 6-19.
6–12 TI486SXL 144-Pin PQFP Thermal Resistance and Airflow 6-19.
6–13 TI486SXL 144-Pin CQFP Thermal Resistance and Airflow 6-19.
6–14 TI486SXL 168-Pin CPGA Thermal Resistance and Airflow 6-20.

Tables

xviii

7–1 Instruction Fields 7-3.
7–2 Instruction Prefix Summary 7-4.
7–3 w Field Encoding 7-5.
7–4 d Field Encoding 7-6.
7–5 reg Field Encoding 7-6.
7–6 mod r/m Field Encoding 7-7.
7–7 mod r/m Field Encoding Dependent on w Field 7-8.
7–8 mod base Field Encoding 7-9.
7–9 ss Field Encoding 7-10.
7–10 index Field Encoding 7-10.
7–11 sreg2 Field Encoding 7-10.
7–12 sreg3 Field Encoding 7-11.
7–13 eee Field Encoding 7-11.
7–14 Flag Abbreviations 7-12.
7–15 Action of Instruction on Flag 7-12.
7–16 Clock-Count Abbreviations 7-13.
7–17 Instruction Set 7-14.
A–1 Power Management Options A-3.
A–2 SMM Features A-4.
A–3 SMM Header A-8.
A–4 Setting SMM Register Bits A-11.
A–5 SMM Instruction Set with Clock Counts A-13.
A–6 EDX Register Data At Power-Up/Reset A-28.
D–1 VL-Bus Skew D-7.
D–2 VL-Bus Slot ID Settings D-8.
E–1 Thermal Conductivity of Packaging Materials§ E-5.
E–2 Thermal Performance of Various 486-Class Microprocessors E-6.
E–3 Thermal Conductivity of PWBs With Various Amounts of Copper E-7.
E–4 R�JA Versus Board Type E-8.
E–5 R�JA Versus Airflow E-9.
F–1 TI486SXLC and TI486SXL Part Numbers F-2.
F–2 TI486SLC/E and TI486DLC/E Part Numbers F-3.

 Running Title—Attribute Reference

xix Table of Contents

Equations

E–1 Ohm’s Law E-3.
E–2 Thermal Impedance E-3.
E–3 Power Consumption of an Integrated Circuit E-3.
E–4 Power E-10.
E–5 Power Dissipation E-10.
E–6 Maximum Power Dissipation E-10.
E–7 Relationship Between Impedance and Power Dissipation E-11.

Running Title—Attribute Reference

xx

Examples

A–1 Accessing Main Memory Overlapping SMM Space A-9.
A–2 SMM Setup A-11.
A–3 Macros That Implement the Special SM Instructions A-14.
A–4 Typical Coding Found In SMI Handlers A-17.
A–5 SMI Handler Routine A-22.
A–6 Detection of a TI Microprocessor A-26.
A–7 Detection of SMM Capable Version A-28.
A–8 Internal Descriptor Format A-32.
A–9 Load SS Descriptor Values (Real Mode) A-33.
A–10 Debugging SMI Code A-36.
B–1 Turning Internal Cache Off B-5.
B–2 Turning Internal Cache On B-6.

 Running Title—Attribute Reference

xxi Chapter Title—Attribute Reference

3-47.
4-53.

6-2.
6-3.
6-5.
6-6.
6-8.

6-10.
A-7.
D-5.
D-6.

1-1 Chapter Title—Attribute Reference

Product Overview

This chapter introduces the features of the TI486SXLC series and TI486SXL
series of microprocessors and defines the differences between them. A
functional block diagram, logic symbol, and I/O signal identifications are
provided for the TI486SXLC and TI486SXL series of microprocessors.
Additional material describes selected system architectures such as the
execution pipeline, the on-chip cache memory, and the power-management
techniques.

Topic Page

1.1 Features 1-2.

1.2 Introduction 1-4.

1.3 TI486SXLC Series Overview 1-5.

1.4 TI486SXL Series Overview 1-9.

1.5 Differences Between the TI486SXLC Series and
TI486SXL Series 1-15.

1.6 Differences Between the TI486SXL(C) Family and
TI486SLC/DLC Family 1-16.

1.7 Execution Pipeline 1-17.

1.8 On-Chip Cache 1-17.

1.9 Clock-Doubled Mode 1-18.

1.10 Power Management 1-18.

Chapter 1

This document contains information on products in more than one phase
of development. The status of each device is indicated on the page(s)
specifying its electrical characteristics.

Features

1-2

1.1 Features

The TI486SXLC and TI486SXL series microprocessors are attractive for new
486-compatible system designs as they are instruction-set and footprint com-
patible with existing platforms. Additionally, they implement high-performance
levels, including clock-doubled CPUs with on-chip 8K-byte cache, advanced
power-management techniques, and industry-standard pinouts that simplify
implementation of energy-efficient desktop and/or battery-powered notebook
systems. Their expanded features are:

� 486 architecture and performance

� 486-compatible instruction set and register set

� On-chip 8K-byte, 32-bit instruction/data cache configured as two-way
set associative

� Clock-doubled 3.3-V with 5-V tolerant I/Os and 5-V versions

� Highly optimized, variable-length pipeline

� On-chip 16-bit hardware multiplier

� High-performance, footprint-compatible upgrade path for existing
TI486SLC and TI486DLC platforms

� Clock speeds up to 50 MHz

� Industry standard footprints:
TI486SXLC series uses 100-pin QFP (486SLC footprint)
TI486SXL series uses 132-pin PGA (486DLC footprint), 144-pin plas-
tic or ceramic QFP (486DLC footprint), and a 168-pin CPGA (486SX
footprint)

� Advanced power-management features for battery-powered notebook
and energy-efficient desktop PC systems

� System-management mode (SMM)

� High-priority system-management interrupt (SMI) with separate
memory-address space

� Suspend mode (initiated by either hardware or software)

� Dynamic clock scaling

� Fully static device permits clock-stop state

� Approximately 60-percent power savings in 3.3-V versions

� 3.3-V versions with 5-V tolerant inputs and outputs (available in the
TI486SXL series) can be used in 3.3-V-only or mixed 3.3-V/5-V
systems

 Features

1-3 Product Overview

Features (Continued)

� Texas Instruments EPIC submicron CMOS technology

� 32-bit internal and 16-bit external buses in the TI486SXLC series. This
product offering is shown in Table 1–1.

Table 1–1.TI486SXLC Product Offering

TI486SXLC Series Supply Volta ge Speed (MHz)
P k

TI486SXLC Series
Device Part Number

Supply Voltage
(V) Core Bus Package

TX486SXLC-V25-PJF 3.3 25 25 100-pin QFP
TX486SXLC-040-PJF 5 40 40, 20†

p

TX486SXLC2-050-PJF 5 50 25
† These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40

MHz.

� 32-bit internal and 32-bit external buses in the TI486SXL series. This prod-
uct offering is shown in Table 1–2

Table 1–2.TI486SXL Product Offering

TI486SXL Series Supply Volta ge Speed (MHz)
P k

TI486SXL Series
Device Part Number

Supply Voltage
(V) Core Bus Package

TX486SXL-040S-GA 5 40 40, 20† 132-pin PGA
TX486SXL2-050S-GA 5 50 25

p

TX486SXL-040-PCE 5 40 40, 20† 144-pin TEP
TX486SXL-G40-HBN 3.3-V, 5-V tolerant 40 40, 20† 144-pin ce-

i QFPTX486SXL2-G50-HBN 3.3-V, 5-V tolerant 50 25
p

ramic QFP

TX486SXL-040-HBN 5 40 40, 20†

TX486SXL2-050-HBN 5 50 25

TX486SXL-G40-GA 3.3-V, 5-V tolerant 40 40, 20† 168-pin PGA
TX486SXL2-G50-GA 3.3-V, 5-V tolerant 50 25

p

TX486SXL-V40-GA 3.3 40 40, 20†

TX486SXL2-V50-GA 3.3 50 25

TX486SXL-040-GA 5 40 40, 20†

TX486SXL2-050-GA 5 50 25
† These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40

MHz.

For an explanation of the part numbers see Appendix F.

Introduction

1-4

1.2 Introduction

The Texas Instruments TI486SXL(C) microprocessor family is comprised of
advanced x86-compatible processors that offer clock-doubled features for in-
creased system performance. Each processor provides an internal 8K-byte,
32-bit cache and integrated power management on a single chip.

The fully static, 486-instruction-set-compatible TI486SXLC series micropro-
cessors are backward compatible with the TI486SLC/E. The TI486SXLC2
microprocessors contain a clock-doubled feature for increased system
performance up to 50 MHz. The TI486SXLC series is an ideal solution for
battery-powered applications as it typically draws only 0.1-mA supply current
while the input clock is stopped in suspend mode. The TI486SXLC-V25 offers
additional power savings as it operates from a 3.3-V power supply.

The fully static, 486-instruction-set-compatible TI486SXL series microproces-
sors are available in three package types: a 132-pin PGA, 144-pin QFP, and
a 168-pin PGA. The 132-pin PGA TI486SXL and TI486SXL2 are backward
compatible with the TI486DLC/E. The 144-pin QFP TI486SXL and TI486SXL2
are backward compatible with the 486DLC footprint. The 168-pin PGA
TI486SXL and TI486SXL2 have the same footprint as the 486SX pinout (see
Appendix D, OEM Modifications for 168-Pin CPGA). The TI486SXL2 micro-
processors contain a clock-doubled feature for increased system performance
up to 50 MHz. The TI486SXL series is an ideal solution for battery-powered
applications as it typically draws only 0.1 mA while the input clock is stopped
in suspend mode. The TI486SXL-V40 and TI486SXL2-V50 offer additional
power savings as they operate from a 3.3-V power supply. The TI486SXL-G40
and TI486SXL2-G50 offer the equivalent power savings with the added capa-
bility to operate in either 3.3-V-only systems or in mixed 3.3-V/5-V systems.

The TI486SXL series microprocessors support 8-, 16-, and 32-bit data types
and operate in real, virtual-8086, and protected modes. The TI486SXL(C) mi-
croprocessor family achieves high performance through use of a highly opti-
mized, variable-length pipeline combined with a RISC-like, single-cycle
execution unit, an on-chip hardware multiplier, and an 8K-byte integrated
instruction and data cache.

 TI486SXLC Series Overview

1-5 Product Overview

1.3 TI486SXLC Series Overview

The TI486SXLC series of microprocessors are implemented using Texas
Instruments EPICTM submicron CMOS technology. The combination of high-
performance 486-like operation, internal 8K-byte cache, advanced power
management, and small-form-factor package makes the TI486SXLC series
ideal for notebook/subnotebook applications.

A summary of the product offering is shown in Table 1–3. Figure 1–1 is a
functional block diagram and Figure 1–2 is the logic symbol for the TI486SXLC
microprocessors.

Table 1–3.TI486SXLC Microprocessors

D i S l V l (V)
Speed (MHz)

P k †Device Supply Voltage (V) Core Bus Package †

TI486SXLC-V25 3.3 25 25 100-pin QFP

TI486SXLC-040 5 40 40, 20‡

TI486SXLC2-050 5 50 25

† Pinout and footprint compatible with TI486SLC/E.
‡ These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40

MHz.

TI486SXLC Series Overview

1-6

Figure 1–1. TI486SXLC Functional Block Diagram

Execution Unit

Limit
Unit

Multiplier
Unit

3-Input
Adder
Unit

Shift
Unit

Register
File

Sequencer

Management
Memory

Unit
Unit

Prefetch Instr/Data
8 KByte

Cache

Byte
Muxes
& I/O
Regs

Decoder Instruction
16-byte

Queue

Address
ROM

Branch Control

Control Immediate

Control Immediate

Microcode ROM

Buffers
Data

Control
Bus

Buffers
Address

32

Data Bus
Internal

16

D15-D0

Control

A23-A1
BHE#, BLE#

Enhanced 386SX-
 Compatible
 Bus Interface

Instruction

Data Address Bus

Address Bus
Cache and Memory

Management

Execution Pipeline

Data Bus
Memory

TI486SXLC Microprocessor

Mode
Suspend

Control

Control
SMM

SMADS#

SMI#

SUSPA#

SUSP#

CLK2

Core

Clock
Bus

Clock

25

Clock
control

Interface

 TI486SXLC Series Overview

1-7 Product Overview

Figure 1–2. TI486SXLC Logic Symbol†

2x Clock InputCLK2

RESET

D0

D15

A1

A23

LOCK#

Address

0

15

1

23

Maskable Req.

PEREQ

KEN# Cache Enable

BUSY#

ERROR#

BLE#

Hold Request

Hold Ack.

Bus Ready

Next Address Req.

Address Strobe

SMM Address Strobe

Data

HOLD

HLDA

READY#

NA#

ADS#

SMADS#

Data/Control

Memory I/O

Write/Read

Bus Lock

Byte High En.

Byte Low En.

INTR

Power
Management

Bus
Cycle

Definition

Bus
Arbitration

Non-Maskable Req.NMI

System Mgmt Int.SMI#

FLT# Float

FLUSH# Cache Flush

Coprocessor
Interface

SUSP# Suspend Req.

SUSPA# Suspend Ack.

Reset

Extension Req.

Extension Busy

Extension Error

Interrupt
Control

Internal
Cache
Interface

Bus
Cycle

Control

Byte
Enables

BHE#

W/R#

M/IO#

D/C#

Φ
TI486SXLC

MICROPROCESSOR

A20M# Address Bit 20 Mask

† This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.

TI486SXLC Series Overview

1-8

The TI486SXLC includes two power-management signals (SUSP# and
SUSPA#), two cache-interface signals (FLUSH# and KEN#), an A20 mask
input (A20M#), and two SMM signals (SMADS# and SMI#) that are additions
to the 386SX signal set. The TI486SXLC series has the same signal set as the
TI486SLC/E microprocessor. The complete list of TI486SXLC signals is
shown in Figure 1–3.

Figure 1–3. TI486SXLC Input and Output Signals

A20M#

BUSY#

CLK2

ERROR#

FLT#

FLUSH#

INTR

HOLD

KEN#

NA#

NMI

PEREQ

SUSP#

READY#

RESET

TI486SXLC
Microprocessor

A23–A1

ADS#

BHE#

BLE#

D15–D0

D/C#

HLDA

LOCK#

M/IO#

SUSPA#

SMADS#

Internal Cache Interface

Power Management

A20 Mask

SMI#

W/R#

♦ System Management Mode

♦
♦

 TI486SXL Series Overview

1-9 Product Overview

1.4 TI486SXL Series Overview

The TI486SXL series of microprocessors are implemented using Texas
Instruments EPIC submicron CMOS technology. The combination of
high-performance 486-like operation, internal 8K-byte cache, 32-bit external
data path, and advanced power-management features makes the TI486SXL
series ideal for energy-efficient desktop and notebook applications.

A summary of the product offering is shown in Table 1–4. Figure 1–4 is a
functional block diagram and Figure 1–5 and Figure 1–6 are logic symbols for
the 132-pin, 144-pin, and 168-pin TI486SXL microprocessors.

Table 1–4.TI486SXL Microprocessors

D i S l V l (V)
Speed (MHz)

P kDevice Supply Voltage (V) Core Bus Package

TI486SXL-G40 3.3-V, 5-V tolerant 40 40, 20† 144-pin QFP‡, and
168-pin PGA§

TI486SXL2-G50 3.3-V, 5-V tolerant 50 25
168-pin PGA§

TI486SXL-V40 3.3 40 40, 20† 168-pin PGA§

TI486SXL2-V50 3.3 50 25

TI486SXL-040 5 40 40, 20† 132-pin PGA‡,
144-pin QFP‡, and

TI486SXL2-050¶ 5 50 25
144-pin QFP‡, and
168-pin PGA§

† These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

‡ Pinout and footprint compatible with TI486DLC/E
§ Footprint compatible with 486SX. See Appendix D, OEM Modifications for 168-Pin CPGA.
¶ Available in 144-pin ceramic QFP and 168-pin PGA

TI486SXL Series Overview

1-10

Figure 1–4. TI486SXL Functional Block Diagram

Execution Unit

Limit
Unit

Multiplier
Unit

3-Input
Adder
Unit

Shift
Unit

Register
File

Sequencer

Management
Memory

Unit
Unit

Prefetch Instr/Data
8 KByte

Cache

Byte
Muxes
and I/O

Registers

Decoder Instruction
16-byte

Queue

Address
ROM

Branch Control

Control Immediate

Control Immediate

Microcode ROM

Buffers
Data

Control
Bus

Buffers
Address

32

Data Bus
Internal

32

D31-D0

Control

A31-A2
BE3#–BE0#

386DX-Compatible
 Bus Interface

Instruction

Data Address Bus

Address Bus
Cache and Memory

Management

Execution Pipeline

Data Bus
Memory

TI486SXL Microprocessor

34

Mode
Suspend

Control

Control
SMM

SMADS#

SMI#

SUSPA#

SUSP#

CLK2

Core

Clock
Bus

Clock

Clock
control

 TI486SXL Series Overview

1-11 Product Overview

Figure 1–5. TI486SXL Logic Symbol† (132-Pin PGA Package)

2x Clock InputCLK2

RESET

D0

D31

A2

A31

LOCK#

Address

0

31

2

31

Φ
TI486SXL

MICROPROCESSOR
(132-pin PGA)

Maskable Req.

PEREQ

KEN# Cache Enable

BUSY#

ERROR#

BE0#

Hold Request

Hold Ack.

Bus Ready

Next Address Req.

Address Strobe

Bus Size 16

Data

HOLD

HLDA

READY#

NA#

ADS#

Data/Control

Memory I/O

Write/Read

Bus Lock

Byte Enable 1

Byte Enable 0

INTR

Power
Management

Bus
Cycle

Definition

Bus
Arbitration

Non-Maskable Req.NMI

FLUSH# Cache Flush

Coprocessor
Interface

SUSP# Suspend Req.

SUSPA# Suspend Ack.

A20M# Address Bit 20 Mask

Reset

Extension Req.

Extension Busy

Extension Error

Interrupt
Control

Internal
Cache
Interface

Bus
Cycle

Control

Byte
Enables BE1#

W/R#

M/IO#

D/C#

BS16#

Byte Enable 3

Byte Enable 2 BE2#

BE3#

SMI# System Mgmt Int.

SMM Address Strobe SMADS#

† This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.

TI486SXL Series Overview

1-12

Figure 1–6. TI486SXL Logic Symbol† (144-Pin QFP and 168-Pin PGA Packages)

2x Clock InputCLK2

RESET

D0

D31

A2

A31

LOCK#

Address

0

31

2

31

Maskable Req.

PEREQ

KEN# Cache Enable

BUSY#

ERROR#

BE0#

Hold Request

Hold Ack.

Bus Ready

Next Address Req.

Address Strobe

Bus Size 16

Data

HOLD

HLDA

READY#

NA#

ADS#

Data/Control

Memory I/O

Write/Read

Bus Lock

Byte Enable 1

Byte Enable 0

INTR

Power
Management

Bus
Cycle

Definition

Bus
Arbitration

Non-Maskable Req.NMI

FLUSH# Cache Flush

Coprocessor
Interface

SUSP# Suspend Req.

SUSPA# Suspend Ack.

A20M# Address Bit 20 Mask

Reset

Extension Req.

Extension Busy

Extension Error

Interrupt
Control

Internal
Cache
Interface

Bus
Cycle

Control

Byte
Enables BE1#

W/R#

M/IO#

D/C#

BS16#

Byte Enable 3

Byte Enable 2 BE2#

BE3#

SMI# System Mgmt Int.

SMM Address Strobe SMADS#

MEMW# Memory Write
(ISA bus)

FLT# Float

Φ
TI486SXL

MICROPROCESSOR
(144-pin QFP and

168-pin PGA)

Write/Read W/R#‡

† This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.
‡ 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

 TI486SXL Series Overview

1-13 Product Overview

The TI486SXL includes two power-management signals (SUSP# and
SUSPA#), two cache-interface signals (FLUSH# and KEN#), an A20 mask
input (A20M#), and two SMM signals (SMADS# and SMI#) that are additions
to the 386DX signal set. The 132-pin PGA TI486SXL has the same signal set
as the TI486DLC/E microprocessor while the 144-pin QFP and the 168-pin
PGA have two additional inputs, MEMW#, and FLT#. MEMW# is part of the
cache interface and FLT# can be used to float the bidirectional and output
signals. (See Appendix D, OEM Modifications for 168-Pin CPGA.)

The complete list of TI486SXL signals is shown in Figure 1–7 for the 132-pin
PGA and Figure 1–8 for the144-pin QFP and 168-pin PGA.

Figure 1–7. TI486SXL Input and Output Signals for 132-Pin PGA Package

BS16#

BUSY#

CLK2

ERROR#

FLUSH#

INTR

HOLD

KEN#

NA#

NMI

PEREQ

SUSP#

READY#

RESET

TI486SXL
Microprocessor

132-pin PGA

A31–A2

ADS#

BE3#–BE0#

D31–D0

D/C#

HLDA

LOCK#

M/IO#

SUSPA#

W/R#

Internal Cache Interface

Power Management

A20 Mask

A20M#

SMADS#

SMI#

♦ System Management Mode

♦
♦

TI486SXL Series Overview

1-14

Figure 1–8. TI486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package

BS16#

BUSY#

CLK2

ERROR#

FLUSH#

INTR

HOLD

KEN#

NA#

NMI

PEREQ

SUSP#

READY#

RESET

TI486SXL
Microprocessor
144-pin QFP and

168-pin PGA

A31–A2

ADS#

BE3#–BE0#

D31–D0

D/C#

HLDA

LOCK#

M/IO#

SUSPA#

W/R#

Internal Cache Interface

Power Management

A20 Mask

A20M#

SMADS#

SMI#

♦ System Management Mode

♦
♦

MEMW#

FLT#

W/R#†

† 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

 Differences Between the TI486SXLC Series and TI486SXL Series

1-15 Product Overview

1.5 Differences Between the TI486SXLC Series and TI486SXL Series

The TI486SXLC and the 132-pin TI486SXL are the same except for how the
pin signals are routed and utilized on the processors. Thus, the bus interfaces
are different but the CPU core and the cache/memory management are the
same. The TI486SXLC has a physical address range of 16M bytes and the
TI486SXL has a physical address range of 4G bytes. Table 1–5 describes the
signal differences between the TI486SXLC and TI486SXL.

Table 1–5.TI486SXLC and TI486SXL Signal Differences

Description
TI486SXLC
(100-pin QFP)

TI486SXL
(132-pin PGA)

TI486SXL (144-pin QFP
and 168-pin PGA)

Data bus 16 bits wide (D15–D0) 32 bits wide (D31–D0) 32 bits wide (D31–D0)

Address bus A23–A1 A31–A2 A31–A2

Byte enables 2 byte enables used
(BHE#, BLE#)

4 byte enables used
(BE3#–BE0#)

4 byte enables used
(BE3#–BE0#)

Float bus signal (FLT#) supported not supported supported

Bus size 16 signal (BS16#) not supported supported supported

MEMW# ISA signal not supported not supported supported

The 144-pin QFP and the 168-pin PGA TI486SXL differ from the TI486SXLC
and the 132-pin PGA TI486SXL by the addition of one signal, MEMW#. This
signal is part of the cache flush logic that is implemented on-chip in the 144-
and 168-pin versions of the TI486SXL. For a more detailed description of this
logic, see Appendix C, Design Considerations and Cache Flush and Appendix
D, OEM Modifications for 168-Pin CPGA. The 144-pin QFP and the 168-pin
PGA TI486SXL contain the TI486SXLC signal FLT# that is not implemented
in the 132-pin PGA TI486SXL. This signal can be used to float all bidirectional
and output signals of the TI486SXL microprocessor when it is used in
conjunction with an upgrade socket. The 144-pin QFP differs from the 168-pin
PGA by the addition of a second W/R# input. As these two W/R# inputs must
be connected together, these devices are functionally the same.

Differences Between the TI486SXL(C) Family and the TI486SLC/DLC Family

1-16

1.6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC
Family

The TI486SXLC and the TI486SLC/E are the same in all respects except for
the cache size, the cache organization, and the clock-doubled feature. The
TI486SXL and the TI486DLC/E are also the same in all respects except for the
same new features shown in Table 1–6. Signal differences between the
TI486SXLC and the 132-pin PGA TI486SXL, listed in Table 1–5, also apply for
the TI486SLC/E and TI486DLC/E, respectively.

Table 1–6.TI486SXL and TI486SLC/DLC Feature Differences

Description TI486SXL(C) Family TI486SLC/DLC Family

Cache size 8K bytes 1K byte

Cache organization Two-way set
associative

Two-way set associative
or direct mapped

Clock doubled Supported Not supported

 Execution Pipeline / On-Chip Cache

1-17 Product Overview

1.7 Execution Pipeline

The execution path in the TI486SXL(C) family of microprocessors consists of
five pipelined stages optimized for minimal instruction-cycle times. These five
stages are:

� Code fetch
� Instruction decode
� Microcode ROM access
� Execution
� Memory/register file write-back

These stages have been designed with hardware interlocks that permit execu-
tion overlap for successive instructions.

The 16-byte instruction-prefetch queue fetches code in advance and prepares
it for decode, helping to minimize overall execution time. The instruction de-
coder then decodes four bytes of instructions per clock, eliminating the need
for a queue of decoded instructions. Sequential instructions are decoded
quickly and provided to the microcode. Nonsequential operations do not have
to wait for a queue of decoded instructions to be flushed and refilled before
execution continues. As a result, both sequential and nonsequential instruc-
tion execution times are minimized.

The execution stage takes advantage of a RISC-like, single-cycle execution
unit and a 16-bit hardware multiplier. The write-back stage provides single-
cycle, 32-bit access to the on-chip cache and posts all writes to the cache and
system bus using a two-deep write buffer. Posted writes allow the execution
unit to proceed with program execution while the bus-interface unit completes
the write cycle.

1.8 On-Chip Cache

The 8K-byte, 32-bit on-chip cache in the TI486SXL(C) family of microproces-
sors maximizes overall performance by quickly supplying instructions and
data to the internal execution pipeline. An external memory access takes a
minimum of two clock cycles (zero wait states). For cache hits, the TI486SXL
series eliminates these two clock cycles by overlapping cache accesses with
normal execution pipeline activity. In addition, bus bandwidth is gained by
presenting instructions and data to the execution pipeline at up to 32 bits at a
time compared to 16 bits per cycle for an external memory access.

The TI486SXL(C) cache is an 8K-byte, write-through unified instruction and
data cache with lines that are allocated only during memory read cycles. The
cache is configured as two-way set associative, and the cache organization
consists of 1024 sets each containing two lines of four bytes each.

Clock-Doubled Mode / Power Management

1-18

1.9 Clock-Doubled Mode

The TI486SXL(C) family of microprocessors is designed with a clock-doubled
feature that provides an immediate performance increase and upgrade path
from the TI486SLC/DLC family of products. The clock-doubled feature can be
enabled using software by setting bit 6 of the Configuration Control register 0.

When the microprocessor is in clock-doubled mode, the internal core is oper-
ating at the CLK2 frequency while the external bus interface remains at half
the CLK2 frequency. This provides a speed increase in the on-chip cache, the
instruction decode, and the instruction execution while the external interface
remains the same.

In addition to the clock-doubled feature, the TI486SXL(C) microprocessor
family also supports dynamic clock scaling that enables the CLK2 input to be
scaled up or down. To take advantage of this feature (scaling or stopping the
CLK2 input), the processor must first be brought into the nonclock-doubled
mode. Dynamic clock scaling is transparent to the user since the processor
continues instruction execution in nonclock-doubled mode until the desired
frequency is reached within the PLL lock range to initiate clock-doubled mode.
This allows for increased bandwidth on demand without restriction to the user.

1.10 Power Management

The TI486SXL(C) family incorporates advanced power-management features
such as suspend mode, static operation, and operation at 3.3 V. These capa-
bilities are attractive for battery-powered notebook and energy-efficient desk-
top PC systems.

1.10.1 System-Management Mode (SMM)

System-management mode (SMM) provides an additional interrupt and a
separate address space that can be used for system power management or
software-transparent emulation of I/O peripherals. SMM is entered using the
system-management interrupt (SMI#) that has a higher priority than any other
interrupt. While running in protected SMM address space, the SMI interrupt
routine can execute without interfering with the operating system or
application programs.

After receiving an SMI# interrupt, portions of the CPU state are automatically
saved, SMM is entered, and program execution begins at the base of SMM
address space. The location and size of the SMM memory is programmable
in the TI486SXL(C) microprocessor family. Seven SMM instructions have
been added to the 486 instruction set that permit saving and restoring the total
CPU state when in SMM mode.

1.10.2 Suspend Mode and Static Operation

The power-management features in the TI486SXL(C) family of microproces-
sors allow a dramatic reduction in the current required when the microproces-

 Power Management

1-19 Product Overview

sor is in suspend mode (typically using less than three percent of the operating
current). Suspend mode is entered by either a hardware- or a software-initi-
ated action. Using hardware to initiate suspend mode involves a two-pin hand-
shake using the SUSP# and SUSPA# signals.

The software initiates suspend mode through execution of the HALT instruc-
tion. Once in suspend mode, the microprocessor power consumption can be
further reduced by stopping the external clock input.

Note:

For the clock-doubled versions of the TI486SXL(C) microprocessor family,
suspend mode can be initiated while in clock-doubled mode as long as the
external input clock is not stopped. The external input clock can be stopped
after the microprocessor has been put into nonclock-doubled mode.

Since these microprocessors are static devices, no internal CPU data is lost
when the clock input is stopped.

1.10.3 3.3-V Operation

The TI486SXLC-V and TI486SXLC2-V versions operate from a 3.3-V supply.
Power consumed at 3.3 V is typically only 30 percent of the power consumed
while operating at 5 V. The TI486SXLC-V25 operates at 25-MHz.

The TI486SXL-V and TI486SXL2-V versions also operate from a 3.3-V supply.
Again, power consumed at 3.3 V is typically only 30 percent of the power
consumed by a microprocessor operating at 5 V. The TI486SXL-V40 can be
operated in clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or
it can be operated in nonclock-doubled mode with both the core and bus
speeds at 40 MHz. The TI486SXL2-V50 operates at 50 MHz core and 25-MHz
bus speeds in the clock-doubled mode.

1.10.4 Mixed 3.3-V and 5-V Operation

The TI486SXL-G and TI486SXL2-G versions operate from both a 3.3-V and
a 5-V supply. These microprocessors feature 5-V tolerant inputs and outputs,
which means that they can be incorporated in system designs that utilize both
3.3-V and 5-V devices. These devices can be used in 3.3-V-only systems by
connecting the 5-V supply pin (VCC5) to the 3.3-V supply. The microprocessor
power consumption is typically only 30 percent of the power consumed by a
microprocessor operating at 5 V. The TI486SXL-G40 can be operated in
clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or it can be op-
erated in nonclock-doubled mode with both the core and bus speeds at 40
MHz. The TI486SXL2-G50 operates at 50-MHz core and 25-MHz bus speeds
in the clock-doubled mode.

1-20

2-1 Chapter Title—Attribute Reference

Programming Interface

In this chapter, the internal operations of the TI486SXL(C) family of micropro-
cessors are described mainly from an application programmer’s point of view.
Included in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Topic Page

2.1 Processor Initialization 2-2.

2.2 Real Mode Versus Protected Mode 2-5.

2.3 Instruction-Set Overview 2-6.

2.4 Application Register Set 2-10.

2.5 System Register Set 2-16.

2.6 Memory Address Space 2-37.

2.7 Interrupts and Exceptions 2-43.

2.8 System-Management Mode 2-49.

2.9 Shutdown and Halt 2-57.

2.10 Protection 2-57.

2.11 Virtual-8086 Mode 2-60.

Chapter 2

Processor Initialization

2-2

2.1 Processor Initialization

Each TI486SXL(C) family microprocessor is initialized when the RESET sig-
nal is asserted. The processor is placed in real mode and the registers listed
in Table 2–1 or Table 2–2 are set to their initialized values. RESET invalidates
and disables the cache and turns off paging. For the clock-doubled versions
of the TI486SXL(C) microprocessor family, RESET returns the processor to
the nonclock-doubled mode. When RESET is asserted, the microprocessor
terminates all local bus activity and all internal execution. During the time that
RESET is asserted, the internal pipeline is flushed and no instruction execu-
tion or bus activity occurs.

Approximately 350 to 450 CLK2 clock cycles (additional 220 + 60 if self-test is
requested) after negation of RESET, the processor begins executing instruc-
tions at the top of physical memory (address location FF FFF0h for the
TI486SXLC series and FFFF FFF0h for the TI486SXL series). When the first
intersegment JUMP or CALL is executed, address lines A23–A20 for the
TI486SXLC series or A31–A20 for the TI486SXL series are driven low for
code-segment-relative memory-access cycles. While these address lines are
low, the microprocessor executes instructions only in the lowest 1M byte of
physical address space until system-specific initialization occurs via program
execution.

 Processor Initialization

2-3 Programming Interface

Table 2–1.TI486SXLC Initialized Register Contents

Register Register Name Initialized Contents Comments

EAX Accumulator xx xxxxh 00 0000h indicates self-test
passed.

EBX Base xx xxxxh

ECX Count xx xxxxh

EDX Data xx 0400h + Revision ID Revision ID = 10h

EBP Base Pointer xx xxxxh

ESI Source Index xx xxxxh

EDI Destination Index xx xxxxh

ESP Stack Pointer xx xxxxh

EFLAGS Flag Word 00 0002h

EIP Instruction Pointer 00 FFF0h

ES Extra Segment 0000h Base address set to 00 0000h
Limit set to FFFFh

CS Code Segment F000h Base address set to 00 0000h
Limit set to FFFFh

SS Stack Segment 0000h

DS Data Segment 0000h Base address set to 00 0000h
Limit set to FFFFh

FS Extra Segment 0000h

GS Extra Segment 0000h

IDTR Interrupt-Descriptor Table Base=0, Limit=3FFh

CR0 Machine Status Word 00 0010h

CCR0 Configuration Control 0 00h

CCR1 Configuration Control 1 xx xxx0 (binary)

ARR1 Address Region 1 000Fh 4G-byte noncacheable region

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug 00 0000h

Note: x = Undefined value

Processor Initialization

2-4

Table 2–2.TI486SXL Initialized Register Contents

Register Register Name Initialized Contents Comments

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data xxxx 0421h + Revision ID Revision ID = 10h

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h
Limit set to FFFFh

CS Code Segment F000h Base address set to 0000 0000h
Limit set to FFFFh

SS Stack Segment 0000h

DS Data Segment 0000h Base address set to 0000 0000h
Limit set to FFFFh

FS Extra Segment 0000h

GS Extra Segment 0000h

IDTR Interrupt-Descriptor Table Base=0, Limit=3FFh

CR0 Machine Status Word 0000 0010h

CCR0 Configuration Control 0 00h

CCR1 Configuration Control 1 xxxx xxx0 (binary)

ARR1 Address Region 1 000Fh 4G-byte noncacheable region

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug 0000 0000h

Note: x = Undefined value

 Real Mode Versus Protected Mode

2-5 Programming Interface

2.2 Real Mode Versus Protected Mode

When powered up or reset, the microprocessor is initialized to real mode. Real
mode establishes conditions that are backward compatible with the
8086/8088 microprocessors. Addressing capabilities are limited to the range
that is available on those two microprocessors, and the default operand size
is 16 bits.

The microprocessor can be switched from the real mode into protected mode,
where the extended capabilities of the TI486SXL(C) are available for use. Pro-
tected mode provides enhanced memory management capabilities that in-
clude segment- and page-level protection.

Table 2–3 provides a comparison of real mode and protected mode. The mi-
croprocessor is in protected mode when the PE bit in Control register 0 is set.
After this bit is set, an intersegment JMP is used to load the CS register and
to flush the instruction-decode pipeline.

Table 2–3.Comparison of Real Mode and Protected Mode

Feature Real Mode Protected Mode

Physical memory Limited to 1M byte. Limited to 4G bytes. Virtual memory of up
to 4T bytes is available.

Default operand size Normally 16 bits. Can be 16 or 32 bits.

Segment size Fixed at 64K bytes. Variable from 1 byte to 4G bytes.

Physical address Generated by multiplying the segment reg-
ister value by 16 and adding an offset to the
product.

Generated by applying paging, if enabled,
to linear addresses. Linear addresses are
generated by adding an offset to a value
calculated from information contained in
segment descriptors. The value in a seg-
ment register determines which of several
possible segment descriptors is used.

Segment access Attempted access beyond the end of a seg-
ment is monitored.

Segments can be given combinations of
read, write, and execute permissions. At-
tempted access beyond the end of a seg-
ment is monitored.

Code privileged No privileged code. Code can have one of four privilege levels,
with some processor instructions restricted
to the most privileged level.

Instruction-Set Overview

2-6

2.3 Instruction-Set Overview

The TI486SXL(C) microprocessor family instruction set can be divided into
eight types of operations:

� Arithmetic
� Bit manipulation
� Control transfer
� Data transfer
� High-level-language support
� Operating-system support
� Shift/rotate
� String manipulation

All instructions operate on as few as zero operands and as many as three op-
erands. An NOP (no operation) instruction is an example of a zero-operand
instruction. Two-operand instructions allow the specification of an explicit
source and destination pair as part of the instruction. These two-operand
instructions can be divided into eight groups according to operand types:

� Register to register
� Register to memory
� Memory to register
� Memory to memory
� Register to I/O
� I/O to register
� Immediate data to register
� Immediate data to memory

An operand can be held in the instruction itself (as in an immediate operand),
in a register, in an I/O port, or in memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported. Operand lengths of 8 or
32 bits are generally used when executing code written for 386- or 486-class
(32-bit code) processors. Operand lengths of 8 or 16 bits are generally used
when executing 8086 or 80286 code (16-bit code). The default length of an op-
erand can be overridden by placing one or more instruction prefixes in front
of the opcode. For example, by using prefixes, a 32-bit operand can be used
with 16-bit code or a 16-bit operand can be used with 32-bit code.

Chapter 7, Instruction Set, lists each instruction in the TI486SXL(C) micropro-
cessor family instruction set along with the associated opcodes, execution
clock counts, and effects on the Flag Word register.

 Instruction-Set Overview

2-7 Programming Interface

2.3.1 Lock Prefix

The LOCK prefix can be placed before certain instructions that read, modify,
and then write back to memory. The prefix asserts the LOCK# signal to indicate
to the external hardware that the CPU is in the process of running multiple, indi-
visible memory accesses. The LOCK prefix can be used with the following
instructions:

� Bit test instructions (BTS, BTR, BTC)
� Exchange instructions (XADD, XCHG, CMPXCHG)
� One-operand arithmetic and logical instructions

(DEC, INC, NEG, NOT)
� Two-operand arithmetic and logical instructions

(ADC, ADD, AND, OR, SBB, SUB, XOR)

An invalid-opcode exception is generated if the LOCK prefix is used with any
other instruction or with the above instructions when no write operation to
memory occurs (i.e., the destination is a register).

2.3.2 Register Sets

The TI486SXL(C) microprocessor has 43 accessible registers grouped into
two sets. The application register set contains the registers frequently used by
applications programmers. The system register set contains the registers typi-
cally reserved for use by operating-systems programmers.

The application register set is made up of:

� Eight 32-bit General Purpose registers
� Six 16-bit Segment registers
� One 32-bit Flag Word register
� One 32-bit Instruction Pointer register

The system register set is made up of the remaining registers that include:

� Three 32-bit Control registers
� Two 48-bit and two 16-bit System Address registers
� Two 8-bit and four 16-bit (TI486SXLC) or 24-bit (TI486SXL) Configuration

registers
� Six 32-bit Debug registers
� Five 32-bit Test registers

Each application register is discussed in Section 2.4, Application Register Set,
page 2-10.

Each system register is discussed in Section 2.5, System Register Set, page
2-16.

Instruction-Set Overview

2-8

2.3.3 Address Spaces

The microprocessor can directly address either memory or I/O space.
Figure 2–1 and Figure 2–2 illustrate the range of addresses available for
memory address space and I/O address space.

Figure 2–1. TI486SXLC Memory and I/O Address Spaces

Physical
Memory

16M bytes

Physical
Memory Space

FF FFFFh

00 0000h

Accessible
Programmed

I/O Space
FF FFFFh

00 0000h

Not
Accessible

Not
Accessible

80 00FFh

80 00F8h

00 FFFFh

Coprocessor
Space

TI486SXLC
Configuration
Register I/O
Space
00 0023h
00 0022h

Figure 2–2. TI486SXL Memory and I/O Address Spaces

Physical
Memory
4G bytes

Physical
Memory Space

FFFF FFFFh

0000 0000h

Accessible
Programmed

I/O Space
FFFF FFFFh

0000 0000h

Not
Accessible

Not
Accessible

8000 00FFh

8000 00F8h

0000 FFFFh

Coprocessor
Space

TI486SXL
Configuration
Register I/O
Space
0000 0023h
0000 0022h

 Instruction-Set Overview

2-9 Programming Interface

2.3.3.1 Memory Address Space Range

For the TI486SXLC series, the addresses for physical memory range between
00 0000h and FF FFFFh (16M bytes). For the TI486SXL series, the addresses
for physical memory range between 0000 0000h and FFFF FFFFh (4G bytes).
Memory address space is accessed as bytes, words (16 bits), or doublewords
(32 bits). Words and doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The physical address
of a word or doubleword is the byte address of the low-order byte.

Section 2.6, Memory Address Space, page 2-37, discusses in detail:
� Memory addressing modes that are used to calculate the physical address
� Memory management mechanisms, segmentation, and paging that can

be used to protect address spaces and create an environment that lets a
small amount of physical memory simulate a large address space.

2.3.3.2 I/O Address Space Range

The accessible I/O address space for both the TI486SXLC and TI486SXL mi-
croprocessors ranges between 00 0000h and 00 FFFFh (64K bytes). The co-
processor communication space for the TI486SXLC series exists in upper I/O
space between 80 00F8h and 80 00FFh. The coprocessor communication
space for the TI486SXL series exists in the upper I/O space between 8000
00F8h and 8000 00FFh. These coprocessor I/O ports are automatically ac-
cessed by the CPU whenever an ESC opcode (IN or OUT I/O instruction) is
executed. The I/O locations 22h and 23h are used for Configuration register
access on all versions of the TI486SXL(C) microprocessors.

The I/O address space is accessed using IN and OUT instructions pointing to
addresses that are referred to as ports. The accessible I/O address space is
64K bytes and can be accessed as 8-bit, 16-bit, or 32-bit ports. The execution
of any IN or OUT instruction causes M/IO# to be driven low, thereby selecting
the I/O space instead of memory space for loading or storing data. The upper
eight address bits of the TI486SXLC processor and the upper sixteen bits of
the TI486SXL processor are driven low during IN and OUT instruction port ac-
cesses.

The microprocessor Configuration registers reside within the I/O address
space at port addresses 22h and 23h and are accessed using the standard IN
and OUT instructions. The Configuration registers are modified by writing the
index of the Configuration register to port 22h and then transferring the data
through port 23h. Accesses to the on-chip Configuration registers do not gen-
erate external I/O cycles. However, each port 23h operation must be preceded
by a port 22h write with a valid index value. Otherwise, the second and later
port 23h operations are directed off-chip and generate external I/O cycles with-
out modifying the on-chip Configuration registers. Also, writes to port 22h out-
side of the microprocessor index range (C0h to CFh) result in external I/O
cycles and do not affect the on-chip Configuration registers. Reads of port 22h
are always directed off-chip.

Application Register Set

2-10

2.4 Application Register Set

The Application register set (Figure 2–3) consists of the registers most often
used by the applications programmer. These registers are generally accessi-
ble and are not protected from read or write access.

The contents of General Purpose registers are frequently modified by assem-
bly language instructions and typically contain arithmetic and logical-instruc-
tion operands.

The Segment registers contain segment selectors that index into tables lo-
cated in memory. These tables hold the base address for each segment and
other information related to memory addressing.

The Flag Word register contains control bits used to reflect the status of pre-
viously executed instructions. This register also contains control bits that affect
the operation of some instructions.

The Instruction Pointer is a 32-bit register that points to the next instruction that
the processor executes. This register is automatically incremented by the pro-
cessor as execution progresses.

Figure 2–3. Application Register Set

31 16 15

AX

7 0

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

SI

DI

BP

SP

15 0

15 01631

IP

Flag Word

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

General
Purpose
Registers

Segment
Registers

Instruction
Pointer and
Registers

8

 Application Register Set

2-11 Programming Interface

2.4.1 General Purpose Registers

The General Purpose registers are divided into four Data, two Pointer, and two
Index registers as shown in Figure 2–4.

Figure 2–4. General Purpose Registers

A (Accumulator)

B (Base)

C (Count)

D (Data)

Data Registers

Pointer and Index Registers

BP (Base Pointer)

SI (Source Index)

DI (Destination Index)

SP (Stack Pointer)

31 16 15

AX

7 0

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

SI

DI

BP

SP

8

(ESI)

(EDI)

(EBP)

(ESP)

2.4.1.1 Data Registers

The Data registers are used by the applications programmer to manipulate
data structures and to hold the results of logical and arithmetic operations. Dif-
ferent portions of the general Data registers can be addressed by using differ-
ent names. An E prefix identifies the complete 32-bit register. An X suffix with-
out the E prefix identifies the lower 16 bits of the register. The lower two bytes
of the register can be addressed with an H suffix to identify the upper byte or
an L suffix to identify the lower byte. When a source operand value specified
by an instruction is smaller than the specified destination register, the upper
bytes of the destination register are not affected when the operand is written
to the register.

2.4.1.2 Pointer and Index Registers

The Pointer and Index registers are:

BP or EBP Base Pointer
SP or ESP Stack Pointer
SI or ESI Source Index
DI or EDI Destination Index

These registers can be addressed as 16- or 32-bit registers, with the E prefix
indicating 32 bits. These registers can be used as General Purpose registers;
however, some instructions use a fixed assignment of these registers. For ex-
ample, the string operations always use ESI as the source pointer, EDI as the
destination pointer, and ECX as a counter. The instructions using fixed regis-
ters include double-precision multiply and divide, I/O access, string opera-
tions, translate, loop, variable shift and rotate, and stack operations.

Application Register Set

2-12

The TI486SXL(C) processors implement a stack using the ESP register. This
stack is accessed during the PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and interrupt/exception returns.
The microprocessor automatically adjusts the value of the ESP during opera-
tion of these instructions. The EBP register can be used to reference data
passed onto the stack during procedure calls. Local data can also be placed
on the stack and referenced relative to BP. This register provides a mechanism
to access stack data in high-level languages.

2.4.2 Segment Registers and Selectors

Segmentation provides a means of defining data structures inside the memory
space of the microprocessor. There are three basic types of segments: code,
data, and stack. Segments are used automatically by the processor to deter-
mine the memory locations of code, data, and stack references.

There are six 16-bit Segment registers:

CS Code Segment
DS Data Segment
FS Additional Data Segment
GS Additional Data Segment
SS Stack Segment
ES Extra Segment

In real and virtual-8086 operating modes, a Segment register holds a 16-bit
segment base. The 16-bit segment base is multiplied by 16, and a 16-bit or
32-bit offset is then added to it to create a linear address. The offset size is de-
pendent on the current address size. In real mode and in virtual-8086 mode
with paging disabled, the linear address is also the physical address. In virtual-
8086 mode with paging enabled, the linear address is translated to the physi-
cal address using the current page tables.

In protected mode, a Segment register holds a segment selector containing
a 13-bit index, a table indicator (TI) bit, and a two-bit requested-privilege-level
(RPL) field as shown in Figure 2–5.

Figure 2–5. Segment Selector Register

15 0

RPL

123

Index

TI = Table Indicator

RPL = Requested Privilege Level

TI

The index points into a descriptor table in memory and selects one of 8192
(213) segment descriptors contained in the descriptor table. A segment des-
criptor is an eight-byte value used to describe a memory segment by defining
the segment base, the segment limit, and access control information.

 Application Register Set

2-13 Programming Interface

To address data within a segment, a 16-bit or 32-bit offset is added to the seg-
ment’s base address. Once a segment selector has been loaded into a Seg-
ment register, an instruction needs to specify the offset only.

The TI bit of the selector defines the descriptor table into which the index
points. If TI = 0, the index references the global-descriptor table (GDT). If TI
= 1, the index references the local-descriptor table (LDT). The GDT and LDT
are described in more detail later in this chapter.

The requested privilege level (RPL) field contains a 2-bit segment privilege
level (00 = most privileged, 11 = least privileged). The RPL bits are used when
the Segment register is loaded to determine the effective privilege level (EPL).
If the RPL bits indicate less privilege than the program, the RPL overrides the
current privilege level (CPL) and the EPL is the lower privilege level. If the RPL
bits indicate more privilege than the program, the current privilege level over-
rides the RPL and again the EPL is the lower privilege level.

When a Segment register is loaded with a segment selector, the segment
base, the segment limit, and the access rights are also loaded from the des-
criptor table into a user-invisible or hidden portion of the Segment register (i.e.,
cached on-chip). The CPU does not access the descriptor table again until
another Segment register load occurs. If the descriptor tables are modified in
memory, the Segment registers must be reloaded with the new selector val-
ues.

The processor automatically selects a default Segment register for memory
references. Table 2–4 describes the selection rules. In general, data refer-
ences use the selector contained in the DS register, stack references use the
SS register, and instruction fetches use the CS register. While some of these
selections can be overridden, instruction fetches, stack operations, and the
destination write of string operations cannot be overridden. Special segment
override prefixes allow the use of alternate Segment registers including the
ES, FS, and GS Segment registers.

Table 2–4.Segment Register Selection Rules

Type of Memory Reference
Implied (Default)
Segment

Segment Override
Prefix

Code fetch CS None

Destination of PUSH, PUSHF, INT, CALL, PUSHA
instructions

SS None

Source of POP, POPA, POPF, IRET, RET instructions SS None

Destination of STOS, MOVS, REP STOS, REP
MOVS instructions

ES None

Other data references with effective address using
Base registers of:

EAX, EBX, ECX, EDX, ESI, EDI
EBP, ESP

DS
SS

CS, ES, FS, GS, SS
CS, DS, ES, FS, GS

Application Register Set

2-14

2.4.3 Instruction Pointer Register

The (extended) Instruction Pointer (EIP) register shown in Figure 2–3 on page
2-10 contains the offset into the current code segment of the next instruction
to be executed. The register is normally incremented with each instruction
execution unless implicitly modified through an interrupt, exception, or an
instruction that changes the sequential execution flow (e.g., jump, call).

2.4.4 Flag Word Register

The Flag Word register, EFLAGS, contains status information and controls
certain operations on the microprocessor. The lower 16 bits of this register are
referred to as the Flag register, FLAGS, that is used when executing 8086 or
80286 code. The flag bits are shown in Figure 2–6 and defined in Table 2–5.

Figure 2–6. EFLAGS Register

1
2

1
3

A
C

V
M

R
F 0

N
T

IO
PL

O
F

D
F

I
F

T
F

S
F

Z
F

A
F

P
F

C
F0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1
8

1
7

1
6

1 1
4

1
1

1
0 9 8 7 5 3 16 4 25 0

2
3

3
1

Alignment Check
Virtual-8086 Mode

Resume Flag
Nested Task Flag

I/O Privilege Level
Overflow

Direction Flag
Interrupt Enable

Trap Flag
Sign Flag
Zero Flag

Auxiliary Carry
Parity Flag
Carry Flag

S
S
D
S
S
A
C
S
D
A
A
S
A
A

FLAGS

2
4

EFLAGS

Note: A = arithmetic flag, D = debug flag, S = system flag, C = control flag
0 or 1 indicates reserved

 Application Register Set

2-15 Programming Interface

Table 2–5.EFLAGS Definitions

Bit Position Name Function

0 CF Carry flag. CF is set when an operation results in a carry out of (addition) or borrow
into (subtraction) the most significant bit; otherwise, CF is cleared.

2 PF Parity flag. PF is set when the low-order eight bits of the result contain an even
number of ones; otherwise, PF is cleared.

4 AF Auxiliary carry flag. AF is set when an operation results in a carry out of (addition)
or borrow into (subtraction) bit position 3; otherwise, AF is cleared.

6 ZF Zero flag. ZF is set if result is zero; otherwise, ZF is cleared.

7 SF Sign flag. SF is set equal to high-order bit of result (0 indicates positive, 1 indicates
negative).

8 TF Trap enable flag. Once TF is set, a single-step interrupt occurs after the next
instruction completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt enable flag. When IF is set, maskable interrupts (INTR input pin) are
acknowledged and serviced by the CPU.

10 DF Direction flag. When cleared, DF causes string instructions to auto-increment
(default) the appropriate Index registers (ESI and/or EDI). Setting DF causes
auto-decrement of the Index registers.

11 OF Overflow flag. Set if the operation resulted in a carry or borrow into the sign bit of
the result but did not result in a carry or borrow out of the high-order bit. Also set if
the operation resulted in a carry or borrow out of the high-order bit but did not result
in a carry or borrow into the sign bit of the result.

12, 13 IOPL I/O privilege level. While executing in protected mode, IOPL indicates the
maximum current privilege level (CPL) permitted to execute I/O instructions without
generating an exception 13 fault or consulting the I/O permission bit map. IOPL also
indicates the maximum CPL allowing alteration of the IF bit when new values are
popped into the EFLAGS register.

14 NT Nested task. While executing in protected mode, NT indicates that the execution
of the current task is nested within another task.

16 RF Resume flag. RF is used in conjunction with Debug register breakpoints. RF is
checked at instruction boundaries before breakpoint exception processing. If set,
any debug fault is ignored on the next instruction.

17 VM Virtual-8086 mode flag. If VM is set while in protected mode, the microprocessor
switches to virtual-8086 operation handling segment loads as the 8086 does, but
generating exception 13 faults on privileged opcodes. The VM flag can be set by
the IRET instruction (if current privilege level = 0) or by task switches at any privilege
level.

18 AC Alignment-check enable. In conjunction with the AM flag in CR0, the AC flag
determines whether or not misaligned accesses to memory cause a fault. If AC is
set, alignment faults are enabled.

System Register Set

2-16

2.5 System Register Set

The System register set (Figure 2–7) consists of registers typically used by
system-level programmers who generate operating systems and memory-
management programs.

The Control registers control functions of the microprocessor such as paging,
coprocessor functions, and segment protection. When paging is enabled and
a paging exception occurs, the Control registers retain the linear address of
the access that caused the exception.

The Descriptor Table registers and the Task register are referred to as System
Address or Memory Management registers. These registers consist of two
48-bit and two 16-bit registers. These registers specify the location of the data
structures that control the segmentation used by the microprocessor. Seg-
mentation is a method of memory management.

The Configuration registers control the clock-doubling operation (for the
TI486SXLC2 and TI486SXL2), on-chip cache operation, power-management
features, and system-management mode. The clock-doubling, cache, power-
management, and SMM features can be enabled or disabled by writing to
these registers. Noncacheable areas of physical memory are also defined
through these registers.

The Debug registers provide debugging facilities for the microprocessor and
enable the use of data-access breakpoints and code-execution breakpoints.

The Test registers provide a mechanism to test the contents of both the on-chip
8K-byte cache and the translation lookaside buffer (TLB). The TLB is used as
a cache for translating linear addresses to physical addresses when paging
is enabled. In the following sections, the System register set is described in
greater detail.

 System Register Set

2-17 Programming Interface

Figure 2–7. System Register Set

Page-Fault Linear Address Register

Page-Directory Base Register

31 16 15 0

Limit

47 16 15 0

Limit

Selector

Selector

Base

Base

Linear Breakpoint Address 0

31 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Breakpoint Status

Breakpoint Control

CCR0

0

CCR1

Address Region 1

Address Region 2

Address Region 3

Address Region 4

Cache Test

31 0

Cache Test

Cache Test

TLB Test Control

TLB Test Status

CCR0 = Configuration Control 0
CCR1 = Configuration Control 1

CR0

CR2

CR3

GDTR

IDTR

LDTR

TR

DR0

DR1

DR2

DR3

DR6

DR7

CCR0

CCR1

ARR1

ARR2

ARR3

ARR4

TR3

TR4

TR5

TR6

TR7

7

15

Control
Registers

System Address
(Descriptor Table)
Registers

System Address
(Task Register)

Debug
Registers

Configuration
Registers

Test
Registers

23

(TI486SXL only)

System Register Set

2-18

2.5.1 Control Registers

The Control registers (CR0, CR2, and CR3) are shown in Figure 2–8. The CR0
register contains system control flags that control operating modes and indi-
cate the general state of the CPU. The lower 16 bits of CR0 are referred to as
the machine status word (MSW). The CR0 bit definitions are described in
Table 2–6. The reserved bits in CR0 should not be modified.

Figure 2–8. Control Registers

Page-Directory Base Register (PDBR)

Page-Fault Linear Address

P
G

C
D 0 E

M
M
P0 T

S
P
E1A

M
W
 P

3
1

3
0

2
9

1
8

1
6

5 4 3 2 1 0

MSW
= Reserved

CR3

CR2

CR0

31 12 11 0

When paging is enabled and a page fault is generated, the CR2 register retains
the 32-bit linear address of the address that caused the fault. CR3 contains the
20-bit base address of the page directory. The page directory must always be
aligned to a 4K-byte page boundary; therefore, the lower 12 bits of CR3 are
reserved.

When the microprocessor operates in protected mode, any program can read
the Control registers. Privilege level 0 (most privileged) programs can modify
the contents of these registers.

 System Register Set

2-19 Programming Interface

Table 2–6.CR0 Bit Definitions

Bit Position Name Function

0 PE Protected mode enable. Enables the segment-based protection mechanism. If PE =
1, protected mode is enabled. If PE = 0, the CPU operates in real mode
(segment-based protection disabled), and addresses are formed as in an 8086-class
CPU.

1 MP Monitor processor extension. If MP = 1 and TS = 1, a WAIT instruction causes fault
7. The TS bit is set to 1 on task switches by the CPU. Floating-point instructions are
not affected by the state of the MP bit. The MP bit should be set to 1 during normal
operations.

2 EM Emulate processor extension. If EM = 1, all floating-point instructions cause a fault 7.

3 TS Task switched. Set whenever a task-switch operation is performed. Execution of a
floating-point instruction with TS = 1 causes a device-not-available (DNA) fault. If
MP = 1 and TS = 1, a WAIT instruction also causes a DNA fault.

4 1 Reserved. Do not modify.

5 0 Reserved. Do not modify.

16 WP Write protect. Protects read-only pages from supervisor write access. The 386-type
CPU allows a read-only page to be written from privilege levels 0–2. The TI486SXL(C)
CPU is compatible with the 386-type CPU when WP = 0. WP = 1 forces a fault on a
write to a read-only page from any privilege level.

18 AM Alignment-check mask. If AM = 1, the AC bit in the EFLAGS register is unmasked and
allowed to enable alignment-check faults. Setting AM = 0 prevents AC faults.

29 0 Reserved. Do not modify.

30 CD Cache disable. If CD = 1, cache is no longer filled. However, data already present in
the cache continues to be used if the requested address hits in the cache. The cache
must also be invalidated to completely disable any cache activity.

31 PG Paging enable. If PG = 1 and protected mode is enabled (PE = 1), paging is enabled.

2.5.2 Descriptor-Table Registers and Descriptors

The Global-, Interrupt-, and Local-Descriptor-Table registers (GDTR, IDTR
and LDTR) specify the location of the data structures that control segmented
memory management.

2.5.2.1 Descriptor-Table (System-Address) Registers

The GDTR, IDTR, and LDTR, shown in Figure 2–9, are loaded using the
LGDT, LIDT, and LLDT instructions, respectively. The values of these registers
are stored using the corresponding store instructions. The GDTR and IDTR
load instructions are privileged instructions when operating in protected mode.
The LDTR can be accessed only in protected mode.

The Global-Descriptor-Table register (GDTR) holds a 32-bit base address and
a 16-bit limit for the global-descriptor table (GDT). The GDT is an array of up
to 8192 8-byte descriptors. When a Segment register is loaded from memory,
the TI bit in the segment selector chooses either the GDT or the local-descrip-
tor table (LDT) to locate a descriptor. If TI = 0, the index portion of the selector

System Register Set

2-20

is used to locate a given descriptor within the GDT table. The contents of the
GDTR are completely visible to the programmer. The first descriptor in the
GDT (location 0) is not used by the CPU and is referred to as the null descriptor.
If the GDTR is loaded while operating in 16-bit operand mode, the micropro-
cessor accesses a 32-bit base value but the upper 8 bits are ignored, resulting
in a 24-bit base address.

The Interrupt-Descriptor-Table register (IDTR) holds a 32-bit base address
and a 16-bit limit for the interrupt-descriptor table (IDT). The IDT is an array
of 256 8-byte interrupt descriptors, each of which points to an interrupt service
routine. Every interrupt that can occur in the system must have an associated
entry in the IDT. The contents of the IDTR are completely visible to the pro-
grammer.

Figure 2–9. Descriptor-Table (System-Address) Registers

Base Address

Base Address

Limit

Limit

Selector

48 16 15 0

GDTR

IDTR

LDTR

The Local-Descriptor-Table register (LDTR) holds a 16-bit selector for the lo-
cal-descriptor table (LDT). The LDT is an array of up to 8192 8-byte descrip-
tors. When the LDTR is loaded, the LDTR selector indexes an LDT descriptor
that must reside in the global-descriptor table (GDT). The contents of the se-
lected descriptor are cached on-chip in the hidden portion of the LDTR. The
CPU does not access the GDT again until the LDTR is reloaded. If the LDT
description is modified in memory in the GDT, the LDTR must be reloaded to
update the hidden portion of the LDTR.

When a Segment register is loaded from memory, the TI bit in the segment se-
lector chooses either the GDT or the LDT to locate a segment descriptor. If
TI = 1, the index portion of the selector is used to locate a given descriptor with-
in the LDT. Each task in the system may be given its own LDT, managed by
the operating system. The LDTs provide a method for isolating a given task’s
segments from other tasks in the system.

 System Register Set

2-21 Programming Interface

2.5.2.2 Descriptors

The three types of descriptors are:

� Application-segment descriptors that define code, data, and stack seg-
ments

� System-segment descriptors that define an LDT segment or a task-state
segment (TSS)

� Gate descriptors that define task gates, interrupt gates, trap gates, and
call gates

Application-segment descriptors can be located in either the LDT or GDT. Sys-
tem-segment descriptors can be located only in the GDT. Depending on the
gate type, gate descriptors can be located in the GDT, LDT, or IDT. Figure 2–10
illustrates the descriptor format for both application-segment descriptors and
system-segment descriptors. Table 2–7 lists the corresponding bit definitions.

Figure 2–10. Application- and System-Segment Descriptors

Base 31–24 G D 0
A
V
L

Limit 19–16 P DPL D
T

Type Base 23–16

Base 15–0 Limit 15–0

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

+4

+0

System Register Set

2-22

Table 2–7.Segment Descriptor Bit Definitions

Bit
Position

Memory
Offset Name Description

31–24
7–0
31–16

+4
+4
+0

Base 31–24
Base 23–16
Base15–0

Segment base address. A 32-bit linear address that points to the be-
ginning of the segment.

19–16
15–0

+4
+0

Limit 19–16
Limit 15–0

Segment limit. In real mode, segment limit is always 64K bytes
(0FFFFh).

23 +4 G Limit granularity:
0 = byte granularity
1 = 4K-byte (page) granularity

22 +4 D Default length for operands and effective addresses (valid for code
and stack segments only):

0 = 16 bit
1 = 32 bit

20 +4 AVL Segment available

15 +4 P Segment present

14–13 +4 DPL Descriptor privilege level

12 +4 DT Descriptor type:
0 = system
1 = application

11–8

11

10

9

8

+4

+4

+4

+4

+4

Type

E

C/D

R/W

A

Segment type. System descriptor (DT = 0):
0010 = LDT descriptor
1001 = TSS descriptor, task not busy
1011 = TSS descriptor, task busy

Application descriptor (DT = 1):
0 = data
1 = executable

If E is 0:
0 = expand up, limit is upper bound of segment
1 = expand down, limit is lower bound of segment

If E is 1:
0 = nonconforming
1 = conforming (runs at privilege level of calling procedure)

If E is 0:
0 = nonreadable
1 = readable

If E is 1:
0 = nonwritable
1 = writable
0 = not accessed
1 = accessed

Gate descriptors provide protection for executable segments operating at dif-
ferent privilege levels. Figure 2–11 illustrates the format for gate descriptors
and Table 2–8 lists the corresponding bit definitions.

Task-gate descriptors are used to switch the CPU’s context during a task
switch. The selector portion of the task-gate descriptor locates a task-state
segment. Task-gate descriptors can be located in the GDT, LDT, or IDT.

 System Register Set

2-23 Programming Interface

Figure 2–11. Gate Descriptor

Offset 31–16 P DPL Type Parameters

Selector 15–0 Offset 15–0

31 16 15 14 13 12 11 8 7 0

+4

+0

0 0 0 0

Table 2–8.Gate Descriptor Bit Definitions

Bit
Position

Memory
Offset Name Description

31–16
15–0

+4
+0

Offset 31–16
Offset 15–0

Offset used during a call gate to calculate the branch target

31–16 +0 Selector 15–0 Segment selector used during a call gate to calculate the branch target

15 +4 P Segment present

14–13 +4 DPL Descriptor privilege level

11–8 +4 Type Segment type:
0100 = 16-bit call gate
0101 = tack gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate

4–0 +4 Parameters Number of 32-bit parameters to copy from the caller’s stack to the
called procedure’s stack

Interrupt-gate descriptors are used to enter a hardware interrupt service rou-
tine. Trap-gate descriptors are used to enter exceptions or software interrupt
service routines. Trap-gate and interrupt-gate descriptors can be located only
in the IDT.

Call-gate descriptors are used to enter a procedure (subroutine) that executes
at the same or a more-privileged level. A call-gate descriptor primarily defines
the procedure entry point and the procedure’s privilege level.

2.5.3 Task Register

The Task register (TR) holds a 16-bit selector for the current TSS table as
shown in Figure 2–12. The TR is loaded and stored via the LTR and STR
instructions, respectively. The TR can be accessed only during protected
mode and can be loaded only when the privilege level is 0 (most privileged).

Figure 2–12. Task (System-Address) Register

Selector

15 0

System Register Set

2-24

When the TR is loaded, the TR selector field indexes a TSS descriptor that
must reside in the global-descriptor table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden portion of the TR.

During task switching, the processor saves the current CPU state in the TSS
before starting a new task. The TR points to the current TSS. The TSS can be
either a 386/486-type TSS (32-bit) or a 286-type TSS (16-bit) as shown in
Figure 2–13 and Figure 2–14. An I/O permission bit map is referenced in the
32-bit TSS by the I/O map base address.

Figure 2–13. 32-Bit Task-State Segment (TSS) Table

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I/O Map Base Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T

Selector For Task’s LDT

GS

FS

DS

SS

CS

ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

CR3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SS for CPL = 2

SS for CPL = 1

SS for CPL = 0

Back Link (Old TSS Selector)

ESP for CPL = 2

ESP for CPL = 1

ESP for CPL = 0

31 16 15 0

0 = Reserved

+64h

+60h

+5Ch

+58h

+54h

+50h

+4Ch

+48h

+44h

+40h

+3Ch

+38h

+34h

+30h

+2Ch

+28h

+24h

+20h

+1Ch

+18h

+14h

+10h

+Ch

+8h

+4h

+0h

 System Register Set

2-25 Programming Interface

Figure 2–14. 16-Bit Task-State Segment (TSS) Table

Selector For Task’s LDT

DS

SS

CS

ES

DI

SI

BP

SP

BX

DX

CX

AX

FLAGS

IP

SP For Privilege Level 2

SS For Privilege Level 2

SP For Privilege Level1

SS For Privilege Level 1

SP For Privilege Level 0

SS For Privilege Level 0

Back Link (Old TSS Selector)

+2Ah

+28h

+26h

+24h

+22h

+20h

+1Eh

+1Ch

+1Ah

+18h

+16h

+14h

+12h

+10h

+Eh

+Ch

+Ah

+8h

+6h

+4h

+2h

+0h

System Register Set

2-26

2.5.4 Configuration Registers

The TI486SXL(C) family microprocessors contain six registers that do not ex-
ist on other 80x86 microprocessors. These registers include two Configuration
Control registers (CCR0 and CCR1) and four Address Region registers (ARR1
through ARR4) as listed in Table 2–9 and Table 2–10. The CCR and ARR reg-
isters exist in I/O memory space and are selected by a register index number
via I/O port 22h. I/O port 23h is used for data transfer.

Table 2–9.TI486SXLC Configuration Control Registers

Register Name Register Index Width

Configuration Control 0 (CCR0) C0h 8

Configuration Control 1 (CCR1) C1h 8

Address Region 1 (ARR1) C5h–C6h 16

Address Region 2 (ARR2) C8h–C9h 16

Address Region 3 (ARR3) CBh–CCh 16

Address Region 4 (ARR4) CEh–CFh 16

Note: The following register index numbers are reserved: C2h, C3h, C4h, C7h, CAh, CDh, and
D0h through FFh.

Table 2–10.TI486SXL Configuration Control Registers

Register Name Register Index Width

Configuration Control 0 (CCR0) C0h 8

Configuration Control 1 (CCR1) C1h 8

Address Region 1 (ARR1) C4h–C6h 24

Address Region 2 (ARR2) C7h–C9h 24

Address Region 3 (ARR3) CAh–CCh 24

Address Region 4 (ARR4) CDh–CFh 24

Note: The following register index numbers are reserved: C2h, C3h, and D0h through FFh.

Each I/O port 23h data transfer must be preceded by an I/O port 22h register
selection; otherwise, the second and later I/O port 23h operations are directed
off-chip and produce external I/O cycles. If the register index number is outside
the C0h–CFh range, external I/O cycles also occur.

 System Register Set

2-27 Programming Interface

The CCR0 register (Table 2–11) determines if the 64K-byte memory area on
1M-byte boundaries and the 640K-byte to 1M-byte area are cacheable. This
register also enables certain functions associated with cache control, suspend
mode, and the clock-doubled mode.

Table 2–11. CCR0 Bit Definitions

Bit Position Register Index Description

0 NC0 Noncacheable 1M-byte boundaries:
If 1, sets the first 64K bytes at each 1M-byte boundary as noncacheable.

1 NC1 Noncacheable upper memory area:
If 1, sets 640K-byte to 1M-byte memory region noncacheable.

2 A20M Enable A20M# pin:
If 1, enables A20M#; otherwise pin is ignored.

3 KEN Enable KEN# pin:
If 1, enables KEN#; otherwise pin is ignored.

4 FLUSH Enable FLUSH# pin:
If 1, enables FLUSH#; otherwise pin is ignored.

5 BARB Enable cache flush during hold:
If 1, enables flushing of the internal cache when hold state is entered.

6 CKD Enable clock double:
If 1, enables clock-double mode.
If 0, disables clock-double mode.

7 SUSP Enable suspend pins:
If 1, enables SUSP# and SUSPA#.
If 0, SUSPA# floats; SUSP# is ignored.

System Register Set

2-28

The CCR1 register (Table 2–12) sets up the internal cache operation and sys-
tem-management mode (SMM). The ARR registers (Figure 2–15 on page
2-29, Figure 2–16 on page 2-30, and Table 2–9 and Table 2–10 on page 2-26)
define the location and size of the memory regions associated with the internal
cache. ARR1–ARR3 define three write-protected or noncacheable memory
regions as designated by CCR1 bits WP1–WP3. ARR4 defines an SMM
memory space as a noncacheable memory region when bit SM4 of CCR1 is
set to 1. Other CCR1 bits enable SMM pins and control SMM memory access.
The SMAC bit allows access to defined SMM space while not in an SMI service
routine. The MMAC bit allows access to main memory that overlaps with SMM
memory while in an SMI service routine for data access only.

Table 2–12.CCR1 Bit Definitions

Bit Position Register Index Description

0 — Reserved

1 SMI Enable SMM pins:
If 1, SMI# and SMADS# are enabled.
If 0, SMI# is ignored and SMADS# floats.

2 SMAC System management memory access:
If 1, noncode-segment prefixed data reads and writes to addresses within
the SMM memory space cause external bus cycles to be issued with
SMADS# active. SMI# is ignored.
If 0, no effect on access.

3 MMAC Main memory access:
If 1, all noncode-segment prefixed data reads and writes that occur within
an SMI service routine (or when SMAC = 1) access main memory instead
of SMM memory space.
If 0, no effect on access.

4 WP1 Access region 1 control:
If 1, region 1 is write protected and cacheable.
If 0, region 1 is noncacheable.

5 WP2 Access region 2 control:
If 1, region 2 is write protected and cacheable.
If 0, region 2 is noncacheable.

6 WP3 Access region 3 control:
If 1, region 3 is write protected and cacheable.
If 0, region 3 is noncacheable.

7 SM4 Access region 4 control:
If 1, region 4 is noncacheable SMM memory space.
If 0, region 4 is noncacheable. SMI# input ignored.

 System Register Set

2-29 Programming Interface

The ARR registers define address regions using a starting address and a block
size. The noncacheable-region block sizes range from 4K bytes to 4G bytes
(Table 2–13). A block size of zero disables the address region. The starting ad-
dress of the address region must be on a block size boundary. For example,
a 128K-byte block is allowed to have a starting address of 0K bytes, 128K
bytes, 256K bytes, etc. The SMM memory region size is restricted to a maxi-
mum of 16M bytes. The block size must be defined for SMI# to be recognized.

Figure 2–15. TI486SXLC Address Region Registers (ARR1–ARR4)

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = C5h Register Index = C6h

Address Region 1

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = C8h Register Index = C9h

Address Region 2

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = CBh Register Index = CCh

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size†

Register Index = CEh Register Index = CFh

Address Region 4

Address Region 3

†ARR4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.

ARR1

ARR2

ARR3

ARR4

System Register Set

2-30

Figure 2–16. TI486SXL Address Region Registers (ARR1–ARR4)

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = C5h Register Index = C6h

Address Region 1

Address Region 2

Address Region 4

Address Region 3

†ARR4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.

ARR1

ARR2

ARR3

ARR4

7 0

Register Index = C4h

A31 A24

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = C8h Register Index = C9h

7 0

Register Index = C7h

A31 A24

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size

Register Index = CBh Register Index = CCh

7 0

Register Index = CAh

A31 A24

Starting Address
A23 A16 A15 A12

7 0 7 4 3 0

Size†

Register Index = CEh Register Index = CFh

7 0

Register Index = CDh

A31 A24

Table 2–13.ARR1–ARR4 Block Size Field

Bits 3–0 Block Size (Bytes) Bits 3–0 Block Size (Bytes)

0h Disabled 8h 512K

1h 4K 9h 1M

2h 8K Ah 2M

3h 16K Bh 4M

4h 32K Ch 8M

5h 64K Dh 16M

6h 128K Eh 32M

7h 256K Fh 4G

 System Register Set

2-31 Programming Interface

2.5.5 Debug Registers

Six Debug registers (DR0–DR3, DR6, and DR7), shown in Figure 2–17 and
Figure 2–18, support debugging on the TI486SXL(C) family of microproces-
sors. Memory addresses loaded in the Debug registers, referred to as break-
points, generate a debug exception when a memory access of the specified
type occurs to the specified address. A breakpoint can be specified for a partic-
ular kind of memory access such as a read or a write. Code and data break-
points can also be set allowing debug exceptions to occur whenever a given
data access (read or write) or code access (execute) occurs. The size of the
debug target can be set to 1, 2, or 4 bytes. The Debug registers are accessed
via MOV instructions that can be executed only at privilege level 0.

Figure 2–17. TI486SXLC Debug Registers

LEN
3

R/W
3

LEN
2

R/W
2

LEN
1

R/W
1

LEN
0

R/W
0

0 0
G
D 0 0 1

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

B
T

B
S

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B
3

B
2

B
1

B
0

0 1 1 1 1 1 1 � 1 1

Reserved

Reserved

Breakpoint 3 Linear Address

Breakpoint 2 Linear Address

Breakpoint 1 Linear Address

Breakpoint 0 Linear Address

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DR0

All bits marked as 0 or 1 are reserved and should not be modified.

0 123456789
1
0

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0

The Debug Breakpoint Linear Address registers DR0–DR3 each contain the
linear address for one of four possible breakpoints. Each breakpoint is further
specified by bits in the Debug Control register (DR7). For each breakpoint ad-
dress in DR0–DR3, there are corresponding fields L, R/W, and LEN in DR7
that specify the type of memory access associated with the breakpoint.

The R/W field can be used to specify execution as well as data-access break-
points. Instruction-execution and data-access breakpoints are always taken
before execution of the instruction that matches the breakpoint.

The Debug Status register (DR6) reflects conditions that were in effect at the
time the debug exception occurred. The contents of the DR6 register are not
automatically cleared by the processor after a debug exception occurs and,
therefore, should be cleared by software at the appropriate time. Table 2–14
lists the field definitions for the DR6 and DR7 registers.

System Register Set

2-32

Figure 2–18. TI486SXL Debug Registers

LEN
3

R/W
3

LEN
2

R/W
2

LEN
1

R/W
1

LEN
0

R/W
0

G
D 0 0 0

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

B
S

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B
3

B
2

B
1

B
0

0 1 1 1 1 1 1 1 1

Breakpoint 3 Linear Address

Breakpoint 2 Linear Address

Breakpoint 1 Linear Address

Breakpoint 0 Linear Address

DR7

DR6

DR3

DR2

DR1

DR0

All bits marked as 0 or 1 are reserved and should not be modified.

B
T

1

0 123456789
1
0

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 0

Table 2–14.DR6 and DR7 Field Definitions

Register Field
Number
Of Bits Description

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi, and
LENi occurred when the debug exception occurred, even if the breakpoint
is not enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if a task
switch has occurred to a task with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered by the
single-step-execution mode (TF flag in EFLAGS set).

DR7 R/Wi 2 Break applied to the DRi Breakpoint Linear Address register:
00 – Break on instruction execution only
01 – Break on data writes only
10 – Not used
11 – Break on data reads or writes

LENi 2 Length of the DRi Breakpoint Linear Address register:
00 – One-byte length
01 – Two-byte length
10 – Not used
11 – Four-byte length

Gi 1 If set to 1, breakpoint in DRi is globally enabled for all tasks and is not
cleared by the processor as the result of a task switch.

Li 1 If set to 1, breakpoint in DRi is locally enabled for the current task and is
cleared by the processor as the result of a task switch.

GD 1 Globally disables Debug register access. GD bit is cleared whenever a
debug exception occurs.

Code execution breakpoints can also be generated by placing the breakpoint
instruction (INT3) at the location where control is to be regained. The single-
step feature can be enabled by setting the TF flag in the EFLAGS register. This

 System Register Set

2-33 Programming Interface

causes the processor to perform a debug exception after the execution of
every instruction.

2.5.6 Test Registers

The five Test registers, shown in Figure 2–19, test the CPU’s translation look-
aside buffer (TLB) and on-chip cache. TR6 and TR7 are used for TLB testing,
and TR3–TR5 are used for cache testing. Table 2–15 and Table 2–16 list the
bit definitions for the TR6 and TR7 registers.

Figure 2–19. Test Registers

TLB Physical Address PCD PWT TLB LRU 0 0 PL REP 0 0

31 12

TR7

TLB Linear Address V D U U# 0 C TR6D# R R# 0 0 0

Ctl TR5
Line
 SelSet Selection

Cache Tag Address† TR40 0Cache
LRU

11 10 9 8 7 6 5 4 3 2 1 0

31 12 11 10 9 8 7 6 5 4 3 2 1 0

31 11 10 9 8 7 6 5 4 3 2 1 0

31 9 8 7 6 5 4 3 2 1 0

Bits

Cache Data

31 0

TR3

= Reserved

12

12

WAY
SEL

BLK

Valid

1124

† Bits 31–24 are reserved on the TI486SXLC.

2.5.6.1 TLB Test Registers

The microprocessor TLB is a four-way set-associative memory with eight en-
tries per set. Each TLB entry consists of a 24-bit tag and 20-bit data. The 24-bit
tag represents the high-order 20 bits of the linear address, a valid bit, and three
attribute bits. The 20-bit data portion represents the upper 20 bits of the physi-
cal address that corresponds to the linear address.

The TLB Test-Control register (TR6) contains a command bit, the upper 20 bits
of a linear address, a valid bit, and the attribute bits used in the test operation.
The contents of TR6 are used to create the 24-bit TLB tag during both write
and read (TLB lookup) test operations. The command bit defines whether the
test operation is a read or a write.

The TLB Test-Data register (TR7) contains the upper 20 bits of the physical
address (TLB data field), two LRU bits, and a control bit. During TLB write op-
erations, the physical address in TR7 is written into the TLB entry selected by
the contents of TR6. During TLB lookup operations, the TLB data selected by
the contents of TR6 is loaded into TR7.

System Register Set

2-34

Table 2–15.TR6 and TR7 Bit Definitions

Register
Name

Bit
Position Description

TR6 31–12 Linear address:
TLB lookup. The TLB is interrogated per this address. If only one match occurs
in the TLB, the rest of the fields in TR6 and TR7 are updated according to the
matching TLB entry.
TLB write. A TLB entry is allocated to this linear address.

11 Valid bit (V):
TLB lookup. Always set to 1.
TLB write. If set, indicates that the TLB entry contains valid data. If clear, target entry

is invalidated.

10–9 Dirty attribute bit and its complement (D, D#). (Refer to Table 2–16.)

8–7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2–16.)

6–5 Read/write attribute bit and its complement (R, R#). (Refer to Table 2–16.)

0 Command bit (C):
If 0, TLB write
If 1, TLB lookup

TR7 31–12 Physical address:
TLB lookup. Data field from the TLB.
TLB write. Data field written into the TLB.

11 Page-level cache disable bit (PCD). Corresponds to the PCD bit of a page-table
entry.

10 Page-level cache write-through bit (PWT). Corresponds to the PWT bit of a
page-table entry.

9–7 LRU bits:
TLB lookup. LRU bits associated with the TLB entry prior to the TLB lookup
TLB write. ignored

4 PL bit:
TLB lookup. If 1, read hit occurred. If 0, read miss occurred.
TLB write. If 1, REP field is used to select the set. If 0, the pseudo-LRU replacement

algorithm is used to select the set.

3–2 Set selection (REP):
TLB lookup. If PL is 1, set in which the tag was found. If PL is 0, undefined data.
TLB write. If PL is 1, selects one of the four sets for replacement. If PL is 0, ignored.

Table 2–16.TR6 Attribute Bit Pairs

Bit (B) Bit Complement (B#) Effect on TLB Lookup Effect on TLB Write

0
0
1
1

0
1
0
1

Do not match
Match if the bit is 0
Match if the bit is 1
Match if the bit is 1 or 0

Undefined
Clear the bit
Set the bit
Undefined

 System Register Set

2-35 Programming Interface

2.5.6.2 Cache Test Registers

The microprocessor on-chip cache is 8K bytes in size and is configured as two-
way set-associative memory.

The cache memory is physically split into two 4K-byte blocks each containing
1024 lines. Associated with each 4K-byte block are 256 twenty-bit tags, which
implies four lines in a block that are associated with the same tag. These four
lines are consecutive at 16-byte boundaries. For each byte in a line, a valid bit
indicates which of the four data bytes actually contains valid data. In addition,
there is a valid bit associated with each block of four lines, which when reset,
indicates that none of the 16-bytes in the four lines of that block contain valid
data.

The LRU bit indicates which of the two sets was more recently accessed. The
LRU bit is uninitialized for a given set after RESET or FLUSH#. The set’s LRU
bit remains uninitialized until the first read allocation to that set occurs. The first
cache allocation to a given set is to way 1 and the LRU bit is then equal to 1.
In a similar manner, the tag and valid bits of a given set and way are uninitial-
ized until a read allocation occurs and the block valid bit is set.

The microprocessor contains three Test registers that allow testing of its inter-
nal cache. Using these registers, cache test writes and reads can be per-
formed. Cache test writes cause the data in TR3 to be written to the selected
way and entry in the cache. Cache test reads allow inspection of the data, the
valid bits, and the LRU bit for the cache entry. For data to be written to the allo-
cated entry, the valid bits for the entry must be set prior to the write of the data.
Bit definitions for the cache Test registers are shown in Table 2–17.

System Register Set

2-36

Table 2–17.TR3–TR5 Bit Definitions

Register Name Bit Position Description

TR3 31–0 Cache data:
Cache read. data accessed from the cache
Cache write. to be written into the cache

TR4 31–12 Tag address:
Cache read. tag address from which data is read
Cache write. data written into the tag address of the selected set

7 LRU:
Cache read. the LRU bit associated with the cache set
Cache write. ignored

6–3 Valid bits:
Cache read. four valid bits for the accessed line, (one bit per byte)
Cache write. valid bits written into the line

2 Block valid bit:
Cache read. the block valid bit associated with the cache way
Cache write. the block valid bit written into the selected way

If 0, block is invalid (all 16 bytes are invalid).
If 1, block is valid (one or more bytes may be valid in 16-byte line).

TR5 12 Way selection:
If 0, way 0 is selected.
If 1, way 1 is selected.

11–4 Set selection. Selects one of 256 sets.

3–2 Line selection. Selects one of four lines.

1–0 Control bits. These bits control reading or writing the cache:
If 00, ignored
If 01, cache write
If 10, cache read
If 11, cache invalidate

 Memory Address Space

2-37 Programming Interface

2.6 Memory Address Space

The TI486SXLC directly addresses up to 16M bytes of physical memory, and
the TI486SXL directly addresses up to 4G bytes of physical memory. Memory
address space is accessed as bytes, words (16 bits), or doublewords (32 bits).
Words and doublewords are stored in consecutive memory bytes with the low-
order byte located in the lowest address. The physical address of a word or
doubleword is the byte address of the low-order byte.

With the TI486SXL(C) microprocessor family, memory can be addressed us-
ing nine different addressing modes. These addressing modes are used to cal-
culate an offset address often referred to as an effective address. Depending
on the operating mode of the CPU, the offset is then combined using memory-
management mechanisms to create and address a physical memory location.

Memory-management mechanisms on the microprocessor consist of seg-
mentation and paging. Segmentation allows each program to use several in-
dependent, protected address spaces. Paging supports a memory subsystem
that simulates a large address space using a small amount of RAM and disk
storage for physical memory. Either or both of these mechanisms can be used
for management of the microprocessor memory address space.

2.6.1 Offset Mechanism

The offset mechanism computes an offset (effective) address by summing up
to three values: the base, the index, and the displacement. The base, if pres-
ent, is the value in one of eight 32-bit General registers at the time the instruc-
tion is executed. The index, like the base, is a value that is determined from
one of the 32-bit General registers (except the ESP register) when the instruc-
tion is executed. The index differs from the base in that the index is first multi-
plied by a scale factor of 1, 2, 4 or 8 before the summation is made. The third
component of the memory address calculation is the displacement, which is
a value of up to 32 bits in length supplied as part of the instruction. Figure 2–20
illustrates the calculation of the offset address.

Figure 2–20. Offset Address Calculation

Scaling
x1, x2, x4, x8

Index

Base Displacement

Offset Address
(Effective Address)

Memory Address Space

2-38

Nine valid combinations of the base, index, scale factor, and displacement can
be used with the TI486SXL(C) family instruction set. These combinations are
listed in Table 2–18. The base and index both refer to contents of a register as
indicated by [Base] and [Index].

Table 2–18.Memory Addressing Modes

Addressing Mode Base Index
Scale

Factor (SF)
Displacement

(DP) Offset Address (OA) Calculation

Direct X OA = DP

Register indirect X OA = [BASE]

Based X X OA = [BASE] + DP

Index X X OA = [INDEX] + DP

Scaled index X X X OA = ([INDEX] * SF) + DP

Based index X X OA = [BASE] + [INDEX]

Based scaled
index

X X X OA = [BASE] + ([INDEX] * SF)

Based index with
displacement

X X X OA = [BASE] + [INDEX] + DP

Based scaled index
with displacement

X X X X OA = [BASE] + ([INDEX] * SF) + DP

2.6.2 Real-Mode Memory Addressing

In real-mode operation, the TI486SXL(C) family of microprocessors address
only the lowest 1M bytes (220) of memory. To calculate a physical memory ad-
dress, the 16-bit segment base address located in the selected Segment reg-
ister is shifted left by four bits and then the 16-bit offset address is added. For
the TI486SXLC, the resulting 20-bit address is then extended with four zeros
in the upper address bits to create the 24-bit physical address. For the
TI486SXL, the resulting 20-bit address is then extended with 12 zeros in the
upper address bits to create the 32-bit physical address. Figure 2–21 illus-
trates the real-mode address calculation. Address offsets larger than 65,535
cause a general protection fault. Physical addresses beyond 1M byte cause
a segment-limit-overrun exception.

Figure 2–21. Real-Mode Address Calculation

Offset Mechanism

Selected Segment
Register

Offset Address

x16

Linear Address = Physical Address

 Memory Address Space

2-39 Programming Interface

The addition of the base address and the offset address can result in a carry.
Therefore, the resulting address can actually contain up to 21 significant ad-
dress bits that address memory in the first 64K bytes above 1M byte.

2.6.3 Protected-Mode Memory Addressing

In protected mode, three mechanisms calculate a physical memory address.

� Offset mechanism that produces the offset or effective address as in real
mode

� Selector mechanism that produces the base address

� Optional paging mechanism that translates a linear address to the physi-
cal memory address

The offset and base address are added together to produce the linear address
as illustrated in Figure 2–22. If paging is not used, the linear address is used
as the physical memory address. If paging is enabled, the paging mechanism
translates the linear address into the physical address. The offset mechanism,
described earlier in this section, applies to both the real and protected modes.
The selector and paging mechanisms are described in the following subsec-
tions.

Figure 2–22. Protected-Mode Address Calculation

Offset Mechanism

Selector Mechanism

Offset Address

Linear Address

Base Address

Optional
Paging Mechanism

Physical
Memory
Address

2.6.3.1 Selector Mechanism

Memory is divided into an arbitrary number of segments, each containing usu-
ally much less than the 232-byte (4G-byte) maximum.

The six Segment registers (CS, DS, SS, ES, FS, and GS) each contain a 16-bit
selector. The selector is used when the register is loaded to locate a segment
descriptor in either the global-descriptor table (GDT) or the local-descriptor
table (LDT). The segment descriptor defines the base address, the limit, and
the attributes of the selected segment and is cached on the microprocessor
as a result of loading the selector. The cached descriptor contents are not vis-
ible to the programmer. When a memory reference occurs in protected mode,
the linear address is generated by adding the segment base address in the hid-
den portion of the Segment register to the offset address. If paging is not en-
abled, this linear address is used as the physical memory address.
Figure 2–23 illustrates the operation of the selector mechanism.

Memory Address Space

2-40

Figure 2–23. Selector Mechanism

Index TI RPL

15 0

Segment
Descriptor

TI = 0 TI = 1 Segment
Descriptor

Descriptor
Cache

Memory
Reference

Base Address

Global-Descriptor Table Local-Descriptor Table

Selector
Load

(Accessed
Segment
Register)

Selector

2.6.3.2 Paging Mechanism

The paging mechanism supports a memory subsystem that simulates a large
address space with a small amount of RAM and disk storage. The paging
mechanism either translates a linear address to its corresponding physical ad-
dress or generates an exception if the required page is not currently present
in RAM. When the operating system services the exception, the required page
is loaded into memory and the instruction is then restarted. Pages are always
4K bytes in size and are aligned to 4K-byte boundaries.

A page is addressed by using two levels of tables as illustrated in Figure 2–24.
The upper 10 bits of the 32-bit linear address are used to locate an entry in the
page-directory table. The page-directory table acts as a master index of up to
1K individual 32-bit pointers to second-level page tables. The selected entry
in the page-directory table, referred to as the directory-table entry, identifies
the starting address of the second-level page table. The page-directory table
itself is a page and is therefore aligned to a 4K-byte boundary. The physical
address of the current page directory is stored in the CR3 Control register, also
referred to as the Page-Directory Base register (PDBR).

 Memory Address Space

2-41 Programming Interface

Figure 2–24. Paging Mechanism

DTE

Directory-Table Index
(DTI)

Page-Table Index
(PTI)

Page-Frame Offset
(PFO)

31 22 21 12 11 0

PTE

4 KB

0

4 KB

0

Page TableDirectory Table

Physical Data

4 KB

0

Page Frame

CR3 Control Register

Linear Address

Bits 12-21 of the 32-bit linear address, referred to as the page-table index, lo-
cate a 32-bit entry in the second-level page table. This page-table entry (PTE)
contains the base address of the desired page frame. The second-level page-
table addresses up to 1K individual page frames. A second-level page table
is 4K bytes in size and is itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the page-frame offset, locate the desired data within
the page frame.

Since the page-directory table can point to 1K page tables, and each page
table can point to 1K page frames, a total of 1M page frames can be imple-
mented. Since each page contains 4K bytes, the microprocessor addresses
up to 4G bytes of virtual memory with a single page-directory table.

In addition to the base address of the page table or the page frame, each direc-
tory-table entry or page-table entry contains attribute bits and a present bit, as
illustrated in Figure 2–25 and listed in Table 2–19.

Figure 2–25. Directory- and Page-Table Entry (DTE and PTE) Format

Base Address Available D A PCD U/S W/R P

31 12 11 10 9 8 7 6 5 4 3 2 1 0

= Reserved

Memory Address Space

2-42

Table 2–19.Directory- and Page-Table Entry (DTE and PTE) Bit Definitions

Bit Position Field Name Description

31–12 Base
Address

Specifies the base address of the page or page-table

11–9 — Undefined and available to the programmer

8–7 — Reserved and not available to the programmer

6 D Dirty bit. If set, indicates that a write access has occurred to the page (PTE only,
undefined in DTE).

5 A Accessed flag. If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page-caching disable flag. If set, indicates that the page is not cacheable in the
on-chip cache.

3 — Reserved and not available to the programmer

2 U/S User/supervisor attribute. If set (user), page is accessible at all privilege levels.
If clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/read attribute. If set (write), page is writable. If clear (read), page is read
only.

0 P Present flag. If set, indicates that the page is present in RAM memory and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and that the programmer can use the remaining DTE/PTE bits.

If the present bit (P) is set in the DTE, the page table is present and the ap-
propriate page-table entry is read. If P = 1 in the corresponding PTE (indicating
that the page is in memory), the accessed and dirty bits are updated and the
operand is fetched. Both accessed bits (DTE and PTE) are set, if necessary,
to indicate that the table and the page have been used to translate a linear ad-
dress. The dirty bit (D) is set before the first write is made to a page.

The present bit must be set to validate the remaining bits in the DTE and PTE.
If either of the present bits is not set, a page fault is generated when the DTE
or PTE is accessed. If P = 0, the remaining DTE/PTE bits are available for use
by the operating system. For example, the operating system can use these bits
to record where on the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page-protection attributes.

2.6.3.3 Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is a cache for the paging mechanism
and replaces the two-level page-table lookup procedure for cache hits. The
TLB is a four-way, set-associative, 32-entry, page-table cache that automati-
cally keeps the most commonly used page-table entries in the processor. The
32-entry TLB coupled with a 4K page size results in coverage of 128K bytes
of memory addresses.

The TLB must be flushed when entries in the page tables are changed. The
TLB is flushed whenever the CR3 register is loaded. An individual entry in the
TLB can be flushed using the INVLPG instruction.

 Interrupts and Exceptions

2-43 Programming Interface

2.7 Interrupts and Exceptions

The processing of either an interrupt or an exception changes the normal se-
quential flow of a program by transferring program control to a selected service
routine. Except for SMM interrupts, the location of the selected service routine
is determined by one of the interrupt vectors stored in the interrupt-descriptor
table.

All true interrupts are hardware interrupts and are generated by signal sources
external to the CPU. All exceptions, including so-called software interrupts,
are produced internally by the CPU.

2.7.1 Interrupts

External events can interrupt normal program execution by using one of the
three interrupt pins on the TI486SXL(C) family of microprocessors.

� Nonmaskable Interrupt (NMI pin)
� Maskable Interrupt (INTR pin)
� SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the interrupt routine occurs after the
current instruction has been completed. When the execution returns to the
original program, it begins immediately following the interrupted instruction.

The NMI interrupt cannot be masked by software and always uses interrupt
vector 2 to locate its service routine. Since the interrupt vector is fixed and is
supplied internally, no interrupt-acknowledge bus cycles are performed. This
interrupt is usually reserved for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional NMIs are processed until an
IRET instruction is executed, typically at the end of the NMI service routine.
If NMI is re-asserted prior to the execution of the IRET instruction, only one
NMI rising edge is stored and then processed after execution of the next IRET.

During the NMI service routine, maskable interrupts are still enabled. If an un-
masked INTR occurs during the NMI service routine, the INTR is serviced and
execution returns to the NMI service routine following the next IRET. If a HALT
instruction is executed within the NMI service routine, the microprocessor re-
starts execution only in response to RESET, an unmasked INTR, or an SMM
interrupt. NMI does not restart CPU execution under this condition.

The INTR interrupt is unmasked when the interrupt enable flag (IF) in the
EFLAGS register is set to 1. With the exception of string operations, INTR in-
terrupts are acknowledged between instructions. Long string operations have
interrupt windows between memory moves that allow INTR interrupts to be ac-
knowledged.

When an INTR interrupt occurs, the CPU performs two locked interrupt-ac-
knowledge bus cycles. During the second cycle, the CPU reads an 8-bit vector
that is supplied by an external interrupt controller. This vector selects which of
the 256 possible interrupt handlers is executed in response to the interrupt.

Interrupts and Exceptions

2-44

The SMM interrupt has higher priority than either the INTR or NMI. After SMI#
is asserted, program execution is passed to an SMI service routine that runs
in SMM address space reserved for this purpose. The remainder of this sub-
section (2.7.2, Exceptions, through 2.7.6, Error Codes, page 2-48) does not
apply for SMM interrupts. SMM interrupts are described in Section 2.8, Sys-
tem-Management Mode, page 2-49.

2.7.2 Exceptions

Exceptions are generated by an interrupt instruction or a program error. Ex-
ceptions are classified as traps, faults, or aborts depending on the mechanism
used to report them and the restartability of the instruction that first caused the
exception.

2.7.2.1 Trap Exceptions

A trap exception is reported immediately following the instruction that gener-
ated it. Trap exceptions are generated as follows:

� At a breakpoint
� By software interrupt instruction (INT0, INT3, INTn, BOUND)
� By a single-step operation
� By a data breakpoint

Software interrupts can be used to simulate hardware interrupts. For example,
an INTn instruction causes the processor to execute the interrupt service rou-
tine pointed to by the nth vector in the interrupt table. Execution of the interrupt
service routine occurs regardless of the state of the IF flag in the EFLAGS reg-
ister.

The one-byte INT3, or breakpoint-interrupt (vector 3), is a particular case of
the INTn instruction. By inserting this one-byte instruction in a program, the
user can set breakpoints in code that can be used during debug.

Single-step operation is enabled by setting the TF bit in the EFLAGS register.
When TF is set, the CPU generates a debug exception (vector 1) after the
execution of every instruction. Data breakpoints also generate a debug excep-
tion and are specified by loading the Debug registers (DR0–DR7) with the ap-
propriate values.

2.7.2.2 Fault Exceptions

A fault exception is caused by a program error and is reported prior to comple-
tion of the instruction that generated the exception. By reporting the fault prior
to instruction completion, the CPU is left in a state that allows the instruction
to be restarted and the effects of the faulting instruction to be nullified. Fault
exceptions include divide-by-zero errors, invalid opcodes, page faults, and co-
processor errors. Debug exceptions (vector 1) are also handled as faults (ex-
cept for data breakpoints and single-step operations). After execution of the
fault service routine, the instruction pointer points to the instruction that caused
the fault.

 Interrupts and Exceptions

2-45 Programming Interface

2.7.2.3 Abort Exceptions

An abort exception is a type of fault exception severe enough that the CPU
cannot restart the program at the faulting instruction. Abort exceptions include
the double fault (vector 8) and coprocessor segment overrun (vector 9).

2.7.3 Interrupt Vectors

When the CPU services an interrupt or exception, the current program’s
instruction pointer and flags are pushed onto the stack to let the interrupted
program resume execution. In protected mode, the processor also saves an
error code for some exceptions. Program control is then transferred to the in-
terrupt handler (also called the interrupt service routine). Upon execution of an
IRET at the end of the service routine, program execution resumes at the
instruction-pointer address saved on the stack when the interrupt was serv-
iced.

2.7.3.1 Interrupt-Vector Assignments

Each interrupt (except SMI#) and each exception is assigned one of 256 inter-
rupt-vector numbers (Table 2–20). The first 32 interrupt-vector assignments
are defined or reserved. INT instructions acting as software interrupts can use
any of the interrupt vectors 0 through 255. The nonmaskable hardware inter-
rupt (NMI) is assigned vector 2.

In response to a maskable hardware interrupt (INTR), the microprocessor is-
sues interrupt-acknowledge bus cycles to read the vector number from exter-
nal hardware. These vectors should be in the vector range of 32–255 because
vectors 0–31 are predefined.

2.7.3.2 Interrupt-Descriptor Table

The interrupt-vector number is used by the microprocessor to locate an entry
in the interrupt-descriptor table (IDT). In real mode, each IDT entry consists
of a four-byte far pointer to the beginning of the corresponding interrupt service
routine. In protected mode, each IDT entry is an eight-byte descriptor. The In-
terrupt-Descriptor-Table register (IDTR) specifies the beginning address and
limit of the IDT. Following reset, the IDTR contains a base address of 0h with
a limit of 3FFh.

The IDT can be located anywhere in physical memory as determined by the
IDTR register. The IDT can contain different types of descriptors: interrupt
gates, trap gates, and task gates. Interrupt gates are used mainly to enter a
hardware interrupt handler. Trap gates are generally used to enter an excep-
tion handler or software interrupt handler. If an interrupt gate is used, the inter-
rupt enable flag (IF) in the EFLAGS register is cleared before the interrupt han-
dler is entered. Task gates are used to make the transition to a new task.

Interrupts and Exceptions

2-46

Table 2–20. Interrupt-Vector Assignments

Interrupt Vector Function Exception Type

0 Divide error Fault

1 Debug exception Trap/Fault (see Note)

2 NMI interrupt —

3 Breakpoint Trap

4 Interrupt on overflow Trap

5 BOUND range exceeded Fault

6 Invalid opcode Fault

7 Device not available Fault

8 Double fault Abort

9 Coprocessor segment overrun Abort

10 Invalid TSS Fault

11 Segment not present Fault

12 Stack fault Fault

13 General-protection fault Fault

14 Page fault Fault

15 Reserved —

16 Coprocessor error Fault

17 Alignment-check exception Fault

18–31 Reserved —

32–255 Maskable hardware interrupts Trap

0–255 Programmed interrupt Trap

Note: Data breakpoints and single steps are traps. All other debug exceptions are faults.

2.7.4 Interrupt and Exception Priorities

As the TI486SXL(C) family of microprocessors executes instructions, each fol-
lows a consistent policy for prioritizing exceptions and hardware interrupts as
listed in Table 2–21. SMM interrupts always take precedence. Debug traps for
the previous instruction and next instruction are handled in the next priority.
When NMI and maskable INTR interrupts are both detected at the same
instruction boundary, the microprocessor services the NMI interrupt first.

The microprocessor checks for exceptions in parallel with instruction decoding
and execution. Several exceptions can result in a single instruction. However,
only one exception is generated upon each attempt to execute the instruction.
Each exception service routine should make the appropriate corrections to the
instruction and then restart the instruction. In that way, exceptions can be serv-
iced until the instruction executes properly.

The microprocessor supports restarting the instruction after all faults except
when an instruction causes a task switch to a task whose task-state segment
(TSS) is partially missing. A TSS can be partially missing if the TSS is not page-

 Interrupts and Exceptions

2-47 Programming Interface

aligned and one of the pages (where the TSS resides) is not currently in
memory.

Table 2–21.Interrupt and Exception Priorities

Priority Description Notes

1 Debug traps and faults from previous
instruction

Includes single-step trap and data breakpoints
specified in the Debug registers

2 Debug traps for next instruction Includes instruction execution breakpoints
specified in the Debug registers

3 Nonmaskable hardware interrupt Caused by NMI asserted

4 Maskable hardware interrupt Caused by INTR asserted and IF = 1

5 Faults resulting from fetching the next
instruction

Includes segment not present,
general-protection fault, and page fault

6 Faults resulting from instruction decoding Includes illegal opcode, instruction too long,
and privilege violation

7 WAIT instruction and TS = 1 and MP = 1 Device not available exception generated

8 ESC instruction and EM = 1 or TS = 1 Device not available exception generated

9 Coprocessor-error exception Caused by ERROR# asserted

10 Segmentation faults (for each memory
reference required by the instruction) that
prevent transferring the entire memory operand

Includes segment not present, stack fault, and
general-protection fault

11 Page faults that prevent transferring the entire
memory operand

—

12 Alignment-check fault —

2.7.5 Exceptions in Real Mode

Many of the exceptions described in Table 2–20 are not applicable in real
mode. Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions
have slightly different meanings in real mode, as listed in Table 2–22.

Table 2–22.Exception Changes in Real Mode

Vector Number Protected-Mode Function Real Mode Function

8 Double fault Interrupt table limit overrun

10 Invalid TSS —

11 Segment not present —

12 Stack fault SS segment limit overrun

13 General-protection fault CS, DS, ES, FS, and/or GS seg-
ment limit overrun

14 Page fault —

Interrupts and Exceptions

2-48

2.7.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit
error code:

� Double fault
� Alignment check
� Invalid TSS
� Segment not present
� Stack fault
� General-protection fault
� Page fault

The error-code format is shown in Figure 2–26 and the error-code bit defini-
tions are listed in Table 2–23. Bits 15–3 (selector index) are not meaningful
if the error code is generated as the result of a page fault. The error code is
always zero for double faults and alignment-check exceptions.

Figure 2–26. Error-Code Format

Selector Index S2 S1 S0

15 3 2 1 0

Table 2–23.Error-Code Bit Definitions

Fault
Type

Selector
Index
(Bits 15–3) S2 (Bit 2) S1 (Bit 1) S0 (Bit 0)

Page fault Reserved Fault caused by:
0 = page not present
1 = page-level protec-

tion violation

Fault occurred during:
0 = read access
1 = write access

Fault occurred during:
0 = supervisor access
1 = user access

IDT fault Index of faulty
IDT selector

Reserved 1 If set, the exception
occurred while trying to
invoke exception or
hardware interrupt
handler.

Segment
fault

Index of faulty
selector

TI bit of faulty selector 0 If set, the exception
occurred while trying to
invoke exception or
hardware interrupt
handler.

 System-Management Mode

2-49 Programming Interface

2.8 System-Management Mode

System-management mode (SMM) provides an additional interrupt for system
power management or software-transparent emulation of I/O peripherals.
SMM is entered using the software-management interrupt (SMI#), which has
a higher priority than any other interrupt including NMI. After receiving an
SMI#, portions of the CPU state are automatically saved, SMM is entered, and
program execution begins at the base of SMM space (Figure 2–27 and
Figure 2–28). Running in protected SMM address space, the interrupt routine
does not interfere with the operating system or any application program.

Seven SMM instructions have been added to the TI486SXL(C) microproces-
sor family instruction set that permit saving and restoring the total CPU state
when in SMM mode. Two new pins, SMI# and SMADS#, support SMM func-
tions.

Figure 2–27. TI486SXLC Memory and I/O Address Spaces

Physical
Memory

16M bytes

Physical
Memory Space

FF FFFFh

00 0000h

Potential
SMM Address Space

FF FFFFh

00 0000h

Defined
SMM

Address
Space

Non-SMM Mode
ADS# Active

SMM Mode

SMADS#4K bytes to
 16M bytes

ADS#
Active Active

System-Management Mode

2-50

Figure 2–28. TI486SXL Memory and I/O Address Spaces

Physical
Memory
4G bytes

Physical
Memory Space

FFFF FFFFh

0000 0000h

Potential
SMM Address Space

FFFF FFFFh

0000 0000h

Defined
SMM

Address
Space

Non-SMM Mode
ADS# Active

SMM Mode

SMADS#4K bytes to
 16M bytes

ADS#
ActiveActive

2.8.1 SMM Operations

SMM operation is summarized in Figure 2–29. Entering SMM requires the
assertion of SMI# for at least four CLK2 periods. For the SMI# input to be rec-
ognized, the following Configuration register bits must be set as follows:

SMI CCR1(1) = 1
SMAC CCR1(2) = 0
SM4 CCR1(7) = 1
ARR4 SIZE(3–0) > 0

The Configuration registers are discussed in Section 2.5, System Register
Set, page 2-16. After recognizing SMI# and prior to executing the SMI service
routine, some of the CPU-state information is changed. Prior to modification,
this information is automatically saved in the SMM memory-space header lo-
cated at the top of the SMM memory space. After the header is saved, the CPU
enters real mode and begins executing the SMI service routine starting at the
SMM memory base address.

The SMI service routine is user-definable and may contain system- or power-
management software. If the power-management software forces the CPU
to power down, or if the SMI service routine modifies registers other than those
saved automatically, the complete CPU-state information must be saved.

 System-Management Mode

2-51 Programming Interface

Figure 2–29. SMM Execution Flow Diagram

SMI# Sampled Active

CPU State Stored in SMM
Address-Space Header

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Execution Begins at SMM
Address-Space Base Address

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes

A complete CPU-state save is performed by using MOV instructions to save
normally accessible information and by using the SMM instructions to save
CPU information that is normally inaccessible to the programmer. As will be
explained, SMM instructions (SVDC, SVLDT, and SVTS) store the LDTR,
TSR, and Segment registers and their associated descriptor cache entries in
80-bit memory locations. After power up or at the end of the SMI service rou-
tine, the MOV and additional SMM instructions (RSDC, RSLDT, and RSTS)
restore the CPU state. The SMM RSM instruction returns the CPU to normal
execution.

2.8.2 SMM Memory Space Header

With every SMI interrupt, certain CPU-state information is automatically saved
in the SMM memory space header located at the top of SMM address space
(Table 2–24 and Figure 2–30). The header contains CPU-state information
that is modified when servicing an SMI interrupt. Included in this information
are two pointers. The current IP points to the instruction that is executing when
the SMI is detected. The next IP points to the instruction that is executed after
exiting SMM. The contents of the Debug register 7 (DR7), the extended Flag
Word register (EFLAGS), and the Control register 0 (CR0) are also saved. If
SMM has been entered due to an I/O trap for a REP INSx or REP OUTSx
instruction, the current IP and next IP fields (Table 2–24) contain the same ad-
dresses, and the I and P fields contain valid information.

System-Management Mode

2-52

Table 2–24.SMM Memory Space Header

Name Description Size

DR7 The contents of Debug register 7 4 bytes

EFLAGS The contents of the extended flag register 4 bytes

CR0 The contents of Control register 0 4 bytes

Current IP The address of the instruction executed prior to servicing the SMI interrupt 4 bytes

Next IP The address of the next instruction that is executed after exiting the SMM mode 4 bytes

CS Selector Code Segment register selector for the current code segment 2 bytes

CS Descriptor Code register descriptor for the current code segment 8 bytes

P REP INSx/OUTSx† Indicator
P is 1 if current instruction has a REP prefix
P is 0 if current instruction does not have REP prefix

1 bit

I IN, INSx, OUT, or OUTSx Indicator
I is 1 if current instruction performed is an I/O WRITE
I is 0 if current instruction performed is an I/O READ

1 bit

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap

4 bytes

† INSx = INS, INSB, INSW, or INSD instruction, and OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

Figure 2–30. SMM Memory Space Header

31 16 15 0

31 01

31 0

-18h

-1Ch

-20h

-24h

-28h

-2Ch

-30h

2

-4h

-8h

-Ch

-10h

-14h

IP

DR7

EFLAGS

CR0

Current IP

Next IP

Reserved CS Selector

CS Descriptor (Bits 63–32)

CS Descriptor (Bits 31–0)

Reserved

Reserved

Reserved

ESI or EDI

Top of SMM
Address Space

2.8.3 SMM Instructions

The TI486SXL(C) microprocessor family automatically saves the CPU-state
information shown in Table 2–24 and Figure 2–30 when entering SMM. This
allows fast SMI service routine entry and exit. After entering the SMI service
routine, the MOV, SVDC, SVLDT, and SVTS instructions can be used to save
the complete CPU state information. If the SMI service routine either modifies

 System-Management Mode

2-53 Programming Interface

more than what is saved in the SMM memory space header or forces the CPU
to power down, the complete CPU-state information must be saved. Since the
TI486SXL(C) microprocessors are static devices, their internal state is re-
tained when the input clock is stopped. Therefore, an entire CPU-state save
is not necessary prior to stopping the input clock.

The new SMM instructions, listed in Table 2–25, can be executed only if:
(a) the current privilege level (CPL) = 0 and the SMAC bit (CCR1, bit 2) are set;
or (b) CPL = 0 and the CPU is in an SMI service routine (SMI# = 0). If both these
conditions are not met and the microprocessor attempts to execute an SMM
instruction, it generates an invalid-opcode exception. These instructions can
be executed outside of defined SMM space provided the above conditions are
met. All of the SMM instructions (except RSM) save or restore 80 bits of data,
allowing the saved values to include the hidden portion of the register con-
tents.

Table 2–25.SMM Instruction Set

Instruction Opcode Format Description

SVDC 0F 78 [mod sreg3 r/m] SVDC mem80†, sreg3 Save Segment register and Descriptor
Saves reg DS, ES, FS, GS, or SS to mem80

RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment register and Descriptor
Restores reg DS, ES, FS, GS, or SS from
mem80
(CS is automatically restored with RSM)

SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves local-descriptor table (LDTR) to
mem80

RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores local-descriptor table (LDTR) from
mem80

SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Save Task-State register (TSR) to mem80

RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task-State register (TSR) from
mem80

RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored
using the SMM memory space header and
execution resumes at interrupted point.

† mem80 = 80-bit memory location.

System-Management Mode

2-54

2.8.4 SMM Memory Space

SMM memory space is defined by assigning address region 4 to SMM memory
space. This assignment is made by setting bit 7 (SM4) in the on-chip CCR1
register. ARR4, also an on-chip Configuration register, specifies the base ad-
dress and size of the SMM memory space. The base address must be a multi-
ple of the SMM memory space size. For example, a 32K-byte SMM memory
space must be located at a 32K-byte address boundary. The memory space
size can range from 4K bytes to 16M bytes.

SMM memory space accesses can use address pipelining, and they are al-
ways noncacheable. SMM accesses ignore the state of the A20M# input and
drive the A20 address bit to the unmasked value.

Access to the SMM memory space can be made while not in SMM mode by
setting the system-management access (SMAC) bit in the CCR1 register. This
feature can be used to initialize the SMM memory space.

While in SMM mode, SMADS# address strobes are generated instead of
ADS# for SMM memory accesses. Any memory accesses outside the defined
SMM space result in normal memory accesses and ADS# strobes. Data
(noncode) accesses to main memory that overlap defined SMM memory
space are allowed if bit 3 in CCR1 (MMAC) is set. In this case, ADS# strobes
are generated for data accesses only, and SMADS# strobes continue to be
generated for code accesses.

2.8.5 SMI Service Routine Execution

Upon entry into SMM after the SMM header has been saved, the CR0,
EFLAGS, and DR7 registers are set to their reset values. The Code Segment
(CS) register is loaded with the base and the limits defined by the ARR4 regis-
ter, and the SMI service routine begins execution at the SMM base address
in real mode.

The routine must then save the value of any registers that can be changed by
the SMI service routine. For data accesses immediately after entering the SMI
service routine, the routine must use CS as a segment override. I/O port ac-
cess is possible during the routine but registers modified by the I/O instructions
must be saved to assure a proper return. Before using a Segment register, the
register’s descriptor-cache contents should be saved using the SVDC instruc-
tion. While executing in SMM space, execution flow can transfer to normal
memory locations.

Hardware interrupts (INTRs and NMIs) can be serviced during an SMI service
routine. If interrupts are to be serviced while operating in SMM memory space,
the SMM memory space must be within the 0 to 1M-byte address range. This
assures a proper return to the SMI service routine after handling the interrupt.
INTRs are disabled automatically when entering SMM since the IF flag is set
to its reset value. However, NMIs remain enabled. If you want to disable NMI,
do it with the system hardware logic immediately after entering the SMI service
routine.

Within the SMI service routine, protected mode can be entered and exited as
required, and real- or protected-mode device drivers can be called.

 System-Management Mode

2-55 Programming Interface

To exit the SMI service routine, a resume (RSM) instruction, rather than an
IRET, is executed. The RSM instruction causes the microprocessor to restore
the CPU state using the SMM header information and resume execution at the
interrupted point. If the programmer saved the full CPU state, reload the stored
values using the MOV and the RSDC, RSLDT, and RSTS instructions before
executing the RSM instruction.

2.8.6 CPU States Related to SMM and Suspend Mode

The state diagram shown in Figure 2–31 illustrates the various CPU states
associated with SMM and suspend mode. While in the SMI service routine, the
TI486SXL(C) microprocessor family can enter suspend mode either by
executing a HALT instruction or by asserting the SUSP# input.

During SMM operation and while in SUSP#-initiated suspend mode, an occur-
rence of either NMI or INTR is latched. For INTR to be latched, the IF flag must
be set. The INTR or NMI is serviced after exiting suspend mode.

If suspend mode is entered via a HALT instruction from the operating system
or application software, the reception of an SMI# interrupt causes the CPU to
exit suspend mode and enter SMM. If suspend mode is entered via the hard-
ware (SUSP# = 0) while the operating system or application software is active,
the CPU latches one occurrence of INTR#, NMI, and SMI#.

System-Management Mode

2-56

Figure 2–31. SMM and Suspended-Mode Flow Diagram

 Interrupt
 Service
 Routine

 Interrupt
 Service
 Routine

 Interrupt
 Service
 Routine

Suspend Mode
 (SUSPA# = 0)

Suspend Mode
 (SUSPA# = 0)

Suspend Mode
 (SUSPA# = 0)

Suspend Mode
 (SUSPA# = 0)

OS/Application
 Software

SMI Service
 Routine
 (SMI# = 0)

NMI or INTR

HALT* IRET*

RESET

HALT*

IRET*

INTR and NMI

(INTR and NMI
 Latched)

INTR or NMI

IRET*

SUSP# = 0
SUSP# = 1

Non-SMM Operations
SMM Operations

SUSP# = 0

SUSP# = 1

(INTR, NMI, and SMI Latched)

* Instructions

 Shutdown and Halt / Protection

2-57 Programming Interface

2.9 Shutdown and Halt

Shutdown occurs when a severe error is detected that prevents further proces-
sing. An NMI input causes the microprocessor to exit the shutdown mode if the
IDT limit is large enough to contain the NMI interrupt vector (at least 000Fh)
and the stack has enough room to contain the vector and flag information (i.e.,
stack pointer is greater than 0005h). Otherwise, shutdown can be exited only
by a processor reset.

The halt (HLT) instruction stops program execution and prevents the proces-
sor from using the local bus until it is restarted. The microprocessor then enters
a low-power suspend mode. INTR with interrupts enabled (IF bit in
EFLAGS = 1), SMI, NMI, or RESET forces the CPU out of the halt state. If in-
terrupted, the saved code segment and instruction pointer specify the instruc-
tion following the halt.

2.10 Protection

Segment protection and page protection are safeguards built into the
TI486SXL(C) microprocessor family protected-mode architecture that deny
unauthorized or incorrect access to selected memory addresses. These safe-
guards allow multitasking programs to be isolated from each other and from
the operating system. Page protection is discussed in subsection 2.6.3, Pro-
tected-Mode Memory Addressing, page 2-39. This section concentrates on
segment protection.

Selectors and descriptors are the key elements in the segment-protection
mechanism. The segment base address, size, and privilege level are estab-
lished by a segment descriptor. Privilege levels control the use of privilege
instructions, I/O instructions, and access to segments and segment descrip-
tors. Selectors are used to locate segment descriptors.

Segment accesses are divided into two basic types, those involving code seg-
ments (e.g., control transfers) and those involving data accesses. The ability
of a task to access a segment depends on:

� The segment type
� The instruction requesting access
� The type of descriptor used to define the segment
� The associated privilege levels

Data stored in a segment can be accessed only by code executing at the same
or a higher privilege level. A code segment or procedure can be called only by
a task executing at the same or a less privileged level.

2.10.1 Privilege Levels

The values for privilege levels range between 0 and 3. Level 0 is the highest
privilege level (most privileged), and level 3 is the lowest privilege level (least
privileged). The privilege level in real mode is effectively 0.

The descriptor privilege level (DPL) is the privilege level defined for a segment
in the segment descriptor. The DPL field specifies the minimum privilege level
needed to access the memory segment pointed to by the descriptor.

Protection

2-58

The current privilege level (CPL) is defined as the current task’s privilege level.
The CPL of an executing task is stored in the hidden portion of the Code Seg-
ment register and essentially is the DPL for the current code segment.

The requested privilege level (RPL) specifies a selector’s privilege level. It dis-
tinguishes between the privilege level of a routine actually accessing memory
(CPL), and the privilege level of the original memory access requestor (RPL).
The lower privilege level (0 is highest) of RPL and CPL is called the effective
privilege level (EPL). Therefore, if RPL = 0 in a segment selector, the effective
privilege level is always determined by the CPL. If RPL = 3, the effective privi-
lege level is always 3 regardless of the CPL.

For a memory access to succeed, the effective privilege level (EPL) must be
at least as privileged as the descriptor privilege level (EPL ≥ DPL). If the EPL
is less privileged than the DPL (EPL < DPL), a general-protection fault is gen-
erated. For example, if a segment has a DPL = 2, an instruction accessing the
segment succeeds only if executed with an EPL ≥ 2.

2.10.2 I/O Privilege Levels

The I/O privilege level (IOPL) allows the operating system executing at
CPL = 0 to define the least-privileged level at which IOPL-sensitive instruc-
tions can be used unconditionally. The IOPL-sensitive instructions include
CLI, IN, OUT, INS, OUTS, REP INS, REP OUTS, and STI. Modification of the
IF bit in the EFLAGS register is also sensitive to the I/O privilege level.

The IOPL is stored in the EFLAGS register. An I/O permission bit map is avail-
able as defined by the 32-bit task-state segment (TSS). Since each task can
have its own TSS, access to individual I/O ports can be granted through sepa-
rate I/O permission bit maps.

If CPL ≤ IOPL, IOPL-sensitive operations can be performed. If CPL > IOPL,
a general-protection fault is generated if the current task is associated with a
16-bit TSS. If the current task is associated with a 32-bit TSS and CPL > IOPL,
the CPU consults the I/O permission bit map in the TSS to determine on a port-
by-port basis whether I/O instructions (IN, OUT, INS, OUTS, REP INS, REP
OUTS) are permitted. The remaining IOPL-sensitive operations generate a
general-protection fault.

2.10.3 Privilege Level Transfers

A task’s CPL can be changed only through intersegment control transfers us-
ing gates or task switches to a code segment with a different privilege level.
Control transfers result from exception and interrupt servicing and from execu-
tion of the CALL, JMP, INT, IRET, and RET instructions.

2.10.3.1 Control Transfers

The five types of control transfers are summarized in Table 2–26. Control
transfers can be made only when the operation causing the control transfer
references the correct descriptor type. Any violation of these descriptor-usage
rules causes a general-protection fault.

 Protection

2-59 Programming Interface

Table 2–26.Descriptor Types Used for Control Transfer

Type Of Control Transfer Operation Types
Descriptor
Referenced

Descriptor
Table

Intersegment within the same privilege
level

JMP, CALL, RET, IRET† Code segment GDT or LDT

Intersegment to the same or a more
privileged level

CALL Call gate GDT or LDT

Interrupt within task (could change CPL
level)

Interrupt instruction, Excep-
tion, External interrupt

Trap or interrupt
gate

LDT

Intersegment to a less privileged level
(changes task CPL)

RET, IRET† Code segment GDT or LDT

Task switch via TSS CALL, JMP Task-state
segment

GDT

Task switch via task gate CALL, JMP Task gate GDT or LDT

IRET‡, Interrupt instruction,
Exception, External interrupt

Task gate IDT

† NT (nested task bit in EFLAGS) = 0
‡ NT (nested task bit in EFLAGS) = 1

Any control transfer that changes the CPL within a task results in a change of
stack. The initial values for the stack segment (SS) and stack pointer (ESP)
for privilege levels 0, 1, and 2 are stored in the TSS. During a JMP or CALL
control transfer, the SS and ESP are loaded with the new stack pointer and the
previous stack pointer is saved on the new stack. When returning to the origi-
nal privilege level, the RET or IRET instruction restores the less-privileged
stack.

2.10.3.2 Gates

Gate descriptors provide protection for privilege transfers among executable
segments. Gates change to routines of the same or higher privilege level. Call
gates, interrupt gates, and trap gates are used for privilege transfers within a
task. Task gates are used to transfer between tasks.

Gates conform to the standard rules of privilege. In other words, gates can be
accessed by a task if the effective privilege level (EPL) is the same or higher
than the gate descriptor’s privilege level (DPL).

2.10.4 Initialization and Transition to Protected Mode

The TI486SXL(C) microprocessor family switches to real mode immediately
after RESET and the system tables and registers are initialized. The GDTR
and IDTR must point to a valid GDT and IDT, respectively. The size of the IDT
should be at least 256 bytes, and the GDT must contain descriptors that de-
scribe the initial code and data segments.

The processor can be placed in protected mode by setting the PE bit in the
CR0 register. After enabling protected mode, the CS register should be loaded
and the instruction-decode queue should be flushed by executing an interseg-
ment JMP. Finally, all data Segment registers should be initialized with ap-
propriate selector values.

Virtual-8086 Mode

2-60

2.11 Virtual-8086 Mode

The TI486SXL(C) microprocessor family supports both real mode and virtu-
al-8086 (V86) mode. V86 mode allows execution of 8086 applications and
8086 operating systems, yet still permits use of the TI486SXL(C) microproces-
sor-protection mechanism. V86 tasks run at privilege level 3. Upon entry, all
segment limits are set to FFFFh (64K) as in real mode.

2.11.1 Memory Addressing

In V86 mode, Segment registers are used in the same manner as in real mode.
The contents of the Segment register are shifted left four bits and added to the
offset to form the segment base linear address. The TI486SXL(C) micropro-
cessor family permits the operating system to select which programs use the
V86 address mechanism and which programs use protected-mode addres-
sing for each task.

The TI486SXL(C) microprocessor family also permits the use of paging when
operating in V86 mode. Using paging, the 1M-byte address space of the V86
task can be mapped anywhere in the 4G-byte linear address space of the mi-
croprocessor CPU. As in real mode, linear addresses that exceed 1M byte
cause a segment-limit-overrun exception.

The paging hardware allows multiple V86 tasks to run concurrently, provides
protection, and isolates operating systems. The paging hardware must be en-
abled to run multiple V86 tasks or to relocate the address space of a V86 task
to physical address space above 1M byte.

2.11.2 Protection

All V86 tasks operate at the lowest privilege level (level 3) and are subject to
all of the microprocessor protected-mode protection checks. As a result, any
attempt to execute a privileged instruction within a V86 task results in a gener-
al-protection fault.

In V86 mode, a slightly different set of instructions is sensitive to the I/O privi-
lege level (IOPL) than in protected mode. These instructions are CLI, INTn,
IRET, POPF, PUSHF, and STI. The INT3, INT0 and BOUND variations of the
INT instruction are not IOPL-sensitive.

2.11.3 Interrupt Handling

To fully support the emulation of an 8086-type machine, interrupts in V86 mode
are handled as follows. When an interrupt or exception is serviced in V86
mode, program execution transfers to the interrupt service routine at privilege
level 0 (i.e., a transition from V86 to protected mode occurs) and the VM bit
in the EFLAGS register is cleared. The protected-mode interrupt service rou-
tine then determines if the interrupt came from a protected-mode or V86 ap-
plication by examining the VM bit in the EFLAGS image stored on the stack.
The interrupt service routine can then choose to allow the 8086 operating sys-
tem to handle the interrupt, or it can emulate the function of the interrupt han-

 Virtual-8086 Mode

2-61 Programming Interface

dler. Following completion of the interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM = 1) and segment selectors, and
control returns to the interrupted V86 task.

2.11.4 Entering and Leaving V86 Mode

V86 mode is entered from protected mode either by executing an IRET instruc-
tion at CPL = 0 or by task switching. If an IRET is used, the stack must contain
an EFLAGS image with VM = 1. If a task switch is used, the TSS must contain
an EFLAGS image containing a 1 in the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the state of the VM bit is not affected.
V86 mode can be exited only as the result of an interrupt or exception. The
transition out must use a 32-bit trap or interrupt gate that must point to a non-
conforming privilege level 0 segment (DPL = 0) or a 32-bit TSS. These restric-
tions are required to permit the trap handler to IRET to return to the V86 pro-
gram.

2-62

3-1 POTOMAC/S Microprocessor Bus Interface

TI486SXLC Microprocessor Bus Interface

This chapter summarizes the TI486SXLC series processor signals and
describes all inputs/outputs, functional timing and bus operations (including
pipelined and nonpipelined addressing), various interfaces, and power man-
agement.

Topic Page

3.1 Input/Output Signals 3-2.

3.2 Bus-Cycle Definition 3-13.

3.3 Reset Timing and Internal Clock Synchronization 3-17.

3.4 Bus Operation and Functional Timing 3-19.

Chapter 3

Input/Output Signals

3-2

3.1 Input/Output Signals

This section describes the TI486SXLC series microprocessors’ input and out-
put signals. The discussion of these signals is arranged by the functional
groups shown in Figure 3–1. Table 3–1 gives a brief description of each signal.

Figure 3–1. TI486SXLC Functional Signal Groupings

CLK2 TI486SXLC

RESET

A23–A1

BLE#

BHE#

D15–D0

W/R#

D/C#

M/IO#

LOCK#

NA#

READY#

ADS#

INTR

NMI

KEN#

FLUSH#

A20M#

PEREQ

BUSY#

ERROR#

HOLD

HLDA

SUSP#

SUSPA#

FLT#

2x Clock

Reset

Address
Bus

Data
Bus

Bus
Cycle

Definition

Bus
Cycle

Control

Interrupt
Control

Internal
Cache
Interface

Address
Bit-20 Mask

Coprocessor
Interface

Bus
Arbitration

Power
Management

Float
Control

SMI#

SMADS#

 Input/Output Signals

3-3 TI486SXLC Microprocessor Bus Interface

Table 3–1.TI486SXLC Signal Summary

Signal Signal Name Signal Group

ADS# Address strobe Bus-cycle control

A20M# Address bit-20 mask None

A23–A1 Address bus lines Address bus

BHE# Byte-high enable Address bus

BLE# Byte-low enable Address bus

BUSY# Processor extension busy Coprocessor interface

CLK2 2X clock input None

D15–D0 Data bus lines None

D/C# Data/control Bus-cycle definition

ERROR# Processor extension error Coprocessor interface

FLT# Float None

FLUSH# Cache flush Internal cache interface

HLDA Hold acknowledge Bus arbitration

HOLD Hold request Bus arbitration

INTR Maskable interrupt request Interrupt control

KEN# Cache enable Internal cache interface

LOCK# Bus lock Bus-cycle definition

M/IO# Memory/input-output Bus-cycle definition

NA# Next address request Bus-cycle control

NMI Nonmaskable interrupt request Interrupt control

PEREQ Processor extension request Coprocessor interface

READY# Bus ready Bus-cycle control

RESET Reset None

SMADS# SMM address strobe Bus-cycle control

SMI# System management interrupt Interrupt control

SUSP# Suspend request Power management

SUSPA# Suspend acknowledge Power management

W/R# Write/read Bus-cycle definition

The following sections describe the signals and their functional characteris-
tics. Additional signal information can be found in Chapter 5, Electrical Specifi-
cations. Chapter 5 documents the dc and ac characteristics for the signals in-
cluding voltage levels, propagation delays, setup times, and hold times. Speci-
fied setup and hold times must be met for proper operation of the TI486SXLC
series microprocessors.

Input/Output Signals

3-4

3.1.1 TI486SXLC Terminal Function Descriptions

Table 3–2 identifies and describes each of the TI486SXLC package terminals.

Table 3–2.TI486SXLC Terminal Functions

Terminal
D i iName No. Description

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23

18
51
52
53
54
55
56
58
59
60
61
62
64
65
66
70
72
73
74
75
76
79
80

Address Bus (active high). The address bus (A23–A1) signals are 3-state outputs that
provide addresses for physical memory and I/O ports. All address lines can be used to
address physical memory, which allows a 16M-byte address space (00 0000h to FF
FFFFh). During I/O port accesses, A23–A16 are driven low (except for coprocessor
accesses). This permits a 64K-byte I/O address space (00 0000h to 00 FFFFh).

During all coprocessor I/O accesses, address lines A22–A16 are driven low and A23 is
driven high. This allows A23 to be used by external logic to generate a coprocessor
select signal. Coprocessor command transfers occur with address 80 00F8h.
Coprocessor data transfers occur with addresses 80 00FCh and 80 00FEh. A23–A1
float while the CPU is in a hold-acknowledge or float state.

ADS# 16 Address Strobe (active low). This 3-state output indicates that the TI486SXLC
microprocessor has driven a valid address (A23–A1, BHE#, and BLE#) and bus-cycle
definition (M/IO#, D/C#, and W/R#) on the appropriate output pins. During nonpipelined
bus cycles, ADS# is active for the first clock of the bus cycle. During address pipelining,
ADS# is asserted during the previous bus cycle and remains asserted until READY# is
returned for that cycle. ADS# floats while the microprocessor is in a hold-acknowledge
or float state.

A20M# 31 Address Bit-20 Mask (active low). This input causes the microprocessor to mask (force
low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M# emulates
the 1M-byte address wraparound that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardless of the state of the A20M# input. The A20M#
input is ignored following reset and can be enabled using the A20M bit in the CCR0
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

 Input/Output Signals

3-5 TI486SXLC Microprocessor Bus Interface

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

BHE#
BLE#

19
17

Byte Enables (active low). Byte-low enable (BLE#) and byte-high enable (BHE#)
3-state outputs indicate which byte(s) of the 16-bit data bus are selected for data transfer
during the current bus cycle. BLE# selects the low byte (D7–D0) and BHE# selects the
high byte (D15–D8).

When BHE# and BLE# are asserted, both bytes (all 16 bits) of the data bus are selected.
BLE# and BHE# float while the CPU is in a hold-acknowledge or float state.

BHE# = BLE# = 1 never occurs during a bus cycle.

BUSY# 34 Coprocessor Busy (active low). This input indicates to the TI486SXLC that the
coprocessor is currently executing an instruction and is unable to accept another
opcode. When the microprocessor encounters a WAIT instruction or any coprocessor
instruction that operates on the coprocessor stack (i.e., load, pop, or arithmetic
operation), BUSY# is sampled. BUSY# is continually sampled and must be recognized
as inactive before the CPU supplies the coprocessor with another instruction. However,
coprocessor instructions FNINIT and FNCLEX are allowed to execute even if BUSY#
is active because they are used for coprocessor initialization and exception clearing.

BUSY# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

CLK2 15 2X Clock Input (active high). This input signal is the basic timing reference for
TI486SXLC microprocessors. The CLK2 input is internally divided by two to generate
the internal processor clock. The external CLK2 is synchronized to a known phase of
the internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

For the TI486SXLC2 microprocessors, the CLK2 input is used internally to generate the
internal core processor clock and the internal bus interface clock. The external CLK2 is
synchronized to a known phase of the internal processor clock by the falling edge of the
RESET signal. External timing parameters are defined with respect to the rising edge
of CLK2.

D/C# 24 Data/Control. This 3-state, bus-cycle-definition signal is low during control cycles and
is high during data cycles. Control cycles are issued during functions such as a halt
instruction, interrupt servicing, and code fetching. Data bus cycles include data access
from either memory or I/O.

Input/Output Signals

3-6

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

1
100
99
96
95
94
93
92
90
89
88
87
86
83
82
81

Data Bus (active high). The data bus signals (D15–D0) are 3-state bidirectional signals
that provide the data path between the microprocessor, the external memory, and the
I/O devices. The data-bus inputs receive data during memory-read, I/O-read, and
interrupt-acknowledge cycles and delivers output data during memory and I/O-write
cycles. Data read operations require that specified data setup and hold times be met for
correct operation. The data bus signals float while the CPU is in a hold-acknowledge or
float state.

ERROR# 36 Coprocessor Error (active low). This input indicates that the coprocessor generated an
error during execution of an instruction. ERROR# is sampled by the microprocessor
whenever a coprocessor instruction is executed. If ERROR# is sampled active, the
processor generates exception 16, which is then serviced by the exception handling
software.

The following coprocessor instructions, which clear coprocessor error flags and save
the coprocessor state, do not generate an exception 16 even if ERROR# is
active: FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, FNSAVE.

ERROR# is internally connected to a pullup resistor to prevent it from floating active
when left unconnected.

FLT# 28 Float (active low). This input forces all bidirectional and output signals to a 3-state
condition. Floating the signals allows the microprocessor signals to be driven externally
without physically removing the device from the circuit. The microprocessor must be
reset following assertion or negation of FLT#. Use FLT# only for testing.

FLT# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

FLUSH# 30 Cache Flush (active low). This input invalidates (flushes) the entire cache. Use of
FLUSH# to maintain cache coherency is optional. The cache may also be invalidated
during each hold-acknowledge cycle by setting the BARB bit in the CCR0 Configuration
register. The FLUSH# input is ignored following reset and can be enabled using the
FLUSH bit in the CCR0 Configuration register.

FLUSH# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

 Input/Output Signals

3-7 TI486SXLC Microprocessor Bus Interface

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

HOLD 4 Hold Request (active high). This input indicates that another bus master requests
control of the local bus. The bus arbitration (HOLD and HLDA) signals allow the
microprocessor to relinquish control of its local bus when requested by another bus
master device. Once the processor has relinquished its 3-stated bus, the bus master
device can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the microprocessor responds by floating the local bus and
asserting the hold-acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the microprocessor recognizes that HOLD is inactive,
it simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the microprocessor 3-state outputs to ensure that they
remain inactive while in a hold-acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority, and the microprocessor places the bus into an idle
state instead of a hold-acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and hold times for correct operation.

HLDA 3 Hold Acknowledge (active high). This output indicates that the microprocessor is in a
hold-acknowledge state and has relinquished control of its local bus. While in the
hold-acknowledge state, the microprocessor drives HLDA active and continues to drive
SUSPA#, if enabled. The other microprocessor outputs are in the high-impedance state,
allowing the requesting bus master to drive these signals. If the on-chip cache can
satisfy bus requests, the microprocessor continues to operate during hold-acknowledge
states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven inactive. The
microprocessor stores an NMI rising edge during a hold-acknowledge state for
processing after HOLD is inactive. The FLUSH# input is also recognized during a
hold-acknowledge state. If SUSP# is asserted during a hold-acknowledge state, the
microprocessor may or may not enter suspend mode depending on the state of the
internal execution pipeline. Table 3–3 summarizes the state of the microprocessor
signals during hold acknowledge.

INTR 40 Maskable Interrupt Request. This level-sensitive input causes the processor to
suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flag Word register
IF bit. When unmasked, the microprocessor responds to the INTR input by issuing two
locked interrupt-acknowledge cycles. To assure recognition of the INTR request, INTR
must remain active until the start of the first interrupt-acknowledge cycle.

Input/Output Signals

3-8

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

KEN# 29 Cache Enable (active low). This input indicates that the data returned during the
current cycle is cacheable. When KEN# is active and the microprocessor performs a
cacheable code-fetch or memory-data-read cycle, the cycle is transformed into a cache
fill. Use of the KEN# input to control cacheability is optional. The Noncacheable Region
registers can also control cacheability. Memory addresses specified by the
Noncacheable Region registers cannot be cached regardless of the state of KEN#. I/O
accesses, locked reads, SMM address space accesses, and interrupt-acknowledge
cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN# must be asserted during both read cycles to cause a
cache line fill. During memory data reads, the microprocessor performs as many read
cycles as necessary to supply the required data to complete the current operation. Valid
bits are maintained for each byte in the cache line and each block of four lines, thus
allowing data operands of less than four bytes to reside in the cache.

If two read cycles are performed with the same address (A23–A2), KEN# must be
asserted during both cycles to cache the data in these cycles. If the data is cached, the
microprocessor ignores the state of the byte enables (BHE# and BLE#), and all data
on the bus is cached. The KEN# input is ignored following reset and can be enabled
using the KEN bit in the CCR0 Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

LOCK# 26 LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to deny access
to the CPU bus by other bus masters. The LOCK# signal may be explicitly activated
during bus operations by including the LOCK prefix on certain instructions. LOCK# is
always asserted during descriptor and page table updates, interrupt-acknowledge
sequences, and when executing the XCHG instruction. The microprocessor does not
enter the hold-acknowledge state in response to HOLD while the LOCK# output is
active.

M/IO# 23 Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read and write
cycles and is high during memory cycles.

NA# 6 Next Address Request (active low). This input requests address pipelining by the
system hardware. When asserted, the system indicates that it is prepared to accept
new bus-cycle definition and address signals (M/IO#, D/C#, W/R#, A23–A1, BHE#, and
BLE#) from the microprocessor even if the current bus cycle has not been terminated
by assertion of READY#. If the microprocessor has an internal bus request pending and
the NA# input is sampled active, the next bus-cycle definition and address signals are
driven onto the bus.

NC† 27, 45,
46

Make no external connection.

† Connecting or terminating (high or low) any NC terminal(s) may cause the microprocessor to produce unpredictable results or
not operate.

 Input/Output Signals

3-9 TI486SXLC Microprocessor Bus Interface

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

NMI 38 Nonmaskable Interrupt Request. This rising-edge-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution of an NMI
interrupt service routine. The NMI interrupt service request cannot be masked by
software. Asserting NMI causes an interrupt that internally supplies interrupt vector 2h
to the CPU core. External interrupt-acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally. Once NMI processing has started, no
additional NMIs are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two (�2) clock period.
To assure recognition, NMI must be inactive for at least eight CLK2 periods and then be
active for at least eight CLK2 periods. Additionally, specified setup and hold times must
be met to assure recognition at a particular clock edge.

PEREQ 37 Coprocessor Request (active high). This input indicates that the coprocessor is ready
to transfer data to or from the CPU. The coprocessor can assert PEREQ in the process
of executing a coprocessor instruction. The microprocessor internally stores the current
coprocessor opcode and transfers the correct data to support coprocessor operations.
The microprocessor employs PEREQ to synchronize the transfer of required operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

READY# 7 Ready (active low). This input is generated by the system hardware to indicate that the
current bus cycle can be terminated. During a read cycle, assertion of READY# indicates
that the system hardware has presented valid data to the CPU. When READY# is
sampled active, the microprocessor latches the input data and terminates the cycle.
During a write cycle, READY# assertion indicates that the system hardware has
accepted the microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

RESET 33 Reset (active high). When asserted, RESET suspends all operations in progress and
places the microprocessor into a reset state. RESET is a level-sensitive synchronous
input and must meet specified setup and hold times to be properly recognized by the
microprocessor. The microprocessor begins executing instructions at physical address
location FF FFF0h approximately 400 CLK2 edges after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled mode (for
the TI486SXLC2). All other input pins except FLT# are ignored. The remaining signals
are initialized to their reset state during the internal processor reset sequence. The reset
signal states for the microprocessor are shown in Table 3–3.

SMADS# 20 SMM Address Strobe (active low). SMADS#, a 3-state output, is asserted instead of the
ADS# during SMM bus cycles.This indicates that SMM memory is being accessed.
SMADS# floats while the CPU is in a hold-acknowledge or float state. The SMADS#
output is disabled (floated) following reset and can be enabled using the SMI bit in the
CCR1 Configuration register.

Input/Output Signals

3-10

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

SMI# 47 System Management Interrupt (active low). This 3-state, bidirectional, level-sensitive
input/output signal is an interrupt with higher priority than the NMI interrupt. SMI# must
be active for at least four CLK2 clock periods to be recognized by the microprocessor.
After the SMI is acknowledged, the SMI# pin is driven low by the microprocessor for the
duration of the SMI service routine. The SMI# input is ignored following reset and can
be enabled using the SMI bit in the CCR1 Configuration register.

SMI# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSP# 43 Suspend Request (active low). This input requests the microprocessor to enter
suspend mode. After recognizing SUSP# as active, the processor completes execution
of the current instruction, any pending decoded instructions, and associated bus cycles.
In addition, the microprocessor waits for the coprocessor to indicate a not-busy status
(BUSY# = 1) before entering suspend mode and asserting suspend acknowledgement
(SUSPA#).

SUSP# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSPA# 44 Suspend Acknowledge (active low). This output indicates that the microprocessor has
entered the suspend mode as a result of SUSP# assertion or execution of a HALT
instruction.

VCC 8
9
10
21
32
39
42
48
57
69
71
84
91
97

5-V Power Supply. All pins must be connected and used.

 Input/Output Signals

3-11 TI486SXLC Microprocessor Bus Interface

Table 3–2.TI486SXLC Terminal Functions (Continued)

Terminal

D i iName No. Description

VSS 2
5
11
12
13
14
22
35
41
49
50
63
67
68
77
78
85
98

Ground Pins. All pins must be connected and used.

W/R# 25 Write/Read. This 3-state, bus-cycle-definition signal is low during read cycles (data is
read from memory or I/O) and is high during write bus cycles (data is written to memory
or I/O).

Input/Output Signals

3-12

3.1.2 Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi-
croprocessor aborts any current bus cycle and establishes real-mode bus-
cycle definition with active buses. See Table 3–3 and Section 3.3, Reset Tim-
ing and Internal Clock Synchronization, page 3-17.

The microprocessor enters the hold-acknowledge state in response to asser-
tion of the HOLD input. During the hold-acknowledge state, the microproces-
sor floats all output and bidirectional signals except for HLDA and SUSPA#.
In the hold-acknowledge state, all inputs except HOLD, FLUSH#, FLT#,
SUSP# and RESET are ignored. See Table 3–3 and subsection 3.4.8, Hold
Acknowledge State, page 3-39. The hold-acknowledge state lets an external
device acquire the system bus.

Table 3–3.TI486SXLC Signal States During Reset and Hold Acknowledge

Signal Name
Signal State
During Reset

Signal State During
Hold Acknowledge

A20M# Ignored Input recognized

A23–A1 1 Float

ADS# 1 Float

BHE#, BLE# 0 Float

BUSY# Initiates self test Ignored

D15–D0 Float Float

D/C# 1 Float

ERROR# Ignored Ignored

FLT# Input recognized Input recognized

FLUSH# Ignored Input recognized

HLDA 0 1

HOLD Ignored Input recognized

INTR Ignored Input recognized

KEN# Ignored Ignored

LOCK# 1 Float

M/IO# 0 Float

NA# Ignored Ignored

NMI Ignored Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# Float Float

SMI# Ignored Input recognized

SUSP# Ignored Input recognized

SUSPA# Float Driven

W/R# 0 Float

 Bus-Cycle Definition

3-13 TI486SXLC Microprocessor Bus Interface

3.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, and LOCK#) that define the type of bus-cycle operation. Table 3–4 de-
fines the bus cycles for the possible states of these signals. M/IO#, D/C#, and
W/R# are the primary bus-cycle-definition signals and are driven valid as
ADS# (address strobe) becomes active. During nonpipelined cycles, the
LOCK# output is driven valid along with M/IO#, D/C#, and W/R#. During pipe-
lined addressing, LOCK# is driven at the beginning of the bus cycle, which is
after ADS# becomes active for that cycle. The bus-cycle-definition signals are
active low and float while the microprocessor is in a hold-acknowledge or float
state.

Table 3–4.TI486SXLC Bus Cycle Types

M/IO# D/C# W/R# LOCK# Bus Cycle Type

0 0 0 0 Interrupt acknowledge

0 0 0 1 —

0 0 1 X —

0 1 X 0 —

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 0 X 0 —

1 0 0 1 Memory code read

1 0 1 1 Halt: A23–A1=2h, BHE#=1, and BLE#=0
Shutdown: A23–A1=0h, BHE#=1, and BLE#=0

1 1 0 0 Locked memory data read

1 1 0 1 Memory data read

1 1 1 0 Locked memory data write

1 1 1 1 Memory data write

X = Don’t care
— = Does not occur

3.2.1 Clock Doubling Using Software Control

The clock-doubled feature of the TI486SXLC2 is enabled/disabled using
Configuration Control register 0 (CCR0), bit 6. The following software sets and
resets CKD:

Set CKD programming sequence:

mov al, 0C0h ;select CCR0
out 22h, al
in al, 23h ;read CCR0
mov ah, al ;save in AH
or ah, 40h ;set AH<6>
mov al, 0C0h ;select CCR0
out 22h, al
mov al, ah
out 23h, al ;write CCR0

Bus-Cycle Definition

3-14

Reset CKD programming sequence:

mov al, 0C0h ;select CCR0
out 22h, al
in al, 23h ;read CCR0
mov ah, al ;save in AH
and ah, 0BFh ;reset AH<6>
mov al, 0C0h ;select CCR0
out 22h, al
mov al, ah
out 23h, al ;write CCR0

3.2.1.1 Entering Clock-Doubled Mode

The TI486SXLC2 microprocessors power up in the nonclock-doubled mode.
To enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5–5 and Table 5–6) and issue
the set-CKD-programming sequence. Approximately 20 �s after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

3.2.1.2 Clock-Scaling Sequence

To scale or stop CLK2 input when the processor is in clock-doubled mode, is-
sue the reset-CKD-programming sequence. The final OUT instruction exiting
the processor pipeline resets the CKD bit and puts the microprocessor into
nonclock-doubled mode. This must occur before scaling or stopping the CLK2
input to prevent a synchronization error. This may be ensured by issuing a
JUMP instruction, such as JMP $+2, before scaling CLK2.

To return the processor to clock-doubled mode, set CLK2 to the desired fre-
quency inside the PLL lock range and issue the set-CKD-programming se-
quence. Approximately 20 �s after the final OUT instruction has exited the pro-
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

3.2.1.3 Suspend Mode

Suspend mode can be initiated when the TI486SXLC2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus-
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in nonclock-
doubled mode, refer to subsection 3.2.2, Power Management.

To get the lowest possible power state, bring the microprocessor out of clock-
doubled mode, enter the suspend mode (using software or hardware), and
stop the CLK2 input.

 Bus-Cycle Definition

3-15 TI486SXLC Microprocessor Bus Interface

3.2.2 Power Management

The power-management signals allow the TI486SXLC series microproces-
sors to enter suspend mode. Suspend-mode circuitry allows the microproces-
sor to consume minimal power while maintaining the entire internal CPU state.

3.2.2.1 Suspend Request (SUSP#)

Suspend request (SUSP#) is an active-low input that requests the TI486SXLC
series microprocessors to enter suspend mode. For TI486SXLC2 micropro-
cessors, follow the clock-scaling sequence procedure in subsection 3.2.1.2 to
enter nonclock-doubled mode before scaling or stopping the CLK2 input.

After recognizing SUSP# is active, the processor completes execution of the
current instruction, any pending decoded instructions, and associated bus
cycles. In addition, the microprocessor waits for the coprocessor to indicate
a not-busy condition (BUSY#=1) before entering suspend mode and asserting
suspend acknowledge (SUSPA#). During suspend mode, internal clocks are
stopped and only the logic for monitoring RESET, HOLD, and FLUSH# re-
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur-
rent required by the microprocessor.

To resume operation, restart the CLK2 input (if stopped) and negate the
SUSP# input. The TI486SXLC2 processors can enter clock-doubled mode
(subsection 3.2.1.1, Entering Clock-Doubled Mode) once the CLK2 input
reaches the desired frequency within the PLL lock range. The processor then
resumes instruction fetching and begins execution in the instruction stream at
the point where it stopped.

The SUSP# input is level sensitive and must meet specified setup and hold
times to be recognized at a particular clock edge. The SUSP# input is ignored
following reset and can be enabled using the SUSP bit in the CCR0 Configura-
tion register.

3.2.2.2 Suspend Acknowledge (SUSPA#)

The suspend acknowledge (SUSPA#) output indicates that the TI486SXLC
series microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 input is switching, the microprocessor continues to recognize FLT#, RE-
SET, HOLD, and FLUSH#. In addition, the TI486SXLC2 microprocessor may
stay in clock-doubled mode while the CLK2 input is switching. If suspend mode
was entered as the result of a HALT instruction, the microprocessor also con-
tinues to monitor the NMI input and the unmasked INTR input. Detection of
INTR or NMI forces the microprocessor to exit suspend mode and begin
execution of the appropriate interrupt service routine. The CLK2 input to the
processor can be stopped after SUSPA# has been asserted to reduce the
power requirement of the microprocessor further. For this case, the
TI486SXLC2 microprocessor must be brought out of clock-doubled mode
before stopping the CLK2 input to prevent a synchronization error. The
SUSPA# output is disabled (floated) following reset and can be enabled using
the SUSP bit in the CCR0 Configuration register.

Bus-Cycle Definition

3-16

Table 3–5 shows the state of the TI486SXLC series microprocessor signals
when the device is in suspend mode.

Table 3–5.TI486SXLC Signal States During Suspend Mode

Signal Name
Signal State During
Hold Acknowledge

Signal State During Halt-
Initiated Suspend Mode

A20M# Ignored Ignored

A23–A1 1 1

ADS# 1 1

BHE#, BLE# 0 0

BUSY# Ignored Ignored

D15–D0 Float Float

D/C# 1 1

ERROR# Ignored Ignored

FLT# Input recognized Input recognized

FLUSH# Input recognized Input recognized

HLDA 0 0

HOLD Input recognized Input recognized

INTR Latched Input recognized

KEN# Ignored Ignored

LOCK# 1 1

M/IO# 0 0

NA# Ignored Ignored

NMI Latched Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# 1 1

SMI# Latched Input recognized

SUSP# Input recognized Ignored

SUSPA# 0 0

W/R# 0 0

 Reset Timing and Internal Clock Synchronization

3-17 TI486SXLC Microprocessor Bus Interface

3.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and interrupts any processor activity
when it is asserted. When RESET is asserted, the microprocessor aborts any
bus cycle. Idle, hold-acknowledge, and suspend states are also discontinued,
and the reset state is established. RESET is used when the microprocessor
is powered up to initialize the CPU to a known valid state and to synchronize
the internal CPU clock with external clocks. The TI486SXLC2 microproces-
sors are initialized to nonclock-doubled mode when RESET goes active.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the microprocessor. If the self-test feature is invoked, RESET must be as-
serted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2 peri-
ods may not have sufficient time to propagate throughout the microprocessor
and may not be recognized. RESET pulses of less than 80 CLK2 periods fol-
lowed by a self-test request may incorrectly report a self-test failure when none
has occurred .

If the RESET falling edge meets specified setup and hold times, the internal
processor clock phase is synchronized as illustrated in Figure 3–2. The
TI486SXLC internal processor clock is half the frequency of the CLK2 input
and each CLK2 cycle corresponds to an internal CPU clock phase (φ).
Phase two (�2) of the internal clock is defined as the second rising edge of
CLK2 following the falling edge of RESET. The TI486SXLC2 internal core
clock is the same frequency as the CLK2 input, and the internal bus interface
clock is half the frequency of the CLK2 input. Phase two of the internal clock
is defined as the second rising edge of CLK2 following the falling edge of RE-
SET.

Figure 3–2. TI486SXLC Internal Processor Clock Synchronization

CLK2

RESET

INTERNAL
PROCESSOR

CLOCK

φ 2 or φ1 φ 2 or φ1 φ 2 φ 1

Reset Timing and Internal Clock Synchronization

3-18

Following the falling edge of RESET (and after self test if it was requested),
the microprocessor performs an internal initialization sequence for approxi-
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com-
plete. Even if the self test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 3–3 illustrates the bus activity and
timing during the microprocessor reset sequence.

Figure 3–3. TI486SXLC Bus Activity From RESET Until First Code Fetch

High for No Self Test (see Note)

Low to Begin Self Test

ÉÉÉÉÉ
ÉÉÉÉÉ

(Floating)

(Floating)

CLK2

RESET

CLK
(Internal)

BUSY#

ERROR#

BHE#, BLE#,
W/R#, M/IO#,

HLDA

A23–A1
D/C#,

LOCK#

ADS#

NA#

READY#

D15–D0

SUSPA#

Reset
≥ 15CLK2 periods if not
going to request self test.
≥ 80 CLK2 periods before
requesting self-test.

Internal
Initialization

If self test is performed, add
220 + 60* to these numbers

1 2 3 17 18 19 392* 393* 394* 395*

* Approximately

Cycle 1
Nonpipelined

(Read)

T1 T2

φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

Up to 30 CLK2

Up to 30 CLK2

Up to 30 CLK2

Low

High

High

Valid

Valid

Note: BUSY# should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

Upon completion of self-test, the EAX register contains 0000 0000h if the
microprocessor passed its internal self test with no problems. Any nonzero val-
ue in the EAX register indicates that the microprocessor is faulty.

 Bus Operation and Functional Timing

3-19 TI486SXLC Microprocessor Bus Interface

3.4 Bus Operation and Functional Timing

The TI486SXLC series microprocessor communicates with the external sys-
tem through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus config-
urations, where the address and data are presented on the same pins at differ-
ent times.

TI486SXLC series microprocessor instructions can act on memory data oper-
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro-
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (D15–D0) is a 16-bit-wide bidirectional bus. The
microprocessor drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles. The address bus
provides a 24-bit value. Twenty-three signals for the 23 upper-order address
bits (A23–A1) define which 16-bit word is being accessed. Two byte-enable
signals (BHE# and BLE#) directly indicate which of the two bytes within the
word is active.

Every bus cycle begins with assertion of the address strobe (ADS#). ADS# in-
dicates that the microprocessor has issued a new address and new bus-cycle-
definition signals. A bus cycle is defined by four signals: M/IO#, W/R#, D/C#,
and LOCK#. M/IO# defines whether a memory or I/O operation is occurring,
W/R# defines the cycle as read or write, and D/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
READY# asserted.

The TI486SXLC series microprocessor performs the following bus-cycle
types:

� Memory read
� Locked memory read
� Memory write
� Locked memory write
� I/O read (or coprocessor read)
� I/O write (or coprocessor write)
� Interrupt acknowledge (always locked)
� Halt/shutdown

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of ADS# following a completed bus cycle.

Note that all bus diagrams apply to all TI486SXLC series microprocessors.
The TI486SXLC2 clock-doubled feature does not change the external micro-
processor bus interface.

Bus Operation and Functional Timing

3-20

3.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri-
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

3.4.1.1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (�1,
first CLK2) of T1, the address bus and bus-cycle-definition signals are driven
valid and, to signal their availability, address strobe (ADS#) is simultaneously
asserted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input, and valid data is either read or
written depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 3–4.

Figure 3–4. TI486SXLC Fastest Nonpipelined Read Cycles

CLK2

A23–A1, BHE#,
BLE#, M/IO#,

D/C#, W/R#

ADS#

NA#

READY#

LOCK#

D15–D0
(Input During Read)

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2 φ 1

Cycle 1
Nonpipelined

(Read)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Nonpipelined

(Read)

Valid 3Valid 2Valid 1

Valid 3Valid 2Valid 1

In In 1 In 2 In 3

Note: Fastest nonpipelined bus cycles consist of T1 and T2.

 Bus Operation and Functional Timing

3-21 TI486SXLC Microprocessor Bus Interface

3.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 3–5
shows a mixture of read and write cycles with nonpipelined address timing.
When a read cycle is performed, the microprocessor floats its data bus, and
the externally addressed device then drives the data. The microprocessor re-
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac-
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write-
data hold time.

Figure 3–5. TI486SXLC Various Nonpipelined Bus Cycles (No Wait States)

CLK2

A23–A1,
BHE#, BLE#,
M/IO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

D15–D0

Ti T1 T2 T1 T2 T1 T2 Ti T1 TiT2

Idle
Cycle 2

Nonpipelined
(Read)

Cycle 3
Nonpipelined

(Write)

Cycle 4
Nonpipelined

(Read)
IdleIdle

Valid 1 Valid 2 Valid 3 Valid 4

End Cycle 1 End Cycle 3 End Cycle 4End Cycle 2

Out 1 In 2 Out 3 In 4

Valid 1 Valid 2 Valid 3 Valid 4

Cycle 1
Nonpipelined

(Write)

Note: Idle states are introduced arbitrarily.

Bus Operation and Functional Timing

3-22

3.4.1.3 Nonpipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external sys-
tem hardware using the READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest possible bus cycle, requiring only T1
and T2. However, If READY# is not immediately asserted, T2 states are re-
peated indefinitely until the READY# input is sampled active. These intermedi-
ate T2 states are referred to as wait states. If the external system hardware
is not able to receive or deliver data in two bus states, READY# is withheld and
adds at least one wait state to the bus cycle. Thus, on an address-by-address
basis, the system is able to define how fast a bus cycle completes.

Figure 3–6 illustrates nonpipelined bus cycles with one wait state added to
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled
active at the end of the second T2, and the cycle is then terminated. The micro-
processor ignores the READY# input at the end of the T1 state.

Figure 3–6. TI486SXLC Various Nonpipelined Bus Cycles With Different Numbers of Wait
States

CLK2

W/R#

ADS#

NA#

READY#

LOCK#

D15–D0

Ti T1 T2 T1 T2 T2 Ti T1 T2 TiT2

Idle
Cycle 1

Nonpipelined
(Read)

Cycle 2
Nonpipelined

(Write)

Cycle 3
Nonpipelined

(Read)
Idle

End Cycle 1 End Cycle 3End Cycle 2

Valid 1 Valid 2 Valid 3

In 3In 1 Out 2

Idle

Valid 1 Valid 2 Valid 3
A23–A1,

BHE#, BLE#,
M/IO#, D/C#

Note: Idle states are introduced arbitrarily.

 Bus Operation and Functional Timing

3-23 TI486SXLC Microprocessor Bus Interface

3.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 3–7. The bus can switch between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 repeated for wait
states. Bus cycles always begin with a single T1 state. T1 is always followed
by a T2 state. If a bus cycle is not acknowledged during a given T2 and NA#
is inactive, T2 repeats, resulting in a wait state. When a cycle is acknowledged
during T2, the following state is T1 of the next bus cycle when a bus request
is pending internally. If no internal bus request is pending, the Ti state is en-
tered. If the HOLD input is asserted and the microprocessor is ready to enter
the hold-acknowledge state, the Th state is entered.

Figure 3–7. TI486SXLC Nonpipelined Bus States

Th

HOLD Asserted

HOLD Negated
No Request

HOLD Asserted

HOLD Negated
Request Pending

READY# Asserted
HOLD Negated

No Request

Request Pending
HOLD Negated

Always

READY# Asserted
HOLD Negated

Request Pending
READY# Negated

NA# Negated

READY# Asserted
HOLD Asserted

HOLD Negated
No Request

Ti T1 T2

Bus States:
T1 – First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 – Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti – Idle state
Th – Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

Bus Operation and Functional Timing

3-24

Due to the demultiplexed bus, address pipelining gives the external hardware
an additional T state of access time without inserting a wait state. The proces-
sor always uses nonpipelined address timing after the reset sequence and fol-
lowing any idle bus state. Pipelined or nonpipelined address timing is then de-
termined on a cycle-by-cycle basis using the NA# input. When address pipelin-
ing is not used, the address and bus-cycle definition remain valid during all wait
states. When wait states are added and nonpipelined address timing is neces-
sary, NA# should be negated during each T2 state of the bus cycle except the
last one.

3.4.2 Bus Cycles Using Pipelined Addressing

Address pipelining lets the system request the address and bus-cycle defini-
tion of the next internally pending bus cycle before the current bus cycle is ac-
knowledged with READY# asserted. If address pipelining is used, the external
system hardware has an extra T state of access time to transfer data. Address
pipelining is controlled cycle-by-cycle by the state of the NA# input.

3.4.2.1 Pipelined Bus States

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be-
ginning of phase two of each T2 state and is only acknowledged by the micro-
processor during wait states. When address pipelining is acknowledged, the
address (BHE#, BLE#, and A23–A1) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi-
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using a pipelined address
require only two bus states. Figure 3–8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1P
and T2P or T1P and T2I. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available, and it is the first bus state of every pipelined bus cycle.
In other words, the T1P state follows a T2 state if the previous cycle was nonpi-
pelined, and follows a T2P state if the previous cycle was pipelined.

 Bus Operation and Functional Timing

3-25 TI486SXLC Microprocessor Bus Interface

Figure 3–8. TI486SXLC Fastest Pipelined Read Cycles

CLK2

A23–A1, BHE#,
BLE#, M/IO#,

D/C#, W/R#

ADS#

NA#

READY#

LOCK#

D15–D0
(Input During Read)

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

Cycle 1
Pipelined
(Read)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined
(Read)

Valid 4Valid 3Valid 2

Valid 3Valid 2Valid 1

In 1 In 2 In 3

Valid 1

Note: Fastest pipelined bus cycles consist of T1P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(��� of the T1P state. If the microprocessor has an internally pending bus re-
quest and NA# is asserted, the T1P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1P state is followed by a T2I
state regardless of the state of NA# and no new address or bus-cycle informa-
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T2I states with the
assertion of the READY# input, and valid data is either input or output depend-
ing on the bus cycle type. READY# is ignored at the end of the T1P state.

3.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T2I bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (�2) of T1P. When a write cycle is acknowledged, the

Bus Operation and Functional Timing

3-26

write data remains valid throughout phase one (��� of the next bus state to pro-
vide write-data hold time.

3.4.2.3 Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the ex-
ternal system hardware using the microprocessor READY# input. Acknowl-
edging the bus cycle at the end of the first T2P or T2I state results in the short-
est possible pipelined bus cycle. If READY# is not immediately asserted, how-
ever, T2P or T2I states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T2I states are referred to as wait states.

Figure 3–9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P, and the cycle is then terminated. The mi-
croprocessor ignores the READY# input at the end of the T1P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur-
ing the cycle has no additional effect. Pipelined addressing can only output in-
formation for the next bus cycle.

Cycle 2 in Figure 3–9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re-
quest is pending internally and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 3–9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as-
serted in T1P, requesting the next address. Because the CPU does not have
an internal bus request pending, the T2I state is entered. However, by the end
of the T2I state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe-
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

 Bus Operation and Functional Timing

3-27 TI486SXLC Microprocessor Bus Interface

Figure 3–9. TI486SXLC Various Pipelined Cycles (One Wait State)

CLK2

Cycle 1
Pipelined

(Write)

T1P T2P T2P T1P T2 T2P T1P T2I T2P T1P

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined

(Write)

Cycle 4
Pipelined
(Read)

ADS# is asserted as soon
as the CPU has another
bus cycle to perform,
which is not always
immediately after NA# is
asserted.

A23–A1,
BHE#,
BLE#,
M/IO#,

D/C#

Asserting NA# more than
once during any cycle has
no additional effect.

As long as the CPU enters the T2P
state during cycle 3, address pipelining
is maintained in cycle 4.

NA# could have been asserted in
T1P if desired. Assertion now is
the latest time possible to allow
the CPU to enter T2P state and
maintain pipelining in cycle 3.

W/R#

ADS#

NA#

READY#

LOCK#

D15–D0

Valid 1 Valid 2 Valid 3 Valid 4

Valid 1 Valid 2 Valid 3 Valid 4

Out Out 1 Out 3In 2

ADS# is asserted
in every T2P state.

Bus Operation and Functional Timing

3-28

3.4.2.4 Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowledge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow-
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces-
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 3–10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2 begins, cycle 2 is called a pipelined bus cycle, and it begins with a T1P state.
Cycle 2 begins as soon as READY# assertion terminates cycle 1.

Figure 3–10. TI486SXLC Fastest Transition to Pipelined Address Following Bus-Idle State

CLK2

A23–A1
BHE#, BLE#,
M/IO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

D15–D0

Ti T1 T2 T2P T1P T2P T1P T2P T1P T2IT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Ti

Cycle 4
Pipelined
(Read)

Valid 4

Out 3

Valid 4

Note: Following any idle bus state (Ti), the address is always nonpipelined and NA# is sampled only during wait states. To start
address pipelining after an idle state, a nonpipelined cycle with at least one wait state (cycle 1 above) is required. The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

 Bus Operation and Functional Timing

3-29 TI486SXLC Microprocessor Bus Interface

Figure 3–11 illustrates the transition to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 3–10 (on page 3-28) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as-
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 3–11 show that once address pipelining
is achieved, it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser-
tion of ADS#. Figure 3–10 and Figure 3–11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 3–11. TI486SXLC Transition to Pipelined Address During Burst of Bus Cycles

Out 3

CLK2

A23–A1,
BHE#,
BLE#,
M/IO#,

D/C#

W/R#

ADS#

NA#

LOCK#

D15–D0

Ti T1 T2 T1 T2 T2P T1P T2P T1P TiT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Cycle 4
Pipelined
(Read)

Valid 4

READY#

Valid 4

Note: Following any idle bus state (Ti), addresses are nonpipelined bus cycles, and NA# is sampled only during wait states.
Therefore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with at
least one wait state (cycle 2 above).

Bus Operation and Functional Timing

3-30

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 3–12. This is a superset of the diagram for nonpipe-
lined address. The three additional bus states for pipelined address are
shaded.

Figure 3–12. TI486SXLC Complete Bus States

Request Pending •
HOLD Negated READY# Asserted •

HOLD Negated •
Request Pending

NA# Negated

Th

T1

T2I

T1P

T2P

HOLD Negated •
No Request

HOLD Asserted

HOLD Negated •
Request Pending

READY# Asserted •
HOLD Negated •

No Request

Always

RESET
Asserted

READY# Asserted •
HOLD Asserted

HOLD
Negated

No Request

(No Request +
HOLD Asserted) •

NA# Asserted •
READY# Negated

NA# Asserted •
(HOLD Asserted�

No Request)

READY#
Negated •

NA# Negated

READY# Negated •
NA# Asserted •
HOLD Negated

Request Pending
 READY# Negated •

(No Request�
HOLD Asserted)

READY# Negated
Request Pending
HOLD Asserted

READY# Asserted

READY# Negated

HOLD Asserted

READY# Asserted •
HOLD Negated •
Request Pending

READY# Asserted •
HOLD Negated •

No Request

T2Ti

READY# Asserted •
HOLD Asserted

Bus States:
T1 – First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 – Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
T2I – Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there

is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)
T2P – Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and

there is an internal bus request pending (CPU drives new address and asserts ADS#)
T1P – First clock of a pipelined bus cycle
Ti – Idle state
Th – Hold acknowledge state (CPU asserts HLDA)

NA# Asserted •
HOLD Negated •
Request Pending

 Bus Operation and Functional Timing

3-31 TI486SXLC Microprocessor Bus Interface

3.4.3 Locked Bus Cycles

When the LOCK# signal is asserted, the TI486SXLC series microprocessors
do not allow other bus master devices to gain control of the system bus.
LOCK# is driven active in response to executing certain instructions with the
LOCK prefix. The LOCK prefix allows indivisible read/modify/write operations
on memory operands. LOCK# is also active during interrupt-acknowledge
cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When the microprocessor is using nonpipelined addressing, LOCK# is
asserted during phase one (��� of T1. When it is using pipelined addressing,
LOCK# is driven valid during phase one of T1P.

Figure 3–4 through Figure 3–6 on pages 3-20 through 3-22 illustrate LOCK#
timing during nonpipelined cycles. Figure 3–8 through Figure 3–11 on pages
3-25 through 3-29 cover the pipelined-address case.

3.4.4 Interrupt-Acknowledge Cycles

The TI486SXLC series microprocessors are interrupted by an external source
via an input request on the INTR input (when interrupts are enabled). The mi-
croprocessor responds with two locked interrupt-acknowledge cycles. These
bus cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 3–13.

Bus Operation and Functional Timing

3-32

Figure 3–13. TI486SXLC Interrupt-Acknowledge Cycles

CLK2

A23–A3, A1,
BLE#, M/IO#,

D/C#, W/R#

BHE#

ADS#

READY#

NA#

T2 T1 T2 T2 Ti Ti Ti Ti T1 T2T2

Idle
Interrupt

Acknowledge
Cycle 1

Idle

X

Ti

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2

In

A2

LOCK#

D7–D0

D15–D8 X X

Ignored

Ignored

Vector

Ignored

Note: Interrupt vector (0–255) is read on D7–D0 at the end of the second interrupt-acknowledge bus cycle. Because each inter-
rupt- acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.

The state of the A2 pin distinguishes the first and second interrupt-acknowl-
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A23–A3, A1, BLE#=0; A2, BHE#=1). The address driven during the se-
cond interrupt-acknowledge cycle is 0h (A23–A1, BLE#=0; BHE#=1).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl-
edge cycle until the end of the second interrupt-acknowledge cycle. In clock-
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The
microprocessor reads the vector from D7–D0 of the data bus. The vector
indicates the specific interrupt number (from 0–255) requiring service.
Throughout the balance of the two interrupt cycles, D15–D0 float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro-
cessor is ignored.

 Bus Operation and Functional Timing

3-33 TI486SXLC Microprocessor Bus Interface

3.4.5 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro-
cessor to halt operation or shutdown further processing. The microprocessor
signals a halt or shutdown through a halt- or shutdown-indication cycle,
respectively.

3.4.5.1 Halt Indication Cycle

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. The microprocessor signals its entrance into the halt state
by performing a halt indication cycle. The halt indication cycle is identified by
the state of the bus-cycle-definition signals (M/IO#=1, D/C#=0, W/R#=1, and
LOCK#=1) and an address of 2h (A23–A2=0, A1=1, BHE#=1, and BLE#=0).

The halt indication cycle must be acknowledged by asserting READY#. A
halted microprocessor resumes execution when INTR (if interrupts are en-
abled), NMI, SMI#, or RESET is asserted. Figure 3–14 illustrates a nonpipe-
lined halt cycle.

Bus Operation and Functional Timing

3-34

Figure 3–14. TI486SXLC Nonpipelined Halt Cycle

CLK2

A1, BHE#
M/IO#,
W/R#

ADS#

NA#

READY#

D15–D0

T1 T2 T1 T2 Ti Ti Ti Ti

Cycle 2
Nonpipelined

(Halt)

Cycle 1
Nonpipelined

(Write)

Valid 1

Out 1

Idle

Valid 1

LOCK# Valid 1

Out Undefined (Floating)

A23–A2,
BLE#,
D/C#

Halt cycle must be acknowledged by
asserting READY# . Wait states may be
added to the cycle if desired.

CPU remains halted
until INTR, NMI, or
RESET is asserted.

 Bus Operation and Functional Timing

3-35 TI486SXLC Microprocessor Bus Interface

3.4.5.2 Shutdown Indication Cycle

Shutdown occurs when the microprocessor detects a severe error that pre-
vents further processing. The TI486SXLC series microprocessor shuts down
as a result of a protection fault while attempting to process a double fault as
well as the conditions referenced in Chapter 2, Programming Interface. A shut-
down indication cycle is performed, which signals the microprocessor’s en-
trance into the shutdown state. The shutdown indication cycle is identified by
the state of the bus-cycle-definition signals (M/IO#=1, D/C#=0, W/R#=1, and
LOCK#=1) and an address of 0h (A23–A1=0, BHE#=1, and BLE#=0). The
shutdown indication cycle must be acknowledged by asserting READY#. A
shutdown microprocessor resumes execution when NMI or RESET is as-
serted. Figure 3–15 illustrates a shutdown cycle using pipelined addressing.

Figure 3–15. TI486SXLC Pipelined Shutdown Cycle

CLK2

 BHE#
M/IO#,
W/R#

ADS#

NA#

READY#

D15–D0

T1P T2P T1P T2P Ti Ti Ti Ti

Cycle 2
Pipelined

(Shutdown)

Cycle 1
Pipelined
(Read)

Valid 1

Idle

Valid 1

LOCK# Valid 1

In Undefined (Floating)

A23–A1,
BLE#,
D/C#

In1

BLE# is low for
Shutdown cycle

CPU remains
shutdown until NMI or
RESET is asserted.

Shutdown cycle must be acknowledged by asserting READY#.
Wait states may be added to the cycle if desired.

Bus Operation and Functional Timing

3-36

3.4.6 Internal Cache Interface

The TI486SXLC cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative. The cache organization consists of
1024 sets, each containing two lines of four bytes each.

3.4.6.1 Cache Fills

Any unlocked memory-read cycle can be cached by the TI486SXLC series mi-
croprocessor. The microprocessor does not automatically cache accesses to
memory addresses specified by the Noncacheable-Region registers. Addi-
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCR0 Configuration register.

As shown in Figure 3–16 and Figure 3–17, the microprocessor samples the
KEN# input one CLK2 period before READY# is sampled active. If KEN# is
asserted and the current address is cacheable, the microprocessor fills two by-
tes of a line in the cache with the data present on the data bus pins. The states
of BHE# and BLE# are ignored if KEN# is asserted for the cycle.

Figure 3–16. TI486SXLC Nonpipelined Cache Fills Using KEN#
(With Different Numbers of Wait States)

CLK2

A23–A1, BHE#,
BLE#,

D/C#, M/IO#, W/R#

ADS#

KEN#

D15–D0
(Input During Read)

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2

T2
φ 1 φ 2

Cycle 1
Nonpipelined

(Read–Cache Fill)

Valid 2

In 1

Valid 1

Cycle 2
Nonpipelined

(Read–Cache Fill)

Valid 2Valid 1

In In 2

NA#

LOCK#

READY#

 Bus Operation and Functional Timing

3-37 TI486SXLC Microprocessor Bus Interface

Figure 3–17. TI486SXLC Pipelined Cache Fills Using KEN# (With Different Numbers of
Wait States)

CLK2

A23–A1, BHE#,
BLE#,D/C#,

M/IO#, W/R#

ADS#

KEN#

D15–D0
(Input During Read)

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

Cycle 1
Pipelined

(Read – Cache Fill)

Valid 2

In 1

Valid 1

Cycle 2
Pipelined

(Read – Cache Fill)

Valid 2Valid 1

In In 2

NA#

LOCK#

READY#

T1P
φ 1 φ 2

Valid 3

Valid 3

3.4.6.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486SXLC series mi-
croprocessor cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces-
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of:

� HLDA if the BARB bit is set in the CCR0 Configuration register
� FLUSH# if the FLUSH bit is set in CCR0

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (��� of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con-
tents of the internal cache. The actual point in time when the cache is invali-
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

Bus Operation and Functional Timing

3-38

3.4.7 Address Bit-20 Masking

The TI486SXLC series microprocessor can be forced to provide 8086 1M-byte
address wraparound compatibility by setting the A20M bit in the CCR0 Config-
uration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 3–18, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase two (��� of the
internal processor clock. If A20M# is asserted and paging is not enabled, the
microprocessor masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M#. The A20 signal re-
mains masked until the access following detection of an inactive state on the
A20M# pin. A20M# must be asserted for a minimum of two CLK2 periods and
must meet specified setup and hold times to be recognized on a specific CLK2
edge.

Figure 3–18. TI486SXLC Masking A20 Using A20M# During Burst of Bus Cycles

Out 3

CLK2

A19–A1,
A23–A21,

BHE#, BLE#,
M/IO#, D/C#

W/R#

ADS#

A20M#

LOCK#

D15–D0

Ti T1 T2 T1 T2 T2P T1P T2P T1P TiT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Cycle 4
Pipelined

(Write)

Valid 4

Valid 4

A20

NA#

READY#

Valid 1 Valid 4

 Bus Operation and Functional Timing

3-39 TI486SXLC Microprocessor Bus Interface

An alternative to using the A20M# pin is to set the NC0 bit in the CCR0 Configu-
ration register. When the NC0 bit is set, the microprocessor does not automati-
cally cache accesses to the first 64K bytes and to 1M byte + 64K bytes. This
prevents data within the wraparound memory area from residing in the internal
cache and eliminates the need for masking address A20 to the internal cache.

3.4.8 Hold-Acknowledge State

The hold-acknowledge state lets an external device in a TI486SXLC micropro-
cessor system acquire the system bus while the microprocessor is held in an
inactive bus state. This allows external bus masters to take control of the
microprocessor bus and directly access system hardware in a shared manner.
The microprocessor continues to execute instructions out of the internal cache
(if enabled) until a system bus cycle is required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out-
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state. All in-
puts except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 3–19, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 3–20 and Figure 3–21. The CPU samples the HOLD in-
put on the rising edge of CLK2 corresponding to the beginning of phase one
(��� of the internal processor clock. HOLD is a synchronous input and can be
asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne-
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 3–19. If an internal bus request is pending, as in Figure 3–20 and
Figure 3–21, the next bus state is T1. State Th is also exited in response to
RESET being asserted. If HOLD remains asserted when RESET goes inac-
tive, the microprocessor enters the hold-acknowledge state before performing
any bus cycles, provided HOLD is still asserted when the CPU is ready to per-
form its first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in state Th, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

Bus Operation and Functional Timing

3-40

Figure 3–19. TI486SXLC Requesting Hold From Bus-Idle State

CLK2

A23–A1, BHE#, BLE#,
D/C#, M/IO#, W/R#

ADS#
(Note 2)

Ti Th Th Th Ti

NA#

Hold AcknowledgeIdle Idle

(Floating)

(Floating)

(Floating)

(Floating)

HOLD
(Note 1)

HLDA

READY#

LOCK#

D15–D0

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are
met in every bus state. Violating setup or hold requirements results in incorrect operation.

2) For maximum design flexibility, the CPU has no internal pullup resistors on its outputs. External pullups may be re-
quired on ADS# and other outputs to keep them negated during the hold-acknowledge period.

 Bus Operation and Functional Timing

3-41 TI486SXLC Microprocessor Bus Interface

Figure 3–20. TI486SXLC Requesting Hold From Active Nonpipelined Bus

CLK2

A23–A1, BHE#,
 BLE#, BLE#,

D/C#, M/IO#, W/R#

NA#

D15–D0

T1 T2 T2 Th Th

Cycle 1
Nonpipelined

(Read)

Valid 2Valid 1

In 1

Hold Acknowledge

Valid 1

Out 2

ADS#

LOCK#

T1

Cycle 2
Nonpipelined

(Write)

T2

READY#

Valid 2

HOLD
(See Note)

HLDA

(Floating)

(Negated, or last locked cycle)

(Floating)

(Floating)

(Floating)

(Floating)

HOLD asserted no later
than READY# asserted

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements results in incorrect operation.

Bus Operation and Functional Timing

3-42

Figure 3–21. TI486SXLC Requesting Hold From Active Pipelined Bus

CLK2

A23–A1, BHE#,
BLE#, D/C#,
M/IO#, W/R#

NA#

D15–D0

T1P T2I T2I Th Th

Cycle 1
Pipelined

(Write)

Valid 2

In 2

Hold Acknowledge

Valid 1

ADS#

LOCK#

T1

Cycle 2
Nonpipelined

(Read)

T2

READY#

Valid 2

HOLD
(See Note)

HLDA

(Floating)

(Floating)

HOLD asserted in same bus
state as NA# asserted.

(Negated, or last locked cycle)

Out 1Out (Floating)

(Floating)

Valid 1

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

3.4.9 Coprocessor Interface

The data-bus, address-bus, and bus-cycle-definition signals, and the copro-
cessor interface signals (PEREQ, BUSY#, and ERROR#), control commu-
nication between the TI486SXLC microprocessor and a coprocessor. The mi-
croprocessor decodes coprocessor or ESC opcodes and transfers the opcode
and operands to the coprocessor via I/O port accesses. Address 80 00F8h
functions as the control-port address, and 80 00FCh and 80 00FEh are used
for operand transfers.

 Bus Operation and Functional Timing

3-43 TI486SXLC Microprocessor Bus Interface

Coprocessor cycles can be read or write and can be nonpipelined or pipelined.
Coprocessor cycles must be terminated by READY# and, as with any other
bus cycle, can be terminated as early as the second bus state of the cycle.

BUSY#, ERROR#, and PEREQ are asynchronous level-sensitive inputs that
synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (��� and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

3.4.10 SMM Interface

System management mode (SMM) uses two TI486SXLC microprocessor
pins, SMI# and SMADS#. The bidirectional SMI# pin is a nonmaskable inter-
rupt that is a higher priority than the NMI input. SMI# must be active for at least
four CLK2 periods to be recognized by the microprocessor. Once the micro-
processor recognizes the active SMI# input, the CPU drives the SMI# pin low
for the duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

3.4.10.1 SMI Handshake

The functional timing for the SMI# interrupt is shown in Figure 3–22. Five sig-
nificant events take place during an SMI# handshake:

1) The SMI# input pin is driven active (low) by the system logic.
2) The CPU samples SMI# active on the rising edge of CLK2 phase one (���.
3) Four CLK2 edges after sampling the SMI# active, the CPU switches the

SMI# pin to an output and drives SMI# low.
4) Following execution of the RSM instruction, the CPU drives the SMI# pin

high for two CLK2 edges indicating completion of the SMI service routine.
5) The CPU stops driving the SMI# pin high and switches the SMI# pin to an

input in preparation for the next SMI interrupt. The system logic is respon-
sible for maintaining the SMI# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 3–22. TI486SXLC SMI# Timing

CLK2

�2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1

SMI#

1 2 3 4 5

Indicates that TI486SXLC drives the SMI# pin.

3.4.10.2 I/O Trapping

The TI486SXLC series provides I/O trapping to facilitate power management
of I/O peripherals. When an I/O bus cycle is issued, the I/O address is driven

Bus Operation and Functional Timing

3-44

onto the address bus and can be decoded by external logic. If a trap to the SMI
handler is required, the SMI# input should be activated at least three CLK2
edges before returning the READY# input for the I/O cycle. The timing for
creating an I/O trap via the SMI# input is shown in Figure 3–23. The micropro-
cessor immediately traps to the SMI interrupt handler following execution of
the I/O instruction. No other instructions are executed between completing the
I/O instruction and entering the SMI service routine. The I/O trap mechanism
is not active during coprocessor accesses.

Figure 3–23. TI486SXLC I/O Trap Timing

CLK2

Address,
Byte Enables

ADS#

T2T1 T2 T2

Valid

READY#

SMI#

I/O CYCLE
(Read or Write)

3 CLK2s

3.4.11 Power Management
The power-management features in the TI486SXL(C) family of microproces-
sors allow a dramatic reduction in the current required when the microproces-
sor is in suspend mode (typically less than three percent of the operating cur-
rent). Suspend mode is entered either by a hardware- or software-initiated
action.

Using the hardware to initiate suspend mode involves a two-pin handshake
using the SUSP# and SUSPA# signals. Using the software involves initiating
the suspend mode through execution of the HALT instruction. Additional pow-
er management can be achieved by stopping and restarting the input clock.
This technique is available because the TI486SXLC series microprocessors
are static devices, meaning that the clock can be stopped and restarted with-
out loss of any internal CPU data. See subsection 3.4.11.3, Stopping the Input
Clock, on page 3-47.

3.4.11.1 SUSP#-Initiated Suspend Mode

The TI486SXLC series microprocessor enters suspend mode when the
SUSP# input is asserted and execution of the current instruction, any pending

 Bus Operation and Functional Timing

3-45 TI486SXLC Microprocessor Bus Interface

decoded instructions, and associated bus cycles are completed. The micro-
processor also waits for the coprocessor to indicate a not-busy status
(BUSY#=1) before entering suspend mode. The SUSPA# output is then as-
serted. The microprocessor responds to SUSP# and asserts SUSPA# only if
the SUSP bit is set in the CCR0 Configuration register.

Figure 3–24 illustrates the microprocessor functional timing for SUSP#-initi-
ated suspend mode. SUSP# is sampled on the phase two (��� CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par-
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2 periods. As a maximum, the microprocessor can execute up to
two instructions and associated bus cycles before asserting SUSPA#. The
time required for the microprocessor to deactivate SUSPA# once SUSP# has
been sampled inactive is four CLK2 periods.

Figure 3–24. TI486SXLC SUSP#-Initiated Suspend Mode

2 CLK2s
Min

CLK2

φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

SUSP#

BUSY#

SUSPA#

4 CLK2s

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor may or may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces-
sor recognizes and acknowledges the HOLD input. The microprocessor
stores the occurrence of FLUSH#, NMI, and INTR (if enabled) for execution
once suspend mode is exited.

Bus Operation and Functional Timing

3-46

3.4.11.2 HALT-Initiated Suspend Mode

The TI486SXLC series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2 periods following a READY# sampled active for the HALT bus cycle
as shown in Figure 3–25. Suspend mode is then exited upon recognition of an
NMI or an unmasked INTR. SUSPA# is deactivated 12 CLK2 periods after
sampling an active NMI or unmasked INTR. If the microprocessor is in a HALT-
initiated suspend mode and the CLK2 input is not stopped, the processor rec-
ognizes and acknowledges the HOLD input. The microprocessor stores the
occurrence of FLUSH# for execution once suspend mode is exited.

Figure 3–25. TI486SXLC HALT-Initiated Suspend Mode

17 CLK2s Max

CLK2

ADS#

M/IO#, W/R#,
A1, BHE#

READY#

T1 T2 Ti Ti Ti Ti

Nonpipelined HALT

D/C#, A23–A2,
BLE#

NMI

SUSPA#

12
CLK2s

 Bus Operation and Functional Timing

3-47 TI486SXLC Microprocessor Bus Interface

3.4.11.3 Stopping the Input Clock

Because the TI486SXLC series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU
data. This assumes that the TI486SXLC2 microprocessor is in nonclock-
doubled mode when the input clock is stopped. (Refer to subsection 3.2.1,
Clock Doubling Using Software Control, page 3-13.) CLK2 can be stopped in
either phase one (��� or phase two (��� of the clock and in either a logic-high
or logic-low state. However, entering suspend mode before stopping CLK2
dramatically reduces the CPU current requirements. Therefore, the recom-
mended sequence for stopping CLK2 in the TI486SXLC2 series microproces-
sor from clock-doubled mode is:

1) Bring the microprocessor out of clock-doubled mode
2) Initiate suspend mode
3) Wait for the microprocessor to assert SUSPA#
4) Stop the input clock

Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for the microprocessor to assert SUSPA#
3) Stop the input clock

The TI486SXLC series microprocessor remains suspended until CLK2 is re-
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, INTR, and RESET inputs.
Figure 3–26 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is negated.

Figure 3–26. TI486SXLC Stopping CLK2 During Suspend Mode

φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

CLK2

SUSP#

BUSY#

SUSPA#

10 CLK2s Min

Bus Operation and Functional Timing

3-48

3.4.12 Float

Activating the FLT# input floats all TI486SXLC bidirectional and output signals.
Asserting FLT# electrically isolates the microprocessor from the surrounding
circuitry. This feature is useful in board-level test environments. Since the mi-
croprocessor is packaged in a surface-mount QFP, it is not usually socketed
and cannot be removed from the motherboard when in-circuit emulation (ICE)
is needed. Float capability allows connection of an emulator by clamping the
emulator probe onto the microprocessor QFP without removing it from the cir-
cuit board.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out-
puts of the microprocessor as shown in Figure 3–27. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is negated.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microprocessor
is not guaranteed to enter float in a valid state. After deactivating FLT#, the
CPU is not guaranteed to exit float in a valid state. The microprocessor RESET
input must be asserted before exiting float to ensure that the microprocessor
is reset and that it returns in a valid state.

Figure 3–27. TI486SXLC Entering and Exiting Float

CLK2

FLT#

CONTROL

DATA

ADDRESS

RESET

Valid

Valid

Valid

4-1 Chapter Title—Attribute Reference

TI486SXL Microprocessor Bus Interface

This chapter summarizes the TI486SXL series processor signals and
describes all inputs/outputs, functional timing and bus operations (including
pipelined and nonpipelined addressing), various interfaces, and power man-
agement.

Topic Page

4.1 Input/Output Signals 4-2.

4.2 Bus-Cycle Definition 4-15.

4.3 Reset Timing and Internal Clock Synchronization 4-19.

4.4 Bus Operation and Functional Timing 4-21.

Chapter 4

Input/Output Signals

4-2

4.1 Input/Output Signals

This section describes the TI486SXL series microprocessors’ input and output
signals. The discussion of these signals is arranged by the functional groups
shown in Figure 4–1. Table 4–1 gives a brief description of each signal.

Figure 4–1. TI486SXL Functional Signal Groupings

CLK2 TI486SXL

RESET

A31–A2

BE3#–BE0#

D31–D0

W/R#

D/C#

M/IO#

LOCK#

NA#

READY#

ADS#

INTR

NMI

KEN#

FLUSH#

A20M#

PEREQ

BUSY#

ERROR#

HOLD

HLDA

SUSP#

SUSPA#

2x Clock

Reset

Address
Bus

Data
Bus

Bus-Cycle
Definition

Bus-Cycle
Control

Interrupt
Control

Internal
Cache
Interface

Address
Bit-20 Mask

Coprocessor
Interface

Bus
Arbitration

Power
Management

SMI#

SMADS#

BS16#

† MEMW#

† FLT# Float Control

† 144-pin QFP and 168-pin PGA pinout only

‡W/R#

‡ 144-pin QFP pinout only

 Input/Output Signals

4-3 TI486SXL Microprocessor Bus Interface

Table 4–1.TI486SXL Signal Summary

Signal Signal Name Signal Group

ADS# Address strobe Bus-cycle control

A20M# Address bit-20 mask None

A31–A2 Address bus lines Address bus

BE3#–BE0# Byte enables Address bus

BS16# Bus size 16 Bus-cycle control

BUSY# Processor extension busy Coprocessor interface

CLK2 2X clock input None

D31–D0 Data bus None

D/C# Data/control Bus-cycle definition

ERROR# Processor extension error Coprocessor interface

FLT#† Float None

FLUSH# Cache flush Internal cache interface

HLDA Hold acknowledge Bus arbitration

HOLD Hold request Bus arbitration

INTR Maskable interrupt request Interrupt control

KEN# Cache enable Internal Cache interface

LOCK# Bus lock Bus-cycle definition

MEMW#† ISA memory write Internal cache interface

M/IO# Memory/input-output Bus-cycle definition

NA# Next address request Bus-cycle control

NMI Nonmaskable interrupt request Interrupt control

PEREQ Processor extension request Coprocessor interface

READY# Bus ready Bus-cycle control

RESET Reset None

SMADS# SMM address strobe Bus-cycle control

SMI# System management interrupt Interrupt control

SUSP# Suspend request Power management

SUSPA# Suspend acknowledge Power management

W/R#‡ Write/read Bus-cycle definition

† 144-pin QFP and 168-pin PGA pinout only.
‡ 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

The following sections describe the signals and their functional characteris-
tics. Additional signal information can be found in Chapter 5, Electrical Specifi-
cations. Chapter 5 documents the dc and ac characteristics for the signals in-
cluding voltage levels, propagation delays, setup times, and hold times. Speci-
fied setup and hold times must be met for proper operation of the TI486SXL
series microprocessors.

Input/Output Signals

4-4

4.1.1 TI486SXL Terminal Function Descriptions

Table 4–2 identifies and describes each of the TI486SXLC package terminals.

Table 4–2.TI486SXL Terminal Functions

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31

C4
A3
B3
B2
C3
C2
C1
D3
D2
D1
E3
E2
E1
F1
G1
H1
H2
H3
J1
K1
K2
L1
L2
K3
M1
N1
L3
M2
P1
N2

73
74
75
76
77
78
86
87
88
89
90
93
94
95
104
106
107
108
109
110
113
114
61
60
59
58
84
83
82
81

Q14
R15
S16
Q12
S15
Q13
R13
Q11
S13
R12
S7

Q10
S5
R7
Q9
Q3
R5
Q4
Q8
Q5
Q7
S3
Q6
R2
S2
S1
R1
P2
P3
Q1

Address Bus (active high). The address bus (A31–A2) signals are three-
state outputs that provide addresses for physical memory and I/O ports. All
address lines can be used to address physical memory, which allows a
4G-byte address space (0000 0000h to FFFF FFFFh). During I/O port
accesses, A31–A16 are driven low (except for coprocessor accesses). This
permits a 64-Kbyte I/O address space (0000 0000h to 0000 FFFFh).

During all coprocessor I/O accesses, address lines A30–A16 are driven low
and A31 is driven high. This allows A31 to be used by external logic to
generate a coprocessor select signal. Coprocessor command transfers
occur with address 8000 00F8h. Coprocessor data transfers occur with
address 8000 00FCh. A31–A2 float while the CPU is in a hold-acknowledge
or float state.

ADS# E14 26 S17 Address Strobe (active low). This 3-state output indicates that the TI486SXL
microprocessor has driven a valid address (A31–A2 and BE3#–BE0#) and
bus-cycle definition (M/IO#, D/C#, and W/R#) on the appropriate output pins.
During nonpipelined bus cycles, ADS# is active for the first clock of the bus
cycle. During address pipelining, ADS# is asserted during the previous bus
cycle and remains asserted until READY# is returned for that cycle. ADS#
floats while the microprocessor is in a hold-acknowledge or float state.

A20M# F13 43 D15 Address Bit-20 Mask (active low). This input causes the microprocessor to
mask (force low) physical address bit 20 when driving the external address
bus or performing an internal cache access. When the processor is in real
mode, asserting A20M# emulates the 1M-byte address wraparound that
occurs on the 8086. The A20 signal is never masked when paging is enabled
regardless of the state of the A20M# input. The A20M# input is ignored
following reset and can be enabled using the A20M bit in the CCR0
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

 Input/Output Signals

4-5 TI486SXL Microprocessor Bus Interface

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

BE3#
BE2#
BE1#
BE0#

A13
B13
C13
E12

32
31
28
27

F17
J15
J16
K15

Byte Enables BE3#–BE0# (active low). These 3-state outputs determine
which bytes within the 32-bit data bus are transferred during a memory or I/O
access (Table 4–3). During a memory write, one or both of the upper bytes
(D and C) of the data bus can be duplicated in the lower bytes (B and A) of
the bus. This duplication is dependent on BE3#–BE0# as listed in Table 4–4.

Generating A1–A0 using BE3#–BE0# is determined with the following
equations:

A0 = (BE0# • BE2#) + (BE0# • BE1#)
A1 = BE0# • BE1#

The relationship between A1–A0 and BE3#–BE0# is shown in Table 4–5.

BS16# C14 115 C17 Bus Size 16 (active low). This input allows connection of the 32-bit
microprocessor data bus to an external 16-bit data bus. When this input is
activated, the microprocessor performs multiple bus cycles to couple read
and write accesses from devices that cannot provide (accept) 32 bits of data
in a single cycle. During bus cycles with BS16# active, data is transferred
using data bus signals D15–D0 only.

BUSY# B9 48 S4 Coprocessor Busy (active low). This input indicates to the TI486SXL that the
coprocessor is currently executing an instruction and is unable to accept
another opcode. When the microprocessor encounters a WAIT instruction or
any coprocessor instruction that operates on the coprocessor stack (i.e.,
load, pop, or arithmetic operation), BUSY# is sampled. BUSY# is continually
sampled and must be recognized as inactive before the CPU supplies the
coprocessor with another instruction. However, coprocessor instructions
FNINIT, FNCLEX are allowed to execute even if BUSY# is active because
they are used for coprocessor initialization and exception clearing.

BUSY# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

CLK2 F12 25 C3 2X Clock Input (active high). This input signal is the basic timing reference
for TI486SXL series microprocessors. The CLK2 input is internally divided by
two to generate the internal processor clock. The external CLK2 is
synchronized to a known phase of the internal processor clock by the falling
edge of the RESET signal. External timing parameters are defined with
respect to the rising edge of CLK2.

For the TI486SXL2 microprocessors, the CLK2 input is used internally to
generate the internal core processor clock and the internal bus interface
clock. The external CLK2 is synchronized to a known phase of the internal
processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

Input/Output Signals

4-6

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

D/C# A11 35 M15 Data/Control. This 3-state, bus-cycle-definition signal is low during control
cycles and is high during data cycles. Control cycles are issued during
functions such as a halt instruction, interrupt servicing, and code fetching.
Data bus cycles include data access from either memory or I/O.

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

H12
H13
H14
J14
K14
K13
L14
K12
L13
N14
M12
N13
N12
P13
P12
M11
N11
N10
P11
P10
M9
N9
P9
N8
P7
N6
P5
N5
M6
P4
P3
M5

1
144
143
137
136
135
134
133
131
130
129
128
127
118
117
116
124
123
122
121
102
101
100
99
3
4

142
141
12
13
14
15

P1
N2
N1
H2
M3
J2
L2
L3
F2
D1
E3
C1
G3
D2
K3
F3
J3
D3
C2
B1
A1
B2
A2
A4
A6
B6
C7
C6
C8
A8
C9
B8

Data Bus (active high). The data bus signals (D31–D0) are 3-state
bidirectional signals that provide the data path between the microprocessor,
the external memory, and the I/O devices. The data-bus inputs receive data
during memory read, I/O read, and interrupt-acknowledge cycles and
delivers output data during memory and I/O write cycles. Data read
operations require that specified data setup and hold times be met for correct
operation. The data bus signals float while the CPU is in a hold-acknowledge
or float state.

ERROR# A8 49 A12 Coprocessor Error (active low). This input indicates that the coprocessor
generated an error during execution of an instruction. ERROR# is sampled
by the microprocessor whenever a coprocessor instruction is executed. If
ERROR# is sampled active, the processor generates exception 16, which is
then serviced by the exception handling software.

The following coprocessor instructions, which involve clear coprocessor
error flags and save the coprocessor state, do not generate an exception 16
even if ERROR# is active: FNINIT, FNCLEX, FNSTSW, FNSTCW,
FNSTENV, FNSAVE.

ERROR# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

 Input/Output Signals

4-7 TI486SXL Microprocessor Bus Interface

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

FLT# — 40 C11 Float (active low). This input forces all bidirectional and output signals to a
3-state condition. Floating the signals allows the microprocessor signals to
be driven externally without physically removing the device from the circuit.
The microprocessor must be reset following assertion or negation of FLT#.
This signal may be used with an upgrade socket.

FLT# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

FLUSH# E13 42 C15 Cache Flush (active low). This input invalidates (flushes) the entire cache.
Use of FLUSH# to maintain cache coherency is optional. The cache may also
be invalidated during each hold-acknowledge cycle by setting the BARB bit
in the CCR0 Configuration register. The FLUSH# input is ignored following
reset and can be enabled using the FLUSH bit in the CCR0 Configuration
register.

FLUSH# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

HOLD D14 7 E15 Hold Request (active high). This input indicates that another bus master
requests control of the local bus. The bus arbitration (HOLD and HLDA)
signals allow the microprocessor to relinquish control of its local bus when
requested by another bus master device. Once the processor has
relinquished its 3-stated bus, the bus master device can then drive the local
bus signals.

After recognizing the HOLD request and completing the current bus cycle or
sequence of locked bus cycles, the microprocessor responds by floating the
local bus and asserting the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus
master until HOLD becomes inactive. When the microprocessor recognizes
that HOLD is inactive, it simultaneously drives the local bus and drives HLDA
inactive. External pullup resistors may be required on some of the
microprocessor 3-state outputs to ensure that they remain inactive while in
a hold-acknowledge state (or float state for the 144-pin QFP and 168-pin
CPUs).

The HOLD input is not recognized while RESET is active. If HOLD is asserted
while RESET is active, RESET has priority, and the microprocessor places
the bus into an idle state instead of a hold-acknowledge state. The HOLD
input is also recognized during suspend mode provided that the CLK2 input
has not been stopped. HOLD is level-sensitive and must meet specified
setup and hold times for correct operation.

Input/Output Signals

4-8

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

HLDA M14 6 P15 Hold Acknowledge (active high). This output indicates that the
microprocessor is in a hold-acknowledge state and has relinquished control
of its local bus. While in the hold-acknowledge state, the microprocessor
drives HLDA active and continues to drive SUSPA#, if enabled. The other
microprocessor outputs are in the high-impedance state, allowing the
requesting bus master to drive these signals. If the on-chip cache can satisfy
bus requests, the microprocessor continues to operate during
hold-acknowledge states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven
inactive. The microprocessor stores an NMI rising edge during a
hold-acknowledge state for processing after HOLD is inactive. The FLUSH#
input is also recognized during a hold-acknowledge state. If SUSP# is
asserted during a hold-acknowledge state, the microprocessor may or may
not enter suspend mode depending on the state of the internal execution
pipeline. Table 4–6 summarizes the state of the microprocessor signals
during hold acknowledge.

INTR B7 53 A16 Maskable Interrupt Request. This level-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution
of an interrupt service routine. The INTR input can be masked (ignored)
through the Flag Word register IF bit. When unmasked, the microprocessor
responds to the INTR input by issuing two locked interrupt-acknowledge
cycles. To assure recognition of the INTR request, INTR must remain active
until the start of the first interrupt-acknowledge cycle.

KEN# B12 41 F15 Cache Enable (active low). This input indicates that the data being returned
during the current cycle is cacheable. When KEN# is active and the
microprocessor is performing a cacheable code fetch or memory data read
cycle, the cycle is transformed into a cache fill. Use of the KEN# input to
control cacheability is optional. The noncacheable region registers can also
be used to control cacheability. Memory addresses specified by the
noncacheable region registers cannot be cached regardless of the state of
KEN#. I/O accesses, locked reads, SMM address space accesses, and
interrupt-acknowledge cycles are never cached.

During cached code fetches with BS16# asserted, two contiguous read
cycles are performed to completely fill the 4-byte cache line. KEN# must be
asserted during both read cycles to cause a cache line fill. If BS16# is inactive,
only one bus cycle is required and KEN# must be asserted for the data to be
cached. During memory data reads, the microprocessor performs as many
read cycles as necessary to supply the required data to complete the current
operation. Valid bits are maintained for each byte in the cache line and for
each block of four lines, thus allowing data operands of less than four bytes
to reside in the cache.

If two read cycles are performed with the same address (A31–A2), KEN#
must be asserted during both cycles to cache the data in these cycles. If the
data is cached, the microprocessor ignores the state of the byte enables
(BE3# – BE0#), and four bytes of data (2 bytes if BS16# is asserted) are
cached. The KEN# input is ignored following reset and can be enabled using
the KEN bit in the CCR0 Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

 Input/Output Signals

4-9 TI486SXL Microprocessor Bus Interface

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

LOCK# C10 38 N15 LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to
deny access to the CPU bus by other bus masters. The LOCK# signal may
be explicitly activated during bus operations by including the LOCK prefix
on certain instructions. LOCK# is always asserted during descriptor and
page table updates, interrupt-acknowledge sequences, and when
executing the XCHG instruction. The microprocessor does not enter the
hold-acknowledge state in response to HOLD while the LOCK# output is
active.

MEMW# — 66 B16 Memory Write (active low). This input is used in the cache interface logic,
which flushes the cache in systems that hold the CPU during DMA and
MASTER cycles.

M/IO# A12 34 N16 Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read
and write cycles and is high during memory cycles.

NA# D13 9 A13 Next Address Request (active low). This input requests address pipelining
by the system hardware. When asserted, the system indicates that it is
prepared to accept new bus-cycle definition and address signals (M/IO#,
D/C#, W/R#, A31–A2, BS16#, and BE3#–BE0#) from the microprocessor
even if the current bus cycle has not been terminated by assertion of
READY#. If the microprocessor has an internal bus request pending and the
NA# input is sampled active, the next bus-cycle definition and address
signals are driven onto the bus.

NC† B6 39
65
71
138

A3
A5
A14
A17
B14
B15
B17
C10
C12
C14
D16
D17
F1

G15
H3
H15
J17
L15
N3

Q15
Q16
Q17
R16

Make no external connection.

† Connecting or terminating (high or low) any NC terminal(s) may cause the microprocessor to produce unpredictable results or
not operate.

Input/Output Signals

4-10

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

NMI B8 51 A15 Nonmaskable Interrupt Request. This rising-edge-sensitive input causes
the processor to suspend execution of the current instruction stream and
begin execution of an NMI interrupt service routine. The NMI interrupt service
request cannot be masked by software. Asserting NMI causes an interrupt
that internally supplies interrupt vector 2h to the CPU core. External
interrupt-acknowledge cycles are not necessary since the NMI interrupt
vector is supplied internally. Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two (�2)
clock period. To assure recognition, NMI must be inactive for at least eight
CLK2 periods and then be active for at least eight CLK2 periods. Additionally,
specified setup and hold times must be met to assure recognition at a
particular clock edge.

PEREQ C8 50 R17 Coprocessor Request (active high). This input indicates that the
coprocessor is ready to transfer data to or from the CPU. The coprocessor
can assert PEREQ in the process of executing a coprocessor instruction. The
microprocessor internally stores the current coprocessor opcode and
transfers the correct data to support coprocessor operations. The
microprocessor employs PEREQ to synchronize the transfer of required
operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal
from floating active when left unconnected.

READY# G13 10 F16 Ready (active low). This input is generated by the system hardware to
indicate that the current bus cycle can be terminated. During a read cycle,
assertion of READY# indicates that the system hardware has presented valid
data to the CPU. When READY# is sampled active, the microprocessor
latches the input data and terminates the cycle. During a write cycle,
READY# assertion indicates that the system hardware has accepted the
microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

Reserved — — A10

RESET C9 45 C16 Reset (active high). When asserted, RESET suspends all operations in
progress and places the microprocessor into a reset state. RESET is a
level-sensitive synchronous input and must meet specified setup and hold
times to be properly recognized by the microprocessor. The microprocessor
begins executing instructions at physical address location FF FFF0h
approximately 400 CLK2 edges after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled
mode (for the TI486SXL2) and all other input pins are ignored. The remaining
signals are initialized to their reset state during the internal processor reset
sequence. The reset signal states for the microprocessor are shown in
Table 4–6.

SMADS# C6 29 B13 SMM Address Strobe (active low). SMADS#, a 3-state output, is asserted
instead of the ADS# during SMM bus cycles and indicates that SMM memory
is being accessed. SMADS# floats while the CPU is in a hold-acknowledge
or float state. The SMADS# output is disabled (floated) following reset and
can be enabled using the SMI bit in the CCR1 Configuration register.

 Input/Output Signals

4-11 TI486SXL Microprocessor Bus Interface

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

SMI# C7 67 B10 System Management Interrupt (active low). This 3-state, bidirectional,
level-sensitive, input/output signal is an interrupt with higher priority than the
NMI interrupt. SMI# must be active for at least four CLK2 clock periods to
be recognized by the microprocessor. After the SMI is acknowledged, the
SMI# pin is driven low by the microprocessor for the duration of the SMI
service routine. The SMI# input is ignored following reset and can be
enabled using the SMI bit in the CCR1 Configuration register.

SMI# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSP# A4 63 C13 Suspend Request (active low). This input requests the microprocessor to
enter suspend mode. After recognizing SUSP# as active, the processor
completes execution of the current instruction, any pending decoded
instructions, and associated bus cycles. In addition, the microprocessor
waits for the coprocessor to indicate a not-busy status (BUSY# = 1) before
entering suspend mode and asserting suspend acknowledgement
(SUSPA#).

SUSP# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSPA# B4 64 B12 Suspend Acknowledge (active low). This output indicates that the
microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction.

VCC A1
A5
A7
A10
A14
C5
C12
D12
G2
G3
G12
G14
L12
M3
M7
M13
N4
N7
P2
P8

5
11
16
17
30
44
52
55
56
62
68
79
85
91
98
103
105
119
125
132
139

B7
B9
B11
C4
C5
E2
E16
G2
G16
H16
K2
K16
L16
M2
M16
P16
R3
R6
R8
R9
R10
R11
R14

Power Supply. All pins must be connected and used.

VCC5 — 47 J1 5-V Power Supply

Input/Output Signals

4-12

Table 4–2.TI486SXL Terminal Functions (Continued)

Terminal

D i iN

No.

D i iName
132-
pin

144-
pin

168-
pin Description

VSS A2
A6
A9
B1
B5
B11
B14
C11
F2
F3
F14
J2
J3
J12
J13
M4
M8
M10
N3
P6
P14

2
8
18
19
20
21
22
23
24
33
48
54
57
69
70
72
80
92
96
97
111

A7
A9
A11
B3
B4
B5
E1
E17
G1
G17
H1
H17
K1
K17
L1
L17
M1
M17
P17
Q2
R4
S6
S8
S9
S10
S11
S12
S14

Ground Pins. All pins must be connected and used.

W/R# B10 36
37

N17 Write/Read. This 3-state, bus-cycle-definition signal is low during read
cycles (data is read from memory or I/O) and is high during write bus cycles
(data is written to memory or I/O).

4.1.2 Byte Enable Line Definitions

These 3-state outputs determine which bytes within the 32-bit data bus are
transferred during a memory or I/O access. See Table 4–3.

Table 4–3.Byte Enable Line Definitions

Byte Enable Line Byte Transferred

BE0# D7–D0

BE1# D15–D8

BE2# D23–D16

BE3# D31–D24

 Input/Output Signals

4-13 TI486SXL Microprocessor Bus Interface

4.1.3 Write Duplication as a Function of BE3# – BE0#

During a memory write, one or both of the upper bytes (D and C) of the data
bus can be duplicated in the lower bytes (B and A) of the bus. This duplication
is dependent on BE3#–BE0# as listed in Table 4–4.

Table 4–4.Write Duplication as a Function of BE3#–BE0#

BE3#–BE0# D31–D24 D23–D16 D15–D8 D7–D0 Duplicated Data

0000 D C B A No

0001 D C B X No

0011 D C D C Yes

0111 D X D X Yes

1000 X C B A No

1001 X C B X No

1011 X C X C Yes

1100 X X B A No

1101 X X B X No

1110 X X X A No

Note: BE3# – BE0# combinations not listed do not occur during TI486SXL bus cycles.
A = logical write data D7 – D0
B = logical write data D15 – D8
C = logical write data D23 – D16
D = logical write data D31 – D24
X = Don’t care

4.1.4 Generating A1 – A0 Using BE3# – BE0#

Generating A1–A0 using BE3#–BE0# is determined with the following equa-
tions:

A0 = (BE0# • BE2#) + (BE0# • BE1#)

A1 = BE0# • BE1#

The relationship between A1–A0 and BE3#–BE0# is shown in Table 4–5.

Table 4–5.Generating A1–A0 Using BE3#–BE0#

A31–A2 A1 A0 BE3# BE2# BE1# BE0#

–––––– 0 0 X X X 0

–––––– 0 1 X X 0 1

–––––– 1 0 X 0 1 1

–––––– 1 1 0 1 1 1

Note: X = Don’t care

4.1.5 Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi-
croprocessor aborts any current bus cycle and establishes real-mode

Input/Output Signals

4-14

bus-cycle definition with active buses. See Table 3–3 and Section 4.3, Reset
Timing and Internal Clock Synchronization, page 4-19.

The microprocessor enters the hold-acknowledge state in response to asser-
tion of the HOLD input. During the hold-acknowledge state, the microproces-
sor floats all output and bidirectional signals, except for HLDA and SUSPA#.
In the hold-acknowledge state, all inputs except HOLD, FLUSH#, FLT#,
SUSP# and RESET are ignored. See Table 3–3 and subsection 4.4.9, Hold
Acknowledge State, page 4-45. The hold-acknowledge state lets an external
device acquire the system bus.

Table 4–6.TI486SXL Signal States During RESET and Hold Acknowledge

Signal Name
Signal State
During Reset

Signal State During
Hold Acknowledge

A20M# Ignored Input recognized

A31–A2 1 Float

ADS# 1 Float

BE3#–BE0# 0 Float

BS16# Ignored Ignored

BUSY# Initiates self test Ignored

D31–D0 Float Float

D/C# 1 Float

ERROR# Ignored Ignored

FLT# † Input recognized Input recognized

FLUSH# Ignored Input recognized

HLDA 0 1

HOLD Ignored Input recognized

INTR Ignored Input recognized

KEN# Ignored Ignored

LOCK# 1 Float

MEMW# † Ignored Input recognized

M/IO# 0 Float

NA# Ignored Ignored

NMI Ignored Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# Float Float

SMI# Ignored Input recognized

SUSP# Ignored Input recognized

SUSPA# Float Driven

W/R#‡ 0 Float

† 144-pin QFP and 168-pin PGA only
‡ 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

 Bus-Cycle Definition

4-15 TI486SXL Microprocessor Bus Interface

4.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, and LOCK#) that define the type of bus-cycle operation. Table 4–7 de-
fines the bus cycle for the possible states of these signals. M/IO#, D/C#, and
W/R# are the primary bus-cycle-definition signals and are driven valid as
ADS# (Address Strobe) becomes active. During nonpipelined cycles, the
LOCK# output is driven valid along with M/IO#, D/C#, and W/R#. During pipe-
lined addressing, LOCK# is driven at the beginning of the bus cycle, which is
after ADS# becomes active for that cycle. The bus-cycle-definition signals are
active low and float while the microprocessor is in a hold-acknowledge or float
state.

Table 4–7.TI486SXL Bus-Cycle Types

M/IO# D/C# W/R# LOCK# Bus-Cycle Type

0 0 0 0 Interrupt acknowledge

0 0 0 1 —

0 0 1 X —

0 1 X 0 —

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 0 X 0 —

1 0 0 1 Memory code read

1 0 1 1 Halt: A31–A2 = 0h and BE3#–BE0# = 1011
Shutdown: A31–A2 = 0h and BE3#–BE0# = 1110

1 1 0 0 Locked memory data read

1 1 0 1 Memory data read

1 1 1 0 Locked memory data write

1 1 1 1 Memory data write

X = don’t care
— = does not occur

4.2.1 Clock Doubling Using Software Control

The clock-doubled feature of the TI486SXL2 is enabled/disabled using
Configuration Control register 0 (CCR0) bit 6. The following software code sets
and resets CKD:

Set CKD programming sequence:

mov al, 0C0h ;select CCR0
out 22h, al
in al, 23h ;read CCR0
mov ah, al ;save in AH
or ah, 40h ;set AH<6>
mov al, 0C0h ;select CCR0
out 22h, al
mov al, ah
out 23h, al ;write CCR0

Bus-Cycle Definition

4-16

Reset CKD programming sequence:

mov al, 0C0h ;select CCR0
out 22h, al
in al, 23h ;read CCR0
mov ah, al ;save in AH
and ah, 0BFh ;reset AH<6>
mov al, 0C0h ;select CCR0
out 22h, al
mov al, ah
out 23h, al ;write CCR0

4.2.1.1 Entering Clock-Doubled Mode

The TI486SXL2 microprocessors power up in the nonclock-doubled mode. To
enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5–5 and Table 5–6) and issue
the set-CKD-programming sequence. Approximately 20 �s after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

4.2.1.2 Clock-Scaling Sequence

To scale or stop CLK2 input when the processor is in clock-doubled mode, is-
sue the reset-CKD-programming sequence. The final OUT instruction exiting
the processor pipeline resets the CKD bit and puts the microprocessor into
nonclock-doubled mode. This must occur before scaling or stopping the CLK2
input to prevent a synchronization error. This may be ensured by issuing a
JUMP instruction, such as JMP $+2, before scaling CLK2.

To return the processor to clock-doubled mode, set CLK2 to the desired fre-
quency inside the PLL lock range and issue the set-CKD-programming se-
quence. Approximately 20 �s after the final OUT instruction has exited the pro-
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

4.2.1.3 Suspend Mode

Suspend mode can be initiated when the TI486SXL2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus-
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in nonclock-
doubled mode, refer to subsection 4.2.2, Power Management.

To get the lowest possible power state, bring the microprocessor out of clock-
doubled mode, enter the suspend mode (using software or hardware), and
stop the CLK2 input.

 Bus-Cycle Definition

4-17 TI486SXL Microprocessor Bus Interface

4.2.2 Power Management

The power-management signals allow the TI486SXL series microprocessors
to enter suspend mode. Suspend-mode circuitry allows the microprocessor to
consume minimal power while maintaining the entire internal CPU state.

4.2.2.1 Suspend Request (SUSP#)

Suspend Request (SUSP#) is an active-low input that requests the TI486SXL
series microprocessors to enter suspend mode. For TI486SXL2 microproces-
sors, follow the clock-scaling sequence procedure in subsection 4.2.1 to enter
nonclock-doubled mode before scaling or stopping the CLK2 input.

After recognizing SUSP# is active, the processor completes execution of the
current instruction, any pending decoded instructions, and associated bus
cycles. In addition, the microprocessor waits for the coprocessor to indicate
a not-busy condition (BUSY#=1) before entering suspend mode and asserting
suspend acknowledge (SUSPA#). During suspend mode, internal clocks are
stopped and only the logic for monitoring RESET, HOLD, and FLUSH# re-
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur-
rent required by the microprocessor.

To resume operation, restart the CLK2 input (if stopped) and negate the
SUSP# input. The TI486SXL2 processors can enter clock-doubled mode
(subsection 4.2.1.1, Entering Clock-Doubled Mode) once the CLK2 input
reaches the desired frequency within the PLL lock range. The processor then
resumes instruction fetching and begins execution in the instruction stream at
the point where it stopped.

The SUSP# input is level sensitive and must meet specified setup and hold
times to be recognized at a particular clock edge. The SUSP# input is ignored
following reset and can be enabled using the SUSP bit in the CCR0 Configura-
tion register.

4.2.2.2 Suspend Acknowledge (SUSPA#)

The Suspend Acknowledge (SUSPA#) output indicates that the TI486SXL se-
ries microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 input is switching, the microprocessor continues to recognize RESET,
HOLD, and FLUSH#. In addition, the TI486SXL2 microprocessor may stay in
clock-doubled mode while the CLK2 input is switching. If suspend mode was
entered as the result of a HALT instruction, the microprocessor also continues
to monitor the NMI input, the SMI# input, and the unmasked INTR input. Detec-
tion of SMI#, INTR, or NMI forces the microprocessor to exit suspend mode
and begin execution of the appropriate interrupt service routine. The CLK2 in-
put to the processor can be stopped after SUSPA# has been asserted to re-
duce the power requirement of the microprocessor further. For this case, the
TI486SXL2 microprocessor must be brought out of clock-doubled mode
before stopping the CLK2 input to prevent a synchronization error. The SUS-
PA# output is disabled (floated) following reset and can be enabled using the
SUSP bit in the CCR0 Configuration register.

Bus-Cycle Definition

4-18

Table 4–8 shows the state of the TI486SXL series microprocessor signals
when the device is in suspend mode.

Table 4–8.TI486SXL Signal States During Suspend Mode

Signal Name
Signal State During
Hold Acknowledge

Signal State During Halt-
Initiated Suspend Mode

A20M# Ignored Ignored

A31–A2 1 1

ADS# 1 1

BE3#–BE0# 0 0

BS16# Ignored Ignored

BUSY# Ignored Ignored

D31–D0 Float Float

D/C# 1 1

ERROR# Ignored Ignored

FLT# † Input recognized Input recognized

FLUSH# Input recognized Input recognized

HLDA 0 0

HOLD Input recognized Input recognized

INTR Latched Input recognized

KEN# Ignored Ignored

LOCK# 1 1

MEMW# † Input recognized Input recognized

M/IO# 0 0

NA# Ignored Ignored

NMI Latched Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# 1 1

SMI# Latched Input recognized

SUSP# Input recognized Ignored

SUSPA# 0 0

W/R#‡ 0 0
† 144-pin QFP and 168-pin PGA only
‡ 144-pin QFP has duplicate W/R# inputs on pins 36 and 37

 Reset Timing and Internal Clock Synchronization

4-19 TI486SXL Microprocessor Bus Interface

4.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and interrupts any processor activity
when it is asserted. When RESET is asserted, the microprocessor aborts any
bus cycle. Idle, hold-acknowledge, and suspend states are also discontinued
and the reset state is established. RESET is used when the microprocessor
is powered up to initialize the CPU to a known valid state and to synchronize
the internal CPU clock with external clocks. The TI486SXL2 microprocessors
are initialized to nonclock-doubled mode when RESET goes active.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the microprocessor. If the self-test feature is to be invoked, RESET must
be asserted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2
periods may not have sufficient time to propagate throughout the microproces-
sor and may not be recognized. RESET pulses of less than 80 CLK2 periods
followed by a self-test request may incorrectly report a self-test failure when
none has occurred.

If the RESET falling edge meets specified setup and hold times, the internal
processor clock phase is synchronized as illustrated in Figure 4–2. The
TI486SXL internal processor clock is half the frequency of the CLK2 input and
each CLK2 cycle corresponds to an internal CPU clock phase (φ). Phase two
(�2) of the internal clock is defined as the second rising edge of CLK2 following
the falling edge of RESET. The TI486SXL2 internal core clock is the same fre-
quency as the CLK2 input, and the internal bus interface clock is half the fre-
quency of the CLK2 input. Phase two of the internal clock is defined as the se-
cond rising edge of CLK2 following the falling edge of RESET.

Figure 4–2. TI486SXL Internal Processor Clock Synchronization

CLK2

RESET

INTERNAL
PROCESSOR

CLOCK

φ 2 or φ1 φ 2 or φ1 φ 2 φ 1

Reset Timing and Internal Clock Synchronization

4-20

Following the falling edge of RESET (and after self-test if it was requested),
the microprocessor performs an internal initialization sequence for approxi-
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com-
plete. Even if the self-test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 4–3 illustrates the bus activity and
timing during the microprocessor reset sequence.

Figure 4–3. TI486SXL Bus Activity From RESET Until First Code Fetch

High for No Self-Test (see Note)

Low to Begin Self Test

(Floating)

(Floating)

CLK2

RESET

CLK
(Internal)

BUSY#

ERROR#

BE3#–BE0#,
W/R#,

M/IO#, HLDA

A31–A2
D/C#,

LOCK#

ADS#

A20M#, BS16#,
FLUSH#, KEN#,
NA#, READY#,

SUSP

D31–D0

SUSPA#

Reset
≥ 15 CLK2 periods if not
going to request self-test.
≥ 80 CLK2 periods before
requesting self-test.

Internal
Initialization

If self-test is performed, add
220 + 60* to these numbers

1 2 3 17 18 19 392* 393* 394* 395*

* Approximately

Cycle 1
Nonpipelined

(Read)

T1 T2

φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

Up to 30 CLK2

Up to 30 CLK2

Up to 30 CLK2

Low

High

High

Valid

Valid

Note: BUSY# should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

Upon completion of self-test, the EAX register contains 0000 0000h if the
microprocessor passed its internal self-test with no problems. Any nonzero
value in the EAX register indicates that the microprocessor is faulty.

 Bus Operation and Functional Timing

4-21 TI486SXL Microprocessor Bus Interface

4.4 Bus Operation and Functional Timing

The TI486SXL series microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus config-
urations, where the address and data are presented on the same pins at differ-
ent times.

TI486SXL series microprocessor instructions can act on memory data oper-
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro-
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (D31–D0) is a bidirectional bus that can be con-
figured as either a 16-bit- or 32-bit-wide bus as determined by BS16#. The bus
is 16 bits wide when BS16# is asserted. When 32 bits wide, memory and I/O
spaces are physically addressed as arrays of 32-bit double words. The micro-
processor drives the data bus during write bus cycles. The external system
hardware drives the data bus during read bus cycles.

Every bus cycle begins with assertion of the address strobe (ADS#). ADS# in-
dicates that the microprocessor has issued a new address and new bus-cycle-
definition signals. A bus cycle is defined by four signals: M/IO#, W/R#, D/C#,
and LOCK#. M/IO# defines whether a memory or I/O operation is occurring,
W/R# defines the cycle as read or write, and D/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
READY# asserted.

The TI486SXL series microprocessor performs the following bus-cycle types:

� Memory read
� Locked memory read
� Memory write
� Locked memory write
� I/O read (or coprocessor read)
� I/O write (or coprocessor write)
� Interrupt acknowledge (always locked)
� Halt/shutdown

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of ADS# following a completed bus cycle.

Note that all bus diagrams apply to all TI486SXL series microprocessors. The
TI486SXL2 clock-doubled feature does not change the external microproces-
sor bus interface.

Bus Operation and Functional Timing

4-22

4.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri-
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

4.4.1.1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (first
CLK2) of T1, the address bus and bus-cycle-definition signals are driven valid
and, to signal their availability, address strobe (ADS#) is simultaneously as-
serted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input, and valid data is either read or
written depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 4–4.

Figure 4–4. TI486SXL Fastest Nonpipelined Read Cycles

CLK2
(Input)

A31–A2,
BE3#-BE0#,

M/IO#, D/C#, W/R#

ADS#

NA#

READY#

LOCK#

D31–D0
(Input During Read)

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2 φ 1

Cycle 1
Nonpipelined

(Read)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Nonpipelined

(Read)

Valid 3Valid 2Valid 1

Valid 3Valid 2Valid 1

In In 1 In 2 In 3

BS16#

Note: Fastest nonpipelined bus cycles consist of T1 and T2.

 Bus Operation and Functional Timing

4-23 TI486SXL Microprocessor Bus Interface

4.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 4–5
shows a mixture of read and write cycles with nonpipelined address timing.
When a read cycle is performed, the microprocessor floats its data bus, and
the externally addressed device then drives the data. The microprocessor re-
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac-
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write-
data hold time.

Figure 4–5. TI486SXL Various Nonpipelined Bus Cycles (No Wait States)

CLK2

A31–A2,
BE3#-BE0#,
M/IO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

D31–D0

Ti T1 T2 T1 T2 T1 T2 Ti T1 TiT2

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Nonpipelined

(Write)

Cycle 4
Nonpipelined

(Read)
IdleIdle

Valid 1 Valid 2 Valid 3 Valid 4

End Cycle 1 End Cycle 3 End Cycle 4End Cycle 2

Out 1 In 2 Out 3 In 4

Valid 1 Valid 2 Valid 3 Valid 4

Valid 1 Valid 2 Valid 3 Valid 4

End Cycle 1 End Cycle 3 End Cycle 4End Cycle 2

32-Bit
Bus Size

32-Bit
Bus Size

32-Bit
Bus Size

32-Bit
Bus Size

BS16#

Note: Idle states are introduced arbitrarily.

Bus Operation and Functional Timing

4-24

4.4.1.3 Nonpipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external sys-
tem hardware using the READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest possible bus cycle, requiring only T1
and T2. However, if READY# is not immediately asserted, T2 states are re-
peated indefinitely until the READY# input is sampled active. These intermedi-
ate T2 states are referred to as wait states. If the external system hardware
is not able to receive or deliver data in two bus states, READY# is withheld and
adds at least one wait state to the bus cycle. Thus, on an address-by-address
basis, the system is able to define how fast a bus cycle completes.

Figure 4–6 illustrates nonpipelined bus cycles with one wait state added to
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled
active at the end of the second T2, and the cycle is then terminated. The micro-
processor ignores the READY# input at the end of the T1 state.

Figure 4–6. TI486SXL Various Nonpipelined Bus Cycles With Different Numbers of Wait
States

CLK2

A31–A2,
BE3-BE0#,

M/IO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

D31–D0

Ti T1 T2 T1 T2 T2 Ti T1 T2 TiT2

Idle
Cycle 1

Nonpipelined
(Read)

Cycle 2
Nonpipelined

(Write)

Cycle 3
Nonpipelined

(Read)
Idle

Valid 1 Valid 2 Valid 3

End Cycle 1 End Cycle 3End Cycle 2

In 3In 1 Out 2

Idle

Valid 1 Valid 2 Valid 3

32-Bit
Bus Size

32-Bit
Bus Size

32-Bit
Bus Size

BS16#

Note: Idle states are introduced arbitrarily.

 Bus Operation and Functional Timing

4-25 TI486SXL Microprocessor Bus Interface

4.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 4–7. The bus can switch between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 repeated for wait
states. Bus cycles always begin with a single T1 state. T1 is always followed
by a T2 state. If a bus cycle is not acknowledged during a given T2 and NA#
is inactive, T2 repeats, resulting in a wait state. When a cycle is acknowledged
during T2, the following state is T1 of the next bus cycle when a bus request
is pending internally. If no internal bus request is pending, the Ti state is en-
tered. If the HOLD input is asserted and the microprocessor is ready to enter
the hold-acknowledge state, the Th state is entered.

Figure 4–7. TI486SXL Nonpipelined Bus States

Th

HOLD Asserted

HOLD Negated
No Request

HOLD Asserted

HOLD Negated
Request Pending

READY# Asserted
HOLD Negated

No Request

Request Pending
HOLD Negated

Always

READY# Asserted
HOLD Negated

Request Pending
READY# Negated

NA# Negated

READY# Asserted
HOLD Asserted

HOLD Negated
No Request

Ti T1 T2

Bus States:
T1 – First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 – Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti – Idle state
Th – Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

RESET
Asserted

Bus Operation and Functional Timing

4-26

Due to the demultiplexed bus, address pipelining gives the external hardware
an additional T state of access time without inserting a wait state. The proces-
sor always uses nonpipelined address timing after the reset sequence and fol-
lowing any idle bus state. Pipelined or nonpipelined address timing is then de-
termined on a cycle-by-cycle basis using the NA# input. When address pipelin-
ing is not used, the address and bus-cycle definition remain valid during all wait
states. When wait states are added and nonpipelined address timing is neces-
sary, NA# should be negated during each T2 state of the bus cycle except the
last one.

4.4.2 Bus Cycles Using Pipelined Addressing

Address pipelining lets the system request the address and bus-cycle defini-
tion of the next internally pending bus cycle before the current bus cycle is ac-
knowledged with READY# asserted. If address pipelining is used, the external
system hardware has an extra T state of access time to transfer data. Address
pipelining is controlled cycle-by-cycle by the state of the NA# input.

4.4.2.1 Pipelined Bus States

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be-
ginning of phase two of each T2 state and is only acknowledged by the micro-
processor during wait states. When address pipelining is acknowledged, the
address (BE3#–BE0#, and A31–A2) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi-
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using a pipelined address
require only two bus states. Figure 4–8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1P
and T2P or T1P and T2I. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available, and it is the first bus state of every pipelined bus cycle.
In other words, the T1P state follows a T2 state if the previous cycle was nonpi-
pelined, and follows a T2P state if the previous cycle was pipelined.

 Bus Operation and Functional Timing

4-27 TI486SXL Microprocessor Bus Interface

Figure 4–8. TI486SXL Fastest Pipelined Read Cycles

CLK2

A31–A2,
BE3#-BE0#,

M/IO#, D/C#, W/R#

ADS#

NA#

READY#

LOCK#

D31–D0
(Input During Read)

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

Cycle 1
Pipelined
(Read)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined
(Read)

Valid 4Valid 3Valid 2

Valid 3Valid 2Valid 1

In 1 In 2 In 3

Valid 1

BS16#

Note: Fastest pipelined bus cycles consist of T1P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(��� of the T1P state. If the microprocessor has an internally pending bus re-
quest and NA# is asserted, the T1P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1P state is followed by a T2I
state regardless of the state of NA# and no new address or bus-cycle informa-
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T2I states with the
assertion of the READY# input, and valid data is either input or output depend-
ing on the bus-cycle type. READY# is ignored at the end of the T1P state.

4.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T2I bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

Bus Operation and Functional Timing

4-28

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (��� of T1P. When a write cycle is acknowledged, the
write data remains valid throughout phase one (��� of the next bus state to pro-
vide write-data hold time.

4.4.2.3 Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the ex-
ternal system hardware using the microprocessor READY# input. Acknowl-
edging the bus cycle at the end of the first T2P or T2I state results in the short-
est possible pipelined bus cycle. If READY# is not immediately asserted, how-
ever, T2P or T2I states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T2I states are referred to as wait states.

Figure 4–9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P, and the cycle is then terminated. The mi-
croprocessor ignores the READY# input at the end of the T1P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur-
ing the cycle has no additional effect. Pipelined addressing can only output in-
formation for the next bus cycle.

Cycle 2 in Figure 4–9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re-
quest is pending internally and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 4–9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as-
serted in T1P, requesting the next address. Because the CPU does not have
an internal bus request pending, the T2I state is entered. However, by the end
of the T2I state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe-
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

 Bus Operation and Functional Timing

4-29 TI486SXL Microprocessor Bus Interface

Figure 4–9. TI486SXL Various Pipelined Cycles (One Wait State)

CLK2

Cycle 1
Pipelined

(Write)

T1P T2P T2P T1P T2 T2P T1P T2I T2P T1P

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined

(Write)

Cycle 4
Pipelined
(Read)

ADS# is asserted as soon
as the CPU has another
bus cycle to perform, which is
not always immediately after
NA# is asserted.

A31–A2,
BE3#–BE0#,
M/IO#, D/C#

Asserting NA# more than
once during any cycle has
no additional effect.

As long as the CPU enters the T2P
state during cycle 3, address
pipelining is maintained in cycle 4.

ADS# is asserted
in every T2P state.

NA# could have been asserted in
T1P if desired. Assertion now is
the latest time possible to allow
the CPU to enter T2P state and
maintain pipelining in cycle 3.

W/R#

ADS#

NA#

READY#

LOCK#

D31–D0

Valid 1 Valid 2 Valid 3 Valid 4

Valid 1 Valid 2 Valid 3 Valid 4

Out Out 1 Out 3In 2

BS16#

Bus Operation and Functional Timing

4-30

4.4.2.4 Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowledge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow-
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces-
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 4–10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2 begins, cycle 2 is called a pipelined bus cycle, and it begins with a T1P state.
cycle 2 begins as soon as READY# assertion terminates cycle 1.

Figure 4–10. TI486SXL Fastest Transition to Pipelined Address Following Bus-Idle State

CLK2

A31–A2
BE3#-BE0#,
M/IO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

D31–D0

Ti T1 T2 T2P T1P T2P T1P T2P T1P T2IT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Ti

Cycle 4
Pipelined
(Read)

Valid 4

Out 3

Valid 4

BS16#

To
Recognize

NA#

To
Recognize

NA#

To
Recognize

NA#

To
Recognize

NA#

Note: Following any idle bus state (Ti), the address is always nonpipelined and NA# is sampled only during wait states. To start
address pipelining after an idle state, a nonpipelined cycle with at least one wait state (cycle 1 above) is required. The
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

 Bus Operation and Functional Timing

4-31 TI486SXL Microprocessor Bus Interface

Figure 4–11 illustrates the transition to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 4–10 (on page 4-30) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as-
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 4–11 show that once address pipelining
is achieved, it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser-
tion of ADS#. Figure 4–10 and Figure 4–11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 4–11. TI486SXL Transition to Pipelined Address During Burst of Bus Cycles

Out 3

CLK2

A31–A2,
BE3#-BE0,

M/IO#, D/C#

W/R#

ADS#

NA#

LOCK#

D31–D0

Ti T1 T2 T1 T2 T2P T1P T2P T1P TiT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Cycle 4
Pipelined
(Read)

Valid 4

READY#

Valid 4

BS16#

To
Recognize

NA#

To
Recognize

NA#

To
Recognize

NA#

Note: Following any idle bus state (Ti), addresses are nonpipelined bus cycles, and NA# is sampled only during wait states.
Therefore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with at
least one wait state (cycle 2 above).

Bus Operation and Functional Timing

4-32

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 4–12. This is a superset of the diagram for nonpipe-
lined address. The three additional bus states for pipelined address are
shaded.

Figure 4–12. TI486SXL Complete Bus States

Request Pending •
HOLD Negated READY# Asserted •

HOLD Negated •
Request Pending

NA# Negated

Th

T1

T2I

T1P

T2P

HOLD Negated •
No Request

HOLD Asserted

HOLD Negated •
Request Pending

READY# Asserted •
HOLD Negated •

No Request

Always

RESET
Asserted

READY# Asserted •
HOLD Asserted

HOLD
Negated

No Request

(No Request +
HOLD Asserted) •

NA# Asserted •
READY# Negated

NA# Asserted •
(HOLD Asserted�

No Request)

READY#
Negated •

NA# Negated

READY# Negated •
(No Request�

HOLD Asserted)

READY# Asserted

READY# Negated

HOLD Asserted

READY# Asserted •
HOLD Negated •
Request Pending

READY# Asserted •
HOLD Negated •

No Request

T2Ti

READY# Asserted •
HOLD Asserted

Bus States:
T1 – First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 – Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
T2I – Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there

is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)
T2P – Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and

there is an internal bus request pending (CPU drives new address and asserts ADS#)
T1P – First clock of a pipelined bus cycle
Ti – Idle state
Th – Hold acknowledge state (CPU asserts HLDA)

READY# Negated •
NA# Asserted •
HOLD Negated

Request Pending

READY# Negated
Request Pending
HOLD Asserted

NA# Asserted •
HOLD Negated •
Request Pending

 Bus Operation and Functional Timing

4-33 TI486SXL Microprocessor Bus Interface

4.4.3 Bus Cycles Using BS16#

Assertion of BS16# during a bus cycle effectively changes the TI486SXL mi-
croprocessor 32-bit bus into a 16-bit data bus. Although slower, the 16-bit data
bus usually requires less hardware interface circuitry and generally offers
greater compatibility with 16-bit devices.

4.4.3.1 Nonpipelined Cycles

With BS16# asserted, all operand transfers physically occur on data bus lines
D15–D0. With BS16# asserted during a 32-bit nonpipelined read or write,
additional bus cycles are issued by the CPU to transfer the data.

For data reads with only the two upper bytes selected (BE3#/BE2# asserted),
data is read from D15–D0.

For data writes with only the two upper bytes selected (BE3#/BE2# asserted),
data is duplicated on D15–D0 and no further action is required.

For data reads with all four bytes selected (at least BE1# and BE2# asserted
and possibly BE0#/BE3# also asserted), the CPU performs two 16-bit read
cycles using data lines D15–D0. Lines D31–D16 are ignored.

Data writes with all four bytes selected (at least BE1# and BE2# asserted and
possibly BE0#/BE3# also asserted), the CPU performs two 16-bit write cycles
using data lines D15–D0. Bytes 0 and 1 (corresponding to BE0# and BE1#)
are sent on the first bus cycle (part one) and bytes 2 and 3 (corresponding to
BE2# and BE3#) are sent on the second bus cycle (part two). BE0# and BE1#
are always negated during the second 16-bit bus cycle. Figure 4–13 illustrates
two nonpipelined bus cycles using BS16#.

Bus Operation and Functional Timing

4-34

Figure 4–13. Nonpipelined Bus Cycles Using BS16#

d31–d16d15–d0

d31–d16

Always Inactive
During Part 2

Always Inactive
During Part 2

CLK2

BE1#,BE0#

W/R#

ADS#

D15–D0

D31–D16

Ti T1 T2 T1 T2 T1 T2 T1 T1 Ti

Idle
Cycle 1

Nonpipelined
Write, Part One

Cycle 2
Pipelined

Read, Part One
Idle

Valid 1 Valid 2

Out Out

xxOut

Cycle 2A
Pipelined

Read, Part Two

LOCK#

NA#

Valid 1 Valid 2

BS16#

Transfer Requiring Two Cycles
on 16-Bit Data Bus

Transfer Requiring Two Cycles
on 16-Bit Data Bus

A31–A2,
BE3#, BE2#,
M/IO#, D/C#

READY#

Valid 2Valid 1

InIn

Don’t
Care

Don’t
Care

Don’t
Care

Don’t
Care

16-Bit
Bus Size

16-Bit
Bus Size

16-Bit
Bus Size

16-Bit
Bus Size

Cycle 1A
Nonpipelined

Write, Part Two

d31–d16

Ignored Ignored

Note: Dn = physical data pin n
dn = logical data bit n

d15–d0

4.4.3.2 Pipelined Cycles

The input signal NA# is a request to the CPU to drive the address, the byte en-
ables, and the bus status signals for the next bus cycle as soon as they be-
come internally available. Pipelining this address allows the system logic to an-
ticipate the next bus-cycle operation.

The CPU cannot acknowledge both address pipelining and BS16# for the
same bus cycle. If NA# is already sampled when BS16# is asserted, the data
bus remains 32 bits wide. If NA# and BS16# are asserted in the same window,
NA# is ignored and BS16# remains effective (the data bus becomes 16 bits
wide). Figure 4–14 illustrates the interaction between NA# and BS16#.

 Bus Operation and Functional Timing

4-35 TI486SXL Microprocessor Bus Interface

Figure 4–14. Pipelining and BS16#

CLK2

BE1#,BE0#

W/R#

ADS#

D15-D0

D31–D16

T2P T1P T2 T2 T1 T2 T2 T1 T2 Ti

Cycle 1A
Pipelined

Write, Part One

Cycle 1B
Nonpipelined

Write, Part Two
Idle

Valid 1 Valid 2

Out Out

In Out

Cycle 2
Nonpipelined

Read

LOCK# Valid 1 Valid 2

BS16#

A Transfer Requiring Two Cycles
on 16-Bit Bus

A31–A2,
BE3#,BE2#,
M/IO#, D/C#

READY#

Valid 2Valid 1

InIn

Previous
Cycle

T2P

Valid 3

Valid 3

NA#

Always Inactive
During Part 2

NA# must be negated in these T’s to allow
recognition of asserted BS16# in final T2s.

Don’t
Care

16-Bit
Bus Size

16-Bit
Bus Size

d31–d16

d31–d16d15–d0 d15–d0

d31–d16

In

d15–d0

d31–d16

Don’t
Care

Dn = physical data pin n
dn = logical data bit n
Cycle 1A is pipelined. Cycle 1B cannot be pipelined, but its address can be inferred from cycle 1 to simulate address
pipelining externally.

Bus Operation and Functional Timing

4-36

4.4.4 Locked Bus Cycles

When the LOCK# signal is asserted, the TI486SXL series microprocessors do
not allow other bus master devices to gain control of the system bus. LOCK#
is driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK# is also active during interrupt-acknowledge cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When the microprocessor is using nonpipelined addressing, LOCK# is
asserted during phase one (��� of T1. When it is using pipelined addressing,
LOCK# is driven valid during phase one of T1P.

Figure 4–4, Figure 4–5, Figure 4–6, and Figure 4–13 on pages 4-22, 4-23,
4-24, and 4-34 illustrate LOCK# timing during nonpipelined cycles.
Figure 4–8, Figure 4–9, Figure 4–10, Figure 4–11, and Figure 4–14 on pages
4-27, 4-29, 4-30, 4-31 and 4-35 cover the pipelined-address case.

4.4.5 Interrupt-Acknowledge Cycles

The TI486SXL microprocessors are interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The micropro-
cessor responds with two locked interrupt-acknowledge cycles. These bus
cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 4–15.

 Bus Operation and Functional Timing

4-37 TI486SXL Microprocessor Bus Interface

Figure 4–15. TI486SXL Interrupt-Acknowledge Cycles

CLK2

A31–A3,
BE0#, M/IO#,

D/C#, W/R#

BE3#-BE1#

ADS#

READY#

NA#

T2 T1 T2 T2 Ti Ti Ti Ti T1 T2T2

Idle
Interrupt

Acknowledge
Cycle 1

Idle

X

Ti

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2

In

A2

LOCK#

D7–D0

D31–D8 X X

Ignored Ignored

BS16# Ignored

Ignored Vector

Note: Interrupt vector (0–255) is read on D7–D0 at the end of the second interrupt-acknowledge bus cycle. Because each inter-
rupt-acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.

The state of the A2 pin distinguishes the first and second interrupt-acknowl-
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A31–A3 = 0, A2 = 1, BE3#–BE1# = 1, and BE0# = 0). The address
driven during the second interrupt-acknowledge cycle is 0h (A31–A2 = 0,
BE3#–BE1# = 1, and BE0# = 0).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl-
edge cycle until the end of the second interrupt-acknowledge cycle. In clock-
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The
microprocessor reads the vector from D7–D0 of the data bus. The vector
indicates the specific interrupt number (from 0–255) requiring service.
Throughout the balance of the two interrupt cycles, D31–D0 float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro-
cessor is ignored.

Bus Operation and Functional Timing

4-38

4.4.6 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro-
cessor to halt operation or shutdown further processing. The microprocessor
signals a halt or shutdown through a halt- or shutdown-indication cycle,
respectively.

4.4.6.1 Halt Indication Cycle

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. The microprocessor signals its entrance into the halt state
by performing a halt indication cycle. The halt indication cycle is identified by
the state of the bus-cycle-definition signals (M/IO# = 1, D/C# = 0, W/R# = 1,
and LOCK# = 1) and an address of 2h (A31–A2 = 0, BE3# = 1, BE2# = 0,
and BE1#–BE0# = 1).

The halt indication cycle must be acknowledged by asserting READY#. A
halted microprocessor resumes execution when INTR (if interrupts are en-
abled), NMI, SMI#, or RESET is asserted. Figure 4–16 illustrates a nonpipe-
lined halt cycle.

 Bus Operation and Functional Timing

4-39 TI486SXL Microprocessor Bus Interface

Figure 4–16. TI486SXL Nonpipelined Halt Cycle

CLK2

BE0#. BE1#,
BE3#, M/IO#,

W/R#

ADS#

NA#

READY#

D31–D0

T1 T2 T1 T2 Ti Ti Ti Ti

Cycle 2
Nonpipelined

(Halt)

Cycle 1
Nonpipelined

(Write)

Valid 1

Out 1

Idle

Valid 1

LOCK# Valid 1

Out Undefined (Floating)

A31–A2,
BE2#,
D/C#

Halt cycle must be aknowledged by
asserting READY#. Wait states may be
added to the cycle if desired.

BS16# Ignored

CPU remains halted un-
til INTR, NMI, SMI#, or
RESET is asserted.

Bus Operation and Functional Timing

4-40

4.4.6.2 Shutdown Indication Cycle

Shutdown occurs when the microprocessor detects a severe error that pre-
vents further processing. The TI486SXL series microprocessor shuts down as
a result of a protection fault while attempting to process a double fault as well
as the conditions referenced in Chapter 2, Programming Interface. A shut-
down indication cycle is performed, which signals the microprocessor’s en-
trance into the shutdown state. The shutdown indication cycle is identified by
the state of the bus-cycle-definition signals (M/IO# = 1, D/C# = 0, W/R# = 1,
and LOCK# = 1) and an address of 0h (A31–A2 = 0, BE3#–BE1# = 1, and
BE0# = 0). The shutdown indication cycle must be acknowledged by asserting
READY#. A shutdown microprocessor resumes execution when NMI or RE-
SET is asserted. Figure 4–17 illustrates a shutdown cycle using pipelined ad-
dressing.

Figure 4–17. TI486SXL Pipelined Shutdown Cycle

CLK2

BE3#–BE1#,
M/IO#, W/R#

ADS#

NA#

READY#

D31–D0

T1P T2P T1P T2P Ti Ti Ti Ti

Cycle 2
Pipelined

(Shutdown)

Cycle 1
Pipelined
(Read)

Valid 1

Idle

Valid 1

LOCK# Valid 1

In Undefined (Floating)

A31–A2
BE0#,
D/C#

CPU remains
shutdown until NMI or
RESET is asserted.

In1

Valid 1

BS16#

Shutdown cycle must be acknowledged by asserting READY#.
Wait states may be added to the cycle if desired.

 Bus Operation and Functional Timing

4-41 TI486SXL Microprocessor Bus Interface

4.4.7 Internal Cache Interface

The TI486SXL cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative. The cache organization consists of
1024 sets, each containing two lines of four bytes each.

4.4.7.1 Cache Fills

Any unlocked memory read cycle can be cached by the TI486SXL series mi-
croprocessor. The microprocessor does not automatically cache accesses to
memory addresses specified by the Noncacheable-Region registers. Addi-
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCR0 Configuration register.

As shown in Figure 4–18, the microprocessor samples the KEN# input one
CLK2 period before READY# is sampled active. If KEN# is asserted and the
current address is cacheable, the microprocessor fills two bytes of a line in the
cache with the data present on the data bus pins.

Figure 4–18. Nonpipelined Cache Fills Using KEN#

CLK2

A31–A2,
BE3#–BE0#,

D/C#, M/IO#, W/R#

ADS#

KEN#

D31–D0

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2

T2
φ 1 φ 2

Cycle 1
Nonpipelined

(Read – Cache Fill)

Valid 2

In 1

Valid 1

Cycle 2
Nonpipelined

(Read – Cache Fill)

Valid 2Valid 1

In In 2

NA#

LOCK#

READY#

BS16#

Bus Operation and Functional Timing

4-42

As shown in Figure 4–19 and Figure 4–20 on page 4-43, the microprocessor
samples the KEN# input one CLK2 period before READY# is sampled active.
If KEN# is asserted and the current address is set as cacheable, the micropro-
cessor fills two bytes of a line in the cache with the data present on the data
bus pins. The states of BE3#–BE0# are ignored if KEN# is asserted for the
cycle.

Figure 4–19. Nonpipelined Cache Fills Using KEN# and BS16#

CLK2

A31–A2,
BE3#–BE0#,

D/C#, M/IO#, W/R#

ADS#

KEN#

D31–D0
(Input During Read)

T1
φ 1 φ 2

T2
φ 1 φ 2

T1
φ 1 φ 2

T2
φ 1 φ 2

T2
φ 1 φ 2

Cycle 1
Nonpipelined

(Read – Cache Fill)

Valid 2

In 1

Valid 1

Cycle 2
Nonpipelined

(Read – Cache Fill)

Valid 2Valid 1

In In 2

NA#

LOCK#

READY#

BS16#

d15–d0 d15–d0

KEN# must be asserted during both read
cycles in order for the cache fill to occur.

Dn = physical data pin n
dn = logical data bit n

 Bus Operation and Functional Timing

4-43 TI486SXL Microprocessor Bus Interface

Figure 4–20. Pipelined Cache Fills Using KEN#

CLK2

A31–A2,
BE3#–BE0#,

D/C#, M/IO#, W/R#

ADS#

KEN#

D31–D0
(Input During Read)

T1P
φ 1 φ 2

T2P
φ 1 φ 2

T2P
φ 1 φ 2

T1P
φ 1 φ 2

T2P
φ 1 φ 2

Cycle 1
Pipelined

(Read – Cache Fill)

Valid 2

In 1

Valid 1

Cycle 2
Pipelined

(Read – Cache Fill)

Valid 2Valid 1

In In 2

NA#

LOCK#

READY#

T1P
φ 1 φ 2

Valid 3

Valid 3

BS16#

4.4.7.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486SXL series mi-
croprocessors cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces-
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of:

� HLDA if the BARB bit is set in the CCR0 Configuration register
� FLUSH# if the FLUSH bit is set in CCR0

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (��� of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con-
tents of the internal cache. The actual point in time when the cache is invali-
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

Bus Operation and Functional Timing

4-44

4.4.8 Address Bit-20 Masking

The TI486SXL series microprocessor can be forced to provide 8086 1M-byte
address wraparound compatibility by setting the A20M bit in the CCR0 Config-
uration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 4–21, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase 2 (��� of the in-
ternal processor clock. If A20M# is asserted and paging is not enabled, the mi-
croprocessor masks the A20 signal internally starting with the next cache ac-
cess and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M#. The A20 signal re-
mains masked until the access following detection of an inactive state on the
A20M# pin. A20M# must be asserted for a minimum of two CLK2 periods and
must meet specified setup and hold times to be recognized on a specific CLK2
edge.

Figure 4–21. TI486SXL Masking A20 Using A20M# During Burst of Bus Cycles

Out 3

CLK2

A19–A2,
A31–A21,

BE3#–BE0#,
M/IO#, D/C#

W/R#

ADS#

A20M#

LOCK#

D31–D0

Ti T1 T2 T1 T2 T2P T1P T2P T1P TiT2I

Idle
Cycle 1

Nonpipelined
(Write)

Cycle 2
Nonpipelined

(Read)

Cycle 3
Pipelined

(Write)
Idle

Valid 1 Valid 2 Valid 3

Valid 1 Valid 2 Valid 3

In 4In 2Out 1

Cycle 4
Pipelined

(Write)

Valid 4

Valid 4

A20

NA#

READY#

Valid 1 Valid 4

BS16#

 Bus Operation and Functional Timing

4-45 TI486SXL Microprocessor Bus Interface

An alternative to using the A20M# pin is to set the NC0 bit in the CCR0 Configu-
ration register. When the NC0 bit is set, the microprocessor does not automati-
cally cache accesses to the first 64K bytes and to 1M byte + 64K bytes. This
prevents data within the wraparound memory area from residing in the internal
cache and eliminates the need for masking address A20 to the internal cache.

4.4.9 Hold Acknowledge State

The hold-acknowledge state lets an external device in a TI486SXL micropro-
cessor system acquire the system bus while the microprocessor is held in an
inactive bus state. This allows external bus masters to take control of the
microprocessor bus and directly access system hardware in a shared manner.
The microprocessor continues to execute instructions out of the internal cache
(if enabled) until a system bus cycle is required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out-
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state. All in-
puts except HOLD, FLUSH#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 4–22, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 4–23 and Figure 4–24. The CPU samples the HOLD in-
put on the rising edge of CLK2 corresponding to the beginning of phase one
(��� of the internal processor clock. HOLD is a synchronous input and can be
asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne-
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 4–22. If an internal bus request is pending, as in Figure 4–23 and
Figure 4–24, the next bus state is T1. Th is also exited in response to RESET
being asserted. If HOLD remains asserted when RESET goes inactive, the
microprocessor enters the hold-acknowledge state before performing any bus
cycles provided HOLD is still asserted when the CPU is ready to perform its
first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in Th state, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

Bus Operation and Functional Timing

4-46

Figure 4–22. TI486SXL Requesting Hold From Bus-Idle State

CLK2

A31–A2,
BE3#–BE0#,

D/C#, M/IO#, W/R#

ADS#
(Note 2)

Ti Th Th Th Ti

BS16#,
NA#,

READY#

Hold AcknowledgeIdle Idle

(Floating)

(Floating)

(Floating)

(Floating)

HOLD
(Note 1)

HLDA

LOCK#

D31–D0

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are
met in every bus state. Violating setup or hold requirements results in incorrect operation.

2) For maximum design flexibility, the CPU has no internal pullup resistors on its outputs. External pullups may be re-
quired on ADS# and other outputs to keep them negated during the hold-acknowledge period.

 Bus Operation and Functional Timing

4-47 TI486SXL Microprocessor Bus Interface

Figure 4–23. TI486SXL Requesting Hold From Active Nonpipelined Bus

CLK2

A31–A2,
 BE3#–BE0#,

D/C#, M/IO#, W/R#

NA#

D31–D0

T1 T2 T2 Th Th

Cycle 1
Nonpipelined

(Read)

Valid 2Valid 1

In 1

Hold Acknowledge

Valid 1

Out 2

ADS#

LOCK#

T1

Cycle 2
Nonpipelined

(Write)

T2

READY#

Valid 2

HOLD
(See Note)

HLDA

HOLD asserted no later
than READY# asserted

(Negated, or last locked cycle)

If asserting BS16# requires a second bus
cycle to be performed, the second cycle is
performed before hold acknowledge

BS16#

32-bit
 bus size

(Floating)

(Floating)

(Floating)

(Floating)(Floating)

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements results in incorrect operation.

Bus Operation and Functional Timing

4-48

Figure 4–24. TI486SXL Requesting Hold from Active Pipelined Bus

CLK2

A31–A2,
BE3#–BE0#,

 D/C#, M/IO#, W/R#

NA#

D31–D
0

T1P T2I T2I Th Th

Cycle 1
Pipelined

(Write)

Valid 2

In 2

Hold Acknowledge

Valid 1

ADS#

LOCK#

T1

Cycle 2
Nonpipelined

(Read)

T2

READY#

Valid 2

HOLD
(See Note)

HLDA

HOLD asserted in same bus
state as NA# asserted.

(Negated, or last locked cycle)

Out 1Out

Valid 1

BS16#

(Floating)

(Floating)

(Floating)

(Floating)

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

4.4.10 Coprocessor Interface

The data-bus, address-bus, and bus-cycle-definition signals, and the copro-
cessor interface signals (PEREQ, BUSY#, and ERROR#), control commu-
nication between the TI486SXL series microprocessor and a coprocessor.
The microprocessor decodes coprocessor or ESC opcodes and transfers the
opcode and operands to the coprocessor via I/O port accesses. Address 8000
00F8h functions as the control-port address, and 8000 00FCh is used for oper-
and transfers.

 Bus Operation and Functional Timing

4-49 TI486SXL Microprocessor Bus Interface

Coprocessor cycles can be read or write and can be nonpipelined or pipelined.
Coprocessor cycles must be terminated by READY# and, as with any other
bus cycle, can be terminated as early as the second bus state of the cycle.

BUSY#, ERROR#, and PEREQ are asynchronous level-sensitive inputs that
synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (��� and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

4.4.11 SMM Interface

System Management Mode (SMM) uses two TI486SXL microprocessor pins,
SMI# and SMADS#. The bidirectional SMI# pin is a nonmaskable interrupt that
is a higher priority than the NMI input. SMI# must be active for at least four
CLK2 periods to be recognized by the microprocessor. Once the microproces-
sor recognizes the active SMI# input, the CPU drives the SMI# pin low for the
duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

4.4.11.1 SMI Handshake

The functional timing for the SMI# interrupt is shown in Figure 4–25. Five sig-
nificant events take place during an SMI# handshake:

1) The SMI# input pin is driven active (low) by the system logic.
2) The CPU samples SMI# active on the rising edge of CLK2 phase one (���.
3) Four CLK2 edges after sampling the SMI# active, the CPU switches the

SMI# pin to an output and drives SMI# low.
4) Following execution of the RSM instruction, the CPU drives the SMI# pin

high for two CLK2 edges indicating completion of the SMI service routine.
5) The CPU stops driving the SMI# pin high and switches the SMI# pin to an

input in preparation for the next SMI interrupt. The system logic is respon-
sible for maintaining the SMI# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 4–25. TI486SXL SMI# Timing

CLK2

�2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1

SMI#

1 2 3 4 5

Indicates that TI486SXL drives the SMI# pin.

4.4.11.2 I/O Trapping

The TI486SXL series provides I/O trapping to facilitate power management of
I/O peripherals. When an I/O bus cycle is issued, the I/O address is driven onto

Bus Operation and Functional Timing

4-50

the address bus and can be decoded by external logic. If a trap to the SMI han-
dler is required, the SMI# input should be activated at least three CLK2 edges
before returning the READY# input for the I/O cycle. The timing for creating
an I/O trap via the SMI# input is shown in Figure 4–26. The microprocessor
immediately traps to the SMI interrupt handler following execution of the I/O
instruction. No other instructions are executed between completing the I/O
instruction and entering the SMI service routine. The I/O trap mechanism is not
active during coprocessor accesses.

Figure 4–26. TI486SXL I/O Trap Timing

CLK2
(Input)

Address,
Byte Enables

ADS#
(Output)

T2T1 T2 T2

Valid

READY#

SMI#

3 CLK2s

I/O CYCLE
(Read or Write)

4.4.12 Power Management

The power-management features in the TI486SXL(C) family of microproces-
sors allow a dramatic reduction in the current required when the microproces-
sor is in suspend mode (typically less than three percent of the operating cur-
rent). Suspend mode is entered either by a hardware- or software-initiated
action.

Using the hardware to initiate suspend mode involves a two-pin handshake
using the SUSP# and SUSPA# signals. Using the software involves initiating
the suspend mode through execution of the HALT instruction. Additional pow-
er management can be achieved by stopping and restarting the input clock.
This technique is available because the TI486SXLC series microprocessors
are static devices, meaning that the clock can be stopped and restarted with-
out loss of any internal CPU data. See subsection 4.4.12.3, Stopping the Input
Clock, on page 4-52

4.4.12.1 SUSP#-Initiated Suspend Mode

The TI486SXL series microprocessor enters suspend mode when the SUSP#
input is asserted and execution of the current instruction, any pending de-

 Bus Operation and Functional Timing

4-51 TI486SXL Microprocessor Bus Interface

coded instructions, and associated bus cycles are completed. The micropro-
cessor also waits for the coprocessor to indicate a not-busy status (BUSY#=1)
before entering suspend mode. The SUSPA# output is then asserted. The
microprocessor responds to SUSP# and asserts SUSPA# only if the SUSP bit
is set in the CCR0 Configuration register.

Figure 4–27 illustrates the microprocessor functional timing for SUSP#-initi-
ated suspend mode. SUSP# is sampled on the phase two (��� CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par-
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2 periods. As a maximum, the microprocessor can execute up to
two instructions and associated bus cycles before asserting SUSPA#. The
time required for the microprocessor to deactivate SUSPA# once SUSP# has
been sampled inactive is four CLK2 periods.

Figure 4–27. TI486SXL SUSP#-Initiated Suspend Mode

2 CLK2s
Min

CLK2

φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

SUSP#

BUSY#

SUSPA#

4 CLK2s

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor may or may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces-
sor recognizes and acknowledges the HOLD input. The microprocessor
stores the occurrence of FLUSH#, NMI, and INTR (if interrupts are enabled)
for execution once suspend mode is exited.

4.4.12.2 Halt-Initiated Suspend Mode

The TI486SXL series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2 periods following READY# sampled active for the HALT bus cycle as
shown in Figure 4–28. Suspend mode is then exited upon recognition of an
NMI, SMI#, or an unmasked INTR. SUSPA# is deactivated 12 CLK2 periods

Running Title—Attribute Reference

4-52

after sampling an active NMI, SMI#, or unmasked INTR. If the microprocessor
is in a HALT-initiated suspend mode and the CLK2 input is not stopped, the
processor recognizes and acknowledges the HOLD input. The microproces-
sor stores the occurrence of FLUSH# for execution once suspend mode is ex-
ited.

Figure 4–28. TI486SXL HALT-Initiated Suspend Mode

17 CLK2s Max

CLK2

ADS#

BE3#,BE1#,
BE0#, M/IO#,

W/R#,

READY#

T1 T2 Ti Ti Ti Ti

A31–A2,
BE2#, D/C#

NMI

SUSPA#

12
CLK2s

Nonpipelined HALT

4.4.12.3 Stopping the Input Clock

Because the TI486SXL series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU
data. This assumes that the TI486SXL2 microprocessor is in nonclock-
doubled mode when the input clock is stopped. (Refer to subsection 4.2.1,
Clock Doubling Using Software Control, page 4-15.) CLK2 can be stopped in
either phase one (��� or phase two (��� of the clock and in either a logic-high
or logic-low state. However, entering suspend mode before stopping CLK2
dramatically reduces the CPU current requirements. Therefore, the recom-
mended sequence for stopping CLK2 in the TI486SXLC2 series microproces-
sor from clock-doubled mode is:

1) Bring the microprocessor out of clock-doubled mode
2) Initiate suspend mode
3) Wait for the microprocessor to assert SUSPA#
4) Stop the input clock

 Bus Operation and Functional Timing

4-53 TI486SXL Microprocessor Bus Interface

Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for the microprocessor to assert SUSPA#
3) Stop the input clock

The TI486SXL series microprocessor remains suspended until CLK2 is re-
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, SMI#, INTR, and RESET inputs.
Figure 4–29 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is negated.

Figure 4–29. TI486SXL Stopping CLK2 During Suspend Mode

φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2 φ 1 φ 2

CLK2

SUSP#

BUSY#

SUSPA#

10 CLK2s Min

Bus Operation and Functional Timing

4-54

4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only)

Activating the FLT# input on the 144-pin or 168-pin TI486SXL floats all bidirec-
tional and output signals. Asserting FLT# electrically isolates the microproces-
sor from the surrounding circuitry. This feature is useful in systems designs
that contain an upgrade socket.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out-
puts of the microprocessor as shown in Figure 4–30. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is negated.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microproces-
sors are not guaranteed to enter float in a valid state. After deactivating FLT#,
the CPU is not guaranteed to exit float in a valid state. The microprocessor
RESET input must be asserted before exiting float to ensure that the micropro-
cessor is reset and that it returns in a valid state.

Figure 4–30. TI486SXL Entering and Exiting Float

CLK2

FLT#

CONTROL

DATA

ADDRESS

RESET

Valid

Valid

Valid

5-1

Electrical Specifications

This chapter provides electrical specifications for the TI486SXL(C) family of
microprocessors. The specifications include electrical connection require-
ments for all package pins, maximum ratings, recommended operating condi-
tions, dc electrical characteristics, and ac characteristics.

Topic Page

5.1 Electrical Connections 5-2.

5.2 Absolute Maximum Ratings 5-4.

5.3 Recommended Operating Conditions 5-5.

5.4 DC Electrical Characteristics 5-7.

5.5 AC Characteristics 5-16.

Chapter 5

Electrical Connections

5-2

5.1 Electrical Connections

This section provides specific requirements for power and ground connec-
tions, decoupling, termination of inputs with internal pullup/pulldown resistors,
termination of system functional inputs requiring external pullup resistors, ter-
mination of unused inputs, and connection to terminals designated NC.

5.1.1 Power and Ground Connections and Decoupling

The high-frequency operation of the TI486SXL(C) microprocessors makes it
necessary to install and test the devices using standard high-frequency tech-
niques. The high clock frequencies used in the microprocessors and their out-
put buffer circuits can cause transient power surges when several output buff-
ers switch output levels simultaneously. These effects can be minimized by fil-
tering the dc power leads with low-inductance decoupling capacitors, using
low-impedance wiring, and by making connection to all of the VCC, VCC5, and
VSS (GND) terminals.

5.1.2 Pullup/Pulldown Resistors

Table 5–1 lists the input terminals that are internally connected to pullup or
pulldown resistors (see Figure 5–1). The pullup resistors are connected to
VCC. The pulldown resistors are connected to VSS. Unused inputs do not re-
quire connection to external pullup or pulldown resistors.

Note:

The internal pullup and pulldown resistors are designed to tie off the individu-
al internal signal associated with that pin. External signals should not be ter-
minated to any of these pins.

Table 5–1.Terminals Connected to Internal Pullup and Pulldown Resistors

Signal
TI486SXLC

100-Terminal
TI486SXL

132-Terminal
TI486SXL

144-Terminal
TI486SXL

168-Terminal Resistor

A20M# 31 F13 43 D15 Pullup

BUSY# 34 B9 48 S4 Pullup

BS16# — C14 115 C17 Pullup

ERROR# 36 A8 49 A12 Pullup

FLT# 28 — 40 C11 Pullup

FLUSH# 30 E13 42 C15 Pullup

KEN# 29 B12 41 F15 Pullup

MEMW# — — 66 B16 Pullup

PEREQ 37 C8 50 R17 Pulldown

SMI# 47 C7 67 B10 Pullup

SUSP# 43 A4 63 C13 Pullup

 Electrical Connections

5-3 Electrical Specifications

Figure 5–1. Internal Pullup/Pulldown-IV Characteristic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

10

20

30

40

50

60

Voltage – V

C
ur

re
nt

 –

 Aµ

Connect the ADS# and LOCK# output terminals to pullup resistors, as indi-
cated in Table 5–2. The external pullups ensure that the signals remain ne-
gated during hold-acknowledge states.

Table 5–2.Terminals Requiring External Pullup Resistors

Signal
TI486SXLC

100-Terminal
TI486SXL

132-Terminal
TI486SXL

144-Terminal
TI486SXL

168-Terminal
External
Resistor

ADS# 16 E14 26 S17 20-kΩ pullup

LOCK# 26 C10 38 N15 20-kΩ pullup

5.1.3 NC Designated Terminals

Terminals designated NC should be left disconnected. Connecting or terminat-
ing any NC terminal(s) to a pullup resistor, pulldown resistor, or an active signal
can cause unpredictable results or nonperformance of the microprocessor.

5.1.4 Unused Signal Input Terminals

All signal inputs not used by the system designer and not listed in Table 5–1
should be connected either to VSS or to VCC. Connect active-high inputs to VSS
through a 20-kΩ (±10%) pulldown resistor and active-low inputs to VCC
through a 20-kΩ (±10%) pullup resistor to prevent possible spurious operation.

Absolute Maximum Ratings

5-4

5.2 Absolute Maximum Ratings

The absolute maximum ratings provide specific limits regarding power supply
and input voltages, input and output current limits, and operating and storage
temperatures.

Table 5–3 specifies the absolute maximum ratings for the TI486SXL(C) family
of microprocessors.

Table 5–3.Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted)†

Parameter Min Max Unit

S l l V
TI486SXLC and TI486SXL With respect to VSS –0.5 6.5 V

Supply voltage, VCC TI486SXLC-V, TI486SXL-V,
TI486SXLC-G, and TI486SXL-G With respect to VSS –0.3 5.5 V

Voltage on any terminal With respect to VSS –0.5 VCC+0.5 V

Case temperature Power applied –65 110 °C

Storage temperature No bias –65 150 °C
† Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress

ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.

 Recommended Operating Conditions

5-5 Electrical Specifications

5.3 Recommended Operating Conditions

Recommended operating conditions provide specific values for power supply
and input voltages, required input threshold ranges, output drive currents
available for system interfacing, and operating levels for clamp currents and
case temperature.

5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os

Table 5–4 presents the recommended operating conditions for the
TI486SXL-G 3.3-V microprocessors with 5-V-tolerant inputs, outputs, and
I/Os.

During power up and power down conditions, the 3.3-V VCC terminals and the
5-V VCC5 terminal should be ramped simultaneously. The 3.3-V VCC voltage
should not exceed the 5-V VCC5 voltage by more than 1 V or the device may
not initialize correctly. Conversely, the 5-V VCC5 can exceed the 3.3-V VCC by
up to 2.25 V.

Table 5–4.TI486SXL-G Recommended Operating Conditions

Min Max Unit

VCC Supply voltage With respect to VSS See Note 1 3 3.6 V

VCC5 Supply voltage With respect to VSS See Note 2 3 5.25 V

VIH High-level input voltage 2 VCC5+0.3 V

VIL Low-level input voltage –0.3 0.6 V

VILC CLK2 low-level input voltage –0.3 0.5 V

VIHC CLK2 high -level input voltage VCC–0.3 VCC5+0.3 V

IOH High-level output current VOH = VOH(min) –2 mA

IOL Low-level output current VOL=VOL(max) 5 mA

PLLLOCK
Phase- locked loop frequency
lock range

With respect to CLK2
frequency 32 50 MHz

T C
P

TI486SXLC in 100-pin
QFP 0 85

°CTC Case temperature
Power
applied

TI486SXL in 132- and
168-pin PGA 0 85 °C

TI486SXL in 144-pin
QFP 0 85

Notes: 1) VCC should be no more than 1 V greater than VCC5 during power up or the device may not initialize correctly.

2) VCC5 should be connected to the 3.3-V supply in a 3.3-V-only system. In mixed systems (3.3/5 V) VCC5 should be
connected to the 5-V supply.

Recommended Operating Conditions

5-6

5.3.2 3.3-Volt Microprocessors

Table 5–5 presents the recommended operating conditions for the
TI486SXLC-V and TI486SXL-V 3.3-V microprocessors.

Table 5–5.TI486SXLC-V and TI486SXL-V Recommended Operating Conditions

Min Max Unit

VCC Supply voltage With respect to VSS 3 3.6 V

VIH High-level input voltage 2 VCC+0.3 V

VIL Low-level input voltage –0.3 0.6 V

VILC CLK2 low-level input voltage –0.3 0.5 V

VIHC CLK2 high -level input voltage VCC–0.3 VCC+0.3 V

IOH High-level output current VOH = VOH(min) –2 mA

IOL Low-level output current VOL=VOL(max) 5 mA

PLLLOCK
Phase- locked loop frequency
lock range

With respect to CLK2
frequency 32 50 MHz

T C
P

TI486SXLC in 100-pin
QFP 0 85

°CTC Case temperature
Power
applied

TI486SXL in 132- and
168-pin PGA 0 85 °C

TI486SXL in 144-pin QFP 0 85

5.3.3 5-Volt Microprocessors

Table 5–6 presents the recommended operating conditions for the
TI486SXLC and TI486SXL 5-V microprocessors.

Table 5–6.TI486SXLC and TI486SXL Recommended Operating Conditions

Min Max Unit

VCC Supply voltage With respect to VSS 4.75 5.25 V

VIH High-level input voltage 2 VCC+0.3 V

VIL Low-level input voltage –0.3 0.8 V

VILC CLK2 low-level input voltage –0.3 0.8 V

VIHC CLK2 high -level input voltage 3.7 VCC+0.3 V

IOH High-level output current VOH=VOH(min) –1 mA

IOL Low-level output current VOL= VOL(max) 5 mA

PLLLOCK
Phase- locked loop frequency
lock range

With respect to CLK2
frequency 32 50 MHz

T C
P

TI486SXLC in 100-pin
QFP 0 100

°CTC Case temperature
Power
applied

TI486SXL in 132- and
168-pin PGA 0 85 °C

TI486SXL in 144-pin
QFP 0 100

 DC Electrical Characteristics

5-7 Electrical Specifications

5.4 DC Electrical Characteristics

The dc electrical characteristics tables provide specific data regarding the ca-
pability of the TI486SXL(C) family microprocessors to interface directly with
either CMOS- or TTL-type system functions. Devices are offered for operation
in 3.3 and 5-volt mixed, 3.3-volt only, and 5-volt only systems.

5.4.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs

Table 5–7 covers the 3.3-V 40, 20-MHz TI486SXL-G40.

Table 5–8 on page 5-8 covers the 3.3-V 50-MHz TI486SXL2-G50.

Table 5–7.TI486SXL-G40 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL-G40

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 3 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.4

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 300 400 mA

ICCSM Supply current (Suspend mode)
20 MHz
(CLK2 = 40 MHz) See Note 5 15 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V, VCC5 = 5 V, and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

DC Electrical Characteristics

5-8

Table 5–8.TI486SXL2-G50 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL2-G50

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 3 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.4

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 365 500 mA

ICCSM Supply current (Suspend mode)
25 MHz
(CLK2 = 50 MHz) See Note 5 20 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V, VCC5 = 5 V, and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 DC Electrical Characteristics

5-9 Electrical Specifications

5.4.2 3.3-Volt Microprocessors

Table 5–9 covers the 3.3-V 25-MHz TI486SXLC-V25.

Table 5–10 on page 5-10 covers the 3.3-V 40, 20 MHz TI486SXL-V40.

Table 5–11 on page 5-11 covers the 3.3-V 50, 25 MHz TI486SXL2-V50.

Table 5–9.TI486SXLC-V25 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXLC-V25

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 3 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.4

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 25 MHz 225 285 mA

ICCSM Supply current (Suspend mode) 25 MHz See Note 5 6 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ input has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

DC Electrical Characteristics

5-10

Table 5–10.TI486SXL-V40 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL-V40

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 3 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.4

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 300 400 mA

ICCSM Supply current (Suspend mode)
20 MHz
(CLK2 = 40 MHz) See Note 5 15 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 DC Electrical Characteristics

5-11 Electrical Specifications

Table 5–11. TI486SXL2-V50 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL2-V50

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 3 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.4

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 365 500 mA

ICCSM Supply current (Suspend mode)
25 MHz
(CLK2 = 50 MHz) See Note 5 20 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

DC Electrical Characteristics

5-12

5.4.3 5-Volt Microprocessors

Table 5–12 covers the 5-V 40, 20-MHz TI486SXLC-040.

Table 5–13 on page 5-13 covers the 5-V 50, 25-MHz TI486SXLC2-050.

Table 5–14 on page 5-14 covers the 5-V 40, 20-MHz TI486SXL-040.

Table 5–15 on page 5-15 covers the 5-V 50. 25-MHz TI486SXL2-050.

Table 5–12. TI486SXLC-040 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXLC-040

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 5 mA 0.4 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.5

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 580 725 mA

ICCSM Supply current (Suspend mode)
20 MHz
(CLK2 = 40 MHz) See Note 5 10 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 DC Electrical Characteristics

5-13 Electrical Specifications

Table 5–13. TI486SXLC2-050 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXLC2-050

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 5 mA 0.45 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.5

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 640 850 mA

ICCSM Supply current (Suspend mode)
25 MHz
(CLK2 = 50 MHz) See Note 5 9 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0.4 or VCC–0.4 (CMOS levels). All inputs held static except CLK2 as indicated. All outputs unloaded
(static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

DC Electrical Characteristics

5-14

Table 5–14. TI486SXL-040 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL-040

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 5 mA 0.45 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.5

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 600 800 mA

ICCSM Supply current (Suspend mode)
20 MHz
(CLK2 = 40 MHz) See Note 5 10 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at nominal VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ input has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 DC Electrical Characteristics

5-15 Electrical Specifications

Table 5–15. TI486SXL2-050 Electrical Characteristics at Recommended Operating
 Conditions

P T C di i S N 1

TI486SXL2-050

U iParameter Test Conditions See Note 1 Min Typ Max Unit

VOL Low-level output voltage IOL = 5 mA 0.45 V

VOH High-level output voltage
IOH = –1 mA 2.4

VVOH High-level output voltage
IOH = –0.2 mA VCC–0.5

V

II Input current (leakage) VIN = 0, VIN � VCC See Note 2 ±15 µA

IIH
High-level input current at
PEREQ VIN = 2.4, See Note 3 200 µA

IIL Low-level input current VIL = 0.45 V, See Note 4 –400 µA

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 670 900 mA

ICCSM Supply current (Suspend mode)
25 MHz
(CLK2 = 50 MHz) See Note 5 10 mA

ICCSS Standby supply current
0 MHz, Suspended/CLK2 stopped,

See Note 5 0.1 1 mA

CI Input capacitance fc = 1 MHz, See Note 6 10 pF

CO Output or I/O capacitance fc = 1 MHz, See Note 6 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 6 20 pF

Notes: 1) Typical values are at nominal VCC = 3.3 V and TA = 25°C.

2) Applicable for all input terminals except those with an internal pullup resistor. See Table 5–1.

3) PEREQ input has an internal pulldown resistor.

4) Applicable for all inputs that have an internal pullup resistor. See Table 5–1.

5) All inputs at 0 or VCC. All inputs held static except CLK2 as indicated. All outputs unloaded (static IOUT = 0 mA).

6) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-16

5.5 AC Characteristics

The ac characteristics provide detailed information regarding measurement
points, specific requirements for setup and hold times, and propagation delay
times of the TI486SXL(C) microprocessors.

5.5.1 Measurement Points for AC Characteristics

The rising-clock-edge reference level VrefC, and other reference levels are
specified in Table 5–16 for the TI486SXL(C) family of microprocessors. Input
or output signals must cross these levels during testing.

Table 5–16.Measurement Points for AC Characteristics

Symbol TI486SXLC-V and TI486SXL-V TI486SXLC and TI486SXL Unit

VrefC 1.5 2 V

Vref 1.2 1.5 V

VIHC VCC–0.3 VCC–0.8 V

VILC 0.6 0.8 V

VIHD 2.3 3 V

VILD 0 0 V

Figure 5–2 and Figure 5–3 show delays (A and B) and input setup and hold
times (C and D). Input setup and hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window during which a synchro-
nous input signal must be stable for correct operation.

The TI486SXLC microprocessor outputs A23–A1, ADS#, BHE#, BLE#,
D/C#, HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the
beginning of phase one (Figure 5–2, �1). Outputs D15–D0 (write cycles) and
SUSPA# change at the beginning of phase two ���).

The TI486SXLC microprocessor inputs BUSY#, D15–D0 (read cycles), ER-
ROR#, FLT#, HOLD, PEREQ, and READY# are sampled at the beginning of
phase one (Figure 5–2, �1). Inputs A20M#, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two ���).

The TI486SXL microprocessor outputs A31–A2, ADS#, BE3# – BE0#, D/C#,
HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the begin-
ning of phase one (Figure 5–3, �1). Outputs D31–D0 (write cycles) and SUS-
PA# change at the beginning of phase two ���).

The TI486SXL microprocessor inputs BUSY#, D31–D0 (read cycles), ER-
ROR#, HOLD, PEREQ, and READY# are sampled at the beginning of phase 1
(Figure 5–3, �1). Inputs A20M#, BS16, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two ���).

 AC Characteristics

5-17 Electrical Specifications

Figure 5–2. TI486SXLC Drive Level and Measurement Points for AC Characteristics

�1 �2
Tx

VrefC Vref

B

A

Min

Max

Vref
Valid
Output n Vref

Valid
Output n+1

B Min

Max

Vref
Valid
Output n Vref

Valid
Output n+1

A

C D

Vref Vref
Valid
Input

VIHD

VILD

C D

Vref Vref
Valid
Input

VIHD

VILD

CLK2:

A23–A1, ADS#
BHE#, BLE#, D/C#,

 HLDA, LOCK#,
M/IO#, SMADS#,

SMI#, W/R#

D15–D0,
SUSPA#

A20M#,
FLUSH#,

INTR, KEN#,
NA#, NMI, SMI#,

SUSP#

BUSY#,
D15–D0,

ERROR#, FLT#,
HOLD, PEREQ,

READY#

Legend: A – Maximum Output Delay Specification
B – Minimum Output Delay Specification
C – Minimum Input Setup Specification
D – Minimum Input Hold Specificaton

OUTPUTS:

OUTPUTS:

INPUTS:

INPUTS:

AC Characteristics

5-18

Figure 5–3. TI486SXL Drive Level and Measurement Points for AC Characteristics

�1 �2

Tx

VrefC Vref

B

A

Min

Max

Vref
Valid
Output n Vref

Valid
Output n+1

B Min

Max

Vref
Valid
Output n Vref

Valid
Output n+1

A

C D

Vref Vref
Valid
Input

VIHD

VILD

C D

Vref Vref
Valid
Input

VIHD

VILD

CLK2:

A31–A2, ADS#
BE3#–BE0#, D/C#,

 HLDA, LOCK#,
M/IO#, SMADS#,

SMI#,W/R#

D31–D0, SUSPA#

A20M#, BS16,
FLUSH#, INTR,

KEN#, NA#, NMI,
SMI#, SUSP#

BUSY#, D31–D0,
ERROR#, HOLD,
PEREQ, READY#

Legend: A – Maximum Output Delay Specification
B – Minimum Output Delay Specification
C – Minimum Input Setup Specification
D – Minimum Input Hold Specificaton

OUTPUTS:

OUTPUTS:

INPUTS:

INPUTS:

 AC Characteristics

5-19 Electrical Specifications

5.5.2 CLK2 Timing Measurement Points

The CLK2 timing measurement points are illustrated in Figure 5–4 for the
TI486SXL(C) family of microprocessors.

Figure 5–4. CLK2 Timing Measurement Points

VIHC
VrefC

VILC
CLK2

T1

T2a

T2b

T5 T3b

T3a

T4

5.5.3 AC Data Characteristics Tables

Parametric ac characteristics include output delays, input setup requirements,
input hold requirements, and output float delays. These characteristics are
based on the measurement points identified in Figure 5–2 on page 5-17,
Figure 5–3 on page 5-18, and Figure 5–4.

AC Characteristics

5-20

5.5.3.1 AC Data for 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs

Table 5–17 covers the 3.3-V 40, 20-MHz TI486SXL-G40.

Table 5–18 on page 5-21 covers the 3.3-V 50-MHz TI486SXL2-G50.

Table 5–17.AC Characteristics for TI486SXL-G40 (See Note 1)

S b l P

TI486SXLG40

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 frequency range 32 40 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

12.5
5

3.25
5

3.25
4
4

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
3

12.5
12.5

17
ns

5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

3
3

12.5
17 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

3
3

12.5
12.5 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

3
3

17
17 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

5
2
3

20

14.5
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 3 17 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
2 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

5
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

5
3 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

5
3 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

4
2 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

4.5
2 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

5
5
5
5

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

5
3 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 3 V to 3.6 V, VCC5 = 4.75 V to 5.25 V or 3 V to 3.6 V, TC = 0 to 85 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 AC Characteristics

5-21 Electrical Specifications

Table 5–18. AC Characteristics for TI486SXL2-G50 (See Note 1)

S b l P

TI486SXL2-G50

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 clock-doubled frequency range 32 50 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

20
7
4
7
5

7
7

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
4

21
30
30

ns
5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

2.5
4

18
30 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

4
4

19
19 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

4
4

30
30 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

3.5
2
4

27

22
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 2 22 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
3.5 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

7
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

9
4 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

7
5 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

9
3.5 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

8
3 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

6
6
6
6

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

6
5 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 3 V to 3.6 V, VCC5 = 4.75 V to 5.25 V or 3 V to 3.6 V, TC = 0 to 85 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-22

5.5.3.2 AC Data for 3.3-Volt Microprocessors

Table 5–19 covers the 3.3-V 25-MHz TI486SXLC-V25.

Table 5–20 on page 5-23 covers the 3.3-V 40, 20 MHz TI486SXL-V40.

Table 5–21 on page 5-24 covers the 3.3-V 50 MHZ TI486SXL2-050.

Table 5–19. AC Characteristics for TI486SXLC-V25 (See Note 1)

S b l P

TI486SXLC-V25

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

20
7
4
7
5

7
7

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A23–A1 valid delay
SMI# valid delay
A23–A1 float delay

3
3
4

21
30
30

ns
5-7, 5-10
5-7, 5-10
5-10

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BHE#, BLE#, LOCK# valid delay
BHE#, BLE#, LOCK# float delay

2.5
4

18
30 ns 5-7, 5-10

5-10
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

4
4

19
19 ns 5-7, 5-10

5-7,5-10
CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

4
4

30
30 ns 5-10

5-10
Note 4
Note 4

T12
T12a
T13

D15–D0 write data, SUSPA# valid delay
D15–D0 write data hold time
D15–D0 write data, SUSPA# float delay

3.5
2
4

27

22
ns

5-7, 5-8
5-9
5-10

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 2 22 ns 5-10 CL = 50 pF

T15
T16

NA#, SUSP#, FLUSH#, KEN#, A20M# setup time
NA#, SUSP#, FLUSH#, KEN#, A20M# hold time

5
3.5 ns 5-6

5-6

T19
T20

READY# setup time
READY# hold time

9
4 ns 5-6

5-6

T21
T22

D15–D0 read data setup time
D15–D0 read data hold time

7
5 ns 5-6

5-6

T23
T24

HOLD setup time
HOLD hold time

9
3.5 ns 5-6

5-6

T25
T26

RESET setup time
RESET hold time

8
3 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

6
6
6
6

ns

5-6
5-6
5-6
5-6

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

6
5 ns 5-6

5-6
Note 7
Note 7

Notes: 1) VCC = 3 V to 3.6 V, TC = 0 °C to 85 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 AC Characteristics

5-23 Electrical Specifications

Table 5–20. AC Characteristics for TI486SXL-V40 (See Note 1)

S b l P

TI486SXL-V40

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 frequency range 32 40 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

12.5
5

3.25
5

3.25
4
4

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
3

12.5
12.5

17
ns

5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

3
3

12.5
17 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

3
3

12.5
12.5 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

3
3

17
17 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

5
2
3

20

14.5
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 3 17 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
2 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

5
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

5
3 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

5
3 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

4
2 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

4.5
2 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

5
5
5
5

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

5
3 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 3 V to 3.6 V, TC = 0 to 85 °C
Notes: 2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.

3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-24

Table 5–21. AC Characteristics for TI486SXL2-V50 (See Note 1)

S b l P

TI486SXL2-V50

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 clock-doubled frequency range 32 50 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

20
7
4
7
5

7
7

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
4

21
30
30

ns
5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

2.5
4

18
30 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

4
4

19
19 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

4
4

30
30 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

3.5
2
4

27

22
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 2 22 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
3.5 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

7
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

9
4 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

7
5 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

9
3.5 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

8
3 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

6
6
6
6

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

6
5 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 3 V to 3.6 V, TC = 0 to 85 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 AC Characteristics

5-25 Electrical Specifications

5.5.3.3 AC Data for 5-Volt Microprocessors

Table 5–22 covers the 5-V 40, 20 MHz TI486SXLC-040.

Table 5–23 on page 5-26 covers the 5-V 50 MHz TI486SXLC2-050.

Table 5–24 on page 5-27 covers the 5-V 40, 20 MHz TI486SXL-040.

Table 5–25 on page 5-28 covers the 5-V 50 MHz TI486SXL2-050

Table 5–22. AC Characteristics for TI486SXLC-040 (See Note 1)

S b l P

TI486SXLC-040

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 frequency range 32 40 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

12.5
5

3.25
5

3.25
4
4

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A23–A1 valid delay
SMI# valid delay
A23–A1 float delay

3
3
3

12.5
12.5

17
ns

5-7, 5-10
5-7, 5-10
5-10

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BHE#, BLE#, LOCK# valid delay
BHE#, BLE#, LOCK# float delay

3
3

12.5
17 ns 5-7, 5-10

5-10
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

3
3

12.5
12.5 ns

5-7, 5-10
5-7, 5-10

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

3
3

17
17 ns

5-10
5-10

Note 4
Note 4

T12
T12a
T13

D15–D0 write data, SUSPA# valid delay
D15–D0 write data hold time
D15–D0 write data, SUSPA# float delay

5
2
3

20

14.5
ns

5-7, 5-8
5-9
5-10

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 3 17 ns 5-10 CL = 50 pF

T15
T16

NA#, SUSP#, FLUSH#, KEN#, A20M# setup time
NA#, SUSP#, FLUSH#, KEN#, A20M# hold time

5
2 ns 5-6

5-6

T19
T20

READY# setup time
READY# hold time

5
3 ns 5-6

5-6

T21
T22

D15–D0 read data setup time
D15–D0 read data hold time

5
3 ns 5-6

5-6

T23
T24

HOLD setup time
HOLD hold time

4
2 ns 5-6

5-6

T25
T26

RESET setup time
RESET hold time

4.5
2 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

5
5
5
5

ns

5-6
5-6
5-6
5-6

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

5
3 ns 5-6

5-6
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 4.75 V to 5.25 V, TC = 0 to 100 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-26

Table 5–23. AC Characteristics for TI486SXLC2–050 (See Note 1)

S b l P

TI486SXLC2-050

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 clock-doubled frequency range 32 50 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

20
7
4
7
5

7
7

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A23–A1 valid delay
SMI# valid delay
A23–A1 float delay

4
4
4

21
30
30

ns
5-7, 5-10
5-7, 5-10
5-10

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BHE#, BLE#, LOCK# valid delay
BHE#, BLE#, LOCK# float delay

4
4

21
30 ns 5-7, 5-10

5-10
CL = 50 pF
Note 4

T10 ADS#, D/C#, M/IO#, W/R# valid delay 4 21
ns

5-7, 5-10 CL = 50 pF
T10a SMADS# valid delay 4 21

ns
5-7, 5-10 CL = 50 pF

T11 ADS#, D/C#, M/IO#, W/R# float delay 4 30
ns

5-10 Note 4
T11a SMADS# float delay 4 30

ns
5-10 Note 4

T12
T12a
T13

D15–D0 write data, SUSPA# valid delay
D15–D0 write data hold time
D15–D0 write data, SUSPA# float delay

7
2
4

27

22
ns

5-7, 5-8
5-9
5-10

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 4 22 ns 5-10 CL = 50 pF

T15
T16

NA#, SUSP#, FLUSH#, KEN#, A20M# setup time
NA#, SUSP#, FLUSH#, KEN#, A20M# hold time

5
3 ns 5-6

5-6

T19
T20

READY# setup time
READY# hold time

9
4 ns 5-6

5-6

T21
T22

D15–D0 read data setup time
D15–D0 read data hold time

7
5 ns 5-6

5-6

T23
T24

HOLD setup time
HOLD hold time

9
3 ns 5-6

5-6

T25
T26

RESET setup time
RESET hold time

8
3 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

6
6
6
6

ns

5-6
5-6
5-6
5-6

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

6
5 ns 5-6

5-6
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 4.75 V to 5.25 V, TC = 0 to 100 °C
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 AC Characteristics

5-27 Electrical Specifications

Table 5–24. AC Characteristics for TI486SXL-040 (See Note 1)

S b l P

TI486SXL-040

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 frequency range 32 40 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

12.5
5

3.25
5

3.25
4
4

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
3

12.5
12.5

17
ns

5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

3
3

12.5
17 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

3
3

12.5
12.5 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

3
3

17
17 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

5
2
3

20

14.5
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 3 17 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
2 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

5
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

5
3 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

5
3 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

4
2 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

4.5
2 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

5
5
5
5

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

5
3 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 4.75 V to 5.25 V, for TC see Table 5–6
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-28

Table 5–25. AC Characteristics for TI486SXL2-050 (See Note 1)

S b l P

TI486SXL2-050

U i Fi NSymbol Parameter MIN MAX Unit Figure Notes

CLK2 clock-doubled frequency range 32 50 MHz

T1
T2a
T2b
T3a
T3b
T4
T5

CLK2 period
CLK2 high time
CLK2 high time
CLK2 low time
CLK2 low time
CLK2 fall time
CLK2 rise time

20
7
4
7
5

7
7

ns

5-4
5-4
5-4
5-4
5-4
5-4
5-4

Note 2
Note 3
Note 3
Note 3
Note 3
Note 3
Note 3

T6
T6a
T7

A31–A2 valid delay
SMI# valid delay
A31–A2 float delay

3
3
4

21
30
30

ns
5-12, 5-15
5-12, 5-15
5-15

CL = 50 pF
CL = 50 pF
Note 4

T8
T9

BE3# – BE0#, LOCK# valid delay
BE3# – BE0#, LOCK# float delay

2.5
4

18
30 ns 5-12, 5-15

5-15
CL = 50 pF
Note 4

T10
T10a

ADS#, D/C#, M/IO#, W/R# valid delay
SMADS# valid delay

4
4

19
19 ns

5-12, 5-15
5-12, 5-15

CL = 50 pF
CL = 50 pF

T11
T11a

ADS#, D/C#, M/IO#, W/R# float delay
SMADS# float delay

4
4

30
30 ns

5-15
5-15

Note 4
Note 4

T12
T12a
T13

D31–D0 write data, SUSPA# valid delay
D31–D0 write data hold time
D31–D0 write data, SUSPA# float delay

3.5
2
4

27

22
ns

5-12, 5-13
5-14
5-15

CL = 50 pF,
Note 5
Notes 4, 6

T14 HDLA valid delay 2 22 ns 5-15 CL = 50 pF

T15
T16

A20M#, FLUSH#, KEN#, NA#, SUSP# setup time
A20M#, FLUSH#, KEN#, NA#, SUSP# hold time

5
3.5 ns 5-11

5-11

T17
T18

BS16# setup time
BS16# hold time

7
2 ns 5-11

5-11

T19
T20

READY# setup time
READY# hold time

9
4 ns 5-11

5-11

T21
T22

D31–D0 read data setup time
D31–D0 read data hold time

7
5 ns 5-11

5-11

T23
T24

HOLD setup time
HOLD hold time

9
3.5 ns 5-11

5-11

T25
T26

RESET setup time
RESET hold time

8
3 ns 5-5

5-5 Note 5

T27
T27a
T28
T28a

NMI, INTR setup time
SMI# setup time
NMI, INTR hold time
SMI# hold time

6
6
6
6

ns

5-10
5-10
5-10
5-10

Note 7
Note 7
Note 7
Note 7

T29
T30

PEREQ, ERROR#, BUSY# setup time
PEREQ, ERROR#, BUSY# hold time

6
5 ns 5-10

5-10
Note 7
Note 7

T31 Clock-doubled PLL lock time 20 �s Note 8

Notes: 1) VCC = 4.75 V to 5.25 V, for TC see Table 5–6
2) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz.
3) These parameters are not tested. They are determined by design characterization.
4) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses to assure recognition within a specific CLK2 period.
8) Delay time from setting CKD in CCR0 to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 AC Characteristics

5-29 Electrical Specfications

5.5.4 RESET Setup and Hold Timing

RESET setup and hold timing for the TI486SXL(C) family of microprocessors
are illustrated in Figure 5–5.

Figure 5–5. RESET Setup and Hold Timing

�1 or �2 �2

CLK2

T26

RESET

�1�1 or �2

T25

Reset Initialization Sequence

5.5.5 TI486SXLC Switching Waveforms

Switching waveforms for the TI486SXLC microprocessors are illustrated in
Figure 5–6, Figure 5–7, Figure 5–8, Figure 5–9, and Figure 5–10 on pages
5-29 through 5-31.

Figure 5–6. TI486SXLC Input Signal Setup and Hold Timing

�2

Tx

�2

Tx

�1 �1

Tx

T19 T20

T23 T24

T21 T22

T29 T30

T15 T16

T27,T27a T28,T28a

CLK2

READY#

HOLD

D15–D0

PEREQ, ERROR#,
BUSY#

NA#, SUSP#,
FLUSH#, KEN#,

A20M#

NMI, INTR, SMI#

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

AC Characteristics

5-30

Figure 5–7. TI486SXLC Output Signal Valid Delay Timing

�2

Tx

�2

Tx

�1 �1

Tx

CLK2

BHE#,
BLE#

LOCK#

ADS#,D/C#, M/IO#,
SMADS#, W/R#

A23–A1, SMI#

SUSPA#

T8
Min Max

Valid n Valid n+1

T10,T10a
Min Max

Valid n Valid n+1

T6,T6a
Min Max

Valid n Valid n+1

T12
Min Max

Valid n Valid n+1

Figure 5–8. TI486SXLC Data Write Cycle Valid Delay Timing

�1

T1

�1�2

CLK2

T12
Min Max

Valid

W/R#

D15–D0

 AC Characteristics

5-31 Electrical Specifications

Figure 5–9. TI486SXLC Data Write Cycle Hold Timing

�1

T1

�1�2

CLK2

T12a
Min

Valid n+1

W/R#

D15–D0 Valid n

Valid n+1

Figure 5–10. TI486SXLC Output Signal Float Delay and HLDA Valid
Delay Timing

�2
Th

�2�1

T9 Min

�1 �2
Ti or T1

Max T8 Min Max

T11,T11a Min Max
T10,T10a

Min Max

T7 Min Max
T6 Min Max

T13 Min Max T12 Min Max

T14 Min Max Min MaxT14

CLK2

BHE#, BLE#,
LOCK#

ADS#,D/C#,
M/IO#,SMADS#,

 W/R#

A23–A1

D15–D0 (Write
Data), SUSPA#

HLDA

AC Characteristics

5-32

5.5.6 TI486SXL Switching Waveforms

Switching waveforms for the TI486SXL microprocessors are illustrated in
Figure 5–11, Figure 5–12, Figure 5–13, Figure 5–14, and Figure 5–15 on
pages 5-32 through 5-34.

Figure 5–11. TI486SXL Input Signal Setup and Hold Timing

CLK2

READY#

HOLD

D31–D0

PEREQ, ERROR#,
BUSY#

NA#, SUSP#,
FLUSH#, KEN#,
NENW#, A20M#

BS16

NMI, INTR, SMI#

T27,T27a T28,T28a

�2

Tx

�2

Tx

�1 �1

Tx

T19 T20

T23 T24

T21 T22

T29 T30

T15, T32 T16, T33

T17 T18

 AC Characteristics

5-33 Electrical Specifications

Figure 5–12. TI486SXL Output Signal Valid Delay Timing

�2

Tx

�2

Tx

�1 �1

Tx

CLK2

BE3#–BE0#
LOCK#

ADS#, D/C#,
M/IO#, SMADS#,

W/R#

A31–A2, SMI#

SUSPA#

T8
Min Max

Valid n Valid n+1

T10
Min Max

Valid n Valid n+1

T6,T6a
Min Max

Valid n Valid n+1

T12
Min Max

Valid n Valid n+1

Figure 5–13. TI486SXL Data Write Cycle Valid Delay Timing

�1

T1

�1�2

CLK2

T12
Min Max

Valid

W/R#

D31–D0

AC Characteristics

5-34

Figure 5–14. TI486SXL Data Write Cycle Hold Timing

�1

T1

�1�2

CLK2

T12a
Min

Valid n+1

W/R#

D31–D0 Valid n

Valid n+1

Figure 5–15. TI486SXL Output Signal Float Delay and HLDA Valid Delay Timing

�2
Th

�2�1

T9 Min

�1 �2
Ti or T1

Max T8 Min Max

T11,T11a Min Max
T10,T10a Min Max

T7 Min Max T6 Min Max

T13 Min Max T12 Min Max

T14 Min Max Min MaxT14

CLK2

BE3#–BE0#,
LOCK#

ADS#, D/C#,
M/IO#, SMADS#,

W/R#

A31–A2

D31–D0
(Write Data),

SUSPA#

HLDA

6-1 Chapter Title—Attribute Reference

Mechanical Specifications

Mechanical specifications include pin assignments, package dimensions, and
thermal characteristics for each of the TI486SXL(C) microprocessors.

The TI486SXL(C) microprocessors are supplied in the following packages:

� 100-pin, thermally enhanced plastic quad flat package

� 132-pin, ceramic pin grid array package

� 144-pin, thermally enhanced plastic quad flat package

� 144-pin, ceramic quad flat package

� 168-pin, ceramic pin grid array package

Pin assignments provide both a pin locator drawing and two pin listings. One
pin listing is alphabetically by pin name and the other is (alpha)numerically by
pin number.

A pinout cross-reference, comparing industry-standard 486SX pinouts, is sup-
plied for the 168-pin package at the end of the pin-assignment data.

Industry-standard dimensioned drawings are supplied for each package.

Thermal characteristics are supplied for each package and includes airflow
measurement setup data for correlation purposes.

Topic Page

6.1 Pin Assignments 6-2.

6.2 Package Dimensions 6-13.

6.3 Thermal Characteristics 6-18.

Chapter 6

Terminal Assignments

6-2

6.1 Terminal Assignments

The terminal assignments for the TI486SXLC microprocessors are shown in
Figure 6–1. The signal names are shown in Table 6–1 sorted by terminal num-
bers and in Table 6–2 sorted by signal names.

Figure 6–1. TI486SXLC Terminal Assignments

10
0

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

D
1

D
2

V D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
23

A
22

A
21S

S
V

C
C

V
C

C

V
S

S
V

C
C

V
S

S
V

S
S

V
S

S

V C
C

LO
C

K
#

N
C

F
LT

#
K

E
N

#
F

LU
S

H
#

A20
A19
A18
A17
V
A16

A15
A14
A13

A12
A11
A10
A9
A8

A7
A6
A5
A4
A3
A2

CC

VCC
VSS
VSS

VSS

VCC

D0

A
20

M
#

R
E

S
E

T
B

U
S

Y
#

E
R

R
O

R
#

P
E

R
E

Q
N

M
I

V
C

C
IN

T
R

V
S

S
V C

C
S

U
S

P
#

S
U

S
P

A
#

V C
C

V
S

S
V

S
S

VSS
HLDA
HOLD

VSS
NA#

READY#
VCC
VCC
VCC
VSS
VSS
VSS
VSS

CLK2
ADS#
BLE#

A1
BHE#

SMADS#
VCC
VSS

M/IO#
D/C#
W/R#

(Top View)

S
M

I#
N

C

Terminal # 1 Index Mark
(On Top Side)

V
C

C
5

NC — Make no external connection

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

 Terminal Assignments

6-3 Mechanical Specifications

Table 6–1.TI486SXLC Signal Names Sorted by Terminal Number

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

D0
VSS
HLDA
HOLD
VSS
NA#
READY#
VCC
VCC
VCC
VSS
VSS
VSS
VSS
CLK2
ADS#
BLE#
A1
BHE#
SMADS#

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

VCC
VSS
M/IO#
D/C#
W/R#
LOCK#
NC
FLT#
KEN#
FLUSH#
A20M#
VCC
RESET
BUSY#
VSS
ERROR#
PEREQ
NMI
VCC
INTR

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

VSS
VCC
SUSP#
SUSPA#
VCC5
NC
SMI#
VCC
VSS
VSS
A2
A3
A4
A5
A6
A7
VCC
A8
A9
A10

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A11
A12
VSS
A13
A14
A15
VSS
VSS
VCC
A16
VCC
A17
A18
A19
A20
A21
VSS
VSS
A22
A23

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

D15
D14
D13
VCC
VSS
D12
D11
D10
D9
D8
VCC
D7
D6
D5
D4
D3
VCC
VSS
D2
D1

Table 6–2.TI486SXLC Terminal Numbers Sorted by Signal Name

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20

18
51
52
53
54
55
56
58
59
60
61
62
64
65
66
70
72
73
74
75

A21
A22
A23
ADS#
A20M#
BHE#
BLE#
BUSY#
CLK2
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

76
79
80
16
31
19
17
34
15
1

100
99
96
95
94
93
92
90
89
88

D11
D12
D13
D14
D15
D/C#
ERROR#
FLT#
FLUSH#
HOLD
HLDA
INTR
KEN#
LOCK#
M/IO#
NA#
NMI
NC
VCC5
NC

87
86
83
82
81
24
36
28
30
4
3
40
29
26
23
6
38
27
45
46

PEREQ
READY#
RESET
SMADS#
SMI#
SUSP#
SUSPA#
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC

37
7
33
20
47
43
44
8
9
10
21
32
39
42
48
57
69
71
84
91

VCC
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
W/R#

97
2
5
11
12
13
14
22
35
41
49
50
63
67
68
77
78
85
98
25

NC — Make no external connection

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

Terminal Assignments

6-4

The terminal assignments for the 132-pin PGA TI486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6–2 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6–3. The signal names are listed in Table 6–3 and Table 6–4 sorted by
terminal number and signal name, respectively.

Figure 6–2. 132-Pin PGA TI486SXL Package Terminals (Bottom View)

VCC

SMI#

VSS A8 A11 A14 A15 A16 A17 A20 A21 A23 A26 A27 A30

VSS A5 A7 A10 A13 VSS VCC A18 VSS A22 A24 A29 A31 VCC

A3 A4 A6 A9 A12 VSS VCC A19 VSS A25 A28 VCC VSS D30

SUSP# SUSPA# A2

VCC VSS VCC

VSS SMADS#

VCC INTR

ERROR# NMI PEREQ

VSS BUSY# RESET

VCC W/R# LOCK#

D/C# VSS VSS

M/IO# KEN# VCC VCC BE0# VCC D0 VSS D7 VCC D10 D12 D14

BE3# BE2# BE1# NA# FLUSH# A20M# READY# D1 VSS D5 D8 VCC D11 D13

VCC VSS BS16#

CLK2

HOLD ADS# VSS VCC D2 D3 D4 D6 HLDA D9 VSS

VSS VCC D29

D31 D27 D26

D28 D25 VSS

VCC VCC D24

VSS D23 VCC

D20 D21 D22

VSS D17 D19

D15 D16 D18

A B C D E F G H J K L M N P

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Terminal # 1 Index Mark
(On Top Side)

TI486SXL
(Bottom View)

NC

NC — Make no external connection

 Terminal Assignments

6-5 Mechanical Specifications

Figure 6–3. 132-Pin PGA TI486SXL Package Terminals (Top View)

VCC

SMI#

VSSA8A11A14A15A16A17A20A21A23A26A27A30

VSSA5A7A10A13VSSVCCA18VSSA22A24A29A31VCC

A3A4A6A9A12VSSVCCA19VSSA25A28VCCVSSD30

SUSP#SUSPA#A2

VCCVSSVCC

VSSNCSMADS#

VCCINTR

ERROR#NMIPEREQ

VSSBUSY#RESET

VCCW/R#LOCK#

D/C#VSSVSS

M/IO#KEN#VCCVCCBE0#VCCD0VSSD7VCCD10D12D14

BE3#BE2#BE1#NA#FLUSH#A20M#READY#D1VSSD5D8VCCD11D13

VCCVSSBS16#

CLK2

HOLDADS#VSSVCCD2D3D4D6HLDAD9VSS

VSSVCCD29

D31D27D26

D28D25VSS

VCCVCCD24

VSSD23VCC

D20D21D22

VSSD17D19

D15D16D18

ABCDEFGHJKLMNP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Terminal # 1 Index Mark
(On Top Side)

TI486SXL
(Top View)

NC — Make no external connection

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

Terminal Assignments

6-6

Table 6–3.132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
B1
B2
B3
B4
B5
B6
B7
B8

VCC
VSS
A3
SUSP#
VCC
VSS
VCC
ERROR#
VSS
VCC
D/C#
M/IO#
BE3#
VCC
VSS
A5
A4
SUSPA#
VSS
NC
INTR
NMI

B9
B10
B11
B12
B13
B14
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
D1
D2

BUSY#
W/R#
VSS
KEN#
BE2#
VSS
A8
A7
A6
A2
VCC
SMADS#
SMI#
PEREQ
RESET
LOCK#
VSS
VCC
BE1#
BS16#
A11
A10

D3
D12
D13
D14
E1
E2
E3
E12
E13
E14
F1
F2
F3
F12
F13
F14
G1
G2
G3
G12
G13
G14

A9
VCC
NA#
HOLD
A14
A13
A12
BE0#
FLUSH#
ADS#
A15
VSS
VSS
CLK2
A20M#
VSS
A16
VCC
VCC
VCC
READY#
VCC

H1
H2
H3
H12
H13
H14
J1
J2
J3
J12
J13
J14
K1
K2
K3
K12
K13
K14
L1
L2
L3
L12

A17
A18
A19
D0
D1
D2
A20
VSS
VSS
VSS
VSS
D3
A21
A22
A25
D7
D5
D4
A23
A24
A28
VCC

L13
L14
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
N1
N2
N3
N4
N5
N6

D8
D6
A26
A29
VCC
VSS
D31
D28
VCC
VSS
D20
VSS
D15
D10
VCC
HLDA
A27
A31
VSS
VCC
D27
D25

N7
N8
N9
N10
N11
N12
N13
N14
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14

VCC
D23
D21
D17
D16
D12
D11
D9
A30
VCC
D30
D29
D26
VSS
D24
VCC
D22
D19
D18
D14
D13
VSS

NC — Make no external connection

Table 6–4.132-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A20M#
A21
A22

C4
A3
B3
B2
C3
C2
C1
D3
D2
D1
E3
E2
E1
F1
G1
H1
H2
H3
J1

F13
K1
K2

A23
A24
A25
A26
A27
A28
A29
A30
A31
ADS#
BE0#
BE1#
BE2#
BE3#
BS16#
BUSY#
CLK2
D/C#
D0
D1
D2
D3

L1
L2
K3
M1
N1
L3
M2
P1
N2
E14
E12
C13
B13
A13
C14
B9
F12
A11
H12
H13
H14
J14

D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25

K14
K13
L14
K12
L13
N14
M12
N13
N12
P13
P12
M11
N11
N10
P11
P10
M9
N9
P9
N8
P7
N6

D26
D27
D28
D29
D30
D31
ERROR#
FLUSH#
HLDA
HOLD
INTR
KEN#
LOCK#
M/IO#
NA#
NMI
NC
PEREQ
READY#
RESET
SMI#
SMADS#

P5
N5
M6
P4
P3
M5
A8
E13
M14
D14
B7
B12
C10
A12
D13
B8
B6
C8

G13
C9
C7
C6

SUSP#
SUSPA#
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC

A4
B4
A1
A5
A7
A10
A14
C5
C12
D12
G2
G3
G12
G14
L12
M3
M7
M13
N4
N7
P2
P8

VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
W/R#

A2
A6
A9
B1
B5
B11
B14
C11
F2
F3
F14
J2
J3
J12
J13
M4
M8
M10
N3
P6
P14
B10

NC — Make no external connection

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

 Terminal Assignments

6-7 Mechanical Specifications

The terminal assignments for the 144-pin, QFP TI486SXL microprocessors
are shown as viewed from the top side (component side when mounted on a
PC board) in Figure 6–4. The signal names are listed in Table 6–5 and
Table 6–6 sorted by terminal number and signal name, respectively.

Figure 6–4. 144-Pin QFP TI486SXL Package Terminals (Top View)

W/R#37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109

D
0

D
24

D
25

V
H

LD
A

H
O

LD

N
A

#
R

E
A

D
Y

#

D
28

D
29

D
30

D
31

C
LK

2
A

D
S

#
B

E
0#

B
E

1#
S

M
A

D
S

#

B
E

2#
B

E
3#

M
/IO

#
D

/C
#

W
/R

#

C
C

V C
C

V C
C

V C
C

V C
C

LOCK#
NC
FLT#
KEN#
FLUSH#
A20M#
VCC
RESET
BUSY#
NC/VCC5†
VSS
ERROR#
PEREQ
NMI
VCC
INTR
VSS
VCC
VCC
VSS
A27
A26
A25
A24
VCC
SUSP#
SUSPA#
NC
MEMW#
SMI#
VCC
VSS
VSS
NC
VSS

A
19

A
18

A
17

D
20

D
21

D
22

D
23

A
15

A
14

A
12

A
11

A
10

A
9

A
8

A
28

A
29

A
30

A
31

A
7

A
6

A
5

A
4

A
3

A
2C

C
V

C
C

V

C
C

VA
13C

C
V

C
C

VA
16C

C
V

D1
D2

D26
D27
VSS
VCC

NC
D3
D4
D5
D6
D7

VCC
D8
D9

D10
D11
D12
VSS
VCC
D16
D17
D18
D19
VSS
VCC
D13
D14
D15

BS16#
A23
A22
VSS
VSS
A21
A20

1 2 3 7 8 9 10 12 13 14 15 19 20 21 22 23 25 26 27 28 29 31 32 33 34 35 36171654 6 11 18 24 30

10
8

10
7

10
6

10
5

10
3

10
2

10
1

10
0 99 97 96 95 94 91 90 89 88 87 86 85 84 83 82 81 80 78 77 76 75 74 737992939810
4

TI486SXL

Terminal # 1 Index Mark
(On Top Side)

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

V
S

S

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Terminal Assignments

6-8

Table 6–5.144-Pin QFP TI486SXL Signal Names Sorted by Terminal Number

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

D0
VSS
D24
D25
VCC
HLDA
HOLD
VSS
NA#
READY#
VCC
D28
D29
D30
D31
VCC
VCC
VSS
VSS
VSS
VSS
VSS
VSS
VSS

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CLK2
ADS#
BE0#
BE1#
SMADS#
VCC
BE2#
BE3#
VSS
M/IO#
D/C#
W/R#
W/R#
LOCK#
NC
FLT#
KEN#
FLUSH#
A20M#
VCC
RESET
BUSY#
NC/VCC5†
VSS

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

ERROR#
PEREQ
NMI
VCC
INTR
VSS
VCC
VCC
VSS
A27
A26
A25
A24
VCC
SUSP#
SUSPA#
NC
MEMW#
SMI#
VCC
VSS
VSS
NC
VSS

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

A2
A3
A4
A5
A6
A7
VCC
VSS
A31
A30
A29
A28
VCC
A8
A9
A10
A11
A12
VCC
VSS
A13
A14
A15
VSS

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

VSS
VCC
D23
D22
D21
D20
VCC
A16
VCC
A17
A18
A19
A20
A21
VSS
VSS
A22
A23
BS16#
D15
D14
D13
VCC
VSS

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

D19
D18
D17
D16
VCC
VSS
D2
D11
D10
D9
D8
VCC
D7
D6
D5
D4
D3
NC
VCC
VSS
D27
D26
D2
D1

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Table 6–6. 144-Pin QFP TI486SXL Terminal Numbers Sorted by Signal Name

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A20M#
A21
A22
A23
A24

73
74
75
76
77
78
86
87
88
89
90
93
94
95
104
106
107
108
109
43
110
113
114
61

A25
A26
A27
A28
A29
A30
A31
ADS#
BE0#
BE1#
BE2#
BE3#
BS16#
BUSY#
CLK2
D/C#
D0
D1
D2
D3
D4
D5
D6
D7

60
59
58
84
83
82
81
26
27
28
31
32
115
48
25
35
1

144
143
137
136
135
134
133

D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

131
130
129
128
127
118
117
116
124
123
122
121
102
101
100
99
3
4

142
141
12
13
14
15

ERROR#
FLT#
FLUSH#
HLDA
HOLD
INTR
KEN#
LOCK#
M/IO#
MEMW#
NA#
NMI
NC
NC/VCC5†
NC
NC
NC
PEREQ
READY#
RESET
SMI#
SMADS#
SUSP#
SUSPA#

49
40
42
6
7
53
41
38
34
66
9
51
39
47
65
71
138
50
10
45
67
29
63
64

VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VSS
VSS
VSS

5
11
16
17
30
44
52
55
56
62
68
79
85
91
98
103
105
119
125
132
139
2
8
18

VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
W/R#
W/R#

19
20
21
22
23
24
33
48
54
57
69
70
72
80
92
96
97
111
112
120
126
140
36
37

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

 Terminal Assignments

6-9 Mechanical Specifications

The terminal assignments for the 168-pin, PGA TI486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6–5 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6–6. The signal names are listed in Table 6–7 and Table 6–8 sorted by
terminal number and signal name, respectively. In addition, Table 6–9 shows
a cross-reference between the 168-pin TI486SXL pinout and the 486SX pin-
out.

Figure 6–5. 168-Pin PGA TI486SXL Package Terminals (Bottom View)

RESET

NA# SUSP#

MEMW#

FLUSH#

SMADS#

READY#

SUSPA#ERROR#

PEREQ

A20M#

D9 VSS NC VSS D2 D0 A31 A28 A27

D13 D8 D3 D5 VCC D6 VCC D1 A29 A25 A26

D17 D10 D15 D12 NC D16 D14 D7 D4 NC A30 A17 VCC A23

A5 A11

A7 A8 A10

A2 VSS

A19 VSS BUSY#

A21 A18 A14

A24 VSS

A22

VCC

A12

A20 VSS

A16

A13

A9

A B C D E F G H J K L M N P

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Terminal # 1 Index Mark
(On Top Side)

TI486SXL
(Bottom View)

KEN# NC BE0# NC D/C# LOCK# HLDA NC A3 A6

NC VCC BE1# VCC M/IO# VCC NC A4

VSS BE3#

BE2#

NC VSS W/R# ADS#

15

16

17

D20

D26

D19 D11

D22 D21 D18

NC VSS CLK2

D23 VSS

NC VSS VCC

D24 D25 D27

VSS VCC

D29 D31 D28

VSS D30

Res
erved SMI# NC

VSS VCC FLT#

NC NC

NMI

INTR

NC BS16#

Q R S

VCC

NC

NC

VCC

NC

VCC

VCC

VCC

VSS

VSS

NC

VCC

VSS

VCC/
VCC5† VSS

VCC

VSS

VCC

VSS

VSS

VSS VSS

VSS

NC

NC

A15

VCC

VCC

VCC

VCC

VCC

VSS

VSS

VSS

VSSNC

HOLD

NC

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Terminal Assignments

6-10

Figure 6–6. 168-Pin PGA TI486SXL Package Terminals (Top View)

A20M#

SMADS#

RESET

PEREQ

FLUSH#

SUSPA# ERROR#

MEMW#

D9VSSNCVSSD2D0A31A28A27

D13D8D3D5VCCD6VCCD1A29A25A26

D17D10D15D12NCD16D14D7D4NCA30A17VCCA23

A5A11

A7A8A10

A2VSS

A19VSSBUSY#

A21A18A14

A24VSS

A22

VCC

A12

A20VSS

A16

A13

A9

ABCDEFGHJKLMNP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Terminal # 1 Index Mark
(On Top Side)

TI486SXL
(Top View)

HOLDKEN#NCBE0#NCD/C#LOCK#HLDANCA3A6

NCREADY#VCCBE1#VCCM/IO#VCCNCA4

VSSBE3#

BE2#

NCVSSW/R#ADS#

15

16

17

D20

D26

D19D11

D22D21D18

NCVSSCLK2

D23VSS

NCVSSVCC

D24D25D27

VSSVCC

D29D31D28

VSSD30

Res
erved

SMI#NC

VSSVCCFLT#

NC

NA#SUSP#

NCNCNC

NMI

INTR

NCBS16#

QRS

VCC

NC

NC

VCC

NC

VCC

VCC

VCC

VSS

VSS

NC

VCC

VSS

VSS

VCC

VSS

VCC

VSS

VSS

VSSVSS

VSS

NC

NC

A15

VCC

VCC

VCC

VCC

VCC

VSS

VSS

VSS

VSS

VCC/
VCC5†

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Note:

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

 Terminal Assignments

6-11 Mechanical Specifications

Table 6–7.168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

D20
D22
NC
D23
NC
D24
VSS
D29
VSS
Reserved
VSS
ERROR#
NA#
NC
NMI
INTR
NC
D19
D21
VSS
VSS
VSS
D25
VCC
D31
VCC
SMI#
VCC

B12
B13
B14
B15
B16
B17
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
D1
D2
D3
D15
D16

SUSPA#
SMADS#
NC
NC
MEMW#
NC
D11
D18
CLK2
VCC
VCC
D27
D26
D28
D30
NC
FLT#
NC
SUSP#
NC
FLUSH#
RESET
BS16#
D9
D13
D17
A20M#
NC

D17
E1
E2
E3
E15
E16
E17
F1
F2
F3
F15
F16
F17
G1
G2
G3
G15
G16
G17
H1
H2
H3
H15
H16
H17
J1
J2
J3

NC
VSS
VCC
D10
HOLD
VCC
VSS
NC
D8
D15
KEN#
READY#
BE3#
VSS
VCC
D12
NC
VCC
VSS
VSS
D3
NC
NC
VCC
VSS
VCC(5†)
D5
D16

J15
J16
J17
K1
K2
K3
K15
K16
K17
L1
L2
L3
L15
L16
L17
M1
M2
M3
M15
M16
M17
N1
N2
N3
N15
N16
N17
P1

BE2#
BE1#
NC
VSS
VCC
D14
BE0#
VCC
VSS
VSS
D6
D7
NC
VCC
VSS
VSS
VCC
D4
D/C#
VCC
VSS
D2
D1
NC
LOCK#
M/IO#
W/R#
D0

P2
P3
P15
P16
P17
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
R1
R2
R3
R4
R5
R6

A29
A30
HLDA
VCC
VSS
A31
VSS
A17
A19
A21
A24
A22
A20
A16
A13
A9
A5
A7
A2
NC
NC
NC
A28
A25
VCC
VSS
A18
VCC

R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17

A15
VCC
VCC
VCC
VCC
A11
A8
VCC
A3
NC
PEREQ
A27
A26
A23
BUSY#
A14
VSS
A12
VSS
VSS
VSS
VSS
VSS
A10
VSS
A6
A4
ADS#

Table 6–8. 168-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

Signal
Name

Term.
No.

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A20M#
A21
A22
A23
A24
A25
A26
A27
A28

Q14
R15
S16
Q12
S15
Q13
R13
Q11
S13
R12
S7

Q10
S5
R7
Q9
Q3
R5
Q4
Q8
D15
Q5
Q7
S3
Q6
R2
S2
S1
R1

A29
A30
A31
ADS#
BE0#
BE1#
BE2#
BE3#
BS16#
BUSY#
CLK2
D/C#
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

P2
P3
Q1
S17
K15
J16
J15
F17
C17
S4
C3

M15
P1
N2
N1
H2
M3
J2
L2
L3
F2
D1
E3
C1
G3
D2
K3
F3

D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
ERROR#
FLT#
FLUSH#
HLDA
HOLD
INTR
KEN#
LOCK#
M/IO#
MEMW#
NA#
NMI

J3
D3
C2
B1
A1
B2
A2
A4
A6
B6
C7
C6
C8
A8
C9
B8
A12
C11
C15
P15
E15
A16
F15
N15
N16
B16
A13
A15

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
PEREQ
READY#
Reserved
RESET
SMI#

A3
A5
A14
A17
B14
B15
B17
C10
C12
C14
D16
D17
F1

G15
H3
H15
J17
L15
N3

Q15
Q16
Q17
R16
R17
F16
A10
C16
B10

SMADS#
SUSP#
SUSPA#
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC(5†)
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VSS

B13
C13
B12
B7
B9
B11
C4
C5
E2
E16
G2
G16
H16
J1
K2
K16
L16
M2
M16
P16
R3
R6
R8
R9
R10
R11
R14
A7

VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
W/R#

A9
A11
B3
B4
B5
E1
E17
G1
G17
H1
H17
K1
K17
L1
L17
M1
M17
P17
Q2
R4
S6
S8
S9
S10
S11
S12
S14
N17

NC — Make no external connection
† This pin is VCC5 for the TI486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Terminal Assignments

6-12

Ta
bl

e
6–

9.
T

I4
86

S
X

L
S

ig
na

l S
um

m
ar

y
fo

r
16

8-
P

in
 P

G
A

 P
in

ou
t

A
dd

re
ss

D
at

a
C

on
tr

ol
M

is
ce

lla
ne

ou
s

an
d

S
pa

re
s

V
C

C
/V

S
S

48
6S

X
48

6S
X

L
P

in
48

6S
X

48
6S

X
L

P
in

48
6S

X
48

6S
X

L
P

in
48

6S
X

48
6S

X
L

P
in

48
6S

X
48

6S
X

L
P

in

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

A
31

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

A
29

A
30

A
31

Q
14

R
15

S
16

Q
12

S
15

Q
13

R
13

Q
11

S
13

R
12

S
7

Q
10

S
5

R
7

Q
9

Q
3

R
5

Q
4

Q
8

Q
5

Q
7

S
3

Q
6

R
2

S
2

S
1

R
1

P
2

P
3

Q
1

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

D
25

D
26

D
27

D
28

D
29

D
30

D
31

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

D
25

D
26

D
27

D
28

D
29

D
30

D
31

P
1

N
2

N
1

H
2

M
3

J2 L2 L3 F
2

D
1

E
3

C
1

G
3

D
2

K
3

F
3

J3 D
3

C
2

B
1

A
1

B
2

A
2

A
4

A
6

B
6

C
7

C
6

C
8

A
8

C
9

B
8

A
20

M
#

A
D

S
#

A
H

O
LD

B
E

0#
B

E
1#

B
E

2#
B

E
3#

B
LA

S
T

#
B

O
F

F
#

B
R

D
Y

#
B

R
E

Q
#

B
S

8#
B

S
16

#
C

LK
D

/C
#

D
P

0
D

P
1

D
P

2
D

P
3

E
A

D
S

#
F

LU
S

H
#

H
LD

A
H

O
LD

IN
T

R
K

E
N

#
LO

C
K

#
M

/IO
#

N
M

I
P

C
D

P
C

H
K

#
P

W
T

P
C

LO
K

#
R

D
Y

#
R

E
S

E
T

W
/R

#

A
20

M
#

A
D

S
#

N
C

B
E

0#
B

E
1#

B
E

2#
B

E
3#

N
C

N
C

N
C

N
C

N
C

B
S

16
#

C
LK

2
D

/C
#

N
C

N
C

N
C

N
C

N
C

F
LU

S
H

#
H

LD
A

H
O

LD
IN

T
R

K
E

N
#

LO
C

K
#

M
/IO

#
N

M
I

N
C

N
C

N
C

N
C

R
E

A
D

Y
#

R
E

S
E

T
W

/R
#

D
15

S
17

A
17

K
15

J1
6

J1
5

F
17

R
16

D
17

H
15

Q
15

D
16

C
17

C
3

M
15

N
3

F
1

H
3

A
5

B
17

C
15

P
15

E
15

A
16

F
15

N
15

N
16

A
15

J1
7

Q
17

L1
5

Q
16

F
16

C
16

N
17

C
LK

S
E

L(
LP

)
R

es
er

ve
d

N
C

N
C

T
D

I (S
/D

X
)

S
M

I#
(S

)
N

C
N

C
T

M
S

N
M

I (D
X

)
T

D
O

(S
/D

X
)

S
R

E
S

E
T

(S
)

U
P

#(
S

)
S

M
IA

C
T

#(
S

)
N

C
F

E
R

R
(

D
X

)
S

T
P

C
LK

(S
)

N
C

N
C

N
C

R
es

er
ve

d
E

R
R

O
R

#
N

A
#

N
C

S
M

I#
S

U
S

P
A

#
S

M
A

D
S

#
N

C
N

C
M

E
M

W
#

N
C

F
LT

#
N

C
S

U
S

P
#

N
C

N
C

P
E

R
E

Q
B

U
S

Y
#

A
3

A
10

A
12

A
13

A
14

B
10

B
12

B
13

B
14

B
15

B
16

C
10

C
11

C
12

C
13

C
14

G
15

R
17

S
4

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C
V

C
C

5(
D

X
4)

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C
V

C
C

(5
†
)

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

V
S

S
V

S
S

B
7,

 B
9

B
11

, C
4

C
5,

 E
2

E
16

, G
2

G
16

, H
16

J1 K
2

K
16

, L
16

M
2,

 M
16

P
16

, R
3

R
6,

 R
8

R
9,

 R
10

R
11

, R
14

A
7,

 A
9

A
11

, B
3

B
4,

 B
5

E
1,

 E
17

G
1,

 G
17

H
1,

 H
17

K
1,

 K
17

L1
, L

17
M

1,
 M

17
P

17
, Q

2
R

4,
 S

6
S

8,
 S

9
S

10
, S

11
S

12
, S

14

(L
P

)
=

 L
ow

 P
ow

er
. (

S
)

=
 4

86
S

X
, (

D
X

)
=

 4
86

D
X

, a
nd

 (
D

X
4)

 =
 4

86
D

X
4

†
T

hi
s

pi
n

is
 V

C
C

5
fo

r
th

e
T

I4
86

S
X

L-
G

40
 a

nd
 T

I4
86

S
X

L2
-G

50
. I

t i
s

V
C

C
 fo

r
al

l o
th

er
 d

ev
ic

es
.

 Package Dimensions

6-13 Mechanical Specifications

6.2 Package Dimensions

Figure 6–7 shows the package dimensions for the 100-pin TI486SXLC
microprocessor.

Figure 6–8 shows the package dimensions for the132-pin PGA TI486SXL.

Figure 6–9 and Figure 6–10 show the package dimensions for the 144-pin
QFP TI486SXL.

Figure 6–11 shows the package dimensions for the 168-pin PGA TI486SXL.

Figure 6–7. 100-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC)

PJF(S-PQFP-G100) PLASTIC QUAD FLATPACK

0.600 (15,24)

0.020 (0,51) MIN

0.180 (4,57) MAX

0.006 (0,15) TYP

0.012 (0,30)
0.008 (0,20)

0.766 (19,46)
0.734 (18,64)

Seating Plane
0.004 (0,10)

0°–�8°

1 25

26

50

75 51

76

100

4040093/A 10/93

0.025 (0,64)

M0.006 (0,15)

0.151 (3,81)
0.130 (3,30)

0.046 (1,17)
0.036 (0,91)

SQ

0.890 (22,61)
0.870 (22,10)

SQ

0.912 (23,16)
0.888 (22,56)

SQ

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-069
D. Thermally enhanced molded plastic package with a heat slug (HSL) exposed on bottom side of the package body.

Package Dimensions

6-14

Figure 6–8. 132-Pin Ceramic PGA Package Dimensions (TI486SXL)

A B C D E F G H J K L M N P

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Pin # 1 Index Mark
(On Top Side)

1,
27

 (0
.0

50
)

3,
81

 (0
.1

50
)

6,
35

 (0
.2

50
)

8,
89

 (0
.3

50
)

11
,4

 (0
.4

50
)

14
,0

 (0
.5

50
)

16
,5

 (0
.6

50
)

18
,4

 (0
.7

25
)

0

0

18,4 (0.725)
16,5 (0.650)

14,0 (0.550)

11,4 (0.450)

8,89 (0.350)

6,35 (0.250)

3,81 (0.150)

1,27 (8.050)

36,83 (1.450)

1,65 (0.065)
Swedge Pin

Standoff (4) Places

1,27 (0.50)
MAX TYP

0,47 (0.0180)

3,05 (0.120)

4,57 (0.180)

0,025 (0.001)R
MIN TYP

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

CERAMIC PIN GRID ARRAYCPGA-132 PIN

7/94

TI486SXL
(BOTTOM VIEW)

NOTES: E. All linear dimensions are in millimeters (inches).
F. This drawing is subject to change without notice.

 Package Dimensions

6-15 Mechanical Specifications

Figure 6–9. 144-Pin Plastic QFP Dimensions (TI486SXL)

3,60
3,20

37

72

361

144

109

73108

0°–7° MAX

0,73
1,03

Seating plane

0,16 TYP

4,10 MAX

0,25 MIN

PLASTIC QUAD FLATPACKPCE(S-PQFP–G144)

31,45
30,95

22,75 SQ TYP

SQ

SQ
28,20
27,80

Seating Plane
(0,10)

7/94

M0,13
0,38
0,22

0,65

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022
D. Thermally enhanced molded plastic package with a heat spreader (HSP)
E. Foot length is measured from lead tip to a position on backside of lead 0,25mm above seating plane (gage plane).

Package Dimensions

6-16

Figure 6–10. 144-Pin Ceramic QFP Dimensions (TI486SXL)

HBN (S-CQFP-G 144) CERAMIC QUAD FLATPACK

9/94

0,95
0,65

0°–7°

108 73

109

144

1 36

22,75 TYP

72

37

0,16 NOM

SQ

4,07 MAX

3,42 TYP28,00
27,45

0,30 TYP

0,25 MIN

Seating Plane

0,10

0,65

30,95
31,45

SQ

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

 Package Dimensions

6-17 Mechanical Specifications

Figure 6–11. 168-Pin Ceramic PGA Package Dimensions (TI486SXL)

CERAMIC PIN GRID ARRAYCPGA-168 PIN

44,5 (1.75) TYP

4.0 (0.160) TYP

2,54 (0.100) TYP
2,92 (0.115) TYP

0,46 (0.018) TYP

40,64 (1.60) TYP

A

B
C
D
E
F
G
H
J
K
L
M

N
P
Q
R
S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

7/94

NOTES: A. All linear dimensions are in millimeters (inches).
B. This drawing is subject to change without notice.

Thermal Characteristics

6-18

6.3 Thermal Characteristics

The junction-to-ambient (typical) values vary for individual applications. Tha
variance depends on the following factors:

� Circuit trace density of the printed circuit board (PCB) and/or the presence
or absence of ground or power planes internal to the PCB. These factors
affect the conduction of heat away from the device.

� Whether the device is soldered to the PCB or is inserted into a socket

� Orientation of the PCB that the device is mounted on and the proximity of
adjacent PCBs or system enclosure. These factors impede the natural
convection air circulation around the device.

� Ambient air temperature in close proximity to the device and the proximity
of other high-power devices in the system

� Presence of airflow over the device and the attachment of an external heat
sink as indicated by the data in Table 6–10 and Table 6–11

For the 100-pin and 144-pin QFPs, the values shown for thermal resistance
in Table 6–10 and Table 6–12 with a heatsink are examples of the estimated
improvement in thermal performance.

Note:

You are responsible for verifying your designs that incorporate any version
of a TI microprocessor. Recommended case temperature extremes are
specified in Table 5–4, Table 5–5, and Table 5–6.

Table 6–10.TI486SXLC 100-Pin PQFP Thermal Resistance and Airflow

Ai fl (F /Mi)

TI486SXLC 100-Pin PGFP Thermal Resistance (°C/W)

Ai fl (F /Mi)

Without Heatsink With Heatsink †

Airflow (Ft/Min) RθJC RθJA RθJA

0 2 36 32

100 2 32 24

200 2 26 18

400 2 19 14

600 2 15 12

† Round, omni-directional heatsink. Dimensions are approximately 1.125 in diameter by 0.42 in
high.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 Thermal Characteristics

6-19 Mechanical Specifications

Table 6–11. TI486SXL 132-Pin CPGA Thermal Resistance and Airflow

Ai fl (F /Mi)

TI486SXL 132-Pin CPGA † Thermal Resistance
(°C/W)

Airflow (Ft/Min) RθJC RθJA

0 3 20

100 3 17

200 3 15

400 3 11

600 3 9

† Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

Table 6–12.TI486SXL 144-Pin PQFP Thermal Resistance and Airflow

Ai fl (F /Mi)

TI486SXL 144-Pin PQFP ‡ Thermal Resistance (°C/W)

Ai fl (F /Mi)

Without Heatsink With Heatsink §

Airflow (Ft/Min) RθJC RθJA RθJA

0 2 25 18

100 2 21 13

200 2 19 9

400 2 14 7

600 2 12 6

‡ Values shown are based on measurements made on similar 28 mm QFP packages.
§ Pin-Fin heatsink. Dimensions are approximately 1.2” long, by 1.3” wide, by 0.49” high.

Table 6–13.TI486SXL 144-Pin CQFP Thermal Resistance and Airflow

Ai fl (F /Mi)

TI486SXL 144-Pin CQFP ¶ Thermal Resistance
(°C/W)

Airflow (Ft/Min) RθJC RθJA

0 3 33

100 3 28

200 3 24

¶ Thermal resistance values shown are based on measurements made on similar ceramic QFP
packages.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Thermal Characteristics

6-20

Table 6–14.TI486SXL 168-Pin CPGA Thermal Resistance and Airflow

Ai fl (F /Mi)

168-Pin Ceramic PGA Package Thermal Resistance
(°C/W)

Airflow (Ft/Min) RθJC RθJA

0 3 18

100 3 15

200 3 13

400 3 10

600 3 8

Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

6.3.1 Airflow Measurement Setup

The wind tunnel used for airflow measurements is represented schematically
in Figure 6–12.

Figure 6–12. Wind Tunnel Schematic Diagram

Device test board

Temperature and
anemometer-type
airflow probe

24 ”5 ”

78 ”

Airflow

Wind tunnel cross-section is 6” by 6”.

Fan

(Dimensions are approximate.)

Typically, the devices undergoing thermal test are mounted on a test board
consisting of 0.062” thick FR4 printed-circuit-board-material with one-ounce
copper etch. Surface-mount devices are soldered to the test board using
matching footprints with minimal circuit trace density required to interconnect
the device to the board electrically. PGA devices are typically inserted in a
socket that is soldered to the test board.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

 Thermal Characteristics

6-21 Mechanical Specifications

6.3.2 Thermal Parameter Definitions

The maximum die temperature (TJmax) and the maximum ambient tempera-
ture (TAmax) can be calculated using the following equations:

TJmax = TC + (Pmax × RθJC)
TAmax = TJ – (Pmax × RθJA))

where:

TJmax = Maximum average junction temperature (°C)
TC = Case temperature at top center of package (°C)
Pmax = Maximum device power dissipation (W)
RθJC = Junction-to-case thermal resistance (°C/W)
TAmax = Maximum ambient temperature (°C)
TJ = Average junction temperature (°C)
RθJA = Junction-to-ambient thermal resistance (°C/W)

Values for RθJA and RθJC are given in Table 6–10 and Table 6–11 for various
airflows.

6-22

7-1 Chapter Title—Attribute Reference

Instruction Set

This chapter provides information pertaining to the TI486SXL(C) microproces-
sor instruction set. The information explains the general instruction format,
fields, flags, clock-count summary, and the instruction encodings. All instruc-
tions are listed in the instruction set in Section 7.5, Instruction Set.

Topic Page

7.1 General Instruction Format 7-2.

7.2 Instruction Fields 7-3.

7.3 Flags 7-12.

7.4 Clock-Count Summary 7-13.

7.5 Instruction Set 7-13.

Chapter 7

General Instruction Format

7-2

7.1 General Instruction Format

All of the TI486SXL(C) microprocessor family machine instructions follow the
general instruction format shown in Figure 7–1. These instructions vary in
length and can start at any byte address.

An instruction consists of one or more bytes that can include the following:

� prefix byte(s)
� at least one opcode byte
� a mod r/m byte
� an s-i-b (ss, index, and base fields) byte
� address displacement byte(s)
� immediate data byte(s)

An instruction can be as short as one byte or as long as 15 bytes. If there are
more than 15 bytes in the instruction, a general protection fault (error code of
0) is generated.

Figure 7–1. General Instruction Format

P P P P P P P P T T T T T T T T mod R R R r/m ss index base

7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0

d3216 8 none id32 16 8 none

optional prefix
byte(s)

opcode
(one or two bytes)

mod r/m
byte

s-i-b
byte

address
displacement
(4, 2, 1 bytes,

or none)

immediate
data

(4, 2, 1 bytes,
or none)

register- and
address-mode

specifier

P – prefix bit
T – opcode bit
R – opcode bit or reg bit

 Instruction Fields

7-3 Instruction Set

7.2 Instruction Fields

The general instruction format shows the larger fields that make up an instruc-
tion. Certain instructions have smaller encoding fields that vary according to
the class of operation. These fields define information such as the direction of
the operation, the size of the displacements, register encoding, and the sign
extension. All the fields are described in Table 7–1. Subsequent subsections
provide greater detail.

Table 7–1. Instruction Fields

Field Name Description Number of Bits

Prefix Specifies segment register override, address and operand size,
repeat elements in string instruction, and LOCK# assertion

8 per byte

Opcode Identifies instruction operation 1 or 2 bytes

w Specifies if data is byte or full size (full size is 16 or 32 bits) 1

d Specifies direction of data operation 1

s Specifies if an immediate data field must be sign-extended 1

reg General register specifier 3

mod r/m Address mode specifier 2 for mod, 3 for r/m

ss Scale factor for scaled-index-address mode 2

index General register to be used as index register 3

base General register to be used as base register 2

sreg2 Segment register for CS, SS, DS, and ES 2

sreg3 Segment register for CS, SS, DS, ES, FS, and GS 3

eee Control-, debug-, and test-register specifier 3

Address
displacement

Address-displacement operand 1, 2, or 4 bytes

Immediate data Immediate-data operand 1, 2, or 4 bytes

Instruction Fields

7-4

7.2.1 Prefixes

Prefix bytes can be placed in front of any instruction. The prefix modifies the
operation of the immediately following instruction only. When more than one
prefix is used, the order is not important. There are five types of prefixes as
follows:

1) Segment override explicitly specifies which segment register an instruc-
tion uses.

2) Address size and operand size toggle between 16- and 32-bit addressing
modes. Prefixing the instruction for operand size or address size selects
the inverse of the current addressing mode. See also Section 2.1, Proces-
sor Initialization, page 2-2.

3) Repeat is used with a string instruction that causes the instruction to be
repeated for each element of the string.

4) Lock asserts the hardware LOCK# signal during execution of the instruc-
tion.

Table 7–2 lists the encodings for each of the available prefix bytes. The oper-
and-size and address-size prefixes allow individual instructions to override the
default value for operand size and effective-address size. The presence of
these prefixes selects the opposite (nondefault) operand size and/or effective-
address size.

Table 7–2. Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use ES for memory operand.

CS: 2Eh Override segment default, use CS for memory operand.

SS: 36h Override segment default, use SS for memory operand.

DS: 3Eh Override segment default, use DS for memory operand.

FS: 64h Override segment default, use FS for memory operand.

GS: 65h Override segment default, use GS for memory operand.

Operand size 66h Make operand size attribute the inverse of the default.

Address size 67h Make address size attribute the inverse of the default.

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

 Instruction Fields

7-5 Instruction Set

7.2.2 Opcode Field

The opcode field is either one or two bytes long and specifies the operation to
be performed by the instruction. Some operations have more than one op-
code, each specifying a different form of the operation. Some opcodes name
instruction groups. For example, opcode 0x80 names a group of operations
that have an immediate operand, and a register or memory operand. The
group opcodes use an opcode extension field of three bits in the following byte,
called the MOD R/M byte, to resolve the operation type. Opcodes for the entire
TI486SXL(C) microprocessor instruction set are listed in Table 7–17 on page
7-14. The opcodes are given in hex values unless shown within brackets ([]).
Values shown in brackets are binary values.

7.2.3 w Field

The 1-bit field indicates the operand size during 16- and 32-bit data operations
as shown in Table 7–3.

Table 7–3.w Field Encoding

w Field
Operand Size
16-Bit Data Operations

Operand Size
32-Bit Data Operations

0 8 bits 8 bits

1 16 bits 32 bits

Instruction Fields

7-6

7.2.4 d Field

The d field determines which operand is taken as the source operand and
which operand is taken as the destination as shown in Table 7–4.

Table 7–4.d Field Encoding

d Field Direction Of Operation Source Operand Designation Operand

0 Register → Register/Memory reg mod r/m or mod ss-index-base

1 Register/Memory → Register mod r/m or mod ss-index-base reg

7.2.5 reg Field

The reg field determines which general registers are to be used. The selected
register is dependent on whether 16- or 32-bit operation is current and the sta-
tus of the w bit as shown in Table 7–5.

Table 7–5. reg Field Encoding

reg Field

16-Bit
 Operation
w Field Not

Present

32-Bit
Operation

w Field Not
Present

16-Bit
Operation

w=0

16-Bit
Operation

w=1

32-Bit
Operation

w=0

32-Bit
Operation

w=1

000 AX EAX AL AX AL EAX

001 CX ECX CL CX CL ECX

010 DX EDX DL DX DL EDX

011 BX EBX BL BX BL EBX

100 SP ESP AH SP AH ESP

101 BP EBP CH BP CH EBP

110 SI ESI DH SI DH ESI

111 DI EDI BH DI BH EDI

 Instruction Fields

7-7 Instruction Set

7.2.6 mod and r/m Fields

The mod and r/m sub-fields, which are within the mod r/m byte, select the type
of memory addressing to be used. Some instructions use a fixed addressing
mode (e.g., PUSH or POP) and, therefore, these fields are not present.
Table 7–6 lists the addressing method when 16-bit addressing is used and a
mod r/m byte is present. Some mod r/m field encodings are dependent on the
w field and are shown in Table 7–7.

Table 7–6.mod r/m Field Encoding

mod r/m
16-Bit Address Mode
With mod r/m Byte

32-Bit Address Mode
With mod r/m Byte
 And No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 SSS:[BP+SI] DS:[EDX]

00 011 SS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (see subsection 7.2.7)

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX|+DI+d8] DS:[EAX+d8]

01 010 SS:[BP+SI+d8] DS:[EDX+d8]

01 011 SS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (see subsection 7.2.7)

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 SS:[BP+SI+d16] DS:[EDX+d32]

10 011 SS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present (see subsection 7.2.7)

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000
11 111 See Table 7–7 See Table 7–7

Instruction Fields

7-8

Table 7–7.mod r/m Field Encoding Dependent on w Field

mod r/m
16-Bit Operation

w=0
16-Bit Operation

w=1
32-Bit Operation

w=0
32-Bit Operation

w=1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

 Instruction Fields

7-9 Instruction Set

7.2.7 mod and base Fields

In Table 7–6, the note “s-i-b is present” (for certain entries) forces the use of
the mod and base fields as listed in Table 7–8.

Table 7–8.mod base Field Encoding

mod r/m
32-Bit Address Mode With mod r/m
Byte and No s-i-b Byte Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[EBP+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

Instruction Fields

7-10

7.2.8 ss Field

The ss field (Table 7–9) specifies the scale factor used in the offset mechanism
for address calculation. The scale factor multiplies the index value to provide
one of the components used to calculate the offset address.

Table 7–9.ss Field Encoding

ss Field Scale Factor

00 x1

01 x2

10 x4

11 x8

7.2.9 index Field

The index field (Table 7–10) specifies the index register used by the offset
mechanism for offset-address calculation. When no index register is used
(index field = 00), the ss value must be 00 or the effective address is
undefined.

Table 7–10.index Field Encoding

index Field Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

7.2.10 sreg2 Field

The sreg2 field (Table 7–11) is a two-bit field that allows one of the four
286-type segment registers to be specified.

Table 7–11. sreg2 Field Encoding

sreg2 Field Segment Register
Selected

00 ES

01 CS

10 SS

11 DS

 Instruction Fields

7-11 Instruction Set

7.2.11 sreg3 Field

The sreg3 field (Table 7–12) is a three-bit field that is similar to the sreg2 field,
but allows use of the FS and GS segment registers.

Table 7–12.sreg3 Field Encoding

sreg3 Field
Segment Register

Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

7.2.12 eee Field

The eee field is used to select the control, debug, and test registers as indi-
cated in Table 7–13. The values shown are the only valid encodings for the eee
bits.

Table 7–13.eee Field Encoding

eee Field Register Type Base Register

000 Control register CR0

010 Control register CR2

011 Control register CR3

000 Debug register DR0

001 Debug register DR1

010 Debug register DR2

011 Debug register DR3

110 Debug register DR6

111 Debug register DR7

011 Test register TR3

100 Test register TR4

101 Test register TR5

110 Test register TR6

111 Test register TR7

Flags

7-12

7.3 Flags

The instruction set summary table lists nine flags that instruction execution af-
fects. The conventions shown in Table 7–14 identify the different flags.
Table 7–15 lists the conventions used to indicate what action the instruction
has on the particular flag.

Table 7–14.Flag Abbreviations

Abbreviation Name of Flag

OF Overflow flag

DF Direction flag

IF Interrupt enable flag

TF Trap flag

SF Sign flag

ZF Zero flag

AF Auxiliary flag

PF Parity flag

CF Carry flag

Table 7–15.Action of Instruction on Flag

Instruction Table
Symbol Action

m Flag is modified by the instruction

u Flag is not changed by the instruction

0 Flag is reset to 0

1 Flag is set to 1

 Clock Count Summary / Instruction Set

7-13 Instruction Set

7.4 Clock-Count Summary

The instruction clock-count values presented in Table 7–17 are based on as-
sumptions associated with each individual instruction. Abbreviations indicate
the clock-count conditions to simplify the presentation.

7.4.1 Assumptions

The clock-count values assume the following:

� The instruction has been prefetched, decoded, and is ready for execution.
� Bus cycles do not require wait states.
� There are no local-bus HOLD requests delaying processor access to the

bus.
� No exceptions are detected during instruction execution.
� If an effective address is calculated, it does not use two general register

components. One register, scaling, and displacement can be used within
the clock count shown. However, if the effective-address calculation uses
two general register components, add 1 to the clock count shown.

� All clock counts assume aligned 16-bit memory/IO operands for cache-
miss counts.

� If instructions access a misaligned 16-bit operand or a 32-bit operand on
even addresses, add two clock counts for read or write, and add four clock
counts for read and write.

� If instructions access a 32-bit operand on odd addresses, add four clock
counts for read or write, and add eight clock counts for read and write.

7.4.2 Abbreviations

The clock-count values listed in the instruction set summary table are grouped
by operating mode and whether there is a register/cache hit or a cache miss.
In some cases, more than one clock count is shown in a column for a given
instruction, or a variable is used in the clock count. The abbreviations used for
these conditions are listed in Table 7–16.

Table 7–16.Clock-Count Abbreviations

Clock-Count
Symbol Explanation

/ Register operand/memory operand

n Number of times operation is repeated

L Level of the stack frame

| Conditional jump taken | conditional jump not taken

\ CPL ≤ IOPL \ CPL > IOPL

7.5 Instruction Set

The TI486SXLC and TI486SXL instruction set is provided in Table 7–17.
Instruction name, encoding, flags that are affected, and instruction clock
counts for each instruction are shown. The clock-count values are based on
the assumptions described in subsection 7.4.1.

Instruction Set

7-14

Ta
bl

e
7–

17
.I

ns
tr

uc
tio

n
S

et

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

A
A

A
 A

S
C

II
A

dj
us

t A
L

af
te

r
A

dd
37

u
u

u
u

u
u

m
u

m
5

5

A
A

D
 A

S
C

II
A

dj
us

t A
X

 b
ef

or
e

D
iv

id
e

D
5

0A
u

u
u

u
m

m
u

m
u

4
4

A
A

M
 A

S
C

II
A

dj
us

t A
X

 a
fte

r
M

ul
tip

ly
D

4
0A

u
u

u
u

m
m

u
m

u
17

17

A
A

S
 A

S
C

II
A

dj
us

t A
L

af
te

r
S

ub
tr

ac
t

3F
u

u
u

u
u

u
m

u
m

5
5

A
D

C
 A

dd
 w

ith
 C

ar
ry

R
eg

is
te

r
to

 R
eg

is
te

r
R

eg
is

te
r

to
 M

em
or

y
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 A
cc

um
ul

at
or

1
[0

0d
w

] [
11

 r
eg

 r
/m

]
1

[0
00

w
] [

m
od

 r
eg

 r
/m

]
1

[0
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 0
10

 r
/m

]†
1

[0
10

w
]†

m
u

u
u

m
m

m
m

m
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

A
D

D
 In

te
ge

r A
dd

R
eg

is
te

r
to

 R
eg

is
te

r
R

eg
is

te
r

to
 M

em
or

y
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 A
cc

um
ul

at
or

0
[0

0d
w

] [
11

 r
eg

 r
/m

]
0

[0
00

w
] [

m
od

 r
eg

 r
/m

]
0

[0
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 0
00

 r
/m

]†
0

[0
10

w
]†

m
u

u
u

m
m

m
m

m
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

A
N

D
 B

oo
le

an
 A

N
D

R
eg

is
te

r
to

 R
eg

is
te

r
R

eg
is

te
r

to
 M

em
or

y
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 A
cc

um
ul

at
or

2
[0

0d
w

] [
11

 r
eg

 r
/m

]
2

[0
00

w
] [

m
od

 r
eg

 r
/m

]
2

[0
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 1
00

 r
/m

]†
2

[0
10

w
]†

0
u

u
u

m
m

u
m

0
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

A
R

P
L

 A
dj

us
t R

eq
ue

st
ed

 P
riv

ile
ge

 L
ev

el
F

ro
m

 R
eg

is
te

r/
M

em
or

y
63

 [m
od

 r
eg

 r
/m

]
u

u
u

u
u

m
u

u
u

6/
10

10
3

2

B
O

U
N

D
 C

he
ck

 A
rr

ay
 B

ou
nd

ar
ie

s
If

O
ut

 o
f r

an
ge

 (
In

t 5
)

If
In

 R
an

ge

62
 [m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
11

+
in

t
11

11
+

in
t

11

1,
4

2,
5,

6,
7,

8

B
S

F
 S

ca
n

B
it

F
or

w
ar

d
R

eg
is

te
r/

M
em

or
y,

 R
eg

is
te

r
0F

 B
C

[m
od

 r
eg

 r
/m

]
u

u
u

u
u

m
u

u
u

5/
7+

n
9+

n
5/

7+
n

9+
n

1
2

Instruction Set

7-15Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

B
S

R
 S

ca
n

B
it

R
ev

er
se

R
eg

is
te

r/
M

em
or

y,
 R

eg
is

te
r

0F
 B

C
[m

od
 r

eg
 r

/m
]

u
u

u
u

u
m

u
u

u
5/

7+
n

9+
n

5/
7+

n
9+

n
1

2

B
S

W
A

P
 B

yt
e

S
w

ap
0F

 C
[1

 r
eg

]
u

u
u

u
u

u
u

u
u

5
5

B
T

 T
es

t B
it

R
eg

is
te

r/
M

em
or

y,
 Im

m
ed

ia
te

R
eg

is
te

r/
M

em
or

y,
 R

eg
is

te
r

0F
 B

A
[m

od
 1

00
 r

/m
]†

0F
 A

3[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

m
3/

4
3/

6
5 7

3/
4

3/
6

5 7

1
2

B
T

C
 T

es
t B

it
an

d
C

om
pl

em
en

t
R

eg
is

te
r/

M
em

or
y,

 Im
m

ed
ia

te
R

eg
is

te
r/

M
em

or
y,

 R
eg

is
te

r
0F

 B
A

[m
od

 1
11

 r
/m

]†
0F

 B
B

[m
od

 r
eg

 r
/m

]

u
u

u
u

u
u

u
u

m
4/

5
5/

8
6 9

4/
5

5/
8

6 9

1
2

B
T

R
 T

es
t B

it
an

d
R

es
et

R
eg

is
te

r/
M

em
or

y,
 Im

m
ed

ia
te

R
eg

is
te

r/
M

em
or

y,
 R

eg
is

te
r

0F
 B

A
[m

od
 1

10
 r

/m
]†

0F
 B

3[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

m
4/

5
5/

8
6 9

4/
5

5/
8

6 9

1
2

B
T

S
 T

es
t B

it
an

d
S

et
R

eg
is

te
r/

M
em

or
y

R
eg

is
te

r
(s

ho
rt

 fo
rm

)
0F

 B
A

[m
od

 1
01

 r
/m

]
0F

 A
B

[m
od

 r
eg

 r
/m

]

u
u

u
u

u
u

u
u

m
4/

5
5/

8
6 9

4/
5

5/
8

6 9

1
2

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

Instruction Set

7-16

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

C
A

LL
 S

ub
ro

ut
in

e
C

al
l

D
ire

ct
 w

ith
in

 S
eg

m
en

t
R

eg
is

te
r/

M
em

or
y

In
di

re
ct

 w
ith

in
 S

eg
m

en
t

D
ire

ct
 In

te
rs

eg
m

en
t

C
al

l G
at

e
to

 S
am

e
P

riv
ile

ge
C

al
l G

at
e

to
 D

iff
er

en
t P

riv
ile

ge
 N

o
P

ar
am

et
er

s
C

al
l G

at
e

to
 D

iff
er

en
t P

riv
ile

ge
 P

ar
am

et
er

s
16

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 V

86
 T

as
k

32
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 V
86

 T
as

k

In
di

re
ct

 In
te

rs
eg

m
en

t
C

al
l G

at
e

to
 S

am
e

P
riv

ile
ge

C
al

l G
at

e
to

 D
iff

er
en

t P
riv

ile
ge

 N
o

P
ar

am
et

er
s

C
al

l G
at

e
to

 D
iff

er
en

t P
riv

ile
ge

 P
ar

am
et

er
s

16
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

16
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

16
-B

it
Ta

sk
 to

 V
86

 T
as

k
32

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
32

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
32

-B
it

Ta
sk

 to
 V

86
 T

as
k

E
8¶

F
F

 [m
od

 0
10

 r
/m

]

9A
 [u

ns
ig

ne
d

fu
ll

of
fs

et
,

se
le

ct
or

]

F
F

 [m
od

 0
11

 r
/m

]

u
u

u
u

u
u

u
u

u
7 8/
9

12 14

10 17

7 8/
9

30 41 83
81

+
4x

26
2

29
3

17
9

23
8

29
6

18
2

14 43 85
86

+
4x

26
7

29
8

18
1

24
3

30
1

18
4

10 49 97
95

+
4x

26
3

31
7

20
6

25
8

34
0

22
9

34 51 99
10

0+
4x

26
8

32
2

21
1

26
3

34
5

23
0

1
2,

6,
7,

8

C
B

W
 C

on
ve

rt
 B

yt
e

to
 W

or
d

98
u

u
u

u
u

u
u

u
u

3
3

C
D

Q
 C

on
ve

rt
 D

ou
bl

ew
or

d
to

 Q
ua

dw
or

d
99

u
u

u
u

u
u

u
u

u
1

2

C
LC

 C
le

ar
 C

ar
ry

 F
la

g
F

8
u

u
u

u
u

u
u

u
0

1
1

C
LD

 C
le

ar
 D

ire
ct

io
n

F
la

g
F

C
u

0
u

u
u

u
u

u
u

1
1

C
LI

 C
le

ar
 In

te
rr

up
t F

la
g

FA
u

u
0

u
u

u
u

u
u

5
5

9

C
LT

S
 C

le
ar

 T
as

k
S

w
itc

he
d

F
la

g
0F

 0
6

u
u

u
u

u
u

u
u

u
4

4
10

11

C
M

C
 C

om
pl

em
en

t t
he

 C
ar

ry
 F

la
g

F
5

u
u

u
u

u
u

u
u

m
1

1

C
M

P
 C

om
pa

re
 In

te
ge

rs
R

eg
is

te
r

to
 R

eg
is

te
r

R
eg

is
te

r
to

 M
em

or
y

M
em

or
y

to
 R

eg
is

te
r

Im
m

ed
ia

te
 to

 R
eg

is
te

r/
M

em
or

y
Im

m
ed

ia
te

 to
 A

cc
um

ul
at

or

3
[1

0d
w

] [
11

 r
eg

 r
/m

]
3

[1
01

w
] [

m
od

 r
eg

 r
/m

]
3

[1
00

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 1
11

 r
/m

]†
3

[1
10

w
]†

m
u

u
u

m
m

m
m

m
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

Instruction Set

7-17Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it
C

ac
he

M
is

s

R
eg

/C
ac

he
H

it
C

ac
he

M
is

s
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

C
M

P
S

 C
om

pa
re

 S
tr

in
g

A
 [0

11
w

]
m

u
u

u
m

m
m

m
m

8
9

8
9

1
2

C
M

P
X

C
H

G
 C

om
pa

re
 a

nd
 E

xc
ha

ng
e

R
eg

is
te

r1
, R

eg
is

te
r2

M
em

or
y,

 R
eg

is
te

r
0F

 B
[0

00
w

] [
11

 r
eg

2
re

g1
]

0F
 B

[0
00

w
] [

m
od

 r
eg

 r
/m

]

m
u

u
u

m
m

m
m

m
5 7

8
5 7

8

C
W

D
 C

on
ve

rt
 W

or
d

to
 D

ou
bl

ew
or

d
99

u
u

u
u

u
u

u
u

u
1

2

C
W

D
E

 C
on

ve
rt

 W
or

d
to

 D
ou

bl
ew

or
d

E
xt

en
de

d
98

u
u

u
u

u
u

u
u

u
3

3

D
A

A
 D

ec
im

al
 A

dj
us

t A
L

af
te

r
A

dd
27

u
u

u
u

m
m

m
m

m
4

4

D
A

S
 D

ec
im

al
 A

dj
us

t A
L

af
te

r
S

ub
tr

ac
t

2F
u

u
u

u
m

m
m

m
m

4
4

D
E

C
 D

ec
re

m
en

t b
y

1
R

eg
is

te
r/

M
em

or
y

R
eg

is
te

r
(s

ho
rt

 fo
rm

)
F

 [1
11

w
] [

m
od

 0
01

 r
/m

]
4

[1
 r

eg
]

m
u

u
u

m
m

m
m

u
1/

3 1
5

1/
3 1

5
1

2

D
IV

 U
ns

ig
ne

d
D

iv
id

e
A

cc
um

ul
at

or
 b

y
R

eg
is

te
r/

M
em

or
y

D
iv

is
or

:
B

yt
e

W
or

d
D

ou
bl

ew
or

d

F
 [0

11
w

] [
m

od
 1

10
 r

/m
]

u
u

u
u

u
u

u
u

u

13
/1

5
21

/2
2

38
/3

9

17 24 40

13
/1

5
21

/2
2

38
/3

9

17 24 40

1,
4

2,
4

E
N

T
E

R
 E

nt
er

 N
ew

 S
ta

ck
 F

ra
m

e
Le

ve
l =

 0
Le

ve
l =

 1
Le

ve
l (

L)
 >

 1

C
8

[8
-b

it
le

ve
l]�

u
u

u
u

u
u

u
u

u
7 10

6+
4*

L
10

6+
4*

L

7 10
6+

4*
L

10
6+

4*
L

1
2

H
LT

 H
al

t
F

4
u

u
u

u
u

u
u

u
u

3
3

11

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).

Instruction Set

7-18

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

ID
IV

 In
te

ge
r (

S
ig

ne
d)

 D
iv

id
e

A
cc

um
ul

at
or

 b
y

R
eg

is
te

r/
M

em
or

y
D

iv
is

or
:

B
yt

e
W

or
d

D
ou

bl
ew

or
d

F
 [0

11
w

] [
m

od
 1

11
 r

/m
]

u
u

u
u

u
u

u
u

u

14
/1

5
23

/2
4

40
/4

1

18 25 44

14
/1

5
23

/2
4

40
/4

1

18 25 44

1,
4

2,
4

IM
U

L
 In

te
ge

r (
S

ig
ne

d)
 M

ul
tip

ly
A

cc
um

ul
at

or
 b

y
R

eg
is

te
r/

M
em

or
y

M
ul

tip
lie

r:
B

yt
e

W
or

d
D

ou
bl

ew
or

d
R

eg
is

te
r

w
ith

 R
eg

is
te

r/
M

em
or

y
M

ul
tip

lie
r:

B
yt

e
W

or
d

D
ou

bl
ew

or
d

R
eg

is
te

r/
M

em
or

y
w

ith
 Im

m
ed

ia
te

 to
 R

eg
is

te
r2

M
ul

tip
lie

r:
B

yt
e

W
or

d
D

ou
bl

ew
or

d

F
 [0

11
w

] [
m

od
 1

01
 r

/m
]

0F
 A

F
[m

od
 r

eg
 r

/m
]

6
[1

0s
1]

 [m
od

 r
eg

 r
/m

]�

m
u

u
u

u
u

u
u

m

3/
5

3/
5

7/
9

3/
5

3/
5

7/
9

3/
5

3/
5

7/
9

7 7 13 7 7 13 7 7 13

3/
5

3/
5

7/
9

3/
5

3/
5

7/
9

3/
5

3/
5

7/
9

7 7 13 7 7 13 7 7 13

1
2

IN
 In

pu
t f

ro
m

 I/
O

 P
or

t
F

ix
ed

 P
or

t
V

ar
ia

bl
e

P
or

t
E

 [0
10

w
] [

po
rt

 n
um

be
r]

E
 [1

10
w

]

u
u

u
u

u
u

u
u

u
16 16

16 16
16 16

17 17

9

IN
C

 In
cr

em
en

t b
y

1
R

eg
is

te
r/

M
em

or
y

R
eg

is
te

r
(s

ho
rt

 fr
om

)
F

 [1
11

w
] [

m
od

 0
00

 r
/m

]
4

[0
 r

eg
]

m
u

u
u

m
m

m
m

u
1/

3 1
5

1/
3 1

5
1

2

IN
S

 In
pu

t S
tr

in
g

fr
om

 I/
O

 P
or

t
6

[1
10

w
]

u
u

u
u

u
u

u
u

u
20

20
14

/2
0

6/
21

1
2,

9

IN
T

 S
of

tw
ar

e
In

te
rr

up
t

IN
T

 i
P

ro
te

ct
ed

 M
od

e:
In

te
rr

up
t o

r
Tr

ap
 to

 S
am

e
P

riv
ile

ge
In

te
rr

up
t o

r
Tr

ap
 to

 D
iff

er
en

t P
riv

ile
ge

16
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
16

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

16
-B

it
Ta

sk
 to

 V
86

 T
as

k
by

 T
as

k
G

at
e

32
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
32

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

32
-B

it
Ta

sk
 to

 V
86

 T
as

k
by

 T
as

k
G

at
e

V
86

 to
 1

6-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

V
86

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

V
86

 to
 P

riv
ile

ge
 0

 b
y

Tr
ap

 G
at

e/
In

t G
at

e

C
D

 [i
]

u
m

0
u

u
u

u
u

u
14

16

57 91 26
5

29
6

17
7

24
1

29
9

18
0

24
1

29
9

10
6

58 92 26
6

32
0

20
5

26
1

34
3

23
2

26
1

34
3

11
4

1,
4

5,
6,

7,
8

Instruction Set

7-19Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it
C

ac
he

M
is

s

R
eg

/C
ac

he
H

it
C

ac
he

M
is

s
R

ea
l

M
od

e
P

ro
te

ct
ed

M
od

e

IN
T

 S
of

tw
ar

e
In

te
rr

up
t (

C
on

tin
ue

d)
IN

T
3

P
ro

te
ct

ed
 M

od
e:

In
te

rr
up

t o
r

Tr
ap

 to
 S

am
e

P
riv

ile
ge

In
te

rr
up

t o
r

Tr
ap

 to
 D

iff
er

en
t P

riv
ile

ge
16

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

16
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
16

-B
it

Ta
sk

 to
 V

86
 b

y
Ta

sk
 G

at
e

32
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
32

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

32
-B

it
Ta

sk
 to

 V
86

 b
y

Ta
sk

 G
at

e
V

86
 to

 1
6-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
V

86
 to

 3
2-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
V

86
 to

 P
riv

ile
ge

 0
 b

y
Tr

ap
 G

at
e/

In
t G

at
e

IN
T

0
If

0F
 =

=
 0

If
0F

 =
=

 1
 (

IN
T

4)
P

ro
te

ct
ed

 M
od

e:
In

te
rr

up
t o

r
Tr

ap
 to

 S
am

e
P

riv
ile

ge
In

te
rr

up
t o

r
Tr

ap
 to

 D
iff

er
en

t P
riv

ile
ge

16
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
16

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

16
-B

it
Ta

sk
 to

 V
86

 b
y

Ta
sk

 G
at

e
32

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

32
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

 b
y

Ta
sk

 G
at

e
32

-B
it

Ta
sk

 to
 V

86
 b

y
Ta

sk
 G

at
e

V
86

 to
 1

6-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

V
86

 to
 3

2-
bi

t T
S

S
 b

y
Ta

sk
 G

at
e

V
86

 to
 P

riv
ile

ge
 0

 b
y

Tr
ap

 G
at

e/
In

t G
at

e

C
C

C
E

u u

m u

0 m

u 0

u u

u u

u u

u u

u u

14 1 15

16 1 17

57 91 26
5

29
6

17
7

24
1

29
9

18
0

24
1

29
9

10
6 1 57 91 26
5

29
6

17
7

24
1

29
9

18
0

24
1

29
9

10
6

58 92 26
6

32
0

20
5

26
1

34
3

23
2

26
1

34
3

11
4 1 58 92 26
6

32
0

20
5

26
1

34
3

23
2

26
1

34
3

11
4

1,
4

5,
6,

7,
8

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.

Instruction Set

7-20

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

IN
V

D
 In

va
lid

at
e

C
ac

he
0F

 0
8

u
u

u
u

u
u

u
u

u
7

7

IN
V

LP
G

 In
va

lid
at

e
T

LB
 E

nt
ry

0F
 0

1[
m

od
 1

11
 r

/m
]

u
u

u
u

u
u

u
u

u
5

5

IR
E

T
 In

te
rr

up
t R

et
ur

n
R

ea
l M

od
e

P
ro

te
ct

ed
 M

od
e

W
ith

in
 T

as
k

to
 S

am
e

P
riv

ile
ge

W
ith

in
 T

as
k

to
 D

iff
er

en
t P

riv
ile

ge
16

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 V

86
 T

as
k

32
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 V
86

 T
as

k

C
F

m
m

m
m

m
m

m
m

m
14

14
16 35 74 25

9
29

0
17

3
23

5
29

5
17

6

17 37 78 26
0

31
4

20
3

25
5

33
9

22
6

2,
5,

6,
7,

8

JB
/J

N
A

E
/J

C
 J

um
p

on
 B

el
ow

/N
ot

A
bo

ve
 o

r
E

qu
al

/C
ar

ry
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

72
‡

0F
 8

2¶

u
u

u
u

u
u

u
u

u

4|
1

5|
2

4|
1

6|
3

8

JB
E

/J
N

A
 J

um
p

on
 B

el
ow

 o
r

E
qu

al
/N

ot
 A

bo
ve

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
76

‡
0F

 8
6¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JC
X

Z
 J

um
p

on
 C

X
 Z

er
o

E
3‡

u
u

u
u

u
u

u
u

u
7|

3
7|

3
8

JE
/J

Z
 J

um
p

on
 E

qu
al

/Z
er

o
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

74
‡

0F
 8

4¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JE
C

X
Z

 J
um

p
on

 E
C

X
 Z

er
o

E
3‡

u
u

u
u

u
u

u
u

u
7|

3
7|

3
8

JL
/J

N
G

E
 J

um
p

on
 L

es
s/

N
ot

 G
re

at
er

 o
r

E
qu

al
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

7C
‡

0F
 8

C
¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

Instruction Set

7-21Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F
R

eg
/C

ac
he

H
it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

JL
E

/J
N

G
 J

um
p

on
 L

es
s

or
 E

qu
al

/N
ot

 G
re

at
er

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
7E

‡
0F

 8
E

¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JM
P

 U
nc

on
di

tio
na

l J
um

p
S

ho
rt

D
ire

ct
 w

ith
in

 S
eg

m
en

t
R

eg
is

te
r/

M
em

or
y

In
di

re
ct

 w
ith

in
 S

eg
m

en
t

D
ire

ct
 In

te
rs

eg
m

en
t

C
al

l G
at

e
S

am
e

P
riv

ile
ge

 L
ev

el
16

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
16

-B
it

Ta
sk

 to
 V

86
 T

as
k

32
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

32
-B

it
Ta

sk
 to

 V
86

 T
as

k

In
di

re
ct

 In
te

rs
eg

m
en

t
C

al
l G

at
e

S
am

e
P

riv
ile

ge
 L

ev
el

16
-B

it
Ta

sk
 to

 1
6-

bi
t T

S
S

16
-B

it
Ta

sk
 to

 3
2-

bi
t T

S
S

16
-B

it
Ta

sk
 to

 V
86

 T
as

k
32

-B
it

Ta
sk

 to
 1

6-
bi

t T
S

S
32

-B
it

Ta
sk

 to
 3

2-
bi

t T
S

S
32

-B
it

Ta
sk

 to
 V

86
 T

as
k

E
B

‡
E

9¶
F

F
 [m

od
 1

00
 r

/m
]

E
A

 [f
ul

l o
ffs

et
, s

el
ec

to
r]

F
F

 [m
od

 1
01

 r
/m

]

u
u

u
u

u
u

u
u

u
4 5 7/
8 9 13

10 14

4 6 8/
9

27 45 26
5

29
6

18
2

24
1

29
9

18
5

39 47 27
0

30
1

18
4

24
6

30
4

18
7

10 45 26
6

32
0

20
9

26
1

34
3

23
2

39 47 27
1

32
5

21
4

26
8

34
8

23
7

1
2,

6,
7,

8

JN
B

/J
A

E
/J

N
C

 J
um

p
on

 N
ot

 B
el

ow
/

A
bo

ve
 o

r
E

qu
al

/N
ot

 C
ar

ry
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

73
‡

0F
 8

3¶

u
u

u
u

u
u

u
u

u

4|
1

5|
2

4|
1

6|
3

8

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

Instruction Set

7-22

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

JN
B

E
/J

A
 J

um
p

on
 N

ot
 B

el
ow

 o
r

E
qu

al
/A

bo
ve

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
77

‡
0F

 8
7¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
E

/J
N

Z
 J

um
p

on
 N

ot
 E

qu
al

/N
ot

 Z
er

o
8-

B
it

D
is

pl
ac

em
en

t
F

ul
l D

is
pl

ac
em

en
t

75
‡

0F
 8

5¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
L/

JG
E

 J
um

p
on

 N
ot

 L
es

s/
G

re
at

er
 o

r
E

qu
al

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
7D

‡
0F

 8
D

¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
LE

/J
G

 J
um

p
on

 N
ot

 L
es

s
or

 E
qu

al
/G

re
at

er
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

7F
‡

0F
 8

F
¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
O

 J
um

p
on

 N
ot

 O
ve

rf
lo

w
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

71
‡

0F
 8

1¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
P

/J
P

O
 J

um
p

on
 N

ot
 P

ar
ity

/P
ar

ity
 O

dd
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

7B
‡

0F
 8

B
¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JN
S

 J
um

p
on

 N
ot

 S
ig

n
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

79
‡

0F
 8

9¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JO
 J

um
p

on
 O

ve
rf

lo
w

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
70

‡
0F

 8
0¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JP
/J

P
E

 J
um

p
on

 P
ar

ity
/P

ar
ity

 E
ve

n
8-

B
it

di
sp

la
ce

m
en

t
F

ul
l d

is
pl

ac
em

en
t

7A
‡

0F
 8

A
¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

JS
 J

um
p

on
 S

ig
n

8-
B

it
di

sp
la

ce
m

en
t

F
ul

l d
is

pl
ac

em
en

t
78

‡
0F

 8
8¶

u
u

u
u

u
u

u
u

u
4|

1
5|

2
4|

1
6|

3

8

LA
H

F
 L

oa
d

A
H

 w
ith

 F
la

gs
9F

u
u

u
u

u
u

u
u

u
2

2

Instruction Set

7-23Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F
R

eg
/C

ac
he

H
it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

LA
R

 L
oa

d
A

cc
es

s
R

ig
ht

s
F

ro
m

 R
eg

is
te

r/
M

em
or

y
0F

 0
2[

m
od

 r
eg

 r
/m

]
u

u
u

u
u

m
u

u
u

11
/1

2
14

3
2,

5,
6,

12

LD
S

 L
oa

d
P

oi
nt

er
 to

 D
S

C
5

[m
od

 r
eg

 r
/m

]
u

u
u

u
u

u
u

u
u

6
7

19
22

1
2,

6,
13

LE
A

 L
oa

d
E

ffe
ct

iv
e

A
dd

re
ss

N
o

In
de

x
R

eg
is

te
r

W
ith

 In
de

x
R

eg
is

te
r

8D
 [m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
2 3

2 3

LE
AV

E
 L

ea
ve

 C
ur

re
nt

 S
ta

ck
 F

ra
m

e
C

9
u

u
u

u
u

u
u

u
u

5
6

5
6

1
2

LE
S

 L
oa

d
P

oi
nt

er
 to

 E
S

C
4

[m
od

 r
eg

 r
/m

]
u

u
u

u
u

u
u

u
u

7
8

20
21

1
2,

6,
13

LF
S

 L
oa

d
P

oi
nt

er
 to

 F
S

0F
 B

4[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
7

8
20

21
1

2,
6,

13

LG
D

T
 L

oa
d

G
D

T
 R

eg
is

te
r

0F
 0

1[
m

od
 0

10
 r

/m
]

u
u

u
u

u
u

u
u

u
9

9
9

9
1,

10
2,

11

LG
S

 L
oa

d
P

oi
nt

er
 to

 G
S

0F
 B

5[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
7

8
7

8
1

2,
6,

13

LI
D

T
 L

oa
d

ID
T

 R
eg

is
te

r
0F

 0
1[

m
od

 0
11

 r
/m

]
u

u
u

u
u

u
u

u
u

11
11

11
11

1,
10

2,
11

LL
D

T
 L

oa
d

LD
T

 R
eg

is
te

r
F

ro
m

 R
eg

is
te

r/
M

em
or

y
0F

 0
0[

m
od

 0
10

 r
/m

]
u

u
u

u
u

u
u

u
u

16
/1

7
18

3
2,

5,
6,

11

LM
S

W
 L

oa
d

M
ac

hi
ne

 S
ta

tu
s

W
or

d
F

ro
m

 R
eg

is
te

r/
M

em
or

y
0F

 0
1[

m
od

 1
10

 r
/m

]
u

u
u

u
u

u
u

u
u

5
8

5
8

1,
10

2,
11

LO
D

S
 L

oa
d

S
tr

in
g

A
 [1

10
w

]
u

u
u

u
u

u
u

u
u

6
6

6
6

1
2

LO
O

P
 O

ffs
et

 L
oo

p/
N

o
Lo

op
E

2‡
u

u
u

u
u

u
u

u
u

8|
4

9|
4

8

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).
12

)A
ny

 v
io

la
tio

n
of

 p
riv

ile
ge

 r
ul

es
 a

pp
lie

d
to

 th
e

se
le

ct
or

 o
pe

ra
nd

 d
oe

s
no

t c
au

se
 a

 p
ro

te
ct

io
n

ex
ce

pt
io

n.
 R

at
he

r,
th

e
ze

ro
 fl

ag
 is

 c
le

ar
ed

.
13

)F
or

 s
eg

m
en

t l
oa

d
op

er
at

io
ns

, t
he

 C
P

L,
 R

P
L,

 a
nd

 D
P

L
m

us
t a

gr
ee

 w
ith

 th
e

pr
iv

ol
eg

e
ru

le
s

to
 a

vo
id

 a
n

ex
ce

pt
io

n
13

 fa
ul

t.
T

he
 s

eg
m

en
t’s

 d
es

cr
ip

to
r

m
us

t i
nd

ic
at

e
pr

es
en

t o
r

ex
ce

pt
io

n
11

 o
cc

ur
s

(D
S

, D
S

, E
S

, F
S

, G
S

 n
ot

 p
re

se
nt

).
 If

 th
e

S
S

 r
eg

is
te

r
is

 lo
ad

ed
 a

nd
 a

 s
ta

ck
 s

eg
m

en
t n

ot
 p

re
se

nt
 is

 d
et

ec
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.

Instruction Set

7-24

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

LO
O

P
N

Z
/L

O
O

P
N

E
 O

ffs
et

E
0‡

u
u

u
u

u
u

u
u

u
8|

4
9|

4
8

LO
O

P
Z

/L
O

O
P

E
 O

ffs
et

E
1‡

u
u

u
u

u
u

u
u

u
8|

4
9|

4
8

LS
L

 L
oa

d
S

eg
m

en
t L

im
it

F
ro

m
 R

eg
is

te
r/

M
em

or
y

0F
 0

3[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
m

u
u

u
14

/1
5

17
3

2,
5,

6,
12

LS
S

 L
oa

d
P

oi
nt

er
 to

 S
S

0F
 B

2[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
7

8
19

20
3

2,
6,

13

LT
R

 L
oa

d
Ta

sk
 R

eg
is

te
r

F
ro

m
 R

eg
is

te
r/

M
em

or
y

0F
 0

0[
m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
16

/1
7

18
3

2,
5,

6,
11

M
O

V
 M

ov
e

D
at

a
R

eg
is

te
r

to
 R

eg
is

te
r/

M
em

or
y

R
eg

is
te

r/
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 R
eg

is
te

r
(s

ho
rt

 fo
rm

)
M

em
or

y
to

 A
cc

um
ul

at
or

 (
sh

or
t f

or
m

)
A

cc
um

ul
at

or
 to

 M
em

or
y

(s
ho

rt
 fo

rm
)

R
eg

is
te

r/
M

em
or

y
to

 S
eg

m
en

t R
eg

is
te

r
S

eg
m

en
t R

eg
is

te
r

to
 R

eg
is

te
r/

M
em

or
y

8
[1

10
w

] [
m

od
 r

eg
 r

/m
]

8
[1

01
w

] [
m

od
 r

eg
 r

/m
]

C
 [0

11
w

] [
m

od
 0

00
 r

/m
]†

B
 [w

 r
eg

]†
A

 [0
00

w
]¶

A
 [0

01
w

]¶
8E

 [m
od

 s
re

g3
 r

/m
]

8C
 [m

od
 r

eg
 r

/m
]

u
u

u
u

u
u

u
u

u
1/

2
1/

2
1/

2 1 2 2 2/
3

1/
3

2 4 2 4 2 5 3

1/
2

1/
2

1/
2 1 2 2

15
/1

6
1/

3

2 4 2 4 2 18 3

1
2,

6,
13

M
O

V
 M

ov
e

to
/fr

om
 C

on
tr

ol
/D

eb
ug

/T
es

t R
eg

is
te

rs
R

eg
is

te
r

to
 C

R
0/

C
R

2/
C

R
3

C
R

0/
C

R
2/

C
R

3
to

 R
eg

is
te

r
R

eg
is

te
r

to
 D

R
0–

D
R

3
D

R
0–

D
R

3
to

 R
eg

is
te

r
R

eg
is

te
r

to
 D

R
6–

D
R

7
D

R
6–

D
R

7
to

 R
eg

is
te

r
R

eg
is

te
r

to
 T

R
3–

5
T

R
3–

5
to

 R
eg

is
te

r
R

eg
is

te
r

to
 T

R
6–

T
R

7
T

R
6–

T
R

7
to

 R
eg

is
te

r

0F
 2

2[
11

 e
ee

 r
eg

]
0F

 2
0[

11
 e

ee
 r

eg
]

0F
 2

3[
11

 e
ee

 r
eg

]
0F

 2
1[

11
 e

ee
 r

eg
]

0F
 2

3[
11

 e
ee

 r
eg

]
0F

 2
1[

11
 e

ee
 r

eg
]

0F
 2

6[
11

 e
ee

 r
eg

]
0F

 2
4[

11
 e

ee
 r

eg
]

0F
 2

6[
11

 e
ee

 r
eg

]
0F

 2
4[

11
 e

ee
 r

eg
]

u
u

u
u

u
u

u
u

u
14

/3
/3

2/
3/

3
10 9 10 9 10 11 8 9

14
/3

/3
2/

3/
3

10 9 10 9 10 11 8 9

11

M
O

V
S

 M
ov

e
S

tr
in

g
A

 [0
10

w
]

u
u

u
u

u
u

u
u

u
5

5
5

5
1

2

M
O

V
S

X
 M

ov
e

w
ith

 S
ig

n
E

xt
en

si
on

R
eg

is
te

r
fr

om
 R

eg
is

te
r/

M
em

or
y

0F
 B

[1
11

w
] [

m
od

 r
eg

 r
/m

]
u

u
u

u
u

u
u

u
u

2/
3

5
2/

3
5

1
2

M
O

V
Z

X
 M

ov
e

w
ith

 Z
er

o
E

xt
en

si
on

R
eg

is
te

r
fr

om
 R

eg
is

te
r/

M
em

or
y

0F
 B

[0
11

w
] [

m
od

 r
eg

 r
/m

]
u

u
u

u
u

u
u

u
u

2/
3

5
2/

3
5

1
2

Instruction Set

7-25Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

M
U

L
 U

ns
ig

ne
d

M
ul

tip
ly

A
cc

um
ul

at
or

 w
ith

 R
eg

is
te

r/
M

em
or

y
M

ul
tip

lie
r:

B
yt

e
W

or
d

D
ou

bl
ew

or
d

F
 [0

11
w

] [
m

od
 1

00
 r

/m
]

m
u

u
u

u
u

u
u

m

3/
5

3/
5

10
/9

7 7 14

3/
5

3/
5

10
/9

7 7 14

1
2

N
E

G
 N

eg
at

e
In

te
ge

r
F

 [0
11

w
] [

m
od

 0
11

 r
/m

]
m

u
u

u
m

m
m

m
m

1/
3

5
1/

3
5

1
2

N
O

P
 N

o
O

pe
ra

tio
n

90
u

u
u

u
u

u
u

u
u

1
1

N
O

T
 B

oo
le

an
 C

om
pl

em
en

t
F

 [0
11

w
] [

m
od

 0
10

 r
/m

]
u

u
u

u
u

u
u

u
u

1/
3

5
1/

3
5

1
2

O
R

 B
oo

le
an

 O
R

R
eg

is
te

r
to

 R
eg

is
te

r
R

eg
is

te
r

to
 M

em
or

y
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 A
cc

um
ul

at
or

0
[1

0d
w

] [
11

 r
eg

 r
/m

]
0

[1
00

w
] [

m
od

 r
eg

 r
/m

]
0

[1
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
00

w
] [

m
od

 0
01

 r
/m

]†
0

[1
10

w
]†

0
u

u
u

m
m

m
m

0
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

O
U

T
 O

ut
pu

t t
o

P
or

t
F

ix
ed

 P
or

t
V

ar
ia

bl
e

P
or

t
E

 [0
11

w
] [

po
rt

 n
um

be
r]

E
 [1

11
w

]

u
u

u
u

u
u

u
u

u
18 18

18 18
14

\3
4

14
\3

4
14

\3
5

14
\3

5

9

O
U

T
S

 O
ut

pu
t S

tr
in

g
6

[1
11

w
]

u
u

u
u

u
u

u
u

u
20

20
14

\3
4

14
\3

4
1

2,
9

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).
12

)A
ny

 v
io

la
tio

n
of

 p
riv

ile
ge

 r
ul

es
 a

pp
lie

d
to

 th
e

se
le

ct
or

 o
pe

ra
nd

 d
oe

s
no

t c
au

se
 a

 p
ro

te
ct

io
n

ex
ce

pt
io

n.
 R

at
he

r,
th

e
ze

ro
 fl

ag
 is

 c
le

ar
ed

.
13

)F
or

 s
eg

m
en

t l
oa

d
op

er
at

io
ns

, t
he

 C
P

L,
 R

P
L,

 a
nd

 D
P

L
m

us
t a

gr
ee

 w
ith

 th
e

pr
iv

ol
eg

e
ru

le
s

to
 a

vo
id

 a
n

ex
ce

pt
io

n
13

 fa
ul

t.
T

he
 s

eg
m

en
t’s

 d
es

cr
ip

to
r

m
us

t i
nd

ic
at

e
pr

es
en

t o
r

ex
ce

pt
io

n
11

 o
cc

ur
s

(D
S

, D
S

, E
S

, F
S

, G
S

 n
ot

 p
re

se
nt

).
 If

 th
e

S
S

 r
eg

is
te

r
is

 lo
ad

ed
 a

nd
 a

 s
ta

ck
 s

eg
m

en
t n

ot
 p

re
se

nt
 is

 d
et

ec
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.

Instruction Set

7-26

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

P
O

P
 P

op
 V

al
ue

 o
ff

S
ta

ck
R

eg
is

te
r/

M
em

or
y

R
eg

is
te

r
(s

ho
rt

 fo
rm

)
S

eg
m

en
t R

eg
is

te
r

(E
S

, C
S

, S
S

, D
S

)
S

eg
m

en
t R

eg
is

te
r

(E
S

, C
S

, S
S

, D
S

, F
S

, G
S

)

8F
 [m

od
 0

00
 r

/m
]

5
[1

 r
eg

]
[0

00
 s

re
g2

 1
10

]
0F

 [1
0

sr
eg

3
00

1]

u
u

u
u

u
u

u
u

u
3/

5 3 8 8

4/
5 4 9 9

3/
5 3 8 8

4/
5 4 9 9

1
2,

6,
13

P
O

P
A

 P
op

 A
ll

G
en

er
al

 R
eg

is
te

rs
61

u
u

u
u

u
u

u
u

u
18

18
18

18
1

2

P
O

P
F

 P
op

 S
ta

ck
 in

to
 F

la
gs

9D
m

m
m

m
m

m
m

m
m

4
5

4
5

1
2,

14

P
R

E
F

IX
 B

Y
T

E
S

A
ss

er
t H

ar
dw

ar
e

LO
C

K
 P

re
fix

A
dd

re
ss

 S
iz

e
P

re
fix

O
pe

ra
nd

 S
iz

e
P

re
fix

S
eg

m
en

t O
ve

rr
id

e
P

re
fix

:
C

S
D

S
E

S
F

S
G

S
S

S

F
0

67 66 2E 3E 26 64 65 36

u
u

u
u

u
u

u
u

u
9

P
U

S
H

 P
us

h
V

al
ue

 o
nt

o
S

ta
ck

R
eg

is
te

r/
M

em
or

y
R

eg
is

te
r

(s
ho

rt
 fo

rm
)

S
eg

m
en

t R
eg

is
te

r
(E

S
, C

S
, S

S
, D

S
)

S
eg

m
en

t R
eg

is
te

r
(E

S
, C

S
, S

S
, D

S
, F

S
, G

S
)

Im
m

ed
ia

te

F
F

 [m
od

 1
10

 r
/m

]
5

[0
 r

eg
]

[0
00

 s
re

g2
 1

10
]

0F
 [1

0
sr

eg
3

00
0]

6
[1

0s
0]

†

u
u

u
u

u
u

u
u

u
2/

4 2 2 2 2

4 2 2 2 2

2/
4 2 2 2 2

4 2 2 2 2

1
2

P
U

S
H

A
 P

us
h

A
ll

G
en

er
al

 R
eg

is
te

rs
60

u
u

u
u

u
u

u
u

u
17

17
17

17
1

2

P
U

S
H

F
 P

us
h

F
la

gs
 R

eg
is

te
r

9C
u

u
u

u
u

u
u

u
u

2
2

2
2

1
2

R
C

L
 R

ot
at

e
T

hr
ou

gh
 C

ar
ry

 L
ef

t
R

eg
is

te
r/

M
em

or
y

by
 1

R
eg

is
te

r/
M

em
or

y
by

 C
L

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te

D
 [0

00
w

] [
m

od
 0

10
 r

/m
]

D
 [0

01
w

] [
m

od
 0

10
 r

/m
]

C
 [0

00
w

] [
m

od
 0

10
 r

/m
]†

m
u

u
u

u
u

u
u

m
9/

9
9/

9
9/

9

10 10 10

9/
9

9/
9

9/
9

10 10 10

1
2

R
C

R
 R

ot
at

e
T

hr
ou

gh
 C

ar
ry

 R
ig

ht
R

eg
is

te
r/

M
em

or
y

by
 1

R
eg

is
te

r/
M

em
or

y
by

 C
L

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te

D
 [0

00
w

] [
m

od
 0

11
 r

/m
]

D
 [0

01
w

] [
m

od
 0

11
 r

/m
]

C
 [0

00
w

] [
m

od
 0

11
 r

/m
]†

m
 u

u
u

u
u

u
u

m
9/

9
9/

9
9/

9

10 10 10

9/
9

9/
9

9/
9

10 10 10

1
2

Instruction Set

7-27Instruction Set

 T
ab

le
 7

–1
7.

 In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed

M
od

e
C

lo
ck

s
N

ot
es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F
R

eg
/C

ac
he

H
it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

R
E

P
 IN

S
 In

pu
t S

tr
in

g
F

2
6[

11
0w

]
u

u
u

u
u

u
u

u
u

20
+

9n
20

+
9n

5+
9n

\
18

+
9n

5+
9n

\
19

+
9n

1
2,

9

R
E

P
 L

O
D

S
 L

oa
d

S
tr

in
g

F
2

A
[1

10
w

]
u

u
u

u
u

u
u

u
u

4+
5n

4+
5n

4+
5n

4+
5n

1
2

R
E

P
 M

O
V

S
 M

ov
e

S
tr

in
g

F
2

A
[0

10
w

]
u

u
u

u
u

u
u

u
u

5+
4n

5+
4n

5+
4n

5+
4n

1
2

R
E

P
 O

U
T

S
 O

ut
pu

t S
tr

in
g

F
2

6[
11

1w
]

u
u

u
u

u
u

u
u

u
20

+
4n

20
+

4n
5+

4n
\

18
+

4n
5+

4n
\

19
+

4n
1

2,
9

R
E

P
 S

TO
S

 S
to

re
 S

tr
in

g
F

2
A

[1
01

w
]

u
u

u
u

u
u

u
u

u
3+

4n
3+

4n
3+

4n
3+

4n
1

2

R
E

P
E

 C
M

P
S

 C
om

pa
re

 S
tr

in
g

(F
in

d
no

nm
at

ch
)

F
3

A
[0

11
w

]
m

u
u

u
m

m
m

m
m

5+
8n

5+
8n

5+
8n

5+
8n

1
2

R
E

P
E

 S
C

A
S

 S
ca

n
S

tr
in

g
(F

in
d

no
n-

A
L/

A
X

/E
A

X
)

F
3

A
[1

11
w

]
m

u
u

u
m

m
m

m
m

4+
5n

4+
6n

4+
5n

4+
6n

1
2

R
E

P
N

E
 C

M
P

S
 C

om
pa

re
 S

tr
in

g
(F

in
d

m
at

ch
)

F
2

A
[0

11
w

]
m

u
u

u
m

m
m

m
m

5+
8n

5+
8n

5+
8n

5+
8n

1
2

R
E

P
N

E
 S

C
A

S
 S

ca
n

S
tr

in
g

(F
in

d
A

L/
A

X
/E

A
X

)
F

2
A

[1
11

w
]

m
u

u
u

m
m

m
m

m
4+

5n
4+

6n
4+

5n
4+

6n
1

2

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).
12

)A
ny

 v
io

la
tio

n
of

 p
riv

ile
ge

 r
ul

es
 a

pp
lie

d
to

 th
e

se
le

ct
or

 o
pe

ra
nd

 d
oe

s
no

t c
au

se
 a

 p
ro

te
ct

io
n

ex
ce

pt
io

n.
 R

at
he

r,
th

e
ze

ro
 fl

ag
 is

 c
le

ar
ed

.
13

)F
or

 s
eg

m
en

t l
oa

d
op

er
at

io
ns

, t
he

 C
P

L,
 R

P
L,

 a
nd

 D
P

L
m

us
t a

gr
ee

 w
ith

 th
e

pr
iv

ol
eg

e
ru

le
s

to
 a

vo
id

 a
n

ex
ce

pt
io

n
13

 fa
ul

t.
T

he
 s

eg
m

en
t’s

 d
es

cr
ip

to
r

m
us

t i
nd

ic
at

e
pr

es
en

t o
r

ex
ce

pt
io

n
11

 o
cc

ur
s

(D
S

, D
S

, E
S

, F
S

, G
S

 n
ot

 p
re

se
nt

).
 If

 th
e

S
S

 r
eg

is
te

r
is

 lo
ad

ed
 a

nd
 a

 s
ta

ck
 s

eg
m

en
t n

ot
 p

re
se

nt
 is

 d
et

ec
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
14

)T
he

 IF
 b

it
of

 th
e

fla
g

re
gi

st
er

 is
 n

ot
 u

pd
at

ed
 if

 C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
 T

he
 IO

P
L

an
d

V
M

 fi
el

ds
 o

f t
he

 fl
ag

 r
eg

is
te

r
ar

e
up

da
te

d
on

ly
 if

 C
P

L
=

 0
.

Instruction Set

7-28

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

R
E

T
 R

et
ur

n
fr

om
 S

ub
ro

ut
in

e
W

ith
in

 S
eg

m
en

t
W

ith
in

 S
eg

m
en

t A
dd

 Im
m

ed
ia

te
 to

 S
P

In
te

rs
eg

m
en

t
In

te
rs

eg
m

en
t A

dd
 Im

m
ed

ia
te

 to
 S

P
P

ro
te

ct
ed

 M
od

e:
D

iff
er

en
t P

riv
ile

ge
 L

ev
el

In
te

rs
eg

m
en

t
In

te
rs

eg
m

en
t A

dd
 Im

m
ed

ia
te

 to
 S

P

C
3

C
2�

C
B

C
A
�

u
u

u
u

u
u

u
u

u
10 10 13 13

13 13

10 10 26 26 69 69

26 27 72 72

1
2,

5,
6,

7,
8

R
O

L
 R

ot
at

e
Le

ft
R

eg
is

te
r/

M
em

or
y

by
 1

R
eg

is
te

r/
M

em
or

y
by

 C
L

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te

D
 [0

00
w

] [
m

od
 0

00
 r

/m
]

D
 [0

01
w

] [
m

od
 0

00
 r

/m
]

C
 [0

00
w

] [
m

od
 0

00
 r

/m
]†

m
u

u
u

u
u

u
u

m
2/

4
3/

5
2/

4

6 7 6

2/
4

3/
5

2/
4

6 7 6

1
2

R
O

R
 R

ot
at

e
R

ig
ht

R
eg

is
te

r/
M

em
or

y
by

 1
R

eg
is

te
r/

M
em

or
y

by
 C

L
R

eg
is

te
r/

M
em

or
y

by
 Im

m
ed

ia
te

D
 [0

00
w

] [
m

od
 0

01
 r

/m
]

D
 [0

01
w

] [
m

od
 0

01
 r

/m
]

C
 [0

00
w

] [
m

od
 0

01
 r

/m
]†

m
u

u
u

u
u

u
u

m
2/

4
3/

5
2/

4

6 7 6

2/
4

3/
5

2/
4

6 7 6

1
2

R
S

D
C

 R
es

to
re

 S
eg

m
en

t R
eg

is
te

r
an

d
D

es
cr

ip
to

r
0F

 7
9

[m
od

 s
re

g3
 r

/m
]

u
u

u
u

u
u

u
u

u
14

14
15

15

R
S

LD
T

 R
es

to
re

 L
D

T
R

 a
nd

 D
es

cr
ip

to
r

0F
 7

8
[m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
14

14
15

15

R
S

M
 R

es
um

e
fr

om
 S

M
M

 M
od

e
oF

 A
A

u
u

u
u

u
u

u
u

u
76

76
15

15

R
S

T
S

 R
es

to
re

 T
S

R
 a

nd
 D

es
cr

ip
to

r
0F

 7
D

 [m
od

 0
00

 r
/m

]
u

u
u

u
u

u
u

u
u

14
14

15
15

S
A

H
F

 S
to

re
 A

H
 in

 F
la

gs
9E

u
u

u
u

m
m

u
m

m
2

2

S
A

L
 S

hi
ft

Le
ft

A
rit

hm
et

ic
R

eg
is

te
r/

M
em

or
y

by
 1

R
eg

is
te

r/
M

em
or

y
by

 C
L

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te

D
 [0

00
w

] [
m

od
 1

00
 r

/m
]

D
 [0

01
w

] [
m

od
 1

00
 r

/m
]

C
 [0

00
w

] [
m

od
 1

00
 r

/m
]†

m
u

u
u

m
m

u
m

m
2/

4
3/

5
2/

4

6 7 6

2/
4

3/
5

2/
4

6 7 6

S
A

R
 S

hi
ft

R
ig

ht
 A

rit
hm

et
ic

R
eg

is
te

r/
M

em
or

y
by

 1
R

eg
is

te
r/

M
em

or
y

by
 C

L
R

eg
is

te
r/

M
em

or
y

by
 Im

m
ed

ia
te

D
 [0

00
w

] [
m

od
 1

11
 r

/m
]

D
 [0

01
w

] [
m

od
 1

11
 r

/m
]

C
 [0

00
w

] [
m

od
 1

11
 r

/m
]†

m
u

u
u

m
m

m
m

m
2/

4
3/

5
2/

4

6 7 5

2/
4

3/
5

2/
4

6 7 8

Instruction Set

7-29Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

S
B

B
 In

te
ge

r
S

ub
tr

ac
t w

ith
 B

or
ro

w
R

eg
is

te
r

to
 R

eg
is

te
r

R
eg

is
te

r
to

 M
em

or
y

M
em

or
y

to
 R

eg
is

te
r

Im
m

ed
ia

te
 to

 R
eg

is
te

r/
M

em
or

y
Im

m
ed

ia
te

 to
 A

cc
um

ul
at

or
 (

sh
or

t f
or

m
)

1
[1

0d
w

] [
11

 r
eg

 r
/m

]
1

[1
00

w
] [

m
od

 r
eg

 r
/m

]
1

[1
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 0
11

 r
/m

]†
1

[1
10

w
]†

m
u

u
u

m
m

m
m

m
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

S
C

A
S

 S
ca

n
S

tr
in

g
A

 [1
11

w
]

m
u

u
u

m
m

m
m

m
6

6
6

6
1

2

S
E

T
B

/S
E

T
N

A
E

/S
E

T
C

 S
et

 B
yt

e
on

 B
el

ow
/

N
ot

 A
bo

ve
 o

r
E

qu
al

/C
ar

ry
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
2[

m
od

 0
00

 r
/m

]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
B

E
/S

E
T

N
A

 S
et

 B
yt

e
on

 B
el

ow
 o

r
E

qu
al

/
N

ot
 A

bo
ve

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

6
[m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
E

/S
E

T
Z

 S
et

 B
yt

e
on

 E
qu

al
/Z

er
o

R
eg

is
te

r/
M

em
or

y
0F

 9
4

[m
od

 0
00

 r
/m

]
u

u
u

u
u

u
u

u
u

2/
2

2
2/

2
2

2

S
E

T
L/

S
E

T
N

G
E

 S
et

 B
yt

e
on

 L
es

s/
N

ot
 G

re
at

er
 o

r
E

qu
al

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

C
[m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
LE

/S
E

T
N

G
 S

et
 B

yt
e

on
 L

es
s

or
 E

qu
al

/
N

ot
 G

re
at

er
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
E

[m
od

 0
00

 r
/m

]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

15
)A

ll
m

em
or

y
ac

ce
ss

es
 u

si
ng

 th
is

 in
st

ru
ct

io
n

ar
e

no
nc

ac
he

ab
le

 a
s

th
is

 in
st

ru
ct

io
n

us
es

 S
M

M
 a

dd
re

ss
 s

pa
ce

.

Instruction Set

7-30

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

S
E

T
N

B
/S

E
TA

E
/S

E
T

N
C

 S
et

 B
yt

e
on

 N
ot

 B
el

ow
/

A
bo

ve
 o

r
E

qu
al

/N
ot

 C
ar

ry
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
3[

m
od

 0
00

 r
/m

]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

B
E

/S
E

TA
 S

et
 B

yt
e

on
 N

ot
 B

el
ow

 o
r

E
qu

al
/ A

bo
ve

To
 R

eg
is

te
r

M
em

or
y

0F
 9

7[
m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

E
/S

E
T

N
Z

 S
et

 B
yt

e
on

 N
ot

 E
qu

al
/

N
ot

 Z
er

o
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
5[

m
od

 0
00

 r
/m

]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

L/
S

E
T

G
E

 S
et

 B
yt

e
on

 N
ot

 L
es

s/
G

re
at

er
 o

r
E

qu
al

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

D
 [m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

LE
/S

E
T

G
 S

et
 B

yt
e

on
 N

ot
 L

es
s

or
E

qu
al

/G
re

at
er

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

F
[m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

O
 S

et
 B

yt
e

on
 N

ot
 O

ve
rf

lo
w

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

1[
m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

2
2

2/
2

2
2

S
E

T
N

P
/S

E
T

P
O

 S
et

 B
yt

e
on

 N
ot

 P
ar

ity
/

P
ar

ity
 O

dd
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
B

[m
od

 0
00

 r
/m

]

u
u

u
u

u
u

u
u

u

2/
2

2
2/

2
2

2

S
E

T
N

S
 S

et
 B

yt
e

on
 N

ot
 S

ig
n

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

9[
m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

2
2

2/
2

2
2

S
E

TO
 S

et
 B

yt
e

on
 O

ve
rf

lo
w

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

0[
m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

2
2

2/
2

2
2

S
E

T
P

/S
E

T
P

E
 S

et
 B

yt
e

on
 P

ar
ity

/P
ar

ity
 E

ve
n

To
 R

eg
is

te
r/

M
em

or
y

0F
 9

A
[m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

2
2

2/
2

2
2

S
E

T
S

 S
et

 B
yt

e
on

 S
ig

n
To

 R
eg

is
te

r/
M

em
or

y
0F

 9
8[

m
od

 0
00

 r
/m

]
u

u
u

u
u

u
u

u
u

2/
2

2
2/

2
2

2

S
G

D
T

 S
to

re
 G

D
T

 R
eg

is
te

r
To

 R
eg

is
te

r/
M

em
or

y
0F

 0
1[

m
od

 0
0

r/
m

]
u

u
u

u
u

u
u

u
u

6
6

6
6

1,
10

2

S
H

L
 S

hi
ft

Le
ft

Lo
gi

ca
l

R
eg

is
te

r/
M

em
or

y
by

 1
R

eg
is

te
r/

M
em

or
y

by
 C

L
R

eg
is

te
r/

m
em

or
y

by
 Im

m
ed

ia
te

D
 [0

00
w

] [
m

od
 1

00
 r

/m
]

D
 [0

01
w

] [
m

od
 1

00
 r

/m
]

C
 [0

00
w

] [
m

od
 1

00
 r

/m
]†

m
u

u
u

m
m

u
m

m
1/

3
2/

4
1/

3

5 6 5

1/
3

2/
4

1/
3

5 6 5

1
2

Instruction Set

7-31Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

S
H

LD
 S

hi
ft

Le
ft

D
ou

bl
e

R
eg

is
te

r/
m

em
or

y
by

 Im
m

ed
ia

te
R

eg
is

te
r/

M
em

or
y

by
 C

L
0F

 A
4[

m
od

 r
eg

 r
/m

]†
0F

 A
5[

m
od

 r
eg

 r
/m

]

u
u

u
u

m
m

u
m

m
1/

3
3/

5
5 7

1/
3

3/
5

5 7

S
H

R
 S

hi
ft

R
ig

ht
 L

og
ic

al
R

eg
is

te
r/

M
em

or
y

by
 1

R
eg

is
te

r/
M

em
or

y
by

 C
L

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te

D
 [0

00
w

] [
m

od
 1

01
 r

/m
]

D
 [0

01
w

] [
m

od
 1

01
 r

/m
]

C
 [0

00
w

] [
m

od
 1

01
 r

/m
]†

m
u

u
u

m
m

u
m

m
1/

3
2/

4
1/

3

5 6 4

1/
3

2/
4

1/
3

5 6 4

1
2

S
H

R
D

 S
hi

ft
R

ig
ht

 D
ou

bl
e

R
eg

is
te

r/
M

em
or

y
by

 Im
m

ed
ia

te
R

eg
is

te
r/

M
em

or
y

by
 C

L
0F

 A
C

[m
od

 r
eg

 r
/m

]†
0F

 A
D

[m
od

 r
eg

 r
/m

]

u
u

u
u

m
m

u
m

m
1/

3
3/

5
5 7

1/
3

3/
5

5 7

S
ID

T
 S

to
re

 ID
T

 R
eg

is
te

r
To

 R
eg

is
te

r/
M

em
or

y
0F

 0
1[

m
od

 0
01

 r
/m

]
u

u
u

u
u

u
u

u
u

8
8

8
8

1,
10

2

S
LD

T
 S

to
re

 L
D

T
 R

eg
is

te
r

To
 R

eg
is

te
r/

M
em

or
y

0F
 0

0[
m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

3
3

3
2

S
M

S
W

 S
to

re
 M

ac
hi

ne
 S

ta
tu

s
W

or
d

0F
 0

1[
m

od
 1

00
 r

/m
]

u
u

u
u

u
u

u
u

u
2/

4
4

2/
4

4
1,

10
2,

11

S
T

C
 S

et
 C

ar
ry

 F
la

g
F

9
u

u
u

u
u

u
u

u
1

1
1

S
T

D
 S

et
 D

ire
ct

io
n

F
la

g
F

D
u

1
u

u
u

u
u

u
u

2
2

S
T

I S
et

 In
te

rr
up

t F
la

g
F

B
u

u
1

u
u

u
u

u
u

4
4

9

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).

Instruction Set

7-32

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F
R

eg
/C

ac
he

H
it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

S
TO

S
 S

to
re

 S
tr

in
g

A
 [1

01
w

]
u

u
u

u
u

u
u

u
u

3
3

3
3

1
2

S
T

R
 S

to
re

 T
as

k
R

eg
is

te
r

To
 R

eg
is

te
r/

M
em

or
y

0F
 0

0[
m

od
 0

01
 r

/m
]

u
u

u
u

u
u

u
u

u
1/

2
2

3
2

S
U

B
 In

te
ge

r S
ub

tr
ac

t
R

eg
is

te
r

to
 R

eg
is

te
r

R
eg

is
te

r
to

 m
em

or
y

M
em

or
y

to
 R

eg
is

te
r

Im
m

ed
ia

te
 to

 R
eg

is
te

r/
M

em
or

y
Im

m
ed

ia
te

 to
 A

cc
um

ul
at

or
 (

sh
or

t f
or

m
)

2
[1

0d
w

] [
11

 r
eg

 r
/m

]
2

[1
00

w
] [

m
od

 r
eg

 r
/m

]
2

[1
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 1
01

 r
/m

]†
2

[1
10

w
]†

m
u

u
u

m
m

m
m

m
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

S
V

D
C

 S
av

e
S

eg
m

en
t R

eg
is

te
r

an
d

D
es

cr
ip

to
r

0F
 7

8
[m

od
 s

re
g3

 r
/m

]
u

u
u

u
u

u
u

u
u

22
22

15
15

S
V

LD
T

 S
av

e
LD

T
R

 a
nd

 D
es

cr
ip

to
r

0F
 7

A
 [m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
22

22
15

15

S
V

T
S

 S
av

e
T

S
R

 a
nd

 D
es

cr
ip

to
r

0F
 7

C
 [m

od
 0

00
 r

/m
]

u
u

u
u

u
u

u
u

u
22

22
15

15

T
E

S
T

 T
es

t B
its

R
eg

is
te

r/
M

em
or

y
an

d
R

eg
is

te
r

Im
m

ed
ia

te
 D

at
a

an
d

R
eg

is
te

r/
M

em
or

y
Im

m
ed

ia
te

 D
at

a
an

d
A

cc
um

ul
at

or

8
[0

10
w

] [
m

od
 r

eg
 r

/m
]

F
 [0

11
w

] [
m

od
 0

00
 r

/m
]†

A
 [1

00
w

]†

0
u

u
u

m
m

u
m

0
1/

3
1/

3 1

5 5
1/

3
1/

3 1

5 5

1
2

V
E

R
R

 V
er

ify
 R

ea
d

A
cc

es
s

To
 R

eg
is

te
r/

M
em

or
y

0F
 0

0[
m

od
 1

00
 r

/m
]

u
u

u
u

u
m

u
u

u
9/

10
12

3
2,

5,
6,

12

V
E

R
W

 V
er

ify
 W

rit
e

A
cc

es
s

To
 R

eg
is

te
r/

M
em

or
y

0F
 0

0[
m

od
 1

01
 r

/m
]

u
u

u
u

u
m

u
u

u
9/

10
12

3
2,

5,
6,

12

W
A

IT
 W

ai
t U

nt
il

F
P

U
 N

ot
 B

us
y

9B
u

u
u

u
u

u
u

u
u

5
5

5
5

W
B

IN
V

D
 W

rit
e-

B
ac

k
an

d
In

va
lid

at
e

C
ac

he
0F

 0
9

u
u

u
u

u
u

u
u

u
8

8

X
A

D
D

 E
xc

ha
ng

e
an

d
A

dd
R

eg
is

te
r1

, R
eg

is
te

r2
M

em
or

y,
 R

eg
is

te
r

0F
C

[0
00

w
] [

11
 r

eg
2

re
g1

]
0F

C
[0

00
w

] [
m

od
 r

eg
 r

/m
]

m
u

u
u

m
m

m
m

m
3 6

6
3 6

6

X
C

H
G

 E
xc

ha
ng

e
R

eg
is

te
r/

M
em

or
y

w
ith

 R
eg

is
te

r
R

eg
is

te
r

w
ith

 A
cc

um
ul

at
or

8
[0

11
w

] [
m

od
 r

eg
 r

/m
]

9
[0

 r
eg

]

u
u

u
u

u
u

u
u

u
3/

5 3
5

3/
5 3

5
1,

16
2,

16

Instruction Set

7-33Instruction Set

Ta
bl

e
7–

17
.

In
st

ru
ct

io
n

S
et

 (
C

on
tin

ue
d)

I
i

O
d

F
la

gs
R

ea
l-M

od
e

C
lo

ck
s

P
ro

te
ct

ed
-M

od
e

C
lo

ck
s

N
ot

es

In
st

ru
ct

io
n

O
pc

od
e

O F
D F

I F
T F

S F
Z F

A F
P F

C F

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
eg

/C
ac

he
H

it

C
ac

he
M

is
s

R
ea

l
M

od
e

P
ro

te
ct

ed
M

od
e

X
LA

T
 T

ra
ns

la
te

 B
yt

e
D

7
u

u
u

u
u

u
u

u
u

3
5

3
5

2

X
O

R
 B

oo
le

an
 E

xc
lu

si
ve

 O
R

R
eg

is
te

r
to

 R
eg

is
te

r
R

eg
is

te
r

to
 M

em
or

y
M

em
or

y
to

 R
eg

is
te

r
Im

m
ed

ia
te

 to
 R

eg
is

te
r/

M
em

or
y

Im
m

ed
ia

te
 to

 A
cc

um
ul

at
or

 (
sh

or
t f

or
m

)

3
[0

0d
w

] [
11

 r
eg

 r
/m

]
3

[0
00

w
] [

m
od

 r
eg

 r
/m

]
3

[0
01

w
] [

m
od

 r
eg

 r
/m

]
8

[0
0s

w
] [

m
od

 1
10

 r
/m

]†
3

[0
10

w
]†

0
u

u
u

m
m

u
m

0
1 3 3 1/
3 1

5 5 5

1 3 3 1/
3 1

5 5 5

1
2

†
=

 i
m

m
ed

ia
te

 d
at

a
‡

=
 8

-b
it

di
sp

la
ce

m
en

t
�

=
16

-b
it

di
sp

la
ce

m
en

t
¶

=
 3

2-
bi

t
di

sp
la

ce
m

en
t

m
=

F
la

g
 m

od
ifi

ed
u

=
F

la
g

 u
nc

ha
ng

ed
N

ot
es

:
1)

E
xc

ep
tio

n
13

 fa
ul

t (
ge

ne
ra

l p
ro

te
ct

io
n)

 o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
im

um
 C

S
, D

S
, E

S
, F

S
, o

r G
S

 s
eg

m
en

t
lim

it
(F

F
F

F
h)

. E
xc

ep
tio

n
12

 fa
ul

t (
st

ac
k

se
gm

en
t l

im
it

vi
ol

at
io

n
or

 n
ot

 p
re

se
nt

) o
cc

ur
s

in
 re

al
 m

od
e

if
an

 o
pe

ra
nd

 re
fe

re
nc

e
is

 m
ad

e
th

at
 p

ar
tia

lly
 o

r f
ul

ly
 e

xt
en

ds
 b

ey
on

d
th

e
m

ax
i-

m
um

 S
S

 li
m

it.
2)

E
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s

if
th

e
m

em
or

y
op

er
an

d
in

 C
S

, D
S

, E
S

, F
S

, o
r

G
S

 c
an

no
t b

e
us

ed
 d

ue
 to

 e
ith

er
 a

 s
eg

m
en

t l
im

it
vi

ol
at

io
n

or
 a

n
ac

ce
ss

 r
ig

ht
s

vi
ol

at
io

n.
 If

 a
 s

ta
ck

 li
m

it
is

 v
io

la
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
3)

T
hi

s
is

 a
 p

ro
te

ct
ed

 m
od

e
in

st
ru

ct
io

n.
 A

tte
m

pt
ed

 e
xe

cu
tio

n
in

 r
ea

l m
od

e
w

ill
 r

es
ul

t i
n

ex
ce

pt
io

n
6

(in
va

lid
 o

pc
od

e)
.

4)
A

n
ex

ce
pt

io
n

m
ay

 o
cc

ur
, d

ep
en

di
ng

 o
n

th
e

va
lu

e
of

 th
e

op
er

an
d.

5)
LO

C
K

is

 a
ss

er
te

d
du

rin
g

de
sc

rip
to

r
ta

bl
e

ac
ce

ss
es

.
6)

A
ll

se
gm

en
t d

es
cr

ip
to

r
ac

ce
ss

es
 in

 th
e

G
D

T
 o

r
LD

T
 m

ad
e

by
 th

is
 in

st
ru

ct
io

n
au

to
m

at
ic

al
ly

 a
ss

er
ts

 L
O

C
K

to

 m
ai

nt
ai

n
de

sc
rip

to
r

in
te

gr
ity

 in
 m

ul
tip

ro
ce

ss
or

 s
ys

te
m

s.
7)

JM
P,

 C
A

LL
, I

N
T,

 R
E

T,
 a

nd
 IR

E
T

 in
st

ru
ct

io
ns

 r
ef

er
rin

g
to

 a
no

th
er

 c
od

e
se

gm
en

t c
au

se
s

an
 e

xc
ep

tio
n

13
, i

f a
n

ap
pl

ic
ab

le
 p

riv
ile

ge
 r

ul
e

is
 v

io
la

te
d.

8)
T

he
 d

es
tin

at
io

n
of

 a
 J

M
P,

 C
A

LL
, I

N
T,

 R
E

T,
 o

r
IR

E
T

 m
us

t b
e

in
 th

e
de

fin
ed

 li
m

it
of

 a
 c

od
e

se
gm

en
t o

r
an

 e
xc

ep
tio

n
13

 fa
ul

t o
cc

ur
s.

9)
A

n
ex

ce
pt

io
n

13
 fa

ul
t o

cc
ur

s
if

C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
10

)T
hi

s
in

st
ru

ct
io

n
m

ay
 b

e
ex

ec
ut

ed
 in

 r
ea

l m
od

e.
 In

 r
ea

l m
od

e,
 it

s
pu

rp
os

e
is

 p
rim

ar
ily

 to
 in

iti
al

iz
e

th
e

C
P

U
 fo

r
pr

ot
ec

te
d

m
od

e.
11

)A
n

ex
ce

pt
io

n
13

 fa
ul

t o
cc

ur
s

if
C

P
L

is
 g

re
at

er
 th

an
 0

 (
0

is
 th

e
m

os
t p

riv
ile

ge
d

le
ve

l).
12

)A
ny

 v
io

la
tio

n
of

 p
riv

ile
ge

 r
ul

es
 a

pp
lie

d
to

 th
e

se
le

ct
or

 o
pe

ra
nd

 d
oe

s
no

t c
au

se
 a

 p
ro

te
ct

io
n

ex
ce

pt
io

n.
 R

at
he

r,
th

e
ze

ro
 fl

ag
 is

 c
le

ar
ed

.
13

)F
or

 s
eg

m
en

t l
oa

d
op

er
at

io
ns

, t
he

 C
P

L,
 R

P
L,

 a
nd

 D
P

L
m

us
t a

gr
ee

 w
ith

 th
e

pr
iv

ol
eg

e
ru

le
s

to
 a

vo
id

 a
n

ex
ce

pt
io

n
13

 fa
ul

t.
T

he
 s

eg
m

en
t’s

 d
es

cr
ip

to
r

m
us

t i
nd

ic
at

e
pr

es
en

t o
r

ex
ce

pt
io

n
11

 o
cc

ur
s

(D
S

, D
S

, E
S

, F
S

, G
S

 n
ot

 p
re

se
nt

).
 If

 th
e

S
S

 r
eg

is
te

r
is

 lo
ad

ed
 a

nd
 a

 s
ta

ck
 s

eg
m

en
t n

ot
 p

re
se

nt
 is

 d
et

ec
te

d,
 a

n
ex

ce
pt

io
n

12
 o

cc
ur

s.
14

)T
he

 IF
 b

it
of

 th
e

fla
g

re
gi

st
er

 is
 n

ot
 u

pd
at

ed
 if

 C
P

L
is

 g
re

at
er

 th
an

 IO
P

L.
 T

he
 IO

P
L

an
d

V
M

 fi
el

ds
 o

f t
he

 fl
ag

 r
eg

is
te

r
ar

e
up

da
te

d
on

ly
 if

 C
P

L
=

 0
.

15
)A

ll
m

em
or

y
ac

ce
ss

es
 u

si
ng

 th
is

 in
st

ru
ct

io
n

ar
e

no
nc

ac
he

ab
le

 a
s

th
is

 in
st

ru
ct

io
n

us
es

 S
M

M
 a

dd
re

ss
 s

pa
ce

.
16

)L
O

C
K

is

 a
ut

om
at

ic
al

ly
 a

ss
er

te
d,

 r
eg

ar
dl

es
s

of
 th

e
pr

es
en

ce
 o

r
ab

se
nc

e
of

 th
e

LO
C

K
 p

re
fix

.

7-34

 Running Title—Attribute Reference

A-1 POTOMAC Microprocessor SMM Programmer’s Guide

Programming
System Management Mode (SMM)

This appendix provides detailed information on programming the
TI486SXL(C) system management mode (SMM). The topics are SMI exam-
ples, testing/debugging SMM code, power management features, loading
SMM programs, detection of CPU type, presence of SMM-capable devices,
creating macros, and altering SMM code limits.

Note:

The final responsibility for verifying designs incorporating TI486SXL(C)
microprocessors rests with the customer originating the motherboard
design.

Topic Page

A.1 SMM Overview A-2.

A.2 TI486SXL(C) Microprocessor Power Management Features A-3.

A.3 SMM Feature Comparison A-4.

A.4 SMM Hardware Considerations A-5.

A.5 SMM Software Considerations A-7.

A.6 Enabling SMM A-11.

A.7 SMM Instruction Summary and Macros A-12.

A.8 SMI Handler Example A-17.

A.9 Loading SMM Memory With an SMM Program From Main Memory A-22

A.10 Detection of a TI Microprocessor A-26.

A.11 Detection of SMM Capable Version A-28.

A.12 Format of Data Used by SVDC/RSDC Instructions A-32.

A.13 Altering SMM Code Limits A-34.

A.14 Testing/Debugging SMM Code A-35.

Appendix A

SMM Overview

A-2

A.1 SMM Overview

This programmer’s guide has been written to aid programmers in the creation
of software using the TI486SXL(C) family of microprocessors system man-
agement mode (SMM). SMM is currently implemented in all versions of the
TI486SXL(C) microprocessors.

A.1.1 Introduction

For an introduction to SMM and additional information, refer to:

� Section A.3, SMM Features Comparison (page A-4), which compares
the differences between the TI486SXLC and the TI486SXL and other in-
dustry offerings that implement SMM

� Subsection A.14.3, Clearing the VM Flag Bit (page A-42), which contains
important information concerning SMM programming.

A.1.2 SMM Implementation

SMM operation in the TI486SXL(C) microprocessors is similar to related op-
erations in comparable Advanced Micro Devices and Intel Corporation micro-
processors. Each implementation:

� Switches into real mode upon entry into the SMM interrupt handler
� Has unique SMM code locations
� Saves the programmer-visible register contents upon entry
� Saves the nonprogrammer-visible register contents

The TI microprocessors have a programmable location and size for the SMM
memory region. The TI SMM implementation also provides unique instructions
that save additional Segment registers as required by the programmer, in addi-
tion to the x86 MOV instruction that saves the General-Purpose registers.

The TI microprocessor automatically saves the minimal register information,
reducing the entry and exit clock count to 140. This compares with Intel’s clock
overhead for entry and exit of 804 clocks and AMD’s minimum of 694 clocks.
(See Section A.3, SMM Feature Comparison (page A-4), for a comparison
of SMM overhead.)

Although all three manufacturers’ microprocessors provide I/O trapping, the
TI486SXL(C) microprocessors SMM simplifies identification of I/O type and
instruction restarting. The TI CPU SMM process is unique in its ability to permit
software relocation and sizing of the SMM address region. This flexibility facili-
tates run-time changes to SMM support. This software flexibility lets an operat-
ing system or debugger change, modify, or disable the SMM code.

 TI486SXL(C) Microprocessor Power Management Features

A-3 Programming System Management Mode (SMM)

A.2 TI486SXL(C) Microprocessor Power Management Features

The TI486SXL(C) microprocessor family provides several methods and levels
of power management. The fully static design, suspend mode, system man-
agement mode (SMM), and 3.3-V operation can achieve optimum CPU and
system power management. Table A–1 summarizes the various power man-
agement options:

Table A–1.Power Management Options

Option Power Savings

Reduced Clock Frequency ICC = (12 x fCLK2 (MHz)) + 150 mA @ 5 V

Lower Supply Voltage (VCC) ICC = (130 x VCC) – 256 mA @ 25 MHz

Suspend Mode 2% of typical ICC

Remove Clock 25% of typical ICC

Suspend Mode and Remove Clock 400 �A

Remove Power 0 �A

A.2.1 Reducing the Clock Frequency

The TI486SXL(C) microprocessor family is a fully static design; the input clock
frequency can be reduced or stopped without a loss of internal CPU data or
state. The system designer can decide to reduce the clock using SMM capabil-
ities to support advanced power management (APM) software in concert with
chipset capabilities. When the clock is removed, then restarted, CPU execu-
tion begins with the instruction where the clock was removed. Note that the
clock-doubled versions of TI486SXL(C) family must be brought into the non-
clock-doubled mode before scaling or stopping the input CLK2.

A.2.2 Suspend Mode

The TI486SXL(C) microprocessor family supports suspend mode operation
that can be initiated through software or hardware.

Software initiates suspend mode through execution of a halt (HLT) instruction.
After HLT is executed, the CPU enters suspend mode and asserts suspend
acknowledge (SUSPA#), if enabled.

Hardware initiates suspend mode by using the SUSP# and SUSPA# pins of
the microprocessor. When SUSP# is asserted, the CPU completes any pend-
ing instructions and bus cycles and then enters suspend mode. Once in sus-
pend mode, the SUSPA# pin is asserted by the CPU.

Programming System Management Mode (SMM)

A-4

A.3 SMM Feature Comparison

The SMM features of the TI486SXLC and TI486SXL microprocessors are
compared with other versions of microprocessors in Table A–2.

Table A–2.SMM Features

Feature TI486SXLC TI486SXL 386SL AMD

SMM Entry Point Base of SMM space
(0 to 32M bytes less
4K bytes)

Base of SMM space
(0 to 4G bytes less
4K bytes)†

38000h Reset vector

CPU State Save
Area

Top of SMM space Top of SMM space 3FFA8h–3FFFFh 60000h–600CAh
and 60100h–60126h

SMM Space Programmable
(4K to 16M)

Programmable
(4K to 4G)

38000/30000h
(32K/64K)

Entire address
space

Data Auto-Saved 8 32-bit registers
1 16-bit register
1 4-bit register

8 32-bit registers
1 16-bit register
1 4-bit register

44 32-bit registers
9 16-bit registers

53 32-bit registers
8 16-bit registers

SMM Memory
Restrictions

None None 8-bit on 8-MHz
XD Bus

Nonpipelined
No dynamic bus siz-
ing

Normal Mode
SMM Memory
Access

Yes Yes Yes No

Hardware Pins 2 2 NA – Must use
82360

4

Incremental CPU
State Save
Instructions

Yes Yes No No

I/O Trapping Yes Yes Yes Yes

SMI# Input
Masking

Yes Yes Yes No

† Address Region 4 register is 32 bits wide to support 4G-byte physical address space.

 SMM Hardware Considerations

A-5 Programming System Management Mode (SMM)

A.4 SMM Hardware Considerations

The following sections provide an overview of TI486SXL(C) SMM coding and
information helpful in developing SMM code.

A.4.1 SMM Pins

The SMI# and SMADS# pins implement SMM. The bidirectional SMI# pin is
used by the chipset to signal the CPU that an SMI has occurred. While the CPU
is in the process of servicing an SMM interrupt, the same pin sends a signal
to the chipset to indicate that the SMM processing is occurring. The SMADS#
address strobe is generated instead of the ADS# address strobe while execut-
ing or accessing data in SMM address space.

A.4.2 SMI# Pin Timing

In order to enter the system management mode, the SMI# pin must be as-
serted for at least four CLK2 periods. See Figure A–1. Once the CPU recog-
nizes the active SMI input, the CPU drives the SMI input low for the duration
of the SMI routine. The SMI routine is terminated with an SMI-specific resume
(RSM) instruction. When the RSM instruction is executed, the CPU drives the
SMI# pin high for two CLK2 periods. The SMI# pin bidirectional design does
the following:

� Prohibits more than one SMI interrupt from becoming active

� Provides feedback to the chip-set/core logic that an SMI is in process

� Provides compatibility with other SMM hardware interfaces

Figure A–1.SMI# Pin Timing

CLK2

�2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1 �2�1

SMI#

1 2 3 4 5

Indicates that TI486SXLC drives the SMI# pin.

A.4.3 Address Strobes

The TI486SXL(C) microprocessor has two address strobes, ADS# and
SMADS#. ADS# is the address strobe used during normal operations. The
SMADS# address strobe replaces ADS# during SMM operations when data
is written, read, or fetched in the SMM defined region. Using a separate ad-
dress strobe increases chipset compatibility and control.

During an SMM interrupt routine, control can be transferred to main memory
via a JMP, CALL, Jcc (conditional jump, cc = condition code) instruction or

SMM Hardware Considerations

A-6

execution of a software interrupt (INT). Execution in main memory causes
ADS# to be generated for code and data outside of the defined SMM address
region. (It is assumed, but not required, that the chipset ultimately translates
SMADS# and a particular address to some other address.) To access code in
main memory that overlaps the SMM address space, the MMAC bit (CCR1,
bit 3) must be set. This allows ADS# strobes to be generated for MOV instruc-
tions that overlap main memory while in SMM mode. It is not possible to
execute code in main memory that overlaps SMM space while in the SMM
mode.

SMADS# can also be generated for memory reads, writes, and code fetches
within the defined SMM region when the SMAC bit, Configuration Control 1
register (CCR1) bit 2, is set while in normal mode. (See subsection 2.5.4, Con-
figuration Registers on page 2-26, for further information on CCR1). The gen-
eration of SMADS# permits a program in normal space to jump into SMM code
space. The microprocessor must be in real mode before the jump occurs into
SMM space. A routine should be followed to initialize used registers to their
real-mode state. The RSM instruction should not be used after jumping into
SMM space unless return information is written into the SMM context area be-
fore the RSM instruction is executed.

A.4.4 Chipset READY#

The TI486SXL(C) microprocessors have one READY# input. Chipsets that
implement the dual READY lines can OR the two ready lines together for the
single READY#. The AMD implementation of SMM provides for two READY
lines from the chipset, one for SMM space (SREADY#) and one for the normal
READY#.

 SMM Software Considerations

A-7 Programming System Management Mode (SMM)

A.5 SMM Software Considerations

At the start of the SMM routine, before control is transferred to code executing
at SMM base, some of the CPU state is saved at the end of SMM memory. This
is one area where the CPU SMM state is unique. The CPU saves the minimum
CPU state information necessary for an interrupt handler to execute and return
to the interrupted context. The information is saved at the top of the defined
SMM region (starting at SMM base + size – 30h). Of the typically used program
registers, only the CS, EFLAGS, CR0, and DR7 are saved upon entry. This
requires that data accesses use a CS segment override to save other registers
and access data. To use any other register, the SMM programmer must first
save the contents using the SVDC instruction for Segment registers or MOV
operations for General-Purpose registers (See Section A.7, SMM Instruction
Summary and Macros, page A-12). It is possible to save all the CPU registers
as needed.

The TI486SXL(C) microprocessors are unique in saving the previous IP be-
fore the SMI and the next IP to be executed after exiting the SMI handler. Upon
execution of an RSM instruction, control is returned to the NEXT IP. The value
of the NEXT IP may need to be modified for restarting OUTSx/INSx instruc-
tions; this modification is a simple move (MOV) of the PREVIOUS IP value to
the NEXT IP location. Execution is then returned to the I/O instruction, rather
than the instruction after the next I/O instruction. (The restarting of I/O instruc-
tions may also require modifications to the ESI, ECX, and EDI depending on
the instruction. See Section A.8, SMI Handler Example (page A-17), for typical
code used.)

Figure A–2 and Table A–3 describe the SMM header. The P and I bits indicate
whether a INSx/OUTSx and a REP prefix were being executed. IN/OUT
instructions are restarted by changing NEXT IP and leaving the SMI handler.

Note:

The only area in the SMM header that the programmer should consider alter-
ing is the NEXT IP. Altering any other header values can have unpredictable
results.

The EFLAGS, CR0, and DR7 registers are set to the reset values upon entry
to the SMI handler. This has implications for setting break points using the De-
bug registers. Break points cannot be set prior to the SMI using Debug regis-
ters. The INT 3 debug code trap technique can be used; however, it must be
used prior to the occurrence of the SMI in SMM space. Once the SMI has oc-
curred and the debugger has control in SMM space, the Debug registers can
be used for the remaining SMI execution.

SMM Software Considerations

A-8

Figure A–2. SMM Header

31 16 15 0

31 01

31 0

-18h

-1Ch

-20h

-24h

-28h

-2Ch

-30h

2

-4h

-8h

-Ch

-10h

-14h

IP

DR7

EFLAGS

CR0

Current IP

Next IP

Reserved CS Selector

CS Descriptor (Bits 63–32)

CS Descriptor (Bits 31–0)

Reserved

Reserved

Reserved

ESI or EDI

Top of SMM
Address Space

Table A–3. SMM Header

Name Description Size

DR7 The contents of the Debug register 7 4 Bytes

EFLAGS The contents of the extended Flag-Word register 4 Bytes

CR0 The contents of the Control register 0 4 Bytes

Current IP The address of the instruction executed before servicing the SMI interrupt 4 Bytes

Next IP The address of the next instruction that will be executed after exiting the SMM mode 4 Bytes

CS Selector Code Segment register selector for the current code segment 2 Bytes

CS Descriptor Code register descriptor for the current code segment 8 Bytes

P REP INSx/OUTSx Indicator:
P = 1 if current instruction has a REP prefix
P = 0 if current instruction does not have REP prefix

1 Bit

I IN, INSx, OUT, or OUTSx Indicator:
I = 1 if current instruction performed is an I/O WRITE
I = 0 if current instruction performed is an I/O READ

1 Bit

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap

4 Bytes

Note: INSx = INS, INSB, INSW, or INSD instruction.

Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

 SMM Software Considerations

A-9 Programming System Management Mode (SMM)

A.5.1 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler, the IP
is loaded from the top of the SMM at the address (SMMbase +SMMsize – 14h)
called SMI_NEXTIP. This permits the instruction to be restarted. The values
of ECX, ESI, and EDI, before execution of the instruction that was interrupted
by SMI can be restored from information in the header that pertains to the INx
and OUTx instructions. The only registers that are restored from the SMM
header are CS, NEXT_IP, EFLAGS, CR0, and DR7.

A.5.2 Accessing Main Memory At the Same Address as SMM Code

To access main memory overlapping the SMM space (i.e., generate ADS#
from memory MOV instructions rather than SMADS#), set the MMAC (main
memory access) bit in CCR1. The code in Example A–1 enables MMAC:

Example A–1. Accessing Main Memory Overlapping SMM Space

mov al, 0c1h ;select CCR1
out 22h, al
in al, 23h ;get CCR1 current value
mov ah, al ;save it
mov al, 0c1h
out 22h, al
mov al, ah
or al, 08h ;set MMAC
out 23h, al

;Now all non–cs–prefixed data memory access will use ADS#;
;Code fetches will continue from SMM memory using SMADS#
;
;Disable MMAC

mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah ;get old value of CCR1
out 23h, al ;and restore it

A.5.3 Miscellaneous Execution Details

The following list provides additional details pertaining to the execution of
instructions associated with SMM/SMI functions.

� Execution of SMM code begins at the start of SMM space. This is the value
entered onto the base portion of AAR4. The CS base is set to the ARR4
SMM base, and EIP is equal to 0. CS limit is the size of the SMM segment
set in ARR4.

� The A20# input to the CPU is ignored for all SMM space accesses. These
are all accesses that use SMADS#.

� All SMM instructions can be executed outside the SMM defined space,
provided that the SMAC bit is set in CCR1 or execution of an SMI handler
is in progress. (An SMI handler is in progress during the time the CPU is
driving the SMI pin low.)

SMM Software Considerations

A-10

� Setting the MMAC bit permits the reading and writing of main memory
addresses that overlap SMM memory while an SMI is in progress.

� It is not possible to execute code in main memory that overlaps SMM
memory addresses while an SMI is in progress.

� NMI is the only enabled interrupt at the entry to the SMI handler. You
should provide latches to disable NMI while the SMI is in progress.

� The SMI handler can execute calls, jumps, and other changes of flow and
can generate software interrupts and faults using the current definition of
the IDT. (Note that on entry to the SMI handler, the IDT is not set to the
reset real-mode value of 0:0.)

� The SMI handler can go from real mode to protected mode and vice-versa.
Almost anything that can be done normally can also be done during the
SMI service routine.

� SMM memory is not cached.

� If the location of SMM space is beyond 1M byte, the value in CS truncates
the segment above 16 bits. This prohibits doing calls or INTs from real
mode without restoring the 32-bit features of the 486 because of the incor-
rect return address on the stack.

� An undefined opcode exception is typically generated when conditions are
not correct to permit the execution of SMM instructions.

� To execute outside the SMM region (BIOS, debugger, etc.) the CS limit
must be changed after entry to the SMI handler. The limit of the CS Seg-
ment register is set to the size of the SMM region in ARR4. This means
that EIP cannot become larger than the SMM region size. Since jumps in
real mode do not change the CS limit, this has implications for software
interrupts and jumps out of SMM space. (See Section A.13, Altering SMM
Code Limits on page A-34 for details and options.)

� Segment registers other than the CS have the limits set in the nonpro-
grammer-visible portion that were present before the SMI. To avoid a
protection error due to the limit or other violations, the RSDC SMM instruc-
tion should be used to change the limit of the register in use. (See Section
A.12, Format of Data Used by SVDC/RSDC Instructions on page A-32.)

 Enabling SMM

A-11 Programming System Management Mode (SMM)

A.6 Enabling SMM

To enable and setup SMM in the CPU, set all four of the SMM registers/bits
to the values shown in Table A–4 using the code supplied in Example A–2.

See subsection 2.5.4, Configuration Registers (page 2-26), for further in-
formation on CCR1 and ARR4.

Table A–4.Setting SMM Register Bits

Register/Bit Location† Value Description

SMI CCR1 bit 1 1 Enable SMI pin

SM4 CCR1 bit 7 1 Make ARR4 as SMM space

SM_loc ARR4 bits 12–4 Start SMM region SMM base address

SM_size ARR4 bits 3–0 ≥ 4KB and ≤ 16MB SMM size

Example A–2. SMM Setup

Setup example

;SMM Location = 0C8000H
;SMM Size = 8KB

mov al, 0c1h ; index to CCR1
out 22h, al ; select CCR1 register
in ah, 23h ; read current CCR1 value
or ah, 082h ; enable SMI and SM4 region
mov al, 0c1h ; index to CCR1
out 22h, al ; select CCR1 register
out 23h, ah ; write new value to CCR1
mov al, 0ceh ; index ARR4 SMM base address bits <23–16>
out 22h, al ; select
mov al, 0ch ; set ARR4 SMM base address upper bits
out 23h, al ; write value
mov al, 0cfh ; index ARR4 SMM base address bits <15–12>
out 22h, al ; and 4 bits for SMM size
mov al, 082h ; set SMM lower address bits and SMM size
out 23h, al ; write value

SMM Instruction Summary and Macros

A-12

A.7 SMM Instruction Summary and Macros

The TI486SXL(C) microprocessor responds to seven instructions when it is in
SM mode. These seven nonstandard instructions include:

� Two that save and restore a Segment register and its descriptor
� Two that save and restore the Task register
� Two that save and restore the LDT register
� One that exits SM mode

The instructions that save and restore registers are needed because the CPU
saves a minimum amount of information in the SM header (for speed). If one
or more of the Segment registers in the SM interrupt handler needs to be modi-
fied, the previous values need to be preserved as they are not automatically
saved in the header. The instructions that save and restore Segment registers
are provided for this purpose. Similarly, the instructions that save and restore
the Task register and LDT register allow creation of an SM interrupt handler
that enters protected mode and acts as a task dispatcher.

The seven SM instructions summarized in Table A–5 are valid only when CPL
is 0 and either of the following is true:

� The SMAC, SMI, and SM4 bits are set and a valid SMM region is defined
(the SMM size defined to be greater than 0).

� The SMI# pin is driven low by the CPU. (The CPU drives SMI# low after
it recognizes the SMI interrupt and continues to drive it low until RSM is
executed. See Figure A–1 page A-5.)

 SMM Instruction Summary and Macros

A-13 Programming System Management Mode (SMM)

Table A–5.SMM Instruction Set with Clock Counts

Instruction Mnemonic Opcode Clocks Description

rsdc rst_seg 0F 79 14 Restores a Segment register
from an 80-bit memory location.†

rsldt rst_ldt 0F 7B 14 Restores the Local-Descriptor-
Table register from an 80-bit
memory location.†

rsts rst_tr 0F 7D 14 Restores the Task register from
an 80-bit memory location.†

svdc sav_seg 0F 78 22 Saves a Segment register at an
80-bit memory location.‡

svldt sav_ldt 0F 7A 22 Saves the Local-Descriptor-Table
register at an 80-bit memory loca-
tion.‡

svts sav_tr 0F 7C 22 Saves the Task register at an
80-bit memory location.‡

rsm exit_sm 0F AA 58 Restores the state of the CPU
from the data saved in the header
at the top of SM memory (the
header is created by the proces-
sor when it recognizes an SMI).
This instruction takes the proces-
sor out of SM mode and returns it
to the task that was executing
when the SMI occurred.

† The restore includes the descriptor information that is invisible to applications.
‡ The save includes the descriptor information that is invisible to applications.

The values in the second column in Table A–5, titled Mnemonic, are arbitrary
since there is no current assembler support for the SM instructions. That
means that the code is probably generated manually. In generating the code,
other arbitrary names may be preferred. The names shown in the first column
of Table A–5 are the instruction names that have been added to the
TI486SXL(C) instruction set. The mnemonics are a bit more descriptive and
are used in the example macros, Example A–3. These examples for generat-
ing SM instruction code have been rewritten from earlier versions.

The third column in Table A–5 provides the basic opcode for the SM instruc-
tions. In addition to these basic codes, the first six SM instructions listed can
be prefixed with a segment override and/or an address size override, and they
require a mod r/m byte and a memory offset.

The include file shown in Example A–3 contains some macros that are useful
within an SM interrupt handler. These macros implement versions of the
seven special SM instructions shown in Table A–5. These macros can be used
as is or modified to suit the particular application.

SMM Instruction Summary and Macros

A-14

Example A–3. Macros That Implement the Special SM Instructions

COMMENT ^
===
File: SM.MAC

 Copyright (c) 1994 Texas Instruments, Incorporated

This include file defines a set of macros for generating System Management (SM)
mode instruction opcodes, since no assembler directly supports these SM
instructions.

There are six SM instructions that are used to save and restore registers that
are not automatically saved when SM mode is entered, and one instruction for
exiting from SM mode. These instructions support many addressing modes, but
the macros in this file only implement one mode––a 16–bit memory reference
(within the code segment as a CS: override is also used). These macros could
be made much more complex to allow other addressing modes, but the additional
complexity wouldn’t provide much useful benefit.

Each of the macros that implements a register save or restore takes as a
parameter an offset in the code segment where the register should be saved to
or restored from. The two macros that save and restore segment registers also
take the name of a segment register as a parameter.

Here is a small portion of code that shows how the macros in this file are used:

<<<<<<< BEGIN EXAMPLE CODE >>>>>>>

.CODE

smi_entry_point:

sav_seg old_ds,ds ; Save segment registers
sav_seg old_es,es
sav_seg old_fs,fs
sav_seg old_gs,gs
sav_seg old_ss,ss
sav_ldt old_ldt ; Save LDTR and TR
sav_tr old_tr
mov dword ptr cs:old_eax,eax ; Save other registers
mov cs:old_ebx,ebx

...

rst_seg ds,old_ds ; Restore segment registers
rst_seg es,old_es
rst_seg fs,old_fs
rst_seg gs,old_gs

 SMM Instruction Summary and Macros

A-15 Programming System Management Mode (SMM)

rst_seg ss,old_ss
rst_ldt old_ldt ; Restore LDTR and TR
rst_tr old_tr
mov eax,dword ptr cs:old_eax ; Restore other registers
mov ebx,dword ptr cs:old_ebx
exit_sm ; Exit SM interrupt handler

old_ds dt ? ; 10 bytes in code segment
old_es dt ?
old_fs dt ?
old_gs dt ?
old_ss dt ?
old_tr dt ?
old_ldt dt ?
old_eax dd ?
old_ebx dd ?

...

<<<<<<< END EXAMPLE CODE >>>>>>>

===
^
; –––
; NOTE: The location at addr must be 10 bytes in size and it must reside
; within the code segment. It should be defined as:
;
;addr dt ?
; –––

sav_seg MACRO addr, reg ; Save one of the segment registers
SMMac sav_seg, addr, reg, 78h
ENDM

rst_seg MACRO reg, addr ; Restore one of the segment registers
SMMac rst_seg, addr, reg, 79h
ENDM

sav_ldt MACRO addr ; Save the LDT register
SMMac sav_ldt, addr, ldt, 7Ah
ENDM

rst_ldt MACRO addr ; Restore the LDT register
SMMac rst_ldt, addr, ldt, 7Bh
ENDM

sav_ts MACRO addr ; Save the Task register
SMMac sav_ts, addr, ts, 7Ch
ENDM

rst_ts MACRO addr ; Restore the Task register
SMMac rst_ts, addr, ts, 7Dh

SMM Instruction Summary and Macros

A-16

ENDM

exit_sm MACRO ; Exit from SM mode
DB 00Fh, 0AAh

ENDM

SMMac MACRO mname, addr, reg, op

; CS: override and SM instruction opcode
db 2Eh
db 0Fh, op

; mod r/m byte
ifidni <reg>, <cs>

db 00Eh
elseifidni <reg>, <ds>

db 01Eh
elseifidni <reg>, <fs>

db 026h
elseifidni <reg>, <gs>

db 02Eh
elseifidni <reg>, <ss>

db 016h
elseifidni <reg>, <es>

db 006h
elseifidni <reg>, <ts>

db 006h
elseifidni <reg>, <ldt>

db 006h
else

ECHO ERROR in macro <mname>:
ECHO Register parameter unknown: <reg>
ECHO Register parameter must be either CS, DS, ES, FS, GS, SS, TS,
ECHO or LDT
.ERR

endif

; 16–bit displacement
dw offset addr

ENDM

 SMI Handler Example

A-17 SMM Programmer’s Guide

A.8 SMI Handler Example

This section contains fragments of typical coding found in SMI handlers.

Example A–4. Typical Coding Found In SMI Handlers

SMBASE= 0C8000H ; base address of SMM space
SMSIZE= 2 ; SMM space size is 8k bytes
SMEND = SMSIZE SHL (SMSIZE–1) ;works for most cases

INCLUDE SM.MAC ;see Section Example A–3, page A-14
.MODEL SMALL
.386P
.CODE

COMMENT ^
Execution begins here in real mode, with CS defined at the SMBASE and EIP=0
^

public smi_start
smi_start:

jmp $skipdata ;skip data area, makes it easy for
;assembler

EAXsave dd ?
DSsave dt ?
DStemp db 0ffh, 0ffh, 0,0,0,92h,8fh,0,0,0 ;4gig present segment
$skipdata:

mov dword ptr cs:[EAXsave],eax; save EAX
sav_seg [DSsave], ds ; save DS
rst_seg ds,[DStemp] ; setDS

COMMENT ^
We need to extend the limits of DS so that we don’t get a fault when we use it to ac-
cess low memory. It may be not present with a limit of 0, and these values won’t be
changed when we set it using a real mode load.
^

;Determine Why Are We In The SMI Handler

COMMENT ^
Chipset/Core logic unique instructions will follow. The chipset will be used to deter-
mine what caused the SMM interrupt to occur. The BIOS could also “jump” to this point
in the SMM region.

Decision Tree:

a) If timer, go to timer_expired

b) If port i/o occurred to a trapped location, go to port_io_caused

c) If the cpu was turned off, go to cpu_turned_off
^
;timer_expired;

SMI Handler Example

A-18

COMMENT ^
A chipset timer has expired. Unique code would appear to determine which timer. De-
pending on the purpose of the timer, the handler could:

1) Reduce the clock frequency
2) Execute a halt instruction and enter suspend mode
3) Turn current off to the CPU
4) Turn off a peripheral device
5) Reset the timer and increment a counter

^
reduce_clock:

COMMENT ^
To go to a lower CPU current requirement, the CPU clock can be reduced. The CPU clock
can be reduced from its current setting to a lower value. That value could be zero.
Since the CPU is a static device and will maintain the state of all its registers in
the absence of a clock input there is no state saving requirement. It is assumed that
by writing to the chipset it will reduce or zero the clock. If the clock is stopped,
the next instruction to be executed will be one in this SMI handler immediately fol-
lowing the point where the chipset turned the clock off.
^

jmp end_timer:

execute_halt:

COMMENT ^
To go to a lower CPU current consumption, the SMI handler will now execute a HLT
instruction. The HLT instruction will put the CPU into a low power sleep mode until a
non-SMI interrupt occurs. Interrupt(s) will need to be enabled to permit the interrupt
to wake-up the CPU. A common choice would be the keyboard interrupt. A flag would need
to be set in main memory to indicate that the SMI handler should be jumped into or SMI
created, to permit it to restore the state/context of the CPU, prior to the halt for
servicing the interrupt. The interrupt in low memory must point to the BIOS handler
for the return to be made to the SMI handler. An interrupt handler in SMM space could
also service the interrupt rather than a BIOS routine.
^

;[Alternatively the chipset could pull the SUSP# CPU pin low to enter]
;[suspend mode. The chipset would have to pull SUSP# high to exit]
;[suspend mode.]

:To be sure that BIOS will get control on intr
;check for keyboard interrupt vector pointing to BIOS
;if not BIOS, save existing and set to BIOS vector or jump to can_not_halt
;Set a flag in main memory indicating SMI HALT executed
;If an SMM space interrupt handler is used, then IDTR and/or the vector
;would need to be updated to the SMM space routine.
mov ax, 0 ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in main memory

;<set cpu state for bios int>
hlt ; last instruction executed here
;<the chipset could remove the clock to go to suspend mode now>
nop

can_not_halt: ;CPU state will not be correct at interrupt

jmp end_timer

 SMI Handler Example

A-19 Programming System Management Mode (SMM)

turn_off_cpu:

; set bit in main memory to indicate to the BIOS that SMI handler
; turned power off to CPU and CPU state should be restored by
; the SMI handler
;

mov ax, 0 ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in memory

; (save entire CPU state. See Restore CPU state label)
; (chipset specific instructions to be executed to remove power to
; cpu)
; jmp end_timer

turn_off_peripheral:

; chipset specific instructions to turn off peripheral and enable
; chipset I/O trapping of the devices io range or enable timer
; to allow polling of peripheral requirements.
jmp end_timer

reset_timer:

; chipset specific instructions to be executed to reset a timer and
; possibly increment a counter to maintain number to time out
; for a particular device.
jmp end_timer

end_timer:

jmp done

port_io_caused:

COMMENT ^
The SMM support for I/O being interrupted provides information that permits the re-
starting of the I/O instruction without investigating the actual code where the
instruction is located.

Many things can be done at this point beyond turning on a powered down peripheral. The
CPU clock could now be speeded up in anticipation of heavy CPU processing require-
ments, timers could be reset, etc.
^

;** Restart the interrupted instruction

mov eax,dword ptr [SMEND+SMI_PREVIOUSIP]
mov dword ptr [SMEND+SMI_NEXTIP],eax
mov al,byte ptr cs:[SMEND+SMI_BITS]

;test for REP instruction
bt al,2 ;rep instruction?

;(result to Carry)
adc ecx,0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;if an OUTS or INS
jnz out_instr

SMI Handler Example

A-20

COMMENT ^
** A port read (INx) instruction caused the chipset to generate an SMI instruc-

tion. Restore EDI saved by SMI microcode.
^

mov edi, dword ptr cs:[SMEND+SMI_EDIESI]
jmp common1

out_instr:

COMMENT ^
** A port write (OUTx) instruction caused the chipset to generate an SMI

instruction. Restore ESI saved by SMI microcode.
^

mov esi, dword ptr cs:[SMEND+SMI_EDIESI]
common1:

jmp done

cpu_turned_off:

COMMENT ^
This handler turned off the current to the CPU. Before it did, the handler set a bit
in main memory or battery-backed-up CMOS indicating that this event happened. At re-
set, BIOS will determine that this was the case and ”jump” into the SMI handler. SMI
handler will then restore the entire state/context of the CPU prior to current being
removed. The bit in main memory would also be cleared indicating that the SMI handler
had removed current.
^

mov ax, 0 ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 0 ; clear BIOS flag in main memory
mov ax, cs ; restore ds to SMM area
mov ds, ax

 SMI Handler Example

A-21 Programming System Management Mode (SMM)

{Restore Complete CPU State}

; eax
; ebx
; ecx
; edx
; edi
; esi
; ebp
; esp
; cs ;use rst_seg
; ds ;use rst_seg
; ss ;use rst_seg
; es ;use rst_seg
; fs ;use rst_seg
; gs ;use rst_seg
; ldtr
; gdtr
; idtr
; tr
; eflags
; cr0
; cr2
; cr3
; dr0
; dr1
; dr2
; dr3
; dr6
; dr7
; ccr0
; ccr1
; ccr2
; Save the configuration registers with index C3h through FFh
; for future product compatibility

; arr1

; arr2

; arr3

; arr4

jmp done

done:

mov eax,cs:[EAXsave]

rst_seg ds,[DSsave]

exit_sm ; return

Loading SMM Memory With an SMM Program from Main Memory

A-22

A.9 Loading SMM Memory With an SMM Program From Main Memory

To load SMM memory with an SMI interrupt handler, it is important that the SMI
interrupt does not occur before the handler is ready to accept it. This can be
done by not having SMAC = 0 and SMI = 1 (in the CCR1 register) before the
SMI handler is installed. It is necessary to set SM4 = 1 (in the CCR1 register)
and ARR4 with appropriate values before using the SMM memory. ARR4 de-
fines an SMM memory space as a noncacheable memory region when bit SM4
of CCR1 is set to 1.

To load SMM memory with a program, it is first necessary to enable SMM with
the exception of the SMI# pin by setting SMAC. (See Section A.6, Enabling
SMM, page A-11.) The SMM region is then mapped over main memory at the
same location. This is done by the generation of SMADS# for memory access
for the SMI. A REP MOV instruction can then be used to transfer the program
to the location. Then, turn off SMAC to activate potential SMIs.

See Example A–5 for sample code that performs these operations.

Example A–5. SMI Handler Routine

.MODEL MEDIUM

.STACK

; ===
; M A C R O S
; ===

iodlay_ macro ; Short delay for I/O operations
jcxz $+2
jcxz $+2

endm

segcs_ macro ; CS: override prefix
db 02Eh

endm

include SM.MAC ; See Example A–3 page A-14

.CODE

; ===
; S M I H A N D L E R R O U T I N E
; ===

; –––
; When an SM interrupt occurs, the code segment base is set to the SM area
; start as defined in ARR4, and the IP is set to 0. This means the first SM
; handler instruction must be at offset 0––that is why this loader program
; begins with the SM handler code. The offsets referenced in the SMI portion
; of this program will be correct in SM mode as well.
; –––

 Loading SMM Memory With an SMM Program from Main Memory

A-23 Programming System Management Mode (SMM)

smi_code_start:

; –––
; Save DS, ES, TS, LDT, AX, and CX (only AX and CX are used by the handler––the
; other registers are only saved to show how the macros are used).
; –––

sav_seg old_ds, ds
sav_seg old_es, es
sav_tr old_tr
sav_ldt old_ldt
mov dword ptr cs:old_eax, eax
mov dword ptr cs:old_ecx, ecx

; –––
; The main handler code goes here ... The code below simply writes a down
; count to port 80––your code will be much more complex and useful.
; –––

; Write port 80 values
 mov al, 0FFh
decloop:
 out 80h, al
 mov cx, 8FFFh

loop $; Delay
dec al
jnz decloop

; –––
; Restore registers saved at start of handler, then exit from SM mode.
; –––

rst_seg ds, old_ds
rst_seg es, old_es
rst_tr old_tr
rst_ldt old_ldt
mov eax, dword ptr cs:old_eax
mov ecx, dword ptr cs:old_ecx

exit_sm ; Exit SM mode––resume the interrupted
; program

smi_code_end:

; –––
; The locations below are for saving registers that are used in the SMI routine
; but are not automatically saved when an SM interrupt occurs. Some of the
; registers saved below are not actually used by the code in this example, but
; they are saved/restored just to demonstrate how the SM macros shown earlier
; are used.
; –––

Loading SMM Memory With an SMM Program from Main Memory

A-24

old_ds dt ?
old_es dt ?
old_tr dt ?
old_ldt dt ?
old_eax dd ?
old_ecx dd ?

; ===
; P R O C E D U R E S U S E D B Y T H E L O A D E R
; ===

; ===
; Read a value from a register in AL via I/O ports 22 and 23. Return the value
; in AL.
; ===
r22_23 proc near

out 22h, al
iodlay_
in al, 23h
ret

r22_23 endp

; ===
; Write the value in AH to a register in AL via I/O ports 22 and 23.
; ===
w22_23 proc near

out 22h, al
iodlay_
mov al, ah
out 23h, al
ret

w22_23 endp

; ===
; L O A D E R E N T R Y P O I N T
; ===

entry_point:

; –––
; Set ARR4 registers for 64K SMM area at 000A0000: ARR4 = 000A05
; –––

mov ax, 00CDh
call w22_23
mov ax, 0ACEh
call w22_23

 Loading SMM Memory With an SMM Program from Main Memory

A-25 Programming System Management Mode (SMM)

mov ax, 05CFh
call w22_23

; –––
; Set ARR4 control bit in CCR1 to make ARR4 == SMM memory. Set SMI enable bit
; and SMAC bit to allow non–CS–based data writes to go to the SM area.
; –––

mov al, 0C1h
call r22_23
or al, 86h ; SM4=1; SMAC = 1; SMI = 1
mov ah, al
mov al, 0C1h
call w22_23

; –––
; Copy SMI code to A000:0000
; –––

xor ax, ax
mov si, ax ; SMI code starts at offset 0 of this CS
mov di, ax ; and offset 0 of SM memory too.
mov ax, 0A000h ; SM memory segment
mov es, ax
mov cx, offset smi_code_end ; Number of bytes of SM handler

; code
segcs_
rep movsb ; Copy from EXE memory space to SM mem

; –––
; The SM handler is now in place. Disable access to SM memory leaving the SMI
; bit set, so that SM interrupts can now occur.
; –––

mov al, 0C1h
call r22_23
and al, 0FBh ; SMAC = 0
mov ah, al
mov al, 0C1h
call w22_23

; –––
; Exit to DOS
; –––

mov ax, 04c00h
int 21h

END entry_point

Detection of a TI Microprocessor

A-26

A.10 Detection of a TI Microprocessor

It is possible, with a small amount of code, to detect if the CPU is a TI micropro-
cessor and if the CPU is the TI486SXL(C) family or a TI486xLC/E family. The
following assembler code accomplishes this task.

Example A–6. Detection of a TI Microprocessor

;Purpose: To detect if the CPU is Texas Instruments microprocessor, and then
; determine if it is a TI486SXLC Family.
;To detect if Texas Instruments:
; The undefined flags of the TI microprocessor remain unchanged
; following a divide. An Intel part will modify some of the
; undefined flags. Check by saving the flags, do a divide,
; then compare the new flags with the old flags.
;To detect if TI486SXLC Family:
; The cache test registers in the TI486SXLC Family differ from the
; TI486xLCE due to the difference in cache size. Bit 9 in TR4 is
; used to determine if the processor is of the TI486SXLC Family by
; seeing if it can be toggled.
; The code that follows is a procedure that returns the CPU detected
; in AX.

.MODEL SMALL

.486P

;Values that code will return in AX:
CPU_Not TI EQU 0
CPU_TI486xLCE EQU 1
CPU_TI486SXLC EQU 2

TR5_Write EQU 1
TR5_Read EQU 2
CR EQU 0Ah
LF EQU 0Dh

.CODE
DetectCPU PROC
StartDetect:

;NOTE:
; This procedure returns a value in AX.
: Value in BX is destroyed and not saved.
; Value in top–half of EAX is destroyed.
CLI

AreWeTI486:
;Assume that CPU is at least a 386 CPU.
MOV AX, 0 ;set flags to known value
CMP AX, AX

PUSHF ;save old flags
POP AX
MOV flags_before, AX

MOV AX, dividend ; setup for DIV instruction
MOV DX, 0
MOV BX, divisor
DIV BX

 Detection of a TI Microprocessor

A-27 Programming System Management Mode (SMM)

PUSHF ;save new flags

POP AX

MOV flags_after, AX

MOV AX, flags_mask ;isolate bits we are interested in and compare

AND AX, flags_before

MOV BX, flags_mask

AND BX, flags_after

CMP AX, BX ;flags same before and after?

JNZ NotTI ;no – don’t have TI CPU

WeAreTI486:

;Now check to see if CPU is TI486xLCE or TI486SXLC

MOV EAX, 0200h ;attempt to set bit 9 of TR4

MOV TR4, EAX

MOV EAX, TR5_Write ;must do write,

;then read operation on test registers

MOV TR5, EAX

MOV EAX. TR5_Read

MOV TR5, EAX

MOV EAX, TR4 ;read TR4 back

AND EAX, 0200h ;isolate bit 9

CMP EAX, 0200h ;did it stay set?

JNE FoundTI486SXLC ;no – found TI486SXLC

FoundTI486xLCE:

;CPU is a TI486xLCE

MOV AX, CPU_TI486xLCE

JMP Done

FoundTI486SXLC:

;CPU is TI486SXLC

MOV AX, CPU_TI486SXLC

JMP Done

NotTI:

;CPU is not a TI486

MOV AX, CPU_NotTI

JMP Done

Done:

;leave return value in AX

RET

DetectCPU ENDP

.DATA

flags_before DW ?

flags_after DW ?

flag_mask DW 08D5h

dividend DW 0FFFFh

divisor DW 4h

result DW 0

END

Detection of SMM Capable Version

A-28

A.11 Detection of SMM Capable Version

At power-up/reset the EDX register contains device identification and stepping
information as shown in Table A–6.

Table A–6.EDX Register Data At Power-Up/Reset

EDX Stepping SMM Available

0410h A No

0421h B Yes

The following technique can be used to identify the stepping of a TI486SXL(C)
microprocessor after the reset information in EDX is lost.

The method uses two functions: the mixed C and assembler function isb() and
the assembly language illegal opcode interrupt handler ill_op. The function
isb() returns a 1 to indicate when a B step part is present; it returns a 0 other-
wise.

The function isb() installs an illegal opcode handler, ill_op. Then isb() sets up
conditions to execute an SMM segment save instruction, SVDC. If an A step
part is present, the illegal opcode handler is invoked. The ill_op process then
modifies the return address on the stack to return to the instruction after the
SVDC instruction. The storage location used by the SVDC instruction is then
checked to see if it changed. If it has changed, the part being tested is a B step
part. This detection technique must be run at privilege level 0.

Example A–7. Detection of SMM Capable Version

//***
//********************************* isb.c ***********************************
//***
#define TRUE 1
#define FALSE 0

int old_off;
int old_seg;
extern ill_op();
//***
// Function: isb ()
// Returns:1 if TI486SXL(C) B step
// 0 if TI486SXL(C) A step
//***

isb ()
{
int i, b_step;
char mem[10];

for (i=0; i<10; mem[i++]=0;

asm {

.386
extrn _ill_op:near

 Detection of SMM Capable Version

A-29 Programming System Management Mode (SMM)

;***
;****** get present illegal opcode handler
;***

push es
push bx
mov ax, 3506h
int 21h
mov old_seg, es
mov old_off, bx
pop bx
pop es

;***
;****** install new illegal opcode handler
;***

push dx
push bx
push ds
mov ax, 2506h
mov dx, OFFSET _ill_op
mov bx, cs
mov ds, bx
int 21h
pop ds
pop bx
pop dx

char save_ccr1, save_cf, save_ce, save_cd;

;***
;****** Set SM4 and SMAC and SMI bit to allow SMM instructions
;***

mov al, 0c1h
out 22h, al
in al, 23h
mov byte ptr [save_ccr1, al
or al, 86h
mov ah, al
mov al, 0c1h
out 22h, al
mov al, ah
out 23h, al

;***
;****** Setup nonzero SMM region
;***

mov al, 0cfh
out 22h, al
in al, 23h
mov byte ptr [save_cf], al
mov al, 0cfh
out 22h, al
mov al, 1
out 23h, al

Detection of SMM Capable Version

A-30

;***
;****** Set SMM region to the top of memory to
;****** avoid overlapping with this program
;***

mov al, 0cdh
out 22h, al
in al, 23h
mov byte ptr [save_cd], al
mov al, 0ceh
out 22h, al
in al, 23h
mov byte ptr [save_ce], al
mov al, 0cdh
out 22h, al
mov al, 0ffh
out 23h, al
mov al, 0ceh
out 22h, al
mov al, 0h
out 23h, al
mov al, 0cfh
out 22h, al
in al, 23h
and al, 0fh
out 23h, al

;****** flush prefetch after changing configuration
jmp $+2

;***
;****** Execute SMM instruction sav_seg
;***

;sav_seg word ptr mem, ds
 Word ptr mem == ss:[bx]

lea bx, mem
db 36h 0fh 78h 1fh

;***
;****** restore configuration registers
;***

mov al, 0cdh
out 22h, al
mov al, byte ptr save_cd
out 23h, al
mov al, 0ceh
out 22h, al
mov al, byte ptr save_ce
out 23h, al
mov al, 0cfh
out 22h, al
mov al byte ptr save_cf
out 23h, al
mov al, 0c1h
out 22h, al
mov al byte ptr save_ccr1
out 23h, al

 Detection of SMM Capable Version

A-31 Programming System Management Mode (SMM)

;***
;****** restore old illegal opcode handler
;***

push dx
push bx
push ds
mov ax, 2506h
mov dx, OFFSET old_off
mov bx, OFFSET old_seg
mov ds, bx
int 21h
pop ds
pop bx
pop dx

) // isb asm region

for (i=0, b_step=FALSE; i<10; ++i)
if (mem[i] != 0)

{
b_step = TRUE;
break;
}

return (b_step);
} // isb ()

;********************** bad_op.asm ***********************
public _ill_op

assumecs:_TEXT

_TEXT segment byte public ’CODE’
_ill_op proc near

pop ax
add ax, 5
push ax
iret

_ill_op endp
_TEXT ends

end

Format of Data Used by SVDC/RSDC Instructions

A-32

A.12 Format of Data Used by SVDC/RSDC Instructions

The SVDC/RSDC instructions change limits and read/write access privilege
levels of the application and System Segment Descriptor registers before they
are used by SMM code (see Table 2–7, page 2-22). The instructions use a 10
byte area composed of two major portions of the System Address register set
(see Figure 2–7 on page 2-17) value/contents, and the invisible internal des-
criptor format shown in Example A–8. Example A–9 (page A-33) loads a real-
mode system segment (SS) descriptor and invisible region values.

System Segment-Descriptor registers are described in Subsection 2.5.2.2,
Descriptors, page 2-21.

Example A–8. Internal Descriptor Format

|Segment Register Descriptor <8 bytes>|Segment Register Selector <2 bytes>|

;1) Segment Register Selector: This is the segment if the segment register
;was loaded in real mode or the selector if the segment register was
;loaded in protected mode. In real mode, this is also equal to the segment
;base divided by 10h and clipped to 16 bits.

dw |Selector or Segment |

;2) Segment Register Descriptor, which is the actual descriptor if the
;segment was loaded in protected mode, or a pseudo-descriptor if the segment
;register was loaded in real mode.

dw | Limit [15:0] |
dw | Base [15:0] |
db | Base [23:16] |
db | P | DPL | 1 | DscTy[2:0] | A | ; DscTy is descriptor ;type (DT)
db |G | D | r | AVL | Limit [19:16] |
db | Base [31:24] |

 Format of Data Used by SVDC/RSDC Instructions

A-33 Programming System Management Mode (SMM)

Example A–9. Load SS Descriptor Values (Real Mode)

;Load SS descriptor with values appropriate to
;REAL mode.

INCLUDE SM.MAC ; see Example A–3 page A-14

old_val dt ? ; location to store old ss value
real_mode: dw 0ffffh ; limit

dw 0 ; base
db 0 ; base
db 10010011B ; 93h, data segment
db 0 ; G=0, D=0, upper limit=0
db 0 ; high portion of base
dw 0 ; selector/segment

sav_seg [old_val], ss
rst_seg ss,[real_mode]
mov ax, cs
mov ds, ax

Altering SMM Code Limits

A-34

A.13 Altering SMM Code Limits

When the CPU acknowledges an external SM interrupt and switches into sys-
tem management mode, the CPU is put into real mode. Section 2.8.5, SMI Ser-
vice Routine Execution on page 2-54, states that the Code Segment register
is loaded with the base and limits defined by the ARR4 register. If the defined
SMM address space is a 16K region, the CS segment limit will be 16K. This
is a contradiction to the normal segment limit of 64K for real mode.

This does not normally cause the programmer any problems, since the CS
register can access any address in the SMM address space. The only time this
can become a problem is if the SMM code jumps to code outside the SMM ad-
dress space. An example of this might be jumping to a BIOS routine to save
a block of memory to the disk drive. The BIOS routine might expect the CS
code segment limit to be 64K, and might require it to be, depending on the off-
set of the routine or any routine it calls. The BIOS procedure might be at offset
38416 of the BIOS segment, for example. If, as stated above, our SMM limit
is 16K, then the CPU would generate a segment overrun fault when it at-
tempted to jump to offset 38416 of the BIOS segment.

There are several solutions to this problem. One solution is to never execute
code outside of the SMM space. Another solution is to have an SMM space
of 64K or larger so that the CS code segment limit is 64K or more. The third
solution is to change the CS limits while in the SMM code.

When in real mode, the hidden portion of the Segment registers are not acces-
sible to the programmer, unlike in protected mode. With the new SMM instruc-
tion RSDC, a complete 80-bit Segment register and descriptor cache entry can
be read from memory into a Segment register, thus changing the segment lim-
its and attributes, even when in real mode. This could be done to make the DS
segment have a 4G-byte limit, enabling real mode SMM code to access all of
memory with a 32-bit offset, without ever leaving real mode. However, the
RSDC instruction will not work with the CS register. The only way to change
the limits of the CS segment is to switch to protected mode, do a far jump to
a segment descriptor that has the desired segment limit and attributes, and
switch back to real mode.

To do this, several things must happen:

1) Setup a GDT with at least one valid entry (this entry is a descriptor for the
destination code segment for the intersegment jump).

2) Save the old GDTR register contents (using SGDT), and load the register
to point to the new table (using LGDT).

3) Save the old CR0 value, and switch into protected mode with paging off.

4) Do an intersegment jump to the code segment in the GDT, thus changing
the CS segment limit.

5) Restore the CR0 value, which switches back to real mode.

6) Restore the saved GDTR value.

 Testing/Debugging SMM Code

A-35 Programming System Management Mode (SMM)

A.14 Testing/Debugging SMM Code

There are several ways to debug SMM code:

� Emulation Technology TI486SXLC microprocessor pod with an HP
16500/550 Logic Analyzer that provide:

� Support for selective trace capture

� SMM instruction disassembly

� Periscope (software only) that provides:

� Full screen debugging

� TSR

� Single stepping and break points

� DOS debug (software only) that provides:

� Single stepping and break points

� Other selected logic analyzers

A.14.1 Software Only Debugging

It is possible to write an SMI handler and debug it as a TSR. Use a debugger
that can set break points at any address in memory. Use the following code
sequence, shown in Example A–10, as a model of how to build the SMI handler
as a TSR. This code sequence also contains a section that loads the CS sec-
tion invisible to programmers to change the limit. This is required so that a
protection error does not occur when code is executed outside the SMM re-
gion. It is assumed that ADS# and SMADS# from the CPU are ORed together
by the chipset or external logic. Also, the chipset should support program-
mable SMM locations.

The code sequence marks the SMI handler address in the user interrupt INT
66 location (0:198h). This lets the programmer determine the location of the
SMM region and set break points.

The debugger is able to set a code break point outside the SMI handler using
INT 3 only. This is because the Debug (control) register DR7 is set to the reset
value upon entry to the SMI handler. This causes break conditions in DR0–3
to be disabled. Debug registers can be used if they are set after entering the
SMI handler and saving DR0–3.

Using a TSR to debug SMI has some limitations:

� Other code could overwrite the region.

� Jumps or calls must be to known offsets.

Testing/Debugging SMM Code

A-36

A.14.2 Software Debugging Example

Example A–10 can be used for the first step in debugging SMI code.

Example A–10. Debugging SMI Code

.MODEL SMALL

.STACK

.386P
INCLUDE SM.MAC

RD_WR EQU 12h ;read/write
EX_RD EQU 1Ah ;execute/readable

COMMENT ^
This is an example of SMI code which can exist below the 1 MByte boundary. It must be
before the 1 MByte boundary because it uses the value in the cs register in order to
form fixups based on its location as well as to jump to return to real mode.
^

.CODE

smi_handler:
jmp $over ;pass data area for assembler
db 100 dup (?)

stacksmilabel
;
;our smi handler gdt
;
gdt dq 0 ;null

ADDR = 0
LIMT = 100000h
g_big = $ – gdt

dw (LIMT–1 and 0ffffh)
dw (ADDR and 0ffffh)
db ((ADDR SHR 16) and 0ffh)
db RD_WR OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT–1) SHR 16) AND 0fh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0ffh)

g_code = $–gdt
ADDR = 0
LIMT = 100000h

dw (LIMT–1 and 0ffffh)
dw (ADDR and 0ffffh)
db ((ADDR SHR 16) and 0ffh)
db EX_RD OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT–1) SHR 16) AND 0fh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0ffh)

 Testing/Debugging SMM Code

A-37 Programming System Management Mode (SMM)

GDTSIZE = ($–gdt)

csareadb 10 dup (?)
dsareadb 10 dup (?)
ssareadb 10 dup (?)
esareadb 10 dup (?)
fsareadb 10 dup (?)
gsareadb 10 dup (?)
tsareadb 10 dup (?)

gdtsave df?
gdtnewdw GDTSIZE – 1

dd ? ;address

eaxsave dd ?
ebxsave dd ?
ecxsave dd ?
edxsave dd ?
espsave dd ?

$over:
COMMENT ^
The debugger may want to use ss,ds,es,fs,gs. The limits may be shortened if the pro-
gram had been running in protected mode. We therefore extend the limits of these reg-
isters before we enable the debugger.
^

sav_seg [ssarea],ss ;save the stack pointer
sav_seg [dsarea],ds
sav_seg [esarea],es
sav_seg [fsarea],fs
sav_seg [gsarea],gs
mov cs:[eaxsave],eax
mov cs:[ebxsave],ebx
mov cs:[espsave],esp

COMMENT ^
Clear VM flag in Eflags (See Section A.14.3).
^

rst_seg ss,[gdt+g_big]
mov esp, offset smistack
mov ax, cs
mov ss, ax
mov eax, 0
push eax
mov eax, cs
push eax, offset @F
push eax
iretd

@@:
sgdt fword ptr cs: [gdtsave]

Testing/Debugging SMM Code

A-38

COMMENT ^
fixup code for smi base
^
;patch gdt

mov eax,cs ;segment of us here
shl eax,4
mov ebx,offset gdt ;offset to here
add ebx,eax
mov dword ptr [gdtnew+2],ebx ;define gdt base

;patch far jump into protected mode
mov ebx,offset $next0
add ebx,eax
mov dword ptr cs:[patch1],ebx

;patch far jump back to real mode
mov word ptr cs:[patch2],cs

start here

COMMENT ^
extend the limits for the code segment

^
db 66h
lgdt fword ptr [gdtnew]
mov eax,cr0
or al,1
mov cr0,eax
db 66h
db 0eah

patch1 dd ?
dw g_code

$next0: mov bx,g_big ;extend the limits of the data segments
mov ss,bx
mov ds,bx
mov es,bx
mov fs,bx
mov gs,bx
xor al,1
mov cr0,eax ;back to real mode
db 0eah
dw offset $next1

patch2 dw ? ;far jump to set cs and writable bit
$next1:

 Testing/Debugging SMM Code

A-39 Programming System Management Mode (SMM)

COMMENT ^
define a valid stack
^

mov ax,cs
mov ss,ax
mov esp,offset stacksmi

COMMENT ^
****** Insert user specific smi code here & set breakpoints. ******
^

db 66h
lgdt fword ptr cs:[gdtsave]
rst_seg ss,[ssarea]
rst_seg ds,[dsarea]
rst_seg es,[esarea]
rst_seg fs,[sarea]
rst_seg gs,[gsarea]
mov eax,dword ptr cs:[eaxsave]
mov ebx,dword ptr cs:[ebxsave]
mov esp,dword ptr cs:[espsave]
exit_sm

smi_handlere:
SMI_SIZE = offset smi_handlere – offset smi_handler
Install PROC

;***** Enable SMM Region ******
; Don’t enable SMI yet because we’re not ready for it.

mov al, 0c1h ;select CCR1
out 22h,al
in al, 23h ;read CCR1
or al, 80h ;enable SMADS# and SMM region (not SMI)
mov ah, al
mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah
out 23h, al ;write new CCR1 value

mov eax,offset endresident
mov ebx,cs
shl ebx,4
add eax,ebx
add eax,0fffh
and eax,NOT 0fffh ;eax = start of smi space
mov edx,eax
push edx

Testing/Debugging SMM Code

A-40

;**
; * Load SMI address and size into ARR4
;
;****** cd ce cf
;****** ––––––––––– ––––––––––– ––––––––––––
;****** Config Reg 31–28 27–24, 23–20 19–16, 15–12 <size>
;****** Address 31–28 27–24, 23–20 19–16, 15–12 11–8, 7–4 3–0

mov al, 0cdh ;region 4 1st word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 24 ;move address <31–24> to al
out 23h, al ;[7–0]=>smbase[31–24]

mov al, 0ceh ;region 4 2nd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 16 ;move address <23–16> to al
out 23h, al ;[7–0]=>smbase[23–16]

mov al, 0cfh ;region 4 3rd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 8 ;move address <15–12> to al
and al, 0f0h ;clear bottom nibble
or al, 1 ;select 4KB SMI size
out 23h, al ;and [3–0]=>smsize

;**
pop edx ;start of smi area
mov eax,edx
add edx,1000h ;reserve 4k for smi handler
mov ebx,es ;current psp
shl ebx,4 ;
sub edx,ebx ;bytes to reserve
she edx,4 ;paragraphs to reserve in dx
push dx
shr eax,4 ;paragraph of smi handler
mov es,ax ;save for later
mov ds,ax
mov dx,0 ;always starts at 0
mov ax, 2566h ;int 66h vector at 0:198h
int 21h
pop dx ;tsr address

 Testing/Debugging SMM Code

A-41 Programming System Management Mode (SMM)

;move the code to the smi_area
mov al, 0c1h ;select CCR1
out 22h, al
in al, 23h ;read CCR1
mov ah, al ;save old value
mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah ;get old value
or al, 04h ;enable SMAC
out 23h,al ;be clean on ah for later

RELOCATE = 0
IF RELOCATE

sub esi,esi
sub edi,edi
mov cx,cs
mov ds,cx
mov ecx, (SMI_SIZE+3)/4
rep movs dword ptr es:[edi],dword ptr ds:[esi]

ELSE
;put the far jump at the start of the smi_area to above code

mov byte ptr es:[0],0eah
mov word ptr ex:[1],offset smi_handler
mov word ptr ex:[3],cs

ENDIF
;restore smi state and enable SMI

mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah ;get old value
or al, 02h ;set SMI bit to enable SMI
out 23h,al ;be clean on ah for later

COMMENT ^
SMIs may happen at any time now.
^
;dx = offset in this segment to tsr

mov ax, 3100h ;Request function 31h, error code=0
int 21h ;Terminate–and–Stay–Resident

Install ENDP
;––––end of resident code––––
endresident label byte

db 2000h dup (?)

END Install

;**

Testing/Debugging SMM Code

A-42

A.14.3 Clearing the VM Flag Bit

If the CPU is in V86 mode and is interrupted by an SMI, the VM bit in the
EFLAGS register is not cleared as it should be during real-mode operation. Not
clearing this bit can cause protection errors of valid instructions that are being
executed in the SMI handler. This can be resolved by adding the following code
after saving all used registers:

rst_seg ss, [gdt+g_big] ; change ss limit to 4 Gbytes
mov esp, offset smistack ; create new stack pointer
mov ax, cs
mov ss, ax ; new stack segment
mov eax, 0
push eax ; flags after iretd
mov eax, cs
push eax ; segment after iretd
mov eax, offset @F
push eax ; offset after iretd
iretd
 @@:

See the debugging example in Section A.14, Testing/Debugging SMM Code,
for usage of this code.

 Running Title—Attribute Reference

B-1 Chapter Title—Attribute Reference

BIOS Modifications Guide

To reap full benefit from the TI486SXL(C) family of microprocessors, the sys-
tem BIOS should be modified to support the internal registers that control the
on-chip cache, clock doubling, and other features. This appendix serves as a
guide to some of the changes that need to be considered, and includes sample
assembler code for controlling the cache.

The following three topics are discussed regarding the internal cache registers
and clock double enable:

� Power-up and hard reset

� Protected-mode to real-mode switching

� Soft reset— CONTROL ALT DELETE

In each case, the state of the CPU cache registers and the clock-double enable
bit must be known to determine when and how to change their values.

Note:

The final responsibility for verifying designs incorporating TI486SXL(C)
microprocessors rests with the customer originating the motherboard
design.

Topic Page

B.1 Differences Between the TI486SLC/DLC BIOS and
the TI486SXL(C) BIOS B-2.

B.2 Power-Up and Hard Reset B-3.

B.3 Protected-Mode to Real-Mode Switching B-3.

B.4 Soft Reset—CONTROL-ALT-DELETE B-4.

B.5 Turning the Internal Cache On and Off B-4.

Appendix B

Differences Between the TI486xLC/E BIOS and the TI486SXL(C) BIOS

B-2

B.1 Differences Between the TI486SLC/DLC BIOS and the TI486SXL(C) BIOS

The TI486SLC/DLC BIOS requires some modifications to support the new fea-
tures of the TI486SXL(C) family of microprocessors.

If the BIOS currently tests the internal cache before enabling it, the test routine
requires modification. Due to the larger size of the TI486SXL(C) cache, the
cache test registers have changed from those in the TI486SLC/DLC. (See
Table 2–17 on page 2-36.) It is unnecessary to test the TI486SXL(C) cache
before enabling it during the boot process.

In addition to changing the cache test registers, the cache organization selec-
tion bit has been redefined. In the TI486SLC/DLC, configuration control regis-
ter 0 (CCR0) bit 6 is used to select between a direct-mapped and a two-way,
set-associative, internal cache organization. For the TI486SXL(C) family, the
cache is always two-way set associative and CCR0 bit 6 is defined to enable
clock-doubled mode. BIOS prepared to support the TI486SLC/DLC can allow
the user to select the cache organization, but BIOS prepared for the
TI486SXL(C) should comprehend that the cache-organization selection is not
available.

If the BIOS supports software clock switching, a modification to support clock-
doubled feature may be desirable. Switching to high-speed mode should en-
able bit 6 of CCR0 and thus put the CPU in clock-doubled mode. Switching
down the CPU speed should disable bit 6 of CCR0 and put the CPU in
nonclock-doubled mode. If the BIOS is APM (advanced power management)
compliant, the use of 1x and 2x modes should be implemented as well.

Note:

When the TI486SXL(C) is in clock-doubled mode, the CLK2 input must not
be scaled or stopped. First, the processor must be placed in nonclock-
doubled mode; then, the CPU clock speed can be changed.

When the TI486SXL(C) family microprocessors are reset, the cache and the
clock-doubled features are disabled by default.

 Power-Up and Hard Reset / Protected-Mode to Real-Mode Switching

B-3 BIOS Modification Guide

B.2 Power-Up and Hard Reset

During power-up and hard reset, the operating system (OS) is booted up. Due
to the reset line to the CPU going active, the internal cache and the clock-
doubled feature are disabled, making the CPU act similar to a 386. If the cache
and the clock-doubled feature are enabled prior to the reset, they must be
turned on at some point before the OS is booted. A convenient time may be
during final chipset initialization, understanding that the cache should remain
off during memory sizing. Many BIOSs provide the user an option to disable
the system cache using the setup screen. Because most user cache-control
options are stored in nonvolatile RAM, the flag responses and potentially other
flags should be checked before turning the cache on.

B.3 Protected-Mode to Real-Mode Switching

Protected-mode to real-mode switching can be implemented to handle cases
where the OS has been booted, applications are running, and the CPU needs
to be reset from protected to real mode. The object is to switch CPU modes
and jump back into the OS or application at some saved return address.

When the CPU is reset, the internal cache and the clock-doubled feature are
disabled. Before returning control to the application, the cache and clock doub-
ling should be turned back on, but only if they were enabled before the reset
occurred. This is accomplished by checking the cache-enable flag in the non-
volatile RAM to see if the user enabled caching from the setup screen. Howev-
er, if the BIOS allows the user to turn off the cache by a hot-key combination
(perhaps as part of speed switching), other checks may need to be performed
to see if the cache should be turned back on.

Soft Reset—CONTROL-ALT-DELETE / Turning the Internal Cache On and Off

B-4

B.4 Soft Reset

Execute soft reset by pressing CONTROL ALT DELETE . The objective of a soft
reset is to reset the system and reboot the OS. The action is similar to power-
up and hard reset, but a hard reset of the CPU is not generated. Thus, the
CPU’s internal cache and clock doubling are not disabled. Since the cache is
not disabled, this soft reset can negatively impact memory-sizing code, such
as generating memory-size mismatch errors. In this situation, disable the inter-
nal cache and enable it prior to booting if it was enabled by the user in setup.

B.5 Turning the Internal Cache On and Off

When the TI486SXL(C) family of microprocessors internal cache is turned on
or off, the following guidelines should be observed in the order presented:

1) Turn off interrupts—CLI

2) Turn off cache using Control Register 0 (CR0) bit 30 and flush using
WBINVD

3) Manipulate cache registers

4) Turn on cache and flush using WBINVD

5) Turn on interrupts—STI

This sequence ensures that the process is not interrupted until complete and
that no cache coherency issues arise when the cache is turned back on. When
manipulating the cache registers, set each register explicitly instead of relying
on default values.

 Turning the Internal Cache On and Off

B-5 BIOS Modification Guide

Example B–1 shows assembler code for turning the cache off.

Example B–1. Turning Internal Cache Off

CacheOut MACRO index, value
MOV AL, index
OUT 22h, AL
MOV AL, value
OUT 23h, AL

CacheOut ENDM

CLI
MOV EAX, CR0
OR EAX, 40000000h ; set bit 30, turn off cache
MOV CR0, EAX
WBINVD ; for external cache coherency

CacheOut 0C0h, 00h
CacheOut OC1h, 00h

CacheOut 0C4h, 00h
CacheOut 0C5h, 00h
CacheOut 0C6h, 0Fh

CacheOut 0C7h, 00h
CacheOut 0C8h, 00h
CacheOut 0C9h, 00h

CacheOut 0CAh, 00h
CacheOut 0CBh, 00h
CacheOut 0CCh, 00h

CacheOut 0CDh, 00h
CacheOut 0CEh, 00h
CacheOut 0CFh, 00h

WBINVD
STI
MOV EX, 4C00h
INT 21h ; return to DOS

Turning the Internal Cache On and Off

B-6

Turn on the microprocessor internal cache by modifying some of the register
values as shown in Example B–2. The CacheOut macro definition remains the
same.

Example B–2. Turning Internal Cache On

CLI
MOV EAX, CR0
OR EAX, 40000000h ; set bit 30, turn on cache
MOV CR0, EAX
WBINVD ; for external cache coherency

CacheOut 0C0h, 23h ; set bits NC1, NC0, BARB
CacheOut OC1h, 00h

CacheOut 0C4h, 00h
CacheOut 0C5h, 00h
CacheOut 0C6h, 00h

CacheOut 0C7h, 00h
CacheOut 0C8h, 00h
CacheOut 0C9h, 00h

CacheOut 0CAh, 00h
CacheOut 0CBh, 00h
CacheOut 0CCh, 00h

CacheOut 0CDh, 00h
CacheOut 0CEh, 00h
CacheOut 0CFh, 00h

MOV EAX, CR0
AND EAX, NOT 40000000h
MOV CR0, EAX ; clear CD bit
WBINVD
STI
MOV EX,4C000h
INT 21h ; return to DOS

 Running Title—Attribute Reference

C-1 Chapter Title—Attribute Reference

Design Considerations and Cache Flush

This appendix discusses design considerations, address bit A20 masking, and
general cache invalidation procedures.

Note:

The final responsibility for verifying designs incorporating TI486SXL(C)
microprocessors rests with the customer originating the motherboard
design.

Topic Page

C.1 Design Considerations C-2.

C.2 Address Bit A20 Masking C-3.

C.3 General Cache Invalidation C-4.

Appendix C

Design Considerations

C-2

C.1 Design Conventions

Following these conventions to connect the TI486SXL(C) terminals to the
PCB:

� Connect (short) all VCC terminals to the positive supply voltage.

� Connect (short) all VSS (GND) terminals to the system ground.
� For the TI486SXL in the 144-pin package connect (short) both W/R# ter-

minals (terminals 36 and 37) together and connect to W/R# signal source.
� Leave electrically open (unconnected) all NC terminals.

Note:

Connecting or terminating (high or low) any NC terminal(s) can cause
unpredictable results or nonperformance of the microprocessor.

 Address Bit A20 Masking

C-3 Design Considerations and Cache Flush

C.2 Address Bit A20 Masking

The A20M, address bit 20 mask, is an anomaly in PC designs resulting from
the fact that truncated addresses can be generated by an 8086/8088 outside
the physical address range of 0h–FFFFFh. For example, an 8086/8088 sys-
tem that contains FFFFh in a segment register and 0FFFh in an offset register
results in an address of 100FFEh that requires 21 bits to address. Since the
8086/8088 has only 20 address bits (A0–A19), the most significant bit of the
resultant address would need to appear on an A20 bit if the 8086/8088 had
one.

Since the 8086/8088 address bus is not wide enough, only the first 20 bits of
the address are seen by the system. Using the address 100FFEh, generated
in the previous example, the 8086/8088 system read/write address is per-
formed at location FFEh and not at 100FFEh. The 80286 and later micropro-
cessors implement at least 24 address bits and perform the read/write to ad-
dress location 100FFEh. Thus, software applications can produce different re-
sults when run on an 8086/8088 system versus an 80286 or later microproces-
sor system.

Systems that use 80286 or later microprocessors compensated for this anom-
aly by adding circuits to generate an A20 mask (referred to as the A20 mask
or the A20 gate, or similar). The A20 mask consists of software-controlled logic
that forces a zero on the A20 address line regardless of the actual value of A20.
The software-controlled A20 mask can also permit the true value to be passed
to the system when required.

Note that the A20 mask logic is external to the processor in both 80286 and
80386 designs. The processor generates the actual address but the system
logic can be set to ignore or not ignore the A20 pin. Normally, the A20 pin is
ignored when these processors are executing in real mode and emulating an
8086/8088.

This is an important consideration when replacing an 80386SX/DX device with
a TI486-type device. The TI486SXL(C) microprocessors implement an inter-
nal cache, and, if the system is in a state that ignores the A20 address input,
the processor must know so that it can also ignore the A20 address input.

If the A20M bit of configuration control register 0 (CCR0) is set, the
TI486SXL(C) microprocessor knows that the A20M input provides the true val-
ue required. However, if the TI486SXL(C) is inserted into a socket designed
for the 80386SX/DX, the TI486SXL(C) A20M pin is placed at a pin location that
is not used by the 80386SX/DX. The system hardware needs to be modified
to provide the A20M connection.

The NC0 bit of CCR0 is a software-only solution to the A20 mask function.
When set, the TI486SXL(C) microprocessor does not cache the first 64K bytes
of memory above each 1M byte boundary. This solution means that, even if
the value of the A20 address is not known, the processor does not cache data
to the affected addresses.

General Cache Invalidation

C-4

C.3 General Cache Invalidation

When the FLUSH bit in configuration control register 0 (CCR0) is set, the
FLUSH# input, when asserted low, invalidates the contents of the
TI486SXL(C) internal cache. This can be used to assure that data stored in the
TI486SXL(C) internal cache does not differ from data stored in system
memory. Additionally, the cache can be invalidated by execution of the
486-compatible invalidate instructions (INVD,WBINVD) or in response to a
hold acknowledge state if the BARB bit in CCR0 is set. The method chosen
for invalidating the TI486SXL(C) internal cache can be different, depending on
whether the system has a serial secondary cache. Invalidation methods are
described for systems with and without a serial secondary cache.

C.3.1 Systems With No Secondary Cache or With a Parallel Secondary Cache

When the only cache memory in the system is the TI486SXL(C) internal cache,
or when the secondary cache has a parallel (or look-aside) architecture, there
are two general methods of invalidating the cache and maintaining cache co-
herency.

C.3.1.1 Invalidation Method 1

Invalidate the TI486SXL(C) cache every time the CPU enters a hold state. By
setting the BARB bit in CCR0, automatic cache flush occurs when the
TI486SXL(C) is placed in a hold state. If the chipset does not support hidden
refresh, very frequent cache invalidation may occur since the CPU is placed
in hold during DRAM refresh cycles that occur approximately every 15 µs. If
the chipset supports hidden refresh, this may be an acceptable solution since
the cache is only invalidated during DMA or bus master reads from or writes
to memory.

C.3.1.2 Invalidation Method 2

Invalidate the TI486SXL(C) internal cache when a DMA or bus master writes
to system memory. The external hardware must drive the TI486SXL(C)
FLUSH# or MEMW#† input when DMA or bus masters are detected writing to
system memory. This can be done using one of the circuits shown in
Figure C–1 or Figure C–2.

Figure C–1 shows the circuitry needed to generate an active-low FLUSH# to
the CPU each time a hold state is entered (defined by HLDA = 1) and memory
write occurs (defined by MEMW# = 0).

Figure C–1.Cache Invalidation for the TI486SXLC and the 132-pin TI486SXL

MEMW#
(from ISA bus)

HLDA
(from CPU)

FLUSH#

TI486SXLC and
 132–Pin TI486SXL

† MEMW# input is implemented on the 144-pin and 168-pin TI486SXL only.

 General Cache Invalidation

C-5 Design Considerations and Cache Flush

The 144-pin QFP and 168-pin PGA versions of the TI486SXL have the
external hardware shown in Figure C–1 incorporated on chip. There-
fore, to maintain cache coherency in these two devices, connect the
MEMW# signal from the ISA bus to the MEMW# input as shown in
Figure C–2.

Figure C–2.Cache Invalidation for the 144- and the 168-Pin TI486SXL

MEMW#
(Internal pullup)

MEMW#
(ISA)

144- and 168-Pin TI486SXL

C.3.2 Systems With a Serial Secondary Cache

In a system with a serial (or look-through) secondary cache, flushing the cache
cannot be accomplished by setting the BARB bit in CCR0. Bus arbitration oc-
curs between the serial cache controller and the system, allowing the CPU to
continue executing out of cache.

The secondary cache controller arbitrates the bus among itself and DMA con-
trollers or bus masters and asserts HLDA to the chipset when the bus has been
granted. Each time a DMA or bus master write is detected, the FLUSH# pin
on the TI486SXL(C) must be asserted. The circuit shown in Figure C–3 can
be used. Note that the HLDA signal is generated by the secondary cache con-
troller rather than the CPU. This is the preferred solution since, in many cases
with secondary serial caches, the CPU is not put in hold so it can continue
execution from cache while DMA or bus-master activity occurs on the system
bus.

Figure C–3.FLUSH# Logic With a Serial Secondary Cache

MEMW#

FLUSH#
MEMW#

(From ISA)

HLDA
(From Cache Controller)

Pin 66
(no connection)

TI486SXL 144- and 168-pin only

C-6

 Running Title—Attribute Reference

D-1 Chapter Title—Attribute Reference

OEM Modifications for 168-Pin CPGA

This appendix describes the potential modifications an original equipment
manufacturer (OEM) needs to implement on an existing 486SX/DX mother-
board to take advantage of the TI486SXL 168-pin CPGA. This package offers
OEMs added flexibility in implementing solutions that support various 486
CPUs with the same motherboard.

The pinout of the TI486SXL 168-pin CPGA is nearly identical to the Intel or
AMD 486SX CPGA pinout. The NC pins on the TI486SXL package that
match signal pins on the 486SX have no internal connection and can be left
connected to the 486SX signal pins when the board is configured as a
TI486SXL board. This greatly simplifies the interface for the OEM. The classes
of board designs covered are listed in the topic index below.

The board design requires the use of system logic that supports the Intel/Ad-
vanced Micro Devices 486 interface and the TI486SXL interface. Since board
modifications for TI486SXL support are system-logic dependent, the imple-
mentation details are left to the board designer.The design examples show
both required and optional jumper connections that can be made if the func-
tions associated with them are needed. None of the optional signals require
termination if not used.

Subsection D.5, Power Planes for 3.3-V and 3.3-V/5-V Systems Using
TI486SXL or 486DX4 on page D-9, shows 2 system implementations:

� A 3.3-V system that supports a 5-V ISA and a 3.3-V VL bus.
� A mixed 3.3-V/5-V system that supports a 5-V ISA and a 5-V VL bus.

In both implementations the microprocessor runs at 3.3 V.

Note that you have the final responsibility for verifying designs incorporating
any version of a TI486SXL microprocessor.

Topic Page

D.1 Boards Supporting TI486SXL and Intel D-2.

D.2 Boards Supporting TI486SXL and a 486DX D-5.

D.3 Boards Supporting TI486SXL and a 486DX4 D-6.

D.4 Boards Supporting the VL Bus D-7.

D.5 Power Planes for 3.3-V and 3.3-V/5-V Systems Using
TI486SXL or 486DX4 D-9.

D.6 Chipset Support D-11.

Appendix D

Boards Supporting TI486SXL and Intel

D-2

D.1 Boards Supporting TI486SXL and Intel

Pin names and assigned locations are provided in Chapter 6, Mechanical Spec-
ifications.

� Function: Connect BUSY# to S4 (Required)

BUSY# is required for the coprocessor and for self test. If neither is used,
BUSY# can be left open as it has an internal pullup resistor.

168 CPGA Socket Side
486SX Pin No./Name

S4/NC
BUSY#

System Logic Side

Open: 486SX
Closed: TI486SXL

Jumper

� Function: Hardware Cache Flush Support

� CASE 1: Systems with no level-2 or parallel cache (optional)

Hardware flush support for the TI486SXL is optional as this function
may be implemented in software by setting bit 5 in TI486SXL Configu-
ration Control register 0 (CCR0). However, the software implementa-
tion may negatively impact the performance of certain designs. To
achieve maximum system performance, a hardware implementation
is recommended as illustrated in Figure D–1. Also, see Appendix C,
Design Considerations and Cache Flush, for more information.

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side Jumper

B16/NC
(B16/TDO for

Intel S Series)

1–2: 486SX
2–3: TI486SXL

S Series TDO

ISA MEMW#

1

3
2

Figure D–1.FLUSH# for 144-Pin and 168-Pin TI486SXL

MEMW#
(Internal pullup)

MEMW#
(ISA)

Note: The external flush logic is incorporated on
the 144-pin and 168-pin TI486SXL chip.

Or

 Boards Supporting TI486SXL and Intel

D-3 OEM Modifications for 168-Pin CPGA

� CASE 2: Systems with a level-2 serial cache that do not hold the CPU
during all DMA/Master cycles (required)

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side Jumper

C15/FLUSH#
1–2: 486SX
2–3: TI486SXL

SX FLUSH#

TI486 FLUSH#

1

3
2

The FLUSH# hardware implementation is shown in Figure D–2.

Figure D–2.FLUSH# Logic With Level-2 Serial Cache

FLUSH#
MEMW#
(From ISA)

HLDA
(From Cache Controller)

Flush Logic

Boards Supporting TI486SXL and Intel

D-4

� Function: Pipeline Support (Required)

� CASE 1: Chipset does not support pipelining.

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side Jumper

A13/NC

VCC

10 kΩ
Open: 486SX
Closed: TI486SXL

� CASE 2: Chipset supports pipelining and drives NA#.

A13/NC
NA# (Chipset) Open: 486SX

Closed: TI486SXL

� CASE 3: Chipset supports pipelining but does not drive NA#.

A13/NC Open: 486SX
Closed: TI486SXL

100 Ω

� Function: Floating Point Unit (FPU) Support (Optional)

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side Jumper

A12/NC
Open: 486SX
Closed: TI486SXL

ERROR#

R17/NC
Open: 486SX
Closed: TI486SXL

PEREQ

� Function: Power Management Support (Optional)

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side Jumper

B10/NC
Open: 486SX
Closed: TI486SXL

SMI#

B13/NC
Open: 486SX
Closed: TI486SXL

SMADS#

C13/NC
Open: 486SX
Closed: TI486SXL

SUSP#

B12/NC
Open: 486SX
Closed: TI486SXL

SUSPA#

 Boards Supporting TI486SXL and Intel

D-5 OEM Modifications for 168-Pin CPGA

D.2 Boards Supporting TI486SXL and a 486DX

Pin names and assigned locations are provided in Chapter 6, Mechanical Spec-
ifications.

� Function: 486DX Support (Required)

Note:

For the 486DX to be supported in the same design, the following jumper is
required in addition to those shown in Section D.1, Boards Supporting
TI486SXL, Intel, and AMD 486SX, and any other differences in Intel-/AMD-
supported pinouts.

168 CPGA Socket Side
486DX Pin No./Name

System Logic Side Jumper

A15/IGNNE#
1–2: 486SX/TI486SXL
2–3: 486DX

NMI

IGNNE#

1

3
2

� Function: 486DX2, P24T Upgrade Socket Support (Optional)

168 CPGA Socket Side
486DX Pin No./Name

System Logic Side Jumper

C11/NC
Open: 486SX
Closed: TI486SXL

FLT#

(C11/UP#
for 486DX2)

(D12/NC
for P24T)

Boards Supporting TI486SXL and a 486DX4

D-6

D.3 Boards Supporting TI486SXL and a 486DX4

Pin names and assigned locations are provided in Chapter 6, Mechanical Spec-
ifications.

� Function: 486DX4 PEREQ and CLKMUL (Required)

Note:

For the TI486SXL and the 486DX4 to be supported in the same design, the
following jumpers are required in addition to any other differences in
Intel-/AMD-supported pinouts. See subsections D.4, Boards Supporting the
VL Bus on page D-7, and D.5, Power Planes for 3.3-V and 3.3-V/5-V Sys-
tems Using TI486SXL or 486DX4 on page D-9.

168 CPGA Socket Side
486DX4 Pin No./Name

System Logic Side Jumper

R17/CLKMUL
1–2: TI486SXL
2–3: 486DX4

PEREQ

CLKMUL

1

3
2

� Function: Voltage Detect (Required)

168 CPGA Socket Side
486DX4 Pin No./Name

System Logic Side Jumper

S4/VOLDET
1–2: TI486SXL
2–3: 486DX4

BUSY#

VOLDET

1

3
2

� Function: Burst Mode (Required)

168 CPGA Socket Side
486DX4 Pin No./Name

System Logic Side Jumper

1–2: TI486SXL
2–3: 486DX4

VSS
BLAST#
(VL slot)

1

3
2

R16/BLAST#

10 kΩ

 Boards Supporting the VL Bus

D-7 OEM Modifications for 168-Pin CPGA

D.4 Boards Supporting the VL Bus

In order to support the VESA VL bus 2.0p proposal, the following design guide-
lines should be considered.

D.4.1 Cache Snooping

In a VL-bus design, the local bus controller resolves arbitration between the
CPU and the VL-bus master. For this architecture, the CPU can be forced to
relenquish the host bus by asserting HOLD. There are two options for main-
taining cache coherence:

� Use the BARB bit in Configuration Control register 0 (CCR0) to flush the
internal cache.

� Use the inverted HLDA output of the CPU to perform a hardware FLUSH#
to the CPU. See Figure D–3. The FLUSH# pin must be enabled by using
bit 4 of CCR0.

Figure D–3.Hardware Flush

HLDA

CPU

FLUSH#

Note: Pin names and assigned locations are provided in Chapter 6, Mechanical Specifications.

These methods can be used only if the system logic supports the CPU HOLD
arbitration scheme.

D.4.2 VL-Bus Clock

The VL-bus clock signal is a 1X clock that is in phase with the 486-type CPU
and is driven by either the system logic or the local-bus controller. The VESA
specification allows for a frequency range of up to 66 MHz and dynamic clock
scaling. The specification limits the low-to-high level skew from the CPU clock
to LCLK as shown in Table D–1.

Table D–1. VL-Bus Skew

LCLK Max Frequency Unit Max Skew Unit

33

MH

3

40 MHz 2.5 ns

50 2

Systems that currently support a 1X and a 2X clock source should supply the
2X clock source to the CLK2 input of the TI486SXL and the 1X clock source
to the VL-bus LCLK signal.

Systems that currently support only a 2X clock source can consider the addi-
tion of a PLL or clock divider to generate the 1X VL-bus clock.

Boards Supporting the VL Bus

D-8

D.4.3 VL-Bus Slot ID Settings

The VL-bus slot ID settings are shown in Table D–2.

Table D–2. VL-Bus Slot ID Settings

Slot ID Setting Comments

ID0 1 TI486SXL Mode

ID1 0 TI486SXL Mode

ID2 0 or 1 0: Minimum one wait state for writes
1: Zero wait states for writes

ID3 0 or 1 0: >33 MHz CPU clock speed
1: < 33 MHz CPU clock speed

ID4 0 Burst transfer not supported

 Power Planes for 3-V and 3-V/5-V Systems Using TI486SXL or 486DX

D-9 OEM Modifications for 168-Pin CPGA

D.5 Power Planes for 3.3-V and 3.3-V/5-V Systems Using TI486SXL or
486DX4

Power planes for implementing 3.3-V-only and mixed 3.3-V/5-V systems, us-
ing the TI486SXL or the 486DX4, are described in the following subsections.

D.5.1 Power Planes for 3.3-V Systems

Figure D–4 shows the implementation of a 3.3-V system that supports use of
either the TI486SXL or a 486DX4 microprocessor. This implementation yields
a 5-V ISA bus and a 3.3-V VL bus with the microprocessor running at 3.3 V.

Figure D–4. 3.3-V VL-Bus Implementation

3.3-V TI486SXL
or

DX4
Regulator5-V Power Supply

VCC = 3.3 V

Chipset
(3.3-V/5-V

mixed)

3.3-V
SRAMs
DRAMs

VL Slots
(optional)

ISA Slots

3.3-V VL Bus

5-V ISA Bus

VGA/LCD

Power Planes for 3-V and 3-V/5-V Systems Using TI486SXL or 486DX

D-10

D.5.2 Power Planes for Mixed 3.3-V/5-V Systems

Figure D–5 shows the implementation of a 3.3-V/5-V system that supports use
of either the TI486SXL or the 486DX4 microprocessor. This implementation
yields a 5-V ISA and and a 5-V VL bus with the microprocessor running at
3.3 V.

Figure D–5. Mixed 3.3-V/5-V VL-Bus Implementation

3.3-V TI486SXL
or

DX4
Regulator

5-V Power Supply
VCC5 = 5 V

5-V
Chipset

5-V
SRAMs
DRAMs

VL Slots
(optional)

Slot 1 Slot 2

ISA Slots

VCC = 3.3 V

5-V VL Bus

5-V ISA Bus

Cross-Bar
Technology

 Chipset Support

D-11 OEM Modifications for 168-Pin CPGA

D.6 Chipset Support

The following list of chipset vendors providing single-chipset solutions that
support both the Intel/AMD and the TI486SXL interface was compiled from in-
formation received from the specified chipset vendors. This is a partial list and
is not meant to be all inclusive.

� ACC Microelectronics
� Acer Laboratories
� EFAR
� ETEQ Microsystems
� Headland Technology
� OPTI
� PicoPower Technology
� SARC/PC Chip
� Silicon Integrated Systems (SIS)
� Symphony Laboratories
� Tidalwave
� UMC
� UniChip
� Western Digital

D-12

 Running Title—Attribute Reference

E-1 Chapter Title—Attribute Reference

Thermal Management in
Microprocessor-Based Systems

This appendix explains basic thermal concepts and the relationship between
thermal measurements and the system. In addition, problems associated with
comparing thermal specifications from different manufacturers are discussed.
Finally, corrective activity within JEDEC is explained in detail. This information
is intended for the casual scientific reader, and the only prerequisite is general
engineering knowledge of semiconductor devices.

Topic Page

E.1 Introduction E-2.

E.2 Modes of Heat Transfer E-4.

E.3 Thermal Specifications of Integrated Circuits E-9.

E.4 TI Thermal Specification Methodology E-11.

E.5 Guidelines E-14.

E.6 Current Trends and Theory of Correction E-14.

E.7 Conclusions E-15.

Appendix E

Introduction

E-2

E.1 Introduction

Thermal management is considered to be an important factor in both the con-
ception and usage of semiconductor integrated circuits (ICs). Thermal man-
agement is defined as the modes and techniques required to transfer a pow-
ered IC’s resultant operating heat to a system thermal heat sink. The thermal
management of an IC is normally discussed in terms of that IC’s operating
junction temperature (i.e., p-n junction of a diode). There are two main goals
for thermal management.

� The first is to ensure that the operating junction temperature of the IC does
not exceed the range of functional and maximum temperature limits of that
IC. The functional temperature range of an IC is bounded by the tempera-
tures that allow the IC to meet specified performance requirements. If the
operating junction temperature of an IC is not within the functional temper-
ature range, diminishing system performance and operational errors may
result. The absolute maximum temperature is defined as the temperature
at above which physical damage begins to occur to the IC.

� The second objective of thermal management is to ensure that the operat-
ing temperature of an IC enables the product reliability objectives for a giv-
en application to be met. Device failure rates are proportional to IC operat-
ing temperatures as shown in Figure E–1.

Figure E–1.Effect of Component Operating Temperature on Component Failure Rate†

TJ–Junction Temperature–°C

0 50 100 150 200

103

102

10

1

10 – 1

10 – 2

10 – 3

10 – 4

N
or

m
al

iz
ed

 F
ai

lu
re

 R
at

e
–

λ
T

λ
T r

ef 1.1 eV

0.8 eV

eV = electron volts

† Richard C. Chu and Robert E. Simons, “Recent Developments For Electronic Packaging”, Elec-
tronic Packaging Forum, Van Nostrand Reinhold, New York, 1991, pp. 183–189.

 Introduction

E-3 Thermal Management in Microprocessor-Based Systems

E.1.1 Thermal Impedance

Thermal impedance is an entity’s resistance to heat dissipation through con-
duction, convection (natural and forced), and radiation. Thermal impedances
are often analogous with electrical resistance, R, as described by Ohm’s law
in Equation E–1.

Equation E–1. Ohm’s Law

R� V
I

where V represents voltage and I represents current. Similarly, thermal imped-
ances (shown in the following equation), often denoted by R with a subscript
of the Greek letter theta ���, can be described by the relationship in
Equation E–2.

Equation E–2. Thermal Impedance

R��
�T
Q

where �T represents the temperature difference between two reference
points and Q is the heat-flow rate measured in watts. Heat-flow rate, Q, is often
written as P or Pd.

E.1.2 Power

Power is defined as the rate of energy flow. This energy can be thought of as
electrical energy or the resultant heat that is generated. Both electrical and
heat energy are measured in watts. The power consumption of an integrated
circuit is defined by Equation E–3:

Equation E–3. Power Consumption of an Integrated Circuit

P� V · I

where V represents voltage and I represents current.

E.1.3 Junction Temperature

Indirectly, you can find the junction temperature (TJ) of a transistor or diode on
a die using a temperature-sensitive electrical parameter (TSP) (see
Figure E–2). Such a method is nondestructive and assumes that there is a uni-
form distribution of both current and temperature across the junction of the
transistor or diode being used to conduct the test. Often the substrate diode
(a diode used to reduce the amount of system noise) is used to conduct such
a test. The diode’s forward voltage drop is monitored while active and dissipat-
ing power as shown in Figure E–3. By controlling the temperature of a refer-
ence point and the voltage across the diode, you can find the junction tempera-
ture. This method of obtaining the junction temperature is precise and ac-
cepted throughout the semiconductor industry.‡

‡ Sherwin Rubin and Frank F. Oettinger, “Thermal Resistance Measurements on Power
Transistors”, Semiconductor Measurement Technology: Thermal Resistance Measurements on
Power Transistors, US Government Printing Office, Washington, 1979, pp. 1–4.

Introduction / Modes of Heat Transfer

E-4

Figure E–2.Die Using a Temperature-Sensitive Electrical Parameter

n pSilicon Die

Junction

Figure E–3.Diode Voltage Versus Temperature for a Typical Bipolar Device

TJ–Junction Temperature–°C

0 20 40 60 120
0

V

80 100

100

200

300

400

500

f
–

S
ub

st
ra

te
 D

io
de

 V
ol

ta
ge

 –
 m

V

IF = 1 mA

E.2 Modes of Heat Transfer

There are three ways that heat is transferred between points of differing ther-
mal potential:

� Conduction
� Convection
� Radiation

Conduction, the simplest heat-transfer mechanism, is the transfer of kinetic
energy via vibrations and collisions from a more excited atom or electron to a
nearby atom or electron that is less excited. The ability to conduct heat is de-
pendent on the material. For example, gases are poor heat conductors be-
cause of their low density. However, metals are good thermal conductors be-
cause their inherently high number of free electrons encourage collisions. This
ability to conduct heat is quantified by a proportionality constant (k) often re-
ferred to as thermal conductivity. Table E–1 lists some common packaging
materials and their associated thermal conductivities.

 Modes of Heat Transfer

E-5 Thermal Management in Microprocessor-Based Systems

Table E–1.Thermal Conductivity of Packaging Materials§,¶

Metals (at 25 °C) Thermal Conductivity, (W/m) (°C)

Copper 397

Aluminum 238

Lead 34.7

Alloy-42 (common lead-frame material) 10.7

Gas (at 20 °C) Thermal Conductivity, (W/m) (°C)

Air 0.0234

Nonmetals Thermal Conductivity, (W/m) (°C)

Glass �0.8

Epoxy glass �0.89

A second mode of heat transfer is convection, which is heat transfer by the
movement of a heated substance. In the case of natural convection, such
movement is caused by the induced differences in density that result from the
expansion and compression of a gas or liquid subjected to temperature
changes. Another type of convection, forced convection, forces movement of
a cooling medium across a heat source. Often, forced convection is created
by the use of a cooling fan within a system.

A final mode of heat transfer is radiation. Radiated heat transfers occur due
to thermal emission primarily in the infrared spectrum. Radiation is subject to
common-wave phenomena such as reflection. The ability of the surface of a
material to radiate heat is referred to as that surface’s emissivity. Possible val-
ues for emissivity are from zero to unity, where unity signifies the maximum
thermal radiation at a given temperature.§

E.2.1 Integrated Circuit Thermal Resistance

The thermal resistance of an integrated circuit within a system can be broken
into two major components:

� Internal resistance of the IC, R�i
� External resistance of the IC, R�x

Conventionally, resistances are discussed in more distinct terms. R�JC is de-
fined as the thermal impedance from the silicon die within an integrated circuit
to the package surface or case of that IC. This thermal path includes the ther-
mal impedance of each material used in packaging the IC, such as solder, die
adhesive, base materials, leads, the case itself, etc. R�i and R�JC are inter-
changeable terms because R�JC quantifies only those thermal impedances
internal to the package ending at the package leads or package body surface.
R� i and R�JC are functions of the IC package only and are not significantly
affected by the particular system in which an IC is used. The semiconductor
manufacturer controls the values of R� i and R�JC.

¶ Charles A. Harper and Frank E. Altoz, Electronic Packaging and Interconnection Handbook,
Mc Graw-Hill, Inc, New York, pp. 2.61–2.62.

§ Raymond A. Serway, Physics for Scientists and Engineers, Saunders College Publishing,
Philadelphia, p. 545.

Modes of Heat Transfer

E-6

The thermal impedances that exist between the package case and the system
ambient thermal sink are collectively defined as R�CA (thermal impedance
from case to ambient air). For a given package size and format, all such ther-
mal impedances are primarily dependent on the particular system in which an
IC is used (PWB thermal conductivity, presence of forced convection, etc.).
These impedances are controlled by the user of the IC. Often R�JC and R�CA
are referred to together as R�JA.

R�JA can be qualitatively described as the thermal impedances between, and
including, a silicon die heat source and the system ambient thermal heat
sink.¶#

Table E–2 displays the relative sizes of R�JC and R�CA. The table also dis-
plays the values of R�JC and R�CA as percentages of the corresponding value
of R�JA at 0 cubic feet per minute (cfm) airflow. All entries listed come from var-
ious data sheets of several manufacturers of 486-class microprocessors. No-
tice that R�JC accounts for a maximum of 15 percent of R�JA. For all QFP
packages listed, 9.6 percent of R�JA is R�JC. For the PGA package, 15 per-
cent of R�JA is R�JC. As previously mentioned, the semiconductor manufac-
turer controls the value of R�JC through various process parameters. There-
fore, at maximum, R�JC accounts for approximately 1/8th of the R�JA value
for packages listed. Stated differently, R�CA (or the system), accounts for
approximately 7/8ths of the total thermal resistance within a system.

Table E–2.Thermal Performance of Various 486-Class Microprocessors

P k M i l N b f Pi
R�JC

P f R
R�CA

P f RPackage Material Number of Pins
R�JC,
(°C/W) Percent of R �JA

R�CA,
(°C/W) Percent of R �JA

QFP
Metal 100 2 8.7 21 91.3

QFP
Plastic 100 4 11.1 32 88.9

PGA Ceramic 132 3 15.0 17 85.0

The system in which an integrated circuit is used is quite significant in the R�JA
value for that IC. As stated, at least 7/8ths of the thermal impedance from the
silicon die to ambient air is due to the system. Significant effort is concentrated
on thermally optimizing the system to improve the thermal performance of the
ICs within.

Note that the IC user controls the design specifications for the majority of items
that contribute to the quality of the thermal path. Several user-controlled sys-
tem factors are available that can contribute to reducing the thermal resistance
of an IC in the system design:

� PWB thermal conductivity
� Proximity/density of the ICs on a PWB
� Airflow

¶ Charles A. Harper and Frank E. Altoz, Electronic Packaging and Interconnection Handbook,
Mc Graw-Hill, Inc, New York, pp. 2.61–2.62.

Jack Belani and B.J. Shanber, “Impact of Packaging Materials on Semiconductor Thermal
Management”, Third Conference of Electronic Packaging: Materials and Processes & Corrosion
in Microelectronics, Minneapolis, Minnesota, April 28–30, 1987, pp. 113–115, 118.

 Modes of Heat Transfer

E-7 Thermal Management in Microprocessor-Based Systems

E.2.2 PWB Conductivity

The thermal conductivity of a PWB is determined by the individual thermal con-
ductivities of materials that comprise the PWB. PWBs are nonhomogenous
and normally consist of a base-laminate material, such as epoxy glass, and
various amounts of other materials, such as traces or planes made of copper.
The thermal conductivity varies little between commonly used PWB laminates.
Since the thermal conductivities of commonly used routing metals are much
higher than that of the PWB laminate (for example, 238 for aluminum and 397
for copper versus 0.89 for epoxy glass), the thermal conductivity of a PWB is
proportional to the amount sof metal in the PWB.

Table E–3 shows the thermal conductivities of several PWBs made from FR-4,
a type of epoxy glass. The boards vary by the number of signal layers and the
number of ground layers (essentially, the copper volume). As copper volume
increases from 0 to 6.9 percent, thermal conductivity increases by a factor of
90 or almost two orders of magnitude. This is a result of the higher thermal con-
ductivity of copper compared to epoxy glass. The thermal conductivity of the
PWB is proportional to the signal and ground metal content of a PWB. The area
and thickness of metal on lower levels of a PWB, under the footprint of an IC,
affects the thermal performance of that particular IC.||

Table E–3.Thermal Conductivity of PWBs With Various Amounts of Copper

Board Type and
Layers

Signal-Layer
Trace Width †

Ground-Layer
Trace Width †

Copper
Volume, (%)

Thermal Conductivity,
 (W/m) (°C)

FR-4 — — 0 0.3

FR-4 2 layer 35 �m — 1.0 3.7

FR-4 4 layer 35 �m 35 �m 3.5 13.6

FR-4 4 layer 35 �m 70 �m 6.9 26.9
† Trace thickness is 2 �m.

Table E–4 compares two types of PWBs with identical 100-pin QFP devices
mounted on each board. Each board uses identical minimum-metal, signal-
routing traces to complete the signal-interconnection layer. The single-sided
PWB contains no metal on the opposite side of the board. The two-layer PWB
has a solid-copper ground plane on the opposite side. All measurements are
taken with no airflow present. The value of R�JA for the IC is improved by 9
percent by the addition of a copper ground plane (a resulting increase of 55
percent in copper content). When metal is present on the lower levels of a PWB
within the projected footprint of an IC (see Table E–4), the thermal perfor-
mance of that IC is improved due to a lower value of R�JA.

|| Ake Malhammer, Ph.D, “Heat Dissipation Limits for Components Cooled by the PCB Surface”,
International Electronics Packaging Conference, San Diego, California, September 15–18,
1991, pp. 307–308.

Modes of Heat Transfer

E-8

Table E–4.R�JA Versus Board Type

Board Type R�JA, (°C/W)

Single sided 36.0

Two sided 32.8

Figure E–4.Metal Within Projected Footprint of Integrated Circuit

If metal is in this area, the thermal
performance of the IC improves.

Projected Footprint

PWB

E.2.3 Proximity of Integrated Circuit on Board

The location of an integrated circuit on a PWB can make a significant differ-
ence in the junction temperature of that device. In an ideal design, those ICs
with the lowest heat dissipation are located in the center of a PWB, and those
ICs with the highest heat dissipation are at the edges of the PWB. A concept
known as the territory surface method associates an area of PWB required to
sink the heat flow from a given IC. Often, in the case of surface-mount packag-
ing, an IC’s territory is violated by either other IC’s territories or the edge of the
PWB. In either case, thermal performance is hindered in all involved ICs. Note
that not only the proximity of an IC on a PWB but also its relative location on
the board has significant effects on thermal performance.||�

E.2.4 Airflow

In a typical system, heat dissipated by natural convection is a significant por-
tion of overall heat dissipation. When forced convection is present within a sys-
tem, the amount of heat dissipation increases in proportion to the rate of flow
of the convection. Higher rates of forced convection result in lower values of
R�JA.

In Table E–5, values of R�JA for varying amounts of forced convection are
listed for a 100-pin QFP mounted on a single-sided board. As airflow (forced
convection) increases from a rate of 0 cfm to 600 cfm, R�JA is decreased by
a factor of 2.4. As a rule, the R�JA value of an IC in a system is inversely propor-
tional to the presence/amount of forced convection (airflow).

|| Ake Malhammer, Ph.D, “Heat Dissipation Limits for Components Cooled by the PCB Surface”,
International Electronics Packaging Conference, San Diego, California, September 15–18,
1991, pp. 307–308.

�M.M. Hussein, D.J. Nelson, and A. Elshahiu-Riad, “Thermal Interconnection of Semiconductor
Devices on Copper-Clad Ceramic Substrates”, 7th IEEE SEMI-THERM Symposium, August
1991, pp. 121–122.

 Modes of Heat Transfer / Thermal Specifications of Integrated Circuits

E-9 Thermal Management in Microprocessor-Based Systems

Table E–5.R�JA Versus Airflow

Airflow (cfm †) ��JA

0 36

100 32

200 26

400 19

600 15
† cfm = cubic feet per minute

E.3 Thermal Specifications of Integrated Circuits

Manufacturers normally publish detailed specifications of ICs that contain a
thermal portion, or a thermal specification. Manufacturer’s thermal specifica-
tions differ in many ways, but most thermal specifications list the range of al-
lowable package case temperatures (case temperatures at which the range
of functional junction temperatures are not exceeded) to ensure that a device
is functional. In addition, many manufacturers include some of the following
variables:

� R�JC
� R�JA at various airflows
� Maximum ambient air temperature, TA, at various airflows.

Many thermal variables are system dependent. To compare ICs on the basis
of their published thermal specifications, you must know the system in which
such specifications were measured. Recall that 7/8ths of the thermal resis-
tance of an IC, R�JA, is due to elements other than the IC. In addition, mea-
surement techniques can affect thermal resistance values. In general, the fol-
lowing three factors prohibit comparisons between different manufacturers’
thermal specifications:

� System dependence of R�JA and R�CA
� Technique/location for measurement of TA
� Definition of Q or P�

E.3.1 System Dependence of R�JA and R�CA

There is presently no industry-accepted standard system for measuring ther-
mal resistances. Consequently, systems used to measure thermal specifica-
tions vary widely between manufacturers with respect to thermal performance.
For similar ICs built by different manufacturers, thermal specifications are
often misleading due to different thermal systems.

� [7]James A. Andrews, “Package Thermal Resistance Model Dependency on Equipment
Design”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Volume
II, Number 4, December 1988, pp. 536–537.

Thermal Specifications of Integrated Circuits

E-10

There are several approaches to publishing thermal specifications: worst
case, best case, and somewhere between these two points. As a result, you
need to be cautious when making decisions based on system-dependent ther-
mal resistances such as R�JA and R�CA. If information concerning the system
is omitted from a thermal specification, values for R�JA and R�CA should be
disregarded for the purpose of comparison.

E.3.2 Measurement of TA

Recall Equation E–2 for thermal impedance, repeated here.

R
�
�

�T
Q

where �T is the difference in temperature between a transistor junction and
some reference point.

The choice of reference point and its temperature with respect to the junction
is of great importance to the precision of thermal impedance. Holding the junc-
tion temperature constant as the reference point’s temperature is increased
makes the calculated thermal impedance smaller. Most manufacturers
choose the local ambient-air temperature within the system enclosure as the
reference point. However, because the local air temperature is likely to be sub-
ject to natural convection and a resulting nonuniformity of temperature, the ref-
erence point must be well defined to avoid inaccuracy. If no information is in-
cluded concerning the reference point, absolute comparisons of thermal spec-
ifications must be made cautiously.

E.3.3 Definition of Q

The rate at which electrical energy is converted into heat energy is known as
power (P). P is defined by Equation E–4.

Equation E–4. Power

P = VCC � ICC

For thermal-impedance calculations, some manufacturers use a relationship
that describes the typical power dissipation as shown in Equation E–5.

Equation E–5. Power Dissipation

P = VCC(t) � ICC(t)

where (t) denotes a typical value

Other manufacturers use the maximum amount of power dissipated as shown
in Equation E–6.

Equation E–6. Maximum Power Dissipation

P = VCC(m) � ICC(m)

where (m) is a maximum value.

 TI Thermal Specification Methodology

E-11 Thermal Management in Microprocessor-Based Systems

Neither method is incorrect, but typical power dissipation is significantly lower
than maximum power dissipation in most circumstances. As a result, thermal
impedances calculated using typical power dissipation are lower than those
thermal impedances calculated using maximum power dissipation. This is be-
cause of the inverse relationship between impedance and power dissipation
(Q), as shown in Equation E–7.

Equation E–7. Relationship Between Impedance and Power Dissipation

R
�
�

�T
Q

When examining thermal specifications, note the manufacturer’s definition of
power dissipation. Often, the equation for power dissipation is included in ei-
ther the publication section pertaining to electrical characteristics or the ther-
mal specification’s definition of variables. If not, use caution when comparing
such specifications.

E.4 TI Thermal Specification Methodology

Some manufacturers publish thermal specifications according to the typical
system conditions in which the IC is used. Some manufacturers publish ther-
mal specifications for absolute worst-case conditions. Other manufacturers’
thermal specifications are applicable for conditions somewhere between
these two points. To ensure the reliability of Texas Instruments microprocessor
devices, the thermal specifications are published in accordance with a realistic
worst-case scenario. This means that the data is measured in a conservative
manner, but not so conservative as to hinder its usefulness when designing
microprocessor-based systems incorporating TI devices. The following para-
graphs provide a detailed explanation of how TI obtains thermal data and the
reasons for using such methods.

A thermal test die is mounted in the package to be tested and the package is
mounted on a test board consisting of 0.062-inch thick FR-4 material with one-
ounce copper etch. The 100-pin QFP (in this case, a package of the
TI486SXLC microprocessor) is soldered to a single-sided test board using
matching footprints and the minimum circuit-trace density required to intercon-
nect the device electrically to the board. The 132-pin ceramic PGA (in this
case, a package of the TI486SXL microprocessor) is inserted in a socket that
is soldered to the same test board. As discussed previously, PWB thermal con-
ductivity has a significant effect on the R�JA value of a device and is propor-
tional to the amount of metal in the PWB within the projected footprint of the
device. Note that the test PWB described above has a minimum amount of
routing metal and is a single layer. The PWB conductivity is minimized, and the
experimentally determined value for R�JA is maximized.

To measure still-air R�JA, the package to be tested and board on which it is
mounted are placed horizontally in a container that has a volume of one cubic
foot of air. Power is supplied to a transistor on the die, and after a thirty-minute
stabilization period, the temperature of the air (T1) and the base-emitter volt-

TI Thermal Specification Methodology

E-12

age (VBE1) of the transistor are recorded. Power is supplied to an array of tran-
sistors on the die to cause an increase in junction temperature, and the base-
emitter voltage (VBE2) of the powered transistor is recorded. The package
and board are placed in an oven and the temperature is raised to 90°C (T2)
and another measurement of base-emitter voltage (VBE3) is recorded. Still-air
R�JA can be calculated by substituting the measured variables (T1, T2, VBE1,
and VBE3) into the following equations:

slope�
(VBE1–VBE3)

(T2–T1)

R
�JA�

(VBE1 – VBE2)
slope

For the purpose of measuring R�JC, the package and board are placed in a
bath of moving fluorinert FC-77. After a thirty-minute stabilization period, the
temperature of the fluorinert is recorded (T1) and the voltage across a pow-
ered transistor on the test die is measured from base to emitter (VBE1). Power
is then applied to an array of resistors on the test die to produce a subsequent
increase in junction temperature. The voltage across the same transistor from
base to emitter (VBE2) is recorded. The package and board are placed in an
oven at 90°C (T2) and the voltage across the powered transistor is measured
from base to emitter (VBE3). Note that at this point, the resistors are no longer
powered. Once VBE1, VBE2, VBE3, T1, and T2 are known, these values are
substituted into the last two equations to find a value for R�JC. R�JC is inde-
pendent of the system so system information has been omitted from this ex-
planation. However, the test die that is used within the package must be con-
sistent in size and power dissipation with the actual application die.

slope�
(VBE1–VBE3)

(T2–T1)

R
�JC�

(VBE1 – VBE2)
slope

An example of plotted thermal data is shown in Figure E–5.

To measure R�JA versus airflow, the test package and mounting board are
placed vertically in a calibrated wind tunnel as shown in Figure E–6. A temper-
ature probe and anemometer-type airflow probe are located towards the front
end of the tunnel. A fan is mounted at the rear of the tunnel. Its airflow is di-
rected away from the wind tunnel to induct air from the front of the tunnel to
the rear. At various controlled rates of airflow, the voltage is measured across
a powered transistor on the test die (VBE1). The temperature in the tube is re-
corded as T1. An array of resistors on the test die is powered to cause an in-
crease of temperature across the die. The voltage is again measured across
the same transistor (VBE2). The device is removed from the wind tunnel,
placed in an oven at 90°C (T2), and only the transistor is powered. The voltage
from base to emitter on the transistor is measured (VBE3). As in the procedure
for R�JC, the experimental values are substituted into the equations for slope
and R�JA to find the value for the slope and R�JA for a specific airflow.

 TI Thermal Specification Methodology

E-13 Thermal Management in Microprocessor-Based Systems

Figure E–5.Plotted Die Thermal Data

0

VBE3

TJ–Junction Temperature of Test Die–°C

25 90

VBE2

VBE1 Ambient

Power

Oven

T1 T2

Figure E–6.Wind Tunnel Schematic

Device test board

Temperature and
anemometer-type
airflow probe

24 in5 in

78 in

Airflow

Wind tunnel cross-section is 6 in by 6 in.

Fan

(Dimensions are approximate.)

The procedures described above are relatively consistent across the industry
with the exception of the test-board specifications and the measurement loca-
tion of T1. In the test-board specification, the thermal conductivity is of great
importance to the experimentally determined value of R�JA. As shown in
Table E–3 (page E-7), a 4-layer FR-4 PWB is approximately 89 times as ther-
mally conductive as a single layer PWB with no copper. It is not uncommon to
find 8 or more layers in a microprocessor PWB. TI uses a single-sided test
board with only one ounce of copper etch as opposed to a typical application
multilayer PWB with a much higher content of copper etch, and consequently,
better thermal conductivity.

The R�JA values reported by TI should be viewed as worst-case versus typical
for an application. The ambient temperature location is measured and is not
affected by an increase in operational case temperature as would occur in a

Guidelines / Current Trends and Theory of Correction

E-14

typical closed-system-case application. Such a measurement of ambient tem-
perature allows for a greater difference or delta between the junction tempera-
ture and the measurement reference point and, as a result, a higher value of
R�JA. When comparing R�JA values from Texas Instruments with other
manufacturers, understand the test conditions of each manufacturer before
drawing conclusions regarding which unit offers the best thermal perfor-
mance.

E.5 Guidelines

The possibility of disparity in generating thermal specifications causes difficul-
ty in comparisons of similar parts produced by different manufacturers. To en-
sure the validity of a comparison between the thermal specifications of several
devices, follow these guidelines:

� Ensure that the system is the same for all devices included in the compari-
son. If the system is not the same, only consider values for R�JC. Disre-
gard R�CA and R�JA values because of their system dependence.#

� Disregard from the comparison those devices whose thermal impedances
were obtained using different reference points. Remember that �T de-
creases as the reference temperature increases (holding the junction tem-
perature constant), and that thermal impedance is proportional to �T. An
increase in �T (or a decrease in the measured reference temperature)
causes a resulting increase in the calculated thermal impedance.

� Include only those devices with like definitions for power dissipation. High-
er values for P result in lower values of calculated thermal impedance.
Typical power dissipation (the product of typical VCC and typical ICC) is sig-
nificantly lower than maximum power dissipation (the product of maxi-
mum VCC and maximum ICC).

E.6 Current Trends and Theory of Correction

The dilemma concerning thermal specifications and the incompatibilities be-
tween manufacturers has not gone unnoticed. The JEDEC JC-15 committee
has developed objectives for standardizing electrical and thermal modeling
and measurements for IC packages and interconnects. A task force, desig-
nated JC-15.1, was originated to accomplish two of the above goals by the fol-
lowing actions:

� Propose a standard board for device thermal-resistance measurements

� Provide a standard measurement to which actual thermal-modeling mea-
surements can be compared

Jack Belani and B.J. Shanber, “Impact of Packaging Materials on Semiconductor Thermal
Management”, Third Conference of Electronic Packaging: Materials and Processes & Corrosion
in Microelectronics, Minneapolis, Minnesota, April 28–30, 1987, pp. 113–115, 118.

 Conclusions

E-15 Thermal Management in Microprocessor-Based Systems

Companies often use varying systems and measuring techniques to obtain
thermal-resistance measurements of ICs. To cope with these variances, JE-
DEC JC-15.1 proposes a board layout to standardize thermal-resistance mea-
surements. The proposed board (3 in by 4.5 in) contains only the device to be
characterized with a minimum amount of metal. If widely accepted within the
semiconductor industry, such a board definition could improve the validity of
comparisons between integrated-circuit thermal specifications.

E.7 Conclusions

In summary, the thermal impedance of an integrated circuit within a system is
divided into two components:

� R�i and R�x
� R�JC and R�CA

R�JC (or R�i) account for only about 1/8th of the total thermal resistance of an
IC within a system. R�CA (or R�x) is responsible for 7/8ths of the total thermal
resistance. The total thermal resistance of an IC within a system, often referred
to as R�JA, is significantly dependent on the system’s thermal performance.
The system thermal performance can be attributed to several factors:

� PWB thermal conductivity

� Proximity of ICs on the PWB and total component density of the PWB

� Presence/amount of forced convection

Thermal specifications of ICs include one or more of the following variables
versus airflow: R�JC, R�JA, and TA(m). R�JA is dependent on the system.

To make a valid comparison of multiple manufacturers’ thermal specifications
for similar parts, thermal specifications must meet the following guidelines:

� Identical systems (i.e., PWB thermal conductivity, airflow)

� Similar reference points for thermal-impedance calculation

� Like definitions of P

Because of the current problems surrounding thermal specification compari-
sons, JEDEC has provided a task force, JC-15.1, to develop and maintain a
standard-PWB definition to measure thermal resistances to be included in
thermal specifications. Until such a method is adopted industry wide, the dis-
cussed guildelines should be followed to assure valid thermal-specification
comparisons.

E-16

 Running Title—Attribute Reference

F-1 Chapter Title—Attribute Reference

Ordering Information

F.1 Part Number Components

Components of the TI486SXL(C) family of microprocessor part numbers are
diagrammed in the following example.

TX486SXLC B – V 25 GA

Device name:

Supply voltage:

Speed:

Package type:

0 = 5 V
V = 3.3 V
G = 3.3 V with 5-V-tolerant inputs

25 = 25 MHz
33 = 33 MHz
40 = 40 MHz
50 = 50 MHz

HBN = 144-pin ceramic quad flat package
GA = Ceramic pin grid array (S-GA = 132 pins for the TI486SXL family)
PJF = Thermally enhanced 100-pin plastic quad flat package
PCE = Thermally enhanced 144-pin plastic quad flat package

EXAMPLE:

SXLCB = 16-bit I/O
SXLB = 32-bit I/O
SXLC2 and SXL2 are clock doubled

Device revision level:

Appendix F

Part Numbers for Microprocessors Offered

F-2

F.2 Part Numbers for Microprocessors Offered

Table F–1 lists the complete part number for each version of the TI486SXL mi-
croprocessors offered. Table F–2 lists the part number for each version of the
TI486SLC/DLC microprocessors offered. The tables provide a short descrip-
tion consisting of the supply voltage, performance capabilities, and the me-
chanical package for each device part number.

Table F–1.TI486SXLC and TI486SXL Part Numbers

D i P N b S l V l (V)

Speed (MHz)

P kDevice Part Number Supply Voltage (V) Core Bus Package
TX486SXLCB-V25-PJF 3.3 25 25 100-pin TEP plastic

QFPTX486SXLCB-040-PJF 5 40 40, 20†
p p

QFP

TX486SXLC2B-050-PJF 5 50 25

TX486SXLB-040S-GA 5 40 40, 20† 132-pin PGA
TX486SXL2B-050S-GA 5 50 25

p

TX486SXLB-040-PCE 5 40 40, 20† 144-pin TEP plastic
QFP

TX486SXL-G40-HBN 3.3-V, 5-V tolerant 40 40, 20† 144-pin ceramic
QFPTX486SXL2-G50-HBN 3.3-V, 5-V tolerant 50 25

p
QFP

TX486SXLB-040-HBN 5 40 40, 20†

TX486SXL2B-050-HBN 5 50 25

TX486SXL-G40-GA 3.3-V, 5-V tolerant 40 40, 20† 168-pin PGA
TX486SXL2-G50-GA 3.3-V, 5-V tolerant 50 25

p

TX486SXLB-V40-GA 3.3 40 40, 20†

TX486SXL2B-V50-GA 3.3 50 25

TX486SXLB-040-GA 5 40 40, 20†

TX486SXL2B-050-GA 5 50 25
† These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40 MHz.

 Part Numbers for Microprocessors Offered

F-3 Ordering Information

Table F–2.TI486SLC/E and TI486DLC/E Part Numbers

D i P N b
Supply Voltage

S d (MH) P kDevice Part Number
Supply Voltage

(V) Speed (MHz) Package

TX486SLC/E-033C-PJF 5 33 100-pin TEP plastic
QFPTX486SLC/E-V25C-PJF 3.3 25 QFP

TX486SLC/E-040C-PJF 5 40

TX486DLC/E-033C-GA 5 33 132-pin ceramic PGA

TX486DLC/E-040C-GA 5 40

TX486DLC/E-033C-PCE 5 33 144-pin TEP plastic
QFPTX486DLC/E-040C-PCE 5 40 QFP

F-4

 Glossary

G-1 Glossary

Glossary

2-way set associative: A type of cache in which an index identifies two lines
of data (i.e., only two members of a set may exist in cache at a given
time). This design provides significant performance improvement
compared to direct-mapped caches as measured by the hit ratio. See set
associative.

A

A20M: This pin is enabled when bit 2 of CCR0 is true. The A20M# pin is an
anomaly occurring in PC designs as a result of the fact that truncated ad-
dresses can be generated by an 8086/8088 outside the physical address
range.

A: Accessed/nonAccessed bit. Segment descriptor bit 8.

AC: Alignment-Check. An enable flag that verifies that computer-word bits
are aligned with respect to significance.

address: A space in memory where a byte is assigned. Each byte of
memory is assigned a specific address space. The amount of address-
able memory space depends on the width of the CPU address bus. The
TI486SXLC has a 24-bit address bus, and the TI486SXL has a 32-bit ad-
dress bus.

AF: Auxiliary carry Flag. Set when an operation results in a carry out of
(addition) or borrow into (subtraction) bit position 3. Otherwise, it is
cleared.

AM: Alignment-check Mask bit. CR0 bit 18.

ARR1 through ARR4: Address Region registers 1 through 4. Define the
location and size of the memory regions associated with the internal
cache. These registers are unique to the TI486SXL(C) microprocessors.

assert: To apply a signal. A signal asserted is logically true.

AVL: AVaiLable bit. Segment Selector register bit 20.

Appendix G

Glossary

G-2

B

bandwidth: The amount of information that can be transferred during a peri-
od of time. As an example, video, which requires a maximum bandwidth
of 80 megabytes per second (MBps), takes advantage of the 132 MBps
transfer rate provided by the VESA-VL or PCI bus.

BARB: A bit that, when bit 5 of CCR0 is set (high), enables flushing of the
internal cache when a hold state is entered.

base : The beginning of some segments (extra data, code, or data seg-
ments) or the beginning address provided in some registers (CC3,
GDTR, IDTR, or SD).

BIOS: Basic Input Output System. A set of routines that contain detailed
instructions for activating computer and peripheral devices. The BIOS is
normally implemented in nonvolatile memory.

bit: The fundamental unit of computer memory. A bit can be a 1 or a 0. A byte
is made up of eight bits.

breakpoint: A point in a program at which to stop execution so that machine
status may be determined.

byte: A sequence of eight bits. Represents one character of information.

C

cache: A small, high-speed memory used to provide a temporary storage
location for data most likely to be requested by the CPU. This allows for
quick access of data and improved CPU performance (i.e., zero wait
states).

cacheable: The property of a memory location if the system allows data at
this location to reside in the cache.

cache addressing: A type of addressing performed by dividing the physical
address into an index field, a tag field, and a byte select field. A valid field
indicates whether the cached data at that physical address is currently
valid.

cache (data) coherency: A consistent relationship between data in cache
memory and data in other memories. Data coherence is necessary when
a system has multiple memories. If several memories contain the same
data word, modifying that data word in one memory causes the data to
be incoherent with the data stored in the other memories. Therefore, the
other memories that have a copy of that same data word must either up-
date or invalidate their copy.

cache flush: A memory operation used to maintain cache consistency. In
a cache flush all locations with dirty bits are written to main memory.
Then, the cache contents are cleared (flushed).

 Glossary

G-3 Glossary

 cache hit: Success by the CPU in retrieving requested data from cache
memory.

cache miss: Failure by the CPU in retrieving requested data from cache
memory because the data is not there.

cache tag address: Address that contains the high-order bits of the physical
address of the associated data stored in the cache.

CCR0, CCR1: Configuration Control Register 0 and Register 1. Configura-
tion control register 0 enables certain functions associated with cache
control, suspend mode, and the clock-doubled mode. Configuration con-
trol register 1 sets up internal cache operation and system-management
mode. These registers are unique to the TI486SXL(C) microprocessors.

CD: Cache Disable bit. CR0 bit 30.

CF: Carry Flag. Set when an operation results in a carry out of (addition) or
borrow into (subtraction) the most significant bit. Otherwise, it is cleared.

CKD: (Enable) Clock Doubled. CCR0 bit 6.

clock doubled: A mode of microprocessor operation in which the internal
core operates at the CLK2 frequency while the external bus interface op-
erates at half the CLK2 frequency.

clock scaling: Changing the clock input frequency down or up. The
TI486SXL(C) microprocessor family supports dynamic clock scaling.

clock speed: The speed at which the CPU operates, typically measured in
megahertz (MHz).

CISC: Complex Instruction Set Computer. A type of computer architecture
that requires multiple clock cycles per instruction but offers many spe-
cialized instructions for programmers.

conventional memory: DOS memory that occupies the addresses be-
tween 0 and 640K bytes and is available to the user or software pro-
grams.

coprocessor: An external processor that can be operated in parallel with
the CPU to relieve the CPU load. The TI486SXL(C) microprocessors are
designed to interface to a coprocessor.

CPGA: Ceramic Pin Grid Array. A package that consists of ceramic sub-
strates to hermetically enclose the IC and an interconnection scheme
that presents male leads extending from the bottom of the package.

CPL: Current Privilege Level. The privilege level of the current operation.

CPU: Central Processing Unit. The execution unit of the microprocessor.
The CPU consists of control, shift, adder, multiplier, and limit units and
a register file.

CR0, CR2, CR3: Control registers 0, 2, and 3. Control register 0 contains
system control flags and indicates the general state of the CPU. The low-
er 16 bits are referred to as the machine status word. When paging is en-
abled and a page fault is generated, control register 2 retains the 32-bit
linear address of the address that caused a fault. Control register 3 con-
tains the 20-bit base address of the page directory.

Glossary

G-4

CS: Code Segment. The register that holds a 16-bit segment base In real
and virtual-8086 operating modes. In protected mode, the code segment
register holds a segment selector.

D

D: Default. The default length bit for operands and addresses.

descriptor: A data structure that defines a segment’s base, limit, and attrib-
utes.

DF: Direction Flag. A flag that, when cleared, causes string instructions to
auto-increment (default) the appropriate Index registers (ESI and/or
EDI). Setting DF causes auto-decrement of the Index registers.

direct-mapped cache: The simplest form of set associative cache architec-
ture, one-way set associative. In a direct mapped cache, an index identi-
fies only one line of data (i.e., only one member of a set may exist in
cache at a given time). Therefore, only one address comparison is re-
quired to determine if the requested word is in the cache.

direct-memory access (DMA): Memory access that allows data to be
transferred between a device and memory without the constant control
of the CPU. DMA permits two operations to be executed simultaneously.
As an example, the CPU can access the cache while DMA allows a pe-
ripheral to access the main memory.

disk drive controller: Electronic circuitry that transfers a copy of requested
information or a software application from storage (disk drive, floppy
drive, or CD-ROM) into RAM upon request by the microprocessor.

displacement: A value of up to 32 bits in length that is supplied as part of
the instruction. The displacement is used as the address in direct ad-
dress mode. The displacement is added to based, index, scaled index,
based index with displacement, and based scaled index with displace-
ment address modes.

DNA: Device Not Available. A fault indicating that the requested device is
busy or missing.

DOS memory: Conventional memory that is limited to 1M byte of memory.

DP: Displacement.

DPL: Descriptor Privilege Level field. Gate or segment descriptor bits
14–13.

DRAM: Dynamic Random Access Memory. Volatile memory chips that use
capacitors to store information as an electrical charge. DRAMs offer high
density at a low cost, but must be refreshed frequently, which makes
them relatively slow.

drive controller board: See disk drive controller.

 Glossary

G-5 Glossary

DR0 through DR7: Debug Registers 0 through 7. Contain memory address-
es and breakpoints used to support debugging of the microprocessor.

DS: Data Segment. In real and virtual-8086 operating modes, the data seg-
ment register holds a 16-bit segment base. In protected mode, the data
segment register holds a segment selector.

DT: Descriptor Type bit. Segment selector register bit 12.

DTE: Directory Table Entry. Contains the starting address of the second-
level page table. Selected from the directory table by the ten most-
significant bits of the linear address.

DTI: Directory Table Index. Acts as a 32-bit master index to up to 1K individu-
al second-level page tables.

E
E: Application descriptor bit. Segment descriptor bit 11.

EAX: Extended accumulator register.

EBP: Extended base pointer register.

EBX: Extended base register.

ECX: Extended count register.

EDI: Extended destination index register.

EDX: Extended data register.

EFLAGS: Extended Flag word register. Contains status information and
controls certain operations on the microprocessor. The lower 16 bits of
this register are referred to as the flag register.

EGA: Enhanced Graphics Adapter. A video standard for IBM-compatible
PCs named after a particular video adapter that was the standard for the
IBM PC-AT.

EIP: Extended Instruction Pointer register. Contains the offset into the cur-
rent code segment of the next instruction to be executed.

EM: EMulate processor extension. CR0 bit 2.

EPL: Effective Privilege Level. Protects memory from being accessed by
privilege levels that are lower than the descriptor privilege level.

EPROM: Electrically Programmable Read-Only Memory. A permanent
memory used for items such as the BIOS instructions, which occupy the
reserved address space in DOS systems. EPROM access times tend to
be long, but, being nonvolatile, they are used primarily for initialization.
If higher performance is required, the EPROM contents can be copied
to DRAM memory. This technique is called shadowing.

ES: Extra Segment register. The destination of STOS, MOVS, REP STOS,
and REP MOVS instructions. Special segment override prefix ES allows
the use of this additional segment register.

Glossary

G-6

ESP: Extended General Purpose register.

expanded memory: A memory scheme that borrows addresses from re-
served DOS memory to point to additional memory as a means of getting
around the 1M byte DOS memory limit.

extended memory: A memory scheme used by some software applications
to get around the 1M byte DOS memory limit.

F

far jump: A jump whose destination is in another code segment.

fast IDE: Fast Integrated Device Electronics. Provides data transfer of 16-bit
wide data at speeds of up to 13 MBps.

flash memory: Cards designed for program storage, can be used in floppy
and solid-state applications, and are ideal for applications that require
frequent updates.

float: A condition during which all 3-state bidirectional and output terminals
are placed in a high-impedance state to isolate the microprocessor from
the system electrically.

flush: To invalidate the entire contents of cache memory.

footprint compatible: Compatible for installation in existing boards/sys-
tems.

FPU: Floating Point Unit. A part of the microprocessor that accelerates the
computation of floating-point arithmetic. If a PC does not have an FPU,
the CPU emulates floating-point instructions, which take more time to
execute. See CPU.

FS: Additional data Segment register. Special segment override prefix of FS
allows the use of this additional segment register.

fully associative: The most flexible type of cache placement policy. There
is no single relationship between all of the addresses. The cache has to
store the entire address of each block of words and compare its address
with each of those in the cache until it finds a match.

G

G: Limit Granularity bit. Segment descriptor bit 23.

GD: Global Disable. Denies access to the debug register when set.

GDT: Global Descriptor Table. Part of the selector mechanism that contains
segment descriptors used when the TI bit in the segment selector regis-
ter is set to zero.

GDTR: Global Descriptor Table Register. A register that holds a 32-bit base
address and 16-bit limit for the global-descriptor table.

 Glossary

G-7 Glossary

graphic accelerators: A high-performance video display board for graphi-
cal user interface. Graphic accelerators have special circuitry which
speeds up image processing. The CPU sends commands to the acceler-
ator which executes them rather than having the CPU manipulating and
sending data to the adapters. Objects are drawn on the screen rather
than being transferred pixel by pixel. This reduces the amount of data
that is transferred across the processor bus.

graphic adapter: A circuit board that translates the instructions from the
CPU into information that the PC monitor can understand. Graphic
adapters before and including VGA rely on the CPU to perform opera-
tions that manipulate the display image. Advanced adapters, which han-
dle more data, have circuitry to speed up image processing directly on
the graphic adapter card.

graphic coprocessor: A programmable chip that performs much of the pro-
cessing required to display graphics on a video screen. A graphic copro-
cessor is fully programmable making it more flexible than a graphic
adapter.

graphics mode: A video mode that divides images into thousands of dots,
or pixels, to create text and detailed images.

GUI: Graphical Users Interface. A method of operating software applications
that permits the user to interact with the computer by using icons and
small graphics rather than by using text and commands.

green PC: An environmentally correct PC that reduces power consumption
(by as much as 80% when compared to current models). The develop-
ment of green PCs resulted from the Environmental Protection Agency’s
Star program.

GS: Additional data Segment register. Special segment override prefix of
GS allows the use of this additional segment register.

H

hard drive controller: See disk drive controller.

hot insertion (or hot swapping): Plugging or unplugging PC cards without
disrupting the host system’s operation. Typically associated with
PCMCIA.

I

IDE: See Integrated Device Electronics.

IDT: Interrupt Descriptor Table. An array of up to 256 8-byte interrupt descrip-
tors, each of which points to an interrupt service routine.

IDTR: Interrupt Descriptor Table Register. A register that holds a 32-bit base
address and 16-bit limit for the interrupt-descriptor table.

Running Title—Attribute Reference

G-8

IF: Interrupt Flag. When set, maskable interrupts (INTR input pin) are ac-
knowledged and serviced by the CPU.

index: A reference or initial value.

instruction: A machine-language command to the CPU. The TI486SXL(C)
instructions are described in detail in Chapter 7, Instruction Set.

instruction set: A set of machine-language instructions that the architec-
ture of the TI486SXL(C) CPU can execute.

integrated device electronics (IDE): An interface based on the ISA bus
that uses the set of registers and commands originally used by the IBM
PC-AT. This interface is the current favorite among most disk drive mak-
ers for hard disks because it is inexpensive and has a low command
overhead. Drives using IDE interfaces integrate the controller and drive
in one, making them more efficient than older drives. Therefore IDE
drives and controllers do not need to translate commands from your mi-
croprocessor. IDE provides data transfer of 8-bit wide data at speeds of
up to 5M byte ps. Fast IDE provides data transfer of 16-bit wide data at
speeds of up to 13 MBps. See fast IDE.

INTR: Interrupt. A signal generated by external hardware that changes the
normal sequential flow of a program by transferring program control to
a selected service routine.

invisible: Contents (data, address components, and current states) of reg-
isters and stored data that the programmer cannot access, trap, or re-
trieve.

IOPL: Input/Output Privilege Level. Indicates the maximum current privilege
level (CPL) permitted to execute I/O instructions. Also indicates the max-
imum CPL allowing alteration of the IF bit.

I/O: Input/Output

I/O bus (peripheral or system bus): The data path used to communicate
with the various I/O or peripheral devices in the PC. Using this bus avoids
loading down the time-critical local or processor bus with the I/O or pe-
ripheral devices.

I/O controller: Circuitry specialized for I/O operations. Most I/O devices
have a controller that acts as its supervisor and interfaces with the CPU.
The controller can be built either into the system board or on a separate
adapter that is plugged into the system bus. Some controllers have their
own special-purpose processors and some even have their own
memory.

I/O device interface: An essential part of any PC that supports the commu-
nication between the CPU and the device or peripheral.

I/O mapped: Memory mapping in which I/O devices are mapped into the
programmed I/O address space. Address decoding is easier since fewer
address lines must be decoded.

 Glossary

G-9 Glossary

K
KEN: The KEN# pin is enabled when bit 3 of CCR0 is true.

L
LDT: Local Descriptor Table. Part of the selector mechanism that contains

segment descriptors used when the TI bit in the segment selector regis-
ter is set to one.

LDTR: Local Descriptor Table Register. Holds a 16-bit selector for the local-
descriptor table.

limit: Defines the maximum range.

line: The fixed unit of information transfer between cache and main memory.

line size: The amount of information in a line, which is defined as a number
of bytes. Line size is one of the parameters that most strongly affects
cache performance as it represents the amount of data the cache must
retrieve during each cache line replacement (every cache miss).

linear address: In real mode, the physical address. The offset address is
added to the product of the segment register multiplied by sixteen to pro-
duce the linear address.

In protected mode, the offset address is added to the base address to
produce the linear address. If paging is disabled, the linear address is the
physical address. If paging is enabled, the linear address is translated
by the paging mechanism into the physical address.

local bus: The data path that connects peripherals directly to the CPU. The
local bus is designed to transmit 32-bit data at the speed of a PC’s pro-
cessor. Two local bus standards are VESA-VL and PCI.

locality: Address memory in the neighborhood of locations recently ac-
cessed by programs.

LRU: Least-Recently Used bit. Indicates which of the cache two-way sets
was more recently accessed.

M
math coprocessor: See FPU.

MBps: Megabytes Per Second.

Mbps: Megabits Per Second.

memory mapped: A type of memory addressing in which I/O devices can
be mapped into physical memory addresses. Even though more ad-
dresses must be decoded with this interface, memory-mapped devices
can be accessed using CPU instructions allowing for more efficient code.
Memory mapping also offers more flexibility in protection than I/O map-
ping through memory management since a device can be inaccessible/
fully accessible or visible but protected. Very few peripherals use
memory-mapped ports except for video cards.

Glossary

G-10

MMAC: Main Memory Access. Storing data in or retrieving data from main
memory.

modem: A data communications device that translates (MOdulates) com-
puter signals into tones and translates (DEModulates) tones back into
computer signals to transfer data between computers over telephone
lines.

monochrome: A video mode that uses only one color in varying intensities.

MP: Monitor Processor extension bit. CR0 bit 1.

multithreading: A software technique that allows an operating system or
application to split tasks into subtasks, or threads, for improved speed
and efficiency.

N

NC0: Noncacheable 0. Bit 0 in the configuration control register 0. When set,
this bit sets the first 64K bytes at each 1M-byte boundary as noncache-
able.

NC1: Noncacheable 1. Bit 1 in the configuration control register 0. When set,
this bit sets sets 640K bytes to 1M-byte memory region as noncache-
able.

NC (Terminal designator): No external Connection. Make none.

negated: Logically false, not true.

NMI: Nonmaskable Interrupt. A rising-edge-sensitive input that, when as-
serted, causes the processor to suspend execution of the current instruc-
tion stream and begin execution of an NMI service routine.

noncacheable memory: A memory system in which all shared memory
locations are considered noncacheable. Access to the shared memory
is never copied to the cache, and the cache never receives stale data.

nonvolatile memory: Memory in which the data content is maintained
whether the power supply is connected or not. ROM and EPROM are ex-
amples of nonvolatile memory.

NT: Nested Task flag. A flag that, while executing in protected mode, indi-
cates that the execution of the current task is nested within another task.

 Glossary

G-11 Glossary

O
OA: Offset Address. A memory address that is the result of an offset calcula-

tion. Base address, index address, scale factor, and displacement are
the components used, in various combinations, to calculate the offset ad-
dress.

OF: Overflow Flag. A flag that is set if the operation resulted in a carry or bor-
row into the sign bit of the result but did not result in a carry or borrow out
of the high-order bit. The overflow flag is also set if the operation resulted
in a carry or borrow out of the high-order bit but did not result in a carry
or borrow into the sign bit of the result.

opcode: The physical implementation of an instruction in machine-readable
code.

OS: Operating System. A master control program that supervises the func-
tions and components of a computer system.

P
P: Prefix. A bit in a prefix byte. Also, Present bit (gate or segment descriptor

bit 15).

paging: A memory management technique that provides direct access to
small portions of stored data within a large segment of virtual memory
space. Paging is useful in minimizing the amount of physical space re-
quired to service active routines.

parallel port: A communications port used mainly to send out data to be
printed. A parallel port moves data in bytes (8-bits wide) or words (16-bits
or 32-bits wide) depending on the application.

parity bit: The eighth bit or extra bit that is used to help detect errors.

PCD: Page-level Cache Disable bit. A bit located in test register 7. This bit
corresponds to the PCD bit of a page-table entry.

PCI: Peripheral Component Interconnect. A board-level local-bus imple-
mentation for high-end PC applications. PCI is a fully independent bus
that requires a PCI bridge to establish communication with the CPU bus.
PCI is fully independent from the CPU and the CPU timing, and PCI can
be used with non-X86 systems. PCI multiplexes addresses and data to
reduce the number of required pins. Each card is uniquely identified by
a special code that allows for autoconfiguration.

PCMCIA: Personal Computer Memory Card International Association. A pe-
ripheral bus standard that provides a way for the portable computer user
to expand the memory, storage, communication, and other capabilities
that are common to the desktop PC user. There are several types of
PCMCIA cards: DRAM, flash memory, hard-disk drives, LANs, and mo-
dems. PCMCIA cards can be plugged into the PCMCIA expansion slot
without opening the computer.

Glossary

G-12

PDBR: Page-Directory Base Register. A register located in control register 3
that contains the 20-bit base address of the page directory.

PE: Protected mode Enable bit. CR0 bit 0.

peripheral bus: See I/O bus.

peripherals: Devices such as printers, fax machines, modems, and so forth
that are external to the CPU.

peripheral interface: An essential interface of any PC that supports the
communication between the CPU and the peripherals.

PF: Parity Flag. A flag set when the low-order 8 bits of the operation result
contain an even number of ones. Otherwise the parity flag is cleared.

PFO: Page-Frame Offset. Part of the paging mechanism. The physical page
frame data is selected by the first 12 bits of the linear address.

PG: PaGing enable bit. CR0 bit 31.

PGA: Pin Grid Array. A package that consists of substrates to hermetically
enclose the IC and an interconnection scheme that presents male leads
extending from the bottom of the package.

physical address: The 32-bit linear address when paging is disabled.
When paging is enabled, the paging mechanism translates the linear ad-
dress into a physical address. The physical address appears on the pins
of the CPU.

pipelined addressing: A type of addressing that allows bus cycles to over-
lap, increasing the amount of time available for the memory or I/O device
to respond. The NA# input to the CPU controls address pipelining.

pipelining: A series of suboperation stages, like fetching, decoding, execu-
tion, and address translation. Pipelining results in a continuous execu-
tion rate of one instruction per clock cycle.

pixel: The smallest information building block of an on-screen image.
Screen resolution is usually expressed in the number of pixels making
up the width and height of a complete on-screen image.

PL: Privilege Level. Implements a protection scheme. The values for privi-
lege levels are 0 to 3. Level 0 is the most privileged and 3 the least privi-
leged.

PLL: Phase-Locked Loop. In the TI486SXL(C) microprocessor, a PLL im-
plements clock synchronization.

posted write: The process of buffering or storing address and data in a write
buffer. In a write-through cache, read cycles are accelerated but write
cycles are not. Through the use of a write buffer, write cycles can also
be accelerated.

power management: A feature of some CPUs that shuts down unused
parts of the computer to save power.

 Glossary

G-13 Glossary

PQFP: Plastic Quad Flat Package. A package that consists of a metal sub-
strate, IC, and interconnection scheme that presents leads extending
from the four sides of the plastic encapsulated package. The leads are
formed using a double break to create a planar foot on each lead that
supports the package body above the seating plane. The thermally en-
hanced package includes a metal plate or slug near the mounting sur-
face that enhances heat dissipation.

prefix: Bytes placed in front of an instruction to override segment defaults,
change operand/address-size attributes, assert LOCK#, and repeat
string instructions.

privilege level: In the protected mode, a designation that controls the use
of privileged instructions, I/O instructions, and access to segments and
segment descriptors.

protected mode: The microprocessor’s operating mode when the PE bit of
control register 0 is set. In protected mode, the enhanced memory man-
agement capabilities, which include segmentation and paging, are avail-
able. Code has one of four privilege levels, with some processor instruc-
tions restricted to the most-privileged code.

PTE: Page Table Entry. Selected from the page table by bits 21–12 of the
linear address. The base address of the desired page frame.

PTI: Page Table Index. A 32-bit master index to up to 1K individual page
frames.

PWT: Page-level cache Write Through. A bit in test register 7 that enables
or disables the page-level cache function. This register bit corresponds
to the PWT bit of a page-table entry.

Q
QFP: Quad Flat Package. A package that consists of a substrate, IC, and

interconnection scheme encapsulated in plastic that presents leads ex-
tending from the four sides of the package. The leads are formed, using
a double break, to create a planar foot on each lead that supports the
package body above the seating plane.

R
R: Opcode or register bit.

R/W: Read/Write or Readable/Writable bit. Segment descriptor bit 9.

real memory: Memory that actually exists in the PC, or memory that is not
borrowed from an external source.

real mode: The processing mode in which the microprocessor is backward
compatible with 8086/8088 microprocessors. No hardware protection is
provided for segment access or use, and there is no privileged code.
TI486SXL(C) powers up or resets to real mode.

Glossary

G-14

RF: Resume Flag. A flag used in conjunction with debug register break-
points. The resume flag is checked at instruction boundaries before
breakpoint exception processing. If set, any debug fault is ignored on the
next instruction.

RISC: Reduced Instruction Set Computer. A type of computer that executes
instructions in one clock cycle by limiting the number of instructions that
are available.

ROM: Read Only Memory. A permanent, unchangeable memory used in the
PC to accomplish system startup. ROM stores the BIOS programs need-
ed to perform diagnostics and instruct the computer in various opera-
tions. When using DOS, the contents of the ROM are placed in reserved
memory.

RPL: Requested Privilege Level field. Segment selector register bits 1–0.

S
scale factor: Scale Factor. A factor (1, 2, 4, or 8) by which the index address

is multiplied when the offset mechanism calculates the offset address.

SCSI: Small Computer System Interface. A type of peripheral interface that
offers hard disk data transfer rates of up to 10 MBps.

segmentation: A memory management technique that permits application-
specific segmentation to improve the efficiency of memory space utiliza-
tion.

serial port: A communication path based on a standard convention of trans-
mitting two-way asynchronous serial data. A serial port moves data one
bit at a time and can be half duplex (one direction at a time) or full duplex
(both directions simultaneously).

serialization: Conversion of byte-wide data as input to serial bits in a stream
as output.

set associative: A type of cache placement policy that has more than one
set of direct-mapped caches operating in parallel. Several block loca-
tions are allowed for each cache index. The block can be placed in and
retrieved from any set. This type of cache performs more efficiently than
a direct mapped cache, but needs a wider tag field and additional logic
to determine which set should receive the data.

SF: Scale Factor or Sign Flag. Set equal to the high-order bit of the operation
result (0 indicates positive, 1 indicates negative).

shadowing: A technique used to improve system performance and achieve
faster access by copying the contents of ROMs or EPROMs into DRAM.

s-i-b byte: A byte that includes the s, Index, and Base fields.

SIMM: Single In-Line Memory Module. A packaging technique for memory
modules.

 Glossary

G-15 Glossary

SM4: System Management access region 4. Sometimes called address re-
gion register 4. SMM memory space is defined by assigning address re-
gion 4 to SMM memory space.

SMAC: System-Management Memory Access. In normal mode, SMADS#
address strobes are generated instead of ADS# for system-manage-
ment memory accesses.

SMI: System Management Interrupt. An interrupt that causes the micropro-
cessor to enter the system management mode, which allows various
subsystems of the computer to be powered down under certain condi-
tions. The system-management interrupt has a higher priority than any
other interrupt, including NMI.

SMM: System Management Mode. A power management feature that al-
lows various subsystems of the computer to be powered down when not
in use to conserve power.

snooping: A method of maintaining cache consistency. The cache control-
ler monitors the bus lines to detect any shared locations that are written
to by another processor. When a common cache location is found, it is
invalidated, and cache consistency is maintained.

SS: Stack Segment. A register that contains segment selectors that index
into tables located in memory. These tables hold the base address for
each segment as well as other information related to memory addres-
sing.

SRAM: Static Random Access Memory. A high performance storage me-
dium that does not require refresh.

SUS: SUSpend. A bit in configuration control register 0 that enables or dis-
ables the SUSP# and SUSPA# pins, which control entry into the suspend
mode.

system bus: See I/O bus.

T
T: Opcode bit.

T1: The first clock of a nonpipelined bus cycle.

T1P: The first clock of a pipelined bus cycle.

T2: Subsequent clocks of a nonpipelined bus cycle. NA# has not been
sampled asserted.

T2I: Subsequent clocks of a pipelined bus cycle. NA# has been sampled as-
serted, but there is not yet an internal bus request pending.

T2P: Subsequent clocks of a pipelined bus cycle. NA# has been sampled as-
serted, and there is an internal bus request pending.

tag: A directory that records what data is currently being stored in a cache.

Glossary

G-16

TEP: Thermally Enhanced Plastic. A plastic package that includes a metal
plate or slug near the mounting surface to enhance heat dissipation.

text mode: A video mode that divides the screen into character positions.

TF: Trap enable Flag. A flag that, when set, causes a single-step interrupt
to occur after the next instruction completes execution. TF is cleared by
the single-step interrupt.

Th: A hold acknowledge state.

TI: Table Indicator bit. Segment selector register bit 2.

Ti: A bus Idle state.

TLB: Translation Look-Aside Buffer. An on-chip, four-way, set-associative,
32-entry page-table cache. Contains the most recently accessed pages,
which reduces the average time required to make virtual memory refer-
ences.

TR: Task register. A register that holds a 16-bit selector for the current task-
state segment (TSS) table. The TR is loaded and stored using the LTR
and STR instructions, respectively.

TR3 through TR7: Test registers 3 through 7.

transfer rate: The rate at which data is moved from one component to
another. Usually measured in megabits per second (Mbps) or mega-
bytes per second (MBps). Some examples follow.

Component Type Transfer Rate

System bus ISA
EISA
MCA

1 to 4 MBps
33 MBps
32 MBps

Local bus 32-bit VESA-VL
PCI

132 MBps
132 MBps

Hard disk drives IDE
SCSI

4 MBps
5 MBps

Networks Ethernet
Token ring

10 MBps
4 to 16 MBps

TS: Task Switched bit. CR0 bit 3.

 TSR: Task State Register. A register that is saved and restored using the
SVTS and RSTC instructions, respectively.

TSS: Task State Segment. A table to which the processor saves the current
CPU state during task switching before starting a new task.

type: Segment Type field. Gate or segment descriptor bits 11–8.

U
U/S: User/Supervisor. An attribute used in conjunction with the write/read at-

tribute to implement protection at the page level. When set (user), the
page is accessible at all privilege levels. When clear (supervisor), the
page is accessible only when CPL ≤ 2.

 Glossary

G-17 Glossary

V
V86: Virtual 8086. See virtual-8086 mode.

VESA: Video Equipment Standards Association VL-bus. A straight-forward
expansion of the 486 host bus, meaning that it uses the 486 data, ad-
dress, and control signals directly. A few more lines are added to allow
bus mastering and other functions.

VGA: Video Graphics Array. The most popular color graphics system for
IBM-compatible computers at the time of this writing.

virtual-8086 mode: The microprocessor operations when it handles seg-
ment loads as an 8086. The microprocessor switches to virtual-8086
mode when the virtual-8086 mode flag is set in protected mode.

virtual memory: Space temporarily borrowed from an external memory
source, such as hard disk, and used to simulate a large amount of
memory. Up to 64 terabytes of virtual memory can be addressed in 386-
and 486-based systems.

visible: Contents (data, address components, and current states) of regis-
ters and stored data that the programmer can access, trap, or retrieve.

VM: Virtual-8086 Mode flag.

volatile memory: A memory in which the data content is lost when the pow-
er supply is disconnected.

VRAM: Video Random Access Memories. Memories used by designers of
high-resolution graphics and imaging systems to enhance system per-
formance and display more colors at higher resolutions.

W
wait state: The number of clock cycles the CPU has to wait for other opera-

tions to complete before continuing with its operations.

way: Defines the organization of a cache. A cache with a way 1 and a way
2 is a 2-way cache.

WP1, WP2, WP3: Write Protected access regions 1 through 3 bits. These
bits, located in the configuration control register 1, define write protection
and cacheability for three regions of memory space. The starting ad-
dress and block size for each region is mapped in the address region reg-
isters 1 through 3.

WP: Write Protect bit. CR0 bit 16.

write back: An approach used to update the main memory. The CPU writes
data into the cache and sets a dirty bit indicating that a word has been
written into the cache but not into the main memory. The cache data is
written back into the main memory at a later time and the dirty bit is
cleared. Write-back accesses memory less than a write-through cache,
but its cache control logic is more complex.

Glossary

G-18

write protected: An attribute applied to segments to ensure that the re-
questor privilege level is sufficient to perform a write to that segment.

write-through cache: A type of cache used to update main memory. Data
is written to the main memory while it is written to cache, or immediately
afterwards. The main memory always contains valid data, and blocks in
cache can be overwritten without data loss. The hardware implementa-
tion remains relatively simple.

Z

ZF: Zero Flag. A flag that is set if the operation result is zero. Otherwise the
flag is cleared.

Index-1

Index

3.3-V operation 1-19
3.3-V/5-V operation 1-19

A
abort exceptions 2-45
absolute maximum ratings 5-4
ac characteristics. See timing
accessing

address space 2-9
application register set 2-10
configuration registers 2-9, 2-26
coprocessor I/O

TI486SXL 4-4
TI486SXLC 3-4

coprocessor I/O ports 2-8
data/I/O during SMI service routine 2-54
debug registers 2-31
directory-table entry 2-42
during protection 2-57
gate descriptors 2-59
global-descriptor-table register 2-19
I/O address space 2-9
I/O privilege required 2-58
local-descriptor-table register 2-19
main memory 2-26
main memory overlapping SMM 2-28 A-5
memory address space 2-37
numeric coprocessor I/O. See accessing copro-

cessor I/O
page-table entry 2-42
privilege requirements 2-57
SMM

defined space 2-28
memory 2-28
memory space 2-54

stack-pointer register 2-11
task register 2-23

accumulator
initial value 2-3 to 2-4

additional-data-segment-selector registers 2-12

address
I/0 space 2-9
memory space 2-37
offset mechanism 2-37
real mode memory 2-37
setting size 7-4

address bit-20 masking 2-54 C-3
TI486SXL 4-44
TI486SXLC 3-38

address bus description
TI486SXL 4-4
TI486SXLC 3-4

address spaces
coprocessor communication space 2-8
I/O address space 2-8
memory address space 2-8, 2-37
physical memory space 2-8, 2-39
ranges 2-8, 2-26

address-region registers 2-30
initial value 2-3 to 2-4

addressing
data registers 2-11
index and pointer registers 2-11
main memory

at the same address as SMM code A-9
modes 2-38
modes (memory) 2-38
paging mechanism 2-40
pointer and index registers 2-11
real mode 2-38
segment and selector 2-39
using nonpipelined bus cycles

TI486SXL 4-22
TI486SXLC 3-20

Index

Index-2

addressing (continued)
using pipelined bus cycles

TI486SXL 4-26
TI486SXLC 3-24

while in virtual 8086 mode 2-60

airflow measurement setup
for thermal characteristics 6-20

alignment-check enable 2-19
flag 2-15

altering SMM code limits
in system-management mode A-34

application register set 2-10
flag word 2-14
general-purpose registers 2-11

data 2-11
pointer and index registers 2-11
segment registers and selectors 2-12

instruction pointer 2-14
overview 2-10
pointer and index 2-11
segment registers 2-12
selector (segment) 2-12

auxiliary-carry flag 2-15

B
base register 2-11

base register
initial value 2-3 to 2-4

base-pointer register 2-11
initial value 2-3 to 2-4

based addressing modes 2-38

BIOS modifications B-1
differences of TI486xLC/E and TI486SXL/C B-2
power-on and hard reset B-3
protected-mode to real-mode switching B-3
soft reset B-4
turning on and off the internal cache B-4

bit A20M masking C-3

bit definitions
configuration control registers 0 and 1 2-27
control register 0 (CR0) 2-19
debug registers DR6 and DR7 2-32
directory and page table 2-42
error codes 2-48
flag register 2-14
gate descriptors 2-23
page table and directory 2-42
segment descriptors 2-22
test registers

TR3 to TR5 2-36
TR6 and TR7 2-34

block diagram
TI486SXL 1-10
TI486SXLC 1-6

block sizes
address-region registers 2-30

breakpoint address
setting 2-31

bus
address

TI486SXL 4-4
TI486SXLC 3-4

data
TI486SXL 4-6
TI486SXLC 3-6

nonpipelined states
TI486SXL 4-25
TI486SXLC 3-23

operation
TI486SXL 4-21
TI486SXLC 3-19

pipelined states
TI486SXL 4-30
TI486SXLC 3-28

state transitions
TI486SXL 4-32
TI486SXLC 3-30

states
TI486SXL 4-22, 4-26
TI486SXLC 3-20, 3-24

bus cycle
definition

TI486SXL 4-15
TI486SXLC 3-13

halt and shutdown
TI486SXL 4-38
TI486SXLC 3-33

initiating and maintaining nonpipelined
TI486SXL 4-25
TI486SXLC 3-23

initiating and maintaining pipelined
TI486SXL 4-30
TI486SXLC 3-28

interrupt acknowledge
TI486SXL 4-36
TI486SXLC 3-31

locked
TI486SXL 4-36
TI486SXLC 3-31

nonpipelined addressing
TI486SXL 4-22
TI486SXLC 3-20

pipelined addressing
TI486SXL 4-26
TI486SXLC 3-24

types
TI486SXL 4-15, 4-21
TI486SXLC 3-13, 3-19

using bus-size input
TI486SXL 4-33

 Index

Index-3

bus operation and functional timing
TI486SXL 4-21
TI486SXLC 3-19

byte enable outputs
description

TI486SXL 4-5, 4-13
TI486SXLC 3-5

generating A1–A0
TI486SXL 4-13

line definitions
TI486SXL 4-12

write duplication
TI486SXL 4-13

C
cache

example code
for turning off B-5
for turning on B-6

fills
TI486SXL 4-41
TI486SXLC 3-36

flush enabling 2-27
flushing C-4

TI486SXL 4-43
TI486SXLC 3-37

initialization 2-2
invalidation C-4
on chip 1-17
test registers 2-35

cacheability
disabling 2-28
enabling 2-28

calculation
effective address 2-37
offset address 2-37
protected-mode address 2-39
real-mode address 2-38

call gates 2-59

carry flag 2-15

clearing the VM bit A-42

clock
scaling sequence

TI486SXL 4-16
TI486SXLC 3-14

stopping the input
TI486SXL 4-52
TI486SXLC 3-47

synchronization
TI486SXL 4-19
TI486SXLC 3-17

clock-count summary
abbreviations 7-13
assumptions 7-13

clock-doubled mode 1-18
disabling 2-27
enabling 2-27
entering

TI486SXL 4-16
TI486SXLC 3-14

using software control
TI486SXL 4-15
TI486SXLC 3-13

code fetch
first after reset

TI486SXL 4-20
TI486SXLC 3-18

code-segment register 2-12
initial value 2-3 to 2-4

comparison
of SMM features A-4

configuration registers 2-26
I/O address

locations 2-9
space access 2-8

configuration-control registers 2-26
bit definitions 2-27 to 2-30

configuration-control registers
initial values 2-3 to 2-4

control registers 2-18
bit definitions 2-18
machine status word (MSW) 2-18
page-directory base register 2-18
page-fault linear address 2-18

coprocessor
busy

TI486SXL 4-5
TI486SXLC 3-5

communication space 2-8
error

TI486SXL 4-6
TI486SXLC 3-6

I/O access address lines
TI486SXL 4-4
TI486SXLC 3-4

interface
TI486SXL 4-48
TI486SXLC 3-42

count register 2-11

count register
initial value 2-3 to 2-4

CPU states related to system-management
mode 2-55

cross reference
terminal assignments

to 486SX, DX, DX4 (168-pin PGA) 6-12

Index

Index-4

D
d field

for instructions 7-6

data bus
description

TI486SXL 4-6
TI486SXLC 3-6

data registers 2-11
initial values 2-3 to 2-4

data-segment register 2-12
initial value 2-3 to 2-4

dc electrical characteristics 5-7, 5-12
3.3-volt devices 5-9

 TI486SXLC-V25 5-9
TI486SXL2-V50 5-11
TI486SXL-V40 5-10

3.3-volt/5-volt-tolerant devices 5-7
TI486SXL-G40 5-7
TI486SXL2-G50 5-8

5-volt devices
TI486SXL2-050 5-15
TI486SXL-040 5-14
TI486SXLC2-050 5-13
TI486SXLC-040 5-12

debug breakpoint conditions
setting 2-32

debug registers 2-31
initial value 2-3 to 2-4

debugging
SMI code using software A-36
testing SMM code A-35

decoupling 5-2

default
operand size

real versus protected modes 2-5
default segment override 7-4

defining
address region size

TI486SXL 2-30
TI486SXLC 2-29

nancacheable block size
TI486SXL 2-30
TI486SXLC 2-29

SMM memory region size
TI486SXL 2-30
TI486SXLC 2-29

definitions
bus cycle

TI486SXL 4-15
TI486SXLC 3-13

configuration-control register 0 bits 2-27
configuration-control register 1 bits 2-28
control register 0 bits 2-19
CR0-register bits 2-19
debug register DR6 and DR7 bits 2-32

definitions (continued)
directory and page table register bits 2-42
error code bits 2-48
flags 2-15
gate-descriptor register bits 2-23
page table and directory register bits 2-42
segment-descriptor register bits 2-22
test register bits for TR3–TR5 2-36
test register bits for TR6 and TR7 2-34

description
address bus

TI486SXL 4-4
TI486SXLC 3-4

bus cycle
TI486SXL 4-21
TI486SXLC 3-19

byte enable outputs
TI486SXL 4-5, 4-13
TI486SXLC 3-5

data bus
TI486SXL 4-6
TI486SXLC 3-6

descriptor type
setting 2-22

descriptor-table registers and descriptors 2-19
global descriptor table register 2-20
global-descriptor table 2-40
interrupt description table register 2-20
local-descriptor table 2-40

design conventions C-2
destination-index register 2-11

initial value 2-3 to 2-4
detection

of a TI microprocessor A-26
of SMM capable version A-28

differences between
TI486SXL(C) family and TI486SLC/DLC

family 1-16
TI486SXLC series and TI486SXL series 1-15

direct addressing mode 2-38
direction flag 2-15
directory and page table entry

bit definitions 2-42
directory table 2-41
disabling

(ignore) A20M pin 2-27, C-3
(ignore) SMI input 2-28
(masking) alignment check 2-19
cache 2-19
cacheability 2-28
clock doubled 2-27, B-2

using software
TI486SXL 4-15
TI486SXLC 3-13

FLUSH# pin 2-27
interrupts INTR 2-43
KEN# pin 2-27

 Index

Index-5

disabling (continued)
main memory access MMAC A-9
maskable interrupts INTR 2-15
paging 2-2
protected mode (8086-class CPU) 2-19
SMM pins 2-28
suspend pins 2-27
write protection 2-28

displacement addressing modes 2-38

DX support D-5

DX4 support D-6

E
EAX register

value after self test
TI486SXL 4-20
TI486SXLC 3-18

eee field
for instructions 7-11

effective address
calculation 2-37
setting length 2-22

EFLAGS register 2-14, 2-15

electrical connections
decoupling 5-2
ground 5-2
NC designated terminals 5-3
power 5-2
pullup/pulldown resistors 5-2
unused inputs 5-3

enabling
A20M pin 2-27, C-3
alignment check 2-19
cache 2-19
cache flush 2-27
cacheability 2-28
clock doubled 2-27, B-2

using software
TI486SXL 4-15
TI486SXLC 3-13

FLUSH# pin 2-27
interrupts INTR 2-43
KEN# pin 2-27
locked hardware signal 7-4
main memory access MMAC A-9
maskable interrupts 2-15
paging 2-19
protected mode 2-19
segment default override 7-4
SMI# pin

TI486SXL 2-30
TI486SXLC 2-29

enabling (continued)
SMM A-11

memory space 2-28
pins 2-28

suspend pins 2-27
system-management mode A-11
write protection 2-28

entering
clock-doubled mode

TI486SXL 4-16
TI486SXLC 3-14

float mode
TI486SXL 4-54
TI486SXLC 3-48

hold-acknowledge state
TI486SXL 4-45
TI486SXLC 3-39

virtual-8086 mode 2-61

error
coprocessor

TI486SXL 4-6
TI486SXLC 3-6

error codes 2-48
bit definitions 2-48
format 2-48

example
altering SMM code limits A-34
clearing VM bit

after saving registers A-42
code

for turning cache off B-5
for turning cache on B-6

debugging SMI code A-36
detection

of a TI microprocessor A-26
of SMM capable version A-28

enabling SMM A-11
enabling/disabling clock doubling

TI486SXL 4-15
TI486SXLC 3-13

format of data used by SVDC/RSDC A-32
loading SMM memory with SMI interrupt

handler A-22
SMI handler A-17

exceptions 2-44
abort 2-45
fault 2-44
invalid opcode 2-7
priorities 2-47
processing 2-43
real mode 2-47
trap 2-44

exceptions and interrupts 2-43

exceptions in real mode 2-47

execution pipeline 1-17

Index

Index-6

exiting
clock-doubled mode

TI486SXL 4-16
TI486SXLC 3-14

float mode
TI486SXL 4-54
TI486SXLC 3-48

hold acknowledge state
TI486SXL 4-45
TI486SXLC 3-39

SMI handler A-9
virtual-8086 mode 2-61

extra-segment-selector register 2-12

extra-segment registers
initial values 2-3 to 2-4

F
fault exceptions 2-44

field
address displacement format 7-2
base 7-9
d 7-6
eee 7-11
flags 7-12
immediate data format 7-2
index 7-10
mod 7-9
mod r/m 7-7
mod r/m format 7-2
opcode 7-5
opcode format 7-2
prefix bytes 7-4
prefix format 7-2
reg 7-6
s-i-b format 7-2
sreg2 7-10
sreg3 7-11
ss 7-10
w 7-5

fills, cache
TI486SXL 4-41
TI486SXLC 3-36

first code fetch, after reset
TI486SXL 4-20
TI486SXLC 3-18

flags
abbreviations used in instruction set list 7-12
actions based on instruction 7-12
alignment check 2-15
auxiliary carry 2-15, 7-12
carry 2-15, 7-12
definitions 2-15
direction 2-15, 7-12

flags (continued)
I/O privilege level 2-15
interrupt enable 2-15, 7-12
nested task 2-15
overflow 2-15, 7-12
parity 2-15, 7-12
resume 2-15
sign 2-15, 7-12
trap enable 2-15, 7-12
virtual 8086 mode 2-15
zero 2-15, 7-12
flag-word register 2-14
bit definitions 2-15
initial value 2-3 to 2-4

float
TI486SXL 4-54
TI486SXLC 3-48

float delay
TI486SXL 5-34
TI486SXLC 5-31

flow diagram
system management and suspend 2-56
system-management mode execution 2-51

FLUSH# pin
disabling 2-27
enabling 2-27

flushing
cache

TI486SXL 4-43
TI486SXLC 3-37

cache (internal) 2-27, C-4
instruction-decode queue 2-59
internal pipeline 2-2
translation look-aside buffer 2-42

format
error codes 2-48
for instructions 7-2

format of data used by SVDC/RSDC instructions, in
system-management mode A-32

functional block diagram
TI486SXL 1-10
TI486SXLC 1-6

functional timing
entering and exiting float

TI486SXL 4-54
TI486SXLC 3-48

fastest
nonpipelined read cycles

TI486SXL 4-22
TI486SXLC 3-20

pipelined read cycles
TI486SXL 4-27
TI486SXLC 3-25

fastest transition to pipelined address following
idle bus state
TI486SXL 4-30
TI486SXLC 3-28

 Index

Index-7

functional timing (continued)
HALT-initiated suspend mode

TI486SXL 4-52
TI486SXLC 3-46

I/O trap
TI486SXL 4-50
TI486SXLC 3-44

interrupt-acknowledge cycles
TI486SXL 4-37
TI486SXLC 3-32

masking A20 using A20M during burst of bus
cycles
TI486SXL 4-44
TI486SXLC 3-38

nonpipeliined, cache fills using KEN#,
TI486SXLC 3-36

nonpipelined
bus cycles using BS16#

TI486SXL 4-34
cache fills using KEN#

TI486SXL 4-41
cache fills using KEN# and BS16#

TI486SXL 4-42
halt cycle

TI486SXL 4-39
TI486SXLC 3-34

read and write cycles
TI486SXL 4-23
TI486SXLC 3-21

wait states
TI486SXL 4-24
TI486SXLC 3-22

pipelined
cache fills using KEN#

TI486SXL 4-43
TI486SXLC 3-37

shutdown cycle
TI486SXL 4-40
TI486SXLC 3-35

wait states
TI486SXL 4-28
TI486SXLC 3-26

requesting hold
from active nonpipelined bus

TI486SXL 4-47
TI486SXLC 3-41

from active pipelined bus
TI486SXL 4-48
TI486SXLC 3-42

from bus-idle state
TI486SXL 4-46
TI486SXLC 3-40

SMI# pin
TI486SXL 4-49
TI486SXLC 3-43

functional timing (continued)
stopping CLK2 during suspend mode

TI486SXL 4-53
TI486SXLC 3-47

SUSP#-initiated suspend mode
TI486SXL 4-51
TI486SXLC 3-45

transitioning to pipelined address during burst of
bus cycles
TI486SXL 4-31
TI486SXLC 3-29

functional timing and bus operation
TI486SXL 4-21
TI486SXLC 3-19

G
gate descriptors 2-22

bit definitions 2-23
gates 2-59

call 2-59
interrupt 2-59
task 2-59
trap 2-59

general cache invalidation C-4
general-purpose registers 2-11

data 2-11
index and pointer 2-11
pointer and index 2-11

base pointer 2-11
destination index 2-11
source index 2-11
stack pointer 2-11

generating A1–A0
as a function of byte enables

TI486SXL 4-13
global-descriptor table 2-40

register 2-20
granularity

setting limit 2-22
ground electrical connections 5-2

H
halt bus cycles

TI486SXL 4-38
TI486SXLC 3-33

halt and shutdown 2-57
HALT-initiated suspend mode

TI486SXL 4-51
TI486SXLC 3-46

Index

Index-8

hardware considerations
address bit A20M C-3
address strobes A-5
cache invalidation C-4
chipset READY#, A-5
connecting terminals C-2
modifications for 168-pin CPGA D-1
SMI# pin timing A-5
SMM pins A-5

header
SMM memory space 2-50

HLDA valid delay timing
TI486SXL 5-34
TI486SXLC 5-31

hold acknowledge signal states
TI486SXL 4-14
TI486SXLC 3-12

hold acknowledge state
entering

TI486SXL 4-45
TI486SXLC 3-39

exiting
TI486SXL 4-45
TI486SXLC 3-39

requesting from idle bus
TI486SXL 4-45
TI486SXLC 3-39

requesting from nonpipelined bus
TI486SXL 4-45
TI486SXLC 3-39

requesting from pipelined bus
TI486SXL 4-45
TI486SXLC 3-39

I
I/O

address space 2-8, 2-9
configuration register access 2-8

floating
TI486SXL 4-54
TI486SXLC 3-48

privilege level flag 2-15
privilege levels 2-58
trapping

TI486SXL 4-49
TI486SXLC 3-43

implementation
system-management mode A-5

index addressing modes 2-38
index field

for instructions 7-10
indirect addressing mode 2-38

initial value
accumulator 2-3 to 2-4
address-region registers 2-3 to 2-4
base register 2-3 to 2-4
base-pointer register 2-3 to 2-4
code-segment register 2-3 to 2-4
configuration-control registers 2-3 to 2-4
count register 2-3 to 2-4
data register 2-3 to 2-4
data-segment register 2-3 to 2-4
debug register 2-3 to 2-4
destination-index register 2-3 to 2-4
extra-segment registers 2-3 to 2-4
flag-word register 2-3 to 2-4
instruction-pointer register 2-3 to 2-4
interrupt-descriptor-table register 2-3 to 2-4
machine-status-word register 2-3 to 2-4
source-index register 2-3 to 2-4
stack-pointer register 2-3 to 2-4
stack-segment register 2-3 to 2-4

initialization 2-2
protected mode 2-59

initiating
protected mode 2-59
self test

TI486SXL 4-19
TI486SXLC 3-17

suspend mode
TI486SXL 4-50
TI486SXLC 3-44

initiating and maintaining nonpipelined bus cycles
TI486SXL 4-25
TI486SXLC 3-23

initiating and maintaining pipelined bus cycles
TI486SXL 4-30
TI486SXLC 3-28

initiating suspend mode
TI486SXL 4-51
TI486SXLC 3-46

input clock, stopping
TI486SXL 4-52
TI486SXLC 3-47

input/output signals
TI486SXL 4-2
TI486SXLC 3-2

instruction
locked hardware signal 7-4
override segment default 7-4
repeat following string 7-4

instruction decode queue 2-59

instruction format 7-2

 Index

Index-9

instruction set
clock counts 7-13
clock-count summary 7-13
encoding 7-13
flags 7-12
flags affected 7-13
instruction fields

d field 7-6
eee field 7-11
index field 7-10
mod and base fields 7-9
mod and r/m field 7-7
opcode field 7-5
prefixes 7-4
reg field 7-6
sreg2 field 7-10
sreg3 field 7-11
ss field 7-10
w field 7-5

listing of all 7-14 to 7-33
lock prefix 2-7
names of instructions 7-13
overview 2-6
system-management mode 2-52, A-13
types of operations 2-6

instruction summary
system-management mode A-12

instruction types 2-7, 7-2

instruction-pointer register 2-14
initial value 2-3 to 2-4

internal clock synchronization
TI486SXL 4-19
TI486SXLC 3-17

interrupt acknowledge bus cycles
TI486SXL 4-36
TI486SXLC 3-31

interrupt gates 2-59

interrupt handling
virtual-8086 mode 2-60

interrupt vectors 2-45
assignments 2-46
interrupt-descriptor table 2-45

interrupt-enable flag 2-15

interrupt-descriptor-table register
initial value 2-3 to 2-4

interrupts
descriptor table register 2-20
gate descriptors 2-23
maskable 2-43
non maskable 2-43
system management

TI486SXL 4-49
TI486SXLC 3-43

interrupts and exceptions 2-43
priorities 2-46

intersegment transfers 2-59

invalid-opcode exception 2-7

invalidation
cache C-4

K
KEN# pin

disabling 2-27
enabling 2-27

L
leaving virtual-8086 mode 2-61

list, instruction set 7-14 to 7-33

loading SMM memory from main memory
system-management mode A-22

local-descriptor table 2-40
register 2-20

lock hardware signal
setting 7-4

lock prefix 2-7, 7-4

locked bus cycles
TI486SXL 4-36
TI486SXLC 3-31

logic symbol
TI486SXL 1-11 to 1-12
TI486SXLC 1-7

M
machine-status-word register

control register 0 2-18
initial value 2-3 to 2-4

maskable interrupts 2-43
enabling 2-15

masking
See also disabling
alignment check 2-19
bit A20M address C-3
interrupts INTR 2-43

measurement points for ac characteris-
tics 5-16 to 5-19, 5-29 to 5-34

memory address space 2-8
offset mechanism 2-37
real-mode memory addressing 2-38
system-management mode 2-54

memory addressing 2-8, 2-37
during virtual-8086 mode 2-60

memory space header
SMM 2-50
system-management mode 2-52

mixed 3.3-V/5-V operation 1-19

Index

Index-10

mixed systems
3-V systems D-9
3-V/5-V systems D-10
using TI486SXL D-9

mod and base fields
for instructions 7-9

mod and r/m field
for instructions 7-7

mode
3.3-V operation 1-19
clock doubled 1-18
entering clock doubled

TI486SXL 4-16
TI486SXLC 3-14

halt 2-57
I/O float

TI486SXL 4-54
TI486SXLC 3-48

memory addressing 2-38
mixed 3.3-V/5-V operation 1-19
power management 1-18

TI486SXL 4-17
TI486SXLC 3-15

protected 2-12
protection 2-57
real 2-12
real versus protected 2-5
segment registers 2-12
shutdown 2-57
static operations 1-18
stopping the input clock

TI486SXL 4-52
TI486SXLC 3-47

suspend 1-18
TI486SXL 4-50, 4-51

See also suspend request
TI486SXLC 3-44, 3-46

See also suspend request
system management 1-18, 2-49

TI486SXL 4-49
TI486SXLC 3-43

virtual 8086 2-60

N
NC designated terminals 5-3

nested-task flag 2-15

non maskable interrupts 2-43

noncacheable boundaries, setting 2-27

nonpipelined
addressing bus cycles

TI486SXL 4-22
TI486SXLC 3-20

bus cycles using bus size input
TI486SXL 4-33

nonpipelined (continued)
bus states

TI486SXL 4-22
TI486SXLC 3-20

halt cycle
TI486SXL 4-38
TI486SXLC 3-33

read and write cycles
TI486SXL 4-23
TI486SXLC 3-21

wait states
TI486SXL 4-24
TI486SXLC 3-22

numeric coprocessor. See coprocessor

O
OEM modifications for 168-pin CPGA D-1

chipset support D-11

offset
address calculation 2-37
mechanism 2-37

on-chip cache 1-17

opcode field
for instructions 7-5

operands
default size

real versus protected modes 2-5
length and location 2-6
overview 2-6
setting length 2-22
setting size 7-4
types 2-6

operations
system-management mode 2-50

ordering information
part number components F-1

overflow flag 2-15

override
segment default 7-4

overview
system-management mode 1-18, A-2
TI486SXL series 1-9
TI486SXLC series 1-5

P
package dimensions

TI486SXL 132-pin PGA 6-14
TI486SXL 168-pin PGA 6-17
TI486SXL ceramic QFP 6-16
TI486SXL plastic QFP 6-15
TI486SXLC plastic QFP 6-13

page frame 2-41

page table 2-41

 Index

Index-11

page-directory base register
control register 3 2-18

page-fault linear address
control register 2 2-18

paging initialization 2-2

paging mechanism
directory table 2-41
page frame 2-41
page table 2-41

parameter definitions
for thermal characteristics 6-20

parity flag 2-15

part numbers offered
TI486DLC F-3
TI486SLC F-3
TI486SXL F-2
TI486SXLC F-2

physical memory space 2-8
real mode versus protected mode 2-5

pin assignments
TI486SXL

132-pin PGA 6-6
144-pin QFP 6-8
168-pin PGA 6-11
cross reference to 486SX, DX, DX4 6-12

TI486SXLC 6-3

pin functions
TI486SXL 4-4 to 4-12
TI486SXLC 3-4 to 3-11

pipeline
for execution 1-17
initialization 2-2

pipelined
addressing bus cycles

TI486SXL 4-26
TI486SXLC 3-24

bus cycles using bus size input
TI486SXL 4-34

bus states
TI486SXL 4-26
TI486SXLC 3-24

read and write cycles
TI486SXL 4-27
TI486SXLC 3-25

shutdown
TI486SXL 4-40
TI486SXLC 3-35

wait states
TI486SXL 4-28
TI486SXLC 3-26

pointer and index registers 2-11

power electrical connections 5-2

power management 1-18
features

system-management mode A-3
TI486SXL 4-17, 4-50
TI486SXLC 3-15, 3-44

power-on and hard reset
BIOS modifications B-3

prefix lock 2-7

prefixes
for instruction set 7-4

priorities
interrupts and exceptions 2-46

privilege levels 2-57
I/O 2-58
real versus protected mode 2-5
transfer 2-58

intersegment 2-59
task switches 2-59

privilege-level flag 2-14
I/O 2-15

processor initialization 2-2

protected mode 2-57
address calculation 2-39
initialization and transition 2-59
to real-mode switching

BIOS modifications B-3
protected mode versus real mode 2-5

protection
during virtual-8086 mode 2-60
gates 2-59
initialization 2-59

pullup/pulldown resistors 5-2

R
ranges

address space 2-8

read and write cycles
nonpipelined

TI486SXL 4-23
TI486SXLC 3-21

pipelined
TI486SXL 4-27
TI486SXLC 3-25

real mode
address calculation 2-38
exceptions 2-47
memory addressing 2-38

real mode versus protected mode 2-5

recommended operating conditions 5-5
3.3-volt devices 5-6
3.3-volt/5-volt-tolerant TI486SXL-G devices 5-5
5-volt devices 5-6

reducing the clock frequency
system-management mode A-3

Index

Index-12

reg field
for instructions 7-6

registers
accumulator 2-11

initial value 2-3 to 2-4
additional data segment 2-12
address region 2-29 to 2-30

initial value 2-3 to 2-4
base 2-11

initial value 2-3 to 2-4
base pointer 2-11

initial value 2-3 to 2-4
code segment 2-12

initial value 2-3 to 2-4
configuration control 2-26

initial value 2-3 to 2-4
count 2-11

initial value 2-3 to 2-4
data 2-11

initial value 2-3 to 2-4
data segment 2-12

initial value 2-3 to 2-4
debug 2-31

initial value 2-3 to 2-4
destination index 2-11

initial value 2-3 to 2-4
EFLAGS 2-14
extra segment 2-12

initial value 2-3 to 2-4
flag word 2-14

initial value 2-3 to 2-4
general purpose 2-11

data registers 2-11
pointer and index 2-11

instruction pointer 2-14
initial value 2-3 to 2-4

interrupt-descriptor table 2-20
initial value 2-3 to 2-4

machine-status word 2-14
initial value 2-3 to 2-4

segment selector 2-13
additional data 2-12
code 2-12
data 2-12
extra segment 2-12
selection rules 2-13
stack 2-12

source index 2-11
initial value 2-3 to 2-4

stack pointer 2-11
initial value 2-3 to 2-4

stack segment 2-12
initial value 2-3 to 2-4

register sets
application registers 2-7
overview 2-7
system registers 2-16

repeat string instruction 7-4
reset

processor initialization 2-2
signal states

TI486SXL 4-14
TI486SXLC 3-12

soft B-4
timing

TI486SXL 4-19
TI486SXLC 3-17

RESET setup and hold timing 5-29
restore

LDTR and descriptor
system-management mode A-13

register and descriptor
system-management mode A-13

TSR and descriptor
system-management mode A-13

resume
flag 2-15
from suspend

TI486SXL 4-17
TI486SXLC 3-15

normal mode
from system-management mode A-13

revision ID 2-3 to 2-4

S
save

LDTR and descriptor
system-management mode A-13

register and descriptor
system-management mode A-13

TSR and descriptor
system-management mode A-13

scaled addressing modes 2-38
scaling clock 3-14, 4-16
segment

descriptor register
bit definitions 2-22

descriptors
system and application 2-21

register selection rules 2-13
setting limit 2-22
size 2-5

segment default, override 7-4
segment registers, types 2-12
selector mechanism 2-39

 Index

Index-13

self test
clock-cycle count 2-2
EAX register after completion

TI486SXL 4-20
TI486SXLC 3-18

initiating
TI486SXL 4-19
TI486SXLC 3-17

sequence, clock scaling
TI486SXL 4-16
TI486SXLC 3-14

setting
address region size

TI486SXL 2-30
TI486SXLC 2-29

address size 7-4
breakpoint address 2-31
debug breakpoint conditions 2-32
descriptor type 2-22
granularity 2-22
length of effective addresses 2-22

setting (continued)
length of operands 2-22
lock hardware signal 7-4
noncacheable boundaries 2-27
operand size 7-4
segment limit 2-22

setup and hold timing
TI486SXL 5-32
TI486SXLC 5-29

shutdown, bus cycles
TI486SXL 4-38
TI486SXLC 3-33

shutdown and halt 2-57

sign flag 2-15

signal states
during reset and hold acknowledge

TI486SXL 4-14
TI486SXLC 3-12

during suspend mode
TI486SXL 4-18
TI486SXLC 3-16

signal summary
TI486SXL 4-3
TI486SXLC 3-3

size
operand default

real versus protected modes 2-5
segment 2-5
setting address 7-4
setting operand 7-4

SMI service routine execution 2-54

SMI handler
example

system-management mode A-17
exiting A-9

SMM
feature comparison A-4
pins

disabling 2-28
enabling 2-28

soft reset
BIOS modifications B-4

software
debugging SMI code A-36

software considerations
addressing SMM code A-9
exiting the SMI handler A-9
memory space header (SMM) A-7

software control for clock doubling
TI486SXL 4-15
TI486SXLC 3-13

software only debugging of SMM code A-35

source-index register 2-11
initial value 2-3 to 2-4

sreg2 field
for instructions 7-10

sreg3 field
for instructions 7-11

ss field
for instructions 7-10

stack-pointer register 2-11
initial value 2-3 to 2-4

stack-segment-selector register 2-12

stack-segment register
initial value 2-3 to 2-4

states
bus

TI486SXL 4-22, 4-26
TI486SXLC 3-20, 3-24

bus transitions
TI486SXL 4-32
TI486SXLC 3-30

hold acknowledge
TI486SXL 4-45
TI486SXLC 3-39

static operation 1-18

stopping the input clock
TI486SXL 4-52
TI486SXLC 3-47

SUSP-initiated suspend mode
TI486SXL 4-50
TI486SXLC 3-44

suspend acknowledge
TI486SXL 4-17
TI486SXLC 3-15

suspend mode 1-18
during system-management mode 2-55
HALT initiated

TI486SXL 4-51
TI486SXLC 3-46

Index

Index-14

suspend mode (continued)
initiating

TI486SXL 4-50, 4-51
TI486SXLC 3-44, 3-46

signal states during
TI486SXL 4-18
TI486SXLC 3-16

stopping the input clock
TI486SXL 4-52
TI486SXLC 3-47

SUSP initiated
TI486SXL 4-50
TI486SXLC 3-44

system-management mode A-3
TI486SXL

See suspend request
TI486SXLC

See suspend request

suspend pins
disabling 2-27
enabling 2-27

suspend request
TI486SXL 4-17
TI486SXLC 3-15

SX support D-2

symbol
TI486SXL 1-11 to 1-12
TI486SXLC 1-7

system management interrupt
TI486SXL 4-49
TI486SXLC 3-43

system register set 2-16
address-region registers 2-30

block sizes 2-30
cache-test registers 2-35
configuration registers 2-26

configuration-control register 0
bit definitions 2-27

configuration-control register 1
bit definitions 2-28

control registers
bit definitions 2-19
CR0, CR2, CR3 2-18

debug registers (DR7–0) 2-31
descriptor-table registers, descriptors 2-19
overview 2-16
system-address registers 2-19
task register 2-23
test registers 2-33

system-address registers 2-19

system-management mode
altering SMM code limits A-34
CPU states 2-55
detection

of a TI microprocessor A-26
of SMM capable version A-28

enabling A-11

system-management mode (continued)
feature comparison A-4
flow diagram 2-51
format of data used by SVDC/RSDC instruc-

tions A-32
implementation A-5

software considerations. See
instructions 2-52
instruction summary A-12

restore
LDTR and descriptor A-13
register and descriptor A-13
TSR and descriptor A-13

resume normal mode A-13
save

LDTR and descriptor A-13
register and descriptor A-13
TSR and descriptor A-13

introduction 2-49
loading SMM memory from main memory A-22
memory space 2-54
memory space header 2-51, A-8
operations 2-50
overview 1-18, A-2
power management features A-3

reducing the clock frequency A-3
suspend mode A-3

programming guide
altering SMM code limits A-34
clearing the VM bit A-42
detection

of SMM capable version A-28
of TI microprocessor A-26

enabling SMM A-11
format of data used by SVDC/RSDC instruc-

tions A-32
hardware considerations A-5

address strobes A-5
chipset READY#, A-6
SMI# pin timing A-5
SMM pins A-5

implementation A-2
instruction summary A-12
introduction A-2
loading SMM memory from main

memory A-22
overview A-2
reducing the clock frequency A-3
SMI handler example A-17
software considerations

addressing SMM code A-9
execution details A-9
exiting the SMI handler A-9
memory space header A-7 to A-8

suspend mode A-3
testing/debugging SMM code A-35

SMI handler example A-17
SMI service routine execution 2-54

 Index

Index-15

system-management mode (continued)
suspend mode 2-55
suspended-mode flow diagram 2-56
testing/debugging SMM code A-35
TI486SXL 4-49
TI486SXLC 3-43

T
task gates 2-59

descriptors 2-22

task register 2-23

task switches 2-59

terminal assignments
TI486SXL

132-pin PGA 6-6
144-pin QFP 6-8
168-pin PGA 6-11
168-pin cross reference to 486SX, DX,

DX4 6-12
TI486SXLC 6-3

terminal functions
TI486SXL 4-4 to 4-12
TI486SXLC 3-4 to 3-11

test registers 2-33

testing/debugging SMM code
system-management mode A-35

thermal characteristics 6-18
parameter definitions 6-20

thermal management
conclusions E-15
airflow measurement setup 6-20
current trends and theory of correction E-14
guidelines E-14
introduction

junction temperature E-3
power E-3
thermal impedance E-3

methodology for TI specifications E-11
modes of heat transfer E-4

airflow E-8
integrated circuit thermal resistance E-5
proximity of integrated circuit on board E-8
PWB conductivity E-7

thermal specifications of integrated circuit E-9
definition of Q E-10
measurement of ambient temperature E-10
system dependence of junction-to and case-to

ambient temperature E-9

timing
See also functional timing
ac characteristics 5-19

3.3-volt/5-volt-tolerant devices 5-20
TI486SXL-G40 5-20
TI486SXL2-G50 5-21

timing (continued)
ac characteristics (continued)

3.3-volt devices 5-22
TI486SXL2-V50 5-24
TI486SXL-V40 5-23
TI486SXLC-V25 5-22

5-volt devices 5-25
TI486SXL2-050 5-28
TI486SXL-040 5-27
TI486SXLC2-050 5-26
TI486SXLC-040 5-25

CLK2 measurement points 5-19
clock synchronization

TI486SXL 4-19
TI486SXLC 3-17

float delay
TI486SXL 5-34
TI486SXLC 5-31

functional
TI486SXL 4-21
TI486SXLC 3-19

HLDA valid delay timing
TI486SXL 5-34
TI486SXLC 5-31

input signal setup and hold
TI486SXL 5-32
TI486SXLC 5-29

measurement points 5-16 to 5-19, 5-29 to 5-34
TI486SXL 5-18
TI486SXLC 5-17

output signal valid delay
TI486SXL 5-33
TI486SXLC 5-30

reset
TI486SXL 4-19
TI486SXLC 3-17

RESET setup and hold timing 5-29
write cycle hold timing

TI486SXL 5-34
TI486SXLC 5-31

write cycle valid delay timing
TI486SXL 5-33
TI486SXLC 5-30

TLB-test registers 2-33

transfer privilege levels 2-58

transitions, bus states
TI486SXL 4-32
TI486SXLC 3-30

translation look-aside buffer 2-42

trap exceptions 2-44

trap gates 2-59

trap-enable flag 2-15

trapping I/O
TI486SXL 4-49
TI486SXLC 3-43

turning the internal cache on and off B-4

Index

Index-16

type of bus cycle
TI486SXL 4-15, 4-21
TI486SXLC 3-13, 3-19

U

unused inputs 5-3

V

valid delay timing
TI486SXL 5-33
TI486SXLC 5-30

vector assignments for interrupts 2-46

vectors
interrupt-descriptor table 2-45
interrupts 2-45

virtual-8086 mode 2-60
entering and leaving 2-61
flag 2-15
interrupt handling 2-60
memory addressing 2-60
protection 2-60

VL bus
cache snooping D-7
clock and clock skew D-7
ID settings D-8
support D-7

W
w field

for instructions 7-5
wait states

nonpipelined
TI486SXL 4-24
TI486SXLC 3-22

pipelined
TI486SXL 4-28
TI486SXLC 3-26

write and read cycles
nonpipelined

TI486SXL 4-23
TI486SXLC 3-21

pipelined
TI486SXL 4-27
TI486SXLC 3-25

write cycle
hold timing

TI486SXL 5-34
TI486SXLC 5-31

valid delay timing
TI486SXL 5-33
TI486SXLC 5-30

write duplication
as a function of byte enables TI486SXL 4-13

write protection
disabling 2-28
enabling 2-28

Z
zero flag 2-15

