

PART NUMBER INDEX

PART NUMBER	PAGE	PART NUMBER	PAGE
COM 1553A	35	CRT 5057	293
COM 1553B	51	CRT 7004	303
COM 1671	67	CRT 7220	309
COM 1863	83	CRT 8002	333
COM 2017	91	CRT 8002H	347
COM 2502	91	CRT 8021	355
COM 2601	99	CRT 9006	363
COM 2651	107	CRT 9007	369
COM 2661	119	CRT 9021	389
COM 5016/T	265	CRT 9028	401
COM 5025	131	CRT 9041	417
COM 5026/T	267	CRT 9053	433
COM 5036/T	265	CRT 9128	401
COM 5046/T	267	CRT 9153	433
COM 52C50	143	CRT 9212	449
COM 7210	145	CRT 97C11	455
COM 78808	157	FDC 765A	459
COM 8004	173	FDC 1791	477
COM 8017	179	FDC 1793	477
COM 8018	83	FDC 1795	477
COM 8046/T	273	FDC 1797	477
COM 8116/T	275	FDC 7265	459
COM 81C17	187	FDC $72 C 65$	475
COM 8126/T	277	FDC 72C66	475
COM 8136/T	275	FDC 9216/B	493
COM 8146/T	277	FDC 9229T/BT	497
COM 8156/T	285	FDC 92C36/B	505
COM 81C66/T	289	FDC 9238/B/BT	509
COM 8251A	189	FDC 9239/B/BT	513
COM 8502	179	FDC 92C49	521
COM 9004	205	FDC 9266	523
COM 9026	213	FDC 9267	539
COM 9032	229	FDC 9268	555
COM 9046	235	FDC 9791	557
COM 90C56	239	FDC 9793	557
COM 90C57	241	FDC 9795	557
COM 9064	243	FDC 9797	557
CRT 5027	293	HDC 1100-01	573
CRT 5037	293	HDC 1100-12	577
CRT 5047	301	HDC 1100-03	581

PART NUMBER	PAGE	PART NUMBER	PAGE
HDC 1100-04	585	KR 9600	665
HDC $1100-05$	589	KR 9601	665
HDC 7261	593	KR 9602	665
HDC 9223	595	MPU 800	691
HDC 9224	599	MPU 810A	715
HDC 9225	635	MPU 830	727
HDC 9226	647	MPU 831	727
HDC 9227	655	SR 5015	681
HYC 9058	251	SR 5017	685
HYC 9068	257	SR 5018	685
HYC 9078	261		

Data Communication Products

Part Number	Name	Description	$\begin{gathered} \text { Max } \\ \text { Baud Rate } \end{gathered}$	Power Supplies	Package	Page
COM 1553A	$\begin{aligned} & \text { MIL-STD- } \\ & \text { 1553A } \\ & \text { Controller } \end{aligned}$	MIL-STD-1553A Manchester Interface Controller	1 MB	+5	$\begin{aligned} & 40 \text { DIP' } \\ & 44 \text { SMT } \end{aligned}$	35-50
COM 1553B	$\begin{aligned} & \text { MIL-STD- } \\ & \text { 1553B } \\ & \text { Controller } \end{aligned}$	MIL-STD-1553B Manchester Interface Bus Controller/Remote Terminal	1 MB	$+5,-5,+12$	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	51-66
COM 1671	ASTRO	Asynchronous/Synchronous Transmitter/Receiver, Full Duplex, 5-8 data bit, 1 X or 32 X clock	1 MB	+5, -5, +12	40 DIP	67-82
COM 1863	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit, enhanced distortion margin	62.5 KB	+5	40 DIP	83-90
COM 2017	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit (use 8017 for new designs)	25 KB	+5, - 12	40 DIP	91-98
COM 2502	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, 1,2 stop bit (use 8502 for new designs)	25 KB	+5, - 12	40 DIP	91-98
COM 2601	USRT	Universal Synchronous Receiver/ Transmitter, STR, BSC, Bi-sync compatible	250 KB	+5,-12	40 DIP	99-106
COM 2651	USART/PCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Programmable Communication Interface, Internal Baud Rate Generator, 1X, 16X, 64X clock	1 MB	+5	$\begin{aligned} & 28 \text { DIP } / \\ & 28 \text { SMT } \end{aligned}$	107-118
$\begin{array}{r} \text { COM 2661-1 } \\ -2 \\ -3 \end{array}$	USART/EPCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Programmable Communication Interface, Internal Baud Rate Generator, 1X, 16X, 64X clock	1 MB	$+5$	$\begin{aligned} & 28 \text { DIP } \\ & 28 \text { SMT } \end{aligned}$	119-130
COM 5025	Multi-Protocol USYNRTT	SDLC, HDLC, ADCCP, Bi-sync, DDCMP compatible, automatic bit stuffing/ stripping, frame detection/generation, CRC generation/checking, sync detection	1.5 MB	+5, +12	40 DIP	131-142
COM 52C50	TWINAX	Interface Controller for IBM System/ 34, 36, 38 designated TWINAX or 5250 environment, CMOS	1 MB	+5	$\begin{aligned} & 28 \text { DIP } \\ & 28 \text { SMT } \end{aligned}$	143-144
COM 7210	GPIB Interface	Intelligent Interface Controller for GPIB (IEEE-488-1978)	8 MHz	+5	40 DIP	145-156
COM 78808	OCTAL UART	8 UART's, 8 Baud Rate Generators plus control logic and modem signals all on a single chip	19.2 KB	+5	$\begin{aligned} & 68 \text { CERDIP } \\ & \text { LCC } \end{aligned}$	157-172
COM 8004	32 Bit CRC Generator/ Checker	Companion device to COM 5025 Dual 32 bit CRC Generator/Checker	2.0 MB	+5	20 DIP	173-178
COM 8017	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,1^{1 / 2}, 2$ stop bit (compatible with COM 2017)	40 KB	+5	40 DIP	179-186
COM 8018	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit, enhanced distortion, margin	62.5 KB	+5	40 DIP	83.90
COM $81 \mathrm{Cl}{ }^{\prime}$	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex with built-in Baud Rate Generator, CMOS	19.5 KB	+5	$\begin{aligned} & 20 \text { DIPl } \\ & 28 \text { SMT } \end{aligned}$	187-188
COM 8251A	USART	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex, 5-8 data bit, 1, 11/2, 2 stop bit	$\begin{aligned} & 64 \mathrm{~KB} \text { (sync) } \\ & 9.6 \mathrm{~KB} \text { (async) } \end{aligned}$	+5	28 DIP	189-204
COM 8502	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, 1, 2 stop bit (compatible with COM 2502)	40 KB	+5	40 DIP	179-186
COM 9004	IBM 3270 Receiver/ Transmitter	IBM 3274 Compatible Receiver/ Transmitter for COAX type "A" protocol (use COM 9064 for new designs)	2.36 MB	$+5, \pm 12$	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \text { SMT } \end{aligned}$	205-212

Data Communication Products conr.

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Name	Description	$\begin{gathered} \text { Max } \\ \text { Baud Rate } \\ \hline \end{gathered}$	Power Supplies	Package	Page
COM 9026	LANC	Local Area Network Controller for token pass systems	2.5 MB	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \\ & \hline \end{aligned}$	213-228
COM 9032	LIANT	Local Area Network Transceiver	2.5 MB	+5	16 DIP	229-234
COM 9046	SSBSS	Single Side Band Speech Scrambler, Low Power, Full Duplex, uses 3.58 MHz TV burst crystal	NA	± 2.6	14 DIP	235-238
COM 90C56 ${ }^{\text {c2 }}$	ELANC	CMOS Enhanced Local Area Network Controller, with high throughput, network management and network diagnostic	5 MBps	+5	48 PLCC	239-240
COM 90C57 ${ }^{2}$	NBMU	CMOS Network Buffer Management Unit, to simplify interface of ELANC with dynamic RAM's	5 Mps	+5	$\begin{aligned} & 24 \text { DIP/ } \\ & 28 \text { SMT } \end{aligned}$	241-242
COM 9064	IBM 3270	IBM 3270 COAX type "A" controller +5 V only version of COM 9004	2.36 MB	+5	$\begin{aligned} & 40 \text { DIP } \\ & 44 \text { SMT } \end{aligned}$	243-250
HYC 9058	HIT 1	High Impedance Transceiver for Local Area Networks allows BUS topology with multi drop nodes	2.5 MBps	+5	20 SIP	251-256
HYC 9068	LAND	Local Area Network Driver with (93Ω) line matching impedance for ARCNET networks	2.5 MBps	+5	20 SIP	257-260
HYC 9078 ${ }^{(2)}$	HIT 2	High Impedance Transceiver for Local Area Networks for operation at 5 MHz	5 MBps	+5	20 SIP	261-262

${ }^{(2)}$ For future release

TIMING CONTRROLIERS

$\begin{aligned} & \text { Part } \\ & \text { Number } \\ & \hline \end{aligned}$	Description	Features	Display Format	$\begin{aligned} & \text { Max } \\ & \text { Clock } \end{aligned}$	Power Supplies	Package	Page
CRT 5027	Provides all of the timing and control for interlaced and noninterlaced CRT display		Programmable	4 MHz	+5, +12	40 DIP	293-300
CRI 5037		Balanced beam interlace	Programmable	4 MHz	+5, +12	40 DIP	293-300
CRT 5047		Fixed format	80 column 24 row	4MHZ	+5, +12	40 DIP	301-302
CRT 505\%		Line-lock	Programmable	4 MHz	+5, +12	40 DIP	293-300
$\begin{aligned} & \hline \text { CRT YR20A, } \\ & -1,-2 \end{aligned}$	Graphics Display Controller	Intelligent graphics display controller	1024×1024 Pixel	$\begin{aligned} & 6,7,8 \\ & \mathrm{MHz} \end{aligned}$	+5	40 DIP	309-332
$\begin{aligned} & \text { CRT 9007A, } \\ & \mathrm{B}, \mathrm{C} \end{aligned}$	CRT video processor and controller	Sequential or rowtable driven memory programmable DMA	Programmable	$\left\|\begin{array}{c} \mathrm{A}-3.7 \mathrm{MHz} \\ \mathrm{~B}-3.33 \mathrm{MHz} \\ \mathrm{C}-2.5 \mathrm{MHz} \end{array}\right\|$	+5	40 DIP	369-388
CRT 97Cl1 ${ }^{(2)}$	3rd generation CRT controller which allows manipulation of independent window areas on screen	Control of window size and position, window attributes, prog cursor, max of 127 windows, DRAM refresh	Up to 16 K pixels vertical and 1 KxN ($\mathrm{N}=$ = display memory width) in horizontal pixels	TBD	+5	68 PLCC	455-456

VIDEO TERMINAL LOGIC CONTROLLERS

Part Number	Description	Features	Display Format	Attributes	Max	Powrer Supply	Package	Page
$\begin{array}{\|l\|} \hline \text { CRT 90281 } \\ \text { 9128(1) } \end{array}$	Complete CRT video processor and controller. Display and attribute control for	Separate display memory eliminates	Mask programmable, 5×8 character font, 8×12 character cell.	Tagged attributes: reverse video, blank, blink, underline, intensity and wide/thin graphics.	14 MHz			401-416
$\begin{aligned} & \text { CRT 90531 } \\ & 9153(1) \end{aligned}$	graphics display, Two types of processor interface signals differentiate the two parts.	scroll, status row, on-board clock, and video shift register.	Mask programmable, 7×11 character font, 9×13 character cell.	Embedded or tagged attributes: reverse video, blank, blink, underline, intensity and wide/thin graphics.	18.7 MHz	+ 5	40 DIP	433-448

CHARACTER GENERATORS

Part Number	Description	Max Frequency	Power Supply	Package	Page
CRT 7004A ${ }^{(1,4)}$	$7 \times 11 \times 128$ character generator, latches, video shift register	20 MHz	+5	24 DIP	303-308
CRT $7004 \mathrm{~B}^{(1,4)}$		15 MHz			
CRT 7004C ${ }^{(1.4)}$		10 MHz			

ROW BUFFER

Part Number	Mescription	Max Row Length	Power Supply	Package	Page
CRT 9006-83	P bit wide serial cascadable single row buffer memory for CRT or printer	83 characters		135 characters	
CRT 9006-135	24 DIP	$363-368$			
CRT 9212	8 bit wide serial cascadable double row buffer memory for CRT or printer	135 characters	+5	28 DIP	$449-454$

VDAC" DISPLAY CONTROLLERS

Part Number	Description	Display	Attributes	Max Clock	Power Supplies	Package	Page
CRT 8002H	Provides complete display and attributes control for alphanumeric and graphic display. Consists of $7 \times 11 \times 128$ character generator, video shift register latches, graphics and attributes circuits.	7xll dot matrix, wide graphics, thin graphics, on-chip cursor	Reverse video blank blink underline strike-thru	25 MHz	+5	28 DIP	347-354
CRT 8002A ${ }^{(1.3)}$				20 MHz			333-346
CRT 8002B ${ }^{(1,3)}$				15 MHz			333-346
CRT 8002C ${ }^{(1,3)}$				10 MHz			333-346

VIDEO ATTIRIBUTES CONTROLLERS

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Description	Display	Attributes	$\begin{aligned} & \text { Max } \\ & \text { Clock } \end{aligned}$	Power Supply	Package	Page
CRT 8021	Provides attributes and graphics control for CRT video displays	Alphanumeric, wide graphics, thin graphics, on-chip cursor	Reverse video, blank, blink underline, strike-thru	20 MHz	+5	28 DIP	355-362
CRT 9021B	Provides attributes and graphics control for CRT video displays	Alphanumeric, wide graphics, thin graphics, on-chip cursor, double height, double width	Reverse video, blank, blink underline, intensity	28.5 MHz	+5	28 DIP	389-400
CRT 9041A, B, C	Provides attributes and graphics control for CRT video displays. Full VT100® and VT220® compatible	Alphanumeric, wide and thin graphics, 4 cursor modes, double height/width, 12 bit shift register	Reverse video, blink, blank, underline, 4 intensity levels	$\left\lvert\, \begin{gathered} \mathrm{A}-33 \mathrm{MHz} \\ \mathrm{~B}-30 \mathrm{MHz} \\ \mathrm{C}-28.5 \mathrm{MHz} \end{gathered}\right.$	+5	40 DIP	417-432

${ }^{(1)}$ May be custom mask programmed
${ }^{(3)}$ Also available as CRT8002A, B, C-001 Katakana CRT8002A, B, C-003, -0185×7 dot matrix
${ }^{(4)}$ Also available as CRTr $004 \mathrm{~A}, \mathrm{~B}, \mathrm{C}-003$ 5×7 dot matrix
VT100 and VT²O are registered trademarks of Digital Equipment Corp.
viniminulu Microprocessor Products

Part Number	Description	Size	Process	Speed	Power Supplies	Package	Page
MPU800	Microprocessor	8 Bit	CMOS	2.5 MHz	5V	40 DIP	691-714
MPU800-1	Microprocessor	8 Bit	CMOS	1.0 MHz	5V	40 DIP	691-714
MPU800-4	Microprocessor	8 Bit	CMOS	4.0 MHz	5V	40 DIP	691-714
MPU810A	RAM-I/O-Timer	8 Bit	CMOS	2.5 MHz	5V	40 DIP	715-726
MPU810A-1	RuAM-I/O-Timer	8 Bit	CMOS	1.0 MHz	5V	40 DIP	715-726
MPU810A-4	R.AM-I/O-Timer	8 Bit	CMOS	4.0 MHz	5V	40 DIP	715-726
MPU830	ROM-I/O	8 Bit	CMOS	2.5 MHz	5V	40 DIP	727-734
MPU830-1	ROM-I/O	8 Bit	CMOS	1.0 MHz	5V	40 DIP	727.734
MPU830-4	ROM-1/0	8 Bit	CMOS	4.0 MHz	5 V	40 DIP	727-734
MPU831	I/O	8 Bit	CMOS	2.5 MHz	5 V	40 DIP	727-734
MPU831	I/O	8 Bit	CMOS	1.0 MHz	5V	40 DIP	727-734
MPU831-4	1/0	8 Bit	CMOS	4.0 MHz	5 V	40 DIP	727-734

Part Number	Description	Features	Power Supplies	Package	Page
COM 5016	Dual Baud Rate Generator	On-chip oscillator or external frequency input (use 8116 for new designs)	$+5,+12$	18 DIP	265-266
COM 5016T	Dual Baud Rate Generator	External frequency input	+5, +12	18 DIP	265-266
COM 5026	Single Baud Rate Generator	On-chip oscillator or external frequency input (use 8126 for new designs)	+5, +12	14 DIP	267-272
COM 5026T	Single Baud Rate Generator	External frequency input	+5, +12	14 DIP	267-272
COM 5036	Dual Baud Rate Generator	COM 5016 with additional output of input frequency $\div 4$ (use 8136 or 81 C36 for new designs)	+5, +12	18 DIP	265-266
COM 5036T ${ }^{(1)}$	Dual Baud Rate Generator	COM $5016 T$ with additional output of input frequency $\div 4$	$+5,+12$	18 DIP	265-266
$\text { COM } 5046$	Single Baud Rate Generator	COM 5026 with additional output of input frequency $\div 4$ (use 8146 for new designs)	$+5,+12$	14 DIP	267-272
COM $5046 T^{(1)}$	Single Baud Rate Generator	COM 5026T with additional output of input frequency $\div 4$	+5, +12	14 DIP	267-272
$\text { COM } 8046$	Single Baud Rate Generator	32 baud rates; 1X, 16X, 32X clock outputs; single +5 volt supply	+5	16 DIP	273-274
$\text { COM } 80467$	Single Baud Rate Generator	COM 8046 with external frequency input only	$+5$	16 DIP	273-274
COM 8116	Dual Baud Rate Generator	Single + 5 volt version of COM 5016	+ 5	18 DIP	275-276
COM $8116 \mathrm{~T}^{(1)}$	Dual Baud Rate Generator	Single +5 volt version of COM 5016T	+5	18 DIP	275-276
COM 8126	Single Baud Rate Generator	Single +5 volt version of COM 5026	$+5$	14 DIP	277-284
COM 8126T ${ }^{(1)}$	Single Baud Rate Generator	Single +5 volt version of COM 5026T	+ 5	14 DIP	277-284
COM 8136	Dual Baud Rate Generator	Single +5 volt version of COM 5036	+ 5	18 DIP	275-276
COM 8136T"	Dual Baud Rate Generator	Single +5 volt version of COM 5036 T	+5	18 DIP	275-276
COM 8146	Single Baud Rate Generator	Single +5 volt version of COM 5046	+ 5	14 DIP	27\%-284
COM 8146T ${ }^{\text {¹ }}$	Single Baud Ruate Generator	Single + 5 volt version of COM 5046T	$+5$	14 DIP	277-284
$\text { COM } 8156$	Dual Baud Rate Generator	High-frequency clock input version of COM 8116 with additional outputs of input frequency $\div 2$ and $\div 8$	$+5$	18 DIP	285-288
COM 8156T ${ }^{(1)}$	Dual Baud Rate Generator	External clock input version of COM 8156	$+5$	18 DIP	285-288
COM 81C66 ${ }^{(2)}$	Timer/Clock Generator	CMOS User Programmable Clock and Timer	$+5$	16 DIP	289-290
COM 81C66T(${ }^{(2)}$	Timer/Clock Generator	External Frequency Input version of COM 8166T	$+5$	16 DIP	289-290

${ }^{(1)}$ May be custom mask programmed (2)For future release

Keyboard Encoder

Part Number	No. of Keys	Modes	Features	Suffix Standard Fonts Description		Power Supplies	Package	Page
KR-9600 XX	90	4	2 or N Key Rollover	$\begin{aligned} & \text {-PRO } \\ & \text {-STD } \end{aligned}$	Binary Sequential ASCII	+ 5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	665-678
$\text { KR-9601 } \mathrm{XX}^{(1)}$	90	4	2 or N Key Rollover, caps-1ock, -012 ${ }^{(1)}$ auto-repeat	$\begin{aligned} & \text {-STD } \\ & \text {-012 } \end{aligned}$	Binary Sequential ASCII	$+5$	$\begin{aligned} & 40 \text { DIP/ } \\ & 44 \text { SMT } \end{aligned}$	665-678
$\text { KR-9602 XX }{ }^{11}$	90	4	2 or N Key Rollover, caps-lock, auto-repeat, serial output	$\begin{aligned} & \text { STD } \\ & -005^{(2)} \end{aligned}$	Binary Sequential ASCII	$+5$	$\begin{aligned} & 28 \text { DIP/ } \\ & 28 \text { SMI } \end{aligned}$	$665-678$

${ }^{(1)}$ May be custom mask programmed (2)For future release

Part Number	Description	Sector/ Format	Density	Data Bus	Side/Head Select Output	Power Supplies	Package	Page
FDC765A/765-2	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+ 5	40 DIP	459-474
FDC7265	Micro Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	40 DIP	459-474
FDC72C65	CMOS Floppy Disk Controller/Formatter	Soft	Double	True	Yes	$+5$	$\begin{aligned} & 40 \text { DIP' } \\ & 44 \text { PLCC } \end{aligned}$	475-476
FDC72C66	CMOS Micro Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	$\begin{aligned} & 40 \text { DIP/ } \\ & 44 \text { PLCC } \end{aligned}$	475.476
FDC9266	Floppy Disk Controller/Formatter with data separator, and write precompensation generator	Soft	Double	True	Yes	+5	$\begin{aligned} & 40 \text { DIP' } \\ & 44 \text { PLCC } \end{aligned}$	523-538
FDC9267	Floppy Disk Controller/Formatter with high performance analog data separator and write precompensation generator	Soft	Double Quad	True	Yes	$+5$	$\begin{aligned} & 40 \text { DIPl } \\ & 44 \text { PLCC } \end{aligned}$	539-554
FDC9268	Enhanced Floppy Disk Controller/ Formatter with Data Separator and Write Precompensation Generator	Soft	Double Quad	True	Yes	+5	$\begin{aligned} & 40 \text { DIP/ } \\ & 44 \text { PLCC } \end{aligned}$	555-556
FDC9216/B	Floppy Disk Data Separator	Soft/Hard	Double	NA	NA	+ 5	8 DIP	493-496
FDC9229T/BT	Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double	NA.	N.A.	+5	$\begin{aligned} & 20 \text { DIP/' } \\ & 28 \text { PLCC } \end{aligned}$	497-504
FDC92C36/B	Enharced CMOS Floppy Disk Data Separator	Soft/Hard	Double Quad	NA	NA	$+5$	8 DIP	505-508
FDC9238/B/BT/T	Enhanced CMOS Floppy Disk Data Separator and Clock Generator	Soft/Hard	Double Quad	NA	NA	+ 5	14 DIP	509-512
FDC9239B/BT/T	Enhanced CMOS Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double Quad	NA	NA	+5	$\begin{aligned} & 20 \text { DIP/ } \\ & 28 \text { PLCC } \end{aligned}$	513-520
FDC92C49	Analog CMOS Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double Quad	NA.	NA.	+ 5	$\begin{aligned} & 24 \text { DIPI } \\ & 28 \text { PLCC } \end{aligned}$	521-522
FDC1791	Floppy Disk Controller/Formatter	Soft	Double	Inverted	No	+5, +12	40 DIP	477-492
FDC1793	Floppy Disk Controller/Formatter	Soft	Double	True	No	+5, + 12	40 DIP	477.492
FDC1795	Floppy Disk Controller/Formatter	Soit	Double	Inverted	Yes	+5, +12	40 DIP	477.492
FDC1797	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5. +12	40 DIP	477.492
FDC9791	Floppy Disk Controller/Formatter	Soft	Double	Inverted	No	+ 5	40 DIP	557-572
FDC9793	Floppy Disk Controller/Formatter	Soft	Double	True	No	+ 5	40 DIP	557-572
FDC9795	Floppy Disk Controller/Formatter	Soft	Double	Inverted	Yes	+5	40 DIP	557-572
FDC9797	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	40 DIP	557-572
HDC1100-XX	Hard Disk Controller	Soft	Double	True	NA	+5	20 DIP	573-592
HDCY261	Hard Disk Controller (ST506/SMD)	Soft/Hard	Double	True	Yes	+ 5	40 DIP	593-594
HDC9223	Analog Data Separator Support Circuit	Soft	Double	NA	NA.	$+12$	14 DIP	595-598
HDC9224	Hard/Floppy Disk Controller Up to 4 drives with tape back-up	$\begin{array}{\|c\|} \hline \text { Soft } \\ (\mathrm{ST}-506) \\ \hline \end{array}$	Double	True	Yes	+5	$\begin{aligned} & 40 \mathrm{DIP} \\ & 44 \mathrm{PLCC} \\ & \hline \end{aligned}$	599-634
HDC9225	Disk Buffer Management Unit	ST-506	Double	True	NA	$+5$	48 DIP	635-646
HDC9226	Hard Disk Data Separator	ST-506	Double	NA	NA	+ 5	$\begin{aligned} & 24 \text { DIP/ } \\ & 28 \text { PLCC } \end{aligned}$	647-654
HDC922T	High Performance Hard Disk And Floppy Disk Data Separators	$\begin{gathered} \text { Soft } \\ \text { (ST-506) } \end{gathered}$	Double Quad	NA	NA	+5	28 DIP	655-662

Shift Register

Part Number	Description	Feature	Max Clock Freq.	Power Supply	Package	Page
SR 5015-80, 81, 133	Quad Static Shift Register Mask Programmable Length	Load, Recirculate, Shift Controls	1 MHz	+5	16 DIP	681-684
SR 5017	Quad 133 Bit	Shift Left/Shift Right, Recirculate Controls	1 MHz	+ 5	16 DIP	685-688
SR 5018	Quad 81 Bit					

Description	SMC Part \＃	AMI	AMD	Fairchild	General Instrument	Harris	Intel
UART（11⁄2 SB）＊＊	COM2017	S1883＊	－	－	AY 5－1013A	－	－
UART（1， 2 SB）＊＊	COM2502	－	－	－	AY 5－1013	－	－
UART（n－Channel）＊＊	COM8017	S6850＊	－	F6850＊	AY 3－1015	HM6402＊	－
UART（n－Channel）＊＊	COM8502	－	－	－	AY 3－1015	HM6403＊	－
UART（n－Channel）＊	COM1863	S1602＊	－	－	－	－	－
USRT	COM2601	S2350＊	－	－	－	－	－
ASTRO	COM1671	－	－	－	－	－	－
PCl	COM2651	－	－	－	－	－	－
EPCI	COM2661	－	－	－	AY2661	－	－
USART	COM8251A	－	8251	－	－	－	8251A
Multi－Protocc USYNRT	COM5025	S6852＊	－	$\begin{aligned} & \text { F3846* } \\ & \text { F3856* } \end{aligned}$	－	－	－
IEEE－488	：COM7210	－	－	$\begin{aligned} & \text { F68488* } \\ & \text { 96LS488* } \end{aligned}$	－	－	8291／92＊
COAX I／F Circuit	COM9004 COM9064	－	－	－	－	－	－
LAN Controller	COM9026	－	－	－	－	－	－
Dual Baud Rate Gen．	COM5016／36 COM8116／36	－	－	－	AY5－8116／36	－	－
Single Baud Rate Gen．	COM5026／46 COM8126／46	－	－	F4702＊	－	$\begin{aligned} & \text { HD4702* } \\ & \text { HD6405* } \end{aligned}$	－
90 Key KB Encoder	KR9600／0102	－	－	－	AY 5－3600＊	－	－
CRT Controller	CRT5037	－	－	－	－	－	8275
Character Generator	CRT7004	S8564＊	－	－	－	－	－
Character Generator／ Display Controller	CRT8002	－	－	－	－	－	－
Graphics Controller	$\begin{aligned} & \text { CRT7220/ } \\ & \text { CRTI220A } \end{aligned}$	二	二	二	－	－	82720
Video Processor and Controller	CRT9007	－	－	－	－	－	－
Video Attributes Controller	CRT9041	－	－	－	－	－	－
Video Terminal Logic Controller	CRT9028 9128 CRT9053／9153	－	－	－	－	－	－
Shift Register	\％SR5015	S2182／3／5	－	－	－	－	－
CMOS Microprocessor	MPU800	－	－	－	－	－	－
CMOS RAM－I／O－Timer	MPU810A	－	－	－	－	－	－
CMOS ROM－I／O	MPU830	－	－	－	－	－	－
CMOS Input／Output	I．MPU831	－	－	－	－	－	－
Octal UART	COM78808	－	－	－	－	－	－

[^0]
REFERENCE GUIDE

Motorola	National	NEC	Signetics	Solid State Scientific	DEC	Texas Instruments	Western Digital
－	MM5303＊	－	－	－	－	TMS6011	TR1602
－	－	－	$2536 *$	－	－	－	TR1402
MC6850＊	NSC858＊	－	－	SCR1854＊	－	－	－
－	－	－	－	－	－	－	TR1983＊
－	－	－	－	－	－	－	TR1863
－	－	－	－	－	－	－	－
－	INS1671	－	－	－	－	－	UC1671
－	INS2651	－	2651	－	－	－	－－
MC2661＊	－	－	2661	－	－	－	－
－	INS8251	μ PD8251A	－	－	－	－	TR1983＊
2652＊	6852＊	－	2652	SND5025	－	－	SD1933＊
MC6BB488＊	－	μ PD7210	－	－	－	TMS9914＊	WD9914＊
－	DP8340／41＊	－	－	－	－	－	－
－	－	－	－	－	－	－	WD2840＊
－	－	－	－	－	－	－	BR1941 BR1943／4
MC14411＊	MM307＊	－	－	－	－	－	－
－	MM5740＊	－	－	－	－	TMS5001	－
MC6845＊	DP8350＊	－	－	$\begin{aligned} & \text { SND5027 } \\ & \text { SND5037 } \end{aligned}$	－	TMS9927	－
$\begin{aligned} & \text { MCM66700* } \\ & \text { MC6570 } \end{aligned}$	DM8678＊	－	2609	－	－	－	－
－	－	－	－	SND8002	－	－	－
二	二	$\begin{aligned} & \mu \text { PD7220 } \\ & \mu \mathrm{PD} 7220 \mathrm{~A} \end{aligned}$	二	二	二	二	二
－	－	－	SCN2674＊	－	－	－	－
－	－	－	SCN2675＊	－	－	－	－
－	NS455＊	－	－	－	－	－	－
－	5024＊	－	2532＊	－	－	$\begin{aligned} & \text { TMS3113* } \\ & \text { TMS31144* } \end{aligned}$	－
－	NSC800	－	－	－	－	－	－
－	NSC810A	－	－	－	－	－	－
－	NSC830	－	－	－	－	－	－
－	NSC831	－	－	－	－	－	－
－	－	－	－	－	78808	－	－

FLOPPY DISK/HARD DISK

Description	SMC Part \#	Fujitsu	NEC	Western Digital	Intel	Siemens	Rockwell
Floppy Disk Controller	FDC1791-02	MB8876	-	FD1791-02	-	SAB-1791	-
Floppy Disk Controller	FDC1792-02	-	-	FD1792-02	-	-	-
Floppy Disk Controller	FDC1793-02	M8877	-	FD1793-02	-	SAB-1793	-
Floppy Disk Controller	FDC1794-02	-	-	FD1794-02	-	-	-
Floppy Disk Controller	FDC1795-02	-	-	FD1795-02	-	SAB-1795	-
Floppy Disk Controller	FDC1797-02	-	-	FD1797-02	-	SAB-1797	-
Floppy Disk Controller	FDC9791	MB8876*	-	FD1791-02*	-	SAB-1791*	-
Floppy Disk Controller	FDC9793	M8877*	-	FD1793-02*	-	SAB-1793*	-
Floppy Disk Controller	FDC9795	-	-	FD1795-02*	-	SAB-1795*	-
Floppy Disk Controller	FDC9797	-	-	FD1797-02*	-	SAB-1797*	-
Floppy Disk Controller	FDC765A	-	μ PD765A	-	$8272 A$	-	$765 A$
Microfloppy Disk Controller	FDC7265	-	μ PD7265	-	-	-	-
Floppy Disk Controller	FDC765A-2	-	μ PD765A-2	-	-	-	-
Floppy Disk Controller	FDC72C65	-	μ PD72065C	-	-	-	-
Microfloppy Disk Controller	FDC72C66	-	μ PD72066C	-	-	-	
Floppy Disk Data Separator	FDC9216	-	-	FD9216	-	-	-
Floppy Disk Data Separator	FDC92C36	-	-	FD92C32	-	-	-
Hard Disk Controller	FDC7261A	-	μ PD7261A	-	-	-	-
Hard Disk Controller	HDC1100-XX	-	-	WD1100-X	-	-	-
Universal Disk Controller	HDC9224	-	μ PD7260**	-	-	-	-

[^1]
Innovation in Microelectronic Technology is the Key to Growth at Standard Microsystems.

Since its inception, Standard Microsystems has been a leader in creating new technology for metal oxide semiconductor large scale integrated (MOS/LSI) and very large scale integrated (MOS/VLSI) circuits.
Standard Microsystems' COPLAMOS® silicon gate n-channel process, licensed to over 15 prominent semiconductor companies, is the defacto standard for high speed, high density integrated circuits.
COPLAMOS® utilizes a self-aligned, field-doped, locally oxidized structure to eliminate parasitic currents and shunt capacitance, allowing the tight packing of circuitry essential for VLSI, yet with performance rivaling that of bipolar technologies.
In addition, on-chip generation of substrate bias, also pioneered by Standard Microsystems, when added to the COPLAMOS ${ }^{\circledR}$ technology, results in the ability to design dense, high-speed, low-power n-channel MOS integrated circuits through the use of one external power supply voltage.
Another Standard Microsystems' innovation is the CLASP® process. CLASP ${ }^{\circledR}$ provides a fast turnaround, easily programmable semi-custom LSI technology through the use of ion implantation to define either an active or passive device in the matrix of a memory or logic array. This step is accomplished after all wafer manufacturing steps are performed including metalization and final passivation layer formation. Thus, the wafer can be tested and stored until customer needs dictate the application, a huge saving in turnaround time and inventory costs.
These innovations in both process and circuit technology have received widespread industry recognition. In fact, many of the world's most prominent semiconductor companies have been granted patent and patent/technology licenses covering various aspects of these technologies. The companies include Texas Instruments, IBM, General Motors, ITT, Western Electric, Mostek, Hitachi, Fujitsu, National Semiconductor, Mitsubishi, NEC, AT\&T, Data General, and Oki Electric, among others.
Over the past few years, scientists and engineers at Standard Microsystems have been developing a technology to significantly reduce the sheet resistivity of the gate material used in MOS, dramatically decreasing internal time constants in MOS devices.

This technology replaces the polycrystalline silicon normally used in n-channel MOS devices with an alternate material, titanium disilicide. This has enabled Standard Microsystems to become the first semiconductor manufacturer to market and sell MOSNLSI circuits which employ a metal silicide to replace the conventional doped polycrystalline silicon layer.
Standard Microsystems is continuing its technological leadership with the introduction of new products utilizing advanced low power n-well and p-well CMOS processes.

We've Established a Position as the Industry Leader in Microprocessor Peripheral Products with a Steady String of Industry "Firsts".

Innovation at Standard Microsystems extends far beyond new processes. Standard Microsystems has established a position as the industry leader in microprocessor peripheral products with a steady string of industry "firsts".
Standard Microsystems has continually recognized the need for communication controllers to handle the latest data communication protocols. As a result, Standard Microsystems has introduced many new products in the area of data communications. Among these are the COM2601, the first synchronous receiver/ transmitter for bi-sync protocols, and the COM5025, the first multiprotocol receiver/transmitter for all standard bit and byte oriented synchronous protocols, including SDLC, HDLC, ADCCP, bi-sync, and DDCMP.
Recognizing the office automation requirement for distributed processing via local area networks, SMC was the first to sell a monolithic VLSI circuit for Local Area Network Control, the industry standard COM9026, a complete controller for token-passing LAN systems. Other areas pioneered by SMC, with the introduction of unique monolithic controllers, include two important IBM families of computers with large installed bases and very high growth rate. The COM9064 is the first single controller for the IBM 3270 Coax Type " A ", protocol, while the COM52C50 is the

first and only single chip controller for the IBM System/3x that is commercially available in the market.
SMC also has a first in the area of military standards with the COM1553B controller. This device integrates all the functions necessary to implement the MIL-STD1553B communication protocol adopted as a standard by the three branches of the military in the U.S.
These data communications firsts offer designers cost effective solutions to the problems of connecting small computers to each other and to Mainframes.
In another area, CRT display systems have traditionally required a great deal of support circuitry for the complex timing, refresh and control functions.
This need led the engineers at Standard Microsystems to develop the CRT5027 Video Timer and Controller (VTAC ${ }^{\circledR}$), the first CRT controller to provide all of these functions on a single chip. The display, graphics and attributes control functions were then all combined for the first time in the CRT8002 Video Display Attributes Controller (VDAC ${ }^{\circledR}$).
Another major achievement has been the development of the "next generation" Video Processor And Controller (VPAC®), the CRT9007. Besides replacing up to 80 SSI and MSI TTL devices, the VPAC ${ }^{\circledR}$ is the first CRT controller to provide a hardware solution to many of the software problems of CRT Video Controller design. The CRT9007 is the basis of a complete high performance, low cost, CRT control family, which includes single and double row buffers, and a variety of Video Attribute Controllers utilizing the COPLAMOS ${ }^{\circledR}$ technology to run from 20 MHz to 33 MHz . The various elements of the VPAC ${ }^{\circledR}$ family can be selected to provide the optimal video control solution from low to high end systems.
Most recently, the CRT9028 VTLC and CRT9053 EVTLC have integrated the entire video and attribute control functions, as well as the character generator, all on one VLSI circuit. A complete terminal can be built using these devices with just the inclusion of a RAM and microprocessor.
Standard Microsystems has spearheaded many developments in the rotating memory area as well. Extracting the actual stored data and clock signals from the distorted and jittery signal provided by a floppy disk drive has historically required not only a large number of analog components, but finicky production line adjustments. Both of these problems are solved by SMC products. The FDC9216 Floppy Disk Data Separator provides a revolutionary single chip solution to the data separation problem in a single 8 pin mini-dip package. Utilizing both long-term and short-term timing correctors, the FDC9216 requires absolutely no external components or adjustments. The FDC9229 Floppy Disk Interface Circuit provides, in addition to the digital data separator, a clock generator, precom-

pensation generator, and head load timer. The new FDC9236 and FDC9239 provide even higher resolution data acquisition with the additional benefit of low power CMOS technology. The FDC9236 and FDC9239 are pin for pin replacements for the FDC9216 and FDC9229. SMC's FDC9238 offers high resolution, CMOS technology, and FDC765 compatibility, all in a 14 pin package.
Along with these data separators, Standard Microsystems offers a broad line of floppy disk controllers, including the FDC9266, FDC9267, and FDC9268, which combine the industry standard FDC765A Floppy Disk Controller with a choice of SMC Data Separator/Precompensation Generators, all on one chip. The FDC9266, FDC9267, and FDC9268 provide the highest level of integration in floppy disk control circuits.
The HDC9224 Universal Disk Controller is the first IC to control not only hard disks, but also floppy disks and the tape drives used to back up the disks, as well. In addition, it offers user transparent error detection and correction for up to four 16 head drives.
Hard disk drives suffer from the same signal distortion and jitter as floppy disk drives. SMC provides a choice of Hard Disk Data Separators to solve this problem. The HDC9226 enhances the HDC9224 by providing hard disk data separation with a soft error rate as low or lower than that of the drive itself. The HDC9227 Dual Data Separator includes both a Hard Disk Data Separator and a high resolution Floppy Disk Data Separator on a single chip. Designed for use with either the HDC9226 or HDC9227, the HDC9223 Analog Data Separator Support chip includes all the active analog circuit components needed to form a phase locked loop for performing hard disk data separation.
The HDC9225, when used with the HDC9224, greatly reduces the total number of IC's required by a hard disk control system, while permitting low cost RAMs to be used in a dual-ported configuration to improve system performance.
Achievements like these help keep Standard Microsystems' custom and standard products in the forefront of technology, with increased speeds and densities and a lower cost per function.

Improvements in Processing and Manufacturing Keep Pace with Advances in Semiconductors.

With the phenomenal growth of the electronics industry, innovation is, of course, highly desirable. But, if the products are to perform as designed, they also have to be reliable.
That's why at Standard Microsystems we take every means to insure the utmost quality and dependability. Consequently, "state-of-the-art" applies not only to our products, but to the way we manufacture them.
In wafer fabrication, the latest equipment and techniques are employed. In addition to conventional processing equipment, we use ion implantation technology extensively. We also use plasma reactors for much of our etching and stripping operations to maintain tight tolerances on process parameters. Perkin Elmer scanning projection printers and TRE mask steppers assure that the critical photolithographic requirements of the latest small geometry processes are met.
Standard Microsystems' commitment to excellence is further demonstrated in the use of the latest Fairchild, Megatest and Genrad testers. Our full service capability lets us make full use of the technologies we develop. We can produce any quantity of semiconductors customers may require. What's more, we can provide our customers with the fast delivery times that they require in today's increasingly competițive environment.

Standard Microsystems' Custom Capability.

Custom MOS. A Small Revolution with a Large Impact.

Remarkable advances in semiconductor technology, combined with the availability of quality, low-cost electronics, continue to open new markets for products incorporating micro-electronic components.

Today, metal-oxide semiconductor/large scale integrated (MOS/LSI) circuits are integral components in computers and computer peripherals, automobiles, televisions, electrical appliances, data communications, bank terminals, telephones and a host of other significant applications.

With further applications for large scale integrated and very large scale integrated (VLSI) circuits being discovered every day, one thing is certain. They will have a profound effect on our lifestyle.

Custom Commitment.

Custom Products has its own management, marketing, and engineering team that is fully dedicated to developing and producing standard cell semicustom and full custom products.

Custom MOS/LSI is a major portion of our business. A sizable portion of all our revenue is a direct result of our custom MOS/LSI projects.

Over the years, Standard Microsystems has developed custom circuits for a wide variety of applications: Computers and computer peripherals, telecommunications and data communications, garage door openers and burglar alarms, electronic toys and games, musical instruments and more. Both over-theair and cable T.V. systems have made use of our custom circuits. One company's line of word processing equipment makes almost exclusive use of our custom LSI .

As a company committed to serve the custom marketplace, Standard Microsystems has developed the resources and established procedures for MOS/LSI and MOSNLSI circuit development that enables the company to respond rapidly to growing customer needs.

The Custom Option.

Standard Microsystems offers two custom design alternatives: fully crafted custom
design and cell library based designs. Where reduction of chip size for lowest production pricing in high volume is the dominant factor, the fully crafted design method will provide the best solution. However, development costs and development time will be greatest. Where quick turnaround and reduction of engineering costs are dominant factors then use of our cell library design approach will be the better alternative.

Regardless of the design approach, a custom circuit will provide-

Lowest Overall Cost.

The overall cost savings realized with custom MOSNLSI circuitry can be substantial, especially when high-volume production is encountered.

Savings are effected in several ways. Because custom designed circuits contain only necessary components, the cost of unused circuitry on standard microprocessors or integrated circuits is eliminated. Costs for troubleshooting, repair and warranty claims are reduced. In addition, custom MOS can be more economical over SSI and MSI when purchase, inventory and assembly costs are considered. Also, when a system contains a large amount of SSI and MSI, its custom counterpart can significantly reduce power consumption.

Lowest Parts Count.

There are many applications where a singlepackage custom LSI or VLSI circuit can outperform a microprocessor and its ROM and RAM circuits while reducing costs. A custom LSI unit can rapidly execute repetitive functions using high speed logic. A microprocessor needs time-consuming algorithms to do the same thing.

Highest Reliability.

Higher reliability is achieved, especially when replacing circuits that contain significant amounts of SSI and MSI. Fewer parts and solder points reduce the failure rate and raise the reliability. This means low MTTR (mean time to repair), which translates into lower maintenance costs and higher customer satisfaction.

Minimum Size, Weight, Power Dissipation.

The size and complexity of printed circuit boards are greatly reduced when using a custom circuit. The custom circuit results in a most compact package, specifically designed to perform only the necessary tasks utilizing minimum power and space.

Unique Proprietary Features.

Proprietary design is another major benefit. It protects your design from would-be copiers because it makes testing and support difficult. This, coupled with the complexity of custom semiconductor fabrication, makes duplicating your custom circuit far less probable.

A Complete Cell Library Design System for Semicustom LSI/VLSI.

An idea whose time has come.

To prosper, if not survive, in today's fast-paced electronics industry, you must differentiate your products from the competition.

This means designing in more features, higher reliability and lower power consumption, while reducing size to a minimum. Of course, your next-generation products should also cost less than their predecessors.

Full custom CMOS LSI/VLSI is one way to achieve these goals, but that approach has definite limitations. For example, long development times can upset scheduled produc \dagger introductions and high development costs can significantly erode profit margins.
Fortunately, the availability of powerful workstations and a new generation of CAD software tools has created a viable alternative: Semicustom LSIVLSI.
Now, Standard Microsystems Corporation is offering you a complete semicustom design system that combines the advantages of full custom CMOS with rapid turnaround, low cost and virtually guaranteed first-time success.

We call our new system Customation ${ }^{\text {m}}$. It is a "standard cell" design approach that uses a database of proven building blocks and a family of state-of-the-art software tools which enable the engineer to both perform the design and verify it with the utmost speed and precision.
A typical Customation ${ }^{\text {TM }}$ design sequence involves the use of a progression of software design tools, with the output of one serving as the input for the next.

Although the designer is constantly monitoring this process, he is not actually "in line". Therefore, problems due to human error are virtually eliminated and you're assured that first silicon is working silicon.
The result? You get the semicustom ICs you need quickly and your development and production costs are reduced.

Bringing Process, Software and Hardware Together.

Process technology you can count on.

For over a decade, Standard Microsystems has been at the leading edge of n-channel, silicon-gate process technology. Our patented COPLAMOS® process is used throughout the world and is one of the most widely licensed processes in the semiconductor industry.
Now we've channeled our expertise into a production-proven 3-micron, silicon-gate CMOS process that's compatible with the design rules of several other major semiconductor manufacturers, including NCR Corporation, our contractual alternate source. It's the cornerstone of our Customation ${ }^{\text {tw }}$ design system.

A large, proven cell library.

The Customation ${ }^{\text {tm }}$ cell library includes more than 180 cells. Most emulate 74LS logic functions, so your design engineers are already familiar with them. The design system stores the cell layouts, logical models and performance characteristics of each cell in its database. You can feel confident about the performance of these cells, too. They are thoroughly characterized and have been used successfully in numerous applications.

Standard Microsystems is dedicated to incorporating more complex macrocells and supercells into the library. These currently encompass such functions as ROMs, RAMs, and core microprocessors and, in the future, will include data communications functions as well as computer peripheral controllers developed at SMC.

Industry-standard software.

Customation ${ }^{\text {Tw }}$ gives you a complete and integrated set of software tools for design, simulation, modeling, checking, and verification test pattern generation.

Whenever possible, we've utilized "industrystandard" software that provides a wellproven package of design aids which many of your engineers may already be comfortable using. It can also be licensed through Standard Microsystems.

A turnkey workstation.

Standard Microsystems offers a complete turnkey workstation design system that you can use at your own facility. This system, along with SMC's utility software, is optimally configured for semicustom design, combining high performance and ease of operation. We are also constantly enhancing our software to support other workstations and mainframes. Workstations can be acquired directly from the manufacturer or through special arrangement with SMC.

Much of our software already runs on VAX computers. We are currently porting our cell library and software onto several other popular workstations. Please check with us on the status support for your preferred workstation.

A Design Partnership.

Comprehensive training.

Even if you've never had IC design experience, Standard Microsystems can quickly teach you to create cell-based ICs using Customation ${ }^{\text {™ }}$.

At our plant on Long Island, we conduct classes for all skill levels, tailoring our instruction to your particular needs and experience level. We cover all phases of design, and you'll work on an actual Customation ${ }^{\text {™ }}$ workstation to get hands-on experience and sharpen your design technique. You'll complete the training session ready to produce usable designs utilizing Customation ${ }^{\text {™ }}$.

Do your design work at your place or ours.

A major benefit of Customation ${ }^{T M}$ is the control it gives you over your design. You work at your own pace-at your own facility, if you wish-verifying the logic through simulation at each step of the way.

We provide everything you need to perform the design from schematic capture through logic simulation and timing analysis.

Once you're satisfied with your design, we'll perform automatic placement and routing from your netlist. We then carry the process through masks, wafers and prototypes.

You also have the option of doing your design work on a workstation located at one of our convenient design centers or having SMC engineers perform the entire design.

Technical support.

We offer continuing technical support for our Customation ${ }^{\text {™ }}$ users. Our application engineers are experts in the use of the Customation ${ }^{\text {TM }}$ design system and can provide prompt assistance from our home office and our regional sales offices. An applications engineer assigned to your program will be available to assist you with any problems that may arise during the course of the development.

Standard Microsystems has developed a particularly strong applications expertise in data communications, video displays, disk controllers, and small computer peripherals and can provide very extensive support in these areas.

A typical design sequence.

If needed, you obtain a powerful CAD workstation either from us or directly from the workstation manufacturer.

We teach your design engineers all they need to know about 'front-end" design using the Customation ${ }^{\text {TM }}$ design system.

You design and verify logic on workstations at your own facility or at our design centers, performing the logic simulations and generating the input and output test vectors.

You submit the resulting netlist to us for layout and post-layout timing parameter extraction.

We perform the chip layout with our cell place-and-route program and return actual layout timing parameters for designer review. You sign off the design only after you are totally satisfied with the final simulations using actual parameters.

We fabricate prototype circuits.
SMC's design engineers can also perform the full design or assume responsibility at any step in the design process.

Fast Turnaround, Low Cost, Guaranteed Results.

Working silicon within 8 weeks.

Fast turnaround is another important benefit of Customation ${ }^{\text {TM }}$. We can supply working prototypes within eight weeks of receipt of your signed-off netlist.

Design time and logic simulation is dependent on you, the customer. With an
experienced designer using our Customation ${ }^{\text {TM }}$ design system, frontend design should take approximately 4 weeks.*

Cost-effective chips.

Unit cost depends on a variety of factors: gate count, complexity of interconnect, package cost and performance requirements. A Customation ${ }^{\text {™ }}$ design, however, almost always results in a smaller die size than a comparable gate array design. This means lower prices when you get into volume production. Your system will have fewer ICs compared to MSI, gate array, or microprocessor-based designs, resulting in lower assembly and test costs, lower power consumption and enhanced reliability.

SMC will calculate and commit to a production price for your Customation ${ }^{\text {TM }}$ chip based on your design specifications. This means that you will know your exact production costs before you undertake the design.

Second source security.

Standard Microsystems has signed a worldwide, comprehensive agreement with NCR Corporation, providing for the mutual second sourcing and joint development of our CMOS standard cell libraries.

Not only does this agreement assure compatibility at both the process and netlist level, it merges together two of the most innovative and well-respected cell libraries in the semiconductor industry. The common library will be supported on the four leading workstations: Daisy, Mentor, Valid Logic and Metheus/CV.

The agreement also calls for ongoing technical cooperation. Both companies are committed to the enrichment of the cell library through the addition of MSI cells and supercells. Our joint effort will continue with the development of next-generation, fine-line geometry process technologies.

Guaranteed results.

With Customation ${ }^{\text {TM }}$, you're virtually guaranteed first time success. We've designed our system for outstanding accuracy with a number of strategic checkpoints to find and eliminate problems before the circuit is fabricated.

In fact, we guarantee you'll get the results you want by making the following commitment: "Standard Microsystems will bear the cost of any design iteration that is required as a result of an error in cells, utilities and design tools making up the Customation ${ }^{\text {TM }}$ system."

The Full Design Custom Program.

Typically in a custom program where Standard Microsystems performs all of the operations-from design through to finished product-the following sequence applies:

Evaluation.

The customer's system characteristics are carefully evaluated from the information provided to determine the feasibility of the custom approach, considering such factors as system partitioning, functional performance, operational environment, operating speed, power requirements, process selection, packaging and testing.

After concluding this evaluation, Standard Microsystems will quickly provide a Quotation to the potential customer, which will include-

- a firm development schedule
-the non-recurring engineering charge (NRE)
- a production price schedule

System Definition.

Once the design is authorized, a thorough specification review takes place between Standard Microsystems' engineers and the customer's engineers. In this critical phase, Standard Microsystems' years of successful design experience are applied as an extension of the customer's design resource in a close working relationship.

Circuit Design.

Required functions are converted to detailed MOS logic. The logic is verified via advanced logic simulation routines, utilizing our in-house computers, VAX 11/785 and/or breadboard emulators. Circuit simulation is done using SPICE, MOSAID, and Standard Microsystems proprietary software.

Artwork Generation.

At Standard Microsystems, device layout is a blend of custom "hand-crafting" and sophisticated CAD, using our Calma GDS I and GDS II color graphics systems, to achieve the optimum composite drawing in terms of size and schedule. Check plots are obtained on our Xynetics and Versatec plotters, and advanced design rule checks (DRC) and electrical rule checks (ERC) provide comprehensive artwork verification.
*These design and prototype development cycles are based on a 1600 gate equivalent chip design.

Mask Fabrication.

Production tooling is obtained from qualified mask vendors to Standard Microsystems' exacting, above-industry standards. Colored overlays of each mask layer are typically used as a final check point.

Wafer Fabrication.

Standard Microsystems offers a variety of processes, including a CMOS silicon-gate process, and a range of n-channel silicongate processes. We will determine the appropriate process to satisfy each customer's cost/performance requirements.

All wafer processing is done in our facilities, utilizing state-of-the art equipment. Standard Microsystems has made substantial investments in projection alignment equipment, direct-step-on-wafer equipment, and advanced ion-implantation, sputtering, deposition and plasma etch equipment.

Assembly.

Standard Microsystems can provide a wide variety of industry-standard packages, including ceramic, plastic and CERDIP dual-in-line types, flat-packs and chip carriers. The latest in automated equipment, such as our automatic wire bonders, insure high quality and high volume throughout.

SMC PROCESS CHARACTERISTICS					
PROCESS	TYPE	CHANNEL LENGTH	TYPICAL SUPPLY VOLTAGES	MAX FREQ.	FEATURES/ COMMENTS
9000	n-MOS	4μ	$\begin{aligned} & +5,+12 \\ & \text { optional } \\ & -5 \text {, (optional) } \end{aligned}$	30 MHz	n-channel, si-gate process, moderate to high performance.
10000	n-MOS	3μ	+5	45 MHz	very high performance n-channel process.
20000	CMOS	2μ	+5	60MHZ	advanced si-gate CMOS process.
30000	CMOS	3μ	+3 to +6	45 MHz	si-gate CMOS process.

Customer Owned Tooling.

An area of continuing interest to Standard Microsystems is that of Customer Owned Tooling (COT) or Customer Supplied Tooling (CST). In contrast to a full custom design program where Standard Microsystems is responsible for the MOS design, a COT/CST program is one in which the design function will be completed by the customer or an outside design house.

Many customers find it desirable to develop an in-house LSI design capability, for their internal circuit requirements. Standard Microsystems can provide valuable assistance in achieving this goal.

The customer then provides Standard Microsystems with either a completed composite drawing, a data base tape (in suitable format), or an actual processing mask set.

Whatever the entry level, Standard Microsystems is prepared to carry the program through to completion.

If the design is in the formative stages, the requirements will be studied and the most suitable set of design rules will be provided.

If the design is already completed, Standard Microsystems will examine the design rules used and recommend which of our processes is most compatible. If small variations to our "standard" processing are required, they can usually be accommodated at little or no expense.

Standard Microsystems has developed comprehensive test sites that are incorporated into our masks for the purpose of parametric and quality assurance measurements. Automated equipment collects and stores
measurements from these test sites. If a customer purchases wafers from us, these measurements are provided with the wafers. If a customer chooses to have masks fabricated himself, our test site can be provided for incorporation into the masks.

Standard Microsystems is also prepared to work with customers in establishing a suitable test interface which will enable us to provide the wafer probe and final test operations. Of course, packaging and burn-in are also available.

Whichever approach is taken, Standard Microsystems wants to participate in a partnership that makes best use of our respective areas of expertise. We'll work together to bring the project to completion; on time and on budget.

Customer Interface.

Standard Microsystems is a "full capability" company. We have the resources-an experienced staff and state-of-the-art equip-ment-to design, process, package and test our Custom MOS circuits.

Our customers are becoming increasingly aware of the benefits of custom circuits in their product lines. They know their products and markets best. Some have developed the technical expertise to perform or participate in the early design phases of a custom program. For this reason, Standard Microsystems offers a variety of customer interface possibilities to serve the broadest possible market.

Communications: The Key to Custom Development.

On every Custom program, we establish communications with our customers that last throughout the development and production phases.

Our engineers work in an environment that stimulates creativity while encouraging adherence to pragmatic objectives. The status of each program is closely monitored. Strict scheduling, thorough program management and frequent customer contact have become the hallmark of a Standard Microsystems Custom program. Numerous testimonials from satisfied customers give evidence of our ability to perform - to specification and on time.

STANDARD MICROSYSTEMS CORPORATION STANDARD CELL LIBRARY

Cell Name

Logic Gate Cells

LSOO
LSO2
LSO4
LSO8
LS 10
LS11
LS20
LS21
LS25
LS27
LS28
LS30
LS32
LS37
LS40
LS51a
LS51b
LS54
LS55
LS64
LS86
LS133
LS134
LS260
LS266
Buffer Cells
LS125
LS 126
LS240
LS242
LS243
LS244
LS245
LS265a
LS265b
LS365
LS366
LS367
LS368

Shift Register Cells

 LS95LS164
S166
. 5178
-S 179

Description

2-Input NAND Gate
2-Input NOR Gate
Inverter
2-Input AND Gate
3-Input NAND Gate
3-Input AND Gate
4-Input NAND Gate 4-Input AND Gate
4-Input NOR Gate with Strobe
3-Input NOR Gate
2-Input NOR Gate with Buffer
8 -Input NAND Gate
2-Input OR Gate
2-Input NAND Gate with Buffer
4-Input NAND Gate with Buffer
2-Wide, 2-Input AND-OR-Invert Gate
2-Wide, 3-Input AND-OR-Invert Gate
4-Wide, 2-Input \& 3-Input
AND-OR-Invert Gate
2-Wide, 4-Input AND-OR-Invert Gate
4-2-3-2 Input AND-OR-Invert Gate
2-Input Exclusive OR (XOR) Gate
13-Input NAND Gate
12-Input NAND Gate with
Tri-State Output
5-Input NOR Gate
2-Input Exclusive NOR (XNOR) Gate
Non-Inverting Tri-State Buffer
Non-Inverting Tri-State Buffer Inverting Tri-State Buffer Inverting Transceiver.
Non-Inverting Transceiver Non-Inverting Tri-State Buffer Octal Non-Inverting Transceiver 1-Input, Dual Complimentary Output Gate
2-Input AND Gate
w/Complimentary Dual Output
Hex Non-Inverting Tri-State Buffer
Hex Inverting Tri-State Buffer
Quad Non-Inverting Tri-State Buffer Quad Inverting Tri-State Buffer

4-Bit Parallel I/O. Serial Input
Left/Right SR
8-Bit Parallel Output, Serial Input SR
w/Clear
8-Bit Parallel/Serial Input, Serial Output SR w/Clear
4-Bit Universal Shift Register
4-Bit Universal SR with Async. Clear
4-Bit Bidirectional Universal SR
w/Clear
4-Bit Parallel Input/Output SR w/Clear
8-Bit Bidirectional Universal SR
w/Clear
4-Bit Universal Shift Register
4-Bit Universal SR w/Async. Clear,
Tri-State Outputs

Cell Name

Flip-Flop Cells
LS73
LS74
LS174
LS175
LS374
LS377

Latch Cells

LS75
LS77
LS 100
LS116
LS375

Multiplexer/

Selector Cells

LS 151
LS152
LS153
LS157
LS158
LS253
LS352
LS353

Counter Cells

LS163a
LS169a

Decoder/

Encoder Cells

LS138
LS139
LS148

Comparator Cell

LS85

Arithmetic

Operator Cell

LS83
LS283
LS183

Parity Generator Cell

LS180
Input/Output Pads-
(Individual Gates)
LSO4IP
LS07IP
LS74IP
LS14IP
LSO4OP
LS05OP
LS07OP
LS74OP
LSBI

Description

J-K Flip-Flop with Clear
D Flip-Flop with Preset \& Clear Hex D Flip-Flop with Direct Clear Quad D Flip-Flop with Direct Clear Octal D Flip-Flop with Tri-State Output
Octal D Flip-Flop
Dual Transparent Latch
Dual Transparent Latch
Quad Transparent Latch
Quad Transparent Latch with Clear
Dual Transparent Latch

8:1 Multiplexer with Strobe
8:1 Multiplexer, Inverting
4:1 Multiplexer
Quad 2:1 Multiplexer
Quad 2:1 Multiplexer, Inverting
4:1 Multiplexer, Tri-State Output
4:1 Multiplexer, Inverting
4:1 Multiplexer, Tri-State, Inverting
4-Bit Syncronous Binary Counter 4-Bit Syncronous Binary Up/Down Counter

3:8 Decoder with Enable
 2:4 Decoder with Enable
 8:3 Priority Encoder

4-Bit Magnitude Comparator

4-Bit Full Adder
4-Bit Full Adder Full Adder

9-Bit Odd/Even Parity Checker

Inverting Input Pad Buffer Non-Inverting Input Pad Buffer D Flip-Flop Input Pad Buffer (D input only) Schmitt Trigger Input Pad Buffer Inverting Output Pad Buffer Open Drain,Inverting Output Pad Buffer Non-Inverting Output Pad Buffer
D Flip-Flop Output Pad Buffer (Q output only)
Bi-Directional Pad Buffer

STANDARD MICROSYSTEMS CORPORATION

Cell Name
 Gate Cells

AND8
AOI211
AOI22
AOI31
EXNOR
EXOR
HBUF
MBUF
INBUF
INV
INV3/OUTINV
IOBUF
DLYCEL
LS 125
LS240
LS242
NAN2
NAN3
NAN4
NAN5
NOR2
NOR3
NOR4
OR8
OAl31
INVT
TBUF

Latch \&

Flip-FIop Cells
CCND
CCNR
DFF
DFFR
DFFRS
JKFF
LAT
LATBUF
LATR
LS74A
LS76A
LS100
LS116
LS175
LS 164
LS194
SRBN
UDC
PCL2

Multiplexer Cells

MUX2
LS151
LS153

Decoder/
 Encoder Cells

LS 138
LS139

Description

8 input AND Gate
2-1-1 AND-OR-Invert
2-2 AND-OR-Invert
3-1 AND-OR-Invert
Exclusive NOR Gate
Exclusive OR Gate
High Drive Buffer
Medium Drive Buffer
Input Buffer
Inverter
High Drive INV/Output Buffer
Input/Output Buffer
Delay Cell
Non-Inverting Tri-State Buffer
Inverting Tri-State Buffer
Inverting Transceiver
2 Input NAND Gate
3 Input NAND Gate
4 Input NAND Gate
5 Input NAND Gate
2 Input NOR Gate
3 Input NOR Gate
4 Input NOR Gate
8 Input OR Gate
3-1 OR-AND-Invert
Inverting Tri-State Driver
Non-Inverting Tri-State Driver

Cross Coupled NAND Latch
Cross Coupled NOR Latch
D Flip Flop
D Flip Flop with Reset
D Flip Flop w/Set \& Reset J-K Flip Flop
Transparent Latch
Tri-Statable Transparent Latch
Transparent Latch with Reset
D Flip Flop with Set \& Reset J-K Flip Flop
Quad Transparent Latch
Quad Transparent Latch w/Clear
Quad D Flip-Flop w/Direct Clear
8-Bit Parallel Output, Serial Input SR w/Clear
4-Bit Bidirectional Universal SR w/Clear
Shift Register
Up/Down Counter
Two Phase Clock

Multiplexer Cell
8:1 Multiplexer with Strobe 4:1 Multiplexer

3:8 Decoder with Enable
2:4 Decoder with Enable

Cell Name

Counter Cells
LS163A
LS169A
Arithmetic Operator
LS83
LS85

Analog Cells

ANSW
DS1218
DS1238
DS1323
DS1527
DS1728
DS2028
DS2232
OSCP
POR
VCM1
VCM2
VCM3
OPAMP
COMPO5
COMPG

Pad Cells
INPD
IOPD2S
IOPD4
IOPD4S
IOPD8
IPPD4
IPPD8
ODPD4
ODPD8
ONPD4
ONPD8
OPD4
OPD8
OPPD4
OPPD8
PU30
PD30

Supercells

ROM Supercell
RAM Supercell
TIMER I Supercell
65CX02 Supercell
ATOD Supercell
SCC Supercell
BRG Supercell
VCO Supercell

Description

4-Bit Syncronous Binary Counter 4-Bit Syncronous Binary Up/Down Counter

4-Bit Full Adder
4-Bit Magnitude Comparator

Analog Switch
Schmitt Trigger (1.2-1.8V)
Schmitt Trigger (1.2-3.8V)
Schmitt Trigger (1.3-2.3V)
Schmitt Trigger (1.5-2.7V)
Schmitt Trigger (1.7-2.8V)
Schmitt Trigger (2.0-2.8V)
Schmitt Trigger (2.2-3.2V)
General Purpose Oscillator Power On Reset
Voltage Reference (50uA)
Voltage Reference (100uA)
Vottage Reference (200uA)
General Purpose Operational
Amplifier
High Speed Low Power
Comparator
General Purpose
Comparator
Input PAD
2mA Split P-Channel I/O PAD
4 mA Input/Output PAD
4 mA Split P-Channel I/O PAD
8 mA Input/Output PAD
Input PAD with 400uA Pullup
Input PAD with 800uA Pullup
4 mA 5 V Open-Drain Output PAD
8 mA 5 V Open-Drain Output PAD
4mA 7V Open-Drain Output PAD
$8 \mathrm{~mA} 7 V$ Open-Drain Output PAD
4 mA Output PAD
8 mA Output PAD
4mA Tri-State Output PAD
8 mA Tri-State Output PAD
P-Channel Pullup
N-Channel Pulldown

Modular ROM (512 bits)
Modular RAM (512 bits)
16-Bit Counter/Timer 8-Bit Core Microprocessor 8 -Bit Analog to Digital Converter
Serial Communication
Baud Rate Generator
Voltage Controlled Oscillator

Quality Assurance and Quality Control

Volume manufacturing of quality products requires a rigorous commitment on behalf of STANDARD MICROSYSTEMS and all of its employees. Each phase of the operation from design to shipping must adhere stringently to documented procedures which have produced a product of proven reliability.

The design of a reliable product is assured by adherence to tested and proven design rules. Any change in design rules must be evaluated using a design-rule test vehicle. Each new product is evaluated first by prototype wafer runs and thorough preliminary production and device characterization.

Manufacturing flow is monitored by Quality Control to insure that parameters meet specifications on incoming material, within the line and at outgoing inspection. Clean room standards, calibration and work methods are also monitored.
The Quality Assurance Department is the customer representative with the primary responsibility of evaluating product to current industry standards and related responsibilities of evaluating developmental processes, product and the standards themselves.
The following is a more detailed description of the types of screening performed and how SMC is organized to produce quality products.

1.0 Scope

The measures taken by SMC to produce reliable integrated circuits and the assembly/screening options available to the customer are given in this section.

2.0 Approach

Factors relating to quality and reliability are discussed in the following order: package options, screening, process control, test and characterization, quality conformance/reliability testing, and failure analysis.

3.0 Applicable Documentation

SMC internal specifications define every phase of production and must be approved by the designated representatives of Engineering, Manufacturing, Processing, Quality Control and Quality Assurance departments.

3.1 Design Rules (DR-XX)

3.1.1 Geometric design rules define layout considerations, alignment structures, critical-dimension targets, and input-protection networks.
3.1.2 Electrical design rules define performance criteria, measurement methods, device parameters, and process parameters.

3.2 Purchase Specifications (PS-XX)

All critical material is purchased to SMC specifications from qualified vendors.

3.3 Process Specifications (WX-XX, AX-XX)

3.3.1 The procedures used for wafer processing and assembly of microcircuits are fully documented.

3.4 Quality Control Procedures (QC-XX)

QC procedures define the sampling techniques, accept/ reject criteria and test methods used in quality audits.

3.5 Quality Assurance Procedures (QA-XX)

QA procedures define methods for product/process qualification, reliability testing and failure analysis.

3.6 Military Standards and Specifications

MIL-C-45662
Calibration System Requirements
MIL-I-45208
Inspection System Requirements
MIL-M-38510 General Specification for Micro-
MIL-M-55565
MIL-STD-105 circuits
Packaging of Microcircuits
Sampling Procedures and Tables for Inspection by Attributes
MIL-STD-883 Test Methods and Procedures for Microelectronics
MIL-STD-133 Microelectronics Terms and Definitions

4.0 Package Options, Features

4.1 Ceramic (no suffix)

Gold plating on external leads and die cavity, gold eutectic die attach.

4.2 Cerdip (Suffix "CD")

Meets MIL-STD-883 internal moisture content requirements of Method 5005 . Substrate connections are made through jumper chips, gold eutectic die attach.

4.3 Plastic (Suffix "P")

The plastic used is a B-type epoxy or an approved advanced type having a better resistance to a humid environment.

5.0 Screening Options

5.1 High-Reliability Screening

The routing is as defined in MIL-STD-883 Method 5004 for Class B product. Periodic Quality Conformance data (para. 9.2) is taken on generically similar parts. A sample flow chart for ceramic product is given on page 30 .
5.1.1 Internal Visual

Both Die and Preseal Visual inspections are to the criteria of Method 2010, Condition B of MIL-STD-883. An AQL audit is performed on each lot by Quality Control.
5.1.2 Stabilization Bake

All parts are given the stabilization bake according to Method 1008, Condition C of MIL-STD-883.
5.1.3 Temperature Cycling

All parts are subjected to 10 cycles of $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ per Method 1010, Condition C of MIL-STD-883.

5.1.4 Constant Acceleration

All parts are subjected to a $30,000 \mathrm{~g}$ force in the Y 1 orientation per Method 2001, Condition E.

5.1.5 Seal

Hermeticity testing is performed to conditions A and C of MIL-STD-883 Method 1014.
5.1.6 Pre burn-in Electrical Test.

Ordinarily this is the same as final electrical test.

5.1.7 Burn-in

Condition A and Condition D of MIL-STD-883 Method 1015 are available. The stress is applied for 160 hours at $125^{\circ} \mathrm{C}$ or at other temperatures according to the timetemperature regression.

5.1.8 Final Electrical Test

Verifies functional and parametric performance to the device specifications.
5.1.9 Final Visual Inspection

All parts are inspected to Method 2009 of MIL-STD-883.

5.2 Standard Screening

Standard Screening is designed for the industrialcommercial customer and is available in all package types. For hermetic packages, temperature cycling, centrifuge and hermeticity are specified as well as die, preseal, and final visual inspection.
5.2.1 Standard Die and Preseal Visual Inspections (AC-04, AC-08, AD-04, AD-09, AP-98, AP-92, QC-32, QC-33)
These inspections were developed from Method 2010 of MIL-STD-883. The inspection criteria are specific to SMC's PMOS, NMOS COPLAMOS ${ }^{\oplus}$ and CMOS technologies.
5.2.2 Temperature Cycling (AC-15, AD-13)

Temperature cycling is performed to the MIL-STD-883, equivalent of Method 1010 Condition C, $-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$, ten cycles.
5.2.3 Constant Acceleration (centrifuge)(AC-16, AD-14)

Constant Acceleration is performed to the MIL-STD-883, equivalent of Method 2001, Condition E, $30,000 \mathrm{~g}$ in the Y1 orientation.

5.2.4 Hermeticity (AC-11, AD-15)

Includes fine and gross leak testing to SMC equivalent of MIL-STD-883 Method 1014 Conditions A and C.
5.2.5 Final Electrical Test

Verifies functional and parametric performance to the device specifications.

5.3 Custom Screening

Certain applications require special screening which can be arranged upon request.

6.0 Electrical Test

6.1 Probe and Final Test

SMC test programs are developed by Test Engineering and verified by device characterization. An approval procedure is required for the transfer of a new test program or a revised test program from engineering to production.

6.2 Characterization/correlation

Characterization of parts and correlation of test results with customer incoming testing performed on SMC test equipment, including Megatest and Sentry ${ }^{\text {m }}$, and Gen Rad test systems.

6.3 Product Engineering

SMC product engineers characterize parts to improve processing target parameters and test correlation with customers.

7.0 Purchased Material

Manufacturing materials are purchased from qualified vendors to SMC procurement specification.

8.0 Quality Control

The Quality Control Department reports to the Vice President of Quality Assurance. QC is responsible for incoming inspection, in-process audits, out-going inspection, document control, processing returned material and certification of compliance to specification.

8.1 Incoming Inspection

Inspectors verify critical parameters on all material used in manufacturing. The department maintains an approved vendor list and interfaces directly with vendor QC departments.

8.2 In-process Audits

QC performs an on-going monitoring of wafer processing, test and assembly functions.

8.3 Outgoing Audit

QC inspectors verify proper documentation and perform an external mechanical/visual inspection prior to shipment.

8.4 Document Control

All procedures for design, wafer processing, assembly, quality control and quality assurance are maintained by document control.

8.5 Returned Material Processing

Returned material, whether for device performance or clerical reasons, is processed through visual and electrical testing.

8.6 Certificates of Compliance

Certificates of Compliance are available for specified screening and/or for products ordered under a customer part number/specification.

9.0 Quality Assurance

The Quality Assurance Department is the customer's
representative and is independent of the product line and manufacturing organizations. Quality Assurance is responsible for reliability assessment of new and existing processes, material analysis, failure analysis, calibration and development of evaluation methods.

9.1 Process Qualification

All new processes and process revisions must equal or exceed the reliability of existing processes on applicable sections of the SMC Quality Conformance Test.

9.2 Quality Conformance Test

Samples of finished product are tested periodically to the criteria of QA-01 (see table 1). This test sequence provides historical data which is also used for qualification of new products and processes. The various subgroups contain tests referenced in Method 5005 of MIL-STD- 883 as well as tests designed around industry requirements not yet incorporated in military standards.

9.3 Analysis

9.3.1 The analytical facilities include a scanning electron microscope equipped with energy dispersive X -ray (EDX), an infrared microscope, optical microscopes, a laser cutter, metallurgical equipment, an X-ray unit and electronic test instruments.
9.3.2 Scanning electronic microscopy is used in the periodic evaluation of workmanship in wafer processing and assembly, to support engineering efforts at process development and improvement, and in failure analysis.
9.3.3 Failure Analysis is performed upon request by sales, marketing or manufacturing organizations and is also performed on reliability test failures. The failure analysis procedures support the development of new product, process improvements, and the evaluation of screening methods.
9.3.4 Material analysis is performed on layers of the integrated circuit and on packaging to support the engineering development. This characterization is performed on in-house facilities. Independent outside analytical laboratories are used to supplement SMC facilities if and when required.

9.4 Calibration

The Quality Assurance Calibration Laboratory specifies calibration intervals, performs calibration and maintains calibration records. The laboratory is traceable to the National Bureau of Standards.

10.0 Lot Traceability

SMC maintains traceability on all product types in all packaging options (including plastic). The information available includes:

10.1 Wafer Processing Records

Sign-off and date on all operations, critical measurements and inspection records.

DATE CODE INTERPRETATION

10.2 Wafer Lot Acceptance (Mapping)

Device parameters are recorded using a high-speed Accutest ${ }^{\text {tw }} 3600$ system. Further evaluation is performed using an HP 4145A semiconductor parametric analyzer.

10.3 Wafer Probe and Final Test Data

These are correlated with mapping results to develop optimized process targets and yield improvement.

10.4 Assembly Records

Inspection results and screening throughput are recorded with date and sign-off for each lot.

TABLE 1-QA-01 QUALITY CONFORMANCE
GROUP B TESTS

Test	SMC Test Method	$\begin{aligned} & \hline \text { Mil Std } \\ & 883 \\ & \text { Method } \end{aligned}$	Condition	$\begin{gathered} \text { Quantity/ } \\ \text { acceptno. or } \\ \text { LTPD } \end{gathered}$	Frequency Package Type
$\frac{\text { Subgroup } 1}{\text { Physical dimensions }}$		2016		2 devices (no failures)	every package lot
$\frac{\text { Subgroup 2 }}{\text { Resistance to solvents }}$	QC-21	2015	Marking Permanence	$\begin{gathered} \begin{array}{c} 4 \text { devices } \\ \text { (no failures) } \end{array} \end{gathered}$	$\begin{gathered} \text { every } \\ \text { shipment } \end{gathered}$
$\frac{\text { Subgroup 3 }}{\text { Solderability }}$	QC-15	2003	Soldering temperature of $245 \pm 5^{\circ} \mathrm{C}$	15	periodic conformance
Subgroup 4 Internal visual and mechanical	QC-33	2014	Failure criteria from design and construction requirements of applicable procurement document	$\begin{gathered} 1 \text { device } \\ \text { (no failures) } \end{gathered}$	periodically
Subgroup 5 Bond strength 1) Thermosonic (2) Ultrasonic or wedge Die shear strength	$\begin{aligned} & \text { QC-31 } \\ & \text { QC-35 } \\ & \hline \end{aligned}$	$\begin{array}{r} 2011 \\ 2019 \\ \hline \end{array}$	(1) Test conditicn C or D (2) Test condition C or D	15	periodic conformance all hermetic
Subgroup 6 Internal water-vapor content		1018	5,000 ppm maximum water content at $100^{\circ} \mathrm{C}$	$\begin{gathered} 3 \text { devices } \\ \text { (no failures) or } \\ 5 \text { devices } \\ (1 \text { failure) } \\ \hline \end{gathered}$	periodic conformance all hermetic
	AC-11	1014	As applicable	5	periodic conformance all hermetic
Subgroup 8 Electrical parameters Electrostatic discharge sensitivity Electrical parameters	QA-11	3015	Group A, subgroup 1 Test condition A or B Group A, subgroup 1	15	new device types

GROUP C TESTS-DIE RELATED

Test	SMC Test Method	$\begin{aligned} & \text { Mil Std } \\ & 883 \\ & \text { Method } \end{aligned}$	Condition	$\begin{aligned} & \text { Quantity/ } \\ & \text { accept no. or } \\ & \text { LTPD } \end{aligned}$	Package Type
Subgroup 1					
Steady state life test	QA-02	1005	Test condition to be	5	all
			specified (typically 1,000 hours at $125^{\circ} \mathrm{C}$)		
End-point electrical	Final test		As specified in the		
parameters			applicable device specification		
Subgroup 2					
Temperature cycling	AC-15	1010	Test condjition C, 10 cycles	15	
Constant acceleration	AC-16	2001	Test condition E min.	15	hermetic
			Y, orientation only		
Seal		1014	As applicable		
(a) Fine	AC-11				
(b) Gross					
Visual examination	QC-22				
End-point electrical parameters	Final test		As specified in the applicable device		
			specification		

Test	SMC Test Method	$\begin{aligned} & \hline \text { Mil Std } \\ & 883 \\ & \text { Method } \end{aligned}$	Condition	Quantity/ accept no. or LTPD	Package Type
Subgroup 1 Physical dimensions		2016		15	all
Subgroup 2 Lead integrity Seal (a) Fine (b) Gross Lid torque	$\begin{aligned} & \text { QC-19 } \\ & \text { AC-11 } \end{aligned}$	$\begin{array}{r} 2004 \\ 1014 \\ 2024 \end{array}$	Test condition B2 (lead fatigue As applicable As applicable	15	all all hermetic cerdip only
Subgroup 3 Thermal shock Temperature cycling Moisture resistance Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	AC-15 AC-11	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$	Test condition B, 15 cycles Test condition C, 100 cycles As applicable Per visual criteria of Method 1004 and 1010 As specified in the applicable device specification	15	all hermetic*
Subgroup 4 Mechanical shock Vibration, variable frequency Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	AC-16 AC-11	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & 1014 \end{aligned}$	Test condition B minimum Test condition A minimum Test condition E minimum, Y_{1} orientation As applicable As specified in the applicable device specification	15	all hermetic
Subgroup 5 Salt atmosphere Seal (a) Fine (b) Gross Visual examination	AC-11	$\begin{aligned} & 1009 \\ & 1014 \end{aligned}$	Test condition A minimum As applicable Per visual criteria of Method 1009	15	all hermetic*
$\frac{\text { Subgroup } 6}{\text { Internal water-vapor }} \text { content }$		1018	5,000 ppm maximum water content at $100^{\circ} \mathrm{C}$	3 devices (no failures) or 5 devices (1 failure)	all hermetic
$\frac{\text { Subgroup } 7}{\text { Adhesion of lead finish }}$		2025		15	all
Subgroup 8 Humid Environment End-point electrical parameters	QA-04 Final test		1000 hours $85^{\circ} \mathrm{C} / 85 \%$ Relative Humidity	15	plastic
Subgroup 9 Autoclave (Pressure Cooker) End-point electrical parameters	QA-05 Final test		48 hours at $2 \mathrm{~atm} 121^{\circ} \mathrm{C}$	15	plastic

[^2]

The Quality Control Department reports at the same level as the manufacturing, test and process engineering departments. QC is responsible for incoming inspection, in-process audits, out-going inspection, document control, processing returned material and certification of compliance to specification.

HI REL AVAILABLE ON ALL HERMETIC PACKAGES*

PLASTIC (NOTE 1)

Note 1-Plastic assembly is sub-contracted. Assembly operations are controlled by SMC approved sub-contractor specifications.

CERDIP

Data Communication Products

Part Number	Name	Description	Max Baud Rate	Power Supplies	Package	Page
COM 1553A	$\begin{aligned} & \text { MIL-STD- } \\ & 1553 \mathrm{~A} \\ & \text { Controller } \\ & \hline \end{aligned}$	MIL-STD-1553A Manchester Interface Controller	1 MB	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	35-50
COM 1553B	$\begin{aligned} & \text { MIL-STD- } \\ & \text { 1553B } \\ & \text { Controller } \end{aligned}$	MIL-STD-1553B Manchester Interface Bus Controller/Remote Terminal	1 MB	+5,-5, +12	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	51-66
COM 1671	ASTRO	Asynchronous/Synchronous Transmitter/Receiver, Full Duplex, 5-8 data bit, 1X or 32X clock	1 MB	+5,-5, +12	40 DIP	67-82
COM 1863	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit, enhanced distortion margin	62.5 KB	+5	40 DIP	83-90
COM 2017	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, 1,11/2,2 stop bit (use 8017 for new designs)	25 KB	+5, - 12	40 DIP	91-98
COM 2502	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, 1,2 stop bit (use 8502 for new designs)	25 KB	+5, -12	40 DIP	91-98
COM 2601	USRT	Universal Synchronous Receiver/ Transmitter, STR, BSC, Bi-sync compatible	250 KB	$+5,-12$	40 DIP	99-106
COM 2651	USART/PGI	Universal Synchronous/Asynchronous Receiver/Transmitter, Programmable Communication Interface, Internal Baud Rate Generator, 1X, 16X, 64X clock	1 MB	+5	$\begin{aligned} & 28 \text { DIP/ } \\ & 28 \text { SMT } \end{aligned}$	107-118
COM 2661-1	USART/EPCI	Universal Synchronous/Asynchronous Receiver/Transmitter, Programmable Communication Interface, Internal Baud Rate Generator, 1X, 16X, 64X clock	1 MB	+5	$\begin{aligned} & 28 \text { DIP/ } \\ & 28 \text { SMT } \end{aligned}$	119-130
COM 5025	Multi-Protocol USYNRT	SDLC, HDLC, ADCCP, Bi-sync, DDCMP compatible, automatic bit stuffing/ stripping, frame detection/generation, CRC generation/checking, sync detection	1.5 MB	+5, +12	40 DIP	131-142
COM 52C50	TWINAX	Interface Controller for IBM System/ 34, 36, 38 designated IWINAX or 5250 environment, CMOS	1 MB	+5	$\begin{aligned} & 28 \text { DIP/ } \\ & 28 \text { SMT } \end{aligned}$	143-144
COM 7210	$\begin{aligned} & \text { GPIB } \\ & \text { Interface } \end{aligned}$	Intelligent Interface Controller for GPIB (IEEE-488-1978)	8 MHz	+5	40 DIP	145-156
COM 78808	OCTAL UART	8 UART's, 8 Baud Rate Generators plus control logic and modem signals all on a single chip	19.2 KB	$+5$	$\begin{aligned} & 68 \text { CERDIP } \\ & \text { LCC } \end{aligned}$	157-172
COM 8004	32 Bit CRC Generator/ Checker	Companion device to COM 5025 Dual 32 bit CRC Generator/Checker	2.0 MB	+5	20 DIP	173-178
COM 8017	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit (compatible with COM 2017)	40 KB	+5	40 DIP	179-186
COM 8018	UART	Universal Asynchronous Receiver Transmitter, Full Duplex, 5-8 data bit, 1, 112, 2 2 stop bit, enhanced distortion, margin	62.5 KB	+5	40 DIP	83-90
COM 81C17	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex with built-in Baud Rate Generator, CMOS	19.5 KB	+5	$\begin{aligned} & 20 \mathrm{DIP} / \\ & 28 \text { SMT } \end{aligned}$	187-188

тициии

Part Number	Name	Description	Max Baud Rate	Power Supplies	Package	Page
COM 8251A	USART	Universal Synchronous/Asynchronous Receiver/Transmitter, Full Duplex, 5-8 data bit, $1,11 / 2,2$ stop bit	$\begin{aligned} & 64 \mathrm{~KB} \text { (sync) } \\ & 9.6 \mathrm{~KB} \text { (async) } \end{aligned}$	+ 5	28 DIP	189-204
$\text { COM } 8502$	UART	Universal Asynchronous Receiver/ Transmitter, Full Duplex, 5-8 data bit, 1, 2 stop bit (compatible with COM 2502)	40 KB	$+5$	40 DIP	179-186
$\text { COM } 9004$	IBM 3270 Receiver/ Transmitter	IBM 3274 Compatible Receiver/ Transmitter for COAX type "A" protocol (use COM 9064 for new designs)	2.36 MB	$+5, \pm 12$	$\begin{aligned} & 40 \text { DIP/ } \\ & 44 \text { SMT } \end{aligned}$	205-212
COM 9026	I.ANC	Local Area Network Controller for token pass systems	2.5 MB	+ 5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	213-228
COM 9032	I.ANT	Local Area Network Transceiver	2.5 MB	+5	16 DIP	229-234
COM 9046	SSBSS	Single Side Band Speech Scrambler, Low Power, Full Duplex, uses 3.58 MHz TV burst crystal	NA	± 2.6	14 DIP	235-238
COM 90C56	ELIANC	CMOS Enhanced Local Area Network Controller, with high throughput, network management and network diagnostic	5 MBps	$+5$	48 PLCC	239-240
COM 90C57 ${ }^{\circ}$	NBMU	CMOS Network Buffer Management Unit, to simplify interface of ELANC with dynamic R.AM's	5 Mps	+5	$\begin{aligned} & 24 \text { DIPI } \\ & 28 \text { SMT } \end{aligned}$	241-242
COM 9064	IBM 3270	IBM 3270 COAX type " A " controller +5 V only version of COM 9004	2.36 MB	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{SMT} \end{aligned}$	243-250
$\text { HYC } 9058$	$\text { HIT } 1$	High Impedance Transceiver for Local Area Networks allows BUS topology with multi drop nodes	2.5 MBps	$+5$	20 SIP	251-256
HYC 9068	I.AND	Local Area Network Driver with (93Ω) line matching impedance for ARCNET networks	2.5 MBps	$+5$	20 SIP	257-260
HYC 9078 ${ }^{(2)}$	$\text { HIT } 2$	High Impedance Transceiver for Local Area Networks for operation at 5 MHz	5 MBps	+ 5	20 SIP	261-262

[^3]
MIL-STD-1553A "SMART®"

FEATURES

Support of MIL-STD-1553AOperates as a: Remote Terminal Responding Bus Controller InitiatingPerforms Parallel to Serial Conversion when TransmittingPerforms Serial to Parallel Conversion when ReceivingCompatible with HD-15531 Manchester Encoder/ DecoderAll Inputs and Outputs are TTL CompatibleSingle +5 Volt SupplyCOPLAMOS® ${ }^{\circledR}$ Channel MOS TechnologyAvailable in PC Board Form from Grumman Aerospace Corporation

PIN CONFIGURATION

GENERAL DESCRIPTION

The COM 1553A SMART® (Synchronous Mode Avionics Receiver/Transmitter) is a special purpose COPLAMOS N-Channel MOS/LSI device designed to provide the interface between a parallel 8 -bit bus and a MIL-STD1553A serial bit stream.
The COM 1553A is a double buffered serial/parallel and parallel/serial converter providing all of the "hand shaking" required between a Manchester decoder/ encoder and a microprocessor as well as the protocol handling for both a MIL-STD-1553 bus controller and remote terminal.
The COM 1553A performs the following functions in response to a 16 bit Command Word. It provides address detection for the first five bits of the serial data input. If all 1's appear in the address field, a broadcast signal is generated. The sixth bit is decoded as mode: transmit or receive. The next five bits are decoded for zero message flag and special flags in the subaddress/mode field. The last five bits (word-count field) are decoded determining the number of words to be received or transmitted.
When receiving data sync the COM 1553A performs a serial to parallel conversion, buffers the 16 bit message
word, and formats it into two parallel (8 bit) bytes for presentation to the I/O bus under processor or hard wired logic control.
In the transmit mode the COM 1553A takes two parallel 8 bit data words from the I/O bus and serially transmits the resultant 16 bit word to the Manchester encoder. This is done under the control of Send Data. To facilitate data transfer the COM 1553A provides all necessary buffering and storage for transmitted and received data. It also provides all necessary hand shaking, control flags and interrupts to a processor or hard wired logic terminal. See block diagram 1.
The COM 1553A can be set up as either a remote terminal or a bus controller interface.
The COM 1553A is compatible with Harris' HD-15531 CMOS Manchester Encoder-Decoder chip and interfaces directly with it. A 3 device kit consisting of: SMC's COM 1553A, Harris' HD-15531 and Circuit Technology's CT1231 forms a complete system interface for the message structure of MIL-STD-1553A. See block diagram 2.
Note: All terminology utilized in this data sheet is consistent with MIL-STD-1553.

PIN No.	NAME	SYMBOL	FUNCTION
1	" ${ }^{\prime \prime}$ MESSAGE FLAG	ØMF	The ZERO MESSAGE FLAG output is set when the 7 th through 11th bits of the NRZ serial input data in a command envelope (see figure 1) are zero. ©MF is an open drain output.
2	" 0 " WORD FLAG	ØWF	The ZERO WORD FLAG output is set when the 12th through 16th bits of the NRZ serial input data in a command envelope (see figure 1) are zero. ØWF is an open drain output.
3	INVALID WORD FLAG	IVWF	The INVALID WORD FLAG output is set when the word just received has an invalid parity bit or invalid format. IVWF is an open drain output.
4	DATA AVAILABLE	DTA AVL	DATA AVAILABLE is set when a word received is ready to be read. When the COM 1553A is the bus controller, DTA AVL occurs on command, status or data words. When the COM 1553A is a remote terminal, DTA AVL is set only on data words. DTA AVL is an open drain output.
5	RECEIVE INTERRUPT	$\overline{\text { RCV INT }}$	$\overline{\text { RECEIVE INTERRUPT }}$ is set to zero when the 6 th bit following a command sync is a zero and the first 5 bits match AD1-AD5. $\overline{\text { RCV INT }}$ is reset to one by $\overline{\mathrm{A}}$ or $\overline{\mathrm{POR}}$, or if the line is not active for 32 receive clocks.
6	TRANSMIT INTERRUPT	$\overline{T X ~ I N T}$	TRANSMIT INTERRUPT is set to zero when the 6th bit following a command sync is a one, and the first 5 bits matchAD1-AD5.TXINT is reset to one by $\overline{\mathrm{IA}}$ or $\overline{\mathrm{POR}}$.
7	COMMAND SYNC	CMD SYN	COMMAND SYNC is an input from the Manchester decoder and must be high for 16 receive clocks enveloping the receive NRZ data of a command word.
8	DATA SYNC	DTA SYN	DATA SYNC is an input from the Manchester decoder and must be high for 16 receive clocks enveloping the receive NRZ data of a data word.
9	RECEIVER NRZ	RCV NRZ	Receiver serial input from Manchester decoder. Data must be stable during the rising edge of the receive clock.
10	STATUS WORD ENABLE	$\overline{\text { SWE }}$	$\overline{\text { SWE }}$ is the output enable for the following open drain outputs: ØMF QWF IVWF DTA AVL DTARQ MSG CPLT
11	POWER ON RESET	$\overline{\mathrm{POR}}$	POWER ON RESET. Active low for reset.
12	INTERRUPT ACKNOWLEDGE	$\overline{\mathrm{A}}$	$\overline{\mathrm{IA}}$ resets $\overline{\text { TX INT, }} \overline{\mathrm{REC} \text { INT, }}$ ØMF, ØWF and $\overline{\mathrm{BRD} \mathrm{CST}}$. $\overline{\mathrm{IA}}$ may occur between the trailing edges of receive clocks 6 and 10 , orbetween the leading edge of receive clock 12 and the falling edge of receive clock 15 , or after the falling edge of clock 17 .
13	RECEIVE CLOCK	RCV CLK	The RECEIVE CLOCK is synchronous with the Receiver NRZ input during the command sync or data sync envelopes.
14	VALID WORD	vw	This input is driven by the VALID WORD output of the Manchester Decoder. VW should occur immediately after the rise of the first RCV CLK following the fall DATA SYNC or COMMAND SYNC.

PIN NO.	NAME	SYMBOL	FUNCTION
15	SEND DATA	SD	SEND DATA is a "handshake" signal received from the Manchester encoder indicating that the encoder is ready for the COM 1553A to transmit data. SD will bracket 16 transmit data clocks. The contents of the transmitter buffer will be transferred into the transmit register when SD is low.
16	DATA REQUEST	DTA RQST	DATA REQUEST is an open drain output which is set high when the transmitter holding register is ready to accept more data.
17	MESSAGE COMPLETE	$\overline{\text { MSG CMPLT }}$	In the receive mode the MESSAGE COMPLETE output is set low when the appropriate number of data words have been received. In the transmit mode, MSG CMPLT indicates that the appropriate number of command, status or data words have been transmitted. When the COM 1553A is a bus controller, MSG CMPLT will be asserted low when 33 command status or data words have been transmitted. MSG CMPLT is an open drain output.
18	TRANSMIT ENABLE	TXENA	A TRANSMIT ENABLE signal will be sent to the Manchester Encoder to initiate transmission of a word. TXENA is generated under the following conditions: 1) COM 1553A is a bus controller: A TXMODE pulse will set TXENA. A second TXMODE pulse will reset TXENA. 2) COM 1553A is a remote terminal. A Transmit Command from the Controller will cause a TRANSMIT INTERRUPT (see pin 6). When this is acknowledged by a TXMODE pulse from the system, TXENA will be set. TXENA will then be reset by either A) Send Data Command associated with the last data word. B) a second TXMODE pulse. 3) COM 1553 A is a remote terminal. The falling edge of a DATA SYNC associated with the last data word of a message while in the receive mode. TXENA will be reset during the next SEND DATA envelope.
19	TRANSMIT CLOCK	TXCLK	Transmitter shift clock.
20	TRANSMIT NRZ	XMIT NRZ	Serial data output to the Manchester Encoder.
21	BUS CONTROLLER	$\overline{\mathrm{BC}}$	$\overline{B C}$ determines whether the COM 1553 A is acting as bus controller ($\overline{\mathrm{BC}}=0$) or as a remote terminal ($\overline{\mathrm{BC}}=1$).
22	TRANSMIT MODE	TXMODE	$\overline{T X M O D E}$ is a system input controlling transmission. See TXENA (pin 18).
23	TAKE DATA ENABLE	TDE	$\overline{T D E}$ is an input from the system initiating transmission. Two $\overline{T D E}$ pulses are required for each 16 bit data word, one for each 8 data bits placed on DØ-D7.
24-31	DATA BUS	D0-D7	Bidirectional 8 bit Data Bus to the system. DØ is the LSB. Dø-D7 present open drain outputs.
32	READ DATA ENABLE	$\overline{\text { RDE }}$	$\overline{R D E}$ is an input from the system instructing the COM 1553A to place the received data onto Dø-D7. Two $\overline{\text { RDE }}$ pulses are required per 16 bit data word, one for each 8 bits.
33-37	ADDRESS	AD5-AD1	AD1-AD5 provide addressing to the COM 1553A. Each input has a pull-up resister allowing simple switching to ground to select the user address.
38	POWER SUPPLY	Vcc	+5 Volt supply.
39	$\overline{\text { BROADCAST }}$	$\overline{\text { BDCST }}$	$\overline{\text { BDCST }}$ is set low when a "broadcast" command word (the address bits all set to "one") is being received. BDCST is reset by IA.
40	GROUND	GND	Ground

The COM 1553A is considered in the receive mode when TXENA $=0$. The most significant bit of both command and data words is received first.
Message reception is initiated when CMD SYN goes high. The next 16 receive clocks are used to shift serial data into RCV NRZ.
The first 5 bits of a command word designate a remote terminal address. These 5 bits are compared with AD1-5. Should the address bits compare, the sixth bit is examined. If it is a zero, a RECEIVE INTERRUPT is generated. If it is a one, a TRANSMIT INTERRUPT is generated.
Bit fields 7-11 and 12-16 are examined for all zeros. All zeros in bit field 7-11 denotes a "ZERO MESSAGE" and all zeros in bit field 12-16 denotes a "ZERO WORD."
Receipt of a data word is indicated when DTA SYN goes high.
When DTA SYN or CMD SYN goes low, the contents of the 16 bit receive register are loaded into the receive buffer. The buffer is organized into two groups of 8 bits each. The most significant 8 bits (byte 1) will be enabled onto the 8 bit data bus on receipt of the first $\overline{\text { RDE }}$ pulse ($\overline{\mathrm{RDE}}$). The second byte will be enabled on receipt of the second $\overline{R D E}$ pulse ($\overline{\mathrm{RDE}}$).
A DATA AVAILABLE is generated for data words only. However, data will be available on Dø-D7 for both command and data words.

If 32 clocks are received after the rising edge of CMD SYN or DTA SYN an "Idle Line Reset" condition exists. This implies that a new CMD SYN or DTA SYN has not yet been received within 16 clocks of the fall of the previous sync signal. The "Idle Line Reset"will reset the following signals:

REC INT	" 0 " MSG FLG
TX INT	$0 "$ WRD FLG

When the commanded number of data words have been received, a MESSAGE COMPLETE signal is generated.
As the transmitter and receiver registers operate independently, the COM 1553A will receive its own transmission. The following signals are inhibited during transmission:
$\overline{\mathrm{BC}}=0$

REC INT	DAT AVL
XMT INT	IVWF
BRD CST	REC INT
QWF	XMT INT
ØMF	صMG
JAM MESSAGE ERROR*	OWF
	BRD CST JAM MESSAGE ERROR*

*JAM MESSAGE ERROR is an internal signal. See OPERATION...TRANSMIT MODE.

OPERATION...TRANSMIT MODE

The COM 1553A is considered in the transmit mode when TXENA $=1$. This is caused by a TXMODE pulse (see description of pin functions, pin 18). The TXMODE pulse in turn is a system response to a transmit command from the receiver.

When the Manchester Encoder receives TXENA $=1$, it will respond with SEND DATA $=1$. The COM 1553A will then send the system a DATA REQUEST.
Data is loaded into the transmitter data buffer from the 8 bit data bus by pulsing TDE. The 8 most significant bits are loaded in by the first TDE pulse (TDE1), the 8 least significant bits by the second TDE pulse (TDE2).
When SEND DATA (pin 15) is low, the transmitter shift register inputs will follow either the transmit buffer output, JAM ADDRESS or JAM MESSAGE ERROR signals. When SEND DATA is high, the shift register parallel inputs are disabled and the shift register contents are shifted out in NRZ form using the 16 negative edges in the send data envelope.
To facilitate transmission of the status word from a remote terminal, the COM 1553A will "jam" the first (most significant) 6 bits of the status word into the transmit register when $\overline{B C}$ is high. These bits will automatically be sent at the first SEND DATA pulse. In general for MIL-STD-1553A the remaining 10 bits will normally be all zeros and will automatically be sent out as such. If it is desired to send additional status information (for MIL-STD-1553B), a TDE1 pulse will load
the least significant 2 bits of the first 8 bit byte, and a TDE2 will load all 8 bits of the second byte. Note that these TDE pulses must be sent (and data presented) before the first SD $=1$ response from the Manchester Encoder.
A JAM ADDRESS occurs when 1) a transmit command is addressed to the COM 1553A 2) A TXMODE pulse is received and 3) a valid word signal is received. Upon a JAM ADDRESS the COM 1553A will load its address into the first 5 bits of the transmit register.
Alternatively, a JAM ADDRESS will also occur at the fall of the last data sync after valid receive command has been detected.
The JAM ADDRESS function will be inhibited if a " 0 " word and " 0 " message condition exists in the command word. The JAM ADDRESS will be reset by the leading edge of SEND DATA.
The JAM MESSAGE ERROR function occurs when, in the receive mode, a data word is not followed by a VALID WORD signal. JAM MESSAGE ERROR consists of loading a one in the sixth bit location of the transmit shift register (the message error location).
JAM MESSAGE ERROR is inhibited when the transmit command word contains " 0 " Message and " 0 " Word fields.
When the commanded number of data words has been transmitted a MESSAGE COMPLETE signal will be generated.

GENERAL OPERATION NOTES

1. $\overline{\text { BUS CONTROLLER. When }} \overline{\mathrm{BC}}=0$, signifying that the COM 1553 A is the bus controller the following is true:
A. DTA AVL is generated on the rising edge of the 17 th receive clock following a Command Sync or Data Sync. This allows the bus controller to receive command, status or data words regardless of their address.
B. TXENA is contingent only on TXMODE. A bus controller can therefore transmit whenever it desires.
C. The jam functions are inhibited.
2. INVALID WORD FLAG. When $\overline{B C}=0$, IVWF will be set if the Valid Word input (from the Manchester decorder) does not go high following receipt of all words. This includes words received from the same device's transmitter. (This provides a validity test of the controller transmission).
When $\overline{B C}=1$, IVWF will be set if Valid Word does not go high following receipt of all command and address words addressed to the terminal.
IVWF will be set for the following conditions:

Message type	Word	Terminal is	IVWF generated
Transit Group	Transmit command	receiving	yes
	Status word	transmitting	no
	Data word	transmitting	no
Receive Group	Receive command	receiving	yes
	Data word	receiving	yes
	Status word	transmitting	no
Receive/Transmit	Receive command	receiving	yes
Group (this	Transmit command	receiving	no
terminal addressed	Status word	receiving	no
to receive)	Data word	receiving	yes
	Status word	transmitting	no
Receive/Transmit	Receive command	receiving	no
group (this terminal	Transmit command	receiving	yes
addressed to	Status word	transmitting	no
transmit)	Data word	transmitting	no
	Status word	receiving	no

 supply is within specified limits, of 10 microseconds. $\overline{\mathrm{POR}}$ may also occur asynchronously anytime after power has stabilized.
$\overline{P O R}$ initializes the following outputs:

ØMG	$\overline{\text { REC INT }}$	$\overline{\text { TDE }}$
ØWF	$\overline{M S G ~ C M P L T ~}$	DTA AVL
$\overline{\text { BRD CST }}$	IVW	TXENA
$\overline{\text { XMT INT }}$	RDE	DTA RQ

The following circuit may be used to implement $\overline{\mathrm{POR}}$.

4. WORD COUNT: Word count is decoded as follows:

D1	D2	D3	D4	D5	Word Count
0	0	0	0	1	1
0	0	0	1	0	2
1	1	1	1	1	31
0	0	0	0	0	32
					40

TRANSMIT TIMING FIGURE 1

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground . -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the $A C$ power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \pm 5 \%$, unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS					
Input Voltage Levels Low Level, VIL High Level, $\mathrm{V}_{\mathbf{\prime}}$	3.0		0.8	V	
Output Voltage Levels Low Level Vol High Level $\mathrm{Voн}^{\text {о }}$ Low Level Vol	3.0	4.0	0.4 0.4	V V V	lol $=-1.6 \mathrm{~mA}$, except open drain Іон $=100 \mu \mathrm{~A}$, except open drain los $=-1.6 \mathrm{~mA}$, open drain output
Output Leakage, İo			10	$\mu \mathrm{A}$	
Input Current, AD1-AD5		60		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
Output Capacitance		5	10	pf	
Input Capacitance		10	25	pf	
Power Dissipation			500	mW	

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
AC CHARACTERISTICS						
Clock Frequency		980	1000	1020	KHz	
Clock Duty Cycle		45	50	55	\%	
Rise and fall times, $\overline{\mathrm{IA}}, \overline{\text { TDE }}$ TXMODE, SWE, RDE	tr, tf			20	ns	
rise and fall times, all other inputs	tr, tf			50	ns	
receiver clock-NRZ	trn			65	ns	figure 3B
receiver clock-sync delay	tsp			85	ns	figure 3B
receiver clock-VW delay	trv			100	ns	figure 3B
VW reset delay	tvs			500	ns	figure 3C
transmit clock-TX ENA delay	ttx	25			ns	figure 4A
TX ENA pulse width	txw	60			ns	figure 4A
transmit clock-send data set-up	tis			40	ns	figure 4B
transmit clock-send data hold time	tst			140	ns	figure 4C
transmit clock fall to NRZ	tin	0			ns	figure 4B
transmit clock rise to NRZ	tnt	95			ns	figure 4B
TXMODE pulse width	tmw	150			ns	figure 5A
TXMODE to TX ENA delay	tmx			750	ns	figure 5B
VALID word to TX ENA delay	tux			750	ns	figure 5B
Data sync to TX ENA delay	tox			750	ns	figure 5C
TX ENA reset delay	tsx			750	ns	figure 5C
DATA SET-up time	to1	100			ns	figure 6A
TDE pulse width	to2	150			ns	figure 6A
Data Hold time	to3	100			ns	figure 6A
Cycle time	to4	450		16000	ns	figure 6A
DTA RQST Delay	tos	450			ns	figure 6A
Output Enable time	to6	100			ns	figure 6B
RDE Pulse width	tor	150			ns	figure 6B
receive cycle time	tos	450		17000	ns	figure 6B
Flag delay time	tog	450			ns	figure 6B
Output disable time	to10	100			ns	figure 6B
SEND DATA delay	to11	2.5		3.5	$\mu \mathrm{s}$	figure 6C
TDE off delay	to 12	1.5			$\mu \mathrm{s}$	figure6C
TDE1 delay	to 13	500			ns	figure 6C
SYN to RDE	tol4	500			ns	figure 6D
RDE to SYN	to 15			2.5	$\mu \mathrm{s}$	figure6D
Status word Enable	tse			100	ns	figure 8A
Status word Disable	tso			100	ns	figure 8A
Flag delay time	tcf			1	$\mu \mathrm{s}$	figure 8B
VW delay time	tcv			90	ns	figure 8B
IVWF delay time	tcı			450	ns	figure 8B
DTA AVL delay time	tco			500	ns	figure 8B
DTA RQST delay time	tss			450	ns	figure 8C
BRD CST delay time	tre			2	$\mu \mathrm{s}$	figure 8C
$\overline{\text { BRD CST pulse width }}$	tew	1			$\mu \mathrm{s}$	figure 8D
flag reset delay	tib			750	ns	figure 8D, 8E
Interrupt delay	tri			1.5	$\mu \mathrm{s}$	figure 8D
IA pulse width	tiA	150			ns	figure 8D
Interrupt pulse width	tiw	1			$\mu \mathrm{s}$	figure 8D
Flag reset time	ter			450	ns	figure 8 F
DTA AVL reset delay	tro			750	ns	figure 8 F
IVWF reset delay	trv			750	ns	figure 8 F
MSG CMPLT turn-on delay	tmr			1.5	$\mu \mathrm{s}$	figure 9A, 9B
MSG CMPLT turn-on delay	tma			1.5	$\mu \mathrm{s}$	figure9A, 9C

RECEIVE TIMING FIGURE 2

RECEIVER INPUT TIMING FIGURE 3
3A

3B

3C

CMD/DATA SYNC

TRANSMITTER TIMING FIGURE 4

4B

4C

TRANSMIT ENABLE (TX ENA) TIMING FIGURE 5

6A

6B

DATA BUS TIMING FIGURE 6

6C

NOTE: SEND DATA RISING EDGE INITIALIZES $\overline{T D E}$ TO $\overline{T D E 1}$ STATE

6D

$\overline{\text { IA }}$ RESETS FIGURE 7

$\overline{I A}$ OCCURRING DURING ZONE A RESETS: BRD CST. TX INT. REC INT. TA OCCURRING DURING ZONE B RESETS: BRD CST. TX INT. REC INT. "0" MSG FLG. IA OCCURRING DURING ZONE C RESETS: BRD CST. TX INT. REC INT. "0" MSG FLG. " 0 " WRD FLG.

STATUS FLAGS FIGURE 8

8A

8D

8E

*RDE 2
If RDE is not used to reset IVWF and RDE, then they are
reset by RCV CLK 14 as shown below. reset by RCV CLK 14 as shown below.

MESSAGE COMPLETE FIGURE 9
BUS CONTROLLER MODE

*WORD COUNTER IS PRESET TO 33
** $\overline{\text { MSG CMPLT }}$ SET tme MAX AFTER RISE OF 33RD SEND DATA PULSE

REMOTE TERMINAL, RECEIVE COMMAND RECEIVED

9B

*WORD COUNTER PRESET TO COUNT IN COMMAND WORD
**MSG CMPLT GENERATED BY LAST DATA SYNC OF THE MESSAGE GROUP

REMOTE TERMINAL, TRANSMIT COMMAND RECEIVED
हС

*WORD COUNTER PRESET TO TRANSMIT COMMAND WORD FIELD PLUS 1. THIS ALLOWS FOR THE STATUS WORD.
*MSG CMPLT GENERATED BY THE LAST SEND DATA OF THE TRANSMIT MESSAGE GROUP.

TYPICAL SYSTEM OPERATION

OPEN DRAIN OUTPUT

FIGURE 10

D0-D7 INPUT/OUTPUT FIGURE 11

OTHER OUTPUTS

FIGURE 12

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications: consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is inssumed for inaccuracies. Furthermore, such information does not convey to the purchaser, of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

MIL-STD-1553B "SMART®"

FEATURESSupport of MIL-STD-1553BOperates as both Remote Terminal and Bus ControllerManchester II Serial Biphase Input/Output16 bit Microprocessor compatibleCommand/Data Sync Detection/IdentificationAutomatic Command Response GenerationOn-Chip Address RecognitionError Detection For:
Sync Errors
Parity Errors
Word Count Errors
Bit Count Errors Invalid Manchester Code Incorrect Address Incorrect Bus Response TimeTTL CompatibleRecognizes Mode Codes and Broadcast CommandsProvides DMA handshaking signalsCOPLAMOS® n-Channel MOS Technology

PIN CONFIGURATION

GENERAL DESCRIPTION

The COM1553B SMART® (Synchronous Mode Avionic Receiver-Transmitter) is a 40 -pin COPLAMOS ${ }^{\circledR}$ n-Channel MOS/VLSI circuit designed to simplify the interface of a microprocessor or buffer to the serial MIL-STD-1553B data bus.

The COM1553B is a double buffered serial to parallel, parallel to serial converter. It receives serial Manchester II biphase encoded data from a 1553B bus receiver and converts it to 16 bit parallel data. When receiving Manchester II data, the COM1553B detects and identifies sync polarity, reconstructs the clock, detects zero crossing, checks for the proper number of bits and performs a parity check on the incoming data. In addition to parity check, the COM1553B also checks for sync errors, invalid Manchester code, improper word count, incorrect address and incorrect bus response time. The transmitter in turn, accepts 16 bits parallel data and serially transmits it as Manchester II data,
appending the appropriate sync and parity.
The COM1553B recognizes protocol commands, and automatically generates the proper response, thereby offloading what otherwise would be microprocessor tasks. This feature eliminates critical software timing requirements.
The COM1553B is designed to work both as a Bus Controller and Remote Terminal, making it universal within the MIL-STD-1553B environment. The COM1553B automatically loads and recognizes its own address. It determines the type of transfer required in both the Bus Controller and Remote-Terminal modes and generates the proper control signals to complete the transfer. It automatically transmits the status word and detects message errors and mode commands. Furthermore, it generates the control signals for DMA operation, therefore eliminating processor intervention.

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{gathered} \hline 1-7,14-21, \\ 40 \\ \hline \end{gathered}$	16-bit Data Bus	D0-D15	Three-state bidirectional data lines used to transfer Command, Data, Error and Status Words between the COM1553B and external memory.
8	Transmit Mode	TXMODE	This output signal when high indicates that the COM1553B is transmitting information on the 1553B bus.
9	Power On Reset	POR	Input signal used to initialize or reset the Error registers. The RT address must be reloaded after POR is issued.
10	12 MHz Clock	$\begin{gathered} 12 \mathrm{MHz} \\ \text { CLK } \\ \hline \end{gathered}$	12 MHz clock input.
11	Complementary Manchester In	$\overline{\text { MANIN }}$	This input is low when there is no data on the bus. A high level indicates that the data is in its negative state (Refer to receive waveform, figure 3).
12	Manchester In	MANIN	This input is low when there is no data on the bus. A high level indicates that the data is in its positive state (Refer to receive waveform, figure 3).
13	Mode Code Flag	MCF	Output signal that is active high when a mode command (all l's or all 0's in subaddress) has been detected.
22	Power Supply	VCC	+5 volts DC supply.
23	Write Enable	WE	Output signal. When low, $\overline{\mathrm{WE}}$ indicates that the data on the 16 bit data bus is stable and can be written into the external memory.
24	Valid Command	VC	Output signal that is pulsed high to signify the reception of a valid command.
25	Read/Write	$\mathrm{R} / \overline{\mathrm{W}}$	Output signal that indicates whether a DMA transaction is a COM1553B read (when high) or a write (when low) operation.
26	Invalid Message	$\overline{\mathrm{M}}$	Output signal which is pulsed low at the same time as MC to indicate that a message error has occurred. IM is also pulsed low while MC remains high if there are errors in the Command word with matching address.
27	Message Complete	$\overline{\mathrm{MC}}$	Output signal used as either an interrupt or flag to the processor whenever a COM1553B transaction has been completed.
28	Data Transfer Acknowledge	$\overline{\text { DTACK }}$	This input signal when low indicates that the Data Transfer Request (DTR) and BGACK has been acknowledged and data is on the data bus.
29	Command Strobe	$\overline{\text { CSTR }}$	This input signal when low is used to inform the COM1553B that a Command Control Code is available in external memory. When the COM1553B is ready, it issues a Command Strobe Acknowledge and initiates a memory read cycle to load the Command Control Code bits CB2-CB0.
30	Power Supply	VBB	-5 volts DC supply voltage.
31	Power Supply	VDD	+12 volts DC supply.
32	Bus Grant Acknowledge	BGACK	This input signal, when low, indicates that the processor has acknowledged DTR and relinquished the data bus.
33	Remote Terminal/Bus Controller	$\mathrm{RT} / \overline{\mathrm{BC}}$	When this input is high the COM1553B operates as a Remote Terminal. When RT/BC is low, the COM1553B operates as a Bus Controller.
34	Command/Data	C / \bar{D}	This output signal during memory write operations indicates either a Command or Data Word transfer. A low level indicates that the COM1553B is writing a Data Word, Status Word, the contents of the Error Register, or the contents of the Last Command Register into external memory. A high level indicates that the transferred word is a Command Word. During memory read operations this output is low. It goes high to indicate that data has been latched internally and the read operation is completed.
35	Data Transfer Request	$\overline{\text { DTR }}$	Output signal that initiates a DMA transfer with the processor.
36	Command Strobe Acknowledge	$\overline{\text { CSTRA }}$	This output pulse acknowledges the receipt of the command strobe and initiates the Command Control Code (CB2-CB0) transfer.
37	Complementary Manchester Output	$\overline{\text { MANOUT }}$	This output signal is high when the COM1553B is not transmitting. A low level indicates that output data is in a positive state (refer to driver waveform, figure 4).
38	Manchester	MANOUT	This output signal is high when the COM1553B is not transmitting. A low level indicates that output data is in a negative state (refer to driver waveform, figure 4).
39	Ground	GND	Ground

FUNCTIONAL DESCRIPTION

The COM1553B is organized into the following five sections:

Manchester Encoder/Decoder

This section performs the manchester encoder and decoder functions and code error check. The receiver continuously monitors the MANIN and the MANIN input lines for a valid sync. After the reception of the 3 bit sync, the receiver is in full synchronization. It then checks for transition errors and correct (odd) parity. If an error is detected in the Command Word the receiver resets itself, pulses IM and waits for another valid sync. If any errors are detected in Data and Status Words, the appropriate error bits in the Status and Error register are set.
The transmitter section encodes the NRZ data from the data bus into Manchester II and appends, depending on word type, the proper sync and parity.

State Sequencer Logic

The State Sequencer section generates the appropriate signals to various internal sections to control the overall device operation.

Inputs to the State Sequencer which establish its operational modes are as follows:

Remote Terminal/Bus Controller ($\mathrm{RT} / \overline{\mathrm{BC}}$)

Determines whether the data terminal is operating as a Remote Terminal or as a Bus Controller. As a result of Dynamic Bus Allocation, any terminal shall be capable of performing either function at different times.

Command Control Code bits D2-DO (CB2-CBO)

These Command Control Code bits determine the type of memory operation the COM1553B will execute. Transfer of these commands to the COM1553B are initiated by asserting Strobe Command (CSTR) low. This informs the COM1553B that a command is available in external memory. When the COM1553B acknowledges the CSTR signal, it sets the CSTRA output low. The CSTR must be reset within $1.5 \mu \mathrm{~s}$ after CSTRA. The COM1553B then initiates a memory read cycle by setting R / \bar{W} high, C/D low, and DATA TRANSFER REQUEST (DTR) low. When the Command Control Code bits are valid on the bidirectional data bus (D2-

D0), $\overline{\text { DTACK }}$ and $\overline{\text { BGACK }}$ are generated by the processor and these bits are loaded into the COM1553B 3-bit latch decode register. The command is then decoded in accordance with Table A. Timing associated with loading these control bits into the COM1553B is shown in Figure 1.

Transmit Last Command

Allows the State Sequencer to bypass a memory read cycle to external memory and transmit the Last Command from the TRLC register following the Status Word transmission.

Broadcast

When the address field of the Command Word is all ones (11111), the State Sequencer is informed that a Bus Controller or a Remote Terminal is transmitting a Broadcast Command.

Word Count Zero

Input from the 5-bit counter and count decode logic informing the State Sequencer that all Data Word memory cycles are complete.

Sync Input

Indicates the type of sync word just strobed into the receive register.

Address Compare

When programmed as a Remote Terminal, the COM1553B compares the contents of the address register with the address field of the received Coninand Word. If the addresses compare, the State Sequencer will respond to the received command.

Any Error

This input to the State Sequencer indicates that one of the seven possible errors have been set in the error register at the end of a message (Refer to Error register).

Contiguous Word

Set if there is a transition $2 \mu \mathrm{~s}$. after the parity transition of the last word, this signifies that a contiguous word follows the word presently in the receive register (Refer to figure 5).

Error Detection Logic

The error detection logic of the COM1553B detects the following errors:

Improper Sync

One or more words have been received with incorrect sync polarity (For example a Status Word with Data Sync).

Invalid Manchester II Code

One or more words have been received with a missing transition during the $17 \mu \mathrm{~s}$. data and parity bit time.

Information Field Greater Than 16 Bits

The decoder has detected a transition within one bit time ($1 \mu \mathrm{~s}$.) following the parity bit in one or more words.

Odd Parity Error

One or more words have been received with a parity error.

Improper Word Count

An improper word count error occurs when the number of Data Words received is not equal to the number of words indicated in the word count field of the Command Word. In the case of a Mode Code without data, no Data Words should follow the Mode command. Mode Codes with data should consist of only one Data Word. If the contents of the word counter are not zero, and there is no contiguous Data Word, then the receive message is considered incomplete (e.g., fewer words were received than indicated by the word count in the Command word). If the contents of the word counter are zero and there is a transition detected $2 \mu \mathrm{~s}$. after the parity transition of the last Data Word, then this also will cause an improper word count. In either case, the Message Error bit of the Status Word is set and not transmitted and the invalid message $(\overline{\mathrm{IM}})$ output pin pulsed at the same time as the message complete ($\overline{\mathrm{MC}}$) signal output.

Response Time

The amount of time between the end of transmission of a Command or Data Word and the Status Word reply by a

Remote Terminal should be less than $14 \mu \mathrm{~s}$. If the response is greater than $14 \mu \mathrm{~s}$. the response error bit is set in the error register.

Address Mismatch

An address mismatch occurs when a Bus Controller detects a mismatch between the address of the Status Word reply from a Remote Terminal and the Remote Terminal address of the Command.

Internal Register Description

Remote Terminal Address And Status Code Register

This register is loaded when the processor issues a load Remote Terminal Address (RTA) command. The word that is loaded in this register consists of 9 bits of status information (D0-D8) and the 5-bit address (D11-D15). The Remote Terminal Address may be checked any time by reading out the Error register. The RTA and Status Code register must be loaded before the COM1553B may respond as a Remote Terminal.

Table 1 defines the data bus bits which correspond to the Remote Terminal Address and Status Code register and Status Word that transmitted. Bits D0, D2, D3 and D8 are double buffered to allow the RT to retain this information after the Status Code register is updated. For all legal commands, other than Transmit Last Status and Transmit Last Command Mode command, the Status Word register is updated with these four bits, Any Error and the Broadcast flag. The Dynamic Bus Control and Terminal Flag bits are modified by the appropriate Mode Code commands whereas, the Broadcast Flag and Any Error bits are set by the COM1553B internal logic. The Reserved Bits and the RT address bits are transferred directly into the Status Word register during the RTA and Status Code command.

Bits D0, D2, D3, and D5-D9 are cleared after transmission for all commands except Transmit Last Status and Transmit Last Command Mode Code.

TABLE 1

Data Bus Bit	RTA and Status Code Reg. Bits	Internal Logic Signals	Status Word Transmitted
D15 (MSB)	RTA Bit 4 (MSB)	-	RTA Bit 4 (MSB)
D14	RTA Bit 3	-	RTA Bit 3
D13	RTA Bit 2	-	RTA Bit 2
D12	RTA Bit 1	-	RTA Bit 1
D11	RTA Bit 0 (LSB)	-	RTA Bit 0 (LSB)
D10	Not used	Any Error	Message Error
D9	Instrumentation Bit	-	Instrumentation
D8	Service Request Bit	-	Service Request
D7	Reserved	-	Reserved
D6	Reserved	-	Reserved
D5	Reserved	-	Reserved
D4	Not Used	Broadcast Flag	Broadcast Flag
D3	Busy	-	Busy
D2	Subsystem Flag Bit	-	Subsystem Flag
D1	Dynamic Bus Control Acceptance Enable Bit (See Note)	Dynamic Bus Mode Code command	Dynamic Bus Control Bit
D0 (LSB)	Terminal Flag Enable Bit (See Note)	Inhibit Terminal Flag (set) or Override Terminal Flag (reset) Mode Code command	Terminal Flag

Note: When the Dynamic Bus Control Acceptance Enable bit is set, the RT will accept a Dynamic Bus Mode code request. If this bit is reset the RT will reject a Dynamic Bus Mode Code command request. The Terminal Flag Bit (if enabled) is only set high if no Inhibit Terminal Mode Code command has been received, or if an Override Inhibit Terminal bit command is received.

Last Command Word Register

The last valid Command Word received by a Remote Terminal is stored in an internal 16 bit Last Command Register. This makes it readily available for transmission onto the data bus whenever the Remote Terminal receives a Mode Command to transmit the last Command Word. The Last Command Register contents are automatically written into external memory following a receive or a transmit message.
As a bus controller (BC), the Last Command Register is used to hold the command transmitted before the present command. In RT-RT transfers this register of the BC holds the receive command while the transmit command is being transmitted.
The processor has the option of reading the Last Command Register of either a bus controller or remote terminal, by issuing a Read Last Command Register command code.

Error Register And RTA Register

(Error Register)

A 7-bit error register is provided in the COM1553B to hold any errors associated with the previous message. If one or more of the 7 error types exists, the COM1553B asserts the Invalid Message output pin ($\overline{\mathrm{IM}) \text { at the same time that }}$ Message Complete ($\overline{\mathrm{MC}}$) is asserted, cueing either a Remote Terminal or a Bus Controller that an error occurred in the previous message. If desired, the processor may read out the 16 -bit error word by issuing a read error register command code. When operating as a Remote Terminal, the COM1553B will write the Receive register, Error register and

Last Command register automatically into external memory at the end of each command message because these registers may change before the processor has determined the necessity of reading them. The Error register may be read anytime during a message except during message transfers.

TABLE 2
The 16-bit error word is defined as follows:

DATA BUS	ERROR BIT
LINE	DEFINITION
D15	RT Address Bit 4
D14	RT Address Bit 3
D13	RT Address Bit 2
D12	RT Address Bit 1
D11	RT Address Bit 0
D10	Unused
D9	Improper Sync
D8	Address Mismatch Error
D7	Improper Word Count
D6	Response Time Error
D5	Information Field $>$ 16 Bits
D4	Unused
D3	Invalid Manchester II
D2	Parity Error
D1	Unused
D0	Unused

[^4]
Mode Detection Logic

Both receive and transmit Command Words for a Remote Terminal and Bus Controller are decoded by the Mode Detection Logic. The Mode Detection Logic examines the following Command Word field to establish the correct operating mode for the COM1553B (Refer to TABLE B).

Subaddress/Mode Code Field (D5-D9)

 and Data Word Count/Mode Code (D0-D4)This field Determines if the command is a normal command or a Mode command. A subaddress field of 00000 or 11111 implies a Mode command. All other codes are interpreted as a subaddress. Once a Mode Command is detected the most significant bit of the Data Word Count/ Mode Code field is decoded. A most significant bit of "zero" implies no associated data with the Code Command. A "one" in this position implies that a Data Word will follow.

The COM1553B recognizes five Mode Code commands (Refer to TABLE B). Transmit Last Command or Transmit Last Status word Mode Code commands, when received by the COM1553B, will automatically transfer the contents of the Transmit Last Command or Transmit Last Status register onto the 1553B serial bus.

The Override/Inhibit Terminal Flag and Dynamic Bus Control Mode Code commands, when received by the COM1553B, may change the state of the Terminal Flag and Dynamic Bus Control bits of the Status Word register. The Inhibit Terminal Flag Bit Mode Code command resets the Terminal Flag bit.

The Override Inhibit Terminal Flag Mode Code command enables the Terminal Flag bit if it was previously disabled. Finally, Dynamic Bus Control Mode Code command sets the Dynamic Bus Control bit in the Status Word if the Dynamic Bus Control Enable bit is high. If the enable bit is low, the Dynamic Bus Control bit in the Status Word remains low when a Dynamic Bus Control Mode Code command is received.

Broadcast Mode Code

Broadcast Mode Code Commands are acknowledged if the T / \bar{R} bit is low. If the T / \bar{R} bit is high all Broadcast Mode Code commands without associated Data words are acknowledged except Dynamic Bus Control and Transmit Last Status Word.
Illegal Broadcast Commands are not acknowledged; the IM output pin is, however, pulsed low.

OPERATION

When operating as either a Bus Controller or Remote Terminal, the COM1553B decodes the Command Word and determines the type of message transfer. Having determined the type of message transfer, the COM1553B generates the proper control and timing signals to complete the transfer (refer to Figure 2). The types of messages are listed below:

1) Bus Controller to Remote Terminal
2) Remote Terminal to Bus Controller
3) Remote Terminal to Remote Terminal
4) Mode Code without Data Word
5) Mode Code with Data Word (transmit)
6) Mode Code with Data Word (receive)
7) Broadcast Bus Controller to Remote Terminal
8) Broadcast Remote Terminal to Remote Terminal
9) Broadcast Mode Code without data
10) Broadcast Mode Code with data

Bus Controller Transaction (RT/ $\overline{\mathrm{BC}}$ of the COM1553B set low)

The following section describes each 1553B information transfer format from the Bus Controller viewpoint. A table showing external memory operation is also provided for each message format.

Note that all MIL-STD-1553B serial bus activity is initiated by the Bus Controller.

Bus Controller-to-Remote Terminal Transfer (BC to RT)

This message format covers transactions where the Bus Controller transmits a receive Command and Data Words to a Remote Terminal. Initializing the COM1553B is accomplished by the processor loading an external memory address counter with the starting address of the COM1553B memory control block (address where the Command Control Code CB2-CB0 resides). The Bus Controller processor next issues a Command Strobe (CSTR) and holds it low until the COM1553B issues a Command Strobe Acknowledge (CSTRA). The COM1553B then responds with a Data Transfer Request (DTR) which initiates a normal memory cycle.

Refer to figure 1 for timing associated with loading the Command Control Codes (CB2-CBO) into the COM1553B
prior to transmitting the Command Word.
The first memory cycle loads the Command Control Code bits CB2-CB0 from external memory into the COM1553B functioning as Bus Controller (BC). The BC decodes this command to determine the type of memory transaction to perform (refer to TABLE A). The next read cycle loads the Command Word into the BC command register and then transmits it onto the 1553B bus. This Command Word, while in the command register, determines the BC mode of operation. The BC then completes this BC to RT transaction by issuing a predetermined number of read cycles (determined by the value in the word count field of the Command Word) and transmitting the data onto the 1553B bus. After transmission of the last Data word, the BC initializes its response timer, expecting a Status Word from the remote terminal within $14 \mu \mathrm{~s}$.

After the reception of the Status Word, the BC initiates a memory write cycle which writes the Status Word into the external memory. If the BC doesn't receive the Status Word within the allowed response time the message error bit is set.

TABLE 3
$B C$ to RT (The BC transmits a receive command to the RT)

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2 ${ }_{\text {H }}$	READ*
2	RECEIVE	READ
	COMMAND	
3	DATA	READ
-	DATA	READ
-	DATA	READ
34	DATA	READ
35	STATUS	WRITE

*reads command control code bits CB2-CB0
** response time
X = don't care

Remote Terminal Transfer to Bus Controller

This message format covers transactions where the Bus Controller sends a transmit command to a Remote Terminal and requests data from it. Initialization of the BC for normal memory cycles is the same as the previous transfer. The difference between this transfer and the previous transfer is that after the Command Word is transmitted, the BC waits $14 \mu \mathrm{~s}$ for the Status Word and the requested number of Data Words. The Status and Data Words are written into external memory via write cycles as they are received by the $B C$.

TABLE 4
BC to RT (The BC transmits a Transmit Command to an RT)

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2 ${ }_{\text {H }}$	READ*
2	TRANSMIT	READ
	$\underset{\star *}{\text { COMMAND }}$	
3	STATUS	WRITE
4	DATA	WRITE
-	DATA	WRITE
-	DATA	WRITE
35	DATA	WRITE

*reads command control code bits CB2-CB0

* response time

X $=$ don't care

RT-to-RT Transfer

In this message format, the Bus Controller first issues a receive Command Word to the receiving Remote Terminal, followed by a transmit Command Word to the transmitting terminal. Next, the transmitting RT responds with a Status Word and the requested number of Data Words to both the receiving $R T$ and $B C$. The receiving $R T$ at the end of the message sends a Status Word to the BC. As Status and Data Words are received by the BC they are written into external memory.

TABLE 5
RT to RT

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX3	READ*
2	RECEIVE	READ
	COMMAND	
3	TRANSMIT COMMAND	READ
4	STATUS (transmitting RT)	WRITE
5	DATA	WRITE
-	DATA	WRITE
-	DATA	WRITE
36	DATA	WRITE
	**	
37	STATUS (receiving RT)	WRITE

*reads command control code bits CB2-CB0
** response time
X = don't care
Mode Code Command without Data
The Bus Controller transmits a specific Mode Command and expects a Status Word back from the addressed Remote Terminal.

TABLE 6

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2	
2	COMMAND	READ*
3	READ 3	STATUS

*reads command control code bits CB2-CB0
$\star *$ response time
X = don't care
Mode Command with Data
($B C$ receives a single word)
In this mode the Bus Controller issues a transmit Mode Command to an RT. The addressed Terminal responds to the Bus Controller with a Status Word and a single Data Word.

TABLE 7

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2	READ*
2	COMMAND	READ
3	$\star *$	STATUS
4	DATA	WRITE

[^5]
Mode Command with Data

($B C$ transmits a single word)
The Bus Controller issues a receive Mode Command and one Data Word to a Remote Terminal. A Status Word is returned by the Remote Terminal to the Bus Controller.

TABLE 8

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2 $_{\text {H }}$	READ*
2	COMMAND	READ
3	DATA	READ
4	A*ATUS	WRITE

*reads command control code bits CB2-CB0
**response time
X = don't care
Bus Controller (Broadcast) to Remote Terminal Transfer
In this mode the Bus Controller issues a Broadcast Command followed by a number of Data Words. In all Broadcast Command transfers a $B C$ will not expect to receive a Status Word back.

TABLE 9

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX2	READ*
2	RECEIVE	READ
3	COMMAND	
\cdot	DATA	READ
\cdot	DATA	READ
34	DATA	READ
DATA	READ	

RT to RT Transfer (Broadcast)

This transfer is similar to the normal RT to RT transfer with the exception that the Status Word is not returned by the receiving RT.

TABLE 10

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	XXX3	READ*
2	RECEIVE	READ
3	TRANSMIT	READ
	$\mathrm{COMMAND}_{\star \star}$	
4	StATUS	WRITE
5	DATA	WRITE
-	DATA	WRITE
-	DATA	WRITE
36	DATA	WRITE

*reads command control code bits CB2-CB0
$* *$ response time
X = don't care

THE FOLLOWING NOTE APPLIES TO THE CURRENT VERSION OF THE COM 1553B:

When operating as a Bus Controller in a RT (Remote Terminal) to RT transfer, the COM1553B may incorrectly set the Invalid Sync Bit in the Error Register if the status word response from the receiving RT occurs between 4 and 7 microseconds.
The Bus Controller (BC) may confirm that an error free message transmission occurred by requesting that the receiving RT transmit the last status word. If this status word matches the previous status word, then an error-free transmission occurred.
*reads command control code bits CB2-CB0
** response time
$X=$ don't care

Remote Terminal Transaction (RT/ $\overline{B C}$ input of the COM1553B set high)

The following section addresses each COM1553B information transfer format from the Remote Terminal viewpoint.

Bus Controller to Remote Terminal Transfer (BC to RT, where RT receives data)

In this transfer the COM1553B designated as the RT receives a command to receive data. As the Command Word is completely shifted into the receive shift register, the RT compares the Command Word address field with the preloaded Remote Terminal address. This determines if the message is addressed to the receiving RT. If the Command Word is valid, the RT issues a Data Transfer Request (DTR) to initiate a memory cycle. Once the processor relinquishes control of the data bus, during the Bus Acknowledge (BGACK) time, the Command Word is placed on the data bus.

The Subaddress field is thereafter decoded by external logic and the Command word is written into external memory. The RT then receives a predetermined number of Data Words (specified by the word count field). As each Data Word is received it is written into external memory. After the reception of the last Data Word the RT transmits the Status Word, the Message Error, Broadcast Flag, Terminal Flag, Subsystem Flag, Busy, and Service Request bits are updated for all commands except for the Transmit Status Word and Transmit Last Command Code commands. While transmitting the Status, the RT writes it into memory. The RT also writes the Last Command Register, Error Register and Receive Register into memory and then asserts Message complete.
Note that the receive register of the RT will contain the transmitted Status Word.

TABLE 11
BC TO RT (RT receives data from $B C$)

MEMORY ADDRESS	MEMORY CONTENTS	$\begin{aligned} & \text { COM1553B } \\ & \text { MEMORY } \\ & \text { OPERATION } \end{aligned}$
1	COMMAND	WRITE
2	DATA	WRITE
3	DATA	WRITE
-	-	WRITE
-	-	WRITE
34	$\underset{\star *}{\text { DATA }}$	WRITE
35	STATUS	WRITE
36	LAST	WRITE
	COMMAND	
37	ERROR	WRITE
	REGISTER	
38	RECEIVE	WRITE
	REGISTER	

Remote Terminal-to-Bus Controller Transfer (RT transmits data to BC)

The Remote Terminal receives a Transmit Command Word from the Bus Controller. The RT will then proceed to decode the Command Word, as in the previous case and within the response time transmits the Status Word.

While the Status Word is being transmitted the RT issues a write memory cycle to write the Status Word into external memory. Thereafter, the Data words are read from memory and transmitted. After the last word is transmitted the RT writes the contents of the Last Command Register, Error Register and the Receive Register into memory.

TABLE 12
Remote Terminal to Bus Controller (RT Transmits Data to BC)

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND $\star \star$ 2	WRITE
3	STATUS	WRITE
\bullet	DATA	READ
34	DATA	READ
35	DATA	READ
36	RAST	READ
37	ERRMOR	WRITE
	REGISTER	WRITE
	RECEIVE	WRITE

*** response time

Remote Terminal-to-Remote Terminal Transfers

From the Remote Terminal viewpoint, RT-to-RT transfers are similar to the RT to BC receive or transmit data
transfers. The only exception is that the receiving terminal waits for the first Data Word from the transmitting terminal. This satisfies the protocol requirement that the transmitting terminal first send its status to the controller before it transmits the data to the receiving terminal.

Mode Command with Data

(RT receives a Mode Code Command to transmit)
In this transfer, after the Transmit Mode Command is received, the RT transmits the Status and one Data Word.

TABLE 13

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND $* *$ 2	WRITE
3	STATUS	WRITE
4	LASA	READ
5	COMMAND	WRITE
6	ERROR REGISTER	WRITE
	RECEIVE	WRITE

*For a Transmit Last command Mode Code, Data is not read from memory but transmitted from the internal Last Command register.
** response time

Mode Code Command with Data

(RT receives a Mode Command to receive)
This transfer is similar to a Receive Command having only one Data Word.

TABLE 14

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND 2	WATA $\star \star$ 3
4	STATUS	WRITE
5	LAST	WRITE
6	COMMAND	WRITE
6	REGISTER	WRITE
	RECEIVE	WRITE

** response time

Bus Controller Broadcast Transfer to RT

The RT receives a Broadcast Command to receive data. If data received during a broadcast message is invalid, the COM1553B will set the message error bit.

TABLE 15 RT RECEIVE

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND	WRITE
2	DATA	WRITE
\cdot	DATA	WRITE
32	DATA	WRITE
33	DATA	WRITE
34	STATUS	WRITE*
35	CAST	WRITE
	ERRMAND	
	REGISTER	WRITE

*In all broadcast transfers, a memory cycle is shown for the Status Word but the RT does not transmit it on the 1553B bus.

Broadcast Mode Code Command with Data

This Broadcast Mode Code command is detected if the MSB of the word count field is a logical high.

Transmission of the Status Word is suppressed as in the previous case but is loaded into external memory.

TABLE 16 RT RECEIVE

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND	WRITE
2	DATA	WRIIE
3	STATUS	WRITE*
4	LAST	WRITE
5	COMMAND	WRITE
	ERROR	WRITETER

*In all broadcast transfers, a memory cycle is shown for the Status Word but the RT does not transmit it on the 1553B bus.

Broadcast Mode Code Command Without Data

This Mode Code command is detected if the MSB of the word count field is zero. This transaction is the same as the previous transfer except that there is no Data Word transfer.

TABLE 17

MEMORY ADDRESS	MEMORY CONTENTS	COM1553B MEMORY OPERATION
1	COMMAND	WRIIE
2	STATUS	WRITE*
3	LAST	
4	COMMAND	WRITE
ERROR	WRITE	
REGISTER	WITE	

*In all broadcast transfers, a memory cycle is shown for the Status Word but the RT does not transmit it on the 1553B bus.

Broadcast RT to RT Transfer

For this message transfer a Broadcast Command to receive is issued by the Bus Controller. This is followed by a normal Transmit Command to the transmitting Remote Terminal. The Remote Terminal responds with a normal transmit message format of Status Word and Data Word(s). The receiving terminals do not transmit a Status Word after receiving the data. However, they do go through a memory cycle to load the Status Word into their respective memories.
For the Remote Terminal receive transfer refer to Table 15. The only difference in this transfer is that there is a gap time between the Command and Data word.
For the Remote Terminal transmit transfer refer to Table 12. The only difference in this transfer is that the Receive Register is not written into memory.

MAXIMUM GUARANTEED RATINGS*

Storage Temperature Range ... -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any pin ... +15 V
Negative Voltage on any pin except VBB, with respect to ground ... 3 F
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $T_{A}=-55$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
VIL	Input Low Voltage	-0.3		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	3		$\mathrm{V}_{\text {cc }}$	V	
$V_{\text {OL }}$	Output Low Voltage			0.4	V	$\mathrm{l}_{\mathrm{LL}}=-3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4	4	5	V	$\mathrm{I}_{\mathrm{OH}}=.8 \mathrm{~mA}$
I_{L}	Input Leakage Current			10	$\mu \mathrm{A}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		10	25	pf	
C。	Output Capacitance		10	15	pf	
$\mathrm{C}_{\llcorner }$	Load Capacitance		100	150	pf	
P_{w}	Power Dissipation		0.8		w	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {Do }}$ $\mathrm{I}_{\text {cc }}$				$\begin{array}{r} 40 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
$\mathrm{Icc}_{\text {ci }}$				100 5	mA	

AC ELECTRICAL CHARACTERISTICS

	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
clk	clock frequency		12		MHz	50\% duty cycle
t_{r}	Clk, rise time		6		ns	
t_{1}	Clk, fall time		6		ns	
t_{1}	DTR and WE	0.5	0.6	1	$\mu \mathrm{s}$	
t_{2}	BGACK to DTR	0.8	1.3	2	$\mu \mathrm{S}$	
t_{3}	WE to DATA	50	100		ns	
t_{4}	DTACK to WE		1.5	2	$\mu \mathrm{S}$	
t_{5}	DTACK to R/W		1	1.5	$\mu \mathrm{S}$	
t_{6}	DTACK to C/D		1.5	2.5	μs	
t_{7}	$\overline{\text { CSTR }}$ to CSTRA			673	$\mu \mathrm{S}$	
t_{8}	$\overline{\text { CSTRA }}$ to CSTR			1.5	μs	
t_{9}	CSTRA width		500		ns	
t_{10}	C/ID to DATA	0				
t_{11}	CMD to IM			3.25	$\mu \mathrm{S}$	
t_{12}	1 M width			500	ns	
t_{13}	VC width			1	$\mu \mathrm{s}$	
t_{14}	VC to IM			1.75	$\mu \mathrm{S}$	
t_{15}	C/D to MC				ns	
t_{16}	$\mathrm{C} / \overline{\mathrm{D}}$ to IM			2.25	$\mu \mathrm{S}$	
t_{17}	C/D to MC			750	ns	
t_{18}	C/D to MC			1.25	$\mu \mathrm{s}$	
t_{19}	CMD to MCF reset			3.75	$\mu \mathrm{s}$	
t_{20}	CMD to MCF set			4.75	$\mu \mathrm{s}$	
t_{21}	CMD to VC			2.75	$\mu \mathrm{S}$	
t_{22}	C/D to MCF reset			1.5	$\mu \mathrm{S}$.
t_{23}	C/D to MCF set			1	μs	
t_{24}	POR width	2.5			$\mu \mathrm{S}$	
t_{25}	Receive CMD to $\overline{\text { DTR }}$			4.25	$\mu \mathrm{S}$	
t_{26}	Transmit CMD to $\overline{\text { DTR }}$			5.75	$\mu \mathrm{S}$	

AC CHARACTERISTICS

TYPICAL SYSTEM IMPLEMENTATION

INVALID MESSAGE (IM)
AS A RT
CASE 1

CASE 3 AN ERROR OCCURRED DURING A BROADCAST CMD

CID

CASE 4
NON BROADCAST CMD

AS A BC
CASE 5
A TRANSMIT OR RECEIVE BC TRANSFER
C/I

NOTE: Message complete and invalid message outputs of the COM 1553B are negative pulses i.e. MC and IM.

MESSAGE COMPLETE (MC) AS A RT

CASE 1 AT THE COMPLETION OF AN ERROR FREE BRO'ADCAST COMMAND TRANSACTION AFTER THE ERROR REGISTER IS WRITTEN INTO MEMORY.

CASE 2 AT THE COMPLETION OF A TRANSMIT OR RECEIVE COMMAND TRANSACTION AFTER THE DATA REGIST.ER IS WRITTEN INTO MEMORY.

AS A BC
CASE 3 WHEN THE BC ISSUES A RECEIVE COMMAND, THE MC SIGNAL OCCURS AFTER THE STATUS WORD IS WRITTEN INTO MEMORY.

WHEN THE BC ISSUES A TRANSMIT COMMAND, THE MC SIGNAL OCCURS AFTER THE LAST DATA WORD IS WRITTEN INTO MEMORY.

AS A BC OR RT
CASE 4 AT THE COMPLETION OF LOADING THE RT ADDRESS REGISTER OR READING THE DATA REGISTER.
C / \bar{D}

MC

CASE 5 AFTER READING THE ERROR REGISTER.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC re
at any time in order to improve design and supply the best product possible.

Asynchronous/Synchronous Transmitter-Receiver

ASTRO

FEATURES
-
SYNCHRONOUS AND ASYNCHRONOUS

Full Duplex Operations
SYNCHRONOUS MODE
Selectable 5-8 Bit Characters
Two Successive SYN Characters Sets Synchronization
Programmable SYN and DLE Character Stripping
Programmable SYN and DLE-SYN Fill
ASYNCHRONOUS MODE
Selectable 5-8 Bit Characters
Line Break Detection and Generation
$1-, 11 / 2-$ or 2 -Stop Bit Selection
Start Bit Verification
Automatic Serial Echo Mode
BAUD RATE-DC TO 1M BAUD
8 SELECTABLE CLOCK RATES
Accepts 1X Clock and Up To 4 Different 32X Baud Rate Clock Inputs
Up to 47\% Distortion Allowance With 32X Clock
SYSTEM COMPATIBILITY
Double Buffering of Data
8-Bit Bi-Directional Bus For Data, Status, and Control Words
All Inputs and Outputs TTL Compatible
Up To 32 ASTROS Can Be Addressed On Bus
On-Line Diagnostic Capability
ERROR DETECTION
Parity, Overrun and Framing

General Description

The COM1671 (ASTRO) is a MOS/LSI device which performs the functions of interfacing a serial data communication channel to a parallel digital system. The device is capable of full duplex communications (receiving and transmitting) with synchronous or asynchronous systems. The ASTRO is designed to operate on a multiplexed bus with other bus-oriented devices. Its operation is programmed by a processor or controller via the bus and all parallel data transfers with these machines are accomplished over the bus lines.

The ASTRO contains several "handshaking" signals to insure easy interfacing with modems or other peripheral devices such as display terminals. In addition, a programmable diagnostic mode allows the selection of an internal looping feature which allows the device to be internally connected for processor testing.

The COM1671 provides the system communication designer with a software responsive device capable of handling complex communication formats in a variety of system applications.

Data Access Lines - The DAL bus is an 8-bit bi-directional port over which all address, data, control, and status transfers occur. In addition to transferring data and control words the DAL bus also transfers information related to addressing of the device, reading and writing requests, and interrupting information.

Receiver Buffer - This 8-bit parallel register presents assembled received characters to the DAL bus when requested through a Read operation.
Receiver Register - This 8-bit shift register inputs the received data at a clock rate determined by Control Register 2. The incoming data is assembled to the selected character length and then transferred to the Receiver Buffer with logic zeroes filling out any unused high-order bit positions.

Syn Register - This 8-bit register is loaded from the DAL bus by a Write operation and holds the synchronization code used for receiver character synchronization. It serves as a fill character when no new data is available in the Transmitter Buffer during transmission. This register cannot be read onto the DAL bus. It must be loaded with logic zeroes in all unused high-order bits.
Comparator - The 8-bit comparator is used in the Synchronous mode to compare the assembled contents of the Receiver Register and the SYN register or the DLE register. A match between the registers sets up stripping of the received character, when programmed, by preventing the data from being loaded into the Receiver Buffer. A bit in the Status Register is set when stripping is effected. The comparator output also enables character synchronization of the Receiver on two successive matches with the SYN register.

DLE Register - This 8-bit register is loaded from the DAL bus by a Write operation and holds the DLE character used in the Transparent mode of operation in which an idle transmit period is filled with the combination DLE-SYN pair of characters rather than a single SYN character. In addition the ASTRO may be programmed to force a single DLE character prior to any data character transmission while in the transmitter transparent mode.
Status Register - This 8-bit register holds information on communication errors, interface data register status, match character conditions, and communication equipment status. This register may be read onto the DAL bus by a Read operation.

Control Registers - There are two 8-bit Control Registers which hold device programming signals such as mode selection, clock selection, interface signal control, and data format. Each of the Control Registers can be loaded from the DAL bus by a Write operation or read onto the DAL bus by a Read operation. The registers are cleared by a Master Reset.
Transmitter Buffer - This 8-bit parallel register holds data transferred from the DAL bus by a Write operation. This data is transferred to the Transmitter Register when the transmitter section is enabled and the Transmitter Register is ready to send new data.

Transmitter Register - This 8-bit shift register is loaded from the Transmitter Buffer, SYN register, or DLE register. The purpose of this register is to serialize data and present it to the serial data output.

Astro Operation

Asynchronous Mode

Framing of asynchronous characters is provided by a Start bit (logic 0) at the beginning of a character and a Stop bit(s) (logic 1) at the end of a character. Reception of a character is initiated on recognition of the first Start bit by a positive transition of the receiver clock, after a preceding Stop bit(s). The Start and Stop bits are stripped off while assembling the serial input into a parallel character.

The character assembly is completed by the reception of the Stop bit(s) after reception of the last character bit (including the parity bit, if selected). If the Stop bit(s) is a logic 1, the character is determined to have correct framing and the ASTRO is prepared to receive the next character. If the Stop bit(s) is a logic 0, the Framing Error Status flag is set and the Receiver assumes this bit to be the Start bit of the next character. Character assembly continues from this point if the input is still a logic 0 when sampled at the theoretical center of the assumed Start bit. As long as the Receiver input is spacing, all zero characters are assembled and error flags and data received interrupts are generated so that line breaks can be determined. After a character of all zeroes is assembled along with a zero in the Stop bit(s) location, the first sampled logic one is determined as a Stop bit and this resets the Receiver circuit to a Ready state for assembly of the next character.

In the Asynchronous mode the character transmission occurs when information contained in the Transmitter Buffer is transferred to the Transmitter Register. Transmission is initiated by the insertion of a Start bit, followed by the serial output of the character (including the parity bit, if selected), then the insertion of a $1,1.5$, or 2 bit length Stop condition. If the Transmitter Buffer is full, the next character transmission starts after the transmission of the Stop bit(s) of the present character in the Transmitter Register. Otherwise, the Mark (logic 1) condition is continually transmitted until the Transmitter Buffer is loaded.

Synchronous Mode

Framing of characters is carried out by a special Synchronization Character Code (SYN) transmitted at the beginning of a block of characters. The Receiver, when enabled, searches for two contiguous characters matching the bit pattern contained in the SYN register. During the time the Receiver is searching, data is not transferred to the Receiver Buffer, status bits are not updated, and the Receiver interrupt is not activated. After the detection of the first SYN character, the Receiver assembles subsequent bits into characters whose length is determined by the contents of Control Register 2. If, after the first SYN character detection, a second SYN character is present, the Receiver enters the Synchronization mode until the Receiver Enable Bit is turned off. If a second successive SYN character is not found, the Receiver reverts back to the Search mode.

In the Synchronous mode a continuous stream of characters are transmitted once the Transmitter is enabled. If the Transmitter Buffer is not loaded at the time the Transmitter Register has completed transmission of a character, this idle time will be filled by a transmission of the character contained in the SYN register in the Non-transparent mode, or the characters contained in the DLE and SYN registers respectively while in the Transparent mode of operation.

Astro Operation
 Receiver

The Receiver Data input is clocked into the Receiver Register by a 1 X Receiver Clock from a modem Data Set, or by a local 32X bit rate clock selected from one of four externally supplied clock.inputs. When using the 1 X clock, the Receiver Data is sampled on the positive transition of the clock in both the Asynchronous and Synchronous modes. When using a 32X clock in the Asynchronous mode, the Receiver Sampling Clock is phased to the Mark-To-Space transition of the Received Data Start bit and defines, through clock counts, the center of each received Data bit with $+0 \%,-3 \%$ at the positive transition 16 clock periods later.

In the Synchronous mode the Sampling Clock is phased to all Mark-To-Space transitions of the Received Data inputs when using a 32X clock. Each transition of the data causes an incremental correction of the Sampling Check by $1 / 32$ nd of a bit period. The Sampling clock can be immediately phased to every Mark-To-Space Data transition by setting Bit 4 of Control Register 1 to a logic one, while the Receiver is disabled.

When the complete character has been shifted into the Receiver Register it is transferred to the Receiver Buffer; the unused, higher order bits are filled with logic zero's. At this time the Receiver Status bits (Framing Error/Sync Detect, Parity Error/DLE Detect, Overrun Error, and Data Received) are updated in the Status Register and the Data Received interrupt is activated. Parity Error is set, if encountered while the Receiver parity check is enabled in the Control Registers. Overrun Error is set if the Data Received status bit is not cleared through a Read operation by an external device when a new character is transferred to the Receiver Buffer. This error flag indicates that a character has been lost; new data is lost while the old data and its status flags are saved.

The characters assembled in the Receiver Register that match the content of the SYN or the DLE register are not loaded into the Receiver Buffer, and the DR interrupt is not generated, if Bit 3 of Control Register 2 (CR23) or Bit 4 of Control Register 1 (CR14) are set respectively, and SYN Detect and DLE Detect are set with the next non SYN or non DLE character. When both CR23 and CR14 are set (Transparent mode), the DLE-SYN combination is stripped. The SYN comparison occurs only with the character received after the DLE character. If two successive DLE characters are received only the first DLE character is stripped. No parity check is made while in this mode.

Transmitter

Information is transferred to the Transmitter Buffer by a Write operation. Information can be loaded into this register at any time, even when the Transmitter is not enabled. Transmission of data occurs only when the Request to Send bit is set to a logic 1 in Control Register 1 and the Clear To Send input is logic 0 . Information is normally transferred from the Transmitter Buffer to the Transmitter Register when the latter has completed transmission of a character. However, information in the DLE register may be transferred prior to the information contained in the Transmitter Buffer if the Force DLE signal condition is enabled (Bits 5 and 6 of Control Register 1 set to a logic 1). The control bit CR15 must be set prior to loading of a new character in the Transmitter Buffer to insure forcing the DLE character prior to transmission of the data character. The Transmitter Register output passes through a flip-flop which delays the output by one clock period. When using the 1 X clock generated by the Modem Data Set, the output data changes state on the negative clock transition and the delay is one bit period. When using a local 32 X clock the the transmitter section selects one of the four selected rate inputs and divides the clock down to the baud rate. This clock is phased to the Transmitter Buffer Empty Flag such that transmission of characters occurs within two clock times of the loading of the Transmitter Buffer, when the Transmitter Register is empty.

When the Transmitter is enabled, a Transmitter interrupt is generated each time the Transmitter Buffer is empty. If the Transmitter Buffer is empty, when the Transmitter Register is ready for a new character, the Transmitter enters an idle state. During this idle time a logic 1 will be presented to the Transmitted Data output in the Asynchronous mode or the contents of the SYN register will be presented in the Synchronous Non-transparent mode (CR16=0). In the Synchronous Transmit Transparent mode $(C R 16=1)$, the idle state will be filled by DLE-SYN character transmission in that order. When entering the Transparent mode DLE must precede the contents of the Transmitter Buffer. This is accomplished by setting of Bit 5 of Control Register 1.

If the transmitter section is disabled by a reset of the Request to Send, any partially transmitted character is completed before the transmitter section of the ASTRO is disabled. As soon as the Clear To Send goes high the transmitted data output will go high.

When the Transmitter parity is enabled, the selected Odd or Even parity bit is inserted into the last data bit of the character in place of the last bit of the Transmitter Register. This limits transfer of character information to a maximum of seven bits plus parity or eight bits without parity. Parity cannot be enabled in the Synchronous Transparency mode.

Input/Output Operations

All Data, Control, and Status words are transferred over the Data Access Lines (DAL 0-7). Additional input lines provide controls for addressing a particular ASTRO, and regulating all input and output operations. Other lines provide interrupt capability to indicate to a Controller that an input operation is requested by the ASTRO. All input/output terminology below is referenced to the Controller so that a Read or input takes data from the ASTRO and places it on the DAL bus, while a Write or Output places data from the DAL bus into the ASTRO.

A Read or Write operation is initiated by the placement of an eight-bit address on the DAL bus by the Controller. When the Chip Select signal goes to a logic 0 state, the ASTRO compares Bits $7-3$ of the DAL bus with its hard-wired ID code (Pins 17, 22, 24, 25, and 26) and becomes selected on a Match condition. The ASTRO then sets its $\overline{\mathrm{RPLY}}$ line low to acknowledge its readiness to transfer data. Bit 0 must be a logic O in Read or Write operation. A setup time must exist between $\overline{C S}$ and the $\overline{R E}$ or $\overline{W E}$ signals to allow chip selection prior to read/write operations.

Read
Bits 2-0 of the address are used to select ASTRO registers to read from as follows:

Bits 2-0	Selected Register
000	Control Register 1
010	Control Register 2
100	Status Register
110	Receiver Buffer

When the $\overline{\text { Read Enable }} \overline{(R E)}$ line is set to a logic 0 condition by the Controller the ASTRO gates the contents of the addressed register onto the DAL bus. The Read operation terminates, and the device becomes unselected, when both the Chip Select and Read Enable return to a logic 1 condition. Reading of the Receiver Buffer clears the Data Received Status bit. The data is removed from the DAL bus when the RE signal returns to the logic high state.

Write
Bits 2-0 of the address are used to select ASTRO registers to be written into as follows:
Bits 2-0 Selected Register

000 Control Register 1
010 Control Register 2
100 SYN and DLE Register
110 Transmitter Buffer
When the $\overline{\text { Write Enable (WE) line is set to a logic } 0 \text { condition by the Controller the ASTRO gates the data }}$ from the DAL bus into the addressed register. If data is written into the Transmitter Buffer, the TBMT Status bit is cleared to a logic zero.

The 100 address loads both the SYN and DLE registers. After writing into the SYN register the device is conditioned to write into the DLE if followed by another Write pulse with the 100 address. Any intervening Read or Write operation with other addresses or other ASTROs resets this condition such that the next 100 will address the SYN register.

Interrupts

The following conditions generate interrupts:

Data Received (DR)

Indicates transfer of a new character to the Receiver Buffer while the Receiver is enabled.
Transmitter Buffer Empty (TBMT)
Indicates that the Transmitter Buffer is empty while the Transmitter is enabled. The first interrupt occurs when the Transmitter becomes enabled if there is an empty Transmitter Buffer, or after the character is transferred to the Transmitter Register making the Transmitter Buffer empty.

Carrier On

Indicates Carrier Detector input goes low and the Data Terminal Ready (DTR) bit (CR10) is high. Carrier Off
Indicates Carrier Detector input goes high and the Data Terminal Ready (DTR) bit (CR10) is high. Data Set Ready On
Indicates the Data Set Ready input goes low and the Data Terminal Ready (DTR) bit (CR10) is high. Data Set Ready Off
Indicates the Data Set Ready input goes high and the Data Terminal Ready (DTR) bit (CR10) is high. Ring On
Indicates the Ring Indicator input goes low and the Data Terminal Ready (DTR) bit (CR10) is low.
Each time an interrupt condition exists the INTR output from the ASTRO is made a logic low. The following interrupt procedure is then carried out even if the interrupt condition is removed.

The Controller acknowledges the Interrupt request by setting the $\overline{\text { Chip Select }} \overline{(\overline{C S})}$ and the Interrupt Acknowledge Input (IACKI) to the ASTRO to a low state. On this transition all non-interrupting devices receiving the $\overline{\text { IACKI }}$ signal set their Interrupt Acknowledge Output (IACKO) low, enabling lower priority daisy-chained devices to respond to the interrupt request. The highest priority device that is interrupting will then set its $\overline{\text { RPLY }}$ line low. This device will place its ID code on Bit Positions $7-3$ of the DAL bus when a low $\overline{R E}$ signal is received. The data is removed from the DAL bus when the $\overline{\text { Read Enable }} \overline{(R E)}$ signal returns to the logic one state. To reset the Interrupt condition (INTR) Chip Select (CS) and $\overline{\mathrm{IACKI}}$ must be received by the ASTRO.

Pin No.	Symbol	Pin Name	I/O	Function
1	$V_{\text {BB }}$	POWER SUPPLY	PS	- 5 Volts
21	$V_{\text {cc }}$	POWER SUPPLY	PS	+5 Volts
40	$V_{\text {D }}$	POWER SUPPLY	PS	+ 12 Volts
20	$\mathrm{V}_{\text {ss }}$	GROUND	GND	Ground
23	$\overline{M R}$	$\overline{\text { MASTER RESET }}$	1	The Control and Status Registers and other controls are cleared when this input is low.
$\begin{array}{r} 8- \\ 15 \end{array}$	$\begin{aligned} & \overline{\text { DALO- }} \\ & \hline \overline{\text { DAL7 }} \end{aligned}$	DATA ACCESS LINES	$1 / 0$	Eight-bit bi-directional bus used for transfer of data, control status, and address information.
17	$\overline{\text { ID7 }}$	$\overline{\text { SELECT CODE }}$	1	Five input pins which when hard-wired assign the
22	ID6		1	device a unique identification code used to select
24	ID5		1	the device when addressing and used as an
25	$\overline{\text { D } 4}$		1	identification when responding to interrupts.
26	ID3		1	
3	$\overline{\text { cs }}$	CHIP SELECT	1	The low logic transition of $\overline{\mathrm{CS}}$ identifies a valid address on the DAL bus during Read and Write operations.
39	$\overline{R E}$	READ ENABLE	1	This input, when low, gates the contents of the addressed register from a selected ASTRO onto the DAL bus.
4	$\overline{W E}$	WRITE ENABLE	1	This input, when low, gates the contents of the DAL bus into the addressed register of a selected ASTRO.
7	$\overline{\text { INTR }}$	INTERRUPT	0	This open drain output, to facilitate WIRE-ORing, goes low when any interrupt conditions occur.
2	$\overline{\text { IACKI }}$	INTERRUPT $\overline{\text { ACKNOWLEDGE IN }}$	1	When the Controller (determining the interrupting ASTRO) makes this input low, the ASTRO places its ID code on the DAL bus and sets reply low if it is interrupting, otherwise it makes IACKO a low.
5	$\overline{\text { ACKO }}$	INTERRUPT ACKNOWLEDGE OUT	O	This output goes low in response to a low $\overline{\mathrm{ACKI}}$ if the ASTRO is not the interrupting device.
6	$\overline{\mathrm{RPLY}}$	$\overline{\text { REPLY }}$	0	This open drain output, to facilitate WIRE-ORing, goes low when the ASTRO is responding to being selected by an address on the DAL bus or in affirming that it is the interrupting source.

Description of Pin Functions

Pin No.	Symbol	Pin Name	$1 / 0$	Function
30	R1	CLOCK RATES	1	These four inputs accept four different local 32X
31	R2		1	data rate Transmit and Receive clocks. The input on
32	R3		1	R4 may be divided down into a 32X clock from a
33	R4			32X, 64X, 128X, or 256X clock input. The clock used in the ASTRO is selected by bits $0-2$ of Control Register 2.
37	BA	TRANSMITTED DATA	0	This output is the transmitted serial data from the ASTRO. This output is held in a Marking condition when the transmitter section is not enabled.
27	BB	RECEIVED DATA	1	This input receives serial data into the ASTRO.
38	$\overline{C A}$	$\overline{\text { REQUEST TO SEND }}$	0	This output is enabled by bit 1 of Control Register 1 and remains in a low state during transmitted data from the ASTRO.
36	$\overline{C B}$	$\overline{\text { CLEAR TO SEND }}$	1	This input, when low, enables the transmitter section of the ASTRO.
28	$\overline{\mathrm{CC}}$	$\overline{\text { DATA SET READY }}$	1	This input generates an interrupt when going ON or OFF while the Data Terminal Ready signal is ON. It appears as bit 6 in the Status Register.
16	$\overline{C D}$	$\begin{aligned} & \overline{\text { DATA TERMINAL }} \\ & \overline{\text { READY }} \end{aligned}$	0	This output is generated by bit 0 in Control Register 1 and indicates Controller readiness.
18	$\overline{C E}$	$\overline{\text { RING INDICATOR }}$	1	This input from the Data Set generates an interrupt when made low with Data Terminal Ready in the OFF condition.
29	$\overline{\text { CF }}$	$\overline{\text { CARRIER DETECTOR }}$	1	This input from the Data Set generates an interrupt when going ON or OFF if Data Terminal Ready is ON. It appears as bit 5 in the Status Register.
35	$\overline{\mathrm{DB}}$	$\begin{aligned} & \text { TRANSMITTER } \\ & \text { TIMING } \end{aligned}$	1	This input is the Transmitter 1X Data Rate Clock. Its use is selected by bits 0-2 of Control Register 2. The transmitted data changes on the negative transition of this signal.
34	$\overline{\mathrm{DD}}$	RECEIVER TIMING	1	This input is the Receiver 1X Data Rate Clock. Its use is selected by bits $0-2$ of Control Register 2. The Received Data is sampled by the ASTRO on the positive transition of this signal.
19	$\overline{\text { MISC }}$	MISCELLANEOUS	0	This output is controlled by bits 4 and 5 of Control Register 1 and is used as an extra programmable signal.

Device Programming

The two 8-bit Control Registers of the ASTRO determine the operative conditions of the ASTRO chip.

Control Register 1

BIT 7	6	5	4	3	2	1	0
SYNC/ASYNC	ASYNC	ASYNC (TRANS. ENABLED)	ASYNC	ASYNC	SYNC/ASYNC	SYNC/ASYNC	SYNC/ASYNC
$\begin{gathered} 0-\text { LOOP } \\ 1-\text { MODE } \\ \text { MOMAL } \\ \text { MODE } \end{gathered}$	$\begin{aligned} & 0 \text { - NONBREAK } \\ & \text { MODE } \\ & 1 \text { - BREAK MODE } \\ & \text { TX } \\ & \text { SYNC } \\ & \hline 0 \text { - TRANSMITTER } \\ & \text { NON TRANS. } \\ & \text { PARENT MODE } \\ & 1 \text { - TRANSMITER } \\ & \text { TRANSPARENT } \\ & \text { MODE } \end{aligned}$	$0-11 / 2$ or 2 STOP BIT SELECTION 1 - SINGLE STOP BIT SELECTION ASYNC (TRANS. DISABLED) $0-$ MISC OUT $=1$ $1-$ MISC OUT $=0$ SYNC (CR16 $=0$) 0 - NO PARITY GENERATED 1 - TRANSMIT PARITY ENABLED SYNC (CR16=1) 0 - NO FORCE DLE 1 - FORCE DLE	O - NON ECHO MODE 1 - AUTO ECHO MODE SYNC (CR12 = 1) 0-DLE STRIPPING NOT ENABLED 1 - DLE STRIPPING ENABLED SYNC (CR12 $=0$) $0-\overline{\text { MISC }}$ OUT $=1$ $1-$ MISC OUT $=0$	0 - NO PARITY ENABLED 1 - PARITY CHECK enabled on RECEIVER AND parity generation ENABLED ON TRANSMITTER SYNC 0 - RECEIVER PARITY CHECK IS DISABLED 1 - RECEIVER PARITY CHECK IS ENABLED	$\begin{gathered} 0 \text { - RECEIVER } \\ \text { D DISABLED } \\ \text { - RECEIVER } \\ \text { ENABLED } \end{gathered}$	$\begin{gathered} 0-\text { SETS } \overline{\text { RTS }} \\ 0 U T=1 \\ 1-\text { SETS RTS } \\ 0 U T=0 \end{gathered}$	$\begin{gathered} 0-\text { SETS } \overline{\text { STR }} \\ 0 U T=1 \\ 1-\text { SETS DTR } \\ 0 U T=0 \end{gathered}$

Bit 0

Controls the Data Terminal Ready output on Pin 16 to control the CD circuit of the Data Set.
A logic 1 enables the Carrier and Data Set Ready interrupts. A logic 0 enables only the telephone line Ring interrupt. The DTR output is inverted from the state of CR10.

Bit 1

Controls the Request to Send output on Pin 38 to control the CA circuit of the Data Set. The $\overline{\mathrm{RTS}}$ output is inverted from the state of CR11. A logic 1 combined with a low logic Clear to Send input enables the Transmitter and allows TBMT interrupts to be generated. A logic 0 disables the Transmitter and turns off the external Request to Send signal. Any character in the Transmitter Register will be completely transmitted before the Transmitter is turned off. The Request to Send output may be used for other functions such as Make Busy on 103 Data Sets.

Bit 2

A logic 1 enables the ASTRO to receive data into the Receiver Buffer, update Receiver Status Bits 1, 2, 3, and 4, and to generate Data Received interrupts. A logic 0 disables the Receiver and clears the Receiver Status bits.

Bit 3

Asynchronous Mode

A logic 1 enables check of parity on received characters and generation of parity for transmitted characters.

Synchronous Mode

A logic 1 bit enables check of parity on received characters only. Note: Transmitter parity enable is controlled by CR15.

Bit 4

Asynchronous Mode

A logic 1 enables the Automatic Echo mode when the receiver section is enabled. In this mode the clocked regenerated data is presented to the Transmitter Data output in place of normal transmission through the Transmitter Register. This serial method of echoing does not present any abnormal restrictions on the transmit speed of the terminal. Only the first character of a Break condition of all zeroes (null character) is echoed when a Line Break condition is detected. For all subsequent null characters, with logic zero Stop bits, a steady Marking condition is transmitted until normal character reception resumes. Echoing does not start until a character has been received and the Transmitter is idle. The Transmitter does not have to be enabled during the Echo mode.

Synchronous Mode

A logic 1, with the Receiver enabled does not allow assembled Receiver data matching the DLE register contents to be transferred to the Receiver Buffer; also, parity checking is disabled.

When the Receiver is not enabled this bit controls the Miscellaneous output on Pin 19, which may be used for New Sync on a 201 Data Set. When operating with a 32X clock and a disabled Receiver, a logic 1 on this bit also causes the Receiver timing to synchronize on Mark-To-Space transitions.

Bit 5

Asynchronous Mode

A logic 1, with the Transmitter enabled, causes a single Stop bit to be transmitted. A logic 0 causes transmission of 2 stop bits for character lengths of 6,7 , or 8 bits and one-and-a-half Stop bits for a character length of 5 bits.
With the Transmitter disabled this bit controls the Miscellaneous output on Pin 19, which may be used for Make Busy on 103 Data Sets, Secondary Transmit on 202 Data Sets, or dialing on CBS Data Couplers.

Synchronous Mode

A logic 1 combined with a logic 0 on Bit 6 of Control Register 1 enables Transmit parity; if CR15=0 or CR16=1 no parity is generated. When set to a logic 1 with Bit 6 also a logic 1, the contents of the DLE register are transmitted prior to the next character loaded in the Transmitter Buffer as part of the Transmitter Transparent mode.

Bit 6

Asynchronous Mode

A logic 1 holds the Transmitted Data output in a Spacing (Logic 0) condition, starting at the end of any current transmitted character, when the Transmitter is enabled. Normal Transmitter timing continues so that this Break condition can be timed out after the loading of new characters into the Transmitter Buffer.

Synchronous Mode

A logic 1 conditions the Transmitter to a transparent transmission which implies that idle transmitter time will be filled by DLE-SYN character transmission and a DLE character can be forced ahead of any character in the Transmitter Buffer (Bit 5 above). When forcing DLE transmission, Bit 5 should be set to a logic 1 prior to loading the Transmitter Buffer, otherwise the character in the latter register may be transferred to the Transmitter Register prior to sending the DLE character.

Bit 7

A logic 0 configures the ASTRO into an Internal Data and Control Loop mode and disables the Ring interrupt. In this diagnostic mode the following loops are connected internally:
a. The Transmit Data is connected to the Receive Data with the BA pin held in a Mark condition and the input to the BB pin disregarded.
b. With a 1X clock selected, the Transmitter Clock also becomes the Receive Clock.
c. The Data Terminal Ready (DTR) Control bit is connected to the $\overline{\text { Data Set Ready (DSR) input, with }}$ the Data Terminal Ready (DSR) output pin held in an OFF condition (logic high), and the $\overline{\mathrm{DSR}}$ input pin is disregarded.
d. The Request to Send Control bit is connected to the Clear To Send (CTS) and Carrier Detector (CF) inputs, with the Request To Send (RTS) output pin held in an OFF condition (logic high), and the CTS and Carrier Detector input pins are disregarded.
e. The Miscellaneous pin is held in an OFF (logic high) condition.

A logic 1 on Bit 7 enables the Ring interrupt and returns the ASTRO to the normal full duplex configuration.

Control Register 2

Control Register 2, unlike Control Register 1, cannot be changed at any time. This register should be changed only while both the receiver and transmitter sections of the ASTRO are in the idle state.

$\begin{array}{lll}\text { BIT } & 7 & 6\end{array}$	5	4	3	200
SYNC/ASYNC	MODE SELECT	SYNC/ASYNC	ASYNC	SYNC/ASYNC
character length select	O-ASYNCHRONOUS	$\begin{aligned} & 0 \text { - EVEN PARITY } \\ & \text { SELECT } \end{aligned}$	$\begin{aligned} & 0 \text { - RECEIVER CLK }= \\ & \text { RATE } 1 \end{aligned}$	CLOCK SELECT
$\begin{aligned} & 00=8 \text { BITS } \\ & 01=7 \text { BITS } \\ & 10=6 \text { BITS } \\ & 11=5 \text { BITS } \end{aligned}$	$\begin{aligned} & 1-\begin{array}{l} \text { MODE } \\ \text { SYNCHRONOUS } \\ \text { MODE } \end{array} \end{aligned}$	$\begin{aligned} & 1 \text { - ODD PARITY } \\ & \text { SELECT } \end{aligned}$	1 - RECEIVER CLOCK DETERMINED BY BITS 2-0	000-1X CLOCK 001 - RATE 1 CLOCK 010 - RATE 2 CLOCK 011 - RATE 3 CLOCK
			SYNC (CR16 $=0$)	$\begin{aligned} & 100 \text { - RATE } 4 \text { CLOCK } \\ & 101 \text { - RATE } 4 \text { COCK } \div 2 \end{aligned}$
			$\begin{aligned} & 0-\text { NO SYN STRIP } \\ & 1 \text { - SYN STRIP } \end{aligned}$	$\begin{aligned} & 110 \text { - RATE } 4 \text { CLOCK } \div 4 \\ & 111 \text { - RATE } 4 \text { CLOCK } \div 8 \end{aligned}$
			SYNC (CR16 = 1)	
			0 - NO DLE-SYN STRIP 1 - DLE-SYN STRIP	

Bits 0-2
These bits select the Transmit and Receive clocks.

Bits	Clock Source	
210	Tx	Rx
000	1X Clock (Pin 35)	1X Clock (Pin 34)
001	Rate 132 X cla	(Pin 30)
010	Rate 2 32X cloch	(Pin 31)
011	Rate 3 32X cloct	(in 32)
100	Rate 4 32X clo	(Pin 33)
101	Rate 4 32X clocm	(Pin 33) ($\div 2)^{* \dagger}$
110	Rate 4 32X	(Pin 33) $(\div 4) *$ *
111	Rate 4 32X cla	(in 33) $(\div 8) *$

NOTES:

*Rx clock is modified by bit 3 in the asynchronous mode.
\dagger Rate 4 is internally dividable so that the required 32 X clock may be derived from an applied $64 \mathrm{X}, 128 \mathrm{X}$, or 256 X clock which may be available.

Bits 3

Asynchronous Mode

A logic 0 selects the Rate 132 X clock input (Pin 30) as the Receiver clock rate and a logic 1 selects the same clock rate for the Receiver as selected by Bits 2-0 for the Transmitter. This bit must be a logic 1 for the 1X clock selection by Bits 2-0.

Synchronous Mode

A logic 1 causes all DLE-SYN combination characters in the Transparent mode when DLE strip (CR14) is a logic 1 , or all SYN characters in the Non-transparent mode to be stripped out and no Data Received interrupt to be generated. The SYN Detect status bit is set with reception of the next assembled character as is transferred to the Receiver Buffer.

Bit 4

A logic 1 selects odd parity and a logic 0 selects even parity, when parity is enabled by CR13 and/or CR15.

Bit 5

A logic 1 selects the Synchronous Character mode. A logic 0 selects the Asynchronous Character mode.
Bits 6-7
These bits select the full character length (including parity, if selected) as shown above. When parity is enabled it must be considered as a bit when making character length selection (5 bits plus parity $=6$ bits).

Status Register

The data contained in the Status Register define Receiver and Transmitter data conditions and status of the Data Set.

7	6	5	4	3	2	1	0
- Data Set Change	- Data Set Ready (DSR)	- Carrier Detector	- Framing Error - Syn Detect	- DLE Detect - Parity Error	- Overrun Error	- Data Received (DR)	- Transmitter Buffer Empty (TBMT)

Bit 0
A logic 1 indicates that the Transmitter Buffer may be loaded with new data. It is set to a logic 1 when the contents of the Transmitter Buffer is transferred to the Transmitter Register. It is cleared when the Transmitter Buffer is loaded from the DAL bus, or when the Transmitter is disabled.
Bit 1
A logic 1 indicates that an entire character has been received and transferred into the Receiver Buffer. It is cleared when the Receiver Buffer is read onto the DAL bus, or the Receiver is disabled.

Bit 2

A logic 1 indicates an Overrun error which occurs if the previous character in the Receiver Buffer has not been read and Data Received is not reset, at the time a new character is to be transferred to the Receiver Buffer. This bit is cleared when no Overrun condition is detected (the next character transfer time) or when the Receiver is disabled.

Bit 3

When the DLE Strip is enabled (CR14) the Receiver parity check is disabled and this bit is set to a logic 1 if the previous character to the presently assembled character matched the contents of the DLE register; otherwise it is cleared. The DLE DET remains for one character time and is reset on the next character transfer or on a Status Register Read. If DLE Strip is not enabled this bit is set to a logic 1 when the Receiver is enabled, Receiver parity (CR13) is also enabled, and the last received character has a Parity error. A logic 0 on this bit indicates correct parity. This bit is cleared in both modes when the Receiver is disabled.

Bit 4

Asynchronous Mode

A logic 1 indicates that the received data did not have a valid stop bit, while the Receiver was enabled, which indicates a Framing error. This bit is set to a logic 0 if the stop bit (logic 1) was detected.

Synchronous Mode

A logic 1 indicates that the contents of the Receiver Register matches the contents of the SYN Register. The condition of this bit remains for a full character assembly time. If SYN strip (CR23) is enabled this status bit is updated with the character received after the SYN character.

In both modes the bit is cleared when the Receiver is disabled.
Bit 5
This bit is the logic complement of the $\overline{\text { Carrier Detector }}$ input on Pin 29.

Bit 6

This bit is the logic complement of the Data Set Ready input on Pin 28. With 202-type Data Sets it can be used for Secondary Receive.

Bit 7

This bit is set to a logic 1 whenever there is a change in state of the $\overline{\text { Data Set Ready }}$ or $\overline{\text { Carrier Detector }}$ inputs while Data Terminal Ready (CR10) is a logic 1 or the Ring Indicator is turned ON, with DTR a logic 0 . This bit is cleared when the Status Register is read onto the DAL bus.

Flow Chart Receiver Operations

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground. + 18.0V
Negative Voltage on any Pin, with respect to ground. -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

$\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise noted)

Parameter		Min	Typ.	Max.	Unit	Comments
D.C. Characteristics						
INPUT VOLTAGE LEVELS						
Low Level, V11				0.8	V	
High Level, V_{IH} OUTPUT VOLTAGE LEVELS		2.4			\checkmark	
Low Level, V_{ol}			0.4		V	$\mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{ma}$
High L	V_{OH}	2.4				$\mathrm{IOH}^{\text {O }}=100 \mu \mathrm{a}$
INPUT LEAKAGE						
Data Bus			5.0	10.0	$\mu \mathrm{a}$	$0 \leq V_{\text {IN }} \leq 5 v$
All oth			5.0	10.0	$\mu \mathrm{a}$	$\mathrm{V}_{\text {IN }}=+12 \mathrm{v}$
POWER SUPPLY CURRENT						
I_{cc}				80.0	ma	
I_{DD}				10.0	ma	
$\mathrm{I}_{\text {B }}$				1.0	ma	
A.C. Characteristics						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
CLOCK-RCP, TCP						
freque			1.0		MHz	
DAL Bus						
$\mathrm{T}_{\text {As }}$	Address Set-Up Time	0			ns	
$\mathrm{T}_{\text {AH }}$	Address Hold Time	150			ns	
$\mathrm{T}_{\text {ARL }}$	Address to RPLY Delay			400	ns	
Tcs	CS Width	250			ns	
$\mathrm{T}_{\text {CSRLF }}$	CS to Reply OFF Relay	0		250	ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$
Read						
$\mathrm{T}_{\text {ARE }}$	Address and $\overline{\mathrm{RE}}$ Spacing	250			ns	
$\mathrm{T}_{\text {RECSH }}$	$\overline{R E}$ and $\overline{C S}$ Overlap	20			ns	
$\mathrm{T}_{\text {RECS }}$	$\overline{\mathrm{RE}}$ to CS Spacing	250			ns	
$\mathrm{T}_{\text {RED }}$	$\overline{R E}$ to Data Out Delay			180	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pf}$
Write						
$\mathrm{T}_{\text {AWE }}$	Address to WE Spacing	250			ns	
T WECSH	WE and CS Overlap	20			ns	
$\mathrm{T}_{\text {WE }}$	WE Width	200		1000	ns	
T_{DS}	Data Set-Up Time	150			ns	
$\mathrm{T}_{\text {DH }}$	Data Hold Time	100			ns	
$\mathrm{T}_{\text {wecs }}$	WE to CS Spacing	250			ns	
Interrupt						
$\mathrm{T}_{\text {csi }}$	$\overline{\overline{C S}}$ to $\overline{\text { ACKI Delay }}$	0			ns	
$\mathrm{T}_{\text {csre }}$	CS to RE Delay	250			ns	
$\mathrm{T}_{\text {csren }}$	$\overline{C S}$ and RE Overlap	20			ns	
$\mathrm{T}_{\text {RECS }}$	RE to CS Spacing	250			ns	
T_{Pl}	IACKI Pulse Width	200			ns	
$\mathrm{T}_{\text {IAD }}$	IACKI to Valid ID Code Delay			250	ns	See Note 1.
$\mathrm{T}_{\text {RED }}$	RE OFF to DAL Open Delay			180	ns	
$\mathrm{T}_{\text {IARL }}$	$\overline{\text { ACKI }}$ to $\overline{R P L Y}$ Delay			250	ns	See Note 1.
$\mathrm{T}_{\text {cSRLIF }}$	$\overline{C S}$ to RPLY OFF Delay	0		250	ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{~K} \Omega$
T_{11}	IACKI to IACKO Delay			200	ns	
$\mathrm{T}_{\text {REI }}$	$\overline{R E}$ OFF to IACKO OFF Delay			250	ns	

Note 1: If $\overline{R E}$ goes low after $\overline{\mid A C K I}$ goes low, the delay will be from the falling edge of $\overline{R E}$.
Multiple ASTRO System in Daisy-Chain Configuration
 CORPORATION

35 Marcus BMd. Hapoaxpe NY 1778

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The tions; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is devices described any license under the patent rights.of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Asynchronous Receiver/Transmitter UART

FEATURES

\square Compatible with TR1863 timingHigh accuracy 32X clock mode: 48.4375\% Receiver Distortion Immunity and improved RDA/ROR operation (COM 8018 only)High Speed Operation-62.5K baud, 200ns strobesSingle +5 V Power SupplyDirect TTL Compatibility - no interfacing circuits requiredInput pull-up options: COM 8018 has low current pull-up resistors; COM 1863 has no pull up resistorsFull or Half Duplex Operation-can receive and transmit simultaneously at different baud ratesFully Double Buffered-eliminates need for precise external timingImproved Start Bit Verification-decreases error rate46.875\% Receiver Distortion ImmunityFully Programmable-data word length; parity mode; number of stop bits: one, one and one-half, or twoMaster Reset-Resets all status outputs and Receiver Buffer Register
\square Three State Outputs-bus structure orientedLow Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic DIP Package-easy board insertionBaud Rates available from SMC's COM 8046, COM 8116, COM 8126, COM 8136, COM 8146 baud rate generators

GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolithic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's patented COPLAMOS® technology and employs depletion mode loads, allowing operation from a single +5 V supply. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be 5, 6, 7, or 8 data bits, odd/even or no parity, and 1 or 2 stop bits or 1.5 stop bits when utilizing a 5 -bit code. These programmable features provide the user with the ability to interface with all asynchronous peripherals.

[^6]
PIN CONFIGURATION

DESCRIPTION OF OPERATION - TRANSMITTER

At start-up the power is turned on, a clock whose frequency is 16 or 32 times the desired baud rate is applied, and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking).
When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strobed into the transmitter prior to the data bits. However, as long as minimum pulse width specifications are not violated, TDS and CS may occur simultaneously. Once the data strobe (TDS) has been pulsed, the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data.
If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low. If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission
commences. TEOC goes low, TSO goes low (the start bit), and TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data.
If new data is loaded into the data bits buffer register at this time, TBMT goes low and remains in this state until the present transmission is completed. One full character time is available for loading the next character with no loss in speed of transmission. This is an advantage of double buffering.
Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected), and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission.

TRANSMITTER BLOCK DIAGRAM

DESCRIPTION OF OPERATION - RECEIVER

At start-up the power is turned on, a clock whose frequency is 16 or 32 times the desired baud rate is applied and master reset is pulsed. The data available (RDA) signal is now low. There is one set of control bits for both the receiver and transmitter.

Data reception begins when the serial input line transitions for mark (high) to space (low). If the RSI line remains spacing for $15 / 32$ to $17 / 32$ bit times (in the 16 X mode, HIACC $=0$) or $31 / 64$ to
$33 / 64$ bit times (in the 32 X mode, HIACC $=1$), a genuine start bit is verified. Should the line return to a marking condition prior to a $1 / 2$ bit time, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received.

If the received parity bit is incorrect, the parity error flip-flop of the status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flipflop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, the framing error flip-flop is set high, indicating a framing error.
On the negative RCP edge preceding the stop-bit center sample, internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high, or the RDAR signal is low, the
receiver assumes that the previously received character has not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low.
Subsequently the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	VDD	Power Supply	+5 volt Supply
2	HIACC	High Accuracy Mode	Enables 32X clock and improved RDA/ROR operation. See NOTE on high accuracy mode.
3	GND	Ground	Ground
4	$\overline{R D E}$	Received Data Enable	A low-level input enables the outputs (RD8-RD1) of the receiver buffer register.
$5-12$	RD8-RD1	Receiver Data Outputs	These are the eight 3-state data outputs enabled by $\overline{\text { RDE. }}$ Unused data output lines, as selected by NDB1 and NDB2 have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
13	RPE	Receiver Parity Error	This 3-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$ the received character parity bit does not agree with the selected parity.
14	RFE	Receiver Framing Error	This 3-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$ the received character has no valid stop bit.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
15	ROR	$\begin{array}{l}\text { Receiver Over } \\ \text { Run }\end{array}$	$\begin{array}{l}\text { This 3-state output (enabled by SWE) is at a high-level if } \\ \text { the previously received character is not read (RDA output } \\ \text { reset not completed) before the present character is } \\ \text { transferred into the receiver buffer register. }\end{array}$
16	SWE	$\begin{array}{l}\text { Status Word } \\ \text { Enable }\end{array}$	$\begin{array}{l}\text { A low-level input enables the outputs (RPE, RFE, ROR, } \\ \text { RDA, and TBMT) of the status word buffer register. }\end{array}$
17	RCP	Receiver Clock	$\begin{array}{l}\text { This input is a clock whose frequency is 16 times (16X) or } \\ \text { 32 times (32X) the desired receiver baud rate. }\end{array}$
18	RDAR	$\begin{array}{l}\text { Receiver Data } \\ \text { Available Reset }\end{array}$	$\begin{array}{l}\text { A low-level input resets the RDA output to a low-level. } \\ \text { RDAR must have gone low and come high again before } \\ \text { ROR is sampled to avoid overrun indication. }\end{array}$
19	RDA	$\begin{array}{l}\text { Receiver Data } \\ \text { Available }\end{array}$	$\begin{array}{l}\text { This 3-state output (enabled by SWE) is at a high-level } \\ \text { when an entire character has been received and transferred } \\ \text { into the receiver buffer register. }\end{array}$
20	RSI	$\begin{array}{l}\text { Receiver Serial } \\ \text { Input }\end{array}$	$\begin{array}{l}\text { This input accepts the serial bit input stream. A high-level } \\ \text { (mark) to low-level (space) transition is required to initiate } \\ \text { data reception. }\end{array}$
21	MR	NPB	Master Reset

turn-on. This sets TSO,TEOC, and TBMT to a high-level

and resets RDA, RPE, RFE, ROR and RD1-RD8 to a low-level.\end{array}\right\}\)

DESCRIPTION OF PIN FUNCTION

PIN NO.	SYMBOL	NAME	FUNCTION
36	NSB	Number of Stop Bits	This input selects the number of stop bits. A low-level input selects 1 stop bit; a high-level input selects 2 stop bits. Selection of two stop bits when programming a 5 data bit word generates 1.5 stop bits.
37-38	$\begin{aligned} & \text { NDB2, } \\ & \text { NDB1 } \end{aligned}$	Number of Data Bits/Character	These 2 inputs are internally decoded to select either $5,6,7$, or 8 data bits/character as per the following truth table:
39	POE	Odd/Even Parity Select	The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the receiver and transmitter, as per the following truth table:
40	TCP	Transmitter Clock	This input is a clock whose frequency is 16 times (16X) or 32 times (32X) the desired transmitter baud rate.

TRANSMITTER TIMING8 BIT, PARITY, 2 STOP BITS

RECEIVER TIMING -
8 BIT, PARITY, 2 STOP BITS

TRANSMITTER START-UP

RECEIVER TIMING DETAIL

MAXIMUM GUARANTEED RATINGS*

> Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
> Positive Voltage on any Pin, with respect to ground . +8.0 V
> Negative Voltage on any Pin (except Pin 2), with respect to ground 0.3 V
> Negative Voltage on Pin 2, with respect to ground . -13.2 V
> Stresses above those listed may cause permanent damage to the device. This is a stress rating ohly and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
> NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that at clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parámeter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level; VIL			0.8	V	
High-level, V_{IH}	2.0			V	
OUTPUT VOLTAGE LEVELS					
. Low-level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
High-level, Voh	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IL			300	$\mu \dot{A}$	$\mathrm{V}_{\text {IN }}=$ GND, COM 8018 only
INPUT LEAKAGE			± 10	$\mu \mathrm{A}$	COM 1863 only
OUTPUT CURRENT					
Leakage, lıo Short circuit; los**			$\begin{gathered} \pm 10 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \overline{S W E}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}, 0 \leq \text { VOUT } \leq+5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$
All inputs, Cin		5	10	pf	
OUTPUT CAPACITANCE All outpults, Cout		10	20	pf	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}$
POWER SUPPLY CURRENT					
Icc A.C. CHARACTERISTICS			25	mA	All outputs $=\mathrm{VOH}$, All inputs $=\mathrm{VDD}$ $T_{A}=+25^{\circ} \mathrm{C}$, See Timing Diagrams
CLOCK FREQUENCY	DC		1.0	MHz	RCP, TCP
PULSE WIDTH					
Clock	0.45			$\mu \mathrm{s}$	RCP, TCP
Master reset	500			ns	
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					T
Data bits	0			ns	TD1-TD8
Control bits	0			ns	NPB, NSB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	0			ns	TD1-TD8
Control bits	0			ns	NPB, NSB, NDB2, NDB1, POE
ENABLE TO OUTPUT DELAY					Load $=20 \mathrm{pf}+1$ TTL input
Receive data enable			250	ns	RDE: TPD1, TPDo
Status word enable			250	ns	SWE: TPD1, TPDo
OUTPUT DISABLE DELAY			250	ns	$\overline{\mathrm{RDE}}, \overline{\text { SWE }}$

[^7]NOTES: 1. If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within $11 / 2$ clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one RCP clock period, guaranteeing a maximum start bit slippage of $\pm 1 / 32$ or $\pm 1 / 64$ of a bit time.
3. The 3 -state output has 3 states: 1) low impedance to VDD 2) low impedance to GND 3) high impedance OFF \cong 10 M ohms The "OFF" state is controlled by the SWE and RDE inputs.

NOTE: Waveform drawings not to scale for clarity.

ADDITIONAL TIMING INFORMATION

$\overline{\text { RDAR }}$

NOTE:Wavermarang nothosale for clarity.

NOTES ON COM 8018 AND COM 1863 HIGH-ACCURACY AND IMPROVED RDA/ROR MODE
The HIACC mode is enabled by applying a logic "one" to pin 2. If this pin is left unconnected, or connected to GND, -12 V , or a logic "zero," the HIACC mode is disabled. The HIACC input has an internal pull-down resistor.
When the HIACC mode is selected, the TX and RX halves both operate on 32 X instead of 16X clocks. Also, RDA is notched during the one half receiver clock cycle preceding the stop bit center sample when RD1-RD8 and ROR are changing.
Whether or not the HIACC mode is selected, RDA must be low and $\overline{\text { DDAR }}$ must have returned high to avoid setting ROR. If $\overline{\text { RDAR }}$ is held low past the stop-bit center sample, RDA will go high after RDAR returns high.
The maximum current HIACC will supply if connected to -13.2 V is 3.5 mA .

MPROVED RDA/ROR OPERATION TIMING DIAGRAMS

Protection against missing the ROR flag

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Asynchronous Receiver/Transmitter

 UART
FEATURES

Direct TTL Compatibility - no interfacing circuits requiredFull or Half Duplex Operation - can receive and transmit simultaneously at different baud ratesFully Double Buffered—eliminates need for precise external timingStart Bit Verification-decreases error rateFully Programmable - data word length, parity mode, number of stop bits; one, one and one-half, or twoHigh Speed Operation - 40K baud, 200ns strobesMaster Reset—Resets all status outputsTri-State Outputs—bus structure orientedLow Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic Dip Package-easy board insertion
GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolothic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's P-channel low voltage oxidenitride technology. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be 5, 6,7 or 8 data bits, odd/even or no parity, and 1, or 2 stop bits or 1.5 stop bits when utilizing a 5-bit code from the COM 2017.
The UART can operate in either the full or half duplex mode. These programmable features provide the user with the ability to interface with all asynchronous peripherals.

Pin Configuration

DESCRIPTION OF OPERATION - TRANSMITTER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking).
When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strobed into the transmitter prior to the data bits. However, as long as minimum pulse width specifications are not violated, TDS and CS may occur simultaneously. Once the date strobe (TDS) has been pulsed the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data.
If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low. If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission
commences. TSO goes low (the start bit), TEOC goes low, the TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data.
If new data is loaded into the data bits buffer register at this time, TBMT goes low and remains in this state until the present transmission is completed. One full character time is available for loading the next character with no loss in speed of transmission. This is an advantage of double buffering.
Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected), and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission.

TRANSMITTER BLOCK DIAGRAM

DESCRIPTION OF OPERATION - RECEIVER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. The data available (RDA) signal is now low. There is one set of control bits for both the receiver and transmitter.
Data reception begins when the serial input line transitions from mark (high) to space (low). If the RSI line remains spacing for a $1 / 2$ bit time, a genuine start bit is verified. Should the line return to a mark-
ing condition prior to a $1 / 2$ bit time, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received. If the transmitted parity bit does not agree with the received parity bit, the parity error flip-flop of the
status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flip-flop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, due to an improperly framed character, the framing error flip-flop is set high, indicating a framing error.
Once a full character has been received internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high the receiver assumes that the previously received character has
not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low.
At this time the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character.

RECEIVER BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	VCC	Power Supply	+5 volt Supply
2	NC	No Connection	-12 volt Supply
3	GND	Ground	Ground
4	$\overline{\text { RDE }}$	Received Data Enable	A low-level input enables the outputs (RD8-RD1) of the receiver buffer register.
$5-12$	RD8-RD1	Receiver Data Outputs	These are the 8 tri-state data outputs enabled by $\overline{R D E}$ Unused data output lines, as selected by NDB1 and NDB2, have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
13	RPE	Receiver Parity Error	This tri-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$the received character parity bit does not agree with the selected parity. 14
RFE	Receiver Framing Error	This tri-state output (enabled by $\overline{\text { SWE) is at a high-level if }}$the received character has no valid stop bit.	

PIN NO.	SYMBOL	NAME	FUNCTION
15	ROR	Receiver Over Run	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level if the previously received character is not read (RDA output not reset) before the present character is transferred into the receiver buffer register.
16	$\overline{\text { SWE }}$	Status Word Enable	A low-level input enables the outputs (RPE, RFE, ROR, RDA, and TBMT) of the status word buffer register.
17	RCP	Receiver Clock	This input is a clock whose frequency is 16 times (16X) the desired receiver baud rate.
18	$\overline{\text { RDAR }}$	Receiver Data Available Reset	A low-level input resets the RDA output to a low-level.
19	RDA	Receiver Data Available	This tri-state output (enabled by $\overline{\mathrm{SWE}}$) is at a high-level when an entire character has been received and transferred into the receiver buffer register.
20	RSI	Receiver Serial Input	This input accepts the serial bit input stream. A high-level (mark) to low-level (space) transition is required to initiate data reception.
21	MR	Master Reset	This input should be pulsed to a high-level after power turn-on. This sets TSO, TEOC, and TBMT to a high-level and resets RDA, RPE, RFE and ROR to a low-level.
22	TBMT	Transmitter Buffer Empty	This tri-state output (enabled by $\overline{\mathrm{SWE}}$) is at a high-level when the transmitter buffer register may be loaded with new data.
23	$\overline{T D S}$	Transmitter Data Strobe	A low-level input strobe enters the data bits into the transmitter buffer register.
24	TEOC	Transmitter End of Character	This output appears as a high-level each time a full character is transmitted. It remains at this level until the start of transmission of the next character or for one-half of a TCP period in the case of continuous transmission.
25	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. TSO remains at a high-level when no data is being transmitted.
26-33	TD1-TD8	Transmitter Data Inputs	There are 8 data input lines (strobed by $\overline{\mathrm{TDS}}$) available. Unused data input lines, as selected by NDB1 and NDB2, may be in either logic state. The LSB should always be placed on TD1.
34	CS	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, NSB, POE and NPB) into the control bits holding register. This line may be strobed or hard wired to a high-level.
35	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted; the stop bit(s) immediately follow the last data bit. In addition, the receiver requires the stop bit(s) to follow immediately after the last data bit. Also, the RPE output is forced to a low-level. See pin 39, POE.

PIN NO.	SYMBOL	NAME	FUNCTION
36	NSB	Number of Stop Bits	This input selects the number of stop bits. A low-level input selects 1 stop bit; a high-level input selects 2 stop bits. Selection of 2 stop bits when programming a 5 data bit word generates 1.5 stop bits from the COM 2017.
37-38	$\begin{aligned} & \text { NDB2, } \\ & \text { NDB1 } \end{aligned}$	Number of Data Bits/Character	These 2 inputs are internally decoded to select either 5, 6, 7, or 8 data bits/character as per the following truth table:
39	POE	Odd/Even Parity Select	The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the receiver and transmitter, as per the following truth table:
			NPB POE MODE L L odd parity L H even parity H X no parity $X=$ don't care
40	TCP	Transmitter Clock	This input is a clock whose frequency is 16 times (16X) the desired transmitter baud rate.

Upon data transmission initiation, or when not transmitting at 100% line utilization, the start bit will be placed on the TSO line at the high to low transition of the TCP clock following the trailing edge of TDS.

RECEIVER TIMING-8 BIT, PARITY, 2 STOP BITS.

CENTER BIT SAMPLE RDA. RDA"

-The RDA line was previously not reset ($R O R=$ high-level).
*The RDA line was previously reset (ROR = low-level).

START BIT DETECT/VERIFY

If the RSI line remains spacing for a $1 / 2$ bit time, a genuine start bit is verified. Should the line return to a marking condition prior to a $1 / 2$ bit time, the start bit verification process begins again.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, Vcc $+0.3 \mathrm{~V}$
Negative Voltage on any Pin, Vcc -25V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Vcc $=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Conditions
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL	VDD		0.8	V	
High-level, $\mathrm{V}_{1 \mathrm{H}}$	Vcc-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol		0.2	0.4	V	$1 \mathrm{LL}=1.6 \mathrm{~mA}$
High-level, Voh	2.4	4.0		V	$\mathrm{IOH}=100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			1.6	mA	see note 4
OUTPUT CURRENT					
Leakage, ILo			-1	$\mu \mathrm{A}$	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}, 0 \leq \mathrm{VOUT} \leq+5 \mathrm{~V}$
Short circuit, los**			10	mA	Vout $=0 \mathrm{~V}$
INPUT CAPACITANCE					
All inputs, Cin		5	10	pf	$\mathrm{V}_{\mathrm{IN}}=\mathrm{Vcc}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE					
All outputs, Cout		10	20	pf	$\overline{\text { SWE }}=\overline{\mathrm{RDE}}=\mathrm{V}_{1}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT					
Icc lod			28 28	mA	All outputs $=\mathrm{VoH}$, All inputs $=\mathrm{Vcc}$
IDD				mA	
A.C. CHARACTERISTICS CLOCK FREQUENCY					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
(COM2502, COM2017)	DC		400	KHz	RCP, TCP
PULSE WIDTH					
Clock	1			$\mu \mathrm{s}$	RCP, TCP
Master reset	500			ns	MR
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	≥ 0			ns	TD1-TD8
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	≥ 0			ns	TD1-TD8
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY					Load $=20 \mathrm{pf}+1$ TTL input
Receive data enable			350	ns	RDE: TPD1, TPDO
Status word enable			350	ns	SWE: TPD1, TPDO
OUTPUT DISABLE DELAY			350	ns	RDE, $\overline{\text { SWE }}$

**Not more than one output should be shorted at a time.

NOTES: 1 . If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within one clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one clock period of RCP, guaranteeing a maximum start bit slippage of $1 / 16$ th of a bit time.
3. The tri-state output has 3 states: 1) low impedanceto Vcc 2) lowimpedance to GND 3) high impedance OFF \cong 10 M ohms. The "OFF" state is controlled by the SWE and RDE inputs.
4. Under steady state conditions no current flows for TTL or MOS interfacing. (COM 2502)

*Input information (Data/Control) need only be valid during the last TPW, min time of the input strobes (TDS, CS).

OUTPUT TIMING DIAGRAM
$\overline{\operatorname{RDE},} \overline{\mathrm{SWE}}$

OUTPUTS
(RD1-RD8, RDA,
RPE, ROR, RFE, TBMT)

NOTE: Waveform drawings not to scale for clarity.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Synchronous Receiver/Transmitter USRT

FEATURES

STR, BSC-Bi-sync and interleaved bi-sync modes of operationFully Programmable - data word length, parity mode, receiver sync character, transmitter sync characterFull or Half Duplex Operation - can receive and transmit simultaneously at different baud ratesFully Double Buffered-eliminates need for precise external timingDirectly TTL Compatible-no interface components requiredTri-State Data Outputs—bus structure orientedIBM Compatible-internally generated SCR and SCT signalsHigh Speed Operation - 250 K baud, 200ns strobesLow Power-300mWInput Protected-eliminates handling problemsDip Package - easy board insertion
APPLICATIONS

Bi-Sync CommunicationsCassette I/OFloppy Disk I/O
GENERAL DESCRIPTION

The Universal Synchronous Receiver/Transmitter is an MOS/LSI monolithic circuit that performs all the receiving and transmitting functions associated with synchronous (STR, BSC, Bi-sync, and interleaved bi-sync) data communications. This circuit is fabricated using SMC's P -channel low voltage oxide-nitride technology, allowing all inputs and outputs to be directly TTL compatible. The duplex mode, baud rate, data word length, parity mode, receiver sync character, and transmitter sync character are independently programmable through the use of external controls. The USR/T is fully double buffered and internally generates the sync character received and sync character transmitted signals. These programmable features provide the user with the ability to interface with all synchronous peripherals.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Power Supply	+5 volt Supply
2	TBMT	Transmitter Buffer Empty	This output is at a high-level when the transmitter data buffer register may be loaded with new data.
3	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. This character is extracted from the transmitter data buffer register provided that a TDS pulse occurs during the presently transmitted character. If TDS is not pulsed, the next transmitted character will be extracted from the transmitter sync register.
4	GND	Ground	Ground
5	SCT	Sync Character Transmitted	This output is set high when the character loaded into the transmitter shift register is extracted from the transmitter sync register, indicating that the TDS was not pulsed during the previously transmitted character. This output is reset low when the character to be transmitted is extracted from the transmitter data buffer register. This can only occur if TDS is pulsed.
6	Vdo	Power Supply	-12 volt Supply
7-14	DB1-DB8	Data Bus Inputs	This 8 bit bus inputs information into the receiver sync register under control of the RSS strobe, intothe transmitter sync register under control of the TSS strobe, and into the transmitter data buffer register under control of the TDS strobe. The strobes operate independently of each other. Unused bus inputs may be in either logic state. The LSB should always be placed on DB1.
15	RR	Receiver Reset	This input should be pulsed to a high-level after power turn-on. This resets the RDA, SCR, ROR, and RPE outputs to a low-level. The transition of the RR input from a highlevel to a low-level sets the receiver into the search mode (bit phase). In the search mode the serially received data bit stream is examined on a bit by bit basis until async character is found. A sync character is found, by definition, when the contents of the receiver sync register and the receiver shift register are identical. When this occurs the SCR output is set high. This character is then loaded into the receiver buffer register and the receiver is set into the character mode. In this mode each character received is loaded into the receiver buffer register.
16	RPE	Receiver Parity Error	This output is a high-level if the received character parity bit does not agree with the selected parity.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
17	SCR	Sync Character Received	This output is set high each time the character loaded into the receiver buffer register is identical to the character in the receiver sync register. This output is reset low the next time the receiver buffer register is loaded with a character which is not a sync character.
18	TSS	Transmitter Sync Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the transmitter sync register.
19	TCP	Transmitter Clock	The positive going edge of this clock shifts data out of the transmitter shift register, at a baud rate equal to the TCP clock frequency.
20	TDS	Transmitter Data Buffer Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the transmitter data buffer register.
21	RSS	Receiver Sync Strobe	A high-level input strobe loads the character on the DB1DB8 lines into the receiver sync register.
22	RSI	Receiver Serial Input	This input accepts the serial bit input stream.
23	RCP	Receiver Clock	The negative-going edge of this clock shifts data into the receiver shift register, at a baud rate equal to the RCP clock frequency.
24	RDAR	Receiver Data Available Reset	A high-level input resets the RDA output to a low-level.
25	RDE	Received Data Enable	A high-level input enables the outputs (RD8-RD1) of the receiver buffer register
26	RDA	Receiver Data Available	This output is at a high-level when an entire character has been received and transferred into the receiver buffer register.
27	ROR	Receiver OverRun	This output is at a high-level if the previously received character is not read (RDA not reset) before the present character is transferred into the receiver buffer register.
28-35	RD8-RD1	Receiver Data Output	These are the 8 tri-state data outputs enabled by RDE. Unused data output lines, as selected by NDB1 and NDB2, have a low level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
36, 38	NDB2, NDB1	Number of Data Bits	These 2 inputs are internally decoded to select either $5,6,7$, or 8 data bits/character as per the following truth table:
			 data bits/character $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$

PIN NO.	SYMBOL	NAME			NCTION
37	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted. In addition, it is necessary that the received character contain no parity bit. Also, the RPE output is forced to a low-level. See pin 40, POE.		
39	cs	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, POE, and NPB) into the control bits register. This line may be strobed or hard wired to a high-level.		
40	POE	Odd/Even Parity Select	The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the reciever and transmitter, as per the following table:		
			$\begin{gathered} \text { NPB } \\ L \\ L \\ H \end{gathered}$	$\begin{gathered} \text { POE } \\ \text { L } \\ \text { H } \end{gathered}$	MODE odd parity even parity no parity $\mathrm{X}=$ don't care

ADDITIONAL TIMING INFORMATION (Typical Propagation Delays)

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=-12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min	Typ	Max	Unit	Conditions
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, VIL	Vod		0.8	V	
High-level, V_{IH}	Vcc-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol		0.2	0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
High-level, Voh	2.4	4.0		V	1 он $=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			1.6	mA	see note 1
OUTPUT CURRENT					
Leakage, ILo			-1	$\mu \mathrm{A}$	$\mathrm{RDE}=\mathrm{VIL}, \mathrm{O} \leq \mathrm{V}_{\text {out }} \leq+5 \mathrm{~V}$
Short circuit, los**			10	mA	Vout $=0 \mathrm{~V}$
INPUT CAPACITANCE					
All inputs, Cin		5	10	pf	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}, \mathrm{f}=1 \mathrm{MHz}$
OUTPUT CAPACITANCE					
All outputs, Cout		10	20	pf	$\mathrm{RdE}^{\text {d }}=\mathrm{VIL}, \mathrm{f}=1 \mathrm{MHz}$
POWER SUPPLY CURRENT					
Icc			28	mA	All outputs $=\mathrm{VOH}$
Ido			28	mA	All outputs $=\mathrm{VOH}$
A.C. CHARACTERISTICS					$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY	DC		250	KHz	RCP, TCP
PULSE WIDTH					
Clock	1			$\mu \mathrm{s}$	RCP, TCP
Receiver reset	1			$\mu \mathrm{s}$	RR
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Transmitter sync strobe	200			ns	TSS
Receiver sync strobe	200			ns	RSS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	>0			ns	DB1-DB8
Control bits	>0			ns	NPB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	>0			ns	DB1-DB8
Control bits	>0			ns	NPB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY Receive data enable		180	250	ns	Load $=20 \mathrm{pf}+1$ TTL input RDE: Tpd1, Tpdo
OUTPUT DISABLE DELAY		100	250	ns	RDE

**Not more than one output should be shorted at a time.
NOTES:

1. Under steady state condition no current flows for TTL or MOS interfacing. A switching current of 1.6 mA maximum flows during a transition of the input.
2. The three-state output has 3 states:
1) low impedance to $V c c$
2) Iow impedance to GND
3) high impedance $O F F \cong 10 \mathrm{M}$ ohms

The OFF state is controlled by the RDE input.

DESCRIPTION OF OPERATION-RECEIVER/TRANSMITTER

The input clock frequency for the receiver is set at the desired receiver baud rate and the desired receiver sync character (synchronous idle character) is loaded into the receiver sync register. When the Receiver Reset input transitions from a highlevel to a low-level the receiver is set into the search mode (bit phase). In the search mode the serially received data bit stream is examined on a bit by bit basis until a sync character is found. A sync character is found, by definition, when the contents of the receiver sync register and the receiver shift register are identical. When this occurs the Sync Character Received output is set high. This character is then loaded into the receiver buffer register and the receiver is set into the character mode. In this mode each character received is loaded into the receiver buffer register. The receiver provides flags for Receiver Data Available, Receiver Over Run, Receiver Parity Error, and Sync Character Received. Full double buffering eliminates the need for precise external timing by allowing one full character time for received data to be read out.
The input clock frequency for the transmitter is set
at the desired baud rate and the desired transmitter sync character is loaded into the transmitter sync register. Internal logic decides if the character to be transmitted out of the transmitter shift register is extracted from the transmitter data register or the transmitter sync register. The next character transmitted is extracted from the transmitter data register provided that a Transmitter Data Strobe pulse occurs during the presently transmitted character. If the Transmitter Data Strobe is not pulsed, the next transmitted character is extracted from the transmitter sync register and the Sync Character Transmitted output is set to a high level. Full double buffering eliminates the need for precise external timing by allowing one full character time to load the next character to be transmitted.
There may be $5,6,7$, or 8 data bits and odd/even or no parity bit. All inputs and outputs are directly TTL compatible. Tri-state data output levels are provided for the bus structure oriented signals. Input strobe widths of 200 ns , output propagation delays of 250 ns , and receiver/transmitter rates of 250 K baud are achieved.

FLOW CHART - TRANSMITTER

FLOW CHART—RECEIVER

Programmable Communication Interface PCI

FEATURES

Synchronous and Asynchronous Full Duplex or Half Duplex OperationsRe-programmable ROM on-chip baud rate generatorSynchronous Mode Capabilities-Selectable 5 to 8-Bit Characters

- Selectable 1 or 2 SYNC Characters
- Internal Character Synchronization
- Transparent or Non-Transparent Mode
- Automatic SYNC or DLE-SYNC Insertion
-SYNC or DLE Stripping
- Odd, Even, or No Parity
- Local or remote maintenance loop back mode
\square
Asynchronous Mode Capabilities
-Selectable 5 to 8-Bit Characters
-3 Selectable Clock Rates (1X, 16X, 64X the Baud Rate)
- Line Break Detection and Generation
$-1,1 / 2$, or 2 -Stop Bit Detection and Generation
-False Start Bit Detection
- Odd, Even, or No Parity
- Parity, Overrun, and framing error detect
- Local or remote maintenance loop back mode
- Automatic serial echo mode

Baud Rates
-DC to 1.0M Baud (Synchronous)
-DC to 1.0M Baud (1X, Asynchronous)
-DC to 62.5 K Baud (16X, Asynchronous)
-DC to 15.625 K Baud (64X, Asynchronous)
\square Double Buffering of Data

PIN CONFIGURATION
Internal or External Baud Rate Clock -16 Internal Rates:50 to 19,200 BaudSingle +5 volt Power SupplyTTL CompatibleNo System Clock RequiredCompatible with 2651, INS2651
}

GENERAL DESCRIPTION

The COM 2651 is an MOS/LSI device fabricated using SMC's patented COPLAMOS® technology that meets the majority of asynchronous and synchronous data communication requirements, by interfacing parallel digital systems to asynchronous and synchronous data communication channels while requiring a minimum of processor overhead. The COM 2651 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode. The on-chip baud rate generator can be ROM reprogrammed to accommodate different baud rates and different starting frequencies.
The COM 2651 is a Universal Synchronous/

Asynchronous Receiver/Transmitter (USART) designed for microcomputer system data communications. The USART is used as a peripheral and is programmed by the processor to communicate in commonly used asynchronous and synchronous serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals is available to the processor at any time.

COM 2651 ORGANIZATION

The COM 2651 is organized into 6 major sections. Communication between each section is achieved via an internal data and control bus. The data bus buffer allows a processor access to all internal registers on the COM 2651.

Operation Control

This functional block stores configuration and operation commands from the processor and generates appropriate signals to various internal sections to control the overall device operation. It contains read and write circuits to permit communications with a processor via the data bus and contains Mode Registers 1 and 2, the Command Register, and the Status Register. Details of register addressing and protocol are presented in the COM 2651 programming section of this specification.

Timing

The COM 2651 contains a Baud Rate Generator (BRG) which is programmable to accept external transmit or receive clocks or to divide an external clock to perform data communications. The unit can generate 16 commonly used baud rates, any one of which can be selected for full duplex operation. Table 6 illustrates all available baud rates.

Receiver

The Receiver accepts serial data on the RxD pin, converts this serial input to parallel format, checks for bits or characters that are unique to the communication
technique and stores the "assembled" character in the receive data holding register until read by the processor.

Transmitter

The Transmitter accepts parallel data from the processor, converts it to a serial bit stream, inserts the appropriate characters or bits (based on the communication technique) and outputs a composite serial stream of data on the TxD output pin.

Modem Control

The modem control provides three output signals and accepts three input signals used for "handshaking" and status indication between the COM 2651 and a modem.

SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE characters provided by the processor. These registers are used in the synchronous mode of operation to provide the characters required for synchronization, idle fill and data transparency.

Interface Signals

The COM 2651 interface signals can be grouped into two types: the processor-related signals (shown in Table 2) which interface the COM 2651 to the processor, and the devicerelated signals (shown in Table 3), which are used to interface to the communications equipment.

TABLE 2-PROCESSOR RELATED SIGNALS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{array}{\|c\|} \hline 1,2,5,6 \\ 7,8,27,28 \end{array}$	Data	D7-D0	Bidirectional; 8 bit, three state data bus used to transfer commands, data and status between the COM 2651 and a processor. $D \emptyset$ is the least significant bit; $D 7$ is the most significant bit.
10,12	Address	A1, A0	Input; Address lines used to select COM 2651 registers.
11	Chip Enable	$\overline{C E}$	Input; when this signal is low, the operation specified by the $\bar{R} / W, A 1$ and $A \emptyset$ will be performed. When this input is high, D7- \emptyset are in the high impedance state.
13	Read/Write	$\overline{\mathrm{R}}$ W	Input; Processor read/write direction control. This signal defines the direction of the data bus D7- \emptyset when the COM 2651 is selected. D7- \varnothing drives out (read) when this signal is low and accepts data input when this signal is high. The input only has meaning when the chip enable input is active.
14	Receiver Ready	$\overline{\text { RXRDY }}$	Output; This signal is the complement of Status Register bit 1 (SR1). When low, it indicates that the Receive Data Holding Register (RHR) has a character ready for input to the processor. It goes high when the RHR is read by the processor, and also when the receiver is disabled. It is an open drain output which can be used as an interrupt to the processor.
15	Transmitter Ready	$\overline{\text { TXRDY }}$	Output; This signal is the complement of Status Register bit 0 (SRO). When low, it indicates that the Transmit Data Holding Register (THR) is ready to accept a data character from the processor. It goes high when the data character is loaded. This output is valid only when the transmitter is enabled. It is an open drain output which can be used as an interrupt to the processor.
18	Transmitter empty/data set change	$\frac{\overline{\text { TXEMT/ }}}{\text { DSCHG }}$	Output; This signal is the complement of Status Register bit 2 (SR2). When low, it indicates that the transmitter has completed serialization of the last character loaded by the processor, or that a change of state of the $\overline{\overline{D S R}}$ or $\overline{\overline{D C D}}$ inputs has occurred. This output goes high when the Status Register is read by the processor, if the TXEMT condition does not exist. Otherwise, the THR must be loaded by the processor for this line to go high. It is an open drain output which can be used as an interrupt to the processor.
21	Reset	Reset	Input; A high on this input performs a master reset on the COM 2651. This signal asynchronously terminates any device activity and clears the Mode, Command and Status registers. The device assumes the idle state and remains there until initialized with the appropriate control words.
26	Supply Voltage	$\mathrm{V}_{\text {cc }}$	+5 volts supply.
4	Ground	GND	Ground.

TABLE 3-DEVICE RELATED SIGNALS

PIN NO.	NAME	SYMBOL	
3	Receive Data	RxD	Input; Serial data to the receiver. "Mark" is high "space" is low.
9	Transmitter Clock	$\overline{\text { TxC }}$	Input or Output; If the external transmitter clock is programmed, this input controls the rate at which the character is transmitted. Its frequency is 1X, 16X or 64X, the Baud rate as programmed by Mode Register 1. The transmitted data changes on the falling edge of the clock. If the internal transmitter clock is programmed, this pin becomes an output at 1X the programmed Baud rate.
16	Data Carrier Detect	$\overline{\text { DCD }}$	Input; This signal must be low in order for the receiver to function. The complement appears in the Status Register bit 6 (SR6). When this input changes state a low output on TxEMT/DSCHG occurs.
17	Clear to Send	$\overline{\text { CTS }}$	Input; This signal must be low in order for the transmitter to function. If it goes high during transmission, the character in the Transmit Shift Register will be transmitted before termination.
19	Transmit Data	TxD	Output; Serial data from the transmitter. "Mark" is high, "Space" is low. This signal is held in the "Mark" condition when the transmitter is disabled.
20	Baud Rate Clock	BRCLK	Input; The standard device requires a 5.0688MHz clock to the internal Baud rate generator allowing for Baud rate shown in Table 6. The reprogrammable ROM on chip allows for user specificed Baud rates and input frequency. Consult the factory for details. This input is not required if external receive and transmit clocks are used.
22	Data Set Ready	$\overline{\text { DSR }}$	Input; This general purpose signal can be used for Data Set Ready or Ring Indicator condition. Its complement appears as Status Register bit 7 (SR7). When this input changes state, a low output on TxEMT/DSCHG occurs.
23	Request to Send	$\overline{\text { RTS }}$	Output; This general purpose signal is the complement of the Command Register bit 5 (CR5). It is normally used to indicate Request to Send.

TABLE 3-DEVICE RELATED SIGNALS

PIN NO.	NAME	SYMBOL	FUNCTION
24	Data Terminal	$\overline{\text { DTR }}$	Output; This general purpose signal is the complement of the Command Register bit 1 (CR1). It is normally used to indicate Data Terminal Ready.
25	Receive Clock	$\overline{R \times C}$	Input or Output; If the external receiver clock is programmed, this input controls the rate at which the character is to be received. Its frequency is 1X, 16X, or 64X the Baud rate, as programmed by Mode Register 1. Data are sampled on the rising edge of the lock. If internal receiver clock is programmed, this pin becomes an output at 1X the programmed Baud rate.

COM 2651 OPERATION

The functional operation of the COM 2651 is programmed by a set of control words supplied by the processor. These control words specify items such as synchronous or asynchronous mode, baud rate, number of bits per character, etc. The programming procedure is described in the COM 2651 Programming section of this data sheet.
After programming, the COM 2651 is ready to perform the desired communications functions. The receiver performs serial to parallel conversion of data received from a modem or equivalent device. The transmitter converts parallel data received from the processor to a serial bit stream. These actions are accomplished within the framework specificed by the control words.

Receiver

The COM 2651 is conditioned to receive data when the $\overline{D C D}$ input is low and the RxEN bit in the command register is true. In the asynchronous mode, the receiver looks for a high to low transition on the RxD input line indicating the start bit. If a transition is detected, the state of the RxD line is sampled again after a delay of one-half of a bit time. If RxD is now high, the search for a valid start bit is begun again. If RxD is still low, a valid start bit is assumed and the receiver continues to sample the input line at one bit time intervals until the proper number of data bits, the parity bit, and the stop bit(s) have been assembled. The data is then transferred to the Receive Data Holding Register, the RxRDY bit in the status register is set, and the RxRDY output is asserted. If the character length is less than 8 bits, the high order unused bits in the Holding Register are set to zero. The Parity Error, Framing Error, and Overrun Error status bits are strobed into the status register on the positive going edge of $\overline{\mathrm{RxC}}$ corresponding to the received character boundary. If a break condition is detected (RxD is low for the entire character as well as the stop bit[s]), only one character consisting of all zeros (with the Framing error status bit set) will be transferred to the Holding Register. The RxD input must return to a high condition before a search for the next start bit begins.
When the COM 2651 is initialized into the synchronous mode, the receiver first enters the hunt mode on a 0 to 1 transition of RxEN (CR2). In this mode, as data is shifted into the Reciver Shift Register a bit at a time, the contents of the register are compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match, the hunt mode is terminated and character assembly begins. If the single SYN operation is programmed, the SYN DETECT status bit is set. If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set. Otherwise, the COM 2651 returns
to the hunt mode. (Note that the sequence SYN1-SYN1SYN2 will not achieve synchronization). When synchronization has been achieved, the COM 2651 continues to assemble characters and transfers them to the Holding Register. The RxRDY status bit is set and the RxRDY output is asserted each time a character is assembled and transferred to the Holding Register. The Overrun error (OE) and Parity error (PE) status bits are set as appropriate. Further receipt of the proper SYN sequence sets the SYN DETECT status bit. If the SYN stripping mode is commanded, SYN characters are not transferred to the Holding Register. Note that the SYN characters used to establish initial synchronization are not transferred to the Holding Register in any case.

Transmitter

The COM 2651 is conditioned to transmit data when the $\overline{\text { CTS }}$ input is low and the TxEN command register bit is set. The COM 2651 indicates to the processor that it can accept a character for transmission by setting the TxRDY status bit and asserting the TxRDY output. When the processor writes a character into the Transmit Data Holding Register, the TxRDY status bit is reset and the TxRDY output is returned to a high (false) state. Data is transferred from the Holding Register to the Transmit Shift Register when it is idle or has completed transmission of the previous character. The TxRDY conditions are then asserted again. Thus, one full character time of buffering is provided.
In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits. If, following transmission of the data bits, a new character is not available in the Transmit Holding Register, the TxD output remains ir. the marking (high) condition and the TxEMT/DOCHG output and its corresponding status bit are asserted. Transmission resumes when the processor loads a new character into the Holding Register. The transmitter can be forced to output a continuous low (BREAK) condition by setting the Send Break command bit high.
In the synchronous mode, when the COM 2651 is initially conditioned to transmit, the TxD output remains high and the TxRDY condition is asserted until the first character to be transmitted (usually a SYN character) is loaded by the processor. Subsequent to this, a continuous stream of characters is transmitted. No extra bits (other than parity, if commanded) are generated by theCOM2651 unless the processor fails to send a new character to the COM 2651 by the time the transmitter has completed sending the previous character. Since synchronous communication does not allow gaps between characters, the COM 2651
asserts TxEMT and automatically "fills" the gap by transmitting SYN1s, SYN1-SYN2 doublets, or DLE-SYN1 doublets, depending on the state of MR16 and MR17. Normal transmission of the message resumes when a new character is available in the Transmit Data Holding Register. If the SEND DLE bit in the command register is true, the DLE character is automatically transmitted prior to transmission of the message character in the transmit holding register.

COM 2651 PROGRAMMING

Prior to initiating data communications, the COM 2651 operational mode must be programmed by performing write operations to the mode and command registers. In addition, if synchronous operation is programmed, the appropriate SYN/DLE registers must be loaded. The COM 2651 can be reconfigured at any time during program execution. However, if the change has an effect on the reception of a character the receiver should be disabled. Alternatively if the change is made $1 \frac{1}{2} \mathrm{RxC}$ periods after RxRDY goes active it will affect the next character assembly. A flowchart of the initialization process appears in Figure 1.
The internal registers of the COM 2651 are accessed by applying specific signals to the $\overline{C E}, \bar{R} / W, A 1$ and $A 0$ inputs. The conditions necessary to address each register are shown in Table 4.
The SYN1, SYN2, and DLE registers are accessed by performing write operations with the conditions $A 1=0$, $A 0=1$, and $\bar{R} / W=1$. The first operation loads the SYN1 register. The next loads the SYN2 register, and the third loads the DLE register. Reading or loading the mode registers is done in a similar manner. The first write (or read) operation addresses Mode Register 1, and a subsequent operation addresses Mode Register 2. If more than the required number of accesses are made, the internal sequencer recycles to point at the first register. The pointers are reset to SYN1 Register and Mode Register 1 by a RESET input or by performing a "Read Command Register" operation, but are unaffected by any other read or write operation.
The COM 2651 register formats are summarized in Tables 5, 6, 7 and 8. Mode Registers 1 and 2 define the general operational characteristics of the COM 2651, while the Command Register controls the operation within this basic framework. The COM 2651 indicates its status in the Status Register. These registers are cleared when a RESET input is applied.

COM 2651 INITIALIZATION FLOW CHART

Figure 1

$\overline{\mathbf{C E}}$	$\mathbf{A 1}$	$\mathbf{A O}$	$\overline{\mathbf{R}} / \mathbf{W}$	FUNCTION
1	X	X	X	Tri-state data bus
0	0	0	0	Read receive holding register
0	0	0	1	Write transmit holding register
0	0	1	0	Read status register
0	0	1	1	Write SYN1/SYN2/DLE registers
0	1	0	0	Read mode registers 1 and 2
0	1	0	1	Write mode registers 1 and 2
0	1	1	0	Read command register
0	1	1	1	Write command register

NOTE
See AC Characteristics section for timing requirements.
Table 4-COM 2651 REGISTER ADDRESSING

MODE REGISTER 1 (MR1)

Table 5 illustrates Mode Register 1. Bits MR11 and MR10 select the communication format and Baud rate multiplier. 00 specifies synchronous mode and 1X multiplier. 1X, 16X, and 64X multipliers are programmable for asynchronous format. However, the multiplier in asynchronous format applies only if the external clock input option is selected by MR24 or MR25.
MR13 and MR12 select a character length of 5, 6, 7, or 8 bits. The character length does not include the parity bit, if programmed, and does not include the start and stop bits in asynchronous mode.
MR14 controls parity generation. If enabled, a parity bit is added to the transmitted character and the receiver
performs a parity check on incoming data. MR15 selects odd or even parity when parity is enabled by MR14.
In asychronous mode, MR17 and MR16 select character framing of $1,1.5$, or 2 stop bits. (if 1 X baud rate is programmed, 1.5 , stop bits defaults to 1 stop bits on transmit). In synchronous mode, MR17 controls the number of SYN characters used to establish synchronization and for character fill when the transmitter is idle. SYN1 alone is used if MR17 $=1$, and SYN1-SYN2 is used when MR17 $=0$. If the transparent mode is specified by MR16, DLE-SYN1 is used for character fill and SYN Detect, but the normal synchronization sequence is used. Also DLE stripping and DLE Detect (with MR14=0) are enabled.

MR17	MR16	MR15	MR14	MR13 MR12	MR11 MR10
Sync/Async		Parity Type	Parlity Control	Character Length	Mode and Baud Rate Factor
ASYNCH: STOP BI $00=$ INVALID $01=1$ STOP BIT $10=11 / 2$ STOP BITS $11=2$ STOP BITS	T LENGTH	$\begin{aligned} & 0=\text { ODD } \\ & 1=\text { EVEN } \end{aligned}$	$\begin{aligned} & 0=\text { DISABLED } \\ & 1=\text { ENABLED } \end{aligned}$	$\begin{aligned} & 00=5 \text { BITS } \\ & 01=6 \text { BITS } \\ & 10=7 \text { BITS } \\ & 11=8 \text { BITS } \end{aligned}$	$00=$ SYNCHRONOUS $1 \times$ RATE 01=ASYNCHRONOUS 1XRATE $10=$ ASYNCHRONOUS 16X RATE 11=ASYNCHRONOUS 64X RATE
SYNCH: NUMBER OF SYN CHAR $0=$ DOUBLE SYN $1=$ SINGLE SYN	SYNCH: TRANSPARENCY CONTROL $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { TRANSPARENT } \end{aligned}$				

NOTE Baud rate factor in asynchronous applies only if external clock is selected. Factor is 16 X if
internal clock is selected. Mode must be selected (MR11, MR10) in any case.

TABLE 5-MODE REGISTER 1 (MR1)

MODE REGISTER 2 (MR2)

Table 6 illustrates Mode Register 2. MR23, MR22, MR21, and MR20 control the frequency of the internal Baud rate generator (BRG). Sixteen rates are selectable. When driven by a 5.0688 MHz input at the BRCLK input (pin 20), the BRG output has zero error except at 134.5, 2000, and 19,200 Baud, which have errors of $+0.016 \%+0.253 \%$, and $+3.125 \%$ respectively.
MR25 and MR24 select either the BRG or the external
inputs $\overline{\mathrm{TxC}}$ and $\overline{\mathrm{RxC}}$ as the clock source for the transmitter and receiver, respectively. If the BRG clock is selected, the Baud rate factor in asynchronous mode is 16X regardless of the factor selected by MR11 and MR10. In addition, the corresponding clock pin provides an output at 1 X the Baud rate. Custom Baud rates other than the ones provided by the standard part are available. Contact the factory for details.

MR27		MR26	MR25	MR24	MR23-MR20					
			Transmitter Clock	Receiver Clock	Code	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Divisor
NOT USED			$\begin{aligned} & 0=\text { EXTERNAL } \\ & 1=\text { INTERNAL } \end{aligned}$	$\begin{aligned} & 0=\text { EXTERNAL } \\ & 1=\text { INTERNAL } \end{aligned}$	0000	50	0.8 KHz	0.8 KHz	-	6336
			0001		75	1.2	1.2	-	4224	
			0010		110	1.76	1.76	-	2880	
			0011		134.5	2.152	2.1523	0.016	2355	
			0100		150	2.4	2,4	-	2112	
			0101		300	4.8	4.8	-	1056	
			0110		600	9.6	9.6	-	528	
			0111		1200	19.2	19.2	-	264	
			1000		1800	28.8	28.8	-	176	
			1001		2000	32.0	32.081	0.253	158	
			1010		2400	38.4	38.4	-	132	
			1011		3600	57.6	57.6	-	88	
			1100		4800	76.8	76.8	-	66	
			1101		7200	115.2	115.2	-	44	
			1110		9600	153.6	153.6	-	33	
			1111		19200*	307.2	316.8	3.125	16	

NOTE *Error at 19200 can be reduced to zero by using crystal frequency 4.9152 MHz
16 X clock is used in asynchronous mode. In synchronous mode, clock multiplier is 1 XX . Baud rates are valid for crystal frequency $=5.0688 \mathrm{MHz}$

Table 7 illustrates the Command Register. Bits CRO (TxEN) and CR2 (RxEN) enable or disable the transmitter and receiver respectively. A 0 to 1 transition of CR2 forces start bit search (async mode) or hunt mode (sync mode) on the second RxC rising edge. Disabling the receiver causes RxRDY to go high (inactive). If the transmitter is disabled, it will complete the transmission of the character in the Transmit Shift Register (if any) prior to terminating operation. The TxD output will then remain in the marking state (high) while the TxRDY and TxEMT will go high (inactive). If the receiver is disabled, it will terminate operation immediately. Any character being assembled will be neglected.
In asynchronous mode, setting CR3 will force and hold the TxD output low (spacing condition) at the end of the current transmitted character. Normal operation resumes when CR3 is cleared. The TxD line will go high for at least one bit time before beginning transmission of the next character in the Transmit Data Holding Register. In synchronous mode, setting CR3 causes the transmission of the DLE register contents prior to sending the character in the Transmit Data Holding Register. CR3 should be reset in response to the next TxRDY.
Setting CR4 causes the error flags in the Status Register (SR3, SR4, and SR5) to be cleared. This is a one time command. There is no internal latch for this bit.
The COM 2651 can operate in one of four sub-modes within each major mode (synchronous or asynchronous). The operational sub-mode is determined by CR7 and CR6. CR7-CR6 $=00$ is the normal mode, with the transmitter and receiver operating independently in accordance with the Mode and Status Register instructions. In asynchronous mode, CR7-CR6=01 places the COM 2651 in the Automatic Echo mode. Clocked, regenerated received data is automatically directed to the TxD line while normal receiver operation continues. The receiver must be enabled (CR2=1), but the transmitter need not be enabled. Processor to receiver communications continues normally, but the processor to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in Automatic Echo mode:

1. Data assembled by the receiver are automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. The transmitter is clocked by the receive clock.
3. TxRDY output $=1$.
4. The TXEMT/DSCHG pin will reflect only the data set change condition.
5. The TxEN command (CRO) is ignored.

In synchronous mode, CR7-CR6=01 places the COM 2651 in the Automatic SYN/DLE Stripping mode. The exact action taken depends on the setting of bits MR17 and MR16:

1. In the non-transparent, single SYN mode (MR17MR16=10), characters in the data stream matching SYN1 are not transferred to the Receive Data Holding Register (RHR).
2. In the non-transparent, double SYN mode (MR17MR16 $=00$), characters in the data stream matching, SYN1, or SYN2 if immediately preceded by SYN1, are not transferred to the RHR. However, only the first SYN1 of an SYN1-SYN1 pair is stripped.
3. In transparent mode (MR16=1), characters in the data stream matching DLE, or SYN1 if immediately preceded by DLE, are not transferred to the RHR. However, only the first DLE of a DLE-DLE pair is stripped.
Note that Automatic Stripping mode does not affect the setting of the DLE Detect and SYN Detect status bits (SR3 and SR5).
Two diagnostic sub-modes can also be configured. In Local Loop Back mode (CR7-CR6=10), the following loops are connected internally:
4. The transmitter output is connected to the receiver input.
5. $\overline{\mathrm{DTR}}$ is connected to $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{RTS}}$ is connected to CTS.
6. The receiver is clocked by the transmit clock.
7. The $\overline{D T R}, \overline{R T S}$ and $\overline{T x D}$ outputs are held high.
8. The $\overline{C T S}, \overline{D C D}, \overline{D S R}$ and RxD inputs are ignored.

Additional requirements to operate in the Local Loop Back mode are that CR0 (TxEN), CR1 (DTR), and CR5 (RTS) must be set to 1. CR2 (RxEN) is ignored by the COM 2651.
The second diagnostic mode is the Remote Loop Back mode (CR7-CR6=11). In this mode:

1. Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. The transmitter is clocked by the receive clock.
3. No data are sent to the local processor, but the error status conditions (PE, OE, FE) are set.
4. The RxRDY, TxRDY, and TxEMT/DSCHG outputs are held high.
5. CRO (TxEN) is ignored.
6. All other signals operate normally.

CR7 CR6	CR5	CR4	CR3	CR2	CR1	CRO
Operating Mode	Request to Send	Reset Error	Sync/Async	Receive Control (RxEN)	Data Terminal Ready	Transmit Control (TxEN)
$00=$ NORMAL OPERATION $01=$ ASYNCH: AUTOMATIC ECHO MODE SYNCH: SYN AND/OR DLE STRIPPING MODE $10=$ LOCAL LOOP BACK 11 = REMOTE LOOP BACK	$0=$ FORCE RTS OUTPUT HIGH 1 =FORCE RTS OUTPUT LOW	$\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { RESET } \\ & \text { ERROR FLAG } \\ & \text { IN STATUS } \\ & \text { (FE, OE, } \\ & \text { PE/DLE DETECT) } \end{aligned}$	ASYNCH: FORCE BREAK $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { FORCE } \end{aligned}$ BREAK SYNCH: SEND DLE $0=$ NORMAL $1=$ SEND DLE	$\begin{aligned} & 0=\text { DISABLE } \\ & 1=\text { ENABLE } \end{aligned}$	$0=$ FORCE $\overline{\text { DTR }}$ OUTPUT HIGH 1 =FORCE DTR OUTPUT LOW	$\begin{aligned} & 0=\text { DISABLE } \\ & 1=\text { ENABLE } \end{aligned}$

The data contained in the Status Register (as shown in Table 8) indicate receiver and transmitter conditions and modem/data set status.
SRO is the Transmitter Ready (TxRDY) status bit. It, and its corresponding output, are valid only when the transmitter is enabled. If equal to 0 , it indicates that the Transmit Data Holding Register has been loaded by the processor and the data has not been transferred to the Transmit Shift Register. If set equal to 1, it indicates that the Holding Register is ready to accept data from the processor. This bit is initially set when the Transmitter is enabled by CRO, unless a character has previously been loaded into the Holding Register. It is not set when the Automatic Echo or Remote Loop Back modes are programmed. When this bit is set, the TxRDY output pin is low. In the Automatic Echo and Remote Loop Back modes, the output is held high.
SR1, the Receiver Ready (RxRDY) status bit, indicates the condition of the Receive DataHolding Register. If set, it indicates that a character has been loaded into the Holding Register from the Receive Shift Register and is ready to be read by the processor. If equal to zero. there is no new character in the Holding Register. This bit is cleared when the processor reads the Receive Data Holding Register or when the receiver is disabled by CR2. When set, the RxRDY output is low.
The TxEMT/DSCHG bit, SR2, when set, indicates either a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ inputs or that the Transmit Shift Register has completed transmission of a character and no new character has been loaded into the Transmit Data Holding Register. Note that in synchronous mode this bit will be set even though the appropriate "fill" character is transmitted. TxEMT will not go active until at least one character has been transmitted. It is cleared by loading the Transmit Data Hold-
ing Register. The DSCHG condition is enabled when TxEN = 1 or RxEN = 1. It is cleared when the Status Register is read by the processor. When SR2 is set, the TxEMT/ DSCHG output is low.
SR3, when set, indicates a received parity error when parity is enabled by MR14. In synchronous transparent mode (MR16 $=1$), with parity disabled, it indicates that a character matching the DLE Register has been received. However, only the first DLE of two successive DLEs will set SR3. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.
The Overrun Error status bit, SR4, indicates that the previous character loaded into the Receive Holding Register was not read by the processor at the time a new received character was transferred into it. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.
In asynchronous mode, bit SR5 signifies that the received character was not framed by the programmed number of stop bits. (if 1.5 stop bits are programmed, only the first stop bit is checked.) If the RHR contains all 0 's when $\operatorname{SR5}=1$, a break condition is present. In synchronous non-transparent mode (MR16 $=0$), it indicates receipt of the SYN1 character in single SYN mode or the SYN1-SYN2 pair in double SYN mode. In synchronous transparent mode (MR16=1), this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and, after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the Reset Error command is given in asynchronous mode, or when the Status Register is read by the processor in the synchronous mode.
SR6 and SR7 reflect the conditions of the $\overline{D C D}$ and $\overline{D S R}$ inputs respectively. A low input sets the corresponding status bit and a high input clears it.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SRO
Data Set Ready	Data Carrier Detect	FE/S YN Detect	Overrun	PE/DLE Detect	TxEMT/DSCHG	RxRDY	TxRDY
$\begin{aligned} 0= & \overline{\text { DSR INPUT }} \\ & \text { IS HIGH } \\ 1= & \overline{\text { DSR INPUT }} \\ & \text { IS LOW } \end{aligned}$	$\begin{aligned} 0= & \overline{\mathrm{DCD}} \text { INPUT } \\ & \text { IS HIGH } \\ 1= & \overline{\mathrm{DCD} \text { INPUT }} \\ & \text { IS LOW } \end{aligned}$	ASYNCH: $0=$ NORMAL $1=$ FRAMING ERROR SYNCH: $0=$ NORMAL $1=$ SYN CHAR DETECTED	$\begin{aligned} 0= & \text { NORMAL } \\ 1= & \text { OVERRUN } \\ & \text { ERROR } \end{aligned}$	ASYNCH: $0=$ NORMAL $1=$ PARITY ERROR SYNCH: $0=$ NORMAL $1=$ PARITY ERROR OR DLE CHAR RECEIVED	$\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { CHANGE } \\ & \text { IN } \overline{D S R} \text { OR } \\ & \overline{D C D, ~ O R ~} \\ & \text { TRANSMIT } \\ & \text { SHIFT REGIS- } \\ & \text { TER IS } \\ & \text { EMPTY } \end{aligned}$	$0=$ RECEIVE HOLDING REG EMPTY 1 = RECEIVE HOLDING REG HAS DATA	$0=$ TRANSMIT HOLDING REG BUSY $1=$ TRANSMIT HOLDING REG EMPTY

TABLE 8-STATUS REGISTER (SR)

TXRDY, TXEMT (Shown for 5-bit characters, no parity, 2 stop bits [in asynchronous mode])

NOTES
$A=$ Start bit
$\mathrm{B}=$ Stop bit 1
$\mathrm{C}=$ Stop bit 2
$\mathrm{D}=\mathrm{T} \times \mathrm{D}$ marking condition
TXEMT goes low at the beginning of the last data bit, or, if parity is enabled, at the beginning of the parity bit.

RxRDY (Shown for 5-bit characters, no parity, 2 stop bits [in asynchronous mode])

NOTES
A $=$ Start bit
$A=$ Stap bit 1
$B=$ Stop
$\mathrm{D}=\mathrm{T} \times \mathrm{D}$ marking condition

TIMING DIAGRAMS (Cont'd)

READ AND WRITE

Lead Temperature (soldering, 10 sec.) . .. $+325^{\circ} \mathrm{C}$

Negative Voltage on any Pin, with respect to ground .. -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it it important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
$\begin{aligned} & V_{\text {IL }} \\ & V_{\text {IH }} \end{aligned}$	Input voltage Low High	2.0		0.8	V	
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Output voltage Low High	2.4		0.4	V	$\begin{aligned} & I_{\mathrm{oL}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \hline \end{aligned}$
IIL	Input leakage current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\begin{aligned} & \mathrm{I}_{\mathrm{LH}} \\ & \mathrm{I}_{\mathrm{LL}} \end{aligned}$	Output leakage current Data bus high Data bus low			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} V_{0}=4.0 \mathrm{~V} \\ V_{0}=0.45 \mathrm{~V} \\ \hline \end{gathered}$
Icc	Power supply current			150	mA	
C_{IN} Cout C_{10}	Capacitance Input Output Input/Output			$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	pF pF pF	$\mathrm{fc}=1 \mathrm{MHz}$ Unmeasured pins tied to ground

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
$t_{\text {RES }}$ $t_{C E}$	Pulse width Reset Chip enable	$\begin{array}{r} 1000 \\ 300 \\ \hline \end{array}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{A S}$ $t_{\text {AH }}$ tcs t_{CH} tos $t_{D H}$ $\mathrm{t}_{\mathrm{xxs}}$ $\mathrm{t}_{\mathrm{fxH}}$	Setup and hold time Address setup Address hold $\overline{\mathrm{R}} / \mathrm{W}$ control setup $\overline{\mathrm{R}} / \mathrm{W}$ control hold Data setup for write Data hold for write Rx data setup Rx data hold	$\begin{gathered} 20 \\ 20 \\ 20 \\ 20 \\ 225 \\ 0 \\ 300 \\ 350 \\ \hline \end{gathered}$				
$\begin{aligned} & t_{\mathrm{DD}} \\ & \mathrm{t}_{\mathrm{DF}} \\ & \mathrm{t}_{\mathrm{CEED}} \end{aligned}$	Data delay time for read Data bus floating time for read CE to CE delay	700		$\begin{aligned} & 250 \\ & 150 \end{aligned}$	ns ns ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$
$f_{\text {frg }}$ $f_{\mathrm{R} / \mathrm{T}}$	Input clock frequency Baud rate generator TxC or RxC	$\begin{aligned} & 1.0 \\ & \mathrm{dc} \end{aligned}$	5.0688	$\begin{gathered} 5.0738 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
$t_{\text {BRH }}$ $t_{\text {BRL }}$ $\mathrm{t}_{\mathrm{R} / \mathrm{H}} \mathrm{H}_{1}$ $\mathrm{t}_{\mathrm{R} / \mathrm{LL}}$	Clock width Baud rate high Baud rate low $\overline{T \times C}$ or $\overline{R \times C}$ high TxC or RxC low	$\begin{array}{r} 70 \\ 70 \\ 500 \\ 500 \\ \hline \end{array}$			$\begin{aligned} & \text { ns } \\ & \hline \end{aligned}$	$\begin{aligned} f_{B R G} & =5.0688 \mathrm{MHz} \\ f_{B R G} & =5.0688 \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {TXD }}$ $t_{\text {tcs }}$	TxD delay from falling edge of TxC Skew between TxD changing and falling edge of TXC output		0	650	ns ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$

NOTE:

1. $f_{\mathrm{R} / \pi}$ and $\mathrm{t}_{\mathrm{R} / \mathrm{L}}$ shown for all modes except Local Loopback. For Local Loopback mode $\mathrm{f}_{\mathrm{R} / \mathrm{T}}=0.7 \mathrm{MHz}$ and $\mathrm{t}_{\mathrm{R} / \mathrm{L}}=700 \mathrm{~ns} \mathrm{~min}$.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications, consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Enhanced Programmable Communication Interface EPCI

FEATURES

Synchronous and Asynchronous Full Duplex or Half Duplex OperationsRe-programmable ROM on-chip baud rate generatorSynchronous Mode Capabilities-Selectable 5 to 8-Bit Characters
-Selectable 1 or 2 SYNC Characters

- Internal or External Character Synchronization
-Transparent or Non-Transparent Mode
- Transparent mode DLE stuffing (Tx) and detection (Rx)
- Automatic SYNC or DLE-SYNC Insertion
-SYNC, DLE and DLE-SYNC stripping
-Odd, Even, or No Parity
-Local or remote maintenance loop back mode
\square
Asynchronous Mode Capabilities
-Selectable 5 to 8 -Bit Characters plus parity
-3 Selectable Clock Rates (1X, 16X, 64X the Baud Rate)
-Line Break Detection and Generation
$-1,1 / 2$, or 2 -Stop Bit Detection and Generation
-False Start Bit Detection
- Odd, Even, or No Parity
- Parity, Overrun, and framing error detect
- Local or remote maintenance loop back mode
- Automatic serial echo mode (echoplex)
\square Baud Rates
-DC to 1.0M Baud (Synchronous)
-DC to 1.0 M Baud (1X, Asynchronous)
-DC to 62.5 K Baud (16X, Asynchronous)
-DC to 15.625 K Baud (64 X , Asynchronous)

PIN CONFIGURATION

Package: 28 -pin D.I.P.	

Double Buffering of DataRxC and TxC pins are short circuit protectedInternal or External Baud Rate Clock3 baud rate sets (2661-1, -2, -3)16 internal rates for each versionSingle +5 volt Power SupplyTTL CompatibleNo System Clock RequiredCompatible with EPCI 2661

GENERAL DESCRIPTION

The COM 2661 is an MOS/LSI device fabricated using SMC's patented COPLAMOS ${ }^{\ominus}$ technology. It is an enhanced pin and register compatible version of the COM 2651 that meets the majority of asynchronous and synchronous data communication requirements, by interfacing parallel digital systems to asynchronous and synchronous data communication channels while requiring a minimum of processor overhead. The COM2661 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode. Each version of the COM 2661 (-1, $-2,-3$) has a different set of baud rates. Custom baud rates can be ROM reprogrammed to accommodate different baud rates and different starting frequencies.

The COM 2661 is a Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) designed for microcomputer system data communications. The USART is used as a peripheral and is programmed by the processor to communicate in commonly used asynchronous and synchronous serial data transmission techniques including IBM Bi-Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status including data format errors and control signals is available to the processor at any time.

COM 2661 ORGANIZATION

The COM 2661 is organized into 6 major sections. Communication between each section is achieved via an internal data and control bus. The data bus buffer allows a processor access to all internal registers on the COM 2661. The differences between the COM 2661 and COM 2651 are outlined in table 1.

Operation Control

This functional block stores configuration and operation commands from the processor and generates appropriate signals to various internal sections to control the overall device operation. It contains read and write circuits to permit communications with a processor via the data bus and contains Mode Registers 1 and 2, the Command Register, and the Status Register. Details of register addressing and protocol are presented in the COM 2661 programming section of this specification.

Timing

The COM 2661 contains a Baud Rate Generator (BRG) which is programmable to accept external transmit or receive clocks or to divide an external clock to perform data communications. The unit can geherate 16 commonly used baud rates, any one of which can be selected for full duplex operation. Tables $2 \mathrm{a}, \mathrm{b}$, and c illustrate all available baud rates.

Receiver

The Receiver accepts serial data on the RxD pin, converts this serial input to parallel format, checks for bits
or characters that are unique to the communication technique and stores the "assembled" character in the receive data holding register until read by the processor.

Transmitter

The Transmitter accepts parallel data from the processor, converts it to a serial bit stream, inserts the appropriate characters or bits (based on the communication technique) and outputs a composite serial stream of data on the TxD output pin.

Modem Control

The modem control provides three output signals and accepts three input signals used for "handshaking" and status indication between the COM 2661 and a modem.

SYN/DLE Control

This section contains control circuitry and three 8-bit registers storing the SYN1, SYN2, and DLE characters provided by the processor. These registers are used in the synchronous mode of operation to provide the characters required for synchronization, idle fill and data transparency.

Interface Signals

The COM 2661 interface signals can be grouped into two types: the processor-related signals (shown in Table 3) which interface the COM 2661 to the processor, and the device-related signals (shown in Table 4), which are used to interface to the communications equipment.

TABLE 3-PROCESSOR RELATED SIGNALS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{aligned} & 1,2,5,6 \\ & 7,8,27,28 \end{aligned}$	Data	D7-D0	Bidirectional; 8 bit, three state data bus used to transfer commands, data and status between the COM 2661 and a processor. DØ is the least significant bit; D7 is the most significant bit.
10, 12	Address	A1, AD	Input; Address lines used to select COM 2661 registers.
11	Chip Enable	$\overline{C E}$	Input; when this signal is low, the operation specified by the $\bar{R} / W, A 1$ and $A \emptyset$ will be performed. When this input is high, D7- \emptyset are in the high impedance state.
13	Read/Write	$\overline{\mathrm{R}} / \mathrm{W}$	Input; Processor read/write direction control. This signal defines the direction of the data bus D7-0 when the COM 2661 is selected. D7- \emptyset drives out (read) when this signal is low and accepts data input when this signal is high. The input only has meaning when the $\overline{C E}$ input is active.
14	Receiver Ready	$\overline{\mathrm{RXRDY}}$	Output; This signal is the complement of Status Register bit 1 (SR1). When low, it indicates that the Receive Data Holding Register (RHR) has a character ready for input to the processor. It goes high when the RHR is read by the processor, and also when the receiver is disabled. It is an open drain output which can be used as an interrupt to the processor.
15	Transmitter Ready	TxRDY	Output; This signal is the complement of Status Register bit 0 (SRO). When low, it indicates that the Transmit Data Holding Register (THR) is ready to accept a data character from the processor. It goes high when the data characteris loaded. This output is valid only when the transmitter is enabled. It is an open drain output which can be used as an interrupt to the processor.
18	Transmitter empty/data set change	$\begin{aligned} & \hline \overline{\text { TXEMT/ }} \\ & \hline \text { DSCHG } \end{aligned}$	Output; This signal is the complement of Status Register bit 2 (SR2). When low, it indicates that the transmitter has completed serialization of the last character loaded by the processor, or that a change of state of the $\overline{\mathrm{DSR}}$ or $\overline{\mathrm{DCD}}$ inputs has occurred. This output goes high when the Status Register is read by the processor, if the TxEMT condition does not exist. Otherwise, the THR must be loaded by the processor for this line to go high. It is an open drain output which can be used as an interrupt to the processor.
21	Reset	Reset	Input; A high on this input performs a master reset on the COM 2661. This signal asynchronously terminates any device activity and clears the Mode, Command and Status registers. The device assumes the idle state and remains there until initialized with the appropriate control words.
26	Supply Voltage	$V_{C C}$	+5 volts supply.
4	Ground	GND	Ground.

TABLE 4-DEVICE RELATED SIGNALS

PIN NO.	NAME	SYMBOL	FUNCTION
3	Receive Date	RxD	Input; Serial data to the receiver. "Mark" is high "space" is low.
9	Transmitter Clock/External Sync	$\overline{\mathrm{TxC}} /$ XSYNC	Input or Output; If the external transmitter clock is programmed, this input controls the rate at which the character is transmitted. Its frequency is $1 \mathrm{X}, 16 \mathrm{X}$ or 64 X , the Baud rate as programmed by Mode Register 1. The transmitted data changes on the falling edge of the clock. If the internal transmitter clock is programmed, this pin can be a 1X/16X clock output or an external jam synchronization input.
16	Data Carrier Detect	$\overline{\text { DCD }}$	Input; This signal must be low in order for the receiver to function. The complement appears in the Status Register bit 6 (SR6). $\overline{\text { DCD causes a low output on TxEMT/DSCHG }}$ when its state changes if $C R 2$ or $C R 0=1$. If $\overline{D C D}$ goes high while receiving, the RxC is internally inhibited.
17	Clear to Send	$\overline{\mathrm{CTS}}$	Input; This șignal must be low in order for the transmitter to function. If it goes high during transmission, the character in the Transmit Şift Register will be transmitted before termination.
19	Transmit Data	TxD	Output; Serial data from the transmitter. "Mark" is high, "Space" is low. This signal is held in the "Mark" condition when the transmitter is disabled.
20	Baud Rate Clock	BRCLK	Input; Clock input to the internal baud rate generator (See Tables 2a, b and c); not required if the external receiver and transmitter clocks are used.
22	Data Set Ready	$\overline{\text { DSR }}$	Input; This general purpose signal can be used for Data Set Ready or Ring Indicator condition. Its complement appears as Status Register bit 7 (SR7). DSR causes a low output on TXEMT/DSCHG when its state changes if CR2 or CRO $=1$.
23	Request to Send	$\overline{\text { RTS }}$	Output; This general purpose signal is the complement of the Command Register bit 5 (CR5). It is normally used to indicate Request to Send. If the TransmitShift Register is no empty when CR5 is reset (1 to 0), then RTS will go high on TxC time after the last seria bit is transmitted.
24	Data Terminal Ready	$\overline{\text { DTR }}$	Output; This general purpose signal is the complement of the Command Register bit 1 (CR1). It is normally used to indicate Data Terminal Ready.
25	Receive Clock/ Break Detect	$\overline{\mathrm{R} \times \mathrm{C}} /$ BKDET	Input or Output; If the external receiver clock is programmed, this input controls the rate at which the character is to be received. Its frequency is $1 \mathrm{X}, 16 \mathrm{X}$, or 64 X the Baud rate, as programmed by Mode Register 1. Data are sampled on the rising edge of the clock. If internal receiver clock is programmed, this pin can be a $1 \mathrm{X} / 16 \mathrm{X}$ clock or a break detect output.

Table 2b BAUD RATE GENERATOR CHARACTERISTICS $2661-2($ BRCLK $=4.9152 \mathrm{MHz})$

MR23-20	BAUD RATE	ACTUAL FREQUENCY 16X CLOCK	PERCENT ERROR	DIVISOR
0000	45.5	0.7279 kHz	0.005	6752
0001	50	0.8	-	6144
0010	75	1.2	-	4096
0011	110	1.7598	-0.01	2793
0100	134.5	2.152	-	2284
0101	150	2.4	-	2048
0110	300	4.8	-	1024
0111	600	9.6	-	512
1000	1200	19.2	-	256
1001	1800	28.7438	-0.19	171
1010	2000	31.9168	-0.26	154
1011	2400	38.4	-	128
1100	4800	76.8	-	64
1101	9600	153.6	-	32
1110	19200	307.2	-	16
1111	38400	614.4	-	8

Table 2c BAUD RATE CHARACTERISTICS
$2661-3$ (BRCLK $=5.0688 \mathrm{MHz}$)

MR23-20	BAUD RATE	ACTUAL FREQUENCY 16X CLOCK	PERCENT ERROR	DIVISOR
0000	50	0.8 kHz	-	6336
0001	75	1.2	-	4224
0010	110	1.76	-	2880
0011	134.5	2.1523	0.016	2355
0100	150	2.4	-	2112
0101	300	4.8	-	1056
0110	600	9.6	-	528
0111	1200	19.2	-	264
1000	1800	28.8	-	176
1001	2000	32.081	0.253	158
1010	2400	38.4	-	132
1011	3600	57.6	-	88
1100	4800	76.8	-	66
1101	7200	115.2	-	44
1110	9600	153.6	-	33
1111	19200	316.8	3.125	16

NOTE: BRG can be used only for TxC

COM 2661 OPERATION

The functional operation of the COM 2661 is programmed by a set of control words supplied by the processor. These control words specify items such as synchronous or asynchronous mode, baud rate, number of bits per character, etc. The programming procedure is described in the COM 2661 Programming section of this data sheet.
After programming, the COM 2661 is ready to perform the desired communications functions. The receiver performs serial to parallel conversion of data received from a modem or equivalent device. The transmitter converts parallel data received from the processor to a serial bit stream. These actions are accomplished within the framework specified by the control words.

Receiver

The COM 2661 is conditioned to receive data when the $\overline{D C D}$ input is low and the RXEN bit in the command register is true. In the asynchronous mode, the receiver looks for a high to low (mark to space) transition of the start bit on the RxD input line. If a transition is detected, the state of the RxD line is sampled again after a delay of one-half of a bit time. If RxD is now high, the search for a valid start bit is begun again. If RxD is still low, a valid start bit is assumed and the receiver continues to sample the input line at one bit time intervals until the proper number of data bits, the parity bit, and one stop bit have been assembled. The data is then transferred to the Receive Data Holding Register, the RxRDY bit in the status register is set, and the RxRDY output is asserted. If the character length is less than 8 bits, the high order unused bits in the Holding Register are set to zero. The Parity Error, Framing Error, and Overrun Error status
bits are strobed into the status register on the positive going edge of RxC corresponding to the received character boundary. If the stop bit is present, the receiver will immediately begin its search for the next start bit. If the stop bit is absent (framing error), the receiver will interpret a space as a start bit if it persists into the next bit time interval. If a break condition is detected ($\mathrm{R} \times \mathrm{D}$ is low for the entire character as well as the stop bit), only one character consisting of all zeros (with the Framing error status bit set) will be transferred to the Holding Register. The RxD input must return to a high condition before a search for the next start bit begins.
Pin 25 can be programmed to be a break detect output by appropriate setting of MR27-MR24. If so, a detected break will cause that pin to go high. When RxD returns to mark for one RxC time, pin 25 will go low. Refer to the break detection timing diagram.
When the COM 2661 is initialized into the synchronous mode, the receiver first enters the hunt mode on a 0 to 1 transition of RxEN (CR2). In this mode, as data is shifted into the Receiver Shift Register a bit at a time, the contents of the register are compared to the contents of the SYN1 register. If the two are not equal, the next bit is shifted in and the comparison is repeated. When the two registers match, the hunt mode is terminated and character assembly begins. If the single SYN operation is programmed, the SYN DETECT status bit is set. If double SYN operation is programmed, the first character assembled after SYN1 must be SYN2 in order for the SYN DETECT bit to be set. Otherwise, the COM 2661 returns to the hunt mode. (Note that the sequence SYN1-SYN1-

SYN2 will not achieve synchronization). When synchronization has been achieved, the COM 2661 continues to assemble characters and transfers them to the Holding Register. The RxRDY status bit is set and the RXRDY output is asserted each time a character is assembled and transferred to the Holding Register. The Overrun error (OE) and Parity error (PE) status bits are set as appropriate. Further receipt of the proper SYN sequence sets the SYN DETECT status bit. If the SYN stripping mode is commanded, SYN characters are not transferred to the Holding Register. Note that the SYN characters used to establish initial synchronization are not transferred to the Holding Register in any case.
External jam synchronization can be achieved via pin 9 by appropriate setting of MR27-MR24. When pin 9 is an XSYNC input, the internal SYN1, SYN1-SYN2, and DLESYN1 detection is disabled. Each positive going signal on XSYNC will cause the receiver to establish synchronization on the rising edge of the next RxC pulse. Character assembly will start with the RxD input at this edge. XSYNC may be lowered on the next rising edge of RxC. This external synchronization will cause the SYN DETECT status bit to be set until the status register is read. Refer to XSYNC timing diagram.

Transmitter

The COM 2661 is conditioned to transmit data when the CTS input is low and the TxEN command register bit is set. The COM 2661 indicates to the processor that it can accept a character for transmission by setting the TXRDY status bit and asserting the TxRDY output. When the processor writes a character into the Transmit Data Holding Register, the TxRDY status bit is reset and the TXRDY output is returned to a high (false) state. Data is transferred from the Holding Register to the Transmit Shift Register when it is idle or has completed transmission of the previous character. The TxRDY conditions are then asserted again. Thus, one full character time of buffering is provided.
In the asynchronous mode, the transmitter automatically sends a start bit followed by the programmed number of data bits, the least significant bit being sent first. It then appends an optional odd or even parity bit and the programmed number of stop bits. If, following transmission of the data bits, a new character is not available in the Transmit Holding Register, the TxD output remains in the marking (high) condition and the TXEMT/DSCHG output and its corresponding status bit are asserted. Transmission resumes when the processor loads a new character into the Holding Register. The transmitter can be forced to output a continuous low (BREAK) condition by setting the Send Break command bit high.
In the synchronous mode, when the COM 2661 is initially conditioned to transmit, the TXD output remains high and the TXRDY condition is asserted until the first character to be transmitted (usually a SYN character) is loaded by the processor. Subsequent to this, a continuous stream of characters is transmitted. No extra bits (other than parity, if commanded) are generated by the COM 2661 unless the processor fails to send a new character to the COM 2661 by the time the transmitter has completed sending the previous character. Since synchronous communication does not allow gaps between characters, the COM 2661 asserts TXEMT and automatically "fills" the gap by transmitting SYN1s, SYN1-SYN2 doublets, or DLE-SYN1 doublets, depending on the state of MR16 and MR17. Normal transmission of the message resumes when a new character is available in the Transmit Data Holding Register. If the SEND DLE bit in the command register is true, the DLE character is automatically transmitted prior to transmission of the message character in the transmit holding register.

COM 2661 PROGRAMMING

Prior to initiating data communications, the COM 2661 operational mode must be programmed by performing write operations to the mode and command registers. In addition, if synchronous operation is programmed, the appropriate SYN/DLE registers must be loaded. The COM 2661 can be reconfigured at any time during program execution. A flow chart of the initialization process appears in Figure 1.
The internal registers of the COM 2661 are accessed by applying specific signals to the $\overline{C E}, \bar{R} / W, A 1$ and $A 0$ inputs. The conditions necessary to address each register are shown in Table 5.
The SYN1, SYN2, and DLE registers are accessed by performing write operations with the conditions A1=0, $\mathrm{A} O=1$, and $\overline{\mathrm{R}} / \mathrm{W}=1$. The first operation loads the SYN1 register. The next loads the SYN2 register, and the third loads the DLE register. Reading or loading the mode registers is done in a similar manner. The first write (or read) operation addresses Mode Register 1, and a subsequent operation addresses Mode Register 2. If more

COM 2661 INITIALIZATION FLOW CHART

than the required number of accesses are made, the internal sequencer recycles to point at the first register. The pointers are reset to SYN1 Register and Mode Register 1 by a RESET input or by performing a "Read Command Register" operation, but are unaffected by any other read or write operation.
The COM 2661 register formats are summarized in Tables 6, 7, 8 and 9. Mode Registers 1 and 2 define the general operational characteristics of the COM 2661, while the Command Register controls the operation within this basic framework. The COM 2661 indicates its status in the Status Register. These registers are cleared when a RESET input is applied.

$\overline{\mathbf{C}} \mathbf{E}$	$\mathbf{A 1}$	$\mathbf{A O}$	$\overline{\mathbf{R}} / \mathbf{W}$	FUNCTION
1	X	X	X	Tri-state data bus
0	0	0	0	Read receive holding register
0	0	0	1	Write transmit holding register
0	0	1	0	Read status register
0	0	1	1	Write SYN1/SYN2/DLE registers
0	1	0	0	Read mode registers 1 and 2
0	1	0	1	Write mode registers 1 and 2
0	1	1	0	Read command register
0	1	1	1	Write command register

NOTE
See AC Characteristics section for timing requirements.
Table 5-COM 2661 REGISTER ADDRESSING

MODE REGISTER 1 (MR1)

Table 6 illustrates Mode Register 1. Bits MR11 and MR10 select the communication format and Baud rate multiplier. 00 specifies synchronous mode and 1X multiplier. 1X, 16X, and 64X multipliers are programmable for asynchronous format. However, the multiplier in asynchronous format applies only if the external clock input option is selected by MR24 or MR25.

MR13 and MR12 select a character length of $5,6,7$, or 8 bits. The character length does not include the parity bit, if programmed, and does not include the start and stop bits in asynchronous mode.

MR14 controls parity generation. If enabled, a parity bit is added to the transmitted character and the receiver performs a parity check on incoming data. MR15 selects odd or even parity when parity is enabled by MR14.

In asynchronous mode, MR17 and MR16 select character framing of $1,1.5$, or 2 stop bits (if 1 X baud rate is programmed, 1.5 , stop bits defaults to 1 stop bits on transmit). In synchronous mode, MR17 controls the number of SYN characters used to establish synchronization and for character fill when the transmitter is idle. SYN1 alone is used if MR17=1, and SYN1-SYN2 is used when MR17 $=0$. If the transparent mode is specified by MR16, DLE-SYN1 is used for character fill and SYN Detect, but the normal synchronization sequence is used. When transmitting, a DLE character in the transmit holding register will cause a second DLE character to be transmitted. This DLE stuffing eliminates the software DLE compare and stuff on each transparent mode data character. If the send DLE command (CR3) is active when a DLE is loaded into THR, only one additional DLE will be transmitted. Also DLE stripping and DLE Detect (with MR14 $=0$) are enabled.

MR17	MR16	MR15	MR14	MR13 MR12	MR11 MR10
Sync/Async		Parity Type	Parity Control	Character Length	Mode and Baud Rate Factor
ASYNCH: STOP BIT $00=$ INVALID $01=1$ STOP BIT $10=11 / 2$ STOP BITS $11=2$ STOP BITS	T LENGTH	$\begin{aligned} & 0=O D D \\ & 1=E V E N \end{aligned}$	$\begin{aligned} & 0=\text { DISABLED } \\ & 1=\text { ENABLED } \end{aligned}$	$\begin{aligned} & 00=5 \text { BITS } \\ & 01=6 \text { BITS } \\ & 10=7 \text { BITS } \\ & 11=8 \text { BITS } \end{aligned}$	$00=$ SYNCHRONOUS $1 X$ RATE $01=$ ASYNCHRONOUS $1 \times$ RATE 10=ASYNCHRONOUS 16X RATE 11=ASYNCHRONOUS 64X RATE
SYNCH: NUMBER OF SYN CHAR $0=$ DOUBLE SYN $1=$ SINGLE SYN	SYNCH: TRANSPARENCY CONTROL $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { TRANSPARENT } \end{aligned}$				

NOTE Baud rate factor in asynchronous applies only if external clock is selected. Factor is 16 X if internal clock is selected. Mode must be selected (MR11, MR10) in any case.

TABLE 6-MODE REGISTER 1 (MR1)

MODE REGISTER 2 (MR2)

Table 7 illustrates mode register 2 (MR23, MR22, MR21 and MR20 control the frequency of the internal baud rate generator (BRG). Sixteen rates are selectable for each COM 2661 version ($-1,-2,-3$). Version 1 and 2 specify a 4.9152 MHz TTL input at BRCLK (pin 20); version 3 specifies a 5.0688 MHz input which is identical to the

COM 2651. MR23-20 are don't cares if external clocks are selected (MR25-24=0). The individual rates are given in table $2 a, b$ and c.
MR24-MR27 select the receive and transmit clock source (either the BRG or an external input) and the function at pins 9 and 25. Refer to table 7.

MR-27-MR24											MR23-MR20
	TxC	RxC	Pin 9	Pin 25		TxC	RxC	Pin 9	Pin 25	Mode	Baud Rate Selection
0000	E	E	TxC	RxC	1000	E	E	XSYNC ${ }^{1}$	RxC/TxC	sync	
0001	E	1	TxC	1X	1001	E	1	TxC	BKDET	async	
0010	1	E	1X	RxC	1010	1	E	XSYNC ${ }^{1}$	RxC	sync	
0011	1	1	1x	1X	1011	1	I	1X	BKDET	async	See baud rates in table 2
0100	E	E	TxC	RxC	1100	E	E	XSYNC ${ }^{1}$	RxC/TxC	sync	
0101	E	1	TxC	16X	1101	E	1	TxC	BKDET	async	-
0110	1	E	16X	RxC	1110	1	E	XSYNC ${ }^{1}$	RxC	sync	
0111	1	1	16X	16X	1111	1	1	16X	BKDET	async	

COMMAND REGISTER (CR)

Table 8 illustrates the Command Register. Bits CRO (TxEN) and CR2 (RxEN) enable or disable the transmitter and receiver respectively. A 0 to 1 transition of CR2 forces start bit search (async mode) or hunt mode (sync mode) on the second RxC rising edge. Disabling the receiver causes $\overline{R x R D Y}$ to go high (inactive). If the transmitter is disabled, it will complete the transmission of the character in the Transmit Shift Register (if any) prior to terminating operation. The TxD output will then remain in the marking state (high while the TxRDY and TxEMT will go high (inactive). If the receiver is disabled, it will terminate operation immediately. Any character being assembled will be neglected. Bits CR1 (DTR) and CR5 (RTS) control the $\overline{\text { DTR }}$ and $\overline{\text { RTS }}$ outputs. Data at the outputs are the logical complement of the register data.
In asynchronous mode, setting CR3 will force and hold the TXD output low (spacing condition) at the end of the current transmitted character. Normal operation resumes when CR3 is cleared. The TxD line will go high for at least one bit time before beginning transmission of the next character in the Transmit Data Holding Register. In synchronous mode, setting CR3 causes the transmission of the DLE register contents prior to sending the character in the Transmit Data Holding Register. Since this is a one time command, CR3 does not have to be reset by software. CR3 should be set when entering and exiting transparent mode and for all DLE- non-DLE character sequences.
Setting CR4 causes the error flags in the Status Register (SR3, SR4, and SR5) to be cleared. This is a one time command. There is no internal latch for this bit. When CR5 (RTS) is set, the RTS pin is forced low and the transmit serial logic is enabled. A 1 to 0 transition of CR5 will cause $\overline{R T S}$ to go high (inactive) one TxC time after the last serial bit has been transmitted (if the transmit shift register was not empty).
The COM 2661 can operate in one of four sub-modes within each major mode (synchronous or asynchronous). The operational sub-mode is determined by CR7 and CR6. CR7-CR6 $=00$ is the normal mode, with the transmitter and receiver operating independently in accordance with the Mode and Status Register instructions. In asynchronous mode, CR7-CR6=01 places the COM 2661 in the Automatic Echo mode. Clocked, regenerated received data are automatically directed to the TxD line while normal receiver operation continues. The receiver must be enabled (CR2=1), but the transmitter need not be enabled. Processor to receiver communications continue normally, but the processor to transmitter link is disabled. Only the first character of a break condition is echoed. The TxD output will go high until the next valid start is detected. The following conditions are true while in Automatic Echo mode:

1. Data assembled by the receiver are automatically
placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. The transmitter is clocked by the receive clock.
3. TxRDY output $=1$.
4. The TxEMT/DSCHG pin will reflect only the data set change condition.
5. The TXEN command (CRO) is ignored.

In synchronous mode, CR7-CR6 $=01$ places the COM 2661 in the Automatic SYN/DLE Stripping mode. The exact action taken depends on the setting of bits MR17 and MR16:

1. In the non-transparent, single SYN mode (MR17MR16=10), characters in the data stream matching SYN1 are not transferred to the Receive Data Holding Register (RHR).
2. In the non-transparent, double SYN mode (MR17MR16=00), characters in the data stream matching SYN1, or SYN2 if immediately preceded by SYN1, are not transferred to the RHR.
3. In transparent mode (MR16=1), characters in the data stream matching DLE, or SYN1 if immediately preceded by DLE, are not transferred to the RHR. However, only the first DLE of a DLE-DLE pair is stripped.
Note that Automatic Stripping mode does not affect the setting of the DLE Detect and SYN Detect status bits (SR3 and SR5).
Two diagnostic sub-modes can also be configured. In Local Loop Back mode (CR7-CR6=10), the following loops are connected internally:
4. The transmitter output is connected to the receiver input.
5. $\overline{\mathrm{DTR}}$, is connected to $\overline{\mathrm{DCD}}$ and $\overline{\mathrm{RTS}}$ is connected to CTS.
6. The receiver is clocked by the transmit clock.
7. The $\overline{D T R}, \overline{R T S}$ and $\overline{T x D}$ outputs are held high.
8. The $\overline{C T S}, \overline{D C D}, \overline{D S R}$ and $R \times D$ inputs are ignored.

Additional requirements to operate in the Local Loop Back mode are that CR0 (TxEN), CR1 (DTR), and CR5 (RTS) must be set to 1. CR2 (RxEN) is ignored by the COM 2661.
The second diagnostic mode is the Remote Loop Back mode (CR7-CR6=11). In this mode:

1. Data assembled by the receiver is automatically placed in the Transmit Holding Register and retransmitted by the transmitter on the TxD output.
2. The transmitter is clocked by the receive clock.
3. No data are sent to the local processor, but the error status conditions (PE, OE, FE) are set.
4. The RxRDY, TxRDY, and TXEMT/ $\overline{\text { DSCHG }}$ outputs are held high.
5. CR1 (TXEN) is ignored.
6. All other signals operate normally.

CR7 CR6	CR5	CR4	CR3	CR2	CR1	CRO
Operating Mode	Request to Send	Reset Error	Sync/Async	Receive Control (RxEN)	Data Terminal Ready	Transmit Control (TxEN)
$00=$ NORMAL OPERATION $01=$ ASYNCH: AUTOMATIC ECHO MODE SYNCH: SYN AND/OR DLE STRIPPING MODE $10=$ LOCAL LOOP BACK $11=$ REMOTE LOOP BACK	0 FORCE $\overline{\text { RTS }}$ OUTPUT HIGH ONE CLOCK TIME AFTER TxSR SERIALIZATION 1 FORCE $\overline{\mathrm{RTS}}$. OUTPUT LOW	$\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { RESET } \\ & \text { ERROR FLAG } \\ & \text { IN STATUS } \\ & \text { (FE, OE, } \\ & \text { PE/DLE DETECT) } \end{aligned}$	ASYNCH: FORCE BREAK $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { FORCE } \end{aligned}$ BREAK SYNCH: SEND DLE $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { SEND DLE } \end{aligned}$	$\begin{aligned} & 0=\text { DISABLE } \\ & 1=\text { ENABLE } \end{aligned}$	$0=$ FORCE DTR OUTPUT HIGH $1=$ FORCE $\overline{\text { DTR }}$ OUTPUT LOW	$\begin{aligned} & 0=\text { DISABLE } \\ & 1=\text { ENABLE } \end{aligned}$

The data contained in the Status Register (as shown in Table 9) indicate receiver and transmitter conditions and modem/data set status.
SRO is the Transmitter Ready (TxRDY) status bit. It, and its corresponding output, are valid only when the transmitter is enabled. If equal to 0 , it indicates that the Transmit Data Holding Register has been loaded by the processor and the data has not been transferred to the Transmit Shift Register. If set equal to 1, it indicates that the Holding Register is ready to accept data from the processor. This bit is initially set when the Transmitter is enabled by CRO, unless a character has previously been loaded into the Holding Register. It is not set when the Automatic Echo or Remote Loop Back modes are programmed. When this bit is set, the TxRDY output pin is low. In the Automatic Echo and Remote Loop Back modes, the output is held high.
SR1, the Receiver Ready (RxRDY) status bit, indicates the condition of the Receive Data Holding Register. If set; it indicates that a character has been loaded into the Holding Register from the Receive Shift Register and is ready to be read by the processor. If equal to zero, there is no new character in the Holding Register. This bit is cleared when the processor reads the Receive Data Holding Register or when the receiver is disabled by CR2. When set, the RxRDY output is low.
The TxEMT/DSCHG bit, SR2, when set, indicates either a change of state of the $\overline{\text { DSR }}$ or $\overline{\text { DCD }}$ inputs (when CR2 or CRO $=1$) or that the Transmit Shift Register has completed transmission of a character and no new character has been loaded into the Transmit Data Holding Register. Note that in synchronous mode this bit will be set even though the appropriate "fill" character is transmitted. TXEMT will not go active until at least one character has been transmitted. It is cleared by loading the Transmit Data Holding Register. The DSCHG condition is enabled when TxEN $=1$ or RxEN $=1$. It is cleared when the status
register is read by the processor. If the status register is read twice and $\operatorname{SR2}=1$ while SR6 and SR7 remain unchanged, then a TxEMT condition exists. When SR2 is set, the TxEMT/DSCHG output is low.
SR3, when set, indicates a received parity error when parity is enabled by MR14. In synchronous transparent mode (MR16=1), with parity disabled, it indicates that a character matching the DLE Register has been received, and the present character is neither SYN1 nor DLE. This bit is cleared when the next character following the above sequence is loaded into the Receive Data Holding Register, when the receiver is disabled, or by a reset error command, CR4.
The Overrun Error status bit, SR4, indicates that the previous character loaded into the Receive Holding Register was not read by the processor at the time a new received character was transferred into it. This bit is cleared when the receiver is disabled and by the Reset Error command, CR4.
In asynchronous mode, bit SR5 signifies that the received character was not framed by a stop bit, i.e., only the first stop bit is checked. If the RHR contains all 0 's when SR5 $=1$, a break condition is present. In synchronous non-transparent mode (MR16 $=0$), it indicates receipt of the SYN1 character in single SYN mode or the SYN1-SYN2 pair in double SYN mode. In synchronous transparent mode (MR16=1), this bit is set upon detection of the initial synchronizing characters (SYN1 or SYN1-SYN2) and, after synchronization has been achieved, when a DLE-SYN1 pair is received. The bit is reset when the receiver is disabled, when the Reset Error command is given in asynchronous mode, or when the Status Register is read by the processor in the synchronous mode.
SR6 and SR7 reflect the conditions of the $\overline{D C D}$ and $\overline{D S R}$ inputs respectively. A low input sets the corresponding status bit and a high input clears it.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SRO
Data Set Ready	Data Carrier Detect	FE/SYN Detect	Overrun	PE/DLE Detect	TxEMT/DSCHG	RxRDY	TxRDY
$\begin{aligned} 0= & \overline{\text { DSR INPUT }} \\ & \text { ISHIGH } \\ 1= & \overline{\text { DSR INPUT }} \\ & \text { ISLOW } \end{aligned}$	$\begin{aligned} 0= & \overline{\text { DCD } \text { INPUT }} \\ & \text { IS HIGH } \\ 1= & \overline{\text { DCD } \text { INPUT }} \\ & \text { IS LOW } \end{aligned}$	ASYNCH: $0=$ NORMAL $1=$ FRAMING ERROR SYNCH: $0=$ NORMAL 1 = SYN CHAR DETECTED	$\begin{aligned} 0= & \text { NORMAL } \\ 1= & \text { OVERRUN } \\ & E R R O R \end{aligned}$	ASYNCH: $\begin{gathered} 0=\text { NORMAL } \\ 1=\text { PARITY } \\ \text { ERROR } \\ \hline \end{gathered}$ SYNCH: $\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { PARITY } \end{aligned}$ ERROR OR DLE CHAR RECEIVED	$\begin{aligned} & 0=\text { NORMAL } \\ & 1=\text { CHANGE } \\ & \text { IN } \overline{D S R} \text { OR } \\ & \overline{D C D} . \text { OR } \\ & \text { TRANSMIT } \\ & \text { SHIFT REGIS- } \\ & \text { TER IS } \\ & \text { EMPTY } \end{aligned}$	$\begin{aligned} & 0=\text { RECEIVE } \\ & \text { HOLDING REG } \\ & \text { EMPTY } \\ & 1=\text { RECEIVE } \\ & \text { HOLDING REG } \\ & \text { HASDATA } \end{aligned}$	$\begin{aligned} & 0=\text { TRANSMIT } \\ & \text { HOLDING } \\ & \text { REG BUSY } \\ & 1=\text { TRANSMIT } \\ & \text { HOLDING } \\ & \text { REG EMPTY } \end{aligned}$

TABLE 9—STATUS REGISTER (SR)

TxRDY, TxEMT (Shown for 5-bit characters, no parity, 2 stop bits [in asynchronous mode])

NOTES
$A=$ Start bit
$B=$ Stop bit 1
$C=$ Stop bit 2
$D=T \times D$ marking condition
TXEMT goes low the theginning of the last data bit, or, if parity is enabled, at the beginning of the parity bit.

RxRDY (Shown for 5-bit characters, no parity, 2 stop bits [in asynchronous mode])

A $=$ Start bit
B = Stop bit 1
$C=$ Stop bit 2
$\mathrm{D}=\mathrm{T} \times \mathrm{D}$ marking condition

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it it important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{I H} \end{aligned}$	Input voltage Low High	2.0		0.8	V	
VoL $\mathrm{VOH}_{\mathrm{OH}}$	Output voltage Low High	2.4		0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
IIL	Input leakage current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V
$\begin{aligned} & \mathrm{I}_{\mathrm{LH}} \\ & \mathrm{I}_{\mathrm{LL}} \\ & \hline \end{aligned}$	Output leakage current Data bus high Data bus low			$\begin{array}{r} 10 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} V_{0}=4.0 \mathrm{~V} \\ V_{0}=0.45 \mathrm{~V} \end{gathered}$
Icc	Power supply current			150	mA	
C_{IN} Cout C_{10}	Capacitance Input Output Input/Output			20 20 20	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\mathrm{fc}=1 \mathrm{MHz}$ Unmeasured pins tied to ground

AC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
$t_{\text {Res }}$ tce	Pulse width Reset Chip enable	$\begin{aligned} & 1000 \\ & 250 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$t_{\text {AS }}$ $t_{A H}$ tcs $\mathrm{tcH}_{\mathrm{CH}}$ tos $t_{D H}$ $\mathrm{t}_{\mathrm{RXS}}$ $\mathrm{t}_{\mathrm{BXH}}$	Setup and hold time Address setup Address hold $\overline{\bar{R}} / \mathrm{W}$ control setup \bar{R} / W control hold Data setup for write Data hold for write $R x$ data setup Rx data hold	$\begin{gathered} 10 \\ 10 \\ 10 \\ 10 \\ 150 \\ 0 \\ 300 \\ 350 \end{gathered}$			ns ns	
$t_{D D}$ $t_{D F}$ tced	Data delay time for read Data bus floating time for read $\overline{\mathrm{CE}}$ to $\overline{\mathrm{CE}}$ delay	600		$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$
$\mathfrak{f}_{\text {BRG }}$ $f_{\text {BRG }}$ $f_{R T}{ }^{1}$	Input clock frequency Baud rate generator (2661-1, -2) Baud rate generator $(2661-3)$ $\overline{\mathrm{TxC}}$ or $\overline{\mathrm{RxC}}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \text { dc } \end{aligned}$	$\begin{aligned} & 4.9152 \\ & 5.0688 \end{aligned}$	$\begin{gathered} 4.9202 \\ 5.0738 \\ 1.0 \\ \hline \end{gathered}$	MHz MHz MHz	
tbrh $\mathrm{t}_{\mathrm{BRH}}$ $t_{\text {BRL }}$ $t_{\text {BRL }}$ $t_{\text {R TH1 }}$ $t_{\text {RTL }}$	Clock width Baud rate high (2661-1, -2) Baud rate high (2661-3) Baud rate low (2661-1, -2) Baud rate low \qquad (2661-3) $\overline{T \times C}$ or $\overline{R x C}$ high TxC or RxC low	$\begin{aligned} & 75 \\ & 70 \\ & 75 \\ & 70 \\ & \\ & 480 \\ & 480 \end{aligned}$			ns ns ns ns ns ns	
tixd tics	TxD delay from falling edge of TxC Skew between TxD changing and falling edge of TxC output		0	650	ns ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$

NOTE:

1. $f_{\text {R }}$ and $t_{\text {r }}$ shown all modes except Local Loopback. For Local Loopback mode $\mathrm{t}_{\mathrm{R}}=0.7 \mathrm{MHz}$ and $\mathrm{t}_{\mathrm{R}}=700 \mathrm{~ns} \mathrm{~min}$.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications, consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Multi-Protocol Universal Synchronous Receiver/Transmitter USYNR/T

FEATURES

\square Selectable Protocol-Bit or Byte orientedDirect TTL CompatibilityThree-state Input/Output BUSProcessor Compatible-8 or 16 bitHigh Speed Operation-1.5 M Baud-typicalFully Double Buffered-Data, Status, and Control RegistersFull or Half Duplex Operation-independent Transmitter and Receiver Clocks
-individually selectable data length for Receiver and Transmitter

\square Master Reset-resets all Data, Status, and Control Registers

\square Maintenance Select-built-in self checking
PIN CONFIGURATION

BIT ORIENTED PROTOCOLS-SDLC, HDLC, ADCCP
\square Automatic bit stuffing and stripping
\square Automatic frame character detection and generation
\square Valid message protection-a valid received message is protected from overrun
Residue Handling-for messages which terminate with a partial data byte, the number of valid data bits is available

SELECTABLE OPTIONS:

\square Variable Length Data-1 to 8 bit bytes
\square Error Checking-CRC (CRC16, CCITT-0, or CCITT-1) -None
\square Primary or Secondary Station Address Mode
\square All Parties Address-APA
\square Extendable Address Field-to any number of bytes
\square Extendable Control Field-to 2 bytes

- Idle Mode-idle FLAG characters or MARK the linePoint to Point, Multi-drop, or Loop Configuration

BYTE ORIENTED PROTOCOLS-BiSync, DDCMP
\square Automatic detection and generation of SYNC characters
SELECTABLE OPTIONS:
\square Variable Length Data-1 to 8 bit bytes
\square Variable SYNC character-5, 6, 7, or 8 bits
\square Error Checking-CRC (CRC16, CCITT-0, or CCITT-1)

> -VRC (odd/even parity)
> -None

Strip Sync-deletion of leading SYNC characters after synchronization
\square Idle Mode-idle SYNC characters or MARK the line

General Description

The COM 5025 is a COPLAMOS ${ }^{\circledR} n$ channel silicon gate MOS/LSI device that meets the majority of synchronous communications requirements, by interfacing parallel digital systems to synchronous serial data communication channels while requiring a minimum of controller overhead.

The COM 5025 is well suited for applications such as computer to modem interfaces, computer to computer serial links and in terminal applications. Since higher level decisions and responses are made or initiated by the controller, some degree of intelligence in each controller of the device is necessary.

Newly emerging protocols such as SDLC, HDLC, and ADCCP will be able to utilize the COM 5025 with a high degree of efficiency as zero insertion for transmission and zero deletion for reception are done automatically. These protocols will be referred to as Bit Oriented Protocols (BOP). Any differences between them will be discussed in their respective sections. Conventional synchronous protocols that are control character oriented such as BISYNC can also utilize this device. Control Character oriented protocols will be referred to as CCP protocols. Other types of protocols that operate on a byte or character count basis can also utilize the COM 5025 with a high degree of efficiency in most cases. These protocols, such as DDCMP will also be referred to as CCP protocols.

The COM 5025 is designed to operate in a synchronous communications system where some external source is expected to provide the necessary received serial data, and all clock signals properly synchronized according to EIA standard RS334. The external controller of the chip will provide the necessary control signals, intelligence in interpreting control signals from the device and data to be transmitted in accord with RS334.

The receiver and transmitter are as symmetrical as possible without loss of efficiency. The controller of the device will be responsible for all higher level decisions and interpretation of some fields within message frames. The degree to which this occurs is dependent on the protocol being implemented. The receiver and transmitter logic operate as two totally independent sections with a minimum of common logic.

References:

1. ANSI-American National Standards Institute	3. EIA-Electronic Industries Association
X353, XS34/589	TR30, RS334
202-466-2299	202-659-2200
2. CCITT-Consultative Committee for International	4. IBM
Telephone and Telegraph	General Information Brochure, GA27-3093
X.25	Loop Interface-OEM Information, GA27-3098
$202-632-1007$	System Journal-Vol. 15, No. 1, 1976; G321-0044

Terminology

Term	Definition	Term	Definition
BOP	Bit Oriented Protocols: SDLC, HDLC, ADCCP	GA	01111111 (0 (LSB) followed by 7-1's)
CCP	Control Character Protocols: BiSync, DDCMP	LSB	First transmitted bit, First received bit
TDB	Transmitter Data Buffer	MSB	Last transmitted bit, Last received bit
RDB	Receiver Data Buffer	RDP	Receiver Data Path
TDSR	Transmitter Data Shift Register	TDP	Transmitter Data Path
FLAG	01111110	LM	Loop Mode
ABORT	1111111 (7 or more contiguous 1's)		

BLOCK DIAGRAM

Description of Pin Functions

Pin No.	Symbol	Name	I/O	Function
1	VDD	Power Supply	PS	+ 12 volt Power Supply.
2	RCP	Receiver Clock	1	The positive-going edge of this clock shifts data into the receiver shift register.
3	RSI	Receiver Serial Input	1	This input accepts the serial bit input stream.
4	SFR	Sync/Flag Received	0	This output is set high, for 1 clock time of the RCP, each time a sync or flag character is received.
5	RXACT	Receiver Active	0	This output is asserted when the RDP presents the first data character of the message to the controller. In the BOP mode the first data character is the first non-flag character (address byte). In the CCP mode: 1 . if strip-sync is set; the first non-sync character is the first data character 2. if strip-sync is not set; the first data character is the character following the second sync. In the BOP mode the trailing (next) FLAG resets RXACT. In the CCP mode RXACT is never reset, it can be cleared via RXENA.
6	RDA	Receiver Data Available	0	This output is set high when the RDP has assembled an entire character and transferred it into the\|RDB. This output is reset by reading the RDB.
7	RSA	Receiver Status Available	0	This output is set high: 1. CCP-in the event of receiver over run (ROR) or parity error (if selected), 2. BOP-in the event of ROR, CRC error (if selected) receiving REOM or RAB/GA. This output is reset by reading the receiver status register or dropping of RXENA.
8	RXENA	Receiver Enable	1	A high level input allows the processing of RSI data. A low level disables the RDP and resets RDA, RSA and RXACT.
9	GND	Ground	GND	Ground
10	DBø8	Data Bus	1/0	Bidirectional Data Bus.
11	DBø9	Data Bus	$1 / 0$	Bidirectional Data Bus.
12	DB1ø	Data Bus	1/0	Bidirectional Data Bus.
13	DB11	Data Bus	1/0	Bidirectional Data Bus. Wire "OR" with DBøø-DBø7
14	DB12	Data Bus	1/0	Bidirectional Data Bus. For 8 bit data bus
15	DB13	Data Bus	1/0	Bidirectional Data Bus.
16	DB14	Data Bus	1/0	Bidirectional Data Bus.
17	DB15	Data Bus	1/0	Bidirectional Data Bus.
18	W/R	Write/Read	1	Controls direction of data port. W/R=1, Write. W/R=0, Read.
19	A2	Address 2	1	Address input-MSB.
20	A1	Address 1	1	Address input.
21	Aø	Address 0	1	Address input-LSB.
22	BYTE OP	Byte Operation	1	If asserted, byte operation (data port is 8 bits wide) is selected. If $\mathrm{BYTE} \mathrm{OP}=0$, data port is 16 bits wide.
23	DPENA	Data Port Enable	1	Strobe for data port. After address, byte op, W/R and data are set-up DPENA may be strobed. If reading the port, DPENA may reset (depending on register selected by address) RDA or RSA. If writing into the port, DPENA may reset (depending on register selected by address) TBMT.
24	DBø7	Data Bus	I/O	Bidirectional Data Bus-MSB.
25	DBø6	Data Bus	$1 / 0$	Bidirectional Data Bus.
26	DB65	Data Bus	1/0	Bidirectional Data Bus.
27	DB64	Data Bus	1/0	Bidirectional Data Bus.
28	DB63	Data Bus	1/0	Bidirectional Data Bus.
29	DBø2	Data Bus	1/0	Bidirectional Data Bus.
30	DBø1	Data Bus	1/0	Bidirectional Data Bus.
31	DBøø	Data Bus	1/0	Bidirectional Data Bus-LSB.
32	Vcc	Power Supply	PS	+5 volt Power Supply.
33	MR	Master Reset	1	This input should be pulsed high after power turn on. This will: clear all flags, and status conditions, set TBMT $=1, \mathrm{TSO}=1$ and place the device in the primary BOP mode with 8 bit TX/RX data length, CRC CCITT initialized to all 1 's.
34	TXACT	Transmitter Active	0	This output indicates the status of the TDP. TXACT will go high after asserting TXENA and TSOM coinsidently with the first TSO bit. This output will reset one half clock after the byte during which TXENA is dropped.
35	TBMT	Transmitter Buffer Empty	0	This output is at a high level when the TDB or the TX Status and Control Register may be loaded with the new data. TBMT $=0$ on any write access to TDB or TX Status and Control Register. TBMT returns high when the TDSR is loaded.
36	TSA	Transmitter Status Available	0	TERR bit, indicating transmitter underlow. Reset by MR or assertion of TSOM.
37	TXENA	Transmitter Enable	1	A high level input allows the processing of transmitter data.
38	TSO	Transmitter Serial Output	0	This output is the transmitted character.
39	TCP	Transmitter Clock	1	The positive going edge of this clock shifts data out of the transmitter shift register.
40	MSEL	Maintenance Select	1	Internally RSI becomes TSO and RCP becomes TCP. Externally RSI is disabled and TSO $=1$.

Definition of Terms
 Register Bit Assignment Chart 1 and 2

*Note: Product manufactured before 1Q79 may not have this feature.

Register Bit Assignment Chart 1

REGISTER	DP87	DPø6	DPб5	DP64	DP93	DPø2	DPø1	DPøø
Receiver Data	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RDø
(Read OnlyRight JustifiedUnused Bits=0)	MSB							LSB
Transmitter Data Register	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TDø
(Read/WriteUnused Inputs=X)	MSB							LSB
Sync/Secondary	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSAø
(Read/Write-	MSB							LSB
Right Justified- Unused Inputs=X)								

Register Bit Assignment Chart 2

REGISTER	DP15	DP14	DP13	DP12	DP11	DP1б	DP99	DPø8
Receiver Status (Read Only)	ERR CHK	C	B	A	ROR	RAB/GA	REOM	RSOM
TX Status and Control (Read/Write)	TERR (Read Only)) 0	0	0	TXGA	TXAB	TEOM	TSOM
Mode Control (Read/Write)	*APA P	PROTOCOL	STRIP SYNC/ LOOP	SEC ADD	IDLE	Z	Y	X
Data Length Select (Read/Write)	TXDL3	TXDL2	TXDL1	EXADD	EXCON	RXDL3	RXDL2	RXDL1

* Note: Product manufactured before 1Q79 may not have this feature.

Register Address Selection

1) $\mathrm{BYTE} O P=0$, data port 16 bits wide

$A 2$	$A 1$	$A \emptyset$
0	0	X
0	1	X
1	0	X
1	1	X

$X=$ don't care
2) $\mathrm{BYTE} \mathrm{OP}=1$, data port 8 bits wide

A2	$A 1$	$A \emptyset$
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Register

Receiver Status Register and Receiver Data Buffer
Transmitter Status and Control Register and Transmitter Data Buffer
Mode Control Register and SYNC/Address Register
Data Length Select Register

Register

Receiver Data Buffer
Receiver Status Register
Transmitter Data Buffer
Transmitter Status and Control Register
SYNC/Address Register
Mode Control Register
Data Length Select Register

BOP TRANSMITTER OPERATION

CCP TRANSMITTER OPERATION

BOP RECEIVER TIMING

BOP TRANSMITTER OPERATION

Note 1-Trailing edge of DPENA must occur at least one-half clock pulse prior to TBMT $=1$. To avoid undertun.

AC TIMING DIAGRAMS

Data Port Timing

READ FROM USYNR/T

WRITE TO USYNR/T
MAXIMUM GUARANTEED RATINGS*

Lead Temperature (soldering, 10 sec.) . $325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +18.0 V
Negative Voltage on any Pin, with respect to ground . 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. Characteristics					
INPUT VOLTAGE LEVELS					
Low Level, VIL			0.8	V	
High Level, VIH	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{ma}$
High Level, Vor	2.4				$\mathrm{loH}=40 \mu \mathrm{a}$
INPUT LEAKAGE					
Data Bus		5.0	50.0	$\mu \mathrm{a}$	$0 \leqslant \mathrm{~V}$ in $\leqslant 5 \mathrm{v}$, DPENA $=0$ or $\mathrm{W} / \mathrm{R}=1$
All others				$\mu \mathrm{a}$	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$
INPUT CAPACITANCE					
Data Bus, Cin				pf	
Address Bus, Cin				pf	
Clock, Cin				pf	
All other, $\mathrm{Cin}_{\text {In }}$				pf	
POWER SUPPLY CURRENT					
Icc			70	ma	
lod			90	ma	
CLOCK-RCP, TCP					
frequency	DC		1.5	MHz	
PWH	325			ns	
PWL	325			ns	
$\mathrm{tr}_{\mathrm{t}} \mathrm{t}_{\mathrm{t}}$		10		ns	
DPENA, Twdpena	250		$50 \mu \mathrm{~s}$	ns	
Set-up Time, TAs	0			ns	
Byte Op, W/R					
$\mathrm{A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}$					
Hold Time, TAH	0			ns	
Byte Op, WIR, $\mathrm{A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}$					
DATA BUS ACCESS, TDPA			150	ns	
DATA BUS DISABLE DELAY, TDPD			100	ns	
DATA BUS SET-UP TIME, Tobs	0			ns	
DATA BUS HOLD TIME, Товн	100			ns	
MASTER RESET, MR	350			ns	

STANDARD MICROSYSTEMS CORPORATION
3.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Twinax Interface Circuit (TIC)

FEATURES

Conforms to IBM 5250 System StandardOperates at 1 Mbps Data RateTransmits and Receives Manchester II Encoded DataOn Chip Parity Generation and CheckingProgrammable Interframe Zero Bit InsertionHandles Multi Byte and Single Byte TransfersMultiple Address Select Register Allows for Up to 7 Mode Address EmulationMaster Mode Permits Message InitiationInternal/External Loopback Capability for Self Test DiagnosticsLow Power Cmos28 Pin Plastic Dual In Line and Chip Carrier PackagesOpen Drain Output on Interrupt PinsOn Board Predistortion CircuitryOn Board Crystal Oscillator (8MHz) Simplifies Clock GenerationTTL Compatible Inputs and OutputSingle $+5 v$ SupplyPIN CONFIGURATION

D_{0}	C 1	28	$V_{c c}$
D_{1}	C 2	27	TX
D_{2}	C 3	26	DTX
D_{3}	C 4	25	TXEN
D_{4}	55	24	RX
D_{5}		23	N/C
D_{6}		22	$\overline{\mathrm{CS}}$
D_{7}	- 8	21	A_{2}
$\overline{\mathrm{RD}}$	59	20	A_{1}
$\overline{W R}$	C10	19	A_{0}
$\overline{\mathrm{NT}}{ }_{1}$	C 11	18	RDY
$\underline{\mathrm{NT}_{2}}$	C12	17	CLKOUT
$\overline{\text { RST }}$	[13	16	XTAL ${ }_{2}$
GND	414	15	XTAL ${ }_{1}$

PACKAGE: 28-pin DIP

Pin configuration subject to change, contact factory for details.

GENERAL DESCRIPTION

The COM52C50 is a CMOS device that performs the communications interface to the IBM 5250 TWINAXIAL bus. It interfaces to a general purpose microprocessor on one side and to the IBM 5250 TWINAXIAL bus on the other side. The COM52C50 handles the parallel to serial and serial to parallel conversion of data to and from the TWINAXIAL bus and the encoding and decoding of data in Manchester II for-
mat. The COM52C50 consists of a RECEIVE BLOCK, a TRANSMIT BLOCK, and CONTROL circuitry. The receive and transmit sections of the COM52C50 are separate and may be used independent of one another. The COM52C50 generates and detects the bit sync, parity, and the fill zero bit patterns according to the IBM 5250 standard.

Intelligent GPIB Interface Controller

FEATURES

All Functional Interface Capability Meeting IEEEStandard 488-1978
-SH1 (Source Handshake)
-AH1 (Acceptor Handshake)
-T5 or TE5 (Talker or Extended Talker)
-L3 or LE3 (Listener or Extended Listener)
-SR1 (Service Request)
-RL1 (Remote Local)
-PP1 or PP2 (Parallei Poll) (Remote or Local Configuration)
-DC1 (Device Clear)
-DT1 (Device Trigger)
-C1-5 ((Controller) (All Functions))
\square Programmable Data Transfer Rate
16 MPU Accessible Registers-8 Read/8 Write
2 Address Registers
-Detection of MTA, MLA, MSA (My Talk/Listen/ Secondary Address)
-2 Device Addresses
EOS Message Automatic DetectionCommand (IEEE Standard 488-78) Automatic
Processing and Undefined Command Read CapabilityDMA CapabilityProgrammable Bus Transceiver I/O Specification
(Works with T.I./Motorola/Intel)1 to 8 MHz Clock RangeTTL Compatible

PIN CONFIGURATION
COPLAMOS ${ }^{\oplus}$ n-Channel Silicon Gate Technology +5 V Single Power Supply40-Pin DIP8080/85/86 Compatible

GENERAL DESCRIPTION

The COM7210 TLC is an intelligent GPIB Interface Controller designed to meet all of the functional requirements for Talkers, Listeners, and Controllers as specified by the IEEE Standard 488-1978. Connected between a processor bus and the GPIB, the TLC provides high level manage-
ment of the GPIB to unburden the processor and to simplify both hardware and software design. Fully compatible with most processor architectures, Bus Driver/Receivers are the only additional components required to implement any type of GPIB interface.

BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

FIN	SYMBOL	1/0	DESCRIPTION
1	T/R1	0	Transmit/Receive Control-Input/Output Control Signal for the GPIB Bus Transceivers.
2	T/R2	0	Transmit/Receive Control-The functions of T/R2, T/R3 are determined by the values of TRM1, TRM0 of the address mode register.
3	CLK	1	Clock-(1-8 MHz) Reference Clock for generating the state change prohibit times $\mathrm{T} 1, \mathrm{~T} 6, \mathrm{~T} 7, \mathrm{~T} 9$ specified in IEEE Standard 488-1978.
4	RST	1	Reset-Resets 7210 to an idle state when high (active high).
5	T/R3	0	Transmit/Receive Control-Function determined by TRM1 and TRM0 of address mode register (See T/R2).
6	DMAREQ	0	DMA Request- 7210 requests data transfer to the computer system, becomes low on input of DMA acknowledge signal DACK.
7	$\overline{\text { DMAACK }}$	1	DMA Acknowledge-(Active Low) Signal connects the computer system data bus to the data register of the 7210 .
8	$\overline{\mathrm{CS}}$	1	Chip Select-(Active Low) Enables access to the register selected by RSO-2 (read or write operation).
9	$\overline{\mathrm{RD}}$	1	Read-(Active Low) Places contents of read register specified by RSO-2-on D0-7 (Computer Bus).
10	$\overline{\mathrm{WR}}$	1	Write-(Active Low) writes data on D0-7 into the write register specified by RSO-2.
11		0	Interrupt Request-(Active High/Low) Becomes active due to any 1 of 13 internal interrupt factors (unmasked) active state software configurable, active high on chip reset.
12-19	D0-7	1/0	Data Bus-8-bit bidirectional data bus, for interface to computer system.
20	GND		Ground.
21-23	RSO-2	1	Register Select-These lines select one of eight read (write) registers during a read (write) operation.
24	IFC	1/0	Interface Clear-Control line used for clearing the interface functions.
25	REN	I/O	Remote Enable-Control line used to select remote or local control of the devices.
26	$\overline{\text { ATN }}$	1/0	Attention-Control line which indicates whether data on DIO lines is an interface message or device dependent message.
27	$\overline{\text { SRQ }}$	I/O	Service Request-Control line used to request the controller for service.
28-35	$\overline{\text { DIO1-8 }}$	1/0	Data Input/Output-8-bit bidirectional bus for transfer of message on the GPIB.
36	$\overline{\text { DAV }}$	1/0	Data Valid-Handshake line indicating that data on DIO lines is valid.
37	$\overline{\text { NRFD }}$	1/0	Ready for Data-Handshake line indicating that device is ready for data.
38	$\overline{\text { NDAC }}$	1/0	Data Accepted-Handshake line indicating completion of message reception.
39	$\overline{\text { EOI }}$	1/0	End or Identify-Control line used to indicate the end of multiple byte transfer sequence or to execute a parallel polling in conjunction with ATN.
40	V_{cc}		+5V DC

FUNCTIONAL DESCRIPTION

Introduction

The IEEE Standard 488 describes a "Standard Digital Interface for Programmable Instrumentation" which, since its introduction in 1975, has become the most popular means of interconnecting instruments and controllers in laboratory, automatic test and even industrial applications. Refined over several years, the 488-1978 Standard, also known as the General Purpose Interface Bus (GPIB), is a highly sophisticated standard providing a high degree of flexibility to meet virtually most all instrumentation requirements. The COM 7210 TLC implements all of the functions that are required to interface to the GPIB. While it is beyond the scope of this document to provide a complete explanation of the IEEE 488 Standard, a basic description follows:
The GPIB interconnects up to 15 devices over a common set of data control lines. Three types of devices are defined by the standard: Talkers, Listeners, and Controllers, although some devices may combine functions such as Talker/Listener or Talker/Controller.

Data on the GPIB is transferred in a bit parallel, byte serial fashion over 8 Data I/O lines (D101-D108). A 3 wire handshake is used to ensure synchronization of transmission and reception. In order to permit more than one device to receive data at the same time, these control lines are "Open Collector" so that the slowest device controls the data rate. A number of other control lines perform a variety of functions such as device addressing, interrupt generation, etc.
The COM7210 TLC implements all functional aspects of Talker, Listener and Controller functions as defined by the 488-1978 Standard, and on a single chip.
The COM 7210 TLC is an intelligent controller designed to provide high level protocol management of the GPIB, freeing the host processor for other tasks. Control of the TLC is accomplished via 16 internal registers. Data may be transferred either under program control or via DMA using the TLC's DMA control facilities to further reduce processor
overhead. The processor interface of the TLC is general in nature and may be readily interfaced to most processor lines.
In addition to providing all control and data lines necessary for a complete GPIB implementation, the TLC also provides a unique set of bus transceiver controls permitting the
use of a variety of different transceiver configurations for maximum flexibility.

Internal Registers

The TLC has 16 registers, 8 of which are read and 8 write.

REGISTER NAME	ADDRESSING	SPECIFICATION							
	$\begin{array}{\|llllll\|} \hline R & R & R & \bar{W} & \bar{R} & \bar{C} \\ S & S & S & R & D & S \\ 2 & 1 & 0 & & & \\ \hline \end{array}$								
Data In (0R)	00000100	D17	D16	D15	D14	D13	D12	D11	D10
Interrupt Status 1 (1R)	000011100	CPT	APT	DET	END	DEC	ERR	DO	D1
Interrupt Status 2 (2R)	$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$	INT	SRQ1	LOK	REM	CO	LOKC	REMC	ADSC
Serial Poll Status (3R)	$\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0\end{array}$	S8	PEND	S6	S5	S4	S3	S2	S1
Address Status (4R)	100001000	CIC	$\overline{\text { ATN }}$	SPMS	LPAS	TPAS	LA	TA	MJMN
Command Pass Through (5R)	100110	CPT7	CPT6	CPT5	CPT4	CPT3	CPT2	CPT1	CPTO
Address 0 (6R)	$1 \begin{array}{llllll}1 & 1 & 0 & 1 & 0 & 0\end{array}$	X	DTO	DLO	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
Address 1 (7R)	$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0\end{array}$	EO1	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1-1
Byte Out (OW)	000010	B07	B06	BO5	BO4	BO3	BO2	BO1	BOO
Interrupt Mask 1 (1W)	0001001	CPT	APT	DET	END	DEC	ERR	DO	DI
Interrupt Mask 2 (2W)	00100010	0	SRQI	DMAO	DMAI	CO	LOKC	REMC	ADSC
Serial Poll Mode (3W)	$\begin{array}{llllll}0 & 1 & 1 & 0 & 1 & 0\end{array}$	S8	rsv	S6	S5	S4	S3	S2	S1
Address Mode (4W)	$1 \begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0\end{array}$	ton	Ion	TRM1	TRM0	0	0	ADM1	ADM0
Auxiliary Mode (5W)	$1 \begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}$	CNT2	CNT1	CNTO	COM4	COM3	COM2	COM1	COMO
Address 0/1 (6W)	$1 \begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 0\end{array}$	ARS	DT	DL	AD5	AD4	AD3	AD2	AD1
End of String (7W)	$\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 0\end{array}$	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0

Data Registers

The data registers are used for data and command trans-
fers between the GPIB and the microcomputer system.

DATA IN (0R) \quad| DI7 | DI6 | DI5 | D14 | DI3 | DI2 | DI1 | DIO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Holds data sent from the GPIB to the computer

BYTE OUT (OW) | BO | BO | BO | BO 4 | BO | BO 2 | BO 1 | BOO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Holds information written into it for transfer to the GPIB

Interrupt Registers

The interrupt registers are composed of interrupt status bits, interrupt mask bits, and some other noninterrupt related bits.

READ
interrupt STATUS 1 (1R).
INTERRUPT
STATUS 2 (2R)

CPT	APT	DET	END	DEC	ERR	DO	DI

INT	SRQI	LOK	REM	CO	LOKC	REMC	ADSC

WRITE
INTERRUPT
MASK 1 (1W)

CPT	APT	DET	END	DEC	ERR	DO	DI

INTERRUPT
MASK 2 (2W)

0	SRQI	DMAO	DMAI	CO	LOKC	REMC	ADSC

Interrupt Status Bits

INT	OR of All Unmasked Interrupt Status Bits
CPT	Command Pass Through
APT	Address Pass Through
DET	Device Trigger
END	End (END or EOS Message Received)
DEC	Device Clear
ERR	Error
DO	Data Out
DI	Data In
SRQI	Service Request Input
LOKC	Lockout Change
REMC	Remote Change
ADSC	Address Status Change
CO	Command Output

There are thirteen factors which can generate an interrupt from the COM7210, each with their own status bit and mask bit.
The interrupt status bits are always set to one if the interrupt condition is met. The interrupt mask bits decide whether the INT bit and the interrupt pin will be active for that condition.

Noninterrupt Related Bits

LOK	Lockout
REM	Remote/Local
DMAO	Enable/Disable DMA Out
DMAI	Enable/Disable DMA In

Serial Poll Registers

SERIAL POLL STATUS (3R).	READ							
	S8	PEND	S6	S5	S4	S3	S1	SO
	WRITE							
SERIAL POLL MODE (3W)	S8	rsv	S6	S5	S4	S3	S2	S1

The Serial Poll Mode register holds the STB (status byte: S8, S6-S1) sent over the GPIB and the local message rsv (request service). The Serial Poll Mode register may be read through the Serial Poll Status register. The PEND is set by $\mathrm{rsv}=1$, and cleared by NPRS $\cdot \overline{\mathrm{rsv}}=1$ (NPRS $=$ Negative Poll Response State).

Address Mode/Status Registers

ADDRESS STATUS (4R)

CIC	$\overline{\text { ATN }}$	SPMS	LPAS	TPAS	LA	TA	MJMN

ADDRESS MODE (4W)

ton	Ion	TRM1	TRM0	

The Address Mode register selects the address mode of the device and also sets the mode for T/R3 and T/R2 the transceiver control lines.

The functions of T/R2, T/R3 terminals (2 and 5) are determined as below by the TRM1, TRM0 values of the address mode register.

T/R2	T/R3	TRM1	TRM0
EOIOE	TRIG	0	0
CIC	TRIG	0	1
CIC	EOIOE	1	0
CIC	PE	1	1

$\mathrm{EOIOE}=\mathrm{TACS}+\mathrm{SPAS}+\mathrm{CIC} \cdot \overline{\mathrm{CSBS}}$
This denotes the input/output of $\overline{\mathrm{EOI}}$ terminal.
When " 1 ": Output
When " 0 ": Input

$$
\mathrm{CIC}=\overline{\mathrm{CIDS}+\mathrm{CADS}}
$$

This denotes if the controller interface function is active or not.
When " 1 ": $\overline{\overline{A T N}}=$ output, $\overline{\mathrm{SRQ}}=$ input
When " 0 ": $: \overline{A T N}=$ input, $\overline{\text { SRQ }}=$ output

$$
\mathrm{PE}=\mathrm{CIC}+\overline{\mathrm{PPAS}}
$$

This indicates the type of bus driver connected to DI08 to DI01 and DAV lines.

When " 1 ": 3 state type
When " 0 ": Open collector type
TRIG: When DTAS state is initiated or when a trigger auxiliary command is issued, a high pulse is generated.
Upon RESET, TRM0 and TRM1 become " 0 " (TRM0 = TRM1 $=0$) and local message port is provided, so that T/ R2 and T/R3 both become "LOW."

Address Modes

ton	Ion	ADM1	ADM0	ADDRESS MODE	CONTENTS OF ADDRESS (0) REGISTER	CONTENTS OF ADDRESS (1) REGISTER
1	0	0	0	Talk only mode	Address Identification Not Necessary (No controller on the GPIB) Not Used	
0	1	0	0	Listen only mode		
0	0	0	1	Address mode 1 (41)	Major talk address or Major listen address	Minor talk address or Minor listen address
0	0	1	0	Address mode 2	Primary address (talk or listen)	Secondary address (talk or listen)
0	0	1	1	Address mode 3 (A3)	Primary address (major talk or major listen)	Primary address (minor talk or minor listen)
Combinations other than above indicated Prohibited.						

Notes: (A1) -Either MTA or MLA reception is indicated by coincidence of either address with the received address. Interface function T or L.
(A2) -Address register $0=$ primary, Address register $1=$ secondary, interface function TE or LE.
(A3) -CPU must read secondary address via Command Pass Through Register interface function (TE or LE).

TA Talker Addressed
MJMN \quad Sets minor T/L address Reset = Major T/L address
SPMS Serial Poll Mode State

Address Registers

ADDRESS 0 (6R)
ADDRESS 1 (7R)
ADDRESS $0 / 1$ (6W)

X	DT0	DL0	AD5-0	AD4-0	AD3-0	AD2-0	AD1-0
EOI	DT1	DL1	AD5-1	AD4-1	AD3-1	AD2-1	AD1-1
ARS	DT	DL	AD5	AD4	AD3	AD2	AD1

The TLC is able to automatically detect two types of addresses which are held in address registers 0 and 1. The addressing modes are outlined below.

Address settings are made by writing into the address $0 / 1$ register. The function of each bit is described below.

Address 0/1 Register Bit Selections

ARS -Selects which address register, 0 or 1
DT -Permits or Prohibits address to be detected as Talk
DL $\quad \begin{gathered}\text { - Permits or Prohibits address to be detected } \\ \text { as Listen }\end{gathered}$
AD5-AD1 -Device address value
EOI -Holds the value of EOI line when data is received

Command Pass Through Register

COMMAND PASS
THROUGH (5R)
CPT7
THROUGH (5R)

CPT7	CPT6	CPT5	CPT

CPT3
The CPT register is used such that the CPU may read the DIO lines in the cases of undefined command, secondary
address, or parallel poll response.

End of String Register

END OF
STRING (7W)

EC 7	EC 6	EC 5	EC 4	EC 3	EC 2	EC 1	EC 0

This register holds either a 7 - or 8-bit EOS message byte used in the GPIB system to detect the end of a data block.

Aux Mode Register A controls the specific use of this register.

Auxiliary Mode Register

AUXILIARY
MODE (5W)

CNT2	CNT1	CNT0	COM4	COM3	COM2	COM1	COM0

This is a multipurpose register. A write to this register generates one of the following operations according to the values of the CNT bits.

$\begin{gathered} \text { CNT } \\ 210 \end{gathered}$	$43^{\text {COM }_{1}}$	OPERATION
000	$\mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$	Issues an auxiliary command specified by C_{4} to C_{0}.
001	$0 F_{3} F_{2} F_{1} F_{0}$	The reference clock frequency is specified and $T_{1}, T_{6}, T_{7}, T_{9}$ are determined as a result.
011	$U S P_{3} P_{2} P_{1}$	Makes write operation to the parallel poll register.
100	$\mathrm{A}_{4} \mathrm{~A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Makes write operation to the aux. (A) register.
101	$B_{4} B_{3} B_{2} B_{1} B_{0}$	Makes write operation to the aux. (B) register.
110	$000 E_{1} E_{0}$	Makes write operation to the aux. (E) register.

Auxiliary Commands $000 \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$ COM

43210		
00000	iepon	- Immediate Execute pon-
		Generate local pon
		Message
00010	crst	- Chip Reset-Same as
		External Reset
00011	rrfd	- Release RFD
00100	trig	- Trigger
00101	rtl	- Return to Local Message Generation
00110	seoi	- Send EOI Message
00111	nvid	- Non Valid (OSA reception) Release DAC Holdoff
01111	vid	- Valid (MSA reception, CPT, DEC, DET)—Release DAC
		Holdoff
0×001	sppf	- Set/Reset Parallel Poll Flag
10000	gts	- Go To Standby
10001	tca	- Take Control
		Asynchronously
10010	tcs	- Take Control Synchronously
11010	tcse	- Take Control Synchronously on End
10011	Itn	- Listen
11011	Itnc	- Listen with Continuous
11100	lun	- Local Unlisten
11101	epp	- Execute Parallel Poll
1 X 110	sifc	- Set/Reset IFC
1×111	sren	- Set/Reset REN
10100	dsc	- Disable System Control

Internal Counter $0010 F_{3} F_{2} F_{1} F_{0}$ The internal counter generates the state change prohibit times ($\mathrm{T}_{1}, \mathrm{~T}_{6}, \mathrm{~T}_{7}, \mathrm{~T}_{9}$) specified in the IEEE std 488 -1978 with reference to the clock frequency.
Auxiliary A Register $100 A_{4} A_{3} A_{2} A_{1} A_{0}$ Of the 5 bits that may be specified as part of its access word, 2 bits control the GPIB data receiving modes of the 7210 and 3 bits control how the EOS message is used.

\mathbf{A}_{1}	\mathbf{A}_{0}	DATA RECEIVING MODE
0	0	Normal Handshake Mode
0	1	RFD Holdoff on all Data Modes
1	0	RFD Holdoff on End Mode
1	$\mathbf{1}$	Continuous Mode

$\begin{aligned} & \text { BIT } \\ & \text { NAME } \end{aligned}$	FUNCTION		
A_{2}	0	Prohibit	Permits (prohibits) the setting of the END bit by reception of the EOS message.
	1	Permit	
A_{3}	0	Prohibit	Permits (prohibits) automatic transmission of END message simultaneously with the transmission of EOS message TACS.
	1	Permit	
A_{4}	0	7 bit EOS	Makes the 8 bits/7 bits of EOS register the valid EOS message.
	1	8 bit EOS	

 The Auxiliary B Register is much like the A Register in that it controls the special operating features of the device.

$\begin{gathered} \text { BIT } \\ \text { NAME } \end{gathered}$	FUNCTION		
B	1	Permit	Permits (prohibits) the detection of undefined command. In other words, it permits (prohibits) the setting of the CPT bit on reception of an undefined command.
	0	Prohibit	
B_{1}	1	Permit	Permits (prohibits) the transmission of the END message when in serial poll active state (SPAS).
	0	Prohibit	
B_{2}	1	$\begin{gathered} \mathrm{T}_{1} \\ \text { (high-speed) } \end{gathered}$	T_{1} (high speed) as T_{1} of handshake after transmission of 2nd byte following data transmission.
	0	$\begin{gathered} \mathrm{T}_{1} \\ \text { (low-speed) } \end{gathered}$	
B_{3}	1	INT	Specifies the active level of INT pin.
	0	INT	
B_{4}	1	ist = SRQS	SRQS indicates the value of ist level local message (the value of the parallel poll flag is ignored). $\begin{aligned} & \text { SRQS }=1 \ldots \text { ist }=1 . \\ & \text { SRQS }=0 \ldots \text { ist }=0 . \end{aligned}$
	0	ist $=$ Parallel Poll Flag	The value of the parallel poll flag is taken as the ist local message.

Auxiliary E Register $110000 \mathrm{E}_{1} \mathrm{E}_{0}$
This register controls the Data Acceptance Modes of the TLC.

BIT		FUNCTION		
E_{0}	1	Enable	DAC Holdoff by initiation of DCAS	
	0	Disable		
E_{1}	1	Enable	DAC Holdoff by initiation of DTAS	
	0	Disable		

Parallel Poll Register

The Parallel Poll Register defines the parallel poll response of the COM 7210 .

Note: In this example, high-speed data transfer cannot be made since the bus transceiver is of the open collector type (Set $\mathrm{B}_{2}=0$).

Note: In the case of low-speed data transfer $\left(B_{2}=0\right)$, the T / R_{3} pin can be used as a TRIG output. The PE input of SN75160 should be cleared to "0."

MINIMUM 8085 SYSTEM WITH COM7210 (CONT.)

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{cc}	$-0.5 \sim+7.0$	V
Input Voltage	V_{1}	$-0.5 \sim+7.0$	V
Output Voltage	V_{o}	$-0.5 \sim+7.0$	V
Operating Temperature	$\mathrm{T}_{\text {opt }}$	$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-65 \sim+125$	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Low Voltage	V_{12}	-0.5		+0.8	V	
Input High Voltage	$\mathrm{V}_{\text {H }}$	+2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Low Level Output Voltage	$V_{\text {oL }}$			+0.45	V	$\begin{aligned} & \mathrm{I}_{\mathrm{oL}}=2 \mathrm{~mA} \\ & (4 \mathrm{~mA}: \mathrm{T} / \mathrm{R} 1 \mathrm{Pin}) \end{aligned}$
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	+2.4			V	$\begin{aligned} & \mathrm{I}_{\text {OH }}=-400 \mu \mathrm{~A} \\ & \text { (Except INT) } \\ & \hline \end{aligned}$
High Level Output Voltage (INT Pin)	$\mathrm{V}_{\mathrm{OH} 2}$	$\begin{array}{r} +2.4 \\ +3.5 \\ \hline \end{array}$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$
Input Leakage Current		-10		+10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{CC}}$
Output Leakage Current	l_{L}	-10		+10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V} \sim \mathrm{~V}_{\text {cc }}$
Supply Current	I_{cc}			+180	mA	

CAPACITANCE $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}\right)$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	$\mathrm{f}=1 \mathrm{MHz}$
Output Capacitance	$\mathrm{C}_{\text {OUt }}$			15	pF	All Pins Except Pin Under Test Tied to
I/O Capacitance	C_{10}			20	pF	AC Ground

TIMING DIAGRAM

AC CHARACTERISTICS, $\left(T_{\mathrm{a}}=0\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%\right)$

PARAMETER	SYMBOL	LIMITS		UNIT	CONDITIONS
		MIN	MAX		
$\overline{\overline{\mathrm{EOI}} \downarrow \rightarrow \overline{\mathrm{DIO}}}$	$\mathrm{t}_{\text {EODI }}$		250	ns	PPSS \rightarrow PPAS, ATN $=$ True
EOI $\downarrow \rightarrow$ T/R1 \uparrow	$\mathrm{t}_{\text {EOT } 11}$		155	ns	PPSS \rightarrow PPAS, ATN $=$ True
EOI $\uparrow \rightarrow$ T/RI \downarrow	$\mathrm{t}_{\text {EOTI2 }}$		200	ns	PPAS \rightarrow PPSS, ATN $=$ False
$\overline{\text { ATN }} \downarrow \rightarrow \overline{\text { NDAC }} \downarrow$	$\mathrm{t}_{\text {ATND }}$		155	ns	AIDS \rightarrow ANRS, LIDS
$\overline{\text { ATN } ~} \downarrow \rightarrow$ T/R1 \downarrow	$t_{\text {ATT1 }}$		155	ns	TACS + SPAS \rightarrow TADS, CIDS
$\overline{\text { ATN }} \downarrow \rightarrow$ T/R2 \downarrow	$\mathrm{t}_{\text {ATT2 }}$		200	ns	TACS + SPAS \rightarrow TADS, CIDS
$\overline{\text { DAV } \downarrow \rightarrow \text { DMAREQ }}$	$\mathrm{t}_{\text {DVRo }}$		600	ns	ACRS \rightarrow ACDS, LACS
$\overline{\text { DAV }} \downarrow \rightarrow \overline{\text { NFRD }} \downarrow$	$\mathrm{t}_{\text {oVNB1 }}$		350	ns	ACRS \rightarrow ACDS
$\overline{\overline{D A V}} \downarrow \rightarrow \overline{\text { NDAC }} \uparrow$	$\mathrm{t}_{\text {ovnd }}$		650	ns	ACRS \rightarrow ACDS \rightarrow AWNS
$\overline{\mathrm{DAV}} \uparrow \rightarrow \overline{\mathrm{NDAC}} \downarrow$	$\mathrm{t}_{\text {OVNO2 }}$		350	ns	AWNS \rightarrow ANRS
$\overline{\overline{\text { DAV }} \uparrow \rightarrow \overline{\text { DRFD }} \uparrow}$	$\mathrm{t}_{\text {DVNR2 }}$		350	ns	AWNS \rightarrow ANRS \rightarrow ACRS
$\overline{\text { RD }} \downarrow \rightarrow \overline{\text { NRFD }} \uparrow$	$t_{\text {fNR }}$		500	ns	ANRS \rightarrow ACRS LACS, DI reg. selected
$\overline{\text { NDAC }} \uparrow \rightarrow$ DMAREQ \uparrow	$\mathrm{t}_{\text {NORO }}$		400	ns	$\begin{aligned} & \text { STRS } \rightarrow \text { SWNS } \rightarrow \text { SGNS, } \\ & \text { TACS } \end{aligned}$
$\overline{\overline{\text { NDAC }} \uparrow \rightarrow \overline{\text { DAV }} \uparrow}$	$\mathrm{t}_{\text {NDDV }}$		350	ns	STRS \rightarrow SWNS \rightarrow SGNS
$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{DIO}}$	$\mathrm{t}_{\text {wol }}$		250	ns	SGNS \rightarrow SDYS, BO reg. selected
$\overline{\overline{\text { NRFD }} \uparrow \rightarrow \overline{\text { DAV }} \downarrow}$	$\mathrm{t}_{\text {NRDV }}$		350	ns	SDYS \rightarrow STRS, $\mathrm{T}_{1}=$ True
$\overline{\mathrm{WR}} \uparrow \rightarrow \overline{\mathrm{DAV}} \downarrow$	$\mathrm{t}_{\text {wov }}$		$\begin{gathered} 830 \\ +\mathrm{t}_{\mathrm{SYNC}} \end{gathered}$	ns	SGNS \rightarrow SDYS \rightarrow STRS BO reg. selected, RFD = True $\mathrm{N}_{\mathrm{F}}=\mathrm{fc}=8 \mathrm{MHz}$, T_{1} (High Speed)
TRIG Pulse Width	$\mathrm{t}_{\text {trig }}$	50		ns	
Address Setup to $\overline{\mathrm{RD}}$	$t_{\text {AR }}$	85		ns	RSO ~ RS2
		0		ns	$\overline{\overline{C S}}$
Address Hold from $\overline{\mathrm{R}} \mathrm{D}$	$t_{\text {RA }}$	0		ns	
RD Pulse Width	$\mathrm{t}_{\text {RR }}$	170		ns	
Data Delay from Address	$t_{\text {AD }}$		250	ns	
Data Delay from RD \downarrow	$\mathrm{t}_{\text {RD }}$		150	ns	
Output Float Delay from $\overline{\mathrm{RD}} \uparrow$	t_{DF}	0	80	ns	
RD Recovery Time	t_{Rv}	250		ns	
Address Setup to WR	$\mathrm{t}_{\text {Av }}$	0		ns	
Address Hold from $\overline{W R}$	$t_{\text {wA }}$	0		ns	
WR Pulse Width	$t_{w w}$	170		ns	
Data Setup to WR	$t_{\text {bw }}$	150		ns	
Data Hold from WR	$t_{\text {wo }}$	0		ns	
WR Recovery Time	t_{Rv}	250		ns	
DMAREQ \downarrow Delay from DMAACK	$\mathrm{t}_{\text {AKRa }}$		130	ns	
Data Delay from DMAACK	$t_{\text {AKD }}$		200	ns	

STANDARD MICROSYSTEMS CORPORATION

35 Marcus Blvd., Hauppauge. N.Y. 11788
(516) 273-3100 • TWX-510-227-8898

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Eight-channel Universal Asynchronous Receiver/Transmitter Octal UART

FEATURES

Eight independent full duplex serial data linesProgrammable baud rates individually selectable for each line's transmitter/receiver (50 to 19,200 baud)Summary registers that allow a single read to detect a data set change or to determine the cause of an interrupt on any lineTriple buffers for each receiverDevice scanner mechanism that reports interrupt request due transmitter/receiver interruptsIndependently programmable lines for interrupt-driven operationModem status change detection for Data Set Ready (DSR) and Data Carrier Detect (DCD) signalsProgrammable interrupts for modem status changesSynchronizes critical read-only registersPIN CONFIGURATION

GENERAL DESCRIPTION

The COM78808 Eight-channel Asynchronous Receiver/ Transmitter (Octal UART) is a VLSI device for new generations of asynchronous serial communication designs and for microcomputer systems. This 68 -pin device performs the
basic operations necessary for simultaneous reception and transmission of asynchronous messages on eight independent lines. Figure 1 is a functional block diagram of the COM78808 Octal UART.

FIGURE 1: COM78808 OCTAL UART FUNCTIONAL BLOCK DIAGRAM
TABLE 1-COM78808 PIN AND SIGNAL SUMMARY

Pin	Signal	Input/Output	Definition/Function
10-13,22-25	DL<7:0>	input/output	Data lines $\langle 7: 0\rangle$-Receives and transmits the parallel data.
50-52,54-56	ADD<5:0>	input	Address $<5: 0>$-Selects the internal registers in the Octal UART.
17	$\overline{\text { CS }}$	input	Chip select-Activates the Octal UART to receive and transmit data over the $\mathrm{DL}<7: 0>$ lines.
21,53	$\overline{\mathrm{DS1}}, \overline{\mathrm{DS} 2}$	input	Data strobe 1 and 2-Receives timing information for data transfers. The DS1 and DS2 inputs must be connected together.
18	$\overline{\mathrm{WR}}$	input	Write-Specifies direction of data transfer on the $\mathrm{DL}<7: 0>$ lines.
14	$\overline{\text { RDY }}$	output	Ready-Indicates when the Octal UART is ready to participate in data transfer cycles.
15	RESET	input	Reset-Initializes the internal logic.
57	MRESET	input	Manufacturing reset-For manufacturing use.
58	CLK	input	Clock-Clock input for timing.
$\begin{aligned} & \hline 62,67,2,7, \\ & 41,36,33,28 \end{aligned}$	$\overline{\overline{D S R}<7: 0>}$	inputs	Data set ready-Monitor data set ready (DSR) signals from modems.
$\begin{aligned} & 63,66,3,6 \\ & 40,37,32,29 \end{aligned}$	$\overline{\mathrm{DCD}}<7: 0>$	inputs	Data set carrier detect-Monitor data set carrier detect (DCD) signals from modems.
49	$\overline{\mathrm{RQQ}}$	output	Interrupt request-Requests a processor interrupt.
45-47	IRQLN<2:0>	output	Interrupt request line number-Indicates the line number of originating interrupt request.
48	IRQTxRx	output	Interrupt request transmit/receive-Indicates whether an interrupt request is for transmitting or receiving data.
$\begin{aligned} & 61,68,1,8, \\ & 42,35,34,27 \\ & \hline \end{aligned}$	TxD<7:0>	outputs	Transmit data-Provides asynchronous bit-serial data output streams.
$\begin{aligned} & 64,65,4,5, \\ & 39,38,31,30 \\ & \hline \end{aligned}$	$\mathrm{RxD}<7: 0>$	outputs	Receive data-Accepts asynchronous bit-serial data input streams.
44,26,9	$V_{\text {D }}$	input	Voltage-Power supply voltage + 5 Vdc .
16,59,43	$\mathrm{V}_{\text {ss }}$	input	Ground-Ground reference

DATA AND ADDRESS

Data lines ($\mathrm{DL}<7: 0>$)-These lines are used for the parallel transmission and reception of data between the CPU and the Octal UART. The receivers are active when the data strobe (DS1, DS2) signal is asserted. The output drivers are active only when the chip select ($\overline{\mathrm{CS}})$ signal is asserted, the data strobe ($\overline{\mathrm{DS} 1}, \overline{\mathrm{DS} 2}$) signal is asserted, and the write (WR) signal is deasserted. The drivers will become inactive (high-impedance) within 50 nanoseconds when one or more of the following occurs: the chip select ($\overline{\mathrm{CS}}$) signal is deasserted, the data strobe ($\overline{\mathrm{DS} 1}, \overline{\mathrm{DS} 2}$) signal is deasserted, or the write (WR) signal is asserted.

TABLE 2-COM78808 REGISTERS ADDRESS SELECTION

$\begin{gathered} \text { ADD Line } \\ <5> \end{gathered}$	<4>	<3>	<2>	<1>	<0>	Read/Write	Register
0	0	0	0	0	0	Read	Line 0 Receiver Buffer
0	0	0	0	0	0	Write	Line 0 Transmitter Holding
0	0	0	0	0	1	Read	Line 0 Status
0	0	0	0	1	0	Read/Write	Line 0 Mode Registers 1,2
0	0	0	0	1	1	Read/Write	Line 0 Command
0	0	1	0	0	0	Read	Line 1 Receiver Buffer
0	0	1	0	0	0	Write	Line 1 Transmitter Holding
0	0	1	0	0	1	Read	Line 1 Status
0	0	1	0	1	0	Read/Write	Line 1 Mode Register 1,2
0	0	1	0	1	1	Read/Write	LIne 1 Command
0	1	0	0	0	0	Read	Line 2 Receiver Buffer
0	1	0	0	0	0	Write	Line 2 Transmitter Holding
0	1	0	0	0	1	Read	Line 2 Status
0	1	0	0	1	0	Read/Write	Line 2 Mode Register 1,2
0	1	0	0	1	1	Read/Write	Line 2 Command
0	1	1	0	0	0	Read	Line 3 Receiver Buffer
0	1	1	0	0	0	Write	Line 3 Transmitter Holding
0	1	1	0	0	1	Read	Line 3 Status
0	1	1	0	1	0	Read/Write	Line 3 Mode Register 1,2
0	1	1	0	1	1	Read/Write	Line 3 Command
1	0	0	0	0	0	Read	Line 4 Receiver Buffer
1	0	0	0	0	0	Write	Line 4 Transmitter Holding
1	0	0	0	0	1	Read	Line 4 Status
1	0	0	0	1	0	Read/Write	Line 4 Mode Register 1,2
1	0	0	0	1	1	Read/Write	Line 4 Command
1	0	1	0	0	0	Read	Line 5 Receiver Buffer
1	0	1	0	0	0	Write	Line 5 Transmitter Holding
1	0	1	0	0	1	Read	Line 5 Status
1	0	1	0	1	0	Read/Write	Line 5 Mode Register 1,2
1	0	1	0	1	1	Read/Write	Line 5 Command
1	1	0	0	0	0	Read	Line 6 Receiver Buffer
1	1	0	0	0	0	Write	Line 6 Transmitter Holding
1	1	0	0	0	1	Read	Line 6 Status
1	1	0	0	1	0	Read	Line 6 Mode Register 1,2
1	1	0	0	1	1	Read/Write	Line 6 Command
1	1	1	0	0	0	Read	Line 7 Receiver Buffer
1	1	1	0	0	0	Write	Line 7 Transmitter Holding
1	1	1	0	0	1	Read	Line 7 Status
1	1	1	0	1	0	Read/Write	Line 7 Mode Register 1,2
1	1	1	0	1	1	Read/Write	Line 7 Command
X	X	X	1	0	0	Read	Interrupt Summary
X	X	X	1	0	1	Read	Data Set Change Summary

Address (ADD $<5: 0>$)-These lines select which Octal UART internal register is accessible through the data I/O lines ($\mathrm{DL}<7: 0>$) when the data strobe ($\overline{\mathrm{DS} 1, \overline{\mathrm{DS} 2} \text {) and chip }}$ select ($\overline{\mathrm{CS}}$) signals are asserted. Table 2 lists the addresses corresponding to each register. The receiver buffer and transmitter holding register for each line have the same address. When the ($\overline{W R}$) signal is deasserted, the address accesses the receiver buffer register and when asserted, it accesses the transmitter holding register.
${ }^{*} X=$ Either 0 or 1.

BUS TRANSACTION CONTROL

Chip select ($\overline{\mathbf{C S}}$)-This signal is asserted to permit data transfers through the $\mathrm{DL}<7: 0>$ lines to or from the internal registers. Data transfer is controlled by the data strobe (DS1, $\overline{\mathrm{DS2}}$) signal and write (WR) signal.
Data strobe ($\overline{\mathrm{DS}}, \overline{\mathrm{DS} 2}$)- The data strobe inputs ($\overline{\mathrm{DS}}$ and $\overline{\text { DS2 }) ~ m u s t ~ b e ~ c o n n e c t e d ~ t o g e t h e r . ~ T h i s ~ i n p u t ~ r e c e i v e s ~ t i m-~}$
ing information for data transfers. During a write cycle, the CPU asserts the data strobe signal when valid output data is available and deasserts the data strobe signal before the data is removed. During a read cycle, the CPU asserts the data strobe signal and the Octal UART transfers the valid data. When the data strobe signal is deasserted, the $\mathrm{DL}<7: 0>$ lines become a high impedance.

Write ($\overline{\mathrm{WR}}$)-The write ($\overline{\mathrm{WR})}$) signal specifies the direction of data transfer on the $\mathrm{DL}<7: 0>$ pins by controlling the direction of their transceivers. If the WR signal is asserted during a data transfer (the $\overline{\mathrm{CS}}, \overline{\mathrm{DS1}}$, and $\overline{\mathrm{DS} 2}$ signals asserted), the Octal UART is receiving data from $\mathrm{DL}<7: 0>$. If the WR signal is deasserted during a write data transfer, the Octal UART is driving data onto the $\mathrm{DL}<7: 0>$ lines.

INTERRUPT REQUEST

Interrupt request $\overline{\mathrm{IRQ}}-$ The $\overline{\mathrm{RQ}} \mathrm{pin}$ is an open drain output. The integral interrupt scanner asserts the IRQ signal when it has detected an interrupt condition on one of the eight serial data lines.

Interrupt Request transmit/receive (IRQTxRx)—This

 signal indicates when the interrupt scanner in the Octal UART stops and asserts $\overline{\mathrm{RQ}}$ because of a transmitter interrupt condition (the IRQTxRx signal is asserted) or because of a receiver interrupt condition (the IRQTxRxsignal is deasserted). The signal is valid only while $\overline{\mathrm{RQ}}$ is asserted. The state of IRQTxRx signal also appears as bit 0 of the interrupt summary register.Interrupt request line number (IRQLN $<\mathbf{2 : 0} \mathbf{0}$)-These lines indicate the line number at which the Octal UART interrupt scanner stopped and asserted the interrupt request (IRQ) signal. The number on these lines is valid only while the IRQ signal is asserted. Line IRQLN $<2>$ is the highorder bit and the IRQLN $<0>$ line is the low-order bit. The state of these signals also appears as bits in the interrupt summary register: $\operatorname{IRQLN}<2>$ as bit 3, IRQLN $<1>$ as bit 2 , and IRQLN $<0>$ as bit 1 . Table 3 shows the line numbers corresponding to settings of IRQLN $<2: 0>$.

TABLE 3-COM78808 INTERRUPT REQUEST

 LINE ASSIGNMENTS| IRQ Line
 $<\mathbf{2}>$ | $<\boldsymbol{1}>$ | $<\boldsymbol{0}>$ | Line |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 2 |
| 0 | 1 | 1 | 3 |
| 1 | 0 | 0 | 4 |
| 1 | 0 | 1 | 5 |
| 1 | 1 | 0 | 6 |
| 1 | 1 | 1 | 7 |

SERIAL DATA

Transmit data (TxD $<7: 0>$)-These outputs transmit the asynchronous bit-serial data streams. They remain at a high level when no data is being transmitted and a low level when the TxBRK bit in the associated line's command register is set.
Receive data ($\mathrm{RxD}<7: 0>$)-These lines accept asynchronous bit-serial data streams. The input signals must remain in the high state for at least one-half bit time before a high-to-low transition is recognized. (A high-to-low transition is required to signal the beginning of a "start" bit and initiate data reception).

MODEM SIGNALS

Data set ready ($\overline{\mathrm{DSRR}}<7: 0>$)-These eight input pins, one for each serial datat line on the COM78808, are typically connected via intervening level converters to the data set ready outputs of modems. A TTL low at a DSR pin causes the DSR bit (bit 7) in the corresponding line's status register
to be asserted. A TTL high at a DSR pin causes the DSR bit in the corresponding line's status register to be deasserted. A change of this input from high-to-low, or low-tohigh, causes the assertion of the data set change (DSCHNG) bit that corresponds to this line in the data set change summary register. Changes from one state to the other and back again that occur within one microsecond may not be detected.
Carrier detect ($\mathrm{DCD}<7: 0>$)-These eight input pins, one for each serial data line of the Octal UART, are typically connected through intervening level converters to the received line signal detect (also called carrier detect) outputs of modems. A TTL low at a DCD pin causes the DCD bit of the corresponding line's status register to be deasserted. A change of this input from high-to-low, or low-to-high, causes the assertion of the data set change (DSCHNG) bit corresponding to this line in the data set change summary register. Changes from one state to the other and back again that occur withir one microsecond may not be detected.

GENERAL CONTROL SIGNALS

Ready ($\overline{\mathrm{RDY}}$)-The $\overline{\mathrm{RDY}}$ pin is an open drain output. Upon detecting a negative transition of chip select (CS), the Octal UART asserts the RDY signal to indicate readiness to take part in data transfer cycles. The RDY signal deasserts after the trailing edge of CS.
Reset (RESET)-When the RESET input is asserted, the $\mathrm{T} \times \mathrm{D}<7: 0>$ lines are asserted and all internal status bits listed in the "Architecture Summary" discussion are cleared.
Manufacturing reset (MRESET)-This signal is for manufacturing use only and the input should be connected to ground for normal operation.

MISCELLANEOUS SIGNALS

Clock in (CLK)-All baud rates and internal clocks are derived from this input. Normal operating frequency is $4.9152 \mathrm{MHz} \pm 0.1$ percent and duty cycle is 50 percent ± 5 percent.

POWER AND GROUND

Voltage (V_{DD})-Power supply 5 Vdc
Ground (V_{ss})-Ground reference

ARCHITECTURE SUMMARY

The Octal UART functions as a serial-to-parallel, parallel-to-serial converter/controller. It can be programmed by a microprocessor to provide different characteristics for each of its eight serial data lines (stop bits, parity, character length, split baud rates, etc.)
Each serial line functions the same as a one-line UARTtype device thereby reducing the number of chips and conserving space on communication devices that require multiple communications lines.
An integral interrupt scanner checks for device interrupt conditions on the eight lines. Its scanning algorithm gives priority to receivers over transmitters. The scanner can also check for interrupts resulting from changes in modem control signals DSR and DCD.

Line-specific Registers

Each of the eight serial data lines in the Octal UART has a set of registers for buffering data into and out of the line and for external control of the line's characteristics. These registers are selected for access by setting the appropriate address on lines $A D D<5: 0>$. Lines $A D D<5: 3>$ select one of the eight data lines. Lines ADD<2:0> select the specific register for that line. Refer to Table 2 for the register address assigniments.

Receiver buffer register-Each line's receiver consists of a character assembly register and a two-entry FIFO that is the receiver buffer register. When the RxEN bit in a line's command register is set, received characters are moved automatically into the line's receiver buffer as soon as they have been deserialized from the associated communications line. When there are characters in this FIFO, the RxRDY bit is set in the status register for the line.
The assertion of the RxRDY signal for a line that already has the RxIE bit of its command register set causes the interrupt scanner logic to stop and generate an interrupt condition (the IRQ signal is asserted). When the receiver buffer is read, the interrupt condition is cleared (the $\overline{\mathrm{RQ}}$ signal is deasserted) and the interrupt scanner resumes operation.
If there is another entry in a line's FIFO, the RxRDY bit remains asserted. When the interrupt scanner reaches this line again, the assertion of RxRDY causes the scanner to halt and assert the $\overline{\mathrm{RQ}}$ again.
Asserting the $\overline{\text { RESET }}$ signal or clearing the RxEN bit initializes the receiver logic of Octal UART. The RxRDY flag is cleared and the receiver buffer register outputs become undefined. Any data in the FIFO at that time is lost.

Transmitter holding register-Each line has a writable transmitter holding register. When the TxEN bit in the line's command register is set, characters are moved automatically from the output of this register into the transmitter serialization logic whenever the serialization logic becomes idle.
When this register is empty, the TxRDY bit in the line's status register is set. If the transmitter interrupt enable (TxIE) bit in the line's command register is also set, the interrupt scanner logic halts and generates an interrupt condition. If a character is then loaded into the register, the interrupt is cleared and the scanner resumes operation.

Assertion of the RESET signal initializes the transmitter logic of the Octal UART. The TxRDY flag is cleared and the transmitter holding register's contents are lost. The transmitter enable (TxEN) bit in the line's command register is also cleared by RESET. If at the end of the reset process, the TxEN is reasserted and TxRDY bit is reasserted. Software clearing of TXEN alone produces results different from the full RESET in that the transmitter holding register's contents are not lost; they are transmitted when TxEN is set again.
Status register-Each line has a read-only status register that provides information about the current state of the given line. This register indicates a line's readiness for transmission or reception of data and flags error conditions in its bit fields. Figure 3 shows the format of the status register. Table 3 lists the flag bits in each status register.

TABLE 4-COM78808 STATUS REGISTERS (LINES 0-7) DESCRIPTION

Bit	Description
7	DSR (Data set ready)-This bit is the inverted state of the DSR line.
6	DCD (Data set carrier detect)-This bit is the inverted state of the $\overline{\text { DCD line. }}$
5	FER (Frame error)-Set when the received character currently displayed in the receiver buffer register was not framed by a stop bit. Only the first stop bit is checked to determine that a framing error exists. Subsequent reading of the receiver buffer register that indicates all zeros (including the parity bit, if any) can be interpreted as a Break condition. This bit is cleared by clearing RxEN (bit 2) of the command register, by asserting the RESET input, or by setting the reset error RERR (bit 4) of the command register.
4	ORR (Overrun error)-Set when the character in the receiver buffer register was not read before another char- acter was received. Cleared by clearing RxEN (bit 2) of the command register, by asserting the RESET input, or by setting reset error RERR (bit 4) of the command register.
3	PER (Parity error)-If parity is enabled and this bit is set, the received character in the receiver buffer register has an incorrect parity bit. This bit is cleared by clearing RxEN (bit 2) of the command register, by asserting the
RESET input, by setting reset error RERR (bit 2) of the command register, or by reading the current character in the receiver buffer register.	
1	TxEMT (Transmitter empty)-Set when the transmitter serialization logic for the associated line has completed transmission of a character, and no new character has been loaded into the transmitter holding register. Cleared by loading the transmitter holding register, by clearing TxEN (0) of the command register, or by assert- ing the RESET input.
0	RxRDY (Receiver buffer ready)-When set, a character has been loaded into the FIFO buffer from the deserial- ization logic. Cleared by reading the receiver buffer register, by clearing RxEN (bit 2) in the command register, or by asserting the RESET input.
TxRDY (Transmitter holding register ready)-When set, this bit indicates that the transmitter holding register is	
empty. Cleared when the program has loaded a character into the transmitter holding register, when the trans-	
mitter for this line is disabled by clearing TxEN (bit 0) in the command register, or by asserting the RESET	
input. This bit is initially set when the transmitter logic is enabled by the setting of TxEN (bit 0) and the transmit-	
ter holding register is empty. This bit is not set when the automatic echo or remote loopback modes are pro-	
grammed. Data can be overwritten if a consecutive write is performed while TxRDY is cleared.	

Mode registers 1 and 2-These read/write registers control the attributes (including parity, character length, and line speed) of the communications line.
Each of the eight communications lines has two of these registers, both accessed by the same address on ADD $<5: 0>$. Successive access operations (either read or write, in any combination) alternate between the two registers at that address by use of an internal pointer. The first operation addresses mode register 1, the next address mode register 2, and another after that would recycle the pointer to mode register 1. The pointer is reset to point to mode register 1 by RESET or by a read of the command register for this line. These registers should not be accessed by bit-oriented instructions that do read/modify/write cycles such as the PDP-11 BIS, BIC, and BIT instructions.

Figure 4 shows the format of mode registers 1 and Table 5 describes the function of the register information.

FIGURE 4-COM78808 MODE REGISTERS 1 (LINE 0-6) FORMAT

TABLE 5-COM78808 MODE REGISTERS 1 (LINES 0-6) DESCRIPTION

Bit	Description
7,6	STOP-These bits determine the number of stop bits that are appended to the transmitted characters as follows. These bits are cleared by asserting the RESET input.
5,4	PAR CTRL (Parity control)-These bits determine parity as follows and are cleared by asserting the $\overline{\text { RESET }}$ input. $\mathrm{X}=$ either 1 or 0 .
3,2	CHAR LENGTH (Character length)-These bits determine the length (excluding start bit, parity, and stop bits) of the characters received and sent. Received characters of less than 8 bits are "right aligned" in the receiver buffer with unused high-order bits equal to zero. Parity bits are not shown in the receiver buffer. The character length bits are cleared by asserting the RESET input. The character length bits are defined as follows:
1	RSRV (Reserved and cleared by asserting the $\overline{\text { RESET input.) }}$
0	MCIE (Modem control interrupt enable)-When set and RxIE (bit 5) of the command register is set, the modem control interrupts are enabled. Refer to the Interrupt Scanner and Interrupt Handling information. Cleared by asserting the RESET input.

Figure 5 shows the format of mode registers 2 and Table 6 indicates the baud rate selections of the register. Bits 7 through 4 of the mode register 2 control the transmitter baud rate and bits 3 through 0 control the receiver baud rate. These registers are cleared by asserting RESET input.

FIGURE 5-COM78808 MODE REGISTERS 2 (LINE 0-6) FORMAT

Command register-These read/write registers control various functions on the selected line. Figure 6 shows the format of the command registers and Table 6 describes the function of the register information.

TABLE 6-COM78808 MODE REGISTERS 2 (LINES 0-6) DESCRIPTION

Bit	Description										
7:0	XMIT RATE/RECV RATE (Transmitter/Receiver Rate)-Selects the baud rate of the transmitter (bits 7:4) and receiver (bits 3:0) as follows:										
	Transmitter Bits					Rece	B		Nominal	Actual	Error*
	7	6	5	4	3	2	1	0	Rate	Rate	(percent)
	0	0	0	0	0	0	0	0	50	same	-
	0	0	0	1	0	0	0	1	75	same	-
	0	0	1	0	0	0	1	0	110	109.09	0.826
	0	0	1	1	0	0	1	1	134.5	133.33	0.867
	0	1	0	0	0	1	0	0	150	same	-
	0	1	0	1	0	1	0	1	300	same	-
	0	1	1	0	0	1	1	0	600	same	-
	0	1	1	1	0	1	1	1	1200	same	-
	1	0	0	0	1	0	0	0	1800	1745.45	3.03
	1	0	0	1	1	0	0	1	2000	2021.05	1.05
	1	0	1	0	1	0	1	0	2400	same	-
	1	0	1	1	1	0	1	1	3600	3490.91	3.03
	1	1	0	0	1	1	0	0	4800	same	-
	1	1	0	1	1	1	0	1	7200	6981.81	3.03
	1	1	1	0	1	1	1	0	9600	same	-
	1	1	1	1	1	1	1	1	19200	same	-

*The frequency of the clock input (CLK) is 4.9152 MHz . The clock input may vary by 0.1 percent. This variance results in an error that must be added to the error listed.

TABLE 7-COM78808 COMMAND REGISTERS (LINES 0-7) DESCRIPTION

Bit	Description
7,6	OPER MODE (Operating mode)-These bits control the operating mode of the channel as follows. These bits are cleared by asserting the RESET input.
5	RxIE (Receiver interrupt enable)-When set, the RxRDY flag (bit 1) of the status register for this line will generate an interrupt.
4	RERR (Reset error)-When set, this bit clears the framing error, overrun error, and parity error of the status register associated with this line. This bit is cleared by asserting the RESET input (not self-clearing).
3	TxBRK (Transmit break)-When set, this bit forces the appropriate TxD $<7: 0>$ line to the spacing state at the conclusion of the character presently being transmitted. When the program clears this bit, normal operation is restored, and any character pending in the transmitter holding register is moved into the serialization logic and transmitted. The minimum break length obtainable is twice the character length plus 1 bit time. The maximum break length depends on the amount of time between the program setting and clearing this bit, but is an integral number of bit times. This bit is cleared by asserting the RESET input.
2	RxEN (Receiver enable)-When set, this bit enables the receiver logic. When cleared, it stops the assembling of the received character, clears all receiver error bits and the RxRDY (bit 1) of the status register, clears any receiver interrupt conditions associated with this line, and initializes all receiver logic. This bit is cleared by asserting the RESET input.
1	TxIE (Transmit interrupt enable)-When set, the state of the associated TxRDY flag (bit 0) of the status register is made available to the interrupt scanner logic. When the interrupt scanner logic scans this line, it determines if the TxRDY flag is asserted and generates an interrupt by asserting the IRQ signal.
0	TxEN (Transmitter enable)-When set, this bit enables the transmitter !ogic. When cleared, it inhibits the serialization of the characters that follow but the serialization of the current character is completed. It also clears the TXRDY flag (bit 0) of the status register, clears any transmitter interrupt conditions associated with this line, and initializes all transmitter logic except that associated with the transmitter holding register. The character in the transmitter holding register is retained so that XON/XOFF situations can be properly processed. This bit is cleared by asserting the RESET input.

Bits 5 through 0 enable the line's receiver and transmitter, enable handling of interrupts, initiate the transmission of break characters, and reset error bits for the line. Refer to "Interrupt Scanner" and "Interrupt Handling" paragraphs for detailed interrupt information. Bits 7 and 6 control the operating mode of the line. The four modes that can be set are:Normal operation-The serial data received is assembled in the receiver logic and transferred in parallel to the receiver buffer register. (The RxEN bit must be set.) Data to be transmitted is loaded in parallel into the transmitter holding register, then automatically transferred into the transmitter logic and serialized for transmission. (The TxEN bit must be set.)Automatic echo-The serial data received is assembled into parallel in the receiver logic (the RxEN bit must be set) and transferred to the receiver buffer register. Arriving serial data is also routed to the line's $T x D<n>$ pin for serial output. TxEN is ignored and the transmitter logic is disabled. TxRDY flags and TxEMT indications are cleared. No transmitter interrupts are generated.
Local loopback-The serial data from the $\mathrm{RxD}<\mathrm{n}>$ input is ignored and the receiver serial input receives data from the transmitter serial output. The data is assembled into parallel form in the receiver logic (the RxEN bit must be set) and transferred to the receiver buffer register where it can be read by the program. Data to be transmitted to the receiver is loaded in parallel form into the transmitter holding register from which it is automatically moved into the transmitter logic and serialized for transmission. (The TxEN bit must be set.) The transmission goes only to the receiver serial input; the $\mathrm{TxD}<\mathrm{n}>$ output is held high. As in normal operation, transmission and reception baud rates are controlled by the transmitter speed and receiver speed entries in mode register 2.Remote loopback-The serial data received on the $R \times D<n>$ line is returned to the $T \times D<n>$ line without further action. No data is received or transmitted. The RxRDY, TxRDY, and TxEMT flags are disabled. The TXEN and RxEN bits of the command register are held cleared, causing the transmitter and receiver logic to be disabled.

SUMMARY REGISTERS

The Octal UART contains two registers that summarize the current status of all eight serial data lines, making it possible to determine that a line's status has changed with a single read operation. These registers are selected for access by setting the appropriate address on pins ADD <2:0>. Because the registers are shared by eight serial lines, the line-selection bits (ADD $<5: 3>$) are ignored when these registers are accessed. Refer to "Interrupt Scanner and Interrupt Handling" for detailed interrupt information.
Interrupt summary register-This read-only register indicates that a transmitter or receiver interrupt condition has occured, and indicates the line number that generated the interrupt. Figure 7 shows the format of the interrupt summary register and Table 8 describes register information.

TABLE 8-COM78808 INTERRUPT SUMMARY REGISTER DESCRIPTION

Bit	Description
7	IRQ (Interrupt request)-When set, this bit indicates that the interrupt scanner has found an interrupting condition among the eight serial lines of the Octal UART. These conditions also result in the Octal UART asserting the $\overline{\mathrm{RQ}}$ signal.
6:4	RAZ (Read as zero)-Not used
3:1*	INT LINE NO (Interrupting line number)-These bits indicate the line number upon which an interrupting condition was found. These bits correspond to the IRQLN $<2: 0>$ signals-(bit $3=\operatorname{IRQLN}<2>$, bit $2=\operatorname{IRQLN}<1>$, and bit $1=\mid$ RQLN $<0>$. Refer to Table 3.
0^{*}	$T \times / \overline{\mathrm{Rx}}$ (Transmit/receive)-This bit indicates whether the interrupting condition was caused by a transmitter (Tx/ $\overline{R x}$ equals 1) or a receiver (Tx/Rx equals 0). This bit corresponds to the IRQTXRx signal of the Octal UART and is set when IRQTXRx is asserted.

*Bits 3-0 above represent the outputs of a free-running counter and are valid only when bit 7 is set.

Data set change summary register-When the $\overline{\mathrm{DSR}}$ or DCD inputs that are associated with a line change state, the bit corresponding to that line in this read-only register is set. The current state of the DSR and DCD inputs can

then be obtained from that line's status register. If the state of a line changes twice within one microsecond, the change in state may not be detected. Figure 8 shows the format of the data set change summary register.
When the MCIE bit in a line's mode register 1 is set and RxIE is also set, the modem control interrupts are enabled for that line. If DSCHNG for that line is then set, the interrupt scanner will halt and assert the $\overline{\mathrm{RQ}}$ signal. The data set change summary register bits are cleared by writing a 1 into the bit position. A program that uses this register should read and save a copy of its contents. The copy can then be written back to the register to clear the bits that were set. The system interrupts should be disabled and writeback should directly follow the read operation.
Assertion of the RESET signal disables and initializes the data set change logic. When the RESET signal is deasserted, future changes in $\overline{\text { DSR }}$ and $\overline{\mathrm{DCD}}$ are reported as they occur.

INTERRUPT SCANNER AND INTERRUPT HANDLING

The interrupt scanner is a four-bit counter that sequentially checks lines 0 through 7 for a receiver interrupt (counter positions ($0-7$) and then checks the lines in the same order for a transmitter interrupt (counter positions 8 -15). If the scanner detects an interrupt condition, it stops and the $\overline{\mathrm{IRQ}}$ signal is asserted. An interrupt must be serviced by software or no other interrupt request can be posted.
The scanner determines that a line has a receiver interrupt if the line's receiver buffer is ready and receiver interrupts are enabled for that line (RxRDY and RxIE = 1) or either of the line's modem status signals has changed state and both receiver and modem control interrupts are enabled for that line (DSCHNG and RxIE and MCIE = 1).
The scanner determines that a line has a transmitter interrupt if the line's transmitter holding the register is empty and transmitter interrupts are enabled for that line (TxRDY and TxIE=1).
When the scanner detects an interrupt, it reports the line number on the $\mathrm{IRQ}<2: 0>$ lines. The IRQTxRx signal is asserted for a transmitter interrupt and deasserted for a receiver interrupt. The appropriate bits are also updated in the interrupt summary register. The IRQ line is deasserted and the scanner is restarted for each of the following three types of interrupt conditions.Reading the receiver buffer or resetting the RxIE bit of the interrupting line for the first type of receiver interrupt previously described.Resetting the MCIE, RxIE, or DSCHNG bit of the interrupting line for the second type of receiver interrupt previously described.Loading the transmitter holding register or resetting the TxIE bit of the interrupting line for transmitter interrupts.
If the scanner was originally stopped by a receiver interrupt condition, the scanner resumes sequential operation from
where it stopped, thus providing receivers with equal priority. If the scanner was stopped by a transmitter condition, the scanner restarts from position 0 (line 0's receiver), thus giving receivers priority over transmitters.

EDGE-TRIGGERED AND LEVEL-TRIGGERED INTERRUPT SYTSTEMS

If the interrupt system of the Octal UART is used only for generating interrupts for the RxRDY and/or TxRDY flags, the $\overline{\mathrm{IRQ}}$ line can be connected to a processor having either edge-triggered or level-triggered interrupt capability. If the modem control interrupts are being used (MCIE in mode register $1=1$), the $\overline{\mathrm{RQ}}$ line can be connected only to a processor that uses level-triggered interrupts.

MODEM HANDLING

The TxEMT (transmitter empty) bit of the status register is typically used to indicate when a program can disable the transmission medium, as when deasserting the request-tosend line of a modem. A typical program will load the last character for transmission and then monitor the TxEMT bit of the status register.
The assertion of the TxEMT bit to indicate that transmission is complete may occur a substantial time after the loading of the last character. After the last character is loaded, one character is in the transmitter holding register and one character is in the serialization logic. Therefore, it will be two character times before the transmission process is completed. Waiting for the TxRDY signal to assert before monitoring the TxEMT status shortens this by one character time because the TxRDY status bit indicates that there are no characters in the transmitter holding register. The times involved are calculated by taking the reciprocal of the baud rate being used, multiplying by the number of bits per character (a starter bit-5,6,7, or 8 data bits; plus parity bit if enabled; and $1,1.5$, or 2 stop bits), and multiplying by either two characters or one, depending on when TxEMT monitoring begins.

LOAD A - STANDARD OUTPUTS

S1 CLOSED: PULL UP
S2 CLOSED: PULL DOWN S1 AND S2 CLOSED: DIVIDER

LOAD B - THREE-STATE OUTPUTS

FIGURE 9-COM78808 OUTPUT LOAD CIRCUITS

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range	to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	55° to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.$)$	$+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground	$+7 \mathrm{~V}$
Negative Voltage on any I/O Pin, with respe	-0.3V

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +5 volts may have large voltage transients when the $A C$ power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

TABLE 9-COM78808

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Condition	Requirements Min. Max.	Units
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0	V
$\mathrm{V}_{\text {LL }}$	Low-level input voltage		0.8	V
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=3.5 \mathrm{~mA} \text { for } \mathrm{DL}<7: 0> \\ & \mathrm{I}_{\mathrm{DH}}=2.0 \mathrm{~mA} \text { for all } \\ & \text { remaining output except } \overline{\mathrm{IRQ}} \\ & \text { and } \overline{\mathrm{RDY}} \end{aligned}$	2.4	V
V_{OL}	Low-level output voltage	$V_{D D}=\operatorname{Min} .$ $\mathrm{I}_{\mathrm{OL}}=5.5 \mathrm{~mA}$ for $\mathrm{DL}<7: 0>$ $\mathrm{I}_{\mathrm{oL}}=3.5 \mathrm{~mA}$ for all remaining outputs	0.4	V
I_{H}	Input current at maximum input voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max. } \\ & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \text { (Max.) } \end{aligned}$	10	$\mu \mathrm{A}$
$1 /$	Input current at miminum input voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} . \\ & \mathrm{V}_{1}=0.0 \mathrm{~V} \end{aligned}$	-10	$\mu \mathrm{A}$
Ios^{\prime}	Short-circuit output current for DL<7:0> all remaining outputs except $\overline{\mathrm{IRQ}}$ and RDY	$\mathrm{V}_{\mathrm{DD}}=$ Max.	-50 -180 -30 -110	mA mA
$\mathrm{I}_{\text {ozl }}{ }^{2}$	Three-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	10	$\mu \mathrm{A}$
IOZH^{2}	Three-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} . \\ & \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \end{aligned}$	10	A
$\mathrm{I}_{\text {D }}$	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{Max} . \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \end{aligned}$	240	mA
$\mathrm{C}_{\text {in }}$.	Input capacitance		4	pF
$\mathrm{C}_{10}{ }^{3}$	Input/output capacitance		5	pF

${ }^{1}$ No more than one ouput should be short circuited at a time, and the duration of the short should not exceed 1 second.
${ }^{2}$ All three-state output drivers are wired in an I/O configuration. The parameters include the driver and input receiver leakage currents
${ }^{3}$ The parameters include the capacitive loads of the output driver and the input receiver.

TIMING PARAMETERS

Figure 10 shows the signal timing for a read cycle to transfer information from the Octal UART to the processor. Figure

11 shows the signal timing for a write cycle to transfer information from the processor to the Octal UART. Table 11 lists the timing parameters for the read and write cycles.

FIGURE 10-COM78808 BUS READ CYCLE TIMING

FIGURE 11-COM78808 BUS WRITE CYCLE TIMING

TABLE 10-COM78808 BUS READ AND WRITE TIMING PARAMETERS

Symbol	Definition	Requirements (ns) Min. Max.		Load Circuit ${ }^{1}$
$\mathrm{t}_{\text {AHO }}$	Hold time of a valid ADD $<5: 0>$ to a valid high level of $\overline{\text { DS1 }}$ and DS2.	10		
$t_{\text {ASU }}$	Setup time of a valid ADD $<5: 0>$ to the falling edge of DS1 and DS2.	30		
$\mathrm{t}_{\text {сно }}$	Hold time of a valid low level of $\overline{\mathrm{CS}}$ to a valid high level of $\overline{\text { DS1 }}$ and DS2.	10		
$\mathrm{t}_{\mathrm{csu}}$	Setup time of a valid low level of $\overline{\mathrm{CS}}$ to the falling edge of DS1 and DS2.	30		
t_{DD}	Propagation delay of a valid low level on $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ (if $\overline{\mathrm{CS}}$ is low and $\overline{\mathrm{WR}}$ is high) to valid high or low data on DL <7:0> .	165		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{DLLZ}}{ }^{2} \\ & \mathrm{t}_{\mathrm{DDHZ}} \end{aligned}$	Propagation delay of a valid high level on $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ (if $\overline{C S}$ is low and $W R$ is high) to $\mathrm{DL}<7: 0>$ output drivers disabled. $\mathrm{t}_{\mathrm{DDLZ}}$ $t_{\text {DDHZ }}$ $t_{\text {DDLZ }}$ $\mathrm{t}_{\mathrm{DOHz}}$ $t_{\text {DOLZ }}$ $\mathrm{t}_{\mathrm{DOHz}}$		50 50 60 60 65 65	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {DOZL }}$	Propagation delay of a valid low level on $\overline{\mathrm{DS}}$ and $\overline{\mathrm{DS} 2}$ (if $\overline{\mathrm{CS}}$ is low and WR is high) to $\mathrm{DL}<7: 0>$ output driver enabled. $\begin{aligned} & \mathrm{t}_{\mathrm{DDZL}} \\ & \mathrm{t}_{\mathrm{DDZH}} \end{aligned}$	0	$\begin{aligned} & 165 \\ & 165 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$
t_{DF}	Hold time provided during a read cycle by Octal UART of valid high or low data on $D L<7: 0>$ after the rising edge of DS1 and DS2.	0		
$\mathrm{t}_{\text {¢HO }}$	Hold time of a valid DL $<7: 0>$ to a valid high level of $\overline{\text { DS1 }}$ or DS2.	30		
$\mathrm{t}_{\text {DPWH }}$	Pulse width high of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$.	450		
$\mathrm{t}_{\text {DPWLR }}$	Pulse width low of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ when $\overline{\mathrm{WR}}$ is high (read operation). Refer to timing parameter $\mathrm{t}_{\text {dpww }}$ also.	180	10,000	
$t_{\text {dPWLW }}$	Pulse width low of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ when $\overline{W R}$ is low (write operation). Refer to timing parameter $\mathrm{t}_{\text {DPWLR }}$ also.	130	10,000	
$\mathrm{t}_{\text {ssu }}$	Setup time of a valid DL $<7: 0>$ to the falling edge of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2 .}$	0		
$\mathrm{t}_{10}{ }^{3}$	Propagation delay of a valid low level on $\overline{\mathrm{DS1}}$ and $\overline{\mathrm{DS2}}$ (if $\overline{\mathrm{CS}}$ is low) to a high level on $\overline{\mathrm{RQ}}$.		635	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {ROH }}{ }^{4}$	Propagation delay of a valid high level of $\overline{\mathrm{CS}}$ to a valid high level on RDY.		210	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {RDL }}$	Propagation delay of a valid low level on $\overline{\mathrm{CS}}$ to a valid low level on RDY.		90	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {wно }}$	Hold time of a valid high or low level of $\overline{W R}$ to a valid high level of $\overline{\text { DS1 }}$ and $\overline{\text { DS2 }}$.	10		
$\mathrm{t}_{\text {wsu }}$	Setup time of a valid high or low level of $\overline{W R}$ to the falling edge of DS1 or DS2.	30		

${ }^{1}$ Refer to Figure 9 for the load circuits used with these measurements.
${ }^{2}$ The $t_{D D L Z}$ and $t_{D D H Z}$ parameters are measured with $C_{L}=150 \mathrm{pF}$. The values of $t_{D D L Z}$ and $t_{D D H Z}$ for $C_{L}=50 \mathrm{pF}$ and $C_{L}=100 \mathrm{pF}$ have been derived for user convenience.
${ }^{3}$ Total rise time depends on internal delay plus the pullup delay introduced by the external resistor being used. The t_{10} parameter can be calculated by the following: $t_{10}=500+R C_{L}$ where $R=$ value of the resistor that connects to capacitor C_{L} in load A, Figure 9.
${ }^{4}$ Total rise time depends on internal delay plus the pullup delay introduced by the external resistor being used. The $t_{\text {RDH }}$ parameter can be calculated by the following: $t_{R O H}=75+R C_{L}$ where $R=$ value of the resistor that connects to capacitor C_{L} in load A, Figure 9 .

Figure 12 shows the signal timing for the clock input, interrupt timing, effect of the RESET input on data strobe, data set carrier detect (DCD) and data set ready (DSR) input
timing, and the transmit data output timing. Table 11 lists the timing parameters for Figure 12.

transmit data output

FIGURE 12-COM78808 MISCELLANEOUS SIGNAL TIMING

TABLE 11-MISCELLANEOUS WRITE TIMING PARAMETERS

Symbol	Definition	Requirements (ns) Min.	Load Circuit ${ }^{1}$
t_{CP}	Period of CLK.	203.45 (4.9152 MHz)	
$\mathrm{t}_{\text {cPWH }}$	Pulse width high of CLK.	95	
$\mathrm{t}_{\text {cpwL }}$	Pulse width low of CLK.	95	
$\mathrm{t}_{\text {DRHO }}$	Hold time of a valid high level of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ to a valid high level of RESET.	1,000	
$\mathrm{t}_{\text {DRSU }}$	Setup time of a valid high level of $\overline{\mathrm{DS} 1}$ and $\overline{\mathrm{DS} 2}$ to the rising edge of $\overline{R E S E T}$.	900	
$t_{\text {dSPw }}$	Pulse width high or low of DCD $<7: 0>$ and DSR $<7: 0>$	1,000	
$\mathrm{t}_{\text {H\% }}$	Hold time provided by Octal UART from a valid IRQLN $<2: 0>$ and IRQTxRx to a valid high level of IRQ.	100	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {ISU }}$	Setup time provided by Octal UART from a valid IRQLN $<2: 0>$ and IRQTxRx to a valid low level of IRQ.	100	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {RES }}$	Pulse width low of RESET.	1,000	
$\mathrm{t}_{\text {T×SK }}$	Pulse width high or low provided by Octal UART on the TxD $<7: 0>$ lines. At each baud rate, the actual pulse widths provided vary by $\mathrm{t}_{\mathrm{Txsk}}$. This timing parameter should be used to determine cumulative reception/transmission errors.	250	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

*Refer to Figure 9 for the load circuits used with these measurements.

Figure 13 shows the input and output voltage waveforms for the propagation delay and setup and hold measure-
ments. Figure 14 shows the waveforms for the three-state outputs measurement.

notes:

1. INTERNAL CONDITIONS ARE SUCH THAT THE OUTPUT IS LOW EXCEPT WHEN DISABLED BY THE OUTPUT CONTROL.
2. INTERNAL CONDITIONS ARE SUCH THAT THE OUTPUT IS HIGH EXCEPT WHEN DISABLED BY THE OUTPUT CONTROL.
3. REFER TO FIGURE 9. $\mathrm{A}=\mathrm{S} 1$ CLOSED, $\mathrm{B}=\mathrm{S} 2$ CLOSED, $\mathrm{C}=\mathrm{S} 1$ AND S2 CLOSED.

FIGURE 14-COM78808 THREE-STATE OUTPUT VOLTAGE WAVEFORMS

*DEFINES MINIMUM CLEAR LEADFRAME ZONE -zone consists of package body, including ceramic and glass.

68 LEADED CERQUAD FLAT LEAD VERSION (FA)

*DEFINES MINIMUM CLEAR LEADFRAME ZONE -zone consists of package body, including ceramic and glass.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furcarefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under
the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and the patent rights of SMC or others
supply the best product possible.

Dual 32 Bit CRC SDLC Generator/Checker CRC-32

FEATURES

\square SDLC 32 bit CRCCOM 5025 USYNRT CompanionData Rate - 2 MHz typicalAll Inputs and Outputs are TTL CompatibleSingle +5 Volt Supply
COPLAMOS® ${ }^{\circledR}$-Channel MOS Technology

GENERAL DESCRIPTION

SMC's COM 8004 is a dual 32-bit CRC Generator/ Checker for use with SDLC protocols. It is a companion device to SMC's COM 5025 USYNRT. It operates at bit rates from DC to 2.0 MHz from a single +5 v supply and is housed in a 20 lead $\times 0.3$ inch DIP. All inputs and outputs are TTL compatible with full noise immunity.
The COM 8004 is comprised of two independent halves, and each half may be operated in the check or generate mode. The polynominal used in computations is:
$X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+$ $X^{4}+X^{2}+X+1$.
The CRC register is initialized to all ones and the result is inverted before being appended to the message. The expected remainder is:
$X^{31}+X^{30}+X^{26}+X^{25}+X^{24}+X^{18}+X^{15}+X^{14}+X^{12}+X^{11}+X^{10}+$ $X^{8}+X^{6}+X^{5}+X^{4}+X^{3}+X+1$.
Each half has a nine-bit serial data shift register. Data moves on the positive edge of the clock, and all clocked inputs are designed for zero-hold-time (e.g. 7474). A "clock out" pin provides gated clocks to the accompanying USYNRT (COM 5025).
In the generate mode, computation is initiated upon detection of a flag character in the serial bit stream. CRC computation proceeds upon the serial data until a second flag is detected. CLK OUT to the SDLC transmitter is then halted, and the 32-bit CRC is passed out; CLK OUT is then resumed, and the flag character is passed out. Nonsignificant zeros are automatically stripped and stuffed, and shared flags are supported. If the data between flags is less than two full bytes, the CRC is discarded and the serial data stream remains unaltered.
In the check mode, computation is similarly initiated upon detection of a flag. Detection of a second flag causes the conditional setting of the error flag. A separate reset pin is provided for the error flag. No error is flagged on messages of less than two full bytes between flags. Detection of an abort character (7 consecutive ones) in either mode causes computation to be reset and a search for an opening flag resumed.

PIN CONFIGURATION

PIN NO.	NAME	SYMBOL	FUNCTION
1	MASTER RESET-A	MRA	MRA presets the CRC calculation in Section A of the COM 8004 to all ones and forces the "pipeline" (8 shift register bits and the output flip-flop) to a logic "1" (Mark). The COM 8004 will only exit the reset state when MRA has been released and all 8 bits of a FLAG (01111110) have been received.
2	CLOCKINPUT-A	CLKINA	Baud Rate Clock for Section A.
3	CLOCK OUTPUT-A	CKLOUTA	Clock output from Section A. This is used to provide the clock for the USYNRT. CLKOUTA will normally track CLKINA. In the generate mode, when the last flag bit has been shifted into the shift register of the COM 8004, CLKOUTA will be held high until the CRC check character has been sent out. After the last bit of the CRC character is transmitted, CLKOUTA will resume tracking CLKINA.
4	SERIAL INPUT-A	SERINA	Serial input to the COM 8004 Section A. For transmission, SERINA is connected to the transmitter serial output of the USYNRT. For receiving, SERINA is connected to the received data output of the modem.
5	SERIAL OUTPUT-A	SEROUTA	Serial output from Section A of the COM 8004. For transmission, SEROUTA is connected to the transmit data input of the modem. For receiving, SEROUTA may be connected to the serial data input of the USYNRT.
6	ENABLE-A	ENAA	When ENAA is low, section A of the COM 8004 will pass data from SERINA to SEROUTA after a nine bit delay without alteration and without checking or generating CRC. If ENAA is high, CRC generation or checking will be enabled. ENAA is gated into the COM 8004 by the rising edge of CLKINA.
7	MODE SELECT-A	MODEA	MODEA determines whether Section A of the COM 8004 is in the receive (CRC check) Mode or transmit (CRC generate) Mode. Logic " 1 " selects CRC check. Logic " 0 " selects CRC generate.
8	ERROR FLAG-A	EFLGA	EFLGA will go high if, when in the CRC check mode, section A of the COM 8004 has detected an error. EFLGA can only be reset by a MASTER RESET (MRA) or by ERROR FLAG RESET (EFLGRA).
9	ERROR FLAG RESET-A	EFLGRA	A logic " 1 " on EFLGRA will reset EFLGA. If EFLGRA is kept at a logic " 1 ," it will inhibit the setting of EFLGA.
10	GROUND	GND	Ground.
11	MASTER RESET-B	MRB	Master reset for Section B. See MRA for description.
12	CLOCK IN-B	CLKINB	Clock input for Section B. See CLKINA for description.
13	CLOCK OUT-B	CLKOUTB	Clock output for Section B. See CLKOUTA for description.
14	SERIAL INPUT-B	SERINB	Serial input for Section B. See SERINA for description.
15	SERIAL OUTPUT-B	SEROUTB	Serial output for Section B. See SEROUTA for description.
16	ENABLE-B	ENAB	CRC enable for Section B. See ENAA for description.
17	MODE SELECT-B	MODEB	Mode select for Section B. See MODEA for description.
18	ERROR FLAG-B	EFLGB	Error Flag for Section B. See EFLGA for description.
19	ERROR FLAG RESET-B	EFLGRB	Error flag reset for Section B. See EFLGRA for description.
20	POWER SUPPLY	Vcc	+5 volt power supply input.

The COM 8004 has 3 modes of operation, as selected by the ENABLE and MODE SELECT inputs. They are:

ENABLE		MODE SELECT		
	0			CRC Disabled. Data is
:---				
shifted from SERIN to				
SEROUT with no compu-				
tation performed. Serial				
delay is 9 bit times.				

In the CRC generation and check modes, calculations begin upon receipt of the first data character after an opening FLAG. "Stuffed zeroes" are stripped for the purpose of the CRC calculation. CRC calculation will continue until either a MASTER RESET occurs, ENABLE is brought to logic zero, an ABORT character is received, or a closing FLAG is received.

CRC Generation

Upon detection of a closing FLAG character, CLKOUT is left high (stopping USYNRT activity), and the CRC accumulation is shifted out by CLKIN. CLKOUT then resumes clocking, and the FLAG (which has been stored in the shift register) is shifted out. The CRC check data is inverted before this data is transmitted. Zero-stuffing is performed on the inverted CRC check data.
During the time CKLOUT is forced high and CRC check data is being shifted out, data on SERIN will be ignored. If an ABORT character is received, CRC calculation will cease after the last " 1 " bit of the ABORT character is shifted into the shift register. Data will pass through the COM 8004 without effect until a FLAG is received.

CRC Check (Reception)

When the last bit of a closing flag enters the shift register, ERRCHK will go high on the following positive CLKIN transition if a CRC error is detected.

Operation Notes

Note 1: The minimum message size is sixteen significant bits following an opening flag. A stuffed zero is not considered a significant bit. If the message is less than 16 bits, the data will pass through the COM 8004 without being affected.
If the sixteenth received bit is the fifth consecutive one, but is not followed by a stuffed zero before a FLAG, the COM 8004 will detect the FLAG but the minimum message will not have occurred. CRC calculation will begin anew after this FLAG is detected.

Note 2: If the seventeenth bit of a message followed by a FLAG is the fifth consecutive one, but the stuffed zero is missing, the following will occur:
A) CRC Generate Mode: The last "one" bit, bit 17, will not be calculated into the CRC, but will appear at the serial output. The first bit of the CRC character will be forced to a zero, therefore looking like a stuffed zero.
B) CRC Check Mode: The last "one" bit, bit 17, will not be calculated into the CRC.

Note 3: If a stuffed zero is missing in the middle or end of a message, the reaction will depend on the next bit. If it is a one, a FLAG or ABORT may be detected. If an ABORT is detected, the message and the CRC checking is aborted. If a FLAG is detected, a CRC error will be detected.
If the missing zero is followed by a zero, the CRC computation will continue, but the zero bit will be stripped, causing a CRC error.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground . 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5$ Volts $\pm 5 \%$, unless otherwise noted) are subject to change.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS						
Input Voltage Levels Low Level High Level	$\begin{aligned} & V_{1 L} \\ & V_{1 H} \end{aligned}$	2.0		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Output Voltage Levels Low Level High Level	Vol Voh	2.4		0.4	V	$\begin{aligned} & \text { IOL }=1.6 \mathrm{~mA} \\ & \text { IOH }=-100 \mu \mathrm{~A} \end{aligned}$
Input Capacitance	CIn		10	25	pf	
Power Supply Current	Ícc			100	mA	
AC CHARACTERISTICS						$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Clock Frequency	fin			2	MHz	
Clock Pulse Width-High	tclen	350			ns	Figure 1
Input Set-Up Time	toc	100			ns	Figure 1
Input Hold Time	$t C D$	0			ns	Figure 1
Master Reset Pulse Width	tpw	250			ns	Figure 2
Reset Delay	$t_{\text {mR }}$			250	ns	Figure 2
Error Flag Delay	$t_{\text {fod }}$			300	ns	Figure 3
Error Flag Reset Delay	$\mathrm{t}_{\text {fr }}$			100	ns	Figure 4
ERRST Pulse Width	tew	100			ns	Figure 4
Clock Propagation Delay	tpd			150	ns	Figure 5
SEROUT Propagation Delay	tso			150	ns	Figure 5

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Universal Asynchronous Receiver/Transmitter UART

FEATURES

Single +5 V Power SupplyDirect TTL Compatibility - no interfacing circuits requiredFull or Half Duplex Operation - can receive and transmit simultaneously at different baud ratesFully Double Buffered-eliminates need for precise external timingStart Bit Verification—decreases error rateFully Programmable - data word length; parity mode; number of stop bits: one, one and one-half, or twoHigh Speed Operation - 40K baud, 200ns strobesMaster Reset—Resets all status outputsTri-State Outputs-bus structure orientedLow Power-minimum power requirementsInput Protected-eliminates handling problemsCeramic or Plastic Dip Package-easy board insertionCompatible with COM 2017, COM 2502Compatible with COM 8116, COM 8126, COM 8136, COM 8146, COM 8046 Baud Rate Generators
GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is an MOS/LSI monolithic circuit that performs all the receiving and transmitting functions associated with asynchronous data communications. This circuit is fabricated using SMC's patented COPLAMOS ${ }^{\text {© }}$ technology and employs depletion mode loads, allowing operation from a single +5 V supply. The duplex mode, baud rate, data word length, parity mode, and number of stop bits are independently programmable through the use of external controls. There may be $5,6,7$ or 8 data bits, odd/even or no parity, and 1, or 2 stop bits. In addition the COM 8017 will provide 1.5 stop bits when programmed for 5 data bits and 2 stop bits. The UART can operate in either the full or half duplex mode. These programmable features provide the user with the ability to interface with all asynchronous peripherals.

DESCRIPTION OF OPERATION - TRANSMITTER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. Under these conditions TBMT, TEOC, and TSO are all at a high level (the line is marking).
When TBMT and TEOC are high, the control bits may be set. After this has been done the data bits may be set. Normally, the control bits are strobed into the transmitter prior to the data bits. However as long as minimum pulse width specifications are not violated, TDS and CS may occur simultaneously. Once the date strobe (TDS) has been pulsed the TBMT signal goes low, indicating that the data bits buffer register is full and unavailable to receive new data.
If the transmitter shift register is transmitting previously loaded data the TBMT signal remains low If the transmitter shift register is empty, or when it is through transmitting the previous character, the data in the buffer register is loaded immediately into the transmitter shift register and data transmission
commences. TSO goes low (the start bit), TEOC goes low, the TBMT goes high indicating that the data in the data bits buffer register has been loaded into the transmitter shift register and that the data bits buffer register is available to be loaded with new data.

If new data is loaded into the data bits buffer register at this time, TBMT goes low and remains in this state until the present transmission is completed. One full character time is available for loading the next character with no loss in speed of transmission. This is an advantage of double buffering.
Data transmission proceeds in an orderly manner: start bit, data bits, parity bit (if selected), and the stop bit(s). When the last stop bit has been on the line for one bit time TEOC goes high. If TBMT is low, transmission begins immediately. If TBMT is high the transmitter is completely at rest and, if desired, new control bits may be loaded prior to the next data transmission.

TRANSMITTER BLOCK DIAGRAM

DESCRIPTION OF OPERATION - RECEIVER

At start-up the power is turned on, a clock whose frequency is 16 times the desired baud rate is applied and master reset is pulsed. The data available(RDA) signal is now low. There is one set of control bits for both the receiver and transmitter.
Data reception begins when the serial input line transitions from mark (high) to space (low). If the RSI line remains spacing for a $1 / 2$ bittime, a genuine start bit is verified. Should the line return to a mark-
ing condition prior to a $1 / 2$ bit time, the start bit verification process begins again. A mark to space transition must occur in order to initiate start bit verification. Once a start bit has been verified, data reception proceeds in an orderly manner: start bit verified and received, data bits received, parity bit received (if selected) and the stop bit(s) received.
If the transmitted parity bit does not agree with the received parity bit, the parity error flip-flop of the
status word buffer register is set high, indicating a parity error. However, if the no parity mode is selected, the parity error flip-flop is unconditionally held low, inhibiting a parity error indication. If a stop bit is not received, due to an improperly framed character, the framing error flip-flop is set high, indicating a framing error.
Once a full character has been received internal logic looks at the data available (RDA) signal. If, at this instant, the RDA signal is high the receiver assumes that the previously received character has
not been read out and the over-run flip-flop is set high. The only way the receiver is aware that data has been read out is by having the data available reset low.
At this time the RDA output goes high indicating that all outputs are available to be examined. The receiver shift register is now available to begin receiving the next character. Due to the double buffered receiver, a full character time is available to remove the received character.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	Vcc	Power Supply	+5 volt Supply
2	NC	No Connection	No Connection
3	GND	Ground	Ground
4	$\overline{\mathrm{RDE}}$	Received Data Enable	A low-level input enables the outputs (RD8-RD1) of the receiver buffer register.
5-12	RD8-RD1	Receiver Data Outputs	These are the 8 tri-state data outputs enabled by $\overline{\mathrm{RDE}}$. Unused data output lines, as selected by NDB1 and NDB2, have a low-level output, and received characters are right justified, i.e. the LSB always appears on the RD1 output.
13	RPE	Receiver Parity Error	This tri-state output (enabled by $\overline{\mathrm{SWE}}$) is at a high-level if the received character parity bit does not agree with the selected parity.
14	RFE	Receiver Framing Error	This tri-state output (enabled by $\overline{S W E}$) is at a high-level if the received character has no valid stop bit.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
15	ROR	Receiver Over Run	This tri-state output (enabled by $\overline{S W E}$) is at a high-level if the previously received character is not read (RDA output not reset) before the present character is transferred into the receiver buffer register.
16	SWE	Status Word Enable	A low-level input enables the outputs (RPE, RFE, ROR, RDA, and TBMT) of the status word buffer register.
17	RCP	Receiver Clock	This input is a clock whose frequency is 16 times (16X) the desired receiver baud rate.
18	$\overline{\text { RDAR }}$	Receiver Data Available Reset	A low-level input resets the RDA output to a low-level.
19	RDA	Receiver Data Available	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when an entire character has been received and transferred into the receiver buffer register.
20	RSI	Receiver Serial Input	This input accepts the serial bit input stream. A high-level (mark) to low-level (space) transition is required to initiate data reception.
21	MR	Master Reset	This input should be pulsed to a high-level after power turn-on. This sets TSO, TEOC, and TBMT to a high-level and resets RDA, RPE, RFE and ROR to a low-level.
22	TBMT	Transmitter Buffer Empty	This tri-state output (enabled by $\overline{\text { SWE }}$) is at a high-level when the transmitter buffer register may be loaded with new data.
23	$\overline{\text { TDS }}$	Transmitter Data Strobe	A low-level input strobe enters the data bits into the transmitter buffer register.
24	TEOC	Transmitter End of Character	This output appears as a high-leveleach time a full character is transmitted. It remains at this level until the start of transmission of the next character or for one-half of a TCP period in the case of continuous transmission.
25	TSO	Transmitter Serial Output	This output serially provides the entire transmitted character. TSO remains at a high-level when no data is being transmitted.
26-33	TD1-TD8	Transmitter Data Inputs	There are 8 data input lines (strobed by TDS) available. Unused data input lines, as selected by NDB1 and NDB2, may be in either logic state. The LSB should always be placed on TD1.
34	cs	Control Strobe	A high-level input enters the control bits (NDB1, NDB2, NSB, POE and NPB) into the control bits holding register. This line may be strobed or hard wired to a high-level.
35	NPB	No Parity Bit	A high-level input eliminates the parity bit from being transmitted; the stop bit(s) immediately follow the last data bit. In addition, the receiver requires the stop bit(s) to follow immediately after the last data bit. Also, the RPE output is forced to a low-level. See pin 39, POE.

39 POE | Odd/Even Parity |
| :--- |
| Select |

The logic level on this input, in conjunction with the NPB input, determines the parity mode for both the receiver and transmitter, as per the following truth table:

NPB	POE	MODE
L	L	odd parity
L	H	even parity
H	X	no parity
		$X=$ don't care

$40 \quad$ TCP \quad| Transmitter |
| :--- |
| Clock |\quad| This input is a clock whose frequency is 16 times (16X) the |
| :--- |
| desired transmitter baud rate. |

TRANSMITTER TIMING-8 BIT, PARITY, 2 STOP BITS

Upon data transmission initiation, or when not transmitting at 100% line utilization, the start bit will be placed on the TSO line at the high to low transition of the TCP clock following the trailing edge of TDS.
RECEIVER TIMING-8 BIT, PARITY, 2 STOP BITS
RSI
CENTER BIT
SAMPLE
RDA.
RDA.*

START BIT DETECT/VERIFY
RCP
RSI

If the RSI line remains spacing for a $1 / 2$ bit time, a genuine start bit is verified. Should the line return to a marking condition prior to a $1 / 2$ bit time, the start bit verification process begins again.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .) $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin. with respect to ground $-0.3 \mathrm{~V}$
Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that at clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VcC}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL	0		0.8	V	
High-level, V_{1}	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{~mA}$
High-level, VOH	2.4			V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, IIL			300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{G}_{\mathrm{ND}}$
OUTPUT CURRENT					
Leakage, ILo			± 10	$\mu \mathrm{A}$	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{1 H}, 0 \leq \mathrm{VOUT} \leq+5 \mathrm{~V}$
Short circuit, los**.			30	mA	Vout $=$ OV
INPUT CAPACITANCE All inputs, CIN		5	10	pf	
OUTPUT CAPACITANCE All outputs, Cout		10	20	pf	$\overline{\mathrm{SWE}}=\overline{\mathrm{RDE}}=\mathrm{V}_{\mathrm{IH}}$
POWER SUPPLY CURRENT Icc			25	mA	All outputs $=\mathrm{VOH}$, All inputs $=\mathrm{VCC}$
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY COM8502, COM 8017	DC		640	KHz	RCP, TCP
PULSE WIDTH					
Clock	0.7			$\mu \mathrm{s}$	RCP, TCP
Master reset	500			ns	
Control strobe	200			ns	CS
Transmitter data strobe	200			ns	TDS
Receiver data available reset	200			ns	RDAR
INPUT SET-UP TIME					
Data bits	≥ 0			ns	
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
INPUT HOLD TIME					
Data bits	≥ 0			ns	
Control bits	≥ 0			ns	NPB, NSB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY					Load $=20 \mathrm{pf}+1$ TTL input
Receive data enable			350	ns	RDE: TPD1, TPDO
Status word enable			350	ns	SWE: TPD1, TPD0
OUTPUT DISABLE DELAY			350	ns	$\overline{R D E}, \overline{\text { SWE }}$

**Not more than one output should be shorted at a time.

NOTES: 1 . If the transmitter is inactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within one clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one clock period of RCP, guaranteeing a maximum start bit slippage of $1 / 16$ th of a bit time.
3. The tri-state output has 3 states: 1) low impedance to Vcc 2) low impedance to GND 3) high impedance $\mathrm{OFF} \cong$ 10M ohms The "OFF" state is controlled by the SWE and RDE inputs.

DATA/CONTROL TIMING DIAGRAM

$\overline{T D S}$
DATA INPUTS
$\mathrm{tr}=\mathrm{tf}=20 \mathrm{~ns}$
Tset-up ≥ 0
THOLD ≥ 0
CS
CONTROL INPUTS

*Input information (Data/Control) need only be valid during the last TPW, min time of the input strobes (TDS, CS).

OUTPUT TIMING DIAGRAM
$\overline{\operatorname{RDE},} \overline{\mathrm{SWE}}$

OUTPUTS
(RD1-RD8, RDA,
RPE, ROR, RFE, TBMT)

NOTE: Waveform drawings not to scale for clarity.

FLOW CHART-TRANSMITTER

FLOW CHART-RECEIVER

STANDARD MICROSYSTEMS

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Asynchronous Receiver Transmitter UART

FEATURES

Single chip UART with Baud Rate GeneratorChoice of 16 Baud RatesLow power CMOSAvailable in 20－pin Dual－In－Line packageFull or half duplex operationFully double bufferedProgrammable interrupt generationProgrammable modem／terminal handshake signalsSingle +5 Volt power supplyPIN CONFIGURATION＊

$\mathrm{D}_{0} 51$	$20.1 \mathrm{v}_{\text {c }}$
$\mathrm{D}_{1} \mathrm{C}^{2}$	19 日 $\mathrm{CP}^{\text {CP }}$
CS $\square^{\text {C }}$	18 日 CP_{1}
RD－4	17 日 TX
$\mathrm{D}_{2} 5$	16 ص RX
$\mathrm{D}_{3} \mathrm{C}$	$15 \square \mathrm{RS}$
$\mathrm{D}_{4}-7$	$14 \mathrm{\square} \overline{\mathrm{INT}}$
$\overline{W R} 58$	$13 \square$ CLOCK
$\mathrm{D}_{5} \mathrm{Cl}^{9}$	12 日 D_{7}
GND［ 10	$11 \square \mathrm{D}_{6}$

PACKAGE：20－pin D．I．P．
＊PLCC PACKAGE AVAILABLE．

GENERAL DESCRIPTION

The TPUART is an asynchronous only receiver transmitter with a built－in programmable baud rate generator housed in a twenty pin package．The TPUART receives serial data streams and converts them into parallel data characters for the processor．While receiving serial data，the TPUART will also accept data characters from the processor in parallel format and convert them into serial format along with start， stop and optional parity bits．

The TPUART will signal the processor via interrupt when it has completely transmitted or received a character and requires service．Complete status information is available to the processor through the status register．The TPUART features two general purpose control pins that can be indi－ vidually programmed to perform as terminal or modem control handshake signals．

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications: consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Synchronous/Asynchronous Receiver/Transmitter USART
 PIN CONFIGURATION

\square Asynchronous or Synchronous Operation

- Asynchronous: 5-8 Bit Characters
Clock Rate-1, 16 or $64 \times$ Baud Rate Break Character Generation $1,1 \frac{1}{2}$ or 2 Stop Bits
False Start Bit Detection
Automatic Break Detect and Handling
-Synchronous:
5-8 Bit Characters
Internal or External Character Synchronization Automatic Sync Insertion
Single or Double Sync Characters
Programmable Sync Character(s)
\square Baud Rate - Synchronous - DC to 64 K Baud -Asynchronous-DC to 19.2K BaudBaud Rates available from SMC's COM 8116,
COM 8126, COM 8136, COM 8146, and COM 8046Full Duplex, Double Buffered Transmitter and ReceiverOdd parity, even parity or no parity bit
Parity, Overrun and Framing Error FlagsModem Interface Controlled by Processor
All Inputs and Outputs are TTL Compatible

GENERAL DESCRIPTION

The COM 8251A is an MOS/LSI device fabricated using SMC's patented COPLAMOS® technology that meets the majority of asynchronous and synchronous data communication requirements by interfacing parallel digital systems to asynchronous and synchronous data communication channels while requiring a minimum of processor overhead. The COM 8251A is an enhanced version of the 8251.
The COM 8251A is a Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) designed for microcomputer system data communications. The USART is used as a peripheral and is programmed by the processor to communicate in commonly used asychronous and synchronous serial data transmission techniques including IBM Bi -Sync. The USART receives serial data streams and converts them into parallel data characters for the processor. While receiving serial data, the USART will also accept data characters from the processor in parallel format, convert them to serial format and transmit. The USART will signal the processor when it has completely received or transmitted a character and requires service. Complete USART status, including data format errors and control signals such as TXE and SYNDET, is available to the processor at any time.
\square Compatable with Intel 8251A, NEC μ PD8251ASingle +5 Volt SupplySeparate Receive and Transmit TTL ClocksEnhanced version of 825128 Pin Plastic or Ceramic DIP PackageCOPLAMOS® ${ }^{\circledR}$-Channel MOS Technology

BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
$\begin{aligned} & 1,2,27, \\ & 28,5-8 \end{aligned}$	$\left\|\begin{array}{c} \mathrm{D} 2, \mathrm{D} 3, \mathrm{DO}, \\ \mathrm{D} 1, \mathrm{D} 4-\mathrm{D7} \end{array}\right\|$	data bus	I/O	An 8-bit, 3-state bi-directional DATA BUS used to interface the COM 8251A to the processor data bus. Data is transmitted or received by the bus in response to input/output or Read/Write instructions from the processor. The DATA BUS also transfers Control words, Command words, and Status.
3	RxD	RECEIVER DATA	1	This input receives serial data into the USART.
4	GND	GROUND	GND	Ground
9	$\overline{\mathrm{TxC}}$	$\frac{\text { TRANSMITTER }}{\text { CLOCK }}$	1	The TRANSMITTER CLOCK controls the serial charactertransmission rate. In the Asynchronous mode, the $\overline{T \times C}$ frequency is a multiple of the actual Baud Rate. Two bits of the ModeInstruction select the multiple to be $1 \mathrm{X}, 16 \mathrm{X}$, or 64 X the Baud Rate. In the lected to equal the actual Baud Rate. Note that for both Synchronous and Asynchronous modes, serial data is shifted out of the USART by the falling edge of TXC
10	$\overline{W R}$	$\overline{\text { WRITE DATA }}$	1	A "zero" on this input instructs the COM 8251A to accept the data or control word which the processor is writing out to the USART via the DATA BUS.
11	$\overline{\mathrm{cs}}$	$\overline{\text { CHIP SELECT }}$	1	A "zero" on this input enables the USART for reading and writing to the processor. When CS is high, the DATA BUS is in the float state and RD and WR will have no effect on the chip.
12	C / \bar{D}	CONTROL/ $\overline{\text { DATA }}$	1	The Control/Data input, in conjunction with the $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ inputs, informs the USART to accept or provide either a data character, control word or status information via the DATA BUS. $0=$ Data; $1=$ Control/Status
13	$\overline{\mathrm{RD}}$	$\overline{\text { READ DATA }}$	1	A "zero" on this input instructs the COM 8251A to place the data or status information onto the DATA BUS for the processor to read.
14	RxRDY	RECEIVER READY	\bigcirc	The RECEIVER READY output indicates that the Receiver Buffer is ready with an "assembled" character for input to the processor. For polled operation, the processor can check RxRDY using a Status Read or RxRDY can be connected to the processor interrupt structure. Note that reading the character to the processor automatically resets RxRDY.
15	TxRDY	TRANSMITTER READY	0	TRANSMITTER READY signals the processor that the transmitter is ready to accept a data character. TXRDY can be used as an interrupt or may be tested through the Status information polled operaton. TXRDY is automatically reset by the leading edge of WR when a data character is loaded from the processor.
16	SYNDET/ BRKDET	SYNC DETECT/ BREAK DETECT	1/0	The SYNDET feature is only used in the Synchronous mode. The USART may be programmed through the Mode Instruction to operate in either the internal or external Sync mode and SYNDET then functions as an output or input respectively. In the internal SYNC mode, the SYNDET output will go to a "one" when the COM 8251A has located the SYNC character in the Receive mode. If double SYNC character (bi-sync) operation has been programmed, SYNDET will go to "one" in the middle of the last bit of the second contiguously detected SYNC character. SYNDET is automatically reset to "zero" upon a Status Read or RESET. In the external SYNC mode, a "zero" to "one" transition on the SYNDET input is sampled during the negative half cycle of RxC and will cause the COM 8251A to start assembling data character on the next rising edge of RxC. The length of the SYNDET input should be at least one RXC period, length of the SYNDE input should be at least one but may be removed once the COM 8251A is in SYNC. When external SYNC DETECT is programmed, the internal SYNC DETECT is disabled.

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
$\begin{gathered} 16 \\ \text { (cont.) } \end{gathered}$				The SYNDET/BRKDET pin is used in both Synchronous and Asynchronous modes. When in SYNC mode the features for the SYNDET pin described above apply. When in Asynchronous mode, the BREAK DETECT output will go high when an all zero word of the programmed length is received. This word consists of: start bit, data bit, parity bit and one stop bit.Reset only occurs when Rx Data returns to a logic one state or upon chip RESET. The state of BREAK DETECT can also be read as a status bit.
17	$\overline{\text { CTS }}$	CLEAR TO SEND	1	A "zero" on the CLEAR TO SEND input enables the USART to transmit serial data if the TxEN bit in the Command Instruction register is enabled (one). If either a TxEN off or CTS off condition occurs while the Tx is in operation, the Tx will transmit all the data in the USART written prior to the Tx Disable command before shutting down.
18	TxE	TRANSMITTER EMPTY	0	The TRANSMITTER EMPTY output signals the processor that the USART has no further characters to transmit. TXE is automatically reset upon receiving a datacharacter from the processor. In half-duplex, TxE can be used to signal end of a transmission and request the processor to "turn the line around". The TxEN bit in the command instruction does not effect TxE. In the Synchronous mode, a "one" on this output indicates that a SYNC character or characters are about to be automatically transmitted as "fillers" because the next data character has not been loaded; an underflow condition. If the USART is operating in the two SYNC character mode, both SYNC characters will be transmitted before the message can resume. TxE does not go low when the SYNC characters are being shifted out. TXE goes low upon the processor writing a character to the USART.
19	TxD	TRANSMITTER DATA	0	This output is the transmitted serial data from the USART. When a transmission is concluded the TxD line will always return to the marking state unless SBRK is programmed.
20	CLK	CLOCK PULSE	1	The CLK input provides for internal device timing. External inputs and outputs are not referenced to CLK, but the CLK frequency must be greater than 30 times the RECEIVER or TRANSMITTER CLOCKS in the 1 X mode and greater than 4.5 times for the 16X and 64X modes.
21	RESET	RESET	1	A "one" on this input forces the USART into the "idle" mode where it will remain until reinitialized with a new set of control words. RESET causes: R×RDY = TxRDY = TxEmpty = SYNDET/ BRKDET $=0 ;$ TxD $=\overline{\mathrm{DTR}}=\overline{\mathrm{RST}}=1$. Minimum RESET pulse width is 6 tcr, CLK must be running during RESET.
22	$\overline{\text { DSR }}$	$\overline{\text { DATA SET READY }}$	1	The DATA SET READY input can be tested by the processor via Status information. The $\overline{\mathrm{SSR}}$ input is normally used to test Modem Data Set Ready condition.
23	$\overline{\text { RTS }}$	REQUEST TO SEND	0	The REQUEST TO SEND output is controlled viathe Command word. The RTS output is normally used to drive the Modem Request to Send line.
24	$\overline{\text { DTR }}$	$\begin{aligned} & \text { DATA TERMINAL } \\ & \text { READY } \end{aligned}$	0	The DATA TERMINAL READY output is controlled via the Command word. The DTR output is normally used to drive Modem Data Terminal Ready or Rate Select lines.
25	$\overline{\mathrm{RxC}}$	RECEIVER CLOCK	1	The RECEIVER CLOCK is the rate at which the incoming character is received. In the Asynchronous mode, the RxC frequency may be 1,16 or 64 times the actual Baud Rate but in the Synchronous mode the RxC frequency must equal the Baud Rate. Two bits in the mode instruction select Asynchronous at 1X, 16X or 64X or Synchronous operation at 1X the Baud Rate. Data is sampled into the USART on the rising edge of $\overline{\mathrm{RxC}}$.
26	Vcc	Vcc SUPPLY VOLTAGE	PS	+5 volt supply

DESCRIPTION OF OPERATION-ASYNCHRONOUS

Transmission-

When a data character is written into the USART, it automatically adds a START bit (low level or "space") and the number of STOP bits (high level or "mark") specified. by the Mode Instruction. If Parity has been enabled, an odd or even Parity bit is inserted just before the STOP bit(s), as specified by the Mode Instruction. Then, depending on CTS and TxEN, the character may be transmitted as a serial data stream at the TxD output. Data is shifted out by the falling edge of $\overline{T \times C}$ at a transmission rate of $\overline{T \times C}$, $\overline{T x C} / 16$ or $\overline{\mathrm{TxC}} / 64$, as defined by the Mode Instruction.

If no data characters have been loaded into the USART, or if all available characters have been transmitted, the TxD output remains "high" (marking) in preparation for sending the START bit of the next character provided by the processor. TxD may be forced to send a BREAK (continuously low) by setting the correct bit in the Command Instruction.

Receive-

The RxD input line is normally held "high" (marking) by the transmitting device. A falling edge (high to low transition) at RxD signals the possible beginning of a START bit and a new character. The receiver is thus prevented from starting in a "BREAK" state. The START bit is verified by testing for a "low" at its nominal center as specified by the BAUD RATE. If a "low" is detected, it is considered valid, and the bit assembling counter starts counting. The bit counter locates the approximate center of the data, parity (if specified), and STOP bits. The parity error flag (PE) is set, if a parity error occurs. Input bits are sampled at the RxD pin with the rising edge of $\overline{\mathrm{RxC}}$. If a high is not detected for the STOP bit, which normally signals the end of an input character, a framing error (FE) will be set. After the STOP bit time, the input character is loaded into the paralled Data Bus Buffer of the USART and the RxRDY signal is raised to indicate to the processor that a character is ready to be fetched. If the processor has failed to fetch the previous character, the new character replaces the old and overrun flag (OE) is set. All the error flags can be reset by setting a bit in the Command Instruction. Error flag conditions will not stop subsequent USART operation.

DESCRIPTION OF OPERATION-SYNCHRONOUS

Transmission -

As in Asynchronous transmission, the TxD output remains "high" (marking) until the USART receives the first character (usually a SYNC character) from the processor. After a Command Instruction has set TxEN and after Clear to Send (CTS) goes low, the first character is serially transmitted. Data is shifted out on the falling edge of TxC at the same rate as $\overline{T x C}$.

Once transmission has started, Synchronous Data Protocols require that the serial data stream at TxD continue at the TxC rate or SYNC will be lost. If a data character is not provided by the processor before the USART Transmit Buffer becomes empty, the SYNC character(s) loaded directly following the Mode Instruction will be automatically inserted in the TxD data stream. The SYNC character(s) are inserted to fill the line and maintain synchronization until the new data characters are available for transmission. If the USART becomes empty, and must send the SYNC character(s), the TxEMPTY output is raised to signal the processor that the Transmitter Buffer is empty and SYNC characters are being transmitted. TxEMPTY is automatically reset by the next character from the processor.

Receive -

In Synchronous receive, character synchronization can be either external or internal. If the internal SYNC mode
has been selected, the ENTER HUNT (EH) bit has been set by a Command Instruction, the receiver goes into the HUNT mode.

Incoming data on the RxD input is sampled on the rising edge of $\overline{R x C}$, and the contents of the Receive Buffer are compared with the first SYNC character after each bit has been loaded until a match is found. If twoSYNC characters have been programmed, the next received character is also compared. When the (two contiguous) SYNC character(s) programmed have been detected, the USART leaves the HUNT mode and is in character synchronization. At this time, the SYNDET (output) is sethigh. SYNDET is automatically reset by a STATUS READ.

If external SYNC has been specified in the Mode Instruction, a "one" applied to the SYNDET (input) for at least one $\overline{\mathrm{RxC}}$ cycle will synchronize the USART.

Parity and Overrun Errors are treated the same in the Synchronous as in the Asynchronous Mode. If not in HUNT, parity will continue to be checked even if the receiver is not enabled. Framing errors do not apply in the Synchronous format.

The processor may command the receiver to enter the HUNT mode with a Command Instruction which sets Enter HUNT (EH) if synchronization is lost. Under this condition the Rx register will be cleared to all "ones".

OPERATION AND PROGRAMMING

The microprocessor program controlling the COM 8251A performs these tasks:

- Outputs control codes
- Inputs status
- Outputs data to be transmitted
- Inputs data which has been received

Control codes determine the mode in which the COM 8251A will operate and are used to set or reset control signals output by the COM 8251A.
The Status register contents will be read by the program monitoring this device's operation in order to determine error conditions, when and how to read data, write data or output control codes. Program logic may be based on reading status bit levels, or control signals may be used to request interrupts.

INITIALIZING THE COM 8251A

Figure 1. Control Word Sequences for Initialization

ASYNCHRONOUS OPERATION

SYNCHRONOUS OPERATION

The COM 8251A may be initialized following a system RESET or prior to starting a new seral I/O sequence. The USART must be RESET (external or internal) following power up and subsequently may be reset at any time following completion of one activity and preceding a new set of operations. Following a reset, the COM 8251A enters an idle state in which it can neither transmit nor receive data.
The COM 8251A is initialized with two, three or four control words from the processor. Figure 1 shows the sequence of control words needed to initialize the COM 8251A, for synchronous or for asynchronous operation. Note that in asynchronous operation a mode control is output to the device followed by a command. For synchronous operation, the mode control is followed by one or two SYNC characters, and then a command.
Only a single address is set aside for mode control bytes, command bytes and SYNC character bytes. For this to be possible, logic internal to the chip directs control information to its proper destination based on the sequence in which it is received. Following a RESET (external or internal), the first control code output is interpreted as a mode control. If the mode control specifies synchronous operation, then the next one or two bytes (as determined by the
mode byte) output as control codes will be interpreted as SYNC characters. For either asynchronous or synchronous operation, the next byte output as a control code is interpreted as a command. All subsequent bytes output as control codes are interpreted as commands. There are two ways in which control logic may return to anticipating a mode control input; following a RESET input or following an internal reset command. A reset operation (internal via IR or external via RESET) will cause the USART to interpret the next "control write", which should immediately follow the reset, as a Mode Instruction.
After receiving the control words the USART is ready to communicate. TxRDY is raised to signal the processor that the USART is ready to receive a character for transmission. Concurrently, the USART is ready to receive serial data.

$\mathrm{C} / \overline{\mathrm{D}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	
0	0	1	0	USART \rightarrow Data Bus
0	1	0	0	Data Bus \rightarrow USART
1	0	1	0	Status \rightarrow Data Bus
1	1	0	0	Data Bus \rightarrow Control
X	X	X	1	Data Bus \rightarrow 3-State
X	1	1	0	

MODE CONTROL CODES

The COM 8251A interprets mode control codes as illustrated in Figures 2 and 3.
Control code bits 0 and 1 determine whether synchronous or asynchronous operation is specified. A non-zero value in bits 0 and 1 specifies asynchronous operation and defines the relationship between data transfer baud rate and receiver or transmitter clock rate. Asynchronous serial data may be received or transmitted on every clock pulse, on every 16th clock pulse, or on every 64th clock pulse, as programmed. A zero in both bits 0 and 1 defines the mode of operation as synchronous.
For synchronous and asynchronous modes, control bits 2 and 3 determine the number of data bits which will be present in each data character. In the case of a programmed character length of less than 8 bits, the least significant DATA BUS unused bits are "don't care" when writing data to the USART and will be "zeros" when reading data. Rx data will be right justified onto D0 and the LSB for Tx data is DO.
For synchronous and asynchronous modes, bits 4 and 5
determine whether there will be a parity bit in each character, and if so, whether odd or even parity will be adopted. Thus in synchronous mode a character will consist of five, six, seven or eight data bits, plus an optional parity bit. In asynchronous mode, the data unit will consist of five, six, seven or eight data bits, an optional parity bit, a preceeding start bit, plus 1, $11 / 2$ or 2 trailing stop bits. Interpretation of subsequent bits differs for synchronous or asynchronous modes.
Control code bits 6 and 7 in asynchronous mode determine how many stop bits will trail each data unit. $11 / 2$ stop bits can only be specified with a 16X or 64X baud rate factor. In these two cases, the half stop bit will be equivanlent to 8 or 32 clock pulses, respectively.

In synchronous mode, control bits 6 and 7 determine how character synchronization will be achieved. When SYNDET is an output, internal synchronization is specified; one or two SYNC characters, as specified by control bit 7, must be detected at the head of a data stream in order to establish synchronization.

COMMAND WORDS

Command words are used to initiate specific functions within the COM 8251A such as, "reset all error flags" or "start searching for sync". Consequently, Command Words may be issued by the processor to the COM 8251A at any time during the execution of a program in which
specific functions are to be initialized within the communication circuit.
Figure 4 shows the format for the Command Word.

Figure 4. COM 8251A Control Command

Figure 2. Synchronous Mode Control Code.

Figure 3. Asynchronous Mode Control Code.

Bit 0 of the Command Word is the Transmit Enable bit (TxEN). Data transmission for the COM 8251A cannot take place unless TxEN is set (assuming CTS $=0$) in the command register. The TX Disable command is prevented from halting transmission by the Tx Enable logic until all data previously written has been transmitted. Figure 5 defines the way in which TxEN, TxE and TxRDY combines to control transmitter operations.
 command bit is set, the DTR output connection is active (low). $\overline{\text { DTR }}$ is used to advise a modem that the data terminal is prepared to accept or transmit data.

Bit 2 is the Receiver Enable Command bit ($R x E$). RxE is used to enable the RxRDY output signal. RxE, when zero, prevents the RxRDY signal from being generated to notify the processor that a complete character is framed in the Receive Character Buffer. It does not inhibit the assembly of data characters at the input, however. Consequently, if communication circuits are active, characters will be assembled by the receiver and transferred to the Receiver Buffer. If RxE is disabled, the overrun error (OE) will probably be set; to insure proper operation, the overrun error is usually reset with the same command that enablesRxE.

Figure 5.
Operation of the Transmitter Section as a Function of TxE, TxRDY and TxEN

TxEN	TxE	TxRDY	
1	1	1	Transmit Output Register and Transmit Character Buffer empty. TxD continues to mark if COM 8251A is in the asynchronous mode. TxD will send SYNC pattern if COM 8251A is in the Synchronous
1	0	1	Mode. Data can be entered into Buffer.
1	1	0	Transmit Output Register is shifting a character. Transmit Character Buffer is available to receive a new byte from the processor.
Transmit Register has finished sending. A new character is waiting for transmission. This is a transient condition.			
1	0	0	Transmit Register is currently sending and an additional character is stored in the Transmit Character Buffer for transmission.
0	$0 / 1$	$0 / 1$	Transmitter is disabled.

Bit 3 is the Send Break Command bit (SBRK). WhenSBRK is set, the transmitter output (TXD) is interrupted and a continuous binary " 0 " level, (spacing) is applied to the TxD output signal. The break will continue until a subsequent Command Word is sent to theCOM8251A to removeSBRK.
Bit 4 is the Error Reset bit (ER). When a Command Word is transferred with the ER bit set, all three error flags (PE, OE, FE) in the Status Register are reset. Error Reset occurs when the Command Word is loaded into the COM 8251A. No latch is provided in the Command Register to save the ER command bit.
Bit 5, the Request To Send Command bit ($\overline{R T S}$), sets a latch to reflect the $\overline{\mathrm{RTS}}$ signal level. The output of this latch is created independently of other signals in the COM 8251A. As a result, data transfers may be made by the processor to the Transmit Register, and data may be actively transmitted to the communication line through TxD regardless of the status of RTS.
Bit 6, the Internal Reset (IR), causes the COM 8251A to
return to the Idle mode. All functions within the COM 8251A cease and no new operation can be resumed until the circuit is reinitialized. If the operating mode is to be altered during the execution of a processor program, the COM 8251A must first be reset. Either the RESET input can be activated, or the Internal Reset Command can be sent to the COM 8251A. Internal Reset is a momentary function performed only when the command is issued.
Bit 7 is the Enter Hunt command bit (EH). The Enter Hunt mode command is only effective for the COM 8251A when it is operating in the Synchronous mode. EH causes the receiver to stop assembling characters at the RxD input, clear the Rx register to all "ones", and start searching for the prescribed sync pattern. Once the "Enter Hunt" mode has been initiated, the search for the sync pattern will continue indefinitely until EH is reset when a subsequent Command Word is sent, when the IR command is sent to the COM 8251A, or when SYNC characters are recognized. Parity is not checked in the EH mode.

STATUS REGISTER

The Status Register maintains information about the current operational status of the COM 8251A. Status can be read at any time, however, the status update will be inhibited during status read. Figure 6 shows the format of the Status Register.
TxRDY signals the processor that the Transmit Character Buffer is empty and that the COM 8251A can accept a new character for transmission. The TxRDY status bit is not
totally equivalent to the TxRDY output pin, the relationship is as follows:

TxRDY (status bit) $=$ Tx Character Buffer Empty TxRDY $($ pin 15 $)=$ Tx Character Buffer Empty • $\overline{\mathrm{CTS}} \cdot \mathrm{TxEN}$

RxRDY signals the processor that a completed character is holding in the Receive Character Buffer Register for transfer to the processor.

Figure 6. The COM 8251A Status Register

TxE signals the processor that the Transmit Register is empty.
PE is the Parity Error signal indicating to the CPU that the character stored in the Receive Character Buffer was received with an incorrect number of binary " 1 " bits. PE does not inhibit USART operation. PE is reset by the ER bit.
OE is the receiver Overrun Error. OE is set wheneverabyte stored in the Receiver Character Register is overwritten with a new byte before being transferred to the processor. OE does not inhibit USART operation. OE is reset by the ER bit.
FE (Async only) is the character framing error which indicates that the asynchronous mode byte stored in the Receiver Character Buffer was received with incorrect bit format ("0" stop bit), as specified by the current mode. FE does not inhibit USART operaton. FE is reset by the ER bit.

SYNDET is the synchronous mode status bit associated with internal or external sync detection.
DSR is the status bit set by the external Data Set Ready signal to indicate that the communication Data Set is operational.
All status bits are set by the functions described for them. SYNDET is reset whenever the processor reads the Status Register. OE, FE, PE are reset by the error reset command or the internal reset command or the RESET input. OE, FE, or PE being set does not inhibit USART operation.
Many of the bits in the status register are copies of external pins. This dual status arrangement allows the USART to be used in both Polled and Interrupt driven environments. Status update can have a maximum delay of 16 tor periods.

Note:

1. While operating the receiver it is important to realize that the RxE bit of the Command Instruction only inhibits the assertion of RxRDY; it does not inhibit the actual reception of characters. As the receiver is constantly running, it is possible for it to contain extraneous data when it is enabled. To avoid problems this data should be read from the USART and discarded. This read should be done immediately following the setting of the RxE bit in the asynchronous mode, and following the setting of EH in the synchronous mode. It is not necessary to wait for RxRDY before executing the dummy read.
2. ER should be performed whenever RxE of EH are programmed. $E R$ resets all error flags, even if $R \times E=0$.
3. The USART may provide faulty RxRDY for the first read after power-on or for the first read after the receiver is re-enabled by a command instruction (RxE). A dummy read is recommended to clear faulty RxRDY. This is not the case for the first read after hardware or software reset after the device opration has been established.
4. Internal Sync Detect is disabled when External Sync Detect is programmed. An External Sync Detect Status is provided through an internal flip-flop which clears itself, assuming the External Sync Detect assertion has removed, upon a status read. As long as External Sync Detect is asserted, External Sync Detect Status will remain high.

MAXIMUM GUARANTEED RATINGS*

> Operating Temperature Range
> $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature Range . $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Lead Temperature (soldering, 10 sec) . $+325^{\circ} \mathrm{C}$
> Positive Voltage on any Pin, with respect to ground +8.0 V
> Negative Voltage on any Pin, with respect to ground . -0.3 V
> *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these at any other condition above those indicated in the operational sections of this specification is not implied.
> NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that as clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
D.C. Characteristics					
VIL	Input Low Voltage	-0.3	0.8	V	
V_{IH}	Input High Voltage	2.0	Vcc	V	
Vol	Output Low Voltage		0.45	V	$\mathrm{loL}=2.2 \mathrm{~mA}$
Vor	Output High Voltage	2.4		V	I он $=-400 \mu \mathrm{~A}$
lofl	Output Float Leakage		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$ TO 0.45V
IIL	Input Leakage		± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ TO 0.45 V
Icc	Power Supply Current		100	mA	All Outputs $=\mathrm{High}$
Capacitance					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}$
$\mathrm{Cln}_{\text {In }}$	I Input Capacitance		10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
$\mathrm{Cl}_{1 / \mathrm{O}}$	I/O Capacitance		20	pF	Unmeasured pins returned to GND

A.C. Characteristics

Bus Parameters (Note 1)
Read Cycle:

$t_{\text {AR }}$	Address Stable Before $\overline{\mathrm{READ}}$ ($\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}}$)	0		ns	Note 2
$t_{\text {RA }}$	Address Hold Time for $\overline{\mathrm{READ}}$ ($\overline{\mathrm{CS}}, \mathrm{C} / \overline{\mathrm{D}})$	0		ns	Note 2
$t_{\text {RR }}$	$\overline{\text { READ Pulse Width }}$	250		ns	
$t_{\text {RD }}$	Data Delay from $\overline{R E A D}$		200	ns	Note 3, $\mathrm{CL}_{\mathrm{L}}=150 \mathrm{pF}$
tof	$\overline{\text { READ }}$ to Data Floating	10	100	ns	

Write Cycle:

taw	Address Stable Before $\overline{\text { WRITE }}$
twa $^{\text {Wha }}$	Address Hold Time for WRITE
tww	$\overline{\text { WRITE Pulse Width }}$
tow	Data Set Up Time for $\overline{\text { WRITE }}$
two	Data Hold Time for $\overline{\text { WRITE }}$
trv	Recovery Time Between WRITES

| 0 | |
| ---: | ---: | :--- |
| 0 | |
| 250 | |
| 150 | |
| 0 | ns |
| 6 | ns |
| ns | |
| ns | |
| ns | |
| tcy | Note 4 |

Other Timings:

$t_{c y}$	Clock Period	.320	1.35	$\mu \mathrm{~s}$	Notes 5, 6
t_{ϕ}	Clock High				
$\mathrm{t}_{\bar{\phi}}$	Clock Low Pulse Width	120	tcr-90	ns	

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
t_{R}, t_{F}	Clock Rise and Fall Time	5	20	ns	
totx	TxD Delay from Falling Edge of $\overline{T x C}$		1	$\mu \mathrm{S}$	
tshx	Rx Data Set-Up Time to Sampling Pulse	2		$\mu \mathrm{s}$	
$\mathrm{thrax}^{\text {a }}$	Rx Data Hold Time to Sampling Pulse	2		$\mu \mathrm{s}$	
$\mathrm{f}_{T} \mathrm{x}$	Transmitter Input Clock Frequency 1X Baud Rate 16X Baud Rate 64X Baud Rate	$\begin{aligned} & \text { DC } \\ & \text { DC } \\ & \text { DC } \end{aligned}$	$\begin{array}{r} 64 \\ 310 \\ 615 \end{array}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	
tupw	Transmitter Input Clock Width 1X Baud Rate 16X and 64X Baud Rate	12 1		$\begin{aligned} & \text { tcr } \\ & \text { tcy } \end{aligned}$	
tTpd	Transmitter Input Clock Pulse Delay 1X Baud Rate 16X and 64X Baud Rate	$\begin{array}{r} 15 \\ 3 \end{array}$		$\begin{aligned} & \text { tor } \\ & \text { tcy } \end{aligned}$	
$\mathrm{ffx}_{\text {f }}$	$\begin{array}{\|c} \text { Receiver Input Clock Frequency } \\ 1 \times \text { Baud Rate } \\ 16 \mathrm{X} \text { Baud Rate } \\ 64 \mathrm{X} \text { Baud Rate } \end{array}$	$\begin{aligned} & \text { DC } \\ & \text { DC } \\ & \text { DC } \end{aligned}$	$\begin{array}{r} 64 \\ 310 \\ 615 \end{array}$	kHz kHz kHz	
trpw	Receiver Input Clock Pulse Width 1X Baud Rate 16X and 64X Baud Rate	$\begin{array}{r} 12 \\ 1 \end{array}$		$\begin{aligned} & \text { tor } \\ & \text { tor } \end{aligned}$	
trpd	Receiver Input Clock Pulse Delay 1X Baud Rate 16X and 64X Baud Rate	$\begin{array}{r} 15 \\ 3 \end{array}$		tcy tcy	
$t_{\text {TXRDO }}$	TxRDY Pin Delay from Center of last Bit		8	tcy	Note 7
$t_{\text {TXRDY }}$ clear	TxRDY \downarrow from Leading Edge of $\overline{W R}$		150	ns	Note 7
$t_{\text {RXRDY }}$	RxRDY Pin Delay from Center of last Bit		24	tcy	Note 7
trxady clear	RxRDY ! from Leading Edge of $\overline{\mathrm{RD}}$		150	ns	Note 7
tis	Internal SYNDET Delay from Rising Edge of $\overline{\mathrm{RxC}}$		24	tcr	Note 7
tes	External SYNDET Set-Up Time Before Falling Edge of $\overline{\mathrm{RxC}}$		16	tor	Note 7
$\mathrm{t}_{\text {TXEMPTY }}$	TxEMPTY Delay from Center of Data Bit		20	tcr	Note 7
twc	Control Delay from Rising Edge of WRITE (TxEn, DTR, $\overline{\text { RTS }}$)		8	tcy	Note 7
tcr	Control to READSet-Up Time ($\overline{\mathrm{DSR}}, \overline{\mathrm{CTS}})$		20	tcr	Note 7

NOTES: 1. AC timings measured $\mathrm{VOH}_{\mathrm{OH}}=2.0, \mathrm{VOL}_{\mathrm{OL}}=0.8$, and with load circuit of Figure 1.
2. Chip Select ($\overline{\mathrm{CS}}$) and Command/ $\overline{\text { Data }}(\mathrm{C} / \overline{\mathrm{D}}$) are considered as Addresses.
3. Assumes that Address is valid before Rol.
4. This recovery time is for RESET and Mode Initialization. Write Data is allowed only when TxRDY =1. Recovery Time between Writes for Asynchronous Mode is 8 tcy and for Synchronous Mode is 16 tcy .
5. The TxC and $R x C$ frequencies have the following limitations with respect to CLK.

For $1 \times$ Baud Rate, $f_{T X}$ or $f_{R X} \leq 1 /(30$ tcy)
For 16X and 64X Baud Rate, f_{X} or $\mathrm{f}_{\mathrm{RX}} \leq 1 /(4.5 \mathrm{tcy})$
6. Reset Pulse Width $=6$ tcy minimum; System Clock must be running during RESET.
7. Status update can have a maximum delay of 28 clock periods from the event affecting the status.

Figure 1.

WAVEFORMS

System Clock Input

Transmitter Clock \& Data

Receiver Clock \& Data

Write Data Cycle (CPU \rightarrow USART)

Read Data Cycle (CPU \leftarrow USART)

Write Control or Output Port Cycle (CPU \rightarrow USART)

NOTE =1: $T_{\text {WC }}$ INCLUDES THE RESPONSE TIMING OF A CONTROL BYTE.

Transmitter Control \& Flag Timing (ASYNC Mode)

Receiver Control \& Flag Timing (ASYNC Mode)

Transmitter Control \& Flag Timing (SYNC Mode)

EXAMPLE FORMAT = 5 BIT CHARACTER WITH PARITY, 2 SYNC CHARACTERS.

Receiver Control \& Flag Timing (SYNC Mode)

NOTE : 1. INTERNAL SYNC. 2 SYNC CHARACTERS, 5 BITS, WITH PARIT
NOTE :: 2 EXTERNAL SYNC. 5 BITS, WITH PARITY

COM8251A Interface to μ P Standard System Bus

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

IBM 3274/3276 Compatible COAX Receiver/Transmitter

FEATURES

Conforms to the IBM 3270 Interface Display System StandardTransmits and Receives Manchester II CodeDetects and Generates Line Quiesce, Code Violation, Sync, Parity, and Ending Sequence (Mini Code Violation)Multi Byte or Single Byte TransfersDouble Buffer Receiver and TransmitterSeparate Data and Stitus SelectOperates at 2.3587 MHzTTL Compatible Inputs and OutputsCOPLAMOS® n-Channel Silicon Gate TechnologyPIN CONFIGURATION

GENERAL DESCRIPTION

The COM 9004 is an MOS/LSI circuit which may be used to facilitate high speed data transmission. The COM 9004 is fabricated using SMC's patented COPLAMOS ${ }^{\otimes}$ technology and may be used to implement an interface between IBM 3274/3276 compatible control units and 3278/3287/ 3289 compatible terminal units. The receiver and transmitter sections of the COM 9004 are separate and may be used independently of each other.

The COM 9004 generates and detects the line quiesce, code violation, parity, and mini code violation bit patterns.
The on-chip parity logic is capable of generating and checking either even or odd parity for the entire 10 bit data word. In addition, parity may be generated for the least significant 8 bits of the data word (this parity bit would replace the ninth data bit).

ORGANIZATION

The COM 9004 is organized into 9 major sections. Communication between each section is achieved via internal data and control busses.

Transmitter Holding Register

The transmit holding register is a 12 bit latch. This latch is loaded with the transmit data and parity generation information from the system bus.

Tri-State Buffers

These buffers allow gating of the COM 9004's status word onto the system data bus.

Bus Transceiver

The bus transceiver allows bi-directional data transfer between the system data bus and the transmit and receive holding registers.

Parity Generator

This logic determines and generates the correct parity for the data in the transmitter holding register.

Transmitter Control

This logic generates signals required to enable external
transmit circuitry. It also generates the Line Quiesce, Code Violation, sync bits and Mini Code Violation patterns.

Transmitter Shift Register

The transmitter shift register is an 11 bit parallel to serial shift register. It accepts data from the transmitter holding register and the parity generation logic and converts it into serial form for transmission.

Receive Control/Parity Check

This logic checks the received character for the specified parity and ensures that no Transmit Check conditions occurred. It also handles the self test mode and generates a strobe when the complete data word is received.

Receiver Shift Register

This logic is a serial to parallel shift register that converts the received information into a 10 bit data word and RTA status bit.

Receiver Holding Register

This register holds the assembled data word until it is read by the processor.

DESCRIPTION OF PIN FUNCTIONS Processor Related Signals

PIN NO.	NAME	SYMBOL	FUNCTION
6-13	Transmit/ Receive Data Bits	D0-D7	Bidirectional: 8 bit, three state data port used to transfer data between the COM 9004 and the processor. D0 is the first bit transmitted.
4	Transmit Bit 9 Select	T9S	Input: A low level on this pin enables T9 to be transmitted as bit 9. A high level on this pin causes T9 to determine the type of parity bit generated for bits D0-D7.
38	Transmit Bit 9	T9	Input: If T9S is low, this supplies transmit bit 9 . If T9S is high, then T9 low forces odd parity and T9 high forces even parity to be generated for D0-D7. In this case the parity bit generated is transmit bit 9 .
39	Transmit Bit 10	T10	Input: This pin supplies transmit bit 10.
3	Transmit Parity	TP*	Input: This input controls the parity bit for transmit bits 1-10. A low level on this pin causes odd parity and a high level on this pin causes even parity to be generated for bits 1-10. The parity bit generated is transmit bit 11.
18	System Clock	SCLK	Input: This signal is used to synchronize the COM 9004. The transmitter is loaded and started on the low to high transition of SCLK if TDS is low. DA is reset on the low to high transition of SCLK if RDA is low.
36	Transmitter Data Strobe	$\overline{T D S}$	Input: This input and SCLK are used to load the transmitter holding register and start the transmit sequence. Code Violation Detect (CVD) is reset at this time.
26	Reset Data Available	$\overline{\text { RDA }}$	Input: This input and SCLK are used to reset DA.
16	Status Word Enable	$\overline{\text { SWE }}$	Input: A low level at this pin enables the status word buffer outputs (DA, CVD, TBMT, R9, R10, and RTA). A high level on SWE places the status word buffer outputs in a high impedance state.
23	Receive Data Available	DA	This three-state output signal is at a high level when an entire word has been received and transferred into the receiver buffer register. It is only set if a Transmit Check Condition did not occur.
25	Code Violation Detected	CVD	This three-state output signal is at a high level if a valid Code Violation was detected at the receiver since the last time the transmitter was loaded. It is reset when the transmitter is loaded.
37	Transmit Buffer Empty	TBMT	This three-state output signal is at a high level when the transmit holding register may be loaded with new data.
14	Receive Bit 9	R9	This three-state output signal is receiver data bit 9 .
15	Receive Bit 10	R10	This three-state output signal is receiver data bit 10.
24	Receiver Turnaround	RTA	This three-state output signal is set to a high level when a valid Mini Code Violation is detected. It is only set if a Transmit Check did not occur. It is reset when the transmitter is loaded.
5	Receive Data Enable	$\overline{\mathrm{RDE}}$	Input: A low level enables the outputs of the receive data register D0-D7.
17	Receiver Parity	RP*	Input: This input determines whether the entire received word will be checked for even or odd parity. A low at this pin will cause a check for odd parity and a high at this pin will cause a check for even parity. This input has an internal pull-up resistor.

*The SYNC bit is included in parity checking.

DESCRIPTION OF PIN FUNCTIONS (cont.)

PIN NO.	NAME	SYMBOL	FUNCTION
29	Analog Loopback	$\overline{\text { ALOOP }}$	Input: A low level on this pin disables the receiver except when the transmitter is active. A high level on this pin and $\overline{\text { DLOOP }}$ disabled whill cause the transmitter is active.
34	Digital Loopback ALOOP is used to allow loop-back through the line drivers and receivers. This input has an internal pull-up resistor.		
21	Master Reset	$\overline{\mathrm{MR}}$	Input: A low level on this pin disables the receiver except when the transmitter is active. TG is forced to a high level to disable the external coax driver. Data input to the receiver in internally wrapped from the transmitter data output. This input has an internal pull-up resistor.
1	Input: This input should be pulsed low after power-on. This signal resets DA to a low level and sets $\overline{T G}$ and TBMT to a high level. This input has an internal pull-up.		
22	Supply Voltage	V_{cc}	+5 volt supply
19	Supply Voltage	V_{dd}	+12 volt supply
$2,20,40$	Ground	V_{bb}	-12 volt supply

Device Related Signals

PIN NO.	NAME	SYMBOL	FUNCTION
27	Baud Rate Clock	BCLK	This input is a clock whose frequency is 8 times the desired transmitter and receiver baud rate (typically 18.8696 MHz for $3274 / 3276$ operation). This input is not TTL compatible.
33	Transmit Data	TD	Output: Serial data from the transmitter. This signal is a biphase Manchester II encoded bit stream. This output is high when no data is being transmitted.
31	Transmit Clock	$\overline{\text { TC }}$	The Transmit Clock output is $1 / 2$ the frequency of BCLK. It is synchronized with TD and used to provide external pre-distortion timing.
30	Receive Data	RD	Input: Accepts the serial biphase Manchester II encoded bit stream.
32	Transmit Gate	$\overline{\overline{T G}}$	Output: This signal is low during the time that the transmit data is valid. TG is used to turn on the external transmit circuitry.
28	Receive Single Shot Enable	RSSE	Input: A high level on this pin enables an internal digital single shot on RD. This limits a high level on RD to 3 clock times. Also when high it will cause the receiver not to detect a valid Code Violation. A low level disables the single shot causing no reshaping of the RD input signal.

COM 9004 OPERATION

The COM 9004 consists of a receiver section that converts Manchester II phase encoded serial data to parallel data and a transmitter section that converts parallel data to Manchester II phase encoded serial data.

Receiver

Message transfers must conform to the IBM 3270 protocol in order for the COM 9004 to acknowledge them.
The received message is checked for the Code Violation sequence (start sequence) bit pattern, preceding the first data word, and Mini Code Violation (end sequence) following the last data word.
The data word consists of 10 data bits, a sync bit and a parity bit. Receiving data in multiple byte format is functional only when even parity is selected.
The data word along with the first bit of the next word or ending zero (bit 13) is shifted into a shift register. Once it is assembled it is transferred and held in the holding register until another data word is assembled. The 13th bit is inverted and presented to the bus or RTA (receiver turn-around). Therefore RTA is set high on the last word of a message and is reset when the transmitter is loaded with the response.
Once the data word is in the holding register and parity is correct the data available (DA) status signal is set high.
The Code Violation Detect signal (CVD) goes active high
after a line Quiesce, Code Violation and sync bit have been detected by the receiver. It is reset when the transmitter of the COM 9004 is asserted. By examining this signal, the processor can determine whether a timeout or Transmit Check condition caused a receiver error.
The receive input is sampled at 8 times the data rate. The receiver logic is brought into bit synchronization during the Line Quiesce pattern. Once the Code Violation following the Line Quiesce is detected, the receiver is brought into bit and word synchronization. The internal receiver clock is adjusted after each transition to compensate for jitter and distortion in the received data signal.

Transmitter

The transmitter section basically consists of a 12-bit holding register, parallel to serial shift register and a parity generator. The firmware initiates a transmit sequence by strobing TDS low. The data is loaded into the holding register on the rising edge of SCLK while TDS is low. Nine bits of data (D0-D7 and T10) are transferred without change to the transmit shift register. The logic level of T9S determines whether T9 will be transmitted as parity on the preceding eight bits, or as data.
After the processor loads the transmit holding register with data, status signal TBMT is driven inactive low until the COM 9004 transfers the data from the transmit holding register to the transmit shift register. After the transfer, TBMT is driven
high. The processor should not try to load data into the COM 9004 while TBMT is low. When initiating a data transmission, the COM 9004 automatically transmits a Line Quiesce pattern and a Code Violation. The data is then shifted out of the shift register with a sync bit (1) inserted before the data word, and a parity bit appended after the data word.
If a new word is loaded into the COM 9004 before the parity bit of the previous word has been transmitted, a sync bit (1) followed by the new data bits is transmitted. If not, after the COM 9004 transmits the last data word (no more transmit sequences are started), a sync bit (0) and a Mini Code Violation is appended to the end of the message.
Output TG goes active low one-half bit cell time before the first Line Quiesce character is output. It is made inactive (high) during the transmission of the Mini Code Violation.

Diagnostic Modes

NORMAL OPERATION ($\overline{A L O O P}$ AND $\overline{\text { DLOOP }}$ HIGH)

Internal read data signal follows the RD input as long as the COM 9004's transmitter is off. The receiver will be disabled while the transmitter is active.
ANALOG LOOPBACK ($\overline{A L O O P}$ LOW AND DLOOP HIGH) The internal read data signal follows the RD input as long as the COM 9004's transmitter is active.
DIGITAL LOOPBACK ALOOP HIGH AND DLOOP LOW)
The internal read data signal follows an internally generated and latched valid transmit signal (only when the transmitter is active.) The output TG is disabled in digital loopback mode.
DISABLE RECEIVER ($\overline{\text { ALOOP AND }} \overline{\text { DLOOP LOW) }}$
The internal read data signal is held low and output $\overline{T G}$ is disabled.

MESSAGE FORMATS

Single Byte Transmission

COAX							
IDLE	LINE	CODE	SYNC	DATA	PARITY	ENDING	COAX
QUSCE	VIOLATION	BIT	$(10 \mathrm{BITS})$	BIT	SEQUENCE	IDLE	

Multiple Byte Transmission

$\begin{aligned} & \text { COAX } \\ & \text { IDLE } \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { QUIESCE } \end{aligned}$	$\begin{aligned} & \text { CODE } \\ & \text { VIOLATION } \end{aligned}$	$\begin{gathered} \text { SYNC } \\ \text { BIT } \end{gathered}$	$\begin{gathered} \text { DATA 1 } \\ \text { (10 BITS) } \end{gathered}$	$\begin{gathered} \text { PARITY } \\ \text { BIT } \end{gathered}$	$\begin{aligned} & \text { SYNC } \\ & \text { BIT } \end{aligned}$	DATA 2 (10 BITS)

PARITY BIT	$\ldots \ldots \ldots .$.	SYNC BIT	DATAN (10 BITS)	PARITY	END	ENDING
SEQUENCE	COAX					

Bits on the coax appear as positive and negative going pulses. A positive pulse to negative pulse transition in the middle of the bit cell is interpreted as a logical ' 0 '. A negative pulse to positive pulse transition in the middle of a bit cell is
interpreted as a logical ' 11 '. A predistortion pulse is generated for every pulse transition from an up to down level or a down to up level.

Line Quiesce Pattern

The Line Quiesce pattern consists of five contiguous logical ones. It establishes an equilibrium condition on the coax following line turnaround.

The Code Violation pattern is a bit sequence containing no mid-bit time level transition in two of its three bit cells. It is a unique pattern that violates the encoding rules and indicates the start of valid data.

Mini Code Violation Pattern

bit times:

The Mini Code Violation (MCV) pattern is a bit sequence containing no mid-bit time level transition in either of its bit cells. It is a unique code that violates the encoding rules and indicates the end of valid transmit data.

Transmit Check

A Transmit Check is defined as follows:

1) A logical zero sync bit in the ending sequence not followed by a Mini Code Violation.
2) Loss of a level transition at the mid-bit time during other than a normal ending sequence.
3) A transmission parity error.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$+300^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $+18.0 \mathrm{~V}$
Negative Voltage on any I/O Pin, with respect to ground $-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the $A C$ power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-12 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS input Voltage Levels V_{1} Low $V_{1 H}$ High $V_{1 H}$ High $\mathrm{V}_{\text {IH }}$ High	$\begin{array}{r} -0.3 \\ 2.0 \\ 4.3 \\ 3.0 \\ \hline \end{array}$		$\begin{gathered} .8 \\ \mathrm{~V}_{\mathrm{cc}} \\ \mathrm{~V}_{\mathrm{cc}}+.3 \\ \mathrm{~V}_{\mathrm{cc}}+.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	(Except BCLK, $\bar{M} R$) (BCLK only) \bar{M} R only
OUTPUT VOLTAGE LEVELS $V_{\text {oL }}$ Low $\mathrm{V}_{\text {OH }}$ High	2.4		. 4		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-.25 \mathrm{~mA} \\ & \hline \end{aligned}$
POWER SUPPLY CURRENT $\begin{aligned} & I_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{OD}} \end{aligned}$		$\begin{array}{r} 70 \\ 16 \\ 5 \\ \hline \end{array}$		mA mA mA	All outputs $=\mathrm{V}_{\text {OH }}$
INPUT LEAKAGE CURRENT All input pins			. 01	mA	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{cc}
CAPACITANCE C_{IN} C_{IN}			$\begin{aligned} & 10 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pf} \\ & \mathrm{pf} \end{aligned}$	(Except BCLK) (BCLK only)

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-12 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
Clock Frequency $\mathrm{B}_{\text {clk }}$ $\mathrm{S}_{\mathrm{CLK}}$	7^{7}	$\begin{array}{r} 18.8696 \\ 4.7474 \\ \hline \end{array}$	$\begin{gathered} 18.9 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
Clock Width $\mathrm{t}_{\text {SKH }}$ SCLK High $\mathrm{t}_{\text {SKL }}$ SCLK Low $\mathrm{t}_{\text {KKH }}$ BCLK High $\mathrm{t}_{\text {BKH }}$ BCLK Low t_{r} BCLKK rise time t_{F} BCLK fall time	$\begin{aligned} & 80 \\ & 80 \\ & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{\text {Roo }}$ $\overline{R D E}$ to Data Valid Delay $t_{\text {SoD }}$ SWE to Data Valid Delay $t_{D F}$ Data Read to Bus Float			$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{\text {Ds }}$ Data Setup Time $t_{\text {DH }}$ Data Hold Time	$\begin{gathered} 100 \\ 10 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{array}{ll}\mathrm{t}_{\text {DAV }} & \begin{array}{l}\text { DA to receive data } \\ \text { valid delay }\end{array}\end{array}$	-100		100	ns	
	$\begin{gathered} -53 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & 106 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
$\mathrm{t}_{\mathrm{DDC}}$ TBMT cycle t_{DD} TBMT de-activated $\mathrm{t}_{\text {DSS }}$ TDS set up $\mathrm{t}_{\text {DSH }}$ TDS hold $\mathrm{t}_{\text {MA }}$ MR pulse width	$\begin{gathered} 1 \\ 100 \\ 10 \\ 300 \\ \hline \end{gathered}$		$\begin{aligned} & 3.2 \\ & 2 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	

TBMT CYCLE

TBMT

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications, consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor at any time in order to improve design and supply the best product possible.

Local Area Network Controller LANC ${ }^{\text {TM }}$

FEATURES

2.5 M bit data rateARCNET* local area network controllerModified token passing protocolSelf-reconfiguring as nodes are added or deleted from networkHandles variable length data packets16 bit CRC check and generationSystem efficiency increases with network loadingStandard microprocessor interfaceSupports up to 255 nodes per network segmentAbility to interrupt processor at conclusion of commandsInterfaces to an external 1K or 2 K RAM bufferArbitrates buffer accesses between processor and COM 9026Replaces over 100 MSI/SSI partsAbility to transmit broadcast messagesCompatible with broadband or baseband systemsCompatible with any interconnect media (twisted pair, coax, etc.)Arbitrary network configurations can be used (star, tree, etc.)Single +5 volt supply
GENERAL DESCRIPTION

The COM 9026 is a special purpose communications adapter for interconnecting processors and intelligent peripherals using the ARCNET local area network. The ARCNET local area network is a self-polling "modified token passing" network operating at a 2.5 M bit data rate. A "modified token passing" scheme is one in which all token passes are acknowledged by the node accepting the token. The token passing network scheme avoids the fluctuating channel access times caused by data collisions in so-called CSMA/ CD schemes such as Ethernet.
The COM 9026 circuit contains a microprogrammed sequencer and all the logic necessary to control the token passing mechanism on the network and send and receive data packets at the appropriate time. A maximum of 255 nodes may be connected to the network with each node being assigned a unique ID.

The COM 9026 establishes the network configuration, and automatically re-configures the network as new nodes are added or deleted from the network. The COM 9026 performs address decode, CRC checking and generation, and packet acknowledgement, as well as other network management functions. The COM 9026 interfaces directly to the host processor through a standard multiplexed address/ data bus.
An external RAM buffer of up to 2 K locations is used to hold up to four data packets with a maximum length of 508 bytes per message. The RAM buffer is accessed both by the processor and the COM 9026. The processor can write commands to the COM 9026 and also read COM 9026 status. The COM 9026 will provide all signals necessary to allow smooth arbitration of all RAM buffer operations.
*ARCNET is a registered trademark of the Datapoint Corporation.

FIGURE 2—TYPICAL COM 9026 INTERFACE

DESCRIPTION OF PIN FUNCTIONS (refer to figure 2)

DIP PIN NO.	NAME	SYMBOL	FUNCTION
31, 32, 35	$\begin{array}{\|l\|} \hline \text { ADDRESS 10, } \\ 9,8 \end{array}$	A10, A9, A8	These three output signals are the three most significant bits of the RAM buffer address. These signals are in their high impedance state except during COM 9026 access cycles to the RAM buffer. A 10 and A9 will take on the value nn as specified in the ENABLE RECEIVE or ENABLE TRANSMIT commands to or from page nn and should be viewed as page select bits. For packets less than 256 bytes a 1 K buffer can be used with A8 unconnected. For packets greater than 256 bytes, a 2 K buffer is needed with A8 connected.
$\begin{gathered} 21,22,23, \\ 24,25,26, \\ 27,28 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { ADDRESS/ } \\ & \text { DATA 7-0 } \end{aligned}$	AD7-AD0	These 8 bidirectional signals are the lower 8 bits of the RAM buffer address and the 8 bit data path in and out of the COM 9026. ADO is also used for I/O command decoding of the processor control or status commands to the COM 9026.
8	I/O REQUEST	$\overline{\text { IOREQ }}$	This input signal indicates that the processor is requesting the use of the data bus to receive status information or to issue a command to the COM 9026. This signal is sampled internally on the falling edge of AS.
9	MEMORY REQUEST	$\overline{\text { MREQ }}$	This input signal indicates that the processor is requesting the use of the data bus to transfer data to or from the RAM buffer. This signal is sampled internally on the falling edge of AS.
7	READ/WRITE	R/W	A high level on this input signal indicates that the processor's access cycle to the COM 9026 or the RAM buffer will be a read cycle. A low level indicates that a write cycle will be performed to either the RAM buffer or the COM 9026 . The write cycle will not be completed, however, until the DWR input is asserted. This signal is an internal transparent latch gated with AS.
10	ADDRESS STROBE	AS	This input signal is used by the COM 9026 to sample the state of the $\overline{\text { OREQ }}$, MREQ and R/W inputs. The COM 9026 bus arbitration is initiated on the falling edge of this signal.
11	REQUEST	REQ	This output signal acknowledges the fact that the processor's $/ / 0$ or memory cycle has been sampled. The signal is equal to MREQ or IOREQ passed through an internal transparent latch gated with AS.
12	WAIT	WAIT	This output signal is asserted by the COM 9026 at the start of a processor access cycle to indicate that it is not ready to transfer data. WAIT returns to its inactive state when the COM 9026 is ready for the processor to complete its cycle.
6	$\begin{aligned} & \text { DELAYED } \\ & \text { WRITE } \end{aligned}$ WRITE	$\overline{\text { DWR }}$	This input signal informs the COM 9026 that valid data is present on the processor's data bus for write cycles. The COM 9026 will remain in the WAIT state until this signal is asserted. DWR has no effect on read cycles. If the processor is able to satisfy the write data setup time, it is recommended that this signal be grounded.
29	INTERRUPT REQUEST	INTR	This output signal is asserted when an enabled interrupt condition has occured. INTR returns to its inactive state by resetting the interrupting status condition or the corresponding interrupt mask bit.
18	INTERFACE LATCH ENABLE	$\overline{\text { ILE }}$	This output signal, in conjunction with $\overline{\text { ADIE, gates the processor's address/data }}$ bus (PAD7-PADO) onto the interface address/data bus (IAD7-IADO) during the data valid portion of a Processor Write RAM or Processor Write COM 9026 operation.
14	ADDRESS/ DATA INPUT ENABLE	$\overline{\text { ADIE }}$	This output signal enables the processor's address/data bus (PAD7-PADO) captured by AS or ILE onto the interface address/data bus (IAD7-IADO).
13	ADDRESS INPUT ENABLE	$\overline{\text { AIE }}$	This output signal enables the processor's upper 3 address bits (PA10-PA8) onto the interface address bus (IA10-IA8).
15	LATCH	\bar{L}	This output signal latches the interface address/data bus (IAD7-IADO) into a latch which feeds the lower 8 address bits of the RAM buffer during address valid time of all RAM buffer access cycles.
17	WRITE ENABLE	$\overline{\text { WE }}$	This output signal is used as a write pulse to the external RAM buffer. Data is referenced to the trailing edge of WE.
16	OUTPUT	$\overline{\text { OE }}$	This output signal enables the RAM buffer output data onto the interface address/data bus (IAD7-IADO) during the data valid portion of all RAM buffer read operations.
33	ID LOAD	$\overline{\text { IDLD }}$	This output signal synchronously loads the value selected by the ID switches into an external shift register in preparation for shifting the ID into the COM 9026. The shift register is clocked with the same signal that feeds the COM 9026 on pin 19 (CLK). The timing associated with this signal and IDDAT (pin 34) is illustrated in figure 19.
34	ID DATA IN	IDDAT	This input signal is the serialized output from the external ID shift register. The ID is shifted in most significant bit first. A high level is defined as a logic "1".
1,3	EXTENDED TIMEOUT FUNCTION 2, 1	ET2, ET1	The levels on these two input pins specify the timeout durations used by the COM 9026 in its network protocol. Refer to the section entitled "Extended Timeout Function" for details.
37	$\begin{aligned} & \text { TRANSMIT } \\ & \text { DATA } \\ & \hline \end{aligned}$	$\overline{T X}$	This output signal contains the serial transmit data to the CABLE TRANSCEIVER.
38	RECEIVE DATA	RX	This input signal contains the serial receive data from the CABLE TRANSCEIVER.

DESCRIPTION OF PIN FUNCTIONS (Continued)

PIN NO.	NAME	SYMBOL	FUNCTION
4, 5	TEST PIN 2 TEST PIN 1	$\begin{aligned} & \text { TEST2 } \\ & \text { TEST1 } \end{aligned}$	These input pins are grounded for normal chip operation. These pins are used in conjunction with ET2 and ET1 to enable various internal diagnostic functions when performing chip level testing.
30	ECHO DIAGNOSTIC ENABLE	$\overline{\mathrm{ECHO}}$	When this input signal is low, the COM 9026 will re-transmit all messages of length less than 254 bytes. This input should be tied high for normal chip operation and is only utilized when performing chip level testing.
19	CLOCK	CLK	A continuous 5 MHz clock input used for timing of the COM 9026 bus cycles, bus arbitration, serial ID input, and the internal timers.
2	CA	CA	This input signal is a 5 MHz clock used to control the operation of the COM 9026 microcoded sequencer. This input is periodically halted in the high state by the DSYNC output.
36	DELAYED SYNC	$\overline{\text { DSYNC }}$	This output signal is asserted by the COM 9026 to cause the external clock generator logic to halt the CA clock. Refer to figure 9.
40	$\begin{aligned} & \text { POWER ON } \\ & \text { RESET } \end{aligned}$	$\overline{\text { POR }}$	This input signal clears the COM 9026 microcoded sequencer program counter to zero and initializes various internal control flags and status bits. The POR status bit is also set which causes the INTR output to be asserted. Repeated assertion of this signal will degrade the performance of the network.
39	$+5 \mathrm{VOLT}$ SUPPLY	V_{cc}	Power Supply
20	GROUND	GND	Ground

PROTOCOL DESCRIPTION

LINE PROTOCOL DESCRIPTION

The line protocol can be described as isochronous because each byte is preceded by a start interval and ended with a stop interval. Unlike asynchronous protocols, there is a constant amount of time separating each data byte. Each byte will take up exactly 11 clock intervals with a single clock interval being 400 nanoseconds in duratiôn. As a result, 1 byte is transmitted every 4.4 microseconds and the timie to transmit a message can be exactly determinted. The line idles in a spacing (logic 0) condition. A logic ' 0 ' is defined as no line activity and a logic 1 is defined as a pulse of 200 nanoseconds duration. A transmilssion starts with an ALERT BURST consisting of 6 unit intervals of mark (logic 1). Eight bit data characters are then sent with each character preceded by 2 unit intervals of mark áhd one unit interval of space. Five types of transmission can be sent as described below:

Invitations To Transmit

An ALERT BURST folliowed by three characters; an EOT (end of transmission-ASCII code 04 HEX) and two (repeated) DID (Destination IDentification) characters. This message is used to pass the token from one node to another.

Free Buffer Enquiries

An ALERT BURST followed by three characters; an ENQ (ENQuiry-ASCII code 85 HEX) and two (repeated) DID (Destination IDentification) characters. This message is used to ask another node if it is able to accept a packet of data.

Data Packets

An ALERT BURST followed by the following characters:

- an SOH (start of header-ASCII code 01 HEX)
-a SID (Source IDentification) character
-two (repeated) DID (destination IDentification) characters.
-a single COUNT character which is the 2's complement of the number of data bytes to follow if a "short packet" is being sent or 00 HEX followed by a COUNT
character which is the 2's complement of the number of data bytes to follow if a "long packet" is being sent.
-N data bytes where COUNT $=256-\mathrm{N}(512-\mathrm{N}$ for a "long packet")
-two CRC (Cyclic Redundancy Check) characters. The CRC polynomial used is $\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1$.

Acknowledgements

An ALERT BURST followed by one character; an ACK (ACKnowledgement-ASCII code 86 HEX) character. This message is used to acknowledge reception of a packet or as an affirmative response to FREE BUFFER ENQUIRIES.

Negative Acknowledgements

An ALERT BURST followed by one character; a NAK (Negative AcKnowledgement-ASCII code 15 HEX). This message is used as a negative response to FREE BUFFER ENQUIRIES.

NETWORK PROTOCOL DESCRIPTION

Communication on the network is based on a "modified token passing" protocol. A "modified token passing" scheme is one in which all token passes are acknowledged by the node receiving the token. Establishment of the network configuration and management of the network protocol are handled entirely by the COM 9026's internal microcoded sequencer. A processor or intelligent peripheral transmits data by simply loading a data packet and its destination ID into the RAM buffer, and issuing a command to enable the transmitter. When the COM 9026 next receives the token, it verifies that the receiving node is ready by first transmitting a FREE BUFFER ENQUIRY message. If the receiving node transmits an ACKnowledge message, the data packet is transmitted followed by a 16 bit CRC. If the receiving node cannot accept the packet (typically its receiver is inhibited), it transmits a Negative AcKnowledge message and the transmitter passes the token. Once it has been established that the receiving node can accept the packet and transmission is complete, the receiving node will verify the packet.

If the packet is received successfully, the receiving node transmits an acknowledge message (or nothing if it is received unsuccessfully) allowing the transmitter to set the appropriate status bits to indicating successful or unsucessful delivery of the packet. An interrupt mask permits the COM 9026 to generate an interrupt to the processor when selected status bits become true. Figure 3 is a flow chart illustrating the internal operation of the COM 9026.

NETWORK RECONFIGURATION

A significant advantage of the COM 9026 is its ability to adapt to changes on the network. Whenever a new node is activated or deactivated a NETWORK RECONFIGURATION is performed. When a new COM 9026 is turned on (creating a new active node on the network), or if the COM 9026 has not received an INVITATION TO TRANSMIT for 840 milliseconds, it causes a NETWORK RECONFIGURATION by sending a RECONFIGURE BURST consisting of eight marks and one space repeated 765 times. The purpose of this burst is to terminate all activity on the network. Since this burst is longer than any other type of transmission, the burst will interfere with the next INVITATION TO TRANSMIT, destroy the token and keep any other node from assuming control of the line. It also provides line activity which allows the COM 9026 sending the INVITATION TO TRANSMIT to release control of the line.
When any COM 9026 sees an idle line for greater than 78.2 microseconds, which will only occur when the token is lost, each COM 9026 starts an internal time out equal to 146 microseconds times the quantity 255 minus its own ID. It also sets the internally stored NID (next ID representing the next possible ID node) equal to its own ID. If the timeout expires with no line activity, the COM 9026 starts sending INVITATIONS TO TRANSMIT with the DID equal to the currently stored NID. Within a given network, only one COM 9026 will timeout (the one with the highest ID number). After sending the INVITATION TO TRANSMIT, the COM 9026 waits for activity on the line. If there is no activity for 74.7
microseconds, the COM 9026 increments the NID value and transmits another INVITATIONTO TRANSMIT using the new NID equal to the DID. If activity appears before the 74.7 microsecond timeout expires, the COM 9026 releases control of the line. During NETWORK RECONFIGURATION, INVITATIONS TO TRANSMIT will be sent to all 256 possible ID's. Each COM 9026 on the network will finally have saved a NID value equal to the ID of the COM 9026 that assumed control from it. From then until the next NETWORK RECONFIGURATION, control is passed directly from one node to the next with no wasted INVITATIONS TO TRANSMIT sent to ID's not on the network. When a node is powered off, the previous node will attempt to pass it the token by issuing an INVITATION TO TRANSMIT. Since this node will not respond, the previous node will time out and transmit another INVITATION TO TRANSMIT to an incremented ID and eventually ą response will be received.
The time required to do a NETWORK RECONFIGURATION depends on the number of nodes in the network, the propogation delay between nodes and the highest ID number on network but will pe in the range of 24 to 61 milliseconds.

BROADCAST MESSAGES

Broadcasting gives a particular node the ability to transmit a data packet to all nodes on the network simultaneously. ID zero is reserved for this feature and no node on the network can be assigned ID zero. To broadcast a message, the transmitting node's processor simply loads the RAM buffer with the data packet and sets the destination ID (DID) equal to zero. Figure 8 illustrates the position of each byte in the packet with the DID residing at address 01 HEX of the current page selected in the TRANSMIT command. Each individual node has the ability to ignore broadcast messages by setting the most signficant bit of the ENABLE RECEIVE TO PAGE nn command (see "WRITE COM 9026 COMMANDS") to a logic zero.

COM 9026 OPERATION

BUFFER CONFIGURATION

During a transmit sequence, the COM 9026 fetches data from the Transmit Buffer, a 256 (or 512) byte segment of the RAM buffer. The appropriate buffer size is specified in the DEFINE CONFIGURATION command. When long packets are enabled, the COM 9026 will interpret the packet as a long or short packet depending on whether the contents
of buffer location 02 is zero or non zero. During a receive sequence, the COM 9026 stores data in the receive buffer, also a 256 (or 512) byte segment of the RAM buffer. The processor I/O command which enables either the COM 9026 receiver or the COM 9026 transmitter also initializes the respective buffer page register. The formats of the buffers (both 256 and 512 byte) are shown below.

FIGURE 3-9026 OPERATION

PROCESSOR INTERFACE

Figure 2 illustrates a typical COM 9026 to processor interface. The signals on the left side of this figure represent typical processor signals with a 16 bit address bus and an 8 bit data bus with the data bus multiplexed onto the lower 8 address lines (PAD7-PAD0). The processor sees a network node (a node consists of a COM 9026, RAM buffer, cable transceiver, etc. as shown in figure 2) as 2 K memory locations and $4 \mathrm{I} / \mathrm{O}$ locations within the COM 9026.
The RAM buffer is used to hold data packets temporarily prior to transmission on the network and as temporary storage of all received data packets directed to the particular node. The size of the buffer can be as large as 2 K byte locations providing four pages at a maximum of 512 bytes per page. For packet lengths smaller than 256 bytes, a 1K RAM buffer can be used to provide four pages of storage. In this case address line IA8 (sourced from either the COM 9026 or the processor) should be left unconnected. Since four pages of RAM buffer are provided, both transmit and receive operations can be double buffered with respect to the processor. For instance, after one data packet has been loaded into a particular page within the RAM buffer and a transmit command for that page has been issued, the processor can start loading another page with the next message in a multimessage transmission sequence. Similarly, after one message is received and completely loaded into one page of the RAM buffer by the COM 9026, another receive command can be issued to allow reception of the next packet while the first packet is read by the processor. In general, the four pages in the RAM buffer can be used for transmit or receive in any combination. In addition, the processor
will also use the interface bus (IA10-IA8, IAD7-IAD0) when performing I/O access cycles (status reads from the COM 9026 or command writes to the COM 9026).
To accomplish this double buffering scheme, the RAM buffer must behave as a dual port memory. To allow this RAM to be a standard component, arbitration and control on the interface bus (IA10-IA8, IAD7-IAD0) is required to permit both the COM 9026 and the processor access to the RAM buffer and, at the same time, permit all processor I/O operations to or from the COM 9026.

Processor access cycle requests begin on the trailing edge of AS if either IOREQ or MREQ is asserted. These access cycles run completely asynchronous with respect to the COM 9026. Because of this, upon processor access cycle requests, the COM 9026 immediately puts the processor into a wait state by asserting the WAIT output. This gives the COM 9026 the ability to synchronize and control the processor access cycle. When the processor access cycle is synchronized by the COM 9026, the WAIT signal is eventually removed allowing the processor to complete its cycle.
For processor RAM buffer access cycles, $\overline{\text { AIE }}$ and $\overline{\text { ADIE }}$ enable the processor address captured during AS time onto the interface address bus (IA10-IA8, IAD7-IAD0). The signal \bar{L} will capture the 8 least significant bits of this address (appearing on IAD7-IADO) before the data is multiplexed onto it. At the falling edge of L, a stable address is presented to the RAM buffer. For read cycles, $\overline{O E}$ allows the addressed RAM buffer data to source the interface address/ data bus (IAD7-IAD0). In figure 2, this information is passed into a transparent latch gated with WAIT. At the falling edge of WAIT, the data accessed by the processor is captured

FIGURE 4—PROCESSOR READ RAM FOLLOWED BY COM 9026 READ RAM
and driven out via the logic function RD anded with REQ. For processor I/O read cycles from the COM 9026, ADIE and AIE are used to enable the processor address into the COM 9026. Data out of the COM 9026 is gated through the transparent latch and appears on the processor's data bus with the same control signals used for RAM read cycles.
For processor write cycles, after the falling edge of \bar{L}, the COM 9026 produces a WE (write enable) output to the RAM buffer, and the $\overline{\text { LE }}$ output from the COM 9026 allows the processor data to source the interface address/data bus (IAD7-IADO). At this time the COM 9026 waits for DWR before concluding the cycle by removing the WAIT output. DWR should only be used if the processor cannot deliver the data to be written in enough time to satisfy the write setup time requirements of the RAM buffer. By delaying the activation of DWR, the period of the write cycle will be extended until the write data is valid. Since the architecture and operation of the COM 9026 requires periodic reading and writing of the RAM buffer in a timely manner, holding the DWR input off for a long period of time, or likewise by running the processor at a slow speed, can result in a data overflow condition. It is therefore recommended that if the processor write data setup time to the RAM buffer is met, then the DWR input should be grounded.
For processor I/O write cycles to the COM 9026, $\overline{\text { ADIE }}$ and $\overline{\text { AIE }}$ are used to enable the processor's address onto the interface data bus. ILE is used to enable the processor's write data into the COM 9026. Delaying the activation of DWR will hold up the COM 9026 cycle requiring the same precautions as stated for Processor RAM Write cycles.

As stated previously, processor requests occur at the falling edge of AS if either IOREQ or MREQ are active. COM 9026 requests occur when the transmitter or receiver need to read or write the RAM buffer in the course of executing the command. If the COM 9026 requests a bus cycle at the same time as the processor, or shortly after the processor, the COM 9026 cycle will follow immediately after the processor cycle. Figure 4 illustrates the timing relationship of a Processor RAM Read cycle followed by a COM 9026 RAM read cycle. Once the AS signal captures the processor address to the RAM buffer and requests a bus cycle, it takes 4 CLK periods for the processor cycle to end. Figure 4 breaks up these 4 CLK periods into 8 half clock interval labeled $1 P$ through 8P. A COM 9026 access cycle will take 5 CLK periods to end. Figure 4 breaks up these 5 CLK periods into 10 half intervals labeled 1 C through 10 C .

If a processor cycle request occurs after a COM 9026 request has already been granted, the COM 9026 cycle will occur first, as shown in figure 5 . Figure 5 illustrates the timing relationship of a COM 9026 RAM Write cycle followed by a Processor RAM Write cycle. Due to the asynchronous nature of the bus requests (AS and CLK), the transition from the end of the COM 9026 cycle to the beginning of the processor cycle might have some dead time. Refering to figure 5 , if AS falling edge occurs after the start of half CLK interval 9C, no real contention exists and it will take between 200 and 500 nanoseconds before the processor cycle can start. The start of the processor cycle is defined as the time when the COM 9026 produces a leading edge on both $\overline{\text { ADIE }}$ and $\overline{\mathrm{AIE}}$. If the processor request occurs before the end of half

FIGURE 5—COM 9026 WRITE RAM FOLLOWED BY PROCESSOR WRITE RAM

CLK interval 5C (figure 5 illustrates this situation), then the processor cycle will always start at half CLK interval 1P. The uncertainty is introduced when the processor request occurs during half CLK intervals 6C, 7C or 8C. In this case, the processor cycle will start between 200 and 500 nanoseconds later depending on the particular timing relation between AS and CLK. The maximum time between processor request and processor cycle start, which occurs when the processor request comes just after a COM 9026 request, is 1300 nanoseconds. It should be noted that all times specified above assume a nominal CLK period of 200 nanoseconds.

Figures 6 and 7 illustrate timing for Processor Read COM 9026 and Processor Write COM 9026 respectively. These cycles are also shown divided into 8 half clock intervals (1P through 8P) and can be inserted within figures 4 and 5 if these processor cycles occur.

POWER UP AND INITIALIZATION

The COM 9026 has the following power up requirements:
1-The $\overline{\text { POR input must be active for at least } 100}$ milliseconds.
2-The CLK input must run for at least 10 clock cycles before the POR input is removed.
3 -While $\overline{\mathrm{POR}}$ is asserted, the CA input may be running or held high. If the CA input is running, $\overline{\mathrm{POR}}$ may be released asynchronously with respect to CA. If the CA input is held high, POR may be released before CA begins running.
During $\overline{\text { POR }}$ the status register will assume the following state:

BIT 7 (RI) set to a logic " 1 ".
BIT 6 (ETS2) not affected
BIT 5 (ETS1) not affected
BIT 4 (POR) set to a logic " 1 ".
BIT 3 (TEST) set to a logic " 0 ".

BIT 2 (RECON) set to a logic " 0 ".
BIT 1 (TMA) set to a logic " 0 ".
BIT 0 (TA) set to a logic " 1 ".
In addition the DSYNC output is reset inactive high and the interrupt mask register is reset (no maskable interrupts enabled). Page 00 is selected for both the receive and the transmit RAM buffer. After the $\overline{P O R}$ signal is removed, the COM 9026 will generate an interrupt from the nonmaskable Power On Reset interrupt. The COM 9026 will start operation four CA clock cycles after the $\overline{\mathrm{POR}}$ signal is removed. At this time, the COM 9026, after reading its ID from the external shift register, will execute two write cycles to the RAM buffer. Address 00 HEX will be written with the data D1 HEX and address 01 HEX will be written with the ID number as previously read from the external shift register. The processor may then read RAM buffer address 01 to determine the COM 9026 ID. It should be noted that the data pattern D1 written into the RAM has been chosen arbitrarily. Only if the D1 pattern appears in the RAM buffer can proper operation be assured.

CLOCK GENERATOR

The COM 9026 uses two separate clock inputs namely CA and CLK. The CLK input is a 5 MHz free running clock and the CA input is a start/stop clock periodically stopped and started to allow the COM 9026 to synchronize to the incoming data that appears on the RX input.
Figure 9 illustrates the timing of the CA clock generator and its relationship to the $\overline{\text { DSYNC output and the RX input. The }}$ DSYNC output is used to control the stopping of the CA clock. On the next rising edge of the CA input after $\overline{D S Y N C}$ is asserted, CA will remain in the high state. The CA clock remains halted in the high state as long as the RX signal remains high. When the RX signal goes low, the CA clock is restarted and remains running until the next falling edge of DSYNC. (See figure 20 for an implementation of this circuit.)

FIGURE 7—PROCESSOR WRITE COM 9026

FIGURE 9-CA CLOCK GENERATOR TIMING

EXTENDED TIMEOUT FUNCTION

There are three timeouts associated with the COM 9026 operation.

Response Time

This timeout is equal to the round trip propagation delay between the 2 furthest nodes on the network plus the maximum turn around time (the time it takes a particular COM 9026 to start sending a message in response to a received message) which is known to be 12 microseconds. The round trip propagation delay is a function of the transmission media and network topology. For a typical system using RG62 coax in a baseband system, a one way cable propagation delay of 31 microseconds translates to a distance of about 4 miles. The flow chart in figure 3 uses a value of 74.7 microseconds $(31+31+12+$ margin $)$ to determine if any node will respond.

Idle Time

This time is associated with a NETWORK RECONFIGURATION. Refering to figure 3, during a NETWORK RECONFIGURATION one node will continually transmit INVITATIONS TO TRANSMIT until it encounters an active node. Every other node on the network must distinguish between this operation and an entirely idle line. During NETWORK RECONFIGURATION, activity will appear on the line every 78 microseconds. This 78 microsecond is equal to the response time of 74.7 microseconds plus the time it takes the COM 9026 to retransmit another message (usually another INVITATION TO TRANSMIT). The actual timeout is set to 78.2 microseconds to allow for margin.

Reconfiguration Time

If any node does not receive the token within this time, the node will initiate a NETWORK RECONFIGURATION.

The ET2 and ET1 inputs allow the network to operate over longer distances than the 4 miles stated earlier. DC levels on these inputs control the maximum distances over which the COM 9026 can operate by controlling the 3 timeout values described above. Table 1 illustrates the response time and reconfiguration time as a function of the ET2 and ET1 inputs. It should be noted that for proper network operation, all COM 9026's connected to the same network must have the same response time, idle time and reconfiguration time.

ET2	ET 1	RESPONSE TIME $(\mu \mathrm{S})$	IDLE TIME $(\mu \mathrm{S})$	RECONFIGURATION TIME (ms)
1	1	78	86	840
1	0	285	316	1680
0	1	563	624	1680
0	0	1130	1237	1680

TABLE 1
COM 9026 INTERNAL PROGRAMMABLE TIMER VALUES

I/O COMMANDS

I/O commands are executed by activating the $\overline{\text { IOREQ }}$ input. The COM 9026 will interrogate the ADO and the R/W inputs at the AS time to execute commands according to the following table:

IOREQ	ADO	R/ \bar{W}	FUNCTION
low	low	low	write interrupt mask
low	low	high	read status register
low	high	low	write COM 9026 command
low	high	high	reserved for future use

READ STATUS REGISTER

Execution of this command places the contents of the status register on the data bus (AD7-AD0) during the read portion of the processor's read cycle. The COM 9026 status register contents are defined as follows:
BIT 7—Receiver inhibited (RI)—This bit, if set high, indicates that a packet has been deposited into the RAM buffer page $n n$ as specified by the last ENABLE RECEIVE TO PAGE nn command. The setting of this bit can cause an interrupt via INTR if enabled during a WRITE INTERRUPT MASK command. No messages will be received until an ENABLE RECEIVE TO PAGE nn command is issued. After any message is received, the receiver is automatically inhibited by setting this bit to a logic one.
BIT 6—Extended Timeout Status 2 (ETS2)—This bit reflects the current logic value tied to the ET2 input pin (pin 1).
BIT 5-Extended Timeout Status 1 (ETS1)—This bit reflects the current logic value tied to the ET1 input pin (pin 3).

BIT 4—Power On Reset (POR)—This bit, if set high, indicates that the COM 9026 has received an active signal on the $\overline{\text { POR input (pin 40). The setting of this }}$ bit will cause a nonmaskable interrupt via INTR.
BIT 3-Test (TEST) - This bit is intended for test and diagnostic purposes. It will be a logic zero under any normal operating conditions.
BIT 2—Reconfiguration (RECON)—This bit, if set high, indicates that the reconfiguration timer has timed out because the RX input was idle for 78.2 microseconds. The setting of this bit can cause an interrupt via INTR if enabled by the WRITE INTERRUPT MASK command. The bit is reset low during a CLEAR FLAGS command.
BIT 1-Transmit Message Acknowledged (TMA)—This bit, if set high, indicates that the packet transmitted as a result of an ENABLE TRANSMIT FROM PAGE nn command has been positively acknowledged. This bit should only be considered valid after the TA bit (bit 0) is set. Broadcast mesages are never acknowledged.
BIT 0—Transmitter Available (TA)—This bit, if set high, indicates that the transmitter is available for transmitting. This bit is set at the conclusion of a ENABLE TRANSMIT FROM PAGE nn command or upon the execution of a DISABLE TRANSMITTER command. The setting of this bit can cause an interrupt via INTR if enabled by the WRITE INTERRUPT MASK command.

WRITE INTERRUPT MASK

The COM 9026 is capable of generating an interrupt signal when certain status bits become true. A write to the MASK register specifies which status bits can generate the interrupt. The bit positions in the MASK register are in the same position as their corresponding status bits in the STATUS register with a logic one in a bit position enabling the corresponding interrupt. The setting of the TMA, EST1, and EST2 status bits will never cause an interrupt. The POR status bit will cause a non-maskable interrupt regardless of the value of the corresponding MASK register bit. The MASK register takes on the following bit definition:

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
RECEIVE INHIBIT	XXX	XX	XXX	XX	$\begin{aligned} & \text { RECON } \\ & \text { TIMER } \end{aligned}$	XXX	TRANSMITTER AVAILABLE

The three maskable status bits are anded with their respective mask bits, and the results, along with the POR status bit, are or'ed to produce the processor interrupt signal INTR. This signal returns to its inactive low state when the interrupting status bit is reset to a logic " 0 " or when the corresponding bit in the MASK register is reset to a logic " 0 ". To clear an interrupt generated as a result of a Power On Reset or Reconfiguration occurance, the CLEAR FLAGS command should be used. To clear an interrupt generated as a result of a completed transmission (TA) or a completed reception (RI), the corresponding masks bits should be reset to a logic zero.

WRITE COM 9026 COMMANDS

Execution of the following commands are initiated by performing a processor I/O write with the written data defining the following commands:

WRITTEN DATA	COMMAND
00000000	reserved for future use
00000001	DISABLE TRANSMITTER-This command will cancel any pending transmit command (transmission has not yet started) when the COM 9026 next receives the token. This com- mand will set the TA (Transmitter Available) status bit when the token is received.
00000010	DISABLE RECEIVER-This command will cancel any pending receive command. If the COM 9026 is not yet receiving a packet, the RI (Receiver Inhibited) bit will be set the next time the token is received. If packet reception is already underway, reception will run to its normal conclusion.
$000 \mathrm{ENn011}$	ENABLE TRANSMIT FROM PAGE nn-TThis command prepares the COM 9026 to begin a transmit sequence from RAM buffer page nn the next time it receives the token. When this command is loaded, the TA and TMA bits are set to a logic " 0 ". The TA bit is set to a logic one upon completion of the transmit sequence. The TMA bit will have been set by this time if the COM 9026 has received an acknowledgement from the destination COM 9026. This acknowledgement is strictly hardware level which is sent by the receiving COM 9026 before its controlling processor is even aware of message reception. It is also possible for this acknowledgement to get lost due to line errors, etc. This implies that the TMA bit is not a guarantee of proper destination reception. Refer to figure 3 for details of the transmit sequence and its relation to the
TA and TMA status bits.	

All other combinations of written data are not permitted and can result in incorrect chip and/or network operation.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range	0 to $70^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds)	$+325^{\circ} \mathrm{C}$
Positive Voltage on any pin	$+8 \mathrm{~V}$
Negative Voltage on any pin, with respect to ground	-0.3V

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
$\mathrm{V}_{\text {It }}$ input low voltage	-0.3		0.8	V	
V_{1+1} input high voltage 1	2.2		$\mathrm{V}_{\text {cc }}$	V	except CA and CLK
V_{1+2} input high voltage 2	$\mathrm{V}_{\mathrm{cc}}-0.5$		6.5	V	for CA or CLK
$\mathrm{V}_{\text {OL, }}$ output low voltage 1			0.4	V	$\mathrm{I}_{\mathrm{LL}}=1.6 \mathrm{ma}$
$\mathrm{V}_{\text {OL2 }}$ output low voltage 2			0.5	V	$\mathrm{l}_{\mathrm{oL}}=2.0 \mathrm{ma}$
V_{OH} output high voltage	2.4			V	except Tx and DSYNC $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
V_{OH} output high voltage	2.7			V	$\overline{T X}$ and DSYNC only $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$I_{L} \quad$ input leakage current			± 10	$\mu \mathrm{A}$	
$\mathrm{C}_{\text {IN }}$ input capacitance			20	pf	
$\mathrm{C}_{\text {DB }}$ data pus capacitance			50	pf	
C_{L} all other capacitance $I_{c C}$ power supply current		180	30 350	pf ma	

AC ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%$)

The above timing information is valid for a worst case 40% to 60% duty cycle on CLK. All times are measured from the 50\% point of the signals.

FIGURE 10-
CLK, CA
AC CHARACTERISTICS

FIGURE 12-TRANSMIT AND RECEIVE TIMING

FIGURE 13—PROCESSOR WRITE RAM AC TIMING

FIGURE 14-PROCESSOR READ RAM AC TIMING

FIGURE 15-COM 9026 READ RAM AC TIMING

FIGURE 16—COM 9026 WRITE RAM AC TIMING

FIGURE 17—PROCESSOR READ COM 9026 AC TIMING

FIGURE 18—PROCESSOR WRITE COM 9026 AC TIMING

IDDAT
(FROM SHIFT REGISTER)

FIGURE 19-ID INPUT AC TIMING

STANDARD MICROSYSTEMS CORPORATION \longrightarrow

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applicatrons; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

COM 9032 Local Area Network Transceiver LANT

FEATURES

Reduces chip count for COM 9026 ARCNET* implementations by 6-8 TTL chipsPerforms all clock generation functions for the COM 9026Compatible with the COM 9026Provides line drive signals for transmissionConverts incoming serial receive data to NRZ data formatGenerates two 4 MHz general purpose clocks
GENERAL DESCRIPTION

The COM 9032 local area network transceiver is a companion chip to the COM 9026 Local Area Network Controller (LANC) and will perform the additional functions necessary to allow simple interface to a transmission media for all ARCNET* (or equivalent) local area networks. Using a 20 MHz input clock, the COM 9032 will produce two, 5 MHz clocks for the COM 9026 . The first 5 MHz clock is free running and will directly feed the CLK input of the COM 9026 (pin 19). The second 5 MHz clock has start/stop capability which is controlled by the DSYNC output of the COM 9026 (pin 36) and the received data input as required by the COM 9026 (pin 2). Two additional 4 MHz free running clocks are also generated on the COM 9032 to allow operation of other logic, a microprocessor, or an LSI controller.

During data reception, the COM 9032 will convert incoming serial receive data from the transmission media to NRZ form which will directly feed the RX input of the COM 9026 (pin 38). During transmission, the COM 9032 converts the transmit data from the COM 9026 (TX, pin 37) into the waveforms necessary to drive opposite ends of the rf transformer used in the ARCNET* cable electronics shown in figure 2.
*ARCNET is a registered trademark of the Datapoint Corporation.

PIN CONFIGURATION

DESCRIPTION OF PIN FUNCTIONS

(Refer to figure 2)
COM 9026 INTERFACE

PIN NO.	NAME	SYMBOL	FUNCTION
1,2	PULSE 2 PULSE 1	$\overline{\overline{\text { PULS2 }}}$	PULS2 and PULS1 are two nonoverlapping negative pulses which occur every time the TX input is pulsed. PULS2 and PULS1 are used to feed an external driver as shown in figure 2.
3	BLANK	BLNK	When used with the circuitry shown in figure 2, this output should be left unconnected. The timing of this signal is shown in figure 4.
10	RECEIVEIN	RXIN	This input is the recovered receive data from the network. For each dipulse appearing on the network, the comparator shown in figure 2 will produce a positive pulse which directly feeds this input.
11	$\begin{aligned} & \hline \text { RECEIVE } \\ & \text { OUT } \end{aligned}$	RXOUT	This output is the NRZ data generated as a function of the RXIN pulse waveform which directly feeds the RX input of the COM 9026 (pin 38).
12	$\begin{aligned} & \text { DELAYED } \\ & \text { SYNC } \end{aligned}$	$\overline{\text { DSYNC }}$	This active low input, which is asserted by the COM 9026, will halt the CA clock output.
13	CA	CA	This output is a 5 MHz start/stop clock that is halted when $\overline{\text { DSYNC }}$ goes active low and restarted by a low signal on the RXOUT output. This clock is capable of driving 70 pf plus one LS load with 20 nanoseconds rise and fall times.
14	$\begin{aligned} & \text { TRANSMIT } \\ & \text { DATA } \end{aligned}$	TX	This input, which is asserted by the COM 9026 , is the serial data transmitted by the node.
15	TRANSMIT INHIBIT	$\overline{\text { INHTX }}$	This active low input inhibits the $\overline{\mathrm{TX}}$ signal from initiating transmit signals by forcing PULS1 and PULS2 to a high and BLNK to a low. This signal should be asserted during a power on reset condition.

SYSTEM CLOCK INTERFACE

PIN NO.	NAME	SYMBOL	FUNCTION
4	CPU CLOCK	CPUCLK	This output is a 4 MHz free running clock capable of driving 130 pf with 30 nanosecond rise and fall times. It is identical to the TTLCLK input when CKSEL is high. When CKSEL is low, this output becomes the inversion of the signal that is fed into the TTLCLK input.
5	$\begin{aligned} & \hline \text { CLOCK } \\ & \text { SELECT } \end{aligned}$	CKSEL	This input selects the clock interface option for the TTLCLK and CPUCLK. When this signal is high, both the TTLCLK and CPUCLK are identical 4 MHz free running clock outputs which are generated from the 20 MHz input clock (OSC) via a divide by 5 frequency divider. When this input is low, the TTLCLK pin becomes an input and the CPUCLK output will produce the inversion of the signal appearing on TTLCLK input.
6	TTL CLOCK	TTLCLK	This pin can be either an input or an output depending on the state of the CKSEL input. When CKSEL is high, a free running 4 MHz clock is ouput. When CKSEL is low, the pin becomes an input which drives an inverter that feeds the CPUCLK output.
7	OSCILLATOR	OSC	This input requires a 20 MHz clock.
9	LOCAL AREA NETWORK CLOCK	LANCLK	This output will supply the free running 5 MHz clock to the COM 9026, pin 19. It is capable of driving 70 pf plus one LS load with 20 nanoseconds rise and fall times.
8	GROUND	GND	Ground
16	$\begin{aligned} & \hline+5 \mathrm{VOLT} \\ & \text { SUPPLY } \end{aligned}$	V_{cc}	Power Supply

FUNCTIONAL DESCRIPTION

Transmit logic (refer to figures 2 and 4)
The COM 9026, when transmitting data on $\overline{T X}$, will produce a negative pulse of 200 nanoseconds in duration to indicate a logic " 1 " and no pulse to indicate a logic " 0 ". Refering to figure 4, a 200 nanosecond pulse on TX is converted to two, 100 nanosecond nonoverlapping pulses shown as PULS1 and PULS2. The signals PULS1 and PULS2 are used to create a 200 nanosecond wide dipulse by driving opposite ends of the RF transformer shown in figure 2.

Receive logic (refer to figures 2 and 5)

As each dipulse appears on the cable, it is coupled through the RF transformer, passes through the matched filter, and feeds the 75108 B comparator. The 75108B pro-
duces a positive pulse for each dipulse received from the cable. These pulses are captured by the COM 9032 and are converted to NRZ data with the NRZ data bit boundaries being delayed by 5 OSC clock periods as shown in figure 5. As each byte is received by the COM 9026, the CA clock is stopped by the COM 9026 (via DSYNC) until the first bit of the next byte is received which will automatically restart the CA clock. The COM 9026 uses the CA clock to sample the NRZ data and these sample points are shown in figure 5.

Typically, RXIN pulses occur at multiples of the transmission rate of 2.5 MHz (400 nanoseconds). The COM 9032 can tolerate distortion of plus or minus 100 nanoseconds and still correctly capture and convert the RXIN pulses to NRZ format.

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
INPUT VOLTAGES V_{H} V_{1}	2.7		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	
OUTPUT VOLTAGES $V_{\text {OH1 }}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \overline{\mathrm{PULS} 1}, \overline{\text { PULS2 }}$, BLNK, RXOUT and TTLCLK
$\mathrm{V}_{\mathrm{OLI}}$			0.4	V	outputs. $\mathrm{I}_{\mathrm{L}}=4.0 \mathrm{~mA}, \overline{\text { PULS } 1}, \overline{\text { PULS2 }}$, BLNK, RXOUT and TTLCLK
$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{V}_{\mathrm{cc}}-0.5$			V	$\mathrm{I}_{\text {OHtputs }}=-0.1 \mathrm{~mA}$, CPUCLK output.
$V_{\text {OL2 }}$			0.4	V	$=0.1 \mathrm{~mA}$, CPUCLK output.
$\mathrm{V}_{\text {OH3 }}$	$V_{\text {cc }}-0.5$			V	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}, \mathrm{CA}$ and LANCLK
$V_{\text {OL3 }}$			0.4	V	outputs. $\mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, \mathrm{CA}$ and LANCLK outputs.
LEAKAGE CURRENT l_{11} 1_{12}			$\begin{aligned} & 50 \\ & 10 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$	TTLCLK input with CKSEL low. all other inputs.
$\begin{aligned} & \text { INPUT CAPACITANCE } \\ & \mathrm{C}_{\mathbb{I N}} \end{aligned}$			20	pf	
SUPPLY CURRENT Icc			20	mA	at 20 MHz OSC frequency.

AC CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
$\begin{gathered} \text { OSC Input } \\ \mathrm{t}_{\mathrm{cr} 1} \\ \mathrm{t}_{\mathrm{CH} 1} \\ \mathrm{t}_{\mathrm{CL} 1} \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	50		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	200	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{gathered} \text { TTLCLK } \\ \mathrm{t}_{\text {čз }} \\ \mathrm{t}_{\text {ch3 }} \\ \mathrm{t}_{\text {chin }} \end{gathered}$	$\begin{aligned} & 110 \\ & 110 \\ & \hline \end{aligned}$	250		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	250	$\begin{aligned} & 30 \\ & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	for CKSEL low.
TRANSMIT TIMING $\mathrm{t}_{\text {sTc }}$ $\mathrm{t}_{\text {HTC }}$ t_{p} $\mathrm{t}_{\mathrm{p}_{1 \mathrm{w}}}$ t_{wB} t_{PW} $\mathrm{t}_{\mathrm{RST}}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	30 $2 \mathrm{t}_{\mathrm{cr},}$ $t_{c r 1}$ $2 \mathrm{t}_{\mathrm{cr} 1}$	60 40	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
RECEIVE TIMING $\mathrm{t}_{\text {Rs }}$ $\mathrm{t}_{\text {Rw }}$ $\mathrm{t}_{\text {Do }}$ $\mathrm{t}_{\text {Ro }}$ $\mathrm{t}_{\text {sso }}$ $\mathrm{t}_{\text {ssc }}$ $\mathrm{t}_{\text {Row }}$	$\begin{aligned} & 30 \\ & 10 \\ & \\ & 10 \end{aligned}$	$5 t_{\mathrm{cy} 1}+\mathrm{t}_{\mathrm{DO}}$ 20 400	70	$\begin{aligned} & \text { ns } \\ & \hline \end{aligned}$	

FIGURE 3: CLOCK TIMING

FIGURE 4: TRANSMIT TIMING PARAMETERS

FIGURE 5: RECEIVE TIMING PARAMETERS

STANDARD MICROSYSTEMS CORPORATION
 35 Marcus Blvd., Hauppauge, N.Y. 11788 (516) 273-3100 • TWX-510-227-8898

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes devices described any license under the patent rights of SMC or others. SMC re

Single Side Band Speech Scrambler

FEATURES

Speech Scrambling/DescramblingHigh Dynamic RangeLow Voltage OperationLow Power ConsumptionOn Board Crystal OscillatorUses Common Color Burst CrystalFull Duplex OperationSelectable Scramble Enable/DisableSwitched Capacitor FilterCOPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate TechnologyPIN CONFIGURATION

GENERAL DESCRIPTION

The COM9046 is a monolithic integrated circuit containing a voice scrambler, a descrambler and a crystal oscillator. It is designed to provide speech communication equipment with a privacy feature. The COM9046 is also designed to operate with power supply voltages as low as ± 2 Volts. The low voltage operation and low power consumption of the COM9046 make it ideal for use in portable equipment.
Two identical speech channels are contained in the COM9046 for full duplex operation. Either channel is capa-
ble of performing the scrambling or descrambling function. These functions can be enabled or disabled via an external pin. The on-board oscillator employs an inexpensive 3.58 MHz TV color-burst crystal. Switched capacitor techniques are used to perform analog signal processing in the COM9046.
Typical applications for the COM9046 are Voice Communications, Cellular Phones, Wireless Phones, PBX's, Dictation Machines, Two-way Radios and Audio Recording Equipment.

DESCRIPTION OF PIN FUNCTIONS

PIN \#	NAME	SYMBOL	DESCRIPTION
1	N/C		No Connection
2	Scramble	-	Vss applied to this pin asserts the scramble; Vdd asserts non-scramble.
3	Digital Supply	Vss	Negative digital supply. Vss is typically -2.6 volts with respect to pin 4.
4	Ref Input	Ref	Analog ground or mid-supply voltage. This is the chip 0 volt reference.
5	Audio Input B	In-B	Channel B audio input. D.C. voltage must be 0 V with respect to pin 4.
6	Audio Output B	Out-B	Channel B audio output. DC voltage is OV typical with respect to pin 4.
7	Analog Supply	$\mathrm{Vdd}_{\mathrm{A}}$	Positive analog supply. Vdd is typically +2.6 volts with respect to pin 4.
8	Analog Supply	Vss ${ }_{\text {A }}$	Negative analog supply. Vss ${ }_{\text {A }}$ is typically -2.6 volts with respect to pin 4.
9	Digital Supply	Vdd	Positive digital supply. Vss is typically +2.6 volts with respect to pin 4.
10	Audio Output A	Out-A	Channel A audio output. DC voltage is 0 V typical with respect to pin 4.
11	Audio Input A	In-A	Channel B audio input. D.C. voltage must be 0 V with respect to pin 4.
12	Crystal input/ Ext Clock	XTAL ${ }_{1}$	Crystal Oscillator input or external clock. External clock frequency should be 3.58 MHz with an amplitude of $4 \mathrm{Vp}-\mathrm{p}$ and OVDC.
13	N/C	-	No connection
14	Crystal input	XTAL ${ }_{2}$	Crystal Oscillator output. This pin is left floating when external clock is applied to pin 12.

OPERATION

Figure 1 shows a block diagram of the chip. Also shown in Figure 1 are the required external components.

Since switched-capacitor filters are used on the chip, the input speech signal must first be filtered by an anti-aliasing one-pole low pass filter before it is applied to the Audio input pin. The filter 3dB break point, which is determined by the product of C 1 and R1 plus the output impedance of the audio source, should be less than 20 KHz . This filter is required only if high frequency noise is present at the input. To maintain an output signal to noise ratio of 40 dB , any unwanted signal higher than 3.5 KHz contained in the speech input must be filtered to 40 dB below the nominal speech input level, due to the fact that the on-chip modulator is switched at 3.5 KHz .

The on-chip double sideband modulator can be turned on or off by asserting the SCRAMBLE input pin. The 3.5 KHz switching frequency of the modulator is generated by divid-
ing the output of the oscillator by 1024. The modulator output contains two sidebands centered at the suppressed switching frequency of 3.5 KHz . The upper sideband is attenuated by a 4th order Butterworth lowpass filter. The filter, consisting of two biquad switched capacitor filters in cascade, is clocked at 111.9 KHz . The inverted input speech spectrum appears at the filter output, and is available at the Audio Output pin. The filter output circuit is designed to drive a maximum capacitive load of 5 pf in parallel with a minimum resistance of 15 K ohms.
A parallel resonant crystal oscillator is employed in the device. The parallel resonant crystal should have a maximum series resistance of 150 ohms with a shunt capacitance of 5 pf . To insure reliable oscillator performance, the components shown connected to XTAL pins 14 and 12 in Figure 1 should be used.

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS*:

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specifications is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}, \mathrm{Vdd}=\mathrm{Vdd}_{\mathrm{A}}=+2.6 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=\mathrm{Vss}_{\mathrm{A}}=-2.6 \mathrm{~V}$ $\pm 5 \%$.)

Parameter	Min	Typ	Max	Units	Comments
Supply Current		5	8	ma	
Insertion Loss		0	1	db	
Audio Voltage Swing	40	0.8	1	$\mathrm{Vp-p}$	
S/N Ratio		3.5		Kb	
Modulation Frequency		3.2		KHz	
Bandedge of Sideband Filter	Vdd-1.0		Vdd	V	
Scramble Input High	Vss		$\mathrm{Vss}+.3$	V	
Scramble Logic Low		5		M Ohm	
Input Resistance		900		Ohm	
Dynamic Output Resistance		-60	-50	db	
3.5KHz Feedthrough					

RECOMMENDED CONNECTION FOR SINGLE +5V SUPPLY OPERATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes devices described any license under the patent rights of SMC or others. SMC rese

Enhanced Local Area Network Controller ELANC

FEATURES

5.0/2.5 M bit data rates100% compatible with COM9026 (in slow mode) ARCNET local area network controller64 K byte shared buffer memoryHandles variable length data packets (up to 2 K long)Supports up to 255 nodes per network segmentAllows $8 / 16$ bit word per sync to enhance line efficiencyAllows for nodal prioritySupports event scheduling via buffer descriptorsOn board GP event counters (4) to monitor the networkOn chip network diagnosticsDuplicate ID detection/preventionNode list/Group list requestsProvides mail distribution capabilitiesSupports group broadcast messagesProvides the hooks for broadband systems (modem)Internal/external loopback capability for self testRam buffer test capabilityOn board oscillatorLow power CMOS technology48 pin D.I.P. plastic package or PLCCSingle $+5 v$ SupplyCompatible with HYC9058, HYC9068, HYC9078
PIN CONFIGURATION*

Pin configuration subject to change, contact factory for details.

GENERAL DESCRIPTION

The ELANC is a general purpose communications adapter designed to provide high speed intercommunication between a number of intelligent electrical machines. Data is carried over a variable media (twisted pair, coax, or fiber optics) in variable size packets up to 2048 bytes long at
speeds of up to 5.0 Mbps . The interconnection of several nodes through their associated ELANCs forms an enhanced local area network. Each node has a unique ID number from 1 to 255 to distinguish it from other nodes on the same network.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the products described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Network Buffer Management Unit NBMU

FEATURES

Auto refresh cycle generationRefresh 64K DRAMCompatible with SMC's COM90C56Enhanced Local Area Network Controller (ELANC)
\square Low power CMOSReplaces several MSI/LSI devicesSimplifies the interface of COM90C56 to lower cost DRAMSingle +5 v supply

PIN CONFIGURATION*

Pin configuration subject to change, contact factory for details.

GENERAL DESCRIPTION

The NBMU provides the arbitration and memory control required to manage a dynamic memory buffer which is shared by the ELANC and a Host processor. Both access arbitration and dynamic memory refresh are taken care of by the NBMU so that minimal additional circuitry is required
to construct an efficient shared dynamic memory buffer interface between the ELANC and a Host system. Figure 1 shows how such an interface might be constructed using the NBMU.

IBM ${ }^{\oplus}$ 3274/3276 Compatible COAX Receiver/Transmitter

FEATURES

Conforms to the IBM ${ }^{\circledR} 3270$ Interface Display System StandardTransmits and Receives Manchester II CodeDetects and Generates Line Quiesce, CodeViolation, Sync, Parity, and Ending Sequence (Mini Code Violation)Multi Byte or Single Byte TransfersDouble Buffer Receiver and TransmitterSeparate Data and Status SelectOperates at 2.3587 MHzTTL Compatible Inputs and OutputsCOPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate TechnologySingle +5 Volt power supply

PIN CONFIGURATION**

**PLCC (J LEAD QUAD PACK) also available.

GENERAL DESCRIPTION

The COM 9064 is an MOS/LSI circuit which may be used to facilitate high speed data transmission. The COM 9064 is fabricated using SMC's patented COPLAMOS ${ }^{\oplus}$ technology and may be used to implement an interface between IBM ${ }^{\circledR} 3274 / 3276$ compatible control units and 3278/3287/ 3289 compatible terminal units. The receiver and transmitter sections of the COM 9064 are separate and may be used independently of each other.

The COM 9064 generates and detects the line quiesce, code violation, parity, and mini code violation bit patterns.
The on-chip parity logic is capable of generating and checking either even or odd parity for the entire 10 bit data word. In addition, parity may be generated for the least significant 8 bits of the data word (this parity bit would replace the ninth data bit).

ORGANIZATION

The COM 9064 is organized into 9 major sections. Communication between each section is achieved via internal data and control busses.

Transmitter Holding Register

The transmit holding register is a 12 bit latch. This latch is loaded with the transmit data and parity generation information from the system bus.

Tri-State Buffers

These buffers allow gating of the COM 9064's status word onto the system data bus.

Bus Transceiver

The bus transceiver allows bi-directional data transfer between the system data bus and the transmit and receive holding registers.

Parity Generator

This logic determines and generates the correct parity for the data in the transmitter holding register.

Transmitter Control

This logic generates signals required to enable external
transmit circuitry. It also generates the Line Quiesce, Code Violation, sync bits and Mini Code Violation patterns.

Transmitter Shift Register

The transmitter shift register is an 11 bit parallel to serial shift register. It accepts data from the transmitter holding register and the parity generation logic and converts it into serial form for transmission.

Receive Control/Parity Check

This logic checks the received character for the specified parity and ensures that no Transmit Check conditions occurred. It also handles the self test mode and generates a strobe when the complete data word is received.

Receiver Shift Register

This logic is a serial to parallel shift register that converts the received information into a 10 bit data word and RTA status bit.

Receiver Holding Register

This register holds the assembled data word until it is read by the processor.

DESCRIPTION OF PIN FUNCTIONS Processor Related Signals

PIN NO.	NAME	SYMBOL	FUNCTION
6-13	Transmit/ Receive Data Bits	D0-D7	Bidirectional: 8 bit, three state data port used to transfer data between the COM 9064 and the processor. DO is the first bit transmitted.
4	$\begin{aligned} & \text { Transmit Bit } 9 \\ & \text { Select } \end{aligned}$	T9S	Input: A low level on this pin enables T9 to be transmitted as bit 9. A high level on this pin causes T 9 to determine the type of parity bit generated for bits D0-D7.
38	Transmit Bit 9	T9	Input: If T9S is low, this supplies transmit bit 9. If T9S is high, then T9 low forces odd parity and T9 high forces even parity to be generated for DO-D7. In this case the parity bit generated is transmit bit 9 .
39	Transmit Bit 10	T10	Input: This pin supplies transmit bit 10.
3	Transmit Parity	TP*	Input: This input controls the parity bit for transmit bits 1-10. A low level on this pin causes odd parity and a high level on this pin causes even parity to be generated for bits 1-10. The parity bit generated is transmit bit 11.
18	System Clock	SCLK	Input: This signal is used to synchronize the COM 9064. The transmitter is loaded and started on the low to high transition of SCLK if TDS is low. DA is reset on the low to high transition of SCLK if RDA is low.
36	Transmitter Data Strobe	TDS	Input: This input and SCLK are used to load the transmitter holding register and start the transmit sequence. Code Violation Detect (CVD) is reset at this time.
26	Reset Data Available	$\overline{\mathrm{RDA}}$	Input: This input and SCLK are used to reset DA.
16	Status Word Enable	SWE	Input: A low level at this pin enables the status word buffer outputs (DA, CVD, TBMT, R9, R10, and RTA). A high level on SWE places the status word buffer outputs in a high impedance state.
23	Receive Data Available	DA	This three-state output signal is at a high level when an entire word has been received and transferred into the receiver buffer register. It is only set if a Transmit Check Condition did not occur.
25	Code Violation Detected	CVD	This three-state output signal is at a high level if a valid Code Violation was detected at the receiver since the last time the transmitter was loaded. It is reset when the transmitter is loaded.
37	Transmit Buffer Empty	TBMT	This three-state output signal is at a high level when the transmit holding register may be loaded with new data.
14	Receive Bit 9	R9	This three-state output signal is receiver data bit 9 .
15	Receive Bit 10	R10	This three-state output signal is receiver data bit 10.
24	Recever Turnaround	RTA	This three-state output signal is set to a high level when a valid Mini Code Violation is detected. It is only set if a Transmit Check did not occur. It is reset when the transmitter is loaded.
5	Receive Data Enable	$\overline{\text { RDE }}$	Input: A low level enables the outputs of the receive data register D0-D7.
17	Receiver Parity	RP*	Input: This input determines whether the entire received word will be checked for even or odd parity. A low at this pin will cause a check for odd parity and a high at this pin will cause a check for even parity. This input has an internal pull-up resistor.

*The SYNC bit is included in parity checking.

DESCRIPTION OF PIN FUNCTIONS (cont.)

PIN NO.	NAME	SYMBOL	FUNCTION
29	Analog Loopback	$\overline{\text { ALOOP }}$	Input: A low level on this pin disables the receiver except when the transmitter is active. A high level on this pin and DLOOP will cause the receiver to be disabled while the transmitter is active. $\overline{\text { ALOOP }}$ is used to allow loop-back through the line drivers and receivers. This input has an internal pull-up resistor.
34	Digital Loopback	$\overline{\text { DLOOP }}$	Input: A low level on this pin disables the receiver except when the transmitter is active. TG is forced to a high level to disable the external coax driver. Data input to the receiver is internally wrapped from the transmitter data output. This input has an internal puil-up resistor.
21	Master Reset	$\overline{\mathrm{MR}}$	Input: This input should be pulsed low after power-on. This signal resets DA to a low level and sets TG and TBMT to a high level. This input has an internal pull-up.
1	Supply Voltage	$\mathrm{V}_{\text {c }}$	+ 5 volt supply
19, 22, 35		N/C	No Connection
2, 20, 40	Ground	GND	GROUND

Device Related Signals

PIN NO.	NAME	SYMBOL	FUNCTION
27	Baud Rate Clock	BCLK	This input is a clock whose frequency is 8 times the desired transmitter and receiver baud rate (typically 18.8696 MHz for $3274 / 3276$ operation). This input is not TTL compatible.
33	Transmit Data	TD	Output: Serial data from the transmitter. This signal is a biphase Manchester II encoded bit stream. This output is low when no data is being transmitted.
31	Transmit Clock	$\overline{\text { TC }}$	The Transmit Clock output is $1 / 2$ the frequency of BCLK. It is synchronized with TD and used to provide external pre-distortion timing.
30	Receive Data	RD	Input: Accepts the serial biphase Manchester II encoded bit stream.
32	Transmit Gate	$\overline{\text { TG }}$	Output: This signal is low during the time that the transmit data is valid. TG is used to turn on the external transmit circuitry.
28	Receive Single Shot Enable	RSSE	Input: A high level on this pin enables an internal digital single shot on RD. This limits a high level on RD to 3 clock times. Also when high it will cause the receiver not to detect a valid Code Violation. A low level disables the single shot causing no reshaping of the RD input signal.

COM 9064 OPERATION

The COM 9064 consists of a receiver section that converts Manchester II phase encoded serial data to parallel data and a transmitter section that converts parallel data to Manchester II phase encoded serial data.

Receiver

Message transfers must conform to the IBM 3270 protocol in order for the COM 9064 to acknowledge them.
The received message is checked for the Code Violation sequence (start sequence) bit pattern, preceding the first data word, and Mini Code Violation (end sequence) following the last data word.
The data word consists of 10 data bits, a sync bit and a parity bit. Receiving data in multiple byte format is functional only when even parity is selected.
The data word along with the first bit of the next word or ending zero (bit 13) is shifted into a shift register. Once it is assembled it is transferred and held in the holding register until another data word is assembled. The 13th bit is inverted and presented to the bus or RTA (receiver turn-around). Therefore RTA is set high on the last word of a message and is reset when the transmitter is loaded with the response.
Once the data word is in the holding register and parity is correct the data available (DA) status signal is set high.

The Code Violation Detect signal (CVD) goes active high after a line Quiesce, Code Violation and sync bit have been detected by the receiver. It is reset when the transmitter of the COM 9064 is asserted. By examining this signal, the processor can determine whether a timeout or Transmit Check condition caused a receiver error.
The receive input is sampled at 8 times the data rate. The receiver logic is brought into bit synchronization during the Line Quiesce pattern. Once the Code Violation following the Line Quiesce is detected, the receiver is brought into bit and word synchronization. The internal receiver clock is adjusted after each transition to compensate for jitter and distortion in the received data signal.

Transmitter

The transmitter section basically consists of a 12-bit holding register, parallel to serial shift register and a parity generator. The firmware initiates a transmit sequence by strobing TDS low. The data is loaded into the holding register on the rising edge of SCLK while TDS is low. Nine bits of data (D0-D7 and T10) are transferred without change to the transmit shift register. The logic level of T9S determines whether T9 will be transmitted as parity on the preceding eight bits, or as data.
After the processor loads the transmit holding register with data, status signal TBMT is driven inactive low until the COM 9064 transfers the data from the transmit holding register
to the transmit shift register. After the transfer, TBMT is driven high. The processor should not try to load data into the COM 9064 while TBMT is low. When initiating a data transmission, the COM 9064 automatically transmits a Line Quiesce pattern and a Code Violation. The data is then shifted out of the shift register with a sync bit (1) inserted before the data word, and a parity bit appended after the data word.

If a new word is loaded into the COM 9064 before the parity bit of the previous word has been transmitted, a sync bit (1) followed by the new data bits is transmitted. If not, after the COM 9064 transmits the last data word (no more transmit sequences are started), a sync bit (0) and a Mini Code Violation is appended to the end of the message.
Output $\overline{\mathrm{TG}}$ goes active low one-half bit cell time before the first Line Quiesce character is output. It is made inactive (high) during the transmission of the Mini Code Violation.

Diagnostic Modes

NORMAL OPERATION ($\overline{\text { ALOOP AND }} \overline{\text { DLOOP }}$ HIGH)
Internal read data signal follows the RD input as long as the COM 9064's transmitter is off. The receiver will be disabled while the transmitter is active.

ANALOG LOOPBACK (ALOOP LOW AND DLOOP HIGH)

The internal read data signal follows the RD input as long as the COM 9064's transmitter is active.
DIGITAL LOOPBACK ALOOP HIGH AND DLOOP LOW) The internal read data signal follows an internally generated and latched valid transmit signal (only when the transmitter is active.) The output $\overline{T G}$ is disabled in digital loopback mode.
DISABLE RECEIVER ($\overline{\text { ALOOP AND DLOOP LOW) }}$
The internal read data signal is held low and output $\overline{T G}$ is disabled.

MESSAGE FORMATS

Single Byte Transmission

COAX IDLE	LINE	CODE	SYNC	DATA	PARITY	ENDING	COAX
(10 BITS)	BIT	SEQUENCE	IDLE				

Multiple Byte Transmission

COAX IDLE LINE QUIESCE CODE VIOLATION SYNC BIT DATA 1 $(10 \mathrm{BITS})$ PARITY BIT SYNC BIT DATA 2 $(10$ BITS $)$ PARITY BIT $\ldots \ldots \ldots .$. SYNC BIT

Bits on the coax appear as positive and negative going pulses. A positive pulse to negative pulse transition in the middle of the bit cell is interpreted as a logical ' 0 '. A negative pulse to positive pulse transition in the middle of a bit cell is
interpreted as a logical ' 1 '. A predistortion pulse is generated for every pulse transition from an up to down level or a down to up level.

Line Quiesce Pattern

The Line Quiesce pattern consists of five contiguous logical ones. It establishes an equilibrium condition on the coax following line turnaround.

The Code Violation pattern is a bit sequence containing no mid-bit time level transition in two of its three bit cells. It is a unique pattern that violates the encoding rules and indicates the start of valid data.

Mini Code Violation Pattern

bit times:	11	12		1		2		3
			1	0	1	mcv	1	mcv
		P	1		1		1	
			1		I			
		"1"	1		1			
		or	1	I	1		1	
		"0"	1	1	1		1	
			1		-1		I	
			1		I		I	
			1		1		I	
	last data				Ending	uence		

The Mini Code Violation (MCV) pattern is a bit sequence containing no mid-bit time level transition in either of its bit cells. It is a unique code that violates the encoding rules and indicates the end of valid transmit data.

Transmit Check

A Transmit Check is defined as follows:

1) A logical zero sync bit in the ending sequence not followed by a Mini Code Violation.
2) Loss of a level transition at the mid-bit time during other than a normal ending sequence.
3) A transmission parity error.

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +5 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS INPUT VOLTAGE V_{11} Low $V_{1 H}$ High $V_{1 H}$ High $V_{\text {IH }}$ High	$\begin{array}{r} -0.3 \\ 2.0 \\ 4.3 \\ 3.5 \\ \hline \end{array}$		$\begin{gathered} .8 \\ \mathrm{~V}_{\mathrm{cc}} \\ \mathrm{~V}_{\mathrm{cc}}+.3 \\ \mathrm{~V}_{\mathrm{cc}}+.3 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	(Except BCLK and $\overline{\mathrm{MR}}$) (BCLK only) (MR only)
OUTPUT VOLTAGE $V_{\text {oL }}$ Low $V_{\text {OH }}$ High	2.4		. 4		$\begin{aligned} & \mathrm{I}_{\mathrm{oL}}=2.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-.25 \mathrm{~mA} \end{aligned}$
POWER SUPPLY CURRENT $I_{c c}$		125		mA	All outputs $=\mathrm{V}_{\mathrm{OH}}$
INPUT LEAKAGE CURRENT All input pins			. 01	mA	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{cc}
CAPACITANCE C_{IN} $\mathrm{C}_{\text {IN }}$			$\begin{aligned} & 10 \\ & 35 \\ & \hline \end{aligned}$	pf	(Except BCLK) (BCLK only)

AC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$)

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
Clock Frequency $\mathrm{B}_{\mathrm{CLK}}$ $\mathrm{S}_{\mathrm{CLK}}$	$\begin{gathered} 7 \\ D^{7} C \\ \hline \end{gathered}$	$\begin{array}{r} 18.8696 \\ 4.7474 \\ \hline \end{array}$	$\begin{gathered} 18.9 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
Clock Width $\mathrm{t}_{\text {SKH }}$ SCLK High $\mathrm{t}_{\text {SKL }}$ SCLK Low $\mathrm{t}_{\text {EKH }}$ BCLK High $\mathrm{t}_{\text {EKH }}$ BCLK Low t_{F} BCLKK rise time t_{F} BCLK fall time	$\begin{aligned} & 80 \\ & 80 \\ & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	ns ns ns ns ns ns	
$t_{\text {RDD }}$ $\overline{R D E}$ to Data Valid Delay $t_{\text {SDD }}$ $\frac{\text { SWE to Data Valid Delay }}{}$ $t_{D F}$ Data Read to Bus Float			$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{array}{ll}\mathrm{t}_{\text {Ds }} & \text { Data Setup Time } \\ \mathrm{t}_{\mathrm{DH}} & \text { Data Hold Time }\end{array}$	$\begin{gathered} 100 \\ 10 \end{gathered}$			$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
$\begin{array}{ll}\mathrm{t}_{\mathrm{DAv}} & \text { DA to receive data } \\ \text { valid delay }\end{array}$	-100		100	ns	
t_{TC} TC clock period $\mathrm{t}_{\overline{T G} \mathrm{LD}}$ TC to TG low delay $\mathrm{t}_{\overline{\mathrm{T}} \mathrm{GDO}}$ TC to TG high delay $\mathrm{t}_{\text {TDS }}$ Transmit data to TG setup time $\mathrm{t}_{\mathrm{TDH}}$ Transmit data to TC t_{D} hold time TBMT active to de-active	$\begin{gathered} -53 \\ 10 \\ 20 \end{gathered}$	$\begin{array}{r} 106 \\ \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \\ & \text { ns } \\ & \text { ns } \end{aligned}$	
 $\mathrm{t}_{\text {TDDC }}$ TBMT cycle $\mathrm{t}_{\text {to }}$ TBMT de-activated $\mathrm{t}_{\text {DSs }}$ TDS set up $\mathrm{t}_{\text {DSH }}$ TDS hold $\mathrm{t}_{\text {MR }}$ MR pulse width	$\begin{gathered} 1 \\ 100 \\ 10 \\ 300 \end{gathered}$		$\begin{gathered} 3.2 \\ 2 \\ 200 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	

 consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

ARCNET ${ }^{*}$ High Impedance Transceiver $\mathrm{HIT}^{\prime \prime}$

FEATURES

Compatible with existing ARCNET® installationsCompatible with ARCNET® coax driversPin Compatible with ARCNET® fiber-optic driversEnables Bus topology on ARCNET® LAN'sProvides network expansion without any additional repeaters or major rewiringMulti-media drive capabilitySpace saving economy20 pin single in line package (SIP)Straight or right angle lead frameBuilt in filters for noise immunityPIN CONFIGURATION

GENERAL DESCRIPTION

The High Impedance Transceiver (HIT) provides ARCNET® LAN's designers with a new bus configuration option, while reducing hardware and installation costs. The HIT offers ARCNET ${ }^{\oplus}$ LAN's with the ability to provide the highest node performance/cost ratio available heretofore. The bus topology and the reduced need for HUB's (active repeaters) eliminate the excessive costs usually associated with installing a new LAN or modifying an existing one.

The HIT is compatible with SMC monolithic LAN controller chip set the COM9026 and the COM9032. However it can
work with other controllers and its inherent high output impedance enables it to drive several types of media cables.
The HIT is easily incorporated into existing ARCNET® LAN's. The HIT is pin-compatible with other media drivers, like the COAX driver currently used in most ARCNET® baseband applications and the fiber optic driver manufactured by Raycom Systems.
The HIT contains all the necessary filtering to guarantee noise-immunity for interference-free data transfers at 2.5 Mbps .

Figure 1-HIT Block Diagram

DESCRIPTION OF PIN FUNCTIONS

PIN \#	NAME	SYMBOL	FUNCTION
1,2, 9	-	NC	Not used. No connection.
3	Power Supply	VDD	-5 Volts Power Supply.
4, 13, 14, 17	Ground	GND	Ground
5	Threshold Voltage	REF V	External Reference Voltage to adjust Internal Voltage Detector Threshold.
6	Power Supply	VCC	+5 Volt Power Supply.
7	Received Data Output	RX	Received Data, goes to RXIN of COM9032 (TTL).
8, 10, 15, 16	Test Points	TPA, TPB TPD, TPC	Test Points. Make no connection to these pins.
11	COAX I/O	SHLD	Connect to Coax Cable Shield (Outer Conductor). Bypass to GND is recommended.
12	COAX I/O	CNTR	Connect to Coax Cable Inner Conductor (Center)
18	Pulse 2	P2	TTL Level Input to the Transmitter Section (Active Low).
19	Disable	DSBL	Normally connected to ground a high disables the transmitting.
20	Pulse 1	P1	TTL Level Input to the Transmitter Section (Active Low).

FUNCTIONAL DESCRIPTION

The HIT integrates a host of discrete components onto a hybrid microcircuit to provide the Local Area Network design with space and cost reductions as well as the enhanced reliability of a single component.

Transmit section:

Referring to the block diagram of figure 1, Pulse 1 and Pulse 2 signals can be TTL pulses of 100 nsec each with Pulse 2 delayed by 100 nsec. The optimum timing for these signals can be obtained from SMC's COM9032. Amplification and filtering is used to eliminate undesirable frequencies from the signals, while providing them with the necessary drive, before transmitting onto the line through an isolation transformer. The driving circuitry has been designed to present a very high impedance to the line for minimum loading. The transformer typical voltage output is 20 volts peak to peak. In most applications, it is recommended that the shield of the coaxial cable be bypassed to ground by a parallel R-C combination.

Receive section:

The received dipulse signal from the line is DC isolated by the transformer. It is filtered to reduce noise, voltage transients and intersymbol interference. It is then recovered by a threshold voltage detector. The minimum signal amplitude necessary for reliable operation is 6 volts peak to peak. The TTL Rx Data output is then sent to the receive input of
the COM9032. A voltage threshold pin can be used to vary the threshold voltage for special situations.

In normal operation, the "disable" at pin 19 should be tied to ground. However, in certain cases, this pin can be used to prevent transmission.

APPLICATION INFORMATION

The hit is designed to eliminate the need for Hubs in sinall (8 nodes) installations extending up to 1000 feet as shown in figure 2. However the number of nodes is inversely proportional to the bus length.

Figure 2-Typical Small Hubless Network

Figures 3 and 4 show alternative ARCNET® local area network implementation using the "LAND" and the HIT. As can be easily observed the straight forward approach of the HIT version results in very low per node cost as well as ease of installation.

Figure 3-Typical 64 Node Network Using HUBs and LANDs

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS*:

Operating Temperature Range $0 C$ to $+70 C$
Storage Temperature Range $-40 C$ to $+125 C$

Positive Voltage on any pin with respect to Gnd ... 8 V
Negative Voltage on any pin except Vdd with respect to Gnd ... 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

Electrical Characteristics $\mathrm{Ta}=0$ to $70 \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%$, $\mathrm{Vdd}=-5 \mathrm{~V} \pm 5 \%$.

Parameter	Min.	Typ.	Max	Unit	Comments
INPUT VOLTAGE LEVELS					
Pulse 1, 2, DSBL inputs					
Low-level, VIL			0.8	V	$\mathrm{lil}=-.8 \mathrm{ma}$
High-level, VIH	2.0			V	$\mathrm{lih}=.2 \mathrm{ma}$
Received signal amplitude	6			Vp-p	
OUTPUT VOLTAGE LEVELS					
Rx Data output					
Low-level, VOL			0.4	V	One TTL load
High-level, VOH	2.4			V	One TTL load
Transformer output	16	20		Vp-p	
Cable noise amplitude			4	Vp-p	
POWER SUPPLY CURRENT					
Icc		190	285	mA	
Idd		180	270	mA	
PULSE WIDTH					
Pulse 1, 2 inputs		100		nsec	

Shorting the transformer output can cause permanent damage to the device.

Figure 4-Typical 64 Node Network Using HIT

Figure 5-Typical HYC9058 Interconnect

Mechanical Specification

Circuit diagrams utilizing SMC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the products described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

HYC9068
PRELIMINARY

ARCNET ${ }^{*}$ Local Area Network Driver LAND"'

FEATURES

Compatible with existing ARCNET® installationsCompatible with ARCNET® coax driversPin Compatible with ARCNET® fiber-optic driversSpace saving economy20 pin single in line package (SIP)Straight or right angle lead frameBuilt in filters for noise immunityDrives up to $2,000 \mathrm{ft}$. of CoaxReplaces more than 25 discrete components and IC's
GENERAL DESCRIPTION

The HYC9068 is a Coax Driver for ARCNET Local Area Networks. The HYC9068 is compatible with SMC's COM9026 Local Area Network Controller (LANC) and the COM9032 Local Area Network Transceiver (LANT). The HYC9068 simplifies network implementation while provid-
ing considerable space and cost savings plus the high reliability of a single component.
The HYC9068 contains both receive and transmit filters to guarantee interference-free data transfer over 2,000 ft. of RG-62 coaxial cable at 2.5 Mbps data rate.

HYC9068-LAND BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN \#	NAME	SYMBOL	FUNCTION
1	-12V Return	GND	-12V Return
2	Power Supply	Vss	-12V Power Supply
3	Power Supply	VDD	-5 Volts Power Supply.
4, 13, 14, 17	Ground	GND	Ground
6	Power Supply	VCC	+ 5 Volt Power Supply.
7	Received Data Output	RX	Received Data, goes to RXIN of COM9032 (TTL).
8, 10, 15, 16, 5, 9	Test Points	TPA, TPB, TPE TPD, TPC, TPF	Test Points. Make no connection to these pins.
11	COAX I/O	SHLD	Connect to Coax Cable Shield (Outer Conductor). Bypass to GND is recommended.
12	COAX I/O	CNTR	Connect to Coax Cable Inner Conductor (Center).
18	Pulse 2	P2	TTL Level Input to the Transmitter Section (Active Low).
19	Disable	DSBL	Normally connected to ground a high disables the transmitting.
20	Pulse 1	P1	TTL Level Input to the Transmitter Section (Active Low).

FUNCTIONAL DESCRIPTION

When using the optional -12 V supply Pin 3 must not be connected. Pin 1 must be grounded and -12 V must be applied to Pin 2.
The easiest way to create the optimum input is to use the SMC COM9032 to provide PULSE $1\left(\mathrm{P}_{1}\right)$ and PULSE $2\left(\mathrm{P}_{2}\right)$. The DISABLE (Pin 19) should be grounded during normal
operation.
In order to inhibit surge damage as well as limit spurious radiation, it is suggested that the shield of the COAXIAL CABLE be bypassed to ground by a parallel R-C Network $(0.005 \mu \mathrm{Fd} / 1 \mathrm{Kv}$ in parallel with two 5.6 K ohm $/ 1 / 2 \mathrm{~W}$ resistors in series) as shown in typical interconnect diagram.

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS*:

Positive Voltage on any pin with respect to Gnd .. 8 V
Negative Voltage on any pin except Vdd and Vss with respect to Gnd ... 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their Jutputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

Electrical Characteristics $\mathrm{Ta}=0$ to $70 \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%, \mathrm{Vdd}=-5 \mathrm{~V} \pm 5 \%$, or $\mathrm{Vss}=-12 \mathrm{~V} \pm 5 \%$

Parameter	Min.	Typ.	Max	Unit	Comments
INPUT VOLTAGE LEVELS					
Pulse 1, 2, DSBL inputs					
Low-level, VIL			0.8	V	$\mathrm{lil}=-.8 \mathrm{ma}$
High-level, VIH	2.0			V	$\mathrm{lih}=.2 \mathrm{ma}$
Received signal amplitude	6			Vp-p	
OUTPUT VOLTAGE LEVELS					
Rx Data output					
Low-level, VOL			0.4	V	One TTL load
High-Level, VOH	2.4			V	One TTL load
Transformer output	15.4	20		Vp-p	
Cable noise amplitude			4	Vp-p	
POWER SUPPLY CURRENT					
lcc			250	mA	
Idd			20	mA	
Iss			50	mA	
PULSE WIDTH					
Pulse 1, 2 inputs		100		nsec	
COAXIAL CABLE					
Type RG-62 (93)			2,000	ft	

TYPICAL HYC9068 INTERCONNECT

MECHANICAL SPECIFICATION

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the products described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

High Impedance Transceiver HIT ${ }^{\text {"' }} 2$

FEATURES

Compatible with SMC's COM9056 Enhanced Local Area Network Controller (ELANC)5 MHz operationHigh impedanceEnables Bus topology on LAN'sProvides network expansion without any additional repeaters or major rewiringMulti-media drive capabilitySpace saving economy20 pin single in line package (SIP)Straight or right angle lead frameBuilt in filters for noise immunityCommon mode isolationWide dynamic rangeVery low level receiver sensitivityPIN CONFIGURATION

GENERAL DESCRIPTION

The HIT2 is a new media interface hybrid which works with the ELANC in the new high speed 5 Mbps mode of signalling. The HIT2 will be available in a 20pin SIP hybrid package.
The HIT2 has been tuned to operate with the ELANC's high speed mode and includes a specially designed receive circuit to receive data in the manchester signalling scheme without introducing a significant amount of bit jitter. The HIT2
also includes a transmit signal amplifier and high frequency filter so that it generates clean signals that are free from high order harmonics that might cause EMI problems. Both the transmit section and receive circuit are transformer coupled to the output and have both been designed with very high input impedances which allow the HIT2 to be used in bus topologies. Additionally, the large dynamic range of the HIT2 provides very relaxed cabling restrictions.

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the products described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Baud Rate Generator

Part Number	Description	Features	Power Supplies	Package	Page
COM 5016	Dual Baud Rate Generator	On-chip oscillator or external frequency input (use 8116 for new designs)	+5, +12	18 DIP	265-266
COM 5016T ${ }^{(1)}$	Dual Baud Rate Generator	External frequency input	+5, +12	18 DIP	265-266
COM 5026	Single Baud Rate Generator	On-chip oscillator or external frequency input (use 8126 for new designs)	+5, +12	14 DIP	267-272
COM 5026T ${ }^{(1)}$	Single Baud Rate Generator	External frequency input	+5, +12	14 DIP	267-272
COM 5036	Dual Baud Rate Generator	COM 5016 with additional output of input frequency $\div 4$ (use 8136 or 81036 for new designs)	+5, +12	18 DIP	265-266
COM 5036T ${ }^{\text {+ }}$	Dual Baud Rate Generator	COM S016T with additional output of input frequency $\div 4$	+5, +12	18 DIP	265-266
COM 5046	Single Baud Rate Generator	COM 5026 with additional output of input frequency $\div 4$ (use 8146 for new designs)	+5, +12	14 DIP	267-272
COM 5046T ${ }^{(1)}$	Single Baud Rate Generator	COM 5026T with additional output of input frequency $\div 4$	+5, +12	14 DIP	267-272
COM 8046	Single Baud Rate Generator	32 baud rates; 1X, 16X, 32X clock outputs; single +5 volt supply	+5	16 DIP	273-274
COM 8046T ${ }^{(1)}$	Single Baud Rate Generator	COM 8046 with external frequency input only	+ 5	16 DIP	273-274
COM 8116	Dual Baud Rate Generator	Single +5 volt version of COM 5016	+5	18 DIP	275-276
COM 8116T	Dual Baud Rate Generator	Single +5 volt version of COM $5016 T$	+5	18 DIP	275-276
COM 8126	Single Baud Rate Generator	Single +5 volt version of COM 5026	+5	14 DIP	277-284
COM 8126T ${ }^{\circ}$	Single Baud Rate Generator	Single +5 volt version of COM 5026T	+5	14 DIP	277-284
COM 8136	Dual Baud Rate Generator	Single +5 volt version of COM 5036	+5	18 DIP	275-276
COM 8136T ${ }^{(1)}$	Dual Baud Rate Generator	Single +5 volt version of COM 5036T	+5	18 DIP	275-276
COM 8146	Single Baud Rate Generator	Single +5 volt version of COM 5046	+5	14 DIP	277-284
COM 8146T ${ }^{\text {(}}$	Single Baud Rate Generator	Single + 5 volt version of COM 5046T	+5	14 DIP	2777.284
COM 8156	Dual Baud Rate Generator	High-frequency clock input version of COM 8116 with additional outputs of input frequency $\div 2$ and $\div 8$	+5	18 DIP	285-288
COM 8156T ${ }^{\text {+ }}$	Dual Baud Rate Generator	External clock input version of COM 8156	+5	18 DIP	285-288
COM 81C66 ${ }^{(3)}$	Timer/Clock Generator	CMOS User Programmable Clock and Timer	+5	16 DIP	289-290
COM 81C66T ${ }^{(2)}$	Timer/Clock Generator	External Frequency Input version of COM 8166T	+5	16 DIP	289-290

[^8]
Dual Baud Rate Generator Programmable Divider

FEATURES

On chip crystal oscillator or external frequency input\square Choice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDIRECT UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityHigh frequency reference output*TTL, MOS compatibility

PIN CONFIGURATION

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 5016/COM 5036 Dual Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 32 externally selectable frequencies.

The COM 5016/COM 5036 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs, on each of the independent dividers, as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs on each divider section may be strobe (150ns) or DC loaded. As the COM 5016/COM 5036 is a dual baud rate generator, full duplex (independent receive and transmit frequencies) operation is possible.

The COM 5016/COM 5036 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to ($2^{15}-1$).

By using one of the frequency outputs it is possible to generate additional divisions of the master clock frequency by cascading COM 5016/COM 5036's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5016/COM 5036 can be driven by either an external crystal or TTL logic level inputs; COM 5016T/COM 5036T is driven by TTL logic level inputs only.

The COM 5036 provides a high frequency reference output at one-quarter ($1 / 4$) the XTAL/EXT input frequency.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{cc}	Power Supply	+5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	V	wer Supply	+ 12 volt supply
10	$\mathrm{f}_{\mathrm{x}} / 4^{*}$		1/4 crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divis select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

Baud Rate Generator
 Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputChoice of 16 output frequencies16 asynchronous/synchronous baud rates
Direct UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference output*TTL, MOS compatibility

PIN CONFIGURATION

BLOCK DIAGRAM

GENERAL DESCRIPTION

The Standard Microsystems COM 5026/COM 5046 Baud Rate Generator/Programmable Divider is an N-channel COPLAMOS® MOS/LSI device which, from a single crystal (on-chip oscillator) or input frequency is capable of generating 16 externally selectable frequencies.

The COM 5026/COM 5046 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies as shown in Table 1. One of the sixteen output frequencies is externally selected by four address inputs; as shown in Table 1.

Internal re-programmable ROM allows the generation of other frequencies from other crystal frequencies or input frequencies. The four address inputs may be strobe (150ns) or DC loaded.

The COM 5026/COM 5046 is basically a programmable 15-stage feedback shift register capable of dividing any modulo up to ($2^{15}-1$).

By using the frequency output, it is possible to generate additional divisions of the master clock frequency by cascading COM 5026/COM 5046's. The frequency output is fed into the XTAL/EXT input on a subsequent device. In this way one crystal or input frequency may be used to generate numerous output frequencies.

The COM 5026/COM 5046 can be driven by either an external crystal or TTL logic level inputs COM 5026T/COM 5046T is driven by TTL logic level inputs only.

THE COM 5046 provides a high frequency reference output at one-quarter (1/4) the XTAL/EXT input frequency.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	Vcc	Power Supply	+ 5 volt Supply
4,6	NC	No Connection	
5	GND	Ground	Ground
7	Vdo	Power Supply	+12 volt Supply.
8	fx/4*	Reference Frequency	High frequency reference output @ (1/4) fin
9	ST	Strobe	A high-level strobe loads the input Address ($A_{A}, A_{B}, A_{c}, A_{d}$) into the Input Address register. This input may be strobed or hard wired to a high-level,
10-13	$A d, A c, A B, A A$	Input Address	The logic level on these inputs. as shown in Table 1, selects the output frequency.
14	fout	Output Frequency	This output runs at a frequency as selected by the Input Address.

*COM 5046/T only

ELECTRICAL CHARACTERISTICS COM5016, COM5016T, COM5026, COM5026T, COM5036, COM5036T, COM5046, COM5046T
 MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low-level, VIL			0.8	V	excluding XTAL inputs
High-level, VIH	2.0		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low-level, Vol			0.4	V	$1 \mathrm{ol}=1.6 \mathrm{ma}$
			0.5	V	$1 \mathrm{loL}=3.2 \mathrm{ma}$
High-level, Vон	Vcc-1.5	4.0		V	$\mathrm{loH}=100 \mu \mathrm{~A}$
INPUT CURRENT					
Low-level, lic			0.3	mA	$\mathrm{V}_{\mathrm{IN}}=$ GND, excluding XTAL inputs
INPUT CAPACITANCE					
All inputs, Cin		5	10	pf	$V_{\text {IN }}=$ GND, excluding $X T A L$ inputs
EXT INPUT LOAD		8	10		Series 7400 unit loads
POWER SUPPLY CURRENT					
Icc		28	45	mA	
Ido		12	22	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY		5.0688		MHz	XTAL, EXT
PULSE WIDTH					
Clock					50\% Duty Cycle $\pm 5 \%$
Strobe	150		DC	ns	See Note 1.
INPUT SET-UP TIME					
Address	50			ns	See Note 1.
INPUT HOLD TIME					
Address	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	$=1 / \mathrm{f}_{\mathrm{IN}}(18)$

Note 1: Input set-up time can be decreased to $\geqslant 0$ ns by increasing the minimum strobe width by 50 ns to a total of 200 ns .

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies. The ROM programming is automatically generated.

Crystal Specifications
User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U Frequency - 5.0688 MHz , AT cut

Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$
or as required

> Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street
> Burlington, Wisconsin 53105
> (414) 763-3591

> Bulova Frequency Control Products
> 61-20 Woodside Avenue Woodside, New York 11377
> (212) 335-6000

> CTS Knights Inc.
> 101 East Church Street
> Sandwich, Illinois 60548
> (815) 786-8411

> Crystek Crystals Corporation
> 1000 Crystal Drive
> Fort Myers, Florida 33901
(813) 936-2109

APPLICATIONS INFORMATION

Charge pump techniques using the +5 volt power supply can be used to generate the +12 volt power supply required. The +12 volt power supply of figure 1 will supply the 22 milli-amps that is typically required.

Baud Rate Generator Output Frequency Options

CRYSTAL FREQUENCY $=5.0688 \mathrm{MHz}$									
D	mit// Add C	Rece ress B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6336
0	0	0	1	75	1.2	1.2	-	50/50	4224
0	0	1	0	110	1.76	1.76	-	50/50	2880
0	0	1	1	134.5	2.152	2.1523	0.016	50/50	2355
0	1	0	0	150	2.4	2.4	-	50/50	2112
0	1	0	1	300	4.8	4.8	-	50/50	1056
0	1	1	0	600	9.6	9.6	-	50/50	528
0	1	1	1	1200	19.2	19.2	-	50/50	264
1	0	0	0	1800	28.8	28.8	-	50/50	176
1	0	0	1	2000	32.0	32.081	0.253	50/50	158
1	0	1	0	2400	38.4	38.4	-	50/50	132
1	0	1	1	3600	57.6	57.6	-	50/50	88
1	1	0	0	4800	76.8	76.8	\cdots	50/50	66
1	1	0	1	7200	115.2	115.2	-	50/50	44
1	1	1	0	9600	153.6	153.6	,	48/52	33
1	1	1	1	19.200	307.2	316.8	3.125	50/50	16

Table 2.
(16X clock)
CRYSTAL FREQUENCY $=4.9152 \mathrm{MHz}$

Tr'mit/Receive Address				Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
D	C	B	A						
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6144
0	0	0	1	75	1.2	1.2	-	50/50	4096
0	0	1	0	110	1.76	1.7589	-0.01	*	2793
0	0	1	1	134.5	2.152	2.152	-	50/50	2284
0	1	0	0	150	2.4	2.4	-	50/50	2048
0	1	0	1	300	4.8	4.8	-	50/50	1024
0	1	1	0	600	9.6	9.6	-	50/50	512
0	1	1	1	1200	19.2	19.2	-	50/50	256
1	0	0	0	1800	28.8	28.7438	-0.19	*	171
1	0	0	1	2000	32.0	31.9168	-0.26	50/50	154
1	0	1	0	2400	38.4	38.4	-	50/50	128
1	0	1	1	3600	57.6	57.8258	0.39	*	85
1	1	0	0	4800	76.8	76.8	-	50/50	64
1	1	0	1	7200	115.2	114.306	-0.77		43
1	1	1	0	9600	153.6	153.6	-	50/50	32
1	1	1	1	19,200	307.2	307.2	-	50/50	16

(32X clock)									
CRYSTAL FREQUENCY $=5.0688 \mathrm{MHz}$									
D				Baud Rate	Theoretical Frequency 32X Clock	Actual Frequency 32X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	1.6 KHz	1.6 KHz	-	50/50	3168
0	0	0	1	75	2.4	2.4	-	50/50	2112
0	0	1	0	110	3.52	3.52	-	50/50	1440
0	0	1	1	134.5	4.304	4.306	. 06	${ }^{*}$	1177
0	1	0	0	150	4.8	4.8	-	50/50	1056
0	1	0	1	200	6.4	6.4	-	50/50	792
0	1	1	0	300	9.6	9.6	-	50/50	528
0	1	1	1	600	19.2	19.2	-	50/50	264
1	0	0	0	1200	38.4	38.4	-	50/50	132
1	0	0	1	1800	57.6	57.6	-	50/50	88
\dagger	0	1	0	2400	76.8	76.8	-	50/50	66
1	0	1	1	3600	115.2	115.2	-	50/50	44
1	1	0	0	4800	153.6	153.6	-	*	33
1	1	0	1	7200	230.4	230.4	-	50/50	22
1	1	1	0	9600	307.2	316.8	3.125	50/50	16
1	1	1	1	19,200	614.4	633.6	3.125	50/50	8

OUTPUT FREQUENCY OPTIONS			
Part No.	Dash Number		
	Table 1	Table 2	Table 3
	STD	-5	-6
5026/5026T	STD	-5	-6
5036/5036T	STD	N/A	N/A
5046/5046T	STD	N/A	N/A

Baud Rate Generator
 Programmable Divider

FEATURES
\square On chip crystal oscillator or external frequency inputSingle +5 v power supplyChoice of 32 output frequencies32 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityRe-programmable ROM via CLASP® technology allows generation of other frequencies
TTL, MOS compatible1X Clock via fo/16 outputCrystal frequency output via fx and $\mathrm{fx} / 4$ outputsOutput disable via FENA

PIN CONFIGURATION

BLOCK DIAGRAM

General Description

The Standard Microsystems COM 8046 is an enhanced version of the COM 5046 Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.
The standard COM 8046 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 1 X , 16X and 32X UART/USRT/ASTRO/USYNRT devices.
The COM 8046 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8046T. TTL outputs used to drive the COM 8046 or COM 8046T should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The reference frequency (fx) is used to provide two high frequency outputs: one at fx and the other at $\mathrm{fx} / 4$. The $\mathrm{fx} / 4$ output will drive one standard 7400 load, while the fx output will drive two 74LS loads.

The output of the oscillator/buffer is applied to the divider for generation of the output frequency f_{0}. The divider is capable of dividing by any integer from 6
to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period. The output of the divider is also divided internally by 16 and made available at the $\mathrm{f}_{\mathrm{O}} / 16$ output pin. The $\mathrm{f}_{\mathrm{O}} / 16$ output will drive one and the f_{0} output will drive two standard 7400 TTL loads. Both the f_{0} and $f_{0} / 16$ outputs can be disabled by supplying a low logic level to the FENA input pin. Note that the FENA input has an internal pull-up which will cause the pin to rise to approximately V_{CC} if left unconnected.
The divisor ROM contains 32 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP ${ }^{\circledR}$ technology. This process permits reduction of turn-around-time for ROM patterns:
The five divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within 3.5μ s of a change in any of the five divisor select bits; strobe activity is not required. This feature may be disabled through a CLASP ${ }^{\circledR}$ programming option causing new frequency initiation to be delayed until the end of the current f_{0} half-cycle All five data inputs have pull-ups identical to that of the FENA input, while the strobe input has no pull-up.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	V_{cc}	Power Supply	+ 5 volt supply
4	f_{x}	f_{x}	Crystal/clock frequency reference output
5	GND	Ground	Ground.
6	$\mathrm{f}_{\mathrm{O}} / 16$	$\mathrm{f}_{\mathrm{O}} / 16$	1X clock output
7	FENA	Enable	A low level at this inpút causes the f_{0} and $f_{0} / 16$ outputs to be held high. An open or a high level at the FENA input enables the f_{O} and $\mathrm{f}_{\mathrm{O}} / 16$ outputs.
8	E	E	Most significant divisor select data bit. An open at this input is equivalent to a logic high.
9	NC	NC	No connection
10	$\mathrm{f}_{\mathrm{x}} / 4$	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
11	ST	Strobe	Divisor select data strobe. Data is sampled when this input is high, preserved when this input is low.
12-15	D, C,B,A	D,C,B,A	Divisor select data bits. $A=$ LSB. An open circuit at these inputs is equivalent to a logic high.
16	f_{0}	f_{0}	16X clock output

For electrical characteristics, see page 231.

Dual Baud Rate Generator
 Programmable Divider

FEATURES
\square On chip crystal oscillator or external frequency inputSingle +5 v power supplyChoice of 2×16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityHigh frequency reference output*Re-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5016/COM 5036

PIN CONFIGURATION

XTAL/EXT1 1 +5 v 2 $\mathrm{~F}_{\mathrm{R}}$ 3 R_{A} 4 R_{B} 5 R_{C} 6 R_{D} 7 STR 8 NC 9	$\left\{\begin{array}{l} 18 \text { XTAL/EXT2 } \\ 17 \mathrm{f}_{\mathrm{T}} \\ 16 \mathrm{~T}_{\wedge} \\ 15 \mathrm{~T}_{\mathrm{B}} \\ 14 \mathrm{~T}_{\mathrm{C}} \\ 13 \mathrm{~T}_{\mathrm{D}} \\ 12 \mathrm{STT} \\ 11 \mathrm{GND} \\ 10 \mathrm{fx} / 4^{*} \end{array}\right.$

BLOCK DIAGRAM

*COM 8136/T only

General Description

The Standard Microsystem's COM 8116/COM 8136 is an enhanced version of the COM 5016/COM 5036 Dual Baud Rate Generator. It is fabricated using SMC's patented COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply.

The standard COM 8116/COM 8136 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.

The COM 8116/COM 8136 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 18. Parts suitable for use only with an external TTL reference are marked COM 8116T/COM 8136T. TTL outputs used to drive the COM 8116/COM 8136 or COM 8116T/ COM 8136T XTAL/EXT inputs,should not be used to drive
other TTL inputs, as noise immunity may be compromised due to excessive loading.
The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies f_{T}, f_{R}. The dividers are capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.
The reference frequency (fx) is used to provide a high frequency output at $\mathrm{fx} / 4$ on the COM $8136 / \mathrm{T}$.
Each of the two divisor ROMs contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP® ${ }^{\circledR}$ technology allowing up to 32 different divisors on custom parts. This process permits reduction of turn-around time for ROM patterns. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within $3.5 \mu \mathrm{~s}$ of a change in any of the four divisor select bits (strobe activity is not required). The divisor select inputs have pull-up resistors; the strobe inputs do not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input.
2	V_{cc}	Power Supply	+ 5 volt supply
3	f_{R}	Receiver Output Frequency	This output runs at a frequency selected by the Receiver divisor select data bits.
4-7	$\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$	Receiver-Divisor Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the receiver output frequency, f_{R}.
8	STR	Strobe-Receiver	A high level input strobe loads the receiver data ($R_{A}, R_{B}, R_{C}, R_{D}$) into the receiver divisor select register. This input may be strobed or hard-wired to a high level.
9	NC	No Connection	
10	$\mathrm{f}_{\mathrm{X}} / 4$ *	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
11	GND	Ground	Ground
12	STT	StrobeTransmitter	A high level input strobe loads the transmitter data ($T_{A}, T_{B}, T_{C}, T_{D}$) into the transmitter divisor select register. This input may be strobed or hard-wired to a high level.
13-16	$\mathrm{T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$	TransmitterDivider Select Data Bits	The logic level on these inputs, as shown in Table 1, selects the transmitter output frequency, f_{T}.
17	f_{T}	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter divisor select data bits.
18	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.

Baud Rate Generator Programmable Divider

FEATURES

On chip crystal oscillator or external frequency inputSingle $+5 v$ power supplyChoice of 16 output frequencies16 asynchronous/synchronous baud ratesDirect UART/USRT/ASTRO/USYNRT compatibilityHigh frequency reference output*Re-programmable ROM via CLASP® technology allows generation of other frequenciesTTL, MOS compatibilityCompatible with COM 5026/COM 5046

PIN CONFIGURATION

BLOCK DIAGRAM

*COM 8146/T only

General Description

The Standard Microsystem's COM 8126/COM 8146 is an enhanced version of the COM 5026/COM 5046 Baud Rate Generator. It is fabricated using SMC's patended COPLAMOS ${ }^{\circledR}$ and CLASP ${ }^{\circledR}$ technologies and employs depletion mode loads, allowing operation from a single $+5 v$ supply.
The standard COM 8126/COM 8146 is specifically dedicated to generating the full spectrum of 16 asynchronous/ synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1X and 32X ASTRO/USYNRT devices.
The COM 8126/COM 8146 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 2. Parts suitable for use only with an external TTL reference are marked COM 8126 T/COM 8146 T. TTL outputs used to drive the COM 8126/COM 8146 or COM 8126T/COM $8146 T$ XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the divider for generation of the output frequency. The divider is capable of dividing by any integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer than it is low by one fx clock period.

The reference frequency (fx) is used to provide a high frequency output at $\mathrm{fx} / 4$ on the COM 8146/T.

The divisor ROM contains 16 divisors, each 19 bits wide, and is fabricated using SMC's unique CLASP® technology. This process permits reduction of turnaround time for ROM patterns. The four divisor select bits are held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is affected within 3.5μ s of a change in any of the four divisor select bits (strobe activity is not required). This feature may be disabled through a CLASP® programming option causing new frequency initiation to be delayed until the end of the current $f_{\text {out }}$ half-cycle. The divisor select inputs have pull-up resistors; the strobe input does not.

Description of Pin Functions

Pin No.	Symbol	Name	Function
1	XTAL/EXT1	Crystal or External Input 1	This input is either one pin of the crystal package or one polarity of the external input,
2	XTAL/EXT2	Crystal or External Input 2	This input is either the other pin of the crystal package or the other polarity of the external input.
3	V_{cc}	Power Supply	+5 volt supply
4,6,7	NC	No Connection	
5	GND	Ground	Ground
8	$\mathrm{f}_{\mathrm{x}} / 4$ *	$\mathrm{f}_{\mathrm{x}} / 4$	1/4 crystal/clock frequency reference output.
9	ST	Strobe	A high level strobe loads the input data (A, B, C, D) into the input divisor select register. This input may be strobed or hard-wired to a high level.
10-13	D,C,B,A	Divisor Select Data Bits	The logic level on these inputs as shown in Table 1, selects the output frequency.
14	$\mathrm{f}_{\text {OUT }}$	Output Frequency	This output runs at a frequency selected by the divisor select data bits.

ELECTRICAL CHARACTERISTICS COM8046, COM8046T, COM8116, COM8116T, COM8126,

 COM8126T, COM8136, COM8136T, COM8146, COM8146TMAXIMUM GUARANTEED RATINGS*
Operating Temperature Range .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . + . 8.0V
Negative Voltage on any Pin. with respect to ground .. 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.
ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VcC}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, V_{12}			0.8	V	
High-level, $\mathrm{V}_{\text {IH }}$	2.0			V	excluding XTAL inputs
OUTPUT VOLTAGE LEVELS					
			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}, \text { for } \mathrm{f}_{\mathrm{O}}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{T}}$
			0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.8 \mathrm{~mA}$, for f_{X}
High-level, $\mathrm{V}_{\text {OH }}$	3.5			V	$\mathrm{l}_{\text {OH }}=-100 \mu \mathrm{~A}$; for $\mathrm{f}_{\mathrm{x}}, \mathrm{l}_{\text {OH }}=-50 \mu \mathrm{~A}$
INPUT CURRENT					
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {IN }}$		5	10	pF	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 equivalent loads
POWER SUPPLY CURRENT			50	mA	
A.C. CHARACTERISTICS					$\mathrm{T}_{\wedge}=+25^{\circ} \mathrm{C}$
CLOCK FREQUENCY, $\mathrm{fin}^{\text {m }}$	0.01		7.0	MHz	XTAL/EXT, 50\% Duty Cycle $\pm 5 \%$ COM 8046, COM 8126, COM 8146
	0.01		5.1	MHz	XTAL/EXT, 50% Duty Cycle $\pm 5 \%$ COM 8116, COM 8136
STROBE PULSE WIDTH, t_{pw}	150		DC	ns	
$\underset{\text { tos }}{ }$ INPUT SET-UP TIME	200			ns	
INPUT HOLD TIME t_{OH}	50			ns	
STROBE TO NEW FREQUENCY DELAY			3.5	$\mu \mathrm{S}$	@ $\mathrm{f}_{\mathrm{x}}=5.0 \mathrm{MHz}$

For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.

The ROM programming is automatically generated.

Crystal Specifications
User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U
Frequency - 5.0688 MHz , AT cut
Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories
357 Beloit Street
Burlington, Wisconsin 53105
(414) 763-3591

Bulova Frequency Control Products

61-20 Woodside Avenue Woodside, New York 11377
(212) 335-6000

CTS Knighis Inc.
101 East Church Street
Sandwich, Illinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers, Florida 33901
(813) 936-2109

COM 8046 COM 8046T

Table 2
REFERENCE FREQUENCY $=5.068800 \mathrm{MHz}$

Divisor Select EDCBA	Desired Baud Rate	Clock Factor	Desired Frequency (KHz)	Divisor	Actual Baud Rate	Actual Frequency (KHz)	Deviation
00000	50.00	32 X	1.60000	3168	50.00	1.600000	0.0000\%
00001	75.00	32X	2.40000	2112	75.00	2.400000	0.0000\%
00010	110.00	32 X	3.52000	1440	110.00	3.520000	0.0000\%
00011	134.50	32 X	4.30400	1177	134.58	4.306542	0.0591\%
00100	150.00	32 X	4.80000	1056	150.00	4.800000	0.0000\%
00101	200.00	32 X	6.40000	792	200.00	6.400000	0.0000\%
00110	300.00	32 X	9.60000	528	300.00	9.600000	0.0000\%
00111	600.00	32 X	19.20000	264	600.00	19.200000	0.0000\%
01000	1200.00	32 X	38.40000	132	1200.00	38.400000	0.0000\%
01001	1800.00	32X	57.60000	88	1800.00	57.600000	0.0000\%
01010	2400.00	32 X	76.80000	66	2400.00	76.800000	0.0000\%
01011	3600.00	32 X	115.20000	44	3600.00	115.200000	0.0000\%
01100	4800.00	32 X	153.60000	33	4800.00	153.600000	0.0000\%
01101	7200.00	32 X	230.40000	22	7200.00	230.400000	0.0000\%
01110	9600.00	32 X	307.20000	16	9900.00	316.800000	3.1250\%
01111	19200.00	32 X	614.40000	8	19800.00	633.600000	3.1250\%
10000	50.00	16X	0.80000	6336	50.00	0.800000	0.0000\%
10001	75.00	16X	1.20000	4224	75.00	1.200000	0.0000\%
10010	110.00	16X	1.76000	2880	110.00	1.760000	0.0000\%
10011	134.50	16X	2.15200	2355	134.52	2.152357	0.0166\%
10100	150.00	16X	2.40000	2112	150.00	2.400000	0.0000\%
10101	300.00	16X	4.80000	1056	300.00	4.800000	0.0000\%
10110	600.00	16X	9.60000	528	600.00	9.600000	0.0000\%
10111	1200.00	16X	19.20000	264	1200.00	19.200000	0.0000\%
11000	1800.00	16X	28.80000	176	1800.00	28.800000	0.0000\%
11001	2000.00	16X	32.00000	158	2005.06	32.081013	0.2532\%
11010	2400.00	16X	38.40000	132	2400.00	38.400000	0.0000\%
11011	3600.00	16X	57.60000	88	3600.00	57.600000	0.0000\%
11100	4800.00	16X	76.80000	66	4800.00	76.800000	0.0000\%
11101	7200.00	16X	115.20000	44	7200.00	115.200000	0.0000\%
11110	9600.00	16X	153.60000	33	9600.00	153.600000	0.0000\%
11111	19200.00	16X	307.20000	16	19800.00	316.800000	3.1250\%

Baud Rate Generator Output Frequency Options

$\begin{aligned} & \text { Tr'mit/Receive } \\ & \text { Address } \\ & \text { D C B A } \end{aligned}$				CRYSTAL FREQUENCY 1.				(16X clock)	
				Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	50	0.8 KHz	0.8 KHz	-	50/50	6336
0	0	0	1	75	1.2	1.2	-	50/50	4224
0	0	1	0	110	1.76	1.76		50/50	2880
0	0	1	1	134.5	2.152	2.1523	0.016	50/50	2355
0	1	0	0	150	2.4	2.4	-	50/50	2112
0	1	0	1	300	4.8	4.8	-	50/50	1056
0	1	1	0	600	9.6	9.6	-	50/50	528
0	1	1	1	1200	19.2	19.2	-	50/50	264
1	0	0	0	1800	28.8	28.8	-	50/50	176
1	0	0	1	2000	32.0	32.081	0.253	50/50	158
1	0	1	0	2400	38.4	38.4	-	50/50	132
1	0	1	1	3600	57.6	57.6	-	50/50	88
1	1	0	0	4800	76.8	76.8	\cdots	50/50	66
1	1	0	1	7200	115.2	115.2	-	50/50	44
1	1	1	0	9600	153.6	153.6		48/52	33
1	1	1	1	19.200	307.2,	316.8	3.125	50/50	16

Table 3.
(32X clock)

CRYSTAL FREQUENCY $=5.0688 \mathrm{MHz}$

	mit	Rece	ive	Ba	Theoretical Frequency	Actual Frequency	Percent	Duty Cycle	Divisor
0	0	0	0	50	1.6 KHz	1.6 KHz	-	50/50	3168
0	0	0	1	75	2.4	2.4		50/50	2112
0	0	1	0	110	3.52	3.52	-	50/50	1440
0	0	1	1	134.5	4.304	4.306	. 06	-	1177
0	1	0	0	150	4.8	4.8	-	50/50	1056
0	1	0	1	200	6.4	6.4	-	50/50	792
0	1	1	0	300	9.6	9.6		50/50	528
0	1	1	1	600	19.2	19.2	-	50/50	264
1	0	0	0	1200	38.4	38.4	-	50/50	132
1	0	0	1	1800	57.6	57.6	-	50/50	88
1	0	1	0	2400	76.8	76.8	-	50/50	66
1	0	1	1	3600	115.2	115.2		50/50	44
1	1	0	0	4800	153.6	153.6			33
1	1	0	1	7200	230.4	230.4	-	50/50	22
1	1	1	0	9600	307.2	316.8	3.125	50/50	16
1	1	1	1	19,200	614.4	633.6	3.125	50/50	-

OUTPUT FREQUENCY OPTIONS

Dash Number		
Table 1	Table 2	Table 3
STD	-5	-6
STD	-5	-6

Baud Rate Generator Output Frequency Options

COM $8116 T-013$ CRYSTAL FREQUENCY $=2.76480 \mathrm{MHz}$								
D	Transmit/ Recelve Address C B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	00	0	50	0.8 KHz	0.8 KHz	0	50/50	3456
0	00	1	75	1.2	1.2	0	50/50	2304
0	01	0	110	1.76	1.76	$-.006$	50/50	1571
0	01	1	134.5	2.152	2.152	-. 019	50/50	1285
0	10	0	150	2.4	2.4	0	50/50	1152
0	10	1	200	3.2	3.2	0	50/50	864
0	11	0	300	4.8	4.8	0	50/50	576
0	11	1	600	9.6	9.6	0	50/50	288
1	00	0	1200	19.2	19.2	0	50/50	144
1	00	1	1800	28.8	28.8	0	50/50	96
1	01	0	2000	32.0	32.149	$+.465$	50/50	86
1	01	1	2400	38.4	38.4	0	50/50	72
1	10	0	3600	57.6	57.6	0	50/50	48
1	10	1	4800	76.8	76.8	0	50/50	36
1	11	0	9600	153.6	153.6	0	50/50	18
1	11	1	19,200	307.2	307.2	0	44/56	9

CRYSTAL FREQUENCIES $=6.01835 \mathrm{MHz}$								
D	Transmit/ Recelve Address C B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	00	0	50	0.8 KHz	799.9 Hz	0	50/50	7523
0	00	1	75	1.2	1200.0	0	50/50	5015
0	01	0	110	1.76	1759.7	0	50/50	3420
0	01	1	134.5	2.152	2151.7	0	50/50	2797
0	10	0	150	2.4	2399.6	0	50/50	2508
0	10	1	200	3.2	3199.5	0	50/50	1881
0	11	0	300	4.8	4799.3	0	50/50	1254
0	11	1	600	9.6	9598.6	0	50/50	627
1	00	0	1200	19.2	19227.9	$+0.14$	50/50	313
1	00	1	1800	28.8	28795.9	0	50/50	209
1	01	0	2000	32.0	32012.5	0	50/50	188
1	01	1	2400	38.4	38333.4	-0.17	50/50	157
1	10	0	3600	57.6	57868.7	+0.46	50/50	104
1	10	1	4800	76.8	77158.3	+0.46	50/50	78
1	11	0	9600	153.6	154316.6	+0.46	50/50	39
1	11	1	19,200	307.2	300917.5	2.04	50/50	20

COM 8116T-013A CRYSTAL FREQUENCY-5.52960 MHz									
D	Tran Rec Add C	sit// eive ess B	A	Baud Rate	Theoretical Frequency 16X Clock	Actual Frequency 16X Clock	Percent Error	Duty Cycle \%	Divisor
0	0	0	0	100	1.6 KHz	1.6 KHz	0	50/50	3456
0	0	0	1	150	2.4	2.4	0	50/50	2304
0	0	1	0	220	3.52	3.5197	$-.006$	50/50	1571
0	0	1	1	269	4.304	4.3032	-. 019	50/50	1285
0	1	0	0	300	4.8	4.8	0	50/50	1152
0	1	0	1	400	6.4	6.4	0	50/50	864
0	1	1	0	600	9.6	9.6	0	50/50	576
0	1	1	1	1200	19.2	19.2	0	50/50	288
1	0	0	0	2400	38.4	38.4	0	50/50	144
1	0	0	1	3600	57.6	57.6	0	50/50	96
1	0	1	0	4000	64.0	64.298	$+.466$	50/50	86
1	0	1	1	4800	76.8	76.8	0	50/50	72
1	1	0	0	7200	115.2	115.2	0	50/50	48
1	1	0	1	9600	153.6	153.6	0	50/50	36
1	1	1	0	19,200	307.2	307.2	0	50/50	18
1	1	1	1	38,400	614.8	614.8	0	44/56	9

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Dual Baud Rate Generator Programmable Divider

FEATURES

\square On chip crystal oscillator or external frequency inputHigh crystal/clock frequency operation
\square Choice of 2×16 output frequencies
$\square 16$ asynchronous/synchronous baud ratesHigh frequency reference outputsDirect UART/USRT/ASTRO/USYNRT compatibilityFull duplex communication capabilityN -channel silicon gate technologySingle +5 v power supplyTTL, MOS compatibilityRe-programmable ROM technology allows generation of other frequencies

PIN CONFIGURATION

Rb	1	18	Ra
Rc	2	17	f_{F}
Rd	3	16	Vcc
STR	4	15	XTAL,
XTAL_{2}	5	14	fo
fo/4	6	13.	f_{T}
GND	7	12	Ta
STT	8	11	Tb
Td	9	10	Tc

GENERAL DESCRIPTION

The Standard Microsystem's COM8156 is a dual baud rate generator that operates at twice the crystal/clock frequency of the COM8116/36. It is fabricated using SMC's patented COPLAMOS ${ }^{\text {Tw }}$ technology and employs depletion mode loads allowing operation from a single +5 V supply.
The standard COM8156 is specifically dedicated to generating the full spectrum of 16 asynchronous/synchronous data communication frequencies for 16X UART/USRT devices. A large number of the frequencies available are also useful for 1 X and 32X ASTRO/USYNRT devices.
The COM8156 features an internal crystal oscillator which may be used to provide the master reference frequency. Alternatively, an external reference may be supplied by applying complementary TTL level signals to pins 1 and 9 : Parts suitable for use only with an external TTL reference are marked COM 8156T. TTL outputs used to drive the COM8156 or COM8156T XTAL/EXT inputs should not be used to drive other TTL inputs, as noise immunity may be compromised due to excessive loading.

The output of the oscillator/buffer is applied to the dividers for generation of the output frequencies $f_{\mathrm{T}}, \mathrm{f}_{\mathrm{R}}$. The dividers are capable of dividing by an integer from 6 to $2^{19}+1$, inclusive. If the divisor is even, the output will be square; otherwise the output will be high longer that it is low by one f_{0} clock period.
The crystal frequency is divided by two to give (f_{0}) and again by four to give ($\mathrm{f}_{\mathrm{o}, 4}$). The transmit (f_{T}) and receive (f_{F}) frequencies are obtained by dividing (f_{o}) by N . Up to 32 different divisors can be mask-programmed on custom parts to accommodate different crystal frequencies and divider schemes. Each group of four divisor select bits is held in an externally strobed data latch. The strobe input is level sensitive: while the strobe is high, data is passed directly through to the ROM. Initiation of a new frequency is effected within 3.5us of a change in any of the four divisor select bits (strobe activity is not required). The divisor select bits (strobe activity is not required). The divisor select inputs and the strobe inputs have pull-up resistors.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
15	XTAL/EXT 1	Crystal	This input receives one pin of the crystal package.
16	$\mathrm{~V}_{\mathrm{cc}}$	Power Supply	+5 Volt Supply.

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS input Voltage levels Low Level V_{i} High Level $\mathrm{V}_{\text {IH }}$	2.0		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	excluding XTAL inputs
OUTPUT VOLTAGE LEVELS Low Level V_{oL} High Level V_{OH}	2.4		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \text { for } f_{o 4} \\ & \mathrm{I}_{\mathrm{oL}}=3.2 \mathrm{~mA}, \text { for } f_{\mathrm{R}}, \mathrm{f}_{\mathrm{T}} \\ & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}, \text { for } f_{0} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Low-level, I_{L}			-0.1	mA	$\mathrm{V}_{\text {IN }}=$ GND, excluding XTAL inputs
INPUT CAPACITANCE All inputs, $\mathrm{C}_{\text {IN }}$		5	10	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, excluding XTAL inputs
EXT INPUT LOAD		8	10		Series 7400 equivalent loads
POWER SUPPLY CURRENT I_{cc}			60	mA	
AC CHARACTERISTICS CLOCK FREQUENCY, f_{IN}	5.0		11.0	MHz	XTAL/EXT, 50\% Duty Cycle $\pm 5 \%$
STROBE PULSE WIDTH, $\mathrm{t}_{\text {pw }}$	150		DC	ns	
$\underset{\substack{\text { INPUT SET } \\ t_{\text {os }}}}{ }$	50			ns	
INPUT HOLD TIME $\mathrm{T}_{\text {DH }}$	50			ns	
STROBE TO NEW FREQ. DELAY			3.5	$\mu \mathrm{s}$	
OUTPUT CLOCKS DUTY CYCLE f_{0} f_{O} $\mathrm{f}_{\mathrm{B}}, \mathrm{f}_{\mathrm{T}}$	$\begin{aligned} & 40 \\ & 45 \\ & 48 \end{aligned}$		$\begin{aligned} & 60 \\ & 55 \\ & 52 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$	(a 1.5 V LEVEL (a 1.5 V LEVEL
CRYSTAL CHARACTERISTICS Series Crystal Resistance Crystal Shunt Capacitance	2	$\begin{gathered} 30 \\ 5 \end{gathered}$	$\begin{aligned} & 70 \\ & 10 \end{aligned}$	pf	(a) Resonance

Baud Rate Generator Output Frequency Options

> For ROM re-programming SMC has a computer program available whereby the customer need only supply the input frequency and the desired output frequencies.
> The ROM programming is automatically generated.

Crystal Specifications
User must specify termination (pin, wire, other)
Prefer: HC-18/U or HC-25/U Frequency: 10.1376 MHz , AT cut Temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Series resistance $<50 \Omega$
Series Resonant
Overall tolerance $\pm .01 \%$ or as required

Crystal manufacturers (Partial List) Northern Engineering Laboratories 357 Beloit Street
Burlington, Wisconsin 53105
(414) 763-3591

Bulova Frequency Control Products 61-20 Woodside Avenue Woodside, New York 11377 (212) 335-6000

CTS Knights Inc.
101 East Church Street Sandwich, Illinois 60548 (815) 786-8411 Crystek Crystals Corporation 1000 Crystal Drive Fort Myers, Florida 33901 (813) 936-2109 information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Universal Rate Generator \& Timer

FEATURES

Three independent 32 bit programmable countersClock input from DC to 16 MHzLow power CMOS8/16-pin Dual-In-Line packageUses a crystal or a TTL signial as frequency sourceSingle +5 Volt power supply
PIN CONFIGURATION

PACKAGE: 16-pin D.I.P.

GENERAL DESCRIPTION

The TIMER chip is a device designed to provide a convenient and inexpensive solution to applications requiring programmable multiple clock divider sources. The source frequency can be either an integrated crystal controlled oscillator, or an external TTL signal. The TIMER consists of a data input portion, a register addressing block and three counter blocks.

The counter blocks are accessed and programmed independently and they can be configured to operate in various modes simultaneously.
The TIMER chip serves a broad range of applications some of which are: Programmable rate generations, pulse generation, motor control, real time clock, interrupt applications and others.

COM8166 BLOCK DIAGRAM

Enumuint CRT Display
 TIMING CONTROLLERS

Part Number	Description	Features	Display Format	Max Clock	$\begin{aligned} & \text { Power } \\ & \text { Supplies } \\ & \hline \end{aligned}$	Package	Page
CRT 5027	Provides all of the timing and control for interlaced and noninterlaced CRT display		Programmable	4 MHz	+5, +12	40 DIP	293-300
CRT 5037		Balanced beam interlace	Programmable	4 MHz	+5, +12	40 DIP	293-300
CRT 5047		Fixed format	$\begin{aligned} & 80 \text { column } \\ & 24 \text { row } \end{aligned}$	4MHZ	+5, +12	40 DIP	301-302
CRT 5057		Line-lock	Programmable	4 MHz	+5, +12	40 DIP	293-300
$\begin{aligned} & \text { CRT T220A, } \\ & -1,-2 \end{aligned}$	Graphics Display Controller	Intelligent graphics display controller	1024×1024 Pixel	$\begin{aligned} & 6, \mathrm{r}^{8} \\ & \mathrm{MHz} \end{aligned}$	+5	40 DIP	309-332
$\begin{aligned} & \operatorname{CRT} 9007 \mathrm{~A}, \\ & \mathrm{~B}, \mathrm{C} \end{aligned}$	CRT video processor and controller	Sequential or rowtable driven memory programmable DMA	Programmable	$\mathrm{A}-3.7 \mathrm{MHz}$ $\mathrm{B}-3.33 \mathrm{MHz}$ $\mathrm{C}-2.5 \mathrm{MHz}$	+5	40 DIP	369-388
CRT 97C11 ${ }^{\text {(2) }}$	3rd generation CRT controller which allows manipulation of independent window areas on screen	Control of window size and position, window attributes, prog cursor, max of 127 windows, DRAM refresh	Up to 16 K pixels vertical and 1 KxN ($\mathrm{N}=$ display memory width) in horizontal pixels	TBD	+ 5	68 PLCC	455-456

VIDEO TERMINAL LOGIC CONTROLLERS

Part Number	Description	Features	Display Format	Attributes	Max Clock	Power Supply	Package	Page
$\begin{array}{\|l\|} \hline \text { CRT 9028! } \\ \text { 9128(1) } \end{array}$	Complete CRT video processor and controller. Display and attribute control for	Separate display memory eliminates	Mask programmable, 5×8 character font, 8×12 character cell.	Tagged attributes: reverse video, blank, blink, underline, intensity and wide/thin graphics.	14 MHz			401-416
CRT 90531 $9153^{(1)}$	graphics display. Two types of processor interface signals differentiate the two parts.	scroll, status row, on-board clock, and video shift register.	Mask programmable, 7×11 charac ter font, 9×13 character cell.	Embedded or tagged attributes: reverse video, blank, blink, underline, intensity and wide/thin graphics.	18.7 MHz	+5	40 DIP	433-448

Part Number	Description	Max Frequency	Power Supply	Package	Page
CRT 7004A ${ }^{(14)}$	$7 \times 11 \times 128$ character generator, latches, video shift register	20 MHz	+5	24 DIP	303-308
CRT $7004 \mathrm{~B}^{(1,4)}$		15 MHz			
		10 MHz			

ROW BUFFER

Part Number	Description	Max Row Length	Power Supply	Package	Page
CRT 9006-83	8 bit wide serial cascadable single row buffer memory for CRT or printer	83 characters	+5	24 DIP	363-368
CRT 9006-135		135 characters			
CRT 9212	8 bit wide serial cascadable double row buffer memory for CRT or printer	135 characters	+5	28 DIP	449-454

${ }^{1}$ 'May be custom mask programmed
${ }^{(2)}$ For future release
${ }^{14}$ 'Also available as CRT7004A, B, C -003 5×7 dot matrix

CRI Display cont.

VDAC' DISPLAY CONTROLLERS

$\begin{aligned} & \text { Part } \\ & \text { Number } \\ & \hline \end{aligned}$	Description	Display	Attributes	Max	Power Supplies	Package	Page
CRT 8002H	Provides complete display and attributes control for alphanumeric and graphic display. Consists of $7 \times 11 \times 128$ character generator, video shift register latches, Eraphics and attributes circuits.	7×11 dot matrix, wide graphics, thin graphics, on-chip cursor	Reverse video blank blink underline strike-thru	25 MHz	+5	28 DIP	347-354
CRT 8002. ${ }^{(1,3)}$				20 MHz			333-346
CRT 8002B ${ }^{(1.3)}$				15 MHz			333-346
CRT 8002C ${ }^{(133)}$				10 MHz			333-346

VIDEO ATTRIBUTES CONTROLLERS

Part Number	Description	Display	Attributes	Max Clock	Power Supply	Package	Page
CRT 8021	Provides attributes and graphics control for CRT video displays	Alphanumeric, wide graphics, thin graphics, on-chip cursor	Reverse video blank, blink underline, strike-thru	20 MHz	+5	28 DIP	355-362
CRT 9021B	Provides attributes and graphics control for CRT video displays	Alphanumeric, wide graphics, thin graphics, on-chip cursor, double height, double width	Reverse video, blank, blink underline, intensity	28.5 MHz	+5	28 DIP	389-400
CRT 9041A, B, C	Provides attributes and graphics control for CRT video displays. Full VT100 ${ }^{\circ}$ and VTR20 compatible	Alphanumeric, wide and thin graphics, 4 cursor modes, double height/width, 12 bit shift register	Reverse video, blink, blank, underline, 4 intensity levels	$\left\|\begin{array}{c} \mathrm{A}-33 \mathrm{MHz} \\ \mathrm{~B}-30 \mathrm{MHz} \\ \mathrm{C}-28.5 \mathrm{MHz} \end{array}\right\|$	+5	40 DIP	417-432

${ }^{(1)}$ May be custom mask programmed (3)Also available as CRT8002A, B, C-001 Katakana
CRT8002A, B, C-003, -018 5×7 dot matrix
VT100 and VT220 are registered trademarks of Digital Equipment Corp.

CRT Video Timer and Controller VTAC ${ }^{\circledR}$

FEATURES

\qquad \square Fully Programmable Display Format Characters per data row (1-200) Data rows per frame (1-64) Raster scans per data row (1-16)
\square Programmable Monitor Sync Format
Raster Scans/Frame (256-1023)
"Front Porch"
Sync Width
"Back Porch" Interlace/Non-Interlace Vertical BlankingLock Line Input (CRT 5057)Direct Outputs to CRT Monitor Horizontal Sync Vertical Sync Composite Sync (CRT 5027, CRT 5037) Blanking Cursor coincidence
\square Programmed via: Processor data bus External PROM Mask Option ROM\square Standard or Non-Standard CRT Monitor CompatibleRefresh Rate: $60 \mathrm{~Hz}, 50 \mathrm{~Hz}, \ldots$
\square Scrolling Single Line Multi-LineCursor Position Registers \square Character Format: 5x7, 7x9, ... Programmable Vertical Data Positioning Balanced Beam Current Interlace (CRT 5037) Graphics Compatible

PIN CONFIGURATION

A2 $¢$	$40 \rightarrow \mathrm{Al}$
A 32	$39 \sim$ Ad
Cs \square^{3}	$38 \mathrm{H} \square$
R3-4	$37 \mathrm{f} \mathrm{H}_{1}$
R2 45	36 H2
GND 6	35 P н
R1 $¢ 7$	34 PH
Rø \square^{8}	33 - 55
$\overline{\text { DS }} 9$	$32 \mathrm{pH6}$
LLI/CSYN 010	31 H7/DR5
VSYN 11	30 DR4
DCC 012	29 DR3
Vodo 13	28 DR2
Vcc 114	27 DR1
HSYN 15	26 DRø
CRV 16	25 D DBø
BL 017	24 DB1
DB7 18	23 DB2
DB6 19	22 D83
DB5 20	21 DB4
PACKAGE: 40-Pin D.I.P.	

Split-Screen Applications Horizontal

Vertical

\square Interlace or Non-Interlace operation
\square TTL CompatibilityBUS Oriented
High Speed OperationCOPLAMOS ${ }^{\text {in }} \mathrm{N}$-Channel Silicon Gate Technology
\square Compatible with CRT 8002 VDAC ${ }^{\text {TM }}$
\square Compatible with CRT 7004

GENERAL DESCRIPTION

The CRT Video Timer and Controller Chip (VTAC) ${ }^{\text {® }}$ is a user programmable 40-pin COPLAMOS® nchannel MOS/LSI device containing the logic functions required to generate all the timing signals for the presentation and formatting of interlaced and non-interlaced video data on a standard or non-standard CRT monitor.

With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters per data row, data rows per frame, and raster scans per data row and per frame are totally user programmable. The data row counter has been designed to facilitate scrolling.

Programming is effected by loading seven 8 bit control registers directly off an 8 bit bidirectional data bus. Four register address lines and a chip select line provide complete microprocessor compatibility for program controlled set up. The device can be "self loaded" via an external PROM tied on the data bus as described in the OPERATION section. Formatting can also be programmed by a single mask option.

In addition to the seven control registers two additional registers are provided to store the cursor character and data row addresses for generation of the cursor video signal. The contents of these two registers can also be read out onto the bus for update by the program.

Three versions of the VTAC® are available. The CRT 5027 provides non-interlaced operation with an even or odd number of scan lines per data row, or interlaced operation with an even number of scan lines perdata row. The CRT 5037 may be programmed for an odd or even number of scan lines per data row in both interlaced and non-interlaced modes. Programming the CRT 5037 for an odd number of scan lines per data row eliminates character distortion caused by the uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays.

The CRT 5057 provides the ability to lock a CRT's vertical refresh rate, as controlled by the VTAC's ${ }^{\circledR}$ vertical sync pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called "swim" phenomenon. This is particularly well suited for European system requirements. The line frequency waveform, processed to conform to the VTAC's ${ }^{\circledR}$ specified logic levels, is applied to the line lock input. The VTAC® will inhibit generation of vertical sync until a zero to one transition on this input is detected. The vertical sync pulse is then initiated within one scan line after this transition rises above the logic threshold of the VTAC. ©

To provide the pin required for the line lock input, the composite sync output is not provided in the CRT 5057.

Description of Pin Functions

Operation

The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words are shown in Table 1. The information contained in these seven words consists of the following:

Horizontal Formatting:

Characters/Data Row

Horizontal Sync Delay
Horizontal Sync Width

Horizontal Line Count
Skew Bits

A 3 bit code providing 8 mask programmable character lengths from 20 to 132. The standard device will be masked for the following character lengths; 20, 32, $40,64,72,80,96$, and 132.
3 bits assigned providing up to 8 character times for generation of "front porch".
4 bits assigned providing up to 15 character times for generation of horizontal sync width.
8 bits assigned providing up to 256 character times for total horizontal formatting.
A 2 bit code providing from a 0 to 2 character skew (delay) between the horizontal address counter and the blank and sync (horizontal, vertical, composite) signals to allow for retiming of video data prior to generation of composite video signal. The Cursor Video signal is also skewed as a function of this code.

Vertical Formatting: Interlaced/Non-interlaced

Vertical Data Start

Data Rows/Frame
Last Data Row

Scans/Data Row

Scans/Frame 8 bits assigned, defined according to the following equations: Let $\mathrm{X}=$ value of 8 assigned bits.

1) in interlaced mode-scans/frame $=2 X+513$. Therefore for 525 scans, program $X=6$ (00000110). Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields.
Range $=513$ to 1023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame $=2 X+256$. Therefore for 262 scans, program $X=3$ (00000011).
Range $=256$ to 766 scans/frame, even counts only.
In either mode, vertical sync width is fixed at three horizontal scans ($\equiv 3 \mathrm{H}$).
This bit provides for data presentation with odd/even field formatting for interlaced systems. It modifies the vertical timing counters as described below. A logic 1 establishes the interlace mode.

8 bits defining the number of raster scans from the leading edge of vertical sync until the start of display data. At this raster scan the data row counter is set to the data row address at the top of the page.
6 bits assigned providing up to 64 data rows per frame.
6 bits to allow up or down scrolling via a preload defining the count of the last displayed data row.
4 bits assigned providing up to 16 scan lines per data row.

Additional Features

Device Initialization:

Under microprocessor control-The device can be reset under system or program control by presenting a $1 \varnothing 1 \varnothing$ address on A3- \varnothing. The device will remain reset at the top of the even field page until a start command is executed by presenting a111ø address on A3- \varnothing.

Via "Self Loading"-In a non-processor environment, the self loading sequence is effected by presenting and holding the 1111 address on A3- \varnothing, and is initiated by the receipt of the strobe pulse ($\overline{\mathrm{DS}}$). The 1111 address should be maintained long enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by presenting the $\varnothing 111$ address to the device. Self loading is terminated by presenting the start command to the device which also initiates the timing chain.

Scrolling-In addition to the Register 6 storage of the last displayed data row a "scroll" command (address 1ø11) presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.

Control Registers Programming Chart

Horizontal Line Count: Characters/Data Row:

Horizontal Sync Delay: Horizontal Sync Width:

Skew Bits

Scans/Frame

Vertical Data Start:

Data Rows/Frame:
Last Data Row:
Mode:
Scans/Data Row:

Total Characters/Line $=\mathrm{N}+1, \mathrm{~N}=0$ to 255 (DB0 = LSB) DB2 DB1 DB0

0	0	$0=20$
0	0	1
0	$=32$	
0	1	0

$=N$, from 1 to 7 character times $(D B 0=L S B)(N=0$ Disallowed $)$
$=N$, from 1 to 15 character times (DB3 = LSB) $(N=0$ Disallowed) Sync/Blank Delay Cursor Delay
DB7 DB6 (Character Times)

0	0	0	0
1	0	1	0
0	1	2	1
1	1	2	2

8 bits assigned, defined according to the following equations:
Let $X=$ value of 8 assigned bits. (DB0 $=$ LSB)

1) in interlaced mode-scans/frame $=2 X+513$. Therefore for 525 scans, program $X=6$ (00000110). Vertical sync will occur precisely every 262.5 scans, thereby producing two interlaced fields.
Range $=513$ to 1023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame $=2 X+256$. Therefore for 262 scans, program $X=3$ (00000011).
Range $=256$ to 766 scans/frame, even counts only.
In either mode, vertical sync width is fixed at three horizontal scans ($=3 \mathrm{H}$).
$\mathrm{N}=$ number of raster lines delay after leading edge of vertical sync of vertical start position. (DB0 = LSB)
Number of data rows $=N+1, N=0$ to 63 ($\mathrm{DBO}=\mathrm{LSB}$)
$\mathrm{N}=$ Address of last dsplayed data row, $\mathrm{N}=0$ to 63, ie; for 24 data rows, program $N=23$. (DB0 = LSB)
Register, 1, DB7 = 1 establishes Interlace.
Interlace Mode
CRT 5027: Scans per Data Row $=N+1$ where $N=$ programmed number of scans/data rows. $N=0$ to 15 . Scans per data row must be even counts only. CRT 5037, CRT 5057: Scans per data Row $=N+2 . N=0$ to 14, odd or even counts.

Non-Interlace Mode
CRT 5027, CRT 5037, CRT 5057: Scans per Data Row $=\mathrm{N}+1$, odd or even count. $\mathrm{N}=0$ to 15 .

Register Selects/Command Codes

A3	A2	A1	Aø	Select/Command
0	0	0	0	Load Control Register \emptyset
0	0	0	1	Load Control Register 1
0	0	1	0	Load Control Register 2
0	0	1	1	Load Control Register 3
0	1	0	0	Load Control Register 4
0	1	0	1	Load Control Register 5
0	1	1	0	Load Control Register 6
0	1	1	1	Processor Initiated Self Load
1	0	0	0	Read Cursor Line Address
1	0	0	1	Read Cursor Character Address
1	0	1	0	Reset
1	0	1	1	Up Scroll

Description

See Table 1

Command from processor instructing VTAC ${ }^{\circledR}$ to enter Self Load Mode (via external PROM)

Resets timing chain to top left of page. Reset is latched on chip by $\overline{\mathrm{DS}}$ and counters are held until released by start command.
Increments address of first displayed data row on page. ie; prior to receipt of scroll command-top line $=0$, bottom line $=23$. After receipt of Scroll Command-top line $=$ 1 , bottom line $=0$.

Receipt of this command after a Reset or Processor Self Load command will release the timing chain approximately one scan line later. In applications requiring synchronous operation of more than one CRT 5027 the dot counter carry should be held low during the $\overline{\mathrm{DS}}$ for this command.
Device will begin self load via PROM when $\overline{D S}$ goes low. The 1111 command should be maintained on A3- \varnothing long enough to guarantee self load. (Scan counter should cycle through at least once). Self load is automatically terminated and timing chain initiated when the all " 1 's" condition is removed, independent of $\overline{\mathrm{DS}}$. For synchronous operation of more than one VTAC ${ }^{\circledR}$, the Dot Counter Carry should be held low when the command is removed.
*NOTE: During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address Register (REG 8) are enabled during states $\emptyset 111$ and $1 \emptyset \emptyset \emptyset$ of the R3-R \emptyset Scan Counter outputs respectively. Therefore, Cursor data in the PROM should be stored at these addresses.

TABLE 1

FIGURE 3 SCAN AND DATA ROW COUNTER TIMING

*R $\emptyset-3$ and DR $\emptyset-5$ may change prior to the falling edge of H sync

MAXIMUM GUARANTEED RATINGS*

Lead Temperature (soldering, 10 sec.) . $325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground 18.0 V
Negative Voltage on any Pin, with respect to ground 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transientș on the AC power line may appear on the DC output. For example, the bench power supply programmed to deliver +12 volts may have large voltage transients when the AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Restrictions

1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Therefore the standard WRITE and READ control signals from most microprocessors must be "NORed" externally to present a single strobe (DS) signal to the device.
2. In interlaced mode the total number of character slots assigned to the horizontal scan must be even to insure that vertical sync occurs precisely between horizontal sync pulses.

Start-up, CRT 5027

When employing microprocessor controlled loading of the CRT 5027's registers, the following sequence of instructions is necessary:

COMMAND
Start Timing Chain Reset
Load Register 0
-
.
Load Register 6
Start Timing Chain

The sequence of START RESET LOAD START is necessary to insure proper initialization of the registers.
This sequence is not required if register loading is via either of the Self Load modes. This sequence is optional with the CRT 5037 or CRT 5057.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applicaCircuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applica-
tions; consequently complete information sufficient for construction purposes is not necessarily given. The tions; consequently complete information suficient for construction purposes is not necessarily given. The
information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Preprogrammed CRT Video Timer and Controller VTAC ${ }^{\text {® }}$

FEATURES

Preprogrammed (Mask-Programmed) Display Format 80 Characters Per Data Row24 Data Rows Per Frame 9 Scan Lines Per Data Row
\square Preprogrammed Monitor Sync Format 262 Scan Lines Per Frame 6 Character Times for Horizontal Front Porch
8 Character Times for Horizontal Sync Width 6 Character Times for Horizontal Back Porch 16 Scan Lines for Vertical Front Porch 3 Scan Lines for Vertical Sync Width 27 Scan Lines for Vertical Back Porch Non-Interlace 15.720 KHz Horizontal Scan Rate 60 Hz Frame Refresh RateFixed Character Rate 1.572 MHz Character Rate ($636.13 \mathrm{~ns} /$ Character) 11.004 MHz Dot Rate ($90.88 \mathrm{~ns} /$ Dot) for 7 Dot Wide Character Block
\square Character Format 5×7 Character in a 7 X 9 BlockCompatible with CRT 8002B-003 VDAC $^{\text {m }}$Compatible with CRT 7004B-003May be mask-programmed with other display formats

GENERAL DESCRIPTION

The two chip combination of SMC's CRT 5047 and CRT 8002B-003 effectively provide all of the video electronics for a CRT terminal. This chip set along with a $\mu \mathrm{C}$ form the basis for a minimum chip count CRT terminal.
The CRT 5047 Video Timer and Controller is a special version of the CRT 5037 VTAC® which has been ROMprogrammed with a fixed format. It is especially effective for low-cost CRT terminals using an 80×24 display format with a 5×7 character matrix. The use of a fixed ROM program in the CRT 5047 eliminates the software overhead normally required to specify the display parameters and simplifies terminal software design.
The Cursor Character Address Register and the Cursor Row Address Register are the only two registers acces-
sible by the processor. The CRT 5047 is easily initialized by the following sequence of commands:

Reset Load Control Register 6 Start Timing Chain

The parameters of the CRT 5047 have been selected to be compatible with most CRT monitors. The horizontal timing is programmed so that when the two character skew delay of the CRT 8002 VDAC $^{\text {TM }}$ is taken into account, the effective timing is: Horizontal Front Porch - four characters, and Horizontal Back Porch-eight characters.
Figure 1 shows the contents of the internal CRT 5047 registers. Other mask-programmed versions of the CRT 5037 are available. Consult SMC for more information.

VTAC® WORK SHEET

1. H CHARACTER MATRIX (No. of Dots):
2. V CHARACTER MATRIX (No. of Horiz. Scan Lines): 7
3. H CHARACTER BLOCK (Step $1+$ Desired Horiz. Spacing = No. in Dots): 7
4. V CHARACTER BLOCK (Step $2+$ Desired Vertical Spacing = No. in Horiz. Scan Lines): 9
5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): 60
6. DESIRED NO. OF DATA ROWS: 24
7. TOTAL NO. OF ACTIVE "VIDEO DISPLAY" SCAN LINES (Step $4 \times$ Step $6=$ No. in Horiz. Scan Lines):216
8. VERT. SYNC DELAY (No. in Horiz. 16
9. VERT. SYNC (No. in Horiz. Scan Lines;
$\mathrm{T}=190.8 \mu \mathrm{~s}^{*}$) 3
10. VERT. SCAN DELAY (No. in Horiz. Scan Lines; $T=\underline{1.718} \mathrm{~ms}^{*}$):27
\qquad 5
11. TOTAL VERTICAL FRAME (Add steps 7 thru $10=$ No. in Horiz. Scan Lines): ... 262
12. HORIZONTAL SCAN LINE RATE (Step $5 \times$ Step $11=$ Freq. in KHz): 15.720
13. DESIRED NO. OF CHARACTERS PER HORIZ. ROW: 80
14. HORIZ. SYNC DELAY (No. in Character Time Units; $\left.T=\underline{3.817} \mu \mathrm{~s}^{* *}\right)$: 6
15. HORIZ. SYNC (No. in Character Time Units; $\left.T=\underline{5.090} \mu \mathrm{~s}^{* *}\right)$: 8
16. HORIZ. SCAN DELAY (No. in Character Time Units; $T=\mathbf{3 . 8 1 7} \mu \mathrm{s}^{\star \star}$): 6
17. TOTAL CHARACTER TIME UNITS IN (1)HORIZ. SCAN LINE (Add Steps 13thru 16):100
18. CHARACTER RATE (Step $12 \times$ Step 17 $=$ Freq. in MHz): 1.572
19. CLOCK (DOT) RATE (Step $3 \times$ Step 18 $=$ Freq. in MHz): 11.004

*Register 6 has an initialization option. It is loaded with the data contained in Register 3 by a "Load Register 6" command.
The "Up Scroll" command can be used to effect scrolling operations.
Figure 1: CRT 5047 Mask Programmed Registers

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Dot Matrix Character Generator

128 Characters of 7×11 Bits

FEATURES

\square On chip character generator (mask programmable) 128 Characters
7×11 Dot matrix block
\square On chip video shift register
Maximum shift register frequency

CRT 7004A	20 MHz
CRT 7004B	15 MHz
CRT 7004 C	10 MHz

-

Access time 400nsNo descender circuitry requiredOn chip cursorOn chip character address bufferOn chip line address bufferSingle +5 volt power supplyTTL compatibleMOS N-channel silicon-gate COPLAMOS ${ }^{\circledR}$ processCLASP ${ }^{\oplus}$ technology - ROMCompatible with CRT 5027 VTAC®
Enhanced version of CG5004L-1

PIN CONFIGURATION

NC 1 -	24 GND
SO 2 -	$\square 23 \mathrm{PE}$
$V_{c c} 3-$] 22 NC
LS 4 -	321 VDC
PRST $5 \square$] 20 CUR
L1 6	19 AS
CLR 7] 18 LCI
L2 8 -] 17 A 7
L4 9 -] 16 A6
L8 10 -	$\square 15 \mathrm{~A} 5$
A1 11 C	$\square 14 \mathrm{~A} 4$
A2 12 -	13 A 3

PACKAGE: 24-Pin D.I.P.

GENERAL DESCRIPTION

SMC's CRT 7004 is a high speed character generator with a high speed video shift register designed to display 128 characters in a 7×11 dot matrix. The CRT 7004 is an enhanced, pin for pin compatible, version of SMC's CG5004L-1. It is fabricated using SMC's patented COPLAMOS ${ }^{\oplus}$ and CLASP® ${ }^{\text {© }}$ technologies and employs depletion mode loads, allowing operation from a single +5 v supply. This process permits reduction of turn-around time for ROM patterns. The CRT 7004 is a companion chip to SMC's CRT 5027 VTAC ${ }^{\ominus}$. Together these two chips comprise the circuitry required for the display portion of a CRT video terminal.

FUNCTIONAL BLOCK DIAGRAM

> Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
> Positive Voltage on any Pin, with respect to ground . + . 8.0 V
> Negative Voltage on any Pin, with respect to ground -0.3 V
> *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
> NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V} c \mathrm{C}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, VIL			0.8	V	excluding VDC
High-level, V_{IH}	2.0			V	excluding VDC
INPUT VOLTAGE LEVELS-CLOCK					
Low-level, $\mathrm{V}_{\text {IL }}$			0.8	V	
High-level, $\mathrm{V}_{1 \mathrm{H}}$	4.3			V	See AC Timing Diagram
OUTPUT VOLTAGE LEVELS					
Low-level, $\mathrm{V}_{\text {ol }}$			0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}, 74 \mathrm{LSXX}$ load
High-level, $\mathrm{V}_{\text {OH }}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$
Leakage, I_{L}			100		$\mathrm{V}_{\mathrm{IN}}=\mathrm{O}, \mathrm{LS}, \mathrm{AS}, \mathrm{~A} 1-\mathrm{A} 7, \text { Cursor LCI }$
			10	${ }_{\mu} \mathrm{A}$	$\mathrm{O} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{cc}}$, All others
INPUT CAPACITANCE					
Data				pF	
PE		20		pF	@ 1 MHz
CLOCK		25		pF	@ 1 MHz
POWER SUPPLY CURRENT lcc		100		mA	

SYMBOL	PARAMETER	CRT 7004A		CRT 7004B		CRT 7004C		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
VDC	Video Dot Clock Frequency	1.0	20	1.0	15	1.0	10	MHz
PW_{H}	VDC - High Time	13.5		21		36		ns
PW	VDC - Low Time	13.5		21		36		ns
$\mathrm{t}_{\mathrm{CY}} \mathrm{AS}$	Address strobe to PE high	400		533		800		ns
$t_{C r} \mathrm{LS}$	Line strobe to PE high	1.0		1.0		1.0		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise, fall time		10		10		10	ns
t_{1}	PE set-up time	5		20		20		ns
t_{2}	PE hold time	15		15		15		ns
$\mathrm{AS}_{\text {PW }}$	Address strobe pulse width	50		50		50		ns
$L_{\text {PW }}$	Line strobe pulse width	50		50		50		ns
$\mathrm{t}_{\text {SEt-UP }}$	Input set-up time	≥ 0		≥ 0		≥ 0		ns
$\mathrm{t}_{\text {HOLD }}$	Input hold time	15		15		15		ns
$\mathrm{t}_{\mathrm{Pd} 1}, \mathrm{t}_{\mathrm{Pd} 0}$	Output propagation delay		45		60		90	ns

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	FUNCTION
1	NC	No Connection	
2	SO	Serial Output	The output of the dynamic shift register is clocked out on this pin. The serial input to this shift register is internally grounded; thus zeros are shifted in while data is shifted out.
3	V_{cc}	Power Supply	+5 volt supply
4	LS	Line Strobe	A positive pulse on this input enters data from the L1, L2, L4, L8 lines into the line address holding register. The LS input may be left open, in which case it is pulled up to V_{Cc} by an internal resistor. Data on the L1 to L8 inputs is then entered directly into the register without any latching action.
5	PRST	Preset	A high level on this input forces the last stage of the shift register and the serial output to a logic high.
6,8,9,10	$\begin{aligned} & \mathrm{L} 1, \mathrm{~L} 2, \\ & \mathrm{~L} 4, \mathrm{~L} 8 \end{aligned}$	Line Address	A binary number N, on these four inputs address the N th line of the character font for $N=1-11$. If lines $0,12,13$, 14 or 15 are addressed, the parallel inputs to the shift register are all forced low.
7	CLR	Clear	A high level on this input forces the last stage of the shift register and the serial output to a logic low and will be latched (for a character time) by PE. Clear overrides preset.
11-17	A1-A7	Character Address	The seven-bit word on these inputs is decoded internally to address one of the 128 available characters.
18	LCl	Lower Case Inhibit	A high level on this input transforms the address of a lower case character into that of the equivalent upper case character. This is internally achieved by forcing A6 low whenever A7 and LCl are high.
19	AS	Address Strobe	A positive pulse on this input enters data from the A1-A7, LCl and CUR inputs into the holding register. The AS input may be left open, in which case it is pulled up to V_{cc} by an internal resistor. The data on the $\mathrm{A} 1-\mathrm{A} 7, \mathrm{LCl}$ and CUR inputs is then entered directly into the register without any latching action.
20	CUR	Cursor*	A high level on this input causes the cursor pattern to be superimposed on the pattern of the character addressed, i.e., the two patterns are OR-ed to generate the parallel inputs to the shift register. The standard cursor is presented as a double underscore on rows 10 and 11.
21	CLK	Clock	Frequency at which video (SO) is shifted.
22	NC	No Connection	
23	PE	Parallel Enable	A high level on this input loads the word at the output of the ROM into the shift register. The PE input must then be brought low again to allow the shift register to clock out this word.
24	GND	Ground	Ground

AC TIMING DIAGRAM

\qquad $\sqrt{\mathrm{CH}} \mathrm{O}$ \qquad $\mathrm{CH}_{1}^{\mathrm{CH}} \mathrm{B}$ $\sqrt{\mathrm{CH}}$ $\xrightarrow{-8 .}$ \qquad $\sqrt{{ }_{3}+1}$ \qquad $\sqrt{\mathrm{CH}}$ \qquad $\sqrt{\text { CH }}$ \qquad

A1-A7, CUR, LCI

PRESET \qquad $\checkmark \longrightarrow \longrightarrow$

CLEAR \qquad $\sqrt{ }$

SO VIDEO 8 DOT FIELD

$\mathrm{BF}=$ Back Fill

TYPICAL VIDEO OUTPUT

NOTE

The differences between the CRT 7004 and CG5004L-1 are detailed below:

CG5004L-1

1. If both the Preset and Clear inputs are brought high simultaneously the Serial Output is disabled and may be wire-ORed.
2. All Inputs $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{v}$
3. $S O V_{\mathrm{oL}}=0.4 \mathrm{v} @ \mathrm{I}_{\mathrm{oL}}=0.2 \mathrm{~mA}$
4. Shift Register is static
5. Clear-directly forces the output low; when released, the output is determined by the state of the shift register output.
6. General Timing Differences-See Timing Diagram

CRT 7004

1. Clear overrides Preset, no output disable is possible.
2. All inputs (except CLK) $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{v}$, min. $C L K V_{1 H}=4.3 \mathrm{~V}, \mathrm{~min}$.
3. $S O V_{\mathrm{OL}}=0.4 \mathrm{v} @ \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA} 74 \mathrm{LSXX}$ load
4. Shift Register is dynamic
5. Clear directly forces the output low and will be latched (for a character time) by PE.
6. General Timing Differences-See Timing Diagram

Dot Matrix Character Generator

	${ }^{\text {amo }}$	${ }^{\text {amem }}$	${ }^{40}{ }^{\text {a0\% }}$	${ }^{1}$	\%	${ }^{10} 10$	om om	"mom										
	as.	\%	, mos	+a,	\%	,	\cdots	-ama	-am	-ma		a,	a	\%	\%e.m	,		
${ }_{\infty}$		\%	7	W	\pm	-	\pm	\%	-	.		\%		\%	\%	,		
${ }^{\circ}$		\%	+	\%	※				\%	-	:	\#	\#	+	\#	.		:
or					=	\%	\%				,	*			-	in		
${ }^{\circ}$		W	$\sqrt{2}$	$\sqrt{2}$	$i=$		$\stackrel{3}{4}$	$\sqrt{6}$	5		\cdots							
	E	Bive	$\sqrt[3]{2}$		10	\cdots		?										"
		\because		\cdots			!	91	$1 V_{2}$			+in	\%			\%		*
		$\sqrt{4}$	$4 \mathrm{IN}$	0		T	$\cdots \stackrel{1}{*}$							W				\cdots
		츌	\%	=	\%	W	\%	:	1\%			W		北				\#\#

The Cursor for the CRT 7004-003 is presented as a double underscore on Rows 8 and 9 .

High-Performance Graphics Display Controller

FEATURES

\square Microprocesser Interface
DMA transfers with 8257- or 8237-type controllers
FIFO Command BufferingDisplay Memory Interface
Up to 256K words of 16 bits
Read-Modify-Write (RMW) Display Memory cycles as fast as 500ns
Dynamic RAM refresh cycles for nonaccessed memoryLight Pen InputExternal video synchronization modeGraphics Mode
Four megabit, bit-mapped display memoryCharacter Mode
8K character code and attributes display memoryMixed Graphics and Character Mode
64 K if all characters
1 megapixel if all graphicsGraphics Capabilities
Figure drawing of lines, arc/circles, rectangles, and graphics characters in 500 ns per pixel
Display 1024-by-1024 pixels with 4 planes of color or grayscale
Two independently scrollable areas
Character Capabilities
Auto cursor advance
Four independently scrollable areas
Programmable cursor height
Characters per row: up to 256
Character rows per screen: up to 100

PIN CONFIGURATION

Video Display Format
Zoom magnification factors of 1 to 16 Panning
Command-settable video raster parameters
Technology
Single +5 volt Power Supply
COPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate Technology
DMA Capability
Bytes or word transfers
4 clock periods per byte transferred

GENERAL DESCRIPTION

The CRT 7220A High-performance Graphics Display Controller (HGDC) is an intelligent microprocessor peripheral designed to be the heart of a high-performance raster-scan computer graphics and character display system. Positioned between the video display memory and the microprocessor bus, the HGDC performs the tasks needed to generate the raster display and manage the display memory. Processor software overhead is minimized by the HGDC's sophisticated instruction set, graphics figure drawing, and DMA transfer capabilities. The display memory supported by the HGDC can be configured in any number of formats and sizes up to 256 K 16 -bit words. The display can be zoomed and panned, while partitioned screen areas can be independently scrolled. With its light pen input and multiple controller capability, the HGDC is ideal for advanced computer graphics applications.

The HGDC is designed to work with a general purpose microprocessor to implement a high-performance com-
puter graphics system. Through the division of labor established by the HGDC's design, each of the system components is used to the maximum extent through a sixlevel hierarchy of simultaneous tasks. At the lowest level, the HGDC generates the basic video raster timing, including sync and blanking signals. Partitioned areas on the screen and zooming are also accomplished at this level. At the next level, video display memory is modified during the figure drawing operations and data moves. Third, display memory addresses are calculated pixel by pixel as drawing progresses. Outside the HGDC at the next level, preliminary calculations are done to prepare drawing parameters. At the fifth level, the picture must be represented as a list of graphics figures drawable by the HGDC. Finally, this representation must be manipulated, stored, and communicated. By handling the first three levels, the HGDC takes care of the high-speed and repetitive tasks required to implement a graphics system.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	IN/OUT	FUNCTION
1	2XWCLK	IN	Clock Input
2	$\overline{\text { DBIN }}$	OUT	Display Memory Read Input Flag
3	HSYNC	OUT	Horizontal Video Sync Output
4	V/EXTSYNC	IN/OUT	Vertical Video Sync Output or External VSYNC Input
5	BLANK	OUT	CRT Blanking Output
6	ALE ($\overline{\mathrm{RAS}}$)	OUT	Address Latch Enable Output
7	DRQ	OUT	DMA Request Output
8	$\overline{\text { DACK }}$	IN	DMA Acknowledge Input
9	$\overline{\mathrm{RD}}$	IN	Read Strobe Input for Microprocessor Interface
10	$\overline{W R}$	IN	Write Strobe Input for Microprocessor Interface
11	A0	IN	Address Select Input for Microprocessor Interface
12-19	DB0-DB7	IN/OUT	Bidirectional data bus to Host Microprocessor
20	GND	-	Ground
21	LPEN/DH	IN	Light Pen Detect Input/Drawing Hold Input
22-34	AD0-AD12	IN/OUT	Address and Data Lines to Display Memory
35-37	AD13-AD15	IN/OUT	Character Mode: Line Counter Outputs, Bits 0-2 Mixed Mode: Address and Data Bits 13-15 Graphics Mode: Address and Data Bits 13-15
38	A16	OUT	Character Mode: Line Counter Output, Bit 3 Mixed Mode: Attribute Blink and Clear Line Counter Output Graphics Mode: Address Bit 16 Output
39	A17	OUT	Character Mode: Cursor Output and Line Counter Bit 4 Mixed Mode: Cursor and Bit Map Area Flag Output Graphics Mode: Address Bit 17 Output
40	VCC	-	+ 5 Volt Power Supply

FUNCTIONAL DESCRIPTION

Microprocessor Bus Interface

Control of the HGDC by the system microprocessor is achieved through an 8-bit bidirectional interface. The status register is readable at any time. Access to the FIFO buffer is coordinated through flags in the status register and operates independently of the various internal HGDC operations, due to the separate data bus connecting the interface and the FIFO buffer.

Command Processor

The contents of the FIFO are interpreted by the command processor. The command bytes are decoded, and the succeeding parameters are distributed to their proper destinations within the HGDC. The command processor yields to the bus interface when both access the FIFO simultaneously.

DMA Control

The DMA control circuitry in the HGDC coordinates transfers over the microprocessor interface when using an external DMA controller. The DMA Request and Acknowledge handshake lines directly interface with a DMA controller, so that display data can be moved between the microprocessor memory and the display memory.

Parameter RAM

The 16-byte RAM stores parameters that are used repetitively during the display and drawing processes. In character mode, this RAM holds four sets of partitioned display area parameters; in graphics mode, the drawing pattern and graphics character take the place of two of the sets of parameters.

Video Sync Generator

Based on the clock input, the sync logic generates the raster timing signals for almost any interlaced, non-interlaced, or "repeat field" interlaced video format. The generator is programmed during the idle period following a reset. In video sync slave mode, it coordinates timing between multiple HGDC's.

Memory Timing Generator

The memory timing circuitry provides two memory cycle types: a two-clock period refresh cycle and the read-mod-ify-write (RMW) cycle which takes four clock periods. The memory control signals needed to drive the display memory devices are easily generated from the HGDC's ALE and DBIN outputs.

Zoom \& Pan Controller

Based on the programmable zoom display factor and the display area entries in the parameter RAM, the zoom and pan controller determines when to advance to the next memory address for display refresh and when to go on to the next display area. A horizontal zoom is produced by slowing down the display refresh rate while maintaining the video sync rates. Vertical zoom is accomplished by repeatedly accessing each line a number of times equal to the horizontal repeat. Once the line count for a display area is exhausted, the controller accesses the starting address and line count of the next display area from the parameter RAM. The system microprocessor, by modifying a display area starting address, can pan in any direction, independently of the other display areas.

Drawing Controller

The drawing processor contains the logic necessary to calculate the addresses and positions of the pixels of the various graphics figures. Given a starting point and the appropriate drawing parameters, the drawing controller needs no further assistance to complete the figure drawing.

Display Memory Controller

The display memory controller's tasks are numerous. Its primary purpose is to multiplex the address and data information in and out of the display memory. It also contains the 16-bit logic unit used to modify the display memory contents during RMW cycles, the character mode line counter, and the refresh counter for dynamic RAMs. The memory controller apportions the video field time between the various types of cycles.

Light Pen Deglitcher

Only if two rising edges on the light pen input occur at the same point during successive video fields are the pulses accepted as a valid light pen detection. A status bit indicates to the system microprocessor that the light pen register contains a valid address. If this input is held high for a period greater than four $2 x W C L K$ cycles, drawing execution is halted.

PROGRAMMER'S VIEW OF HGDC

The HGDC occupies two addresses on the system microprocessor bus through which the HGDC's status register and FIFO are accessed. Commands and parameters are written into the HGDC's FIFO and are differentiated based on address bit AO. The status register or the FIFO can be read as selected by the address line.

HGDC Microprocessor Bus Interface Registers
Commands to the HGDC take the form of a command byte followed by a series of parameter bytes as needed for specifying the details of the command. The command processor decodes the commands, unpacks the parameters, loads them into the appropriate reigsters within the HGDC, and initiates the required operations.
The commands available in the HGDC can be organized into five categories as described in the following section.

HGDC COMMAND SUMMARY

Video Control Commands

1. RESET 1 Resets the HGDC to its idle state.
2. RESET 2 Resets the HGDC to its idle state. Does not resynchronize video timing. Blanks the display.
3. RESET 3 Resets the HGDC to its idle state. Does not resynchronize video timing. Does not blank the display.
4. SYNC Specifies the video display format.
5. VSYNC Selects master or slave video synchronization mode.
6. CCHAR Specifies the cursor and character row heights.

Display Control Commands

1. START Ends Idle mode and unblanks the display.
2. BLANK 1 Controls the blanking and unblanking of the display, along with video resynchronization.
3. BLANK 2 Controls the blanking and unblanking of the display. Does not blank the display.
4. ZOOM Specifies zoom factors for the display and graphics characters writing.
5. CURS Sets the position of the cursor in display memory.
6. PRAM Defines starting addresses and lengths of the display areas and specifies the eight bytes for the graphics character.
7. PITCH Specifies the width of the X dimension of display memory.

Drawing Control Commands

1. WDAT Writes data words or bytes into display
2. MASK Sets the mask register contents.
3. FIGS Specifies the parameters for the drawing controller.
4. FIGD Draws the figure as specified above.
5. GCHRD Draws the graphics character into display memory.

Data Read Commands

1. RDAT:	Reads data words or bytes from display memory.
2. CURD:	Reads the cursor position.
3. LPRD:	Reads the light pen address.

DMA Control Commands

1. DMAR Requests a DMA read transfer
2. DMAW Requests a DMA write transfer.

STATUS REGISTER FLAGS

Status Register (SR)

SR-7: Light Pen Detect

When this bit is set to 1 , the light pen address (LAD) register contains a deglitched value that the system microprocessor may read. This flag is reset after the 3-byte LAD is moved into the FIFO in response to the light pen read command.

SR-6: Horizontal Blanking Active/Vertical Blank Active

A 1 value for this flag signifies that horizontal retrace blanking or vertical retrace blanking is currently underway dependent on the status of the VH bit in SYNC or the RESETx parameter 6.

SR-5: Vertical Sync

Vertical retrace sync occurs while this flag is a 1 . The vertical sync flag coordinates display format modifying commands to the blanked interval surrounding vertical sync. This eliminates display disturbances.

SR-4: DMA Execute

This bit is a 1 during DMA data transfers.

SR-3: Drawing in Progress
While the HGDC is drawing a graphics figure, this status bit is a 1 .

SR-2: FIFO Empty

This bit and the FIFO Full flag coordinate system microprocessor accesses with the HGDC FIFO. When it is 1, the Empty flag ensures that all the commands and parameters previously sent to the HGDC have been interpreted.

SF-1: FIFO Full

A 1 at this flag indicates a full FIFO in the HGDC. A 0 ensures that there is room for at least one byte. This flag needs to be checked out before each write into the HGDC.

SR-0: Data Ready

When this flag is a 1 , it indicates that a byte is available to be read by the system microprocessor. This bit must be tested before each read operation. It drops to a 0 while the data is transferred from the FIFO into the microprocessor interface data register.

FIFO OPERATION \& COMMAND PROTOCOL

The first-in, first-out buffer (FIFO) in the HGDC handles the command dialogue with the system microprocessor. This flow of information uses a half-duplex technique, in which the single 16-location FIFO is used for both directions of data movement, one direction at a time. The FIFO's direction is controlled by the system microprocessor through the HGDC's command set. The host microprocessor coordinates these transfers by checking the appropriate status register bits.
The command protocol used by the HGDC requires differentiation of the first byte of a command sequence from the succeeding bytes. The first byte contains the operation code and the remaining bytes carry parameters. Writing into the HGDC causes the FIFO to store a flag value alongside the data byte to signify whether the byte was written into the command or the parameter address. The command processor in the HGDC tests this bit as it interprets the entries in the FIFO.
The receipt of a command byte by the command processor marks the end of any previous operation. The number of parameter bytes supplied with a command is cut short by the receipt of the next command byte. A read operation from the HGDC to the microprocessor can be terminated at any time by the next command.
The FIFO changes direction under the control of the system microprocessor. Commands written into the HGDC always put the FIFO into write mode if it wasn't in it already.
If it was in read mode, any read data in the FIFO at the time of the turnaround is lost. Commands which require a HGDC response, such as RDAT, CURD and LPRD, put the FIFO into read mode after the command is interpreted by the HGDC's command processor. Any commands and parameters behind the read-evoking command are discarded when the FIFO direction is reversed.

READ-MODIFY-WRITE CYCLE

Data transfers between the HGDC and the display memory are accomplished using a read-modify-write (RMW) memory cycle. The four clock period timing of the RMW cycle is used to: 1) output the address, 2) read data from the memory, 3) modify the data, and 4) write the modified data back into the initially selected memory address. This type of
memory cycle is used for all interactions with display memory including DMA transfers, except for the two clock period display and RAM refresh cycles.
The operations performed during the modify portion of the RMW cycle merit additional explanation. The circuitry in the HGDC uses three main elements: the Pattern register, the Mask register, and the 16 -bit Logic Unit. The Pattern register holds the data pattern to be moved into memory. It is loaded by the WDAT parameters or, during drawing, from the parameter RAM. The Mask register contents determine which bits of the read data will be modified. Based on the contents of these registers, the Logic Unit performs the selected operations of REPLACE, COMPLEMENT, SET, or CLEAR on the data read from display memory.
The Pattern register contents are ANDed with the Mask register contents to enable the actual modification of the memory read data, on a bit-by-bit basis. For graphics drawing, one bit at a time from the Pattern register is combined with the Mask. When ANDed with the bit set to a 1 in the Mask register, the proper single pixel is modified by the Logic Unit. For the next pixel in the figure, the next bit in the Pattern register is selected and the Mask register bit is moved to identify the pixel's location within the word. The Execution word address pointer register, EAD, is also adjusted as required to address the word containing the next pixel.
In character mode, all of the bits in the Pattern register are used in parallel to form the respective bits of the modify data word. Since the bits of the character code word are used in parallel, unlike the one-bit-at-a-time graphics drawing process, this facility allows any or all of the bits in a memory word to be modified in one RMW memory cycle. The Mask register must be loaded with 1s in the positions where modification is to be permitted.
The Mask register can be loaded in either of two ways. In graphics mode, the CURS command contains a four-bit dAD field to specify the dot address. The command processor converts this parameter into the one-of-16 format used in the Mask register for figure drawing. A full 16 bits can be loaded into the Mask register using the MASK command. In addition to the character mode use mentioned above, the 16 -bit MASK load is convenient in graphics mode when all of the pixels of a word are to be set to the same value.
The Logic Unit combines the data read from display memory, the Pattern Register, and the Mask register to generate the data to be written back into display memory. Any one of four operations can be selected: REPLACE, COMPLEMENT, CLEAR or SET. In each case, if the respective Mask bit is 0 , that particular bit of the read data is returned to memory unmodified. If the Mask bit is 1 , the modification is enabled. With the REPLACE operation, the Pattern Register data simply takes the place of the read data for modification enabled bits. For the other three operations, a 0 in the modify data allows the read data bit to be returned to memory. A 1 value causes the specified operation to be performed in the bit positions with set Mask bits.

FIGURE DRAWINGS

The HGDC draws graphics figures at the rate of one pixel per read-modify-write (RMW) display memory cycle. These cycles take four clock periods to complete. At a clock frequency of 8 MHz , this is equal to 500 ns . During the RMW cycle the HGDC simultaneously calculates the address and position of the next pixel to be drawn.
The graphics figure drawing process depends on the display memory addressing structure. Groups of 16 horizontally adjacent pixels form the 16-bit words which are handled by the HGDC. Display memory is organized as a linearly
addressed space of these words. Addressing of individual pixels is handled by the HGDC's internal RMW logic.
During the drawing process, the HGDC finds the next pixel of the figure which is one of the eight nearest neighbors of the last pixel drawn. The HGDC assigns each of these eight directions a number from 0 to 7, starting with straight down and proceeding counterclockwise.

Figure drawing requires the proper manipulation of the address and the pixel bit position according to the drawing direction to determine the next pixel of the figure. To move to the word above or below the current one, it is necessary to subtract or add the number of words per line in display memory. This parameter is called the pitch. To move to the word to either side, the Execute word address cursor, EAD, must be incremented or decremented as the dot address pointer bit reaches the LSB or the MSB of the Mask register. To move to a pixel within the same word, it is necessary to rotate the dot address pointer register to the right or left.
The table below summarizes these operations for each direction.

Dir	Operations to Address the Next Pixel
000	EAD-P \rightarrow EAD
001	$\begin{aligned} & \text { EAD }-P \rightarrow E A D \\ & \text { dAD }(M S B)=1: E A D-1 \rightarrow E A D \text { dAD } \rightarrow \text { LR } \end{aligned}$
010	dAD (MSB) $1: E A D-1 \rightarrow$ EAD dAD \rightarrow LR
011	$\begin{aligned} & \text { EAD - P } \rightarrow \text { EAD } \\ & \text { dAD }(M S B)=1: E A D-1 \rightarrow E A D ~ d A D \rightarrow L R \end{aligned}$
100	$E A D-P \rightarrow E A D$
101	$\begin{aligned} & \text { EAD - P } \rightarrow \text { EAD } \\ & \text { } \mathcal{A D}(L S B)=1: E A D-1 \rightarrow \text { EAD } \text { dAD } \rightarrow R R \end{aligned}$
110	$\mathrm{dAD}(\mathrm{LSB})=1: E A D-1 \rightarrow E A D$ dAD \rightarrow RR
111	$\begin{aligned} & \text { EAD-P } \rightarrow \text { EAD } \\ & \text { } \operatorname{lAD~}(\mathrm{LSB})=1: E A D-1 \rightarrow \text { EAD dAD } \rightarrow \text { RR } \end{aligned}$

Whole word drawing is useful for filling areas in memory with a single value. By setting the Mask register to all is with the MASK command, both the LSB and MSB of the dAD will always be 1, so that the EAD value will be incremented or decremented for each cycle regardless of direction. One RMW cycle will be able to effect all 16 bits of the word for any drawing type. One bit in the Pattern register is used per RMW cycle to write all the bits of the word to the same value. The next Pattern bit is used for the word, etc.

For the various figures, the effect of the initial direction upon the resulting drawing is shown below:

Note that during line drawing, the angle of the line may be anywhere within the shaded octant defined by the DIR value. Arc drawing starts in the direction initially specified by the DIR value and veers into an arc as drawing proceeds. An arc may be up to 45 degrees in length. DMA transfers are done on word boundaries only, and follow the arrows indicated in the table to find successive word addresses. The slanted paths for DMA transfers indicate the HGDC changing both the X and Y components of the word address when moving to the next word. It does not follow a 45 degree diagonal path by pixels.

DRAWING PARAMETERS

In preparation for graphics figure drawing, the HGDC's Drawing Processor needs the figure type, direction and drawing parameters, the starting pixel address, and the pattern from the microprocessor. Once these are in place within the HGDC, the Figure Draw command, FIGD, initiates the drawing operation. From that point on, the system microprocessor is not involved in the drawing process. The

HGDC Drawing Controller coordinates the RMW circuitry and address registers to draw the specified figure pixel by pixel.
The algorithms used by the processor for figure drawing are designed to optimize its drawing speed. To this end, the specified details about the figure to be drawn are reduced by the microprocessor to a form conducive to high-speed address calculations within the HGDC. In this way the repetitive, pixel-by-pixel calculations can be done quickly, thereby minimizing the overall figure drawing time. The table below summarizes the parameters.

Drawing Type	DC	D	D2	D1	DM
Initial Value*	0	8	8	-1	-1
Line	$\|\Delta\|$ \|	$2\|\Delta D\|-\|\Delta I\|$	$2(\|\Delta D\|-\|\Delta 1\|)$	$2\|\Delta D\|$	-
Arc**	$r \sin \phi$	$\mathrm{r}-1$	2(r-1)	-1	$\boldsymbol{r s i n} \theta \downarrow$
Rectangle	3	A-1	B-1	-1	A-1
Area Fill	B-1	A	A	-	-
Graphic Character***	B-1	A	A	-	-
Read + Write Data	W-1	-	-	-	-
DMAW	D-1	C-1	-	-	-
DMAR	D-1	C-2	(C-2)/2†	-	-

Notes: All numbers are shown in base 10 for convenience. The HGDC accepts base 2 numbers (2s complement notation) where appropriate.
*Initial values for the various parameters remain as each drawing process ends.
**Circles are drawn with 8 arcs, each of which span 45°, so that $\sin \phi=1 / \sqrt{ } 2$ and $\sin \theta=0$.
${ }^{* *}$ Graphic characters are a special case of bit-map area filling in which B and $A \leqslant 8$. If $A=8$ there is no need to load D and D2.

Where

$-\mathbf{1}=$ all ONES value.
$-=$ No parameter bytes sent to GDC for this parameter.
$\Delta I=$ The larger at Δx or Δy.
$\Delta D=$ The smaller at Δx or Δy.
$r=$ Radius of curvature, in pixels.
$\phi=$ Angle from major axis to end of the arc. $\phi \leqslant 45$:
$\theta=$ Angle from major axis to start of the arc. $\theta \leqslant 45$.
$\uparrow=$ Round up to the next higher integer.
$\downarrow=$ Round down to the next lower integer.
$A=$ Number of pixels in the initially specified direction.
$\mathrm{B}=$ Number of pixels in the direction at right angles to the initially specified direction.
$\mathrm{W}=$ Number of words to be accessed.
C= Number of bytes to be transferred in the initially specified direction. (Two bytes per word if word transfer mode is selected.)
$D=$ Number of words to be accessed in the direction at right angles to the initially specified direction.
DC = Drawing count parameter which is one less than the number of RMW cycles to be executed.
$\mathrm{DM}=$ Dots masked from drawing during arc drawing.
$t=$ Needed only for word reads.

GRAPHICS CHARACTER DRAWING

Graphics characters can be drawn into display memory pixel-by-pixel. The up to 8-by-8 character display is loaded into the HGDC's parameter RAM by the system microprocessor. Consequently, there are no limitations on the character set used. By varying the drawing parameters and drawing direction, numerous drawing options are available. In area fill applications, a character can be written into display memory as many times as desired without reloading the parameter RAM.
Once the parameter RAM has been loaded with up to eight graphics character bytes by the appropriate PRAM command, the GCHRD command can be used to draw the bytes into display memory starting at the cursor. The zoom magnification factor for writing, set by the zoom command, controls the size of the character written into the display memory in integer multiples of 1 through 16. The bit values in the

PRAM are repeated horizontally and vertically the number of times specified by the zoom factor.
The movement of these PRAM bytes to the display memory is controlled by the parameters of the FIGS command. Based on the specified height and width of the area to be drawn, the parameter RAM is scanned to fill the required area.
For an 8-by-8 graphics character, the first pixel drawn uses the LSB of RA-15, the second pixel uses bit 1 of RA-15, and so on, until the MSB of RA-15 is reached.
The HGDC jumps to the corresponding bit in RA-14 to continue the drawing. The progression then advances toward the LSB of RA-14. This snaking sequence is continued for the other 6 PRAM bytes. This progression matches the sequence of display memory addresses calculated by the
drawing processor as shown above. If the area is narrower than 8 pixels wide, the snaking will advance to the next PRAM byte before the MSB is reached. If the area is narrower than 8 lines high, fewer bytes in the parameter RAM will be scanned. If the area is larger than 8 by 8 , the HGDC will repeat the contents of the parameter RAM in two dimensions, as required to fill the area with the $8-b y-8 \mathrm{moz}-$ aic. (Fractions of the 8 -by- 8 pattern will be used to fill areas which are not multiples of 8 by 8).

PARAMETER RAM CONTENTS: RAM ADDRESS RA 0 TO 15

The parameters stored in the parameter RAM, PRAM, are available for the HGDC to refer to repeatedly during figure drawing and raster-scanning. In each mode of operation the values in the PRAM are interpreted by the HGDC in a predetermined fashion. The host microprocessor must load the appropriate parameters into the proper PRAM locations. PRAM loading command allows the host to write into any location of the PRAM and transfer as many bytes as desired.

In this way any stored parameter byte or bytes may be changed without influencing the other bytes.
The PRAM stores two types of information. For specifying the details of the display area partitions, blocks of four bytes are used. The four parameters stored in each block include the starting address in display memory of each display area, and its length. In addition, there are two mode bits for each area which specify whether the area is a bit-mapped graphics area or a coded character area, and whether a 16-bit or a 32-bit wide display cycle is to be used for that area.
The other use for the PRAM contents is to supply the pattern for figure drawing when in a bit-mapped graphics area or mode. In these situations, PRAM bytes 8 through 16 are reserved for this patterning information. For line, arc, and rectangle drawing (linear figures) locations 8 and 9 are loaded into the Pattern Register to allow the HGDC to draw dotted, dashed, etc. lines. For area filling and graphics bitmapped character drawing locations 8 through 15 are referenced for the pattern or character to be drawn.
Details of the bit assignments are shown for the various modes of operation.

Command Bytes Summary

VIDEO CONTROL COMMANDS

Reset

- FIFO
- Command Processor
- Internal Counters

This command can be executed at any time and does not modify any of the parameters already loaded into the HGDC.
If followed by parameter bytes, this command also sets the sync generator parameters as described below. Idle mode is exited with the START command.
RESET 1: Resync video timing in slave mode.
RESET 2: Blank the display and do not resync.
RESET 3: Unblank the display and do not resync.

P8

In graphics mode, a word is a group of 16 pixels. In character mode, a word is one character code and its attributes, if any. The number of active words per line must be an even number from 2 to 256. An all-zero parameter value selects a count equal to 2^{n} where $n=$ number of bits in the parameter field for vertical parameters. All horizontal widths are counted in display words. All vertical intervals are counted in lines.
If the Drawing Hold (DH) is set to one, pin 21 (LPEN/DH) is used as the drawing hold control pin. When the input to LPEN/DH is held high for over four $2 \times$ WCLK clocks, the drawing address output is temporarily held and the display address is output.
The HGDC allows an even or odd number of lines per frame. Selection is via the VL flag, the seventh bit of the sixth parameter byte following a RESET or SYNC command. When VL is 0 , an odd number of display lines is generated.

VL	Number of lines in interlaced mode
0	Odd, as in 7220
1	Even

When $\mathrm{VH}=0$, status operation is as in CRT 7220.

$\mathbf{V H}$	Blank Status Bit Definition
0	Status register bit 6 indicates Horizontal Blank
1	Status register bit 6 indicates Vertical Blank

PH is the most significant bit (9) of the display pitch parameter. Use the PITCH command to set the lower eight bits.

SYNC GENERATOR PERIOD CONSTRAINTS

Horizontal Back Porch Constraints

1. In general:

HBP $\geqslant 3$ Display Word Cycles (6 clock cycles).
2. If the Image bit or WD modes change within one video field:
HBP $\geqslant 5$ Display Word Cycles (10 clock cycles).
3. If interlace, mixed mode, or split screen is used:

HBP $\geqslant 5$ Display Word Cycles (10 clock cycles).

Horizontal Front Porch Constraints

1. In general:

HFP $\geqslant 2$ Display Word Cycles (4 clock cycles).
2. If the HGDC is used in the video sync Slave mode: HFP $\geqslant 4$ Display Word Cycles (8 clock cycles).
3. If the Light Pen is used:

HFP $\geqslant 6$ Display Word Cycles (12 clock cycles).
4. If interlace mode, DMA, or ZOOM is used: HFP $\geqslant 3$ Display Word Cycles (6 clock cycles).

Horizontal SYNC Constraints

1. If interlaced display mode is used:

HS $\geqslant 5$ Display Word Cycles (10 clock cycles).
2. If DRAM Refresh is enabled: $H S \geqslant 2$ Display Word Cycles (4 clock cycles).

Modes of Operation Bits

C	G	Display Mode
0	0	Mixed Graphics \& Character
0	1	Graphics Mode
1	0	Character Mode
1	1	Invalid
\mathbf{S}	\mathbf{S}	Video Framing
0	1	Noninterlaced
1	0	Invalid
1	1	Interlaced Repeat Field for Character Displays

Repeat Field Framing:
2 Field Sequence with $1 / 2$ line offset between otherwise identical fields.

Interlaced Framing: $\quad 2$ Field Sequence with $1 / 2$ line offset. Each field displays alternate lines.
Noninterlaced Framing: 1 field brings all of the information to the screen.

D	Dynamic RAM Refresh Cycles Enable
0	No Refresh - STATIC RAM
1	Refresh - Dynamic RAM

Dynamic RAM refresh is important when high display zoom factors or DMA are used in such a way that not all of the rows in the RAMs are regularly accessed during display raster generation and for otherwise inactive display memory.

F	Drawing Time Window
0	Drawing during active display time and retrace blanking
1	Drawing only during retrace blanking

Access to display memory can be limited to retrace blanking intervals only, so that no disruptions of the image are seen on the screen.

RESET2

RESET3

Both commands allow a reset while presenting reinitialization of the internal sync generator by an external sync source (slave mode).

Cursor \& Character Characteristics

In graphics mode, LR should be set to 0 . The blink rate parameter controls both the cursor and attribute blink rates. The cursor blink-on time $=$ blink-off time $=2 \times \mathrm{BR}$ (video frames). The attribute blink rate is always $1 / 2$ the cursor rate but with a $3 / 4$ on $-1 / 4$ off duty cycle. All three parameter bytes must be output for interlace displays, regardless of mode. For interlace displays in graphics mode, the parameter $\mathrm{BR}_{\mathrm{L}}=3$.

When $\mathrm{SE}=0$, the HGDC, in slave mode, detects the falling edge of EX. SYNC on the first frame. When $S E=1$, the HGDC, in slave mode, detects the falling edge of EX. SYNC on every frame.

This command also loads parameters into the sync generator. The various parameter fields and bits are identical to those at the RESET command. The HGDC is not reset nor does it enter idle mode.

Vertical Sync Mode

When using two or more HGDCs to contribute to one image, one HGDC is defined as the master sync generator, and the others operate as its slaves. The VSYNC pins of all HGDCs are connected together.
A few considerations should be observed when synchronizing two or more HGDCs to generate overlayed video via the V/EXT SYNC pin. As mentioned above, the Horizontal Front Porch (HFP) must be 4 or more display cycles wide. This is equivalent to eight or more clock cycles. This gives the slave HGDCs time to initialize their internal video sync generators to the proper point in the video field to match the incoming vertical sync pulse (VSYNC). This resetting of the generator occurs just after the end of the incoming VSYNC pulse, during the HFP interval. Enough time during HFP is required to allow the slave HGDC to complete the operation before the start of the HSYNC interval.
Once the HGDCs are initialized and set up as Master and Slaves, they must be given time to synchronize. It is a good idea to watch the VSYNC status bit of the Master HGDC and wait until after one or more VSYNC pulses have been generated before the display process is started. The START command will begin the active display of data and will end the video synchronization process, so be sure there has been at least one VSYNC pulse generated for the Slaves to synchronize to.

DISPLAY CONTROL COMMANDS

Start Display \& End Idle Mode

```
START:
```

The START command generates the video signals as specified by the RESETX or SYNC command.

Display Blanking Control

BLANK1:

The display is enabled

by a 1 , and blanked by | by 0 . |
| :--- |
| |

BLANK2:

BLANK 2 does not cause the resyncing of an HGDC in slave mode. BLANK 1 does cause the resyncing of an HGDC in slave mode.

Zoom Factors Specify

P1

Zoom magnification factors of 1 through 16 are available using codes 0 through 15 , respectively.

Cursor Position Specify

In character mode, the third parameter byte is not needed. The cursor is displayed for the word time in which the display scan address (DAD) equals the cursor address. In graphics mode, the cursor word address specifies the word containing the starting pixel of the drawing; the dot address value specifies the pixel within that word.
When the WG bit is set to one, any data following the WDAT command is written as is. When the WG bit is set to zero, the 7220A performs as the 7220 does: The pattern written is determined by the least significant bit of each parameter byte following the WDAT command. This bit is expanded into 16 identical bits which form the pattern.

Parameter RAM Load

From the starting address, SA, any number of bytes may be loaded into the parameter RAM at incrementing addresses, up to location 15. The sequence of parameter bytes is terminated by the next command byte entered into the FIFO. The parameter RAM stores 16 bytes of information in predefined locations which differ for graphics and character modes. See the parameter RAM discussion for bit assignments.

Pitch Specification

This value is used during drawing by the drawing processor to find the word directly above or below the current word, and during display to find the start of the next line.
The Pitch parameter (width of display memory) is set by two different commands. In addition to the PITCH command, the RESET (or SYNC) command also sets the pitch value. The "active words per line" parameter, which specifies the width of the raster-scan display, also sets the Pitch of the display memory. Note that the AW value is two less than the display window width. The PITCH command must be used to set the proper memory width larger than the window width.
DRAWING CONTROL COMMANDS
Write Data into Display Memory

Upon receiving a set of parameters (two bytes for a word transfer, one for a byte transfer), one RMW cycle into Video Memory is done at the address pointed to by the cursor EAD. The EAD pointer is advanced to the next word, according to the previously specified direction. More parameters can then be accepted.
For byte writes, the unspecified byte is treated as all zeros
during the RMW memory cycle.
In graphics bit-map situations, only the LSB of the WDAT parameter bytes is used as the pattern in the RMW operations. Therefore it is possible to have only an all ones or all zeros pattern. If the WG bit of the third parameter of the CURS command is set to one, any byte following the WDAT command is written as is. In coded character applications ail the bits of the WDAT parameters are used to establish the drawing pattern.
The WDAT command operates differently from the other commands which initiate RMW cycle activity. It requires parameters to set up the Pattern register while the other commands use the stored values in the parameter RAM. Like all of these commands, the WDAT command must be preceded by a FIGS command and its parameters. Only the first three parameters need to be given following the FIGS opcode, to set up the type of drawing, the DIR direction, and the $D C$ value. The $D C$ parameter +1 will be the number of RMW cycles done by the HGDC with the first set of WDAT parameters. Additional sets of WDAT parameters will see a DC value of 0 which will cause only one RMW cycle to be executed per set of parameters.

Mask Register Load

Low significance byte

High significance byte

This command sets the value of the 16 -bit Mask register of the figure drawing processor. The Mask register controls which bits can be modified in the display memory during a read-modify-write cycle.
The Mask register is loaded by the MASK command and the third parameter byte of the CURS command. The MASK command accepts two parameter bytes to load a 16-bit value into the Mask register. All 16 bits can be individually one or zero, under program control. The CURS command on the other hand, puts a " 1 to 16 " pattern into the Mask register based on the value of the Dot Address value, dAD. If normal single-pixel-at-a-time graphics figure drawing is desired, there is no need to do a MASK command at all since the CURS command will set up the proper pattern to address the proper pixels as drawing progresses. For coded character DMA, and screen setting and clearing operations using the WDAT command, the MASK command should be used after the CURS command if its third parameter byte has been output. The Mask register should be set to all "ONES" for any "word-at-a-time" operation.

Valid Figure Type Select Combinations

SL	R	A	GC	L	Operation
0	0	0	0	0	Character Display Mode Drawing, Individual Dot Drawing, DMA, WDAT, and RDAT
$\mathbf{0}$	$\mathbf{0}$	0	0	1	Straight Line Drawing
$\mathbf{0}$	$\mathbf{0}$	0	1	0	Graphics Character Drawing and Area filling with graphics character pattern
$\mathbf{0}$	$\mathbf{0}$	1	0	0	Arc and Circle Drawing
$\mathbf{0}$	1	0	0	0	Rectangle Drawing
1	0	0	1	0	Slanted Grapnics Character Drawing and Slanted Area Filling

Only these bit combinations assure correct drawing operation.

Figure Draw Start

FIGD: | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

On execution of this instruction, the HGDC loads the parameters from the parameter RAM into the drawing processor and starts the drawing process at the pixel pointed to by the cursor, EAD, and the dot address, dAD.

Figure Drawing Parameters Specify

Graphics Character Draw and Area Filling Start

GCHRD \square

Based on parameters loaded with the FIGS command, this command initiates the drawing of the graphics character or area filling pattern stored in Parameter RAM. Drawing begins at the address in display memory pointed to by the $E A D$ and dAD values.

DATA READ COMMANDS

Read Data from Display Memory

RDAT:

Using the DIR and DC parameters of the FIGS command to establish direction and transfer count, multiple RMW cycles can be' executed without specification of the cursor address after the initial load (DC = number of words or bytes).
As this instruction begins to execute, the FIFO buffer direction is reversed so that the data read from display memory can pass to the microprocessor. Any commands or parameters in the FIFO at this time will be lost. A command byte sent to the HGDC will immediately reverse the buffer direction back to write mode, and all RDAT information not yet read from the FIFO will be lost. MOD should be set to 00 if no modification to video buffer is desired.

Cursor Address Read

CURD:

The following bytes are returned by the HGDC through the FIFO:

The Execute Address, EAD, points to the display memory word containing the pixel to be addressed.
The Dot Address, dAD, within the word is represented as a 1-of-16 code for graphics drawing operations.

Light Pen Address Read

LPRD: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

The following bytes are returned by the HGDC through the FIFO:

A7	$L A D_{L}$	AO
A15	$L_{\text {LAD }}$	A8

0	0	0	0	0	0	LAD $_{\mu}$

The light pen address, LAD, corresponds to the display word address, DAD, at which the light pen input signal is detected and deglitched.
The light pen may be used in graphics, character, or mixed modes but only indicates the word address of light pen position.

DMA CONTROL COMMANDS

DMA Read Request

DMA Write Request

ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin with Respect to Ground $\quad-0.5 \mathrm{~V}$ to +7 V

Power Dissipation 1.5 W
*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \% ;$ GND $=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Low Voltage	$\mathrm{V}_{\text {LL }}$	-0.5		0.8	V	(1)
Input High Voltage	V_{IH}	2.2		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	(2)(3)
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\text {OH }}$	2.4			V	$\mathrm{IOH}=-400 \mu \mathrm{~A}$
Input Low Leak Current (except VSYNC, DACK)	$1 /$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
Input Low Leak Current (VSYNC, DACK)	$1 /$			-500	$\mu \mathrm{A}$	V_{1}
Input High Leak Current (except LPEN/DH)	I_{H}			+10	$\mu \mathrm{A}$	$=\mathrm{V}$
Input High Leak Current (LPEN/DH)	! ${ }_{\text {H }}$			+500	$\mu \mathrm{A}$,
Output Low Leak Current	l l			-10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0 \mathrm{~V}$
Output High Leak Current	$\mathrm{IOH}^{\text {l }}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{cc}}$
Clock Input Low Voltage	$\mathrm{V}_{\mathrm{CL}}{ }^{\text {l }}$	-0.5		0.6	V	
Clock Input High Voltage	V_{CH}	3.5		$\mathrm{V}_{\mathrm{cc}}-1.0$	V	
$\mathrm{V}_{\text {cc }}$ Supply Current	$l_{\text {cc }}$			270	mA	

CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}$

Parameter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Input Capacitance I/O Capacitance	$\begin{aligned} & \mathrm{C}_{\mathbb{N}} \\ & \mathrm{C}_{w 0} \end{aligned}$			$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\overline{\mathrm{pF}}$	$\mathrm{fc}=1 \mathrm{MHz}$
Output Capacitance Clock Input Capacitance	$\begin{aligned} & \mathrm{C}_{\text {OUt }} \\ & \mathrm{Cf}^{2} \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	(unmeasured) $=0 \mathrm{~V}$

Notes:

(1) For 2XWCLK, $\mathrm{V}_{\mathrm{IL}}=-0.5 \mathrm{~V}$ to +0.6 V . \quad (2) For $2 X W C L K, \mathrm{~V}_{\mathrm{H}}=+3.9 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+1.0 \mathrm{~V}$. (3) For $\overline{\mathrm{WR}}, \mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$.

AC Characteristics, $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V}$
Read Cycle
(HGDC \leftrightarrow CPU)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Address Setup to $\overline{\mathrm{RD}} \downarrow$	$t_{\text {AR }}$	0		0		0		ns	
Address Hold from RD \uparrow	$\mathrm{t}_{\text {RA }}$	0		0		0		ns	
$\overline{\overline{R D}}$ Pulse Width	$\mathrm{t}_{\text {RR1 }}$	$\mathrm{t}_{\text {RD1 }}+20$	$\mathrm{t}_{\mathrm{RCY} \mathrm{Y}^{-1 / 2} \mathrm{t}_{\text {CLK }}}$	$\mathrm{t}_{\mathrm{RD} 1}+20$	$\mathrm{t}_{\mathrm{RCY} \mathrm{Y}^{-1 / 2} \mathrm{t}_{\mathrm{CLK}}}$	$\mathrm{t}_{\mathrm{RO} 1}+20$	$\mathrm{t}_{\mathrm{RCY}}{ }^{-1 / 2 \mathrm{t}_{\mathrm{CLK}}}$	ns	
Data Delay from $\overline{\mathrm{RD}} \downarrow$	$t_{\text {RD1 }}$		75		65		55	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Data Floating from $\overline{\mathrm{RD}} \uparrow$	$t_{\text {DF }}$	0	75	0	65	0	55	ns	
- $\overline{\text { RD Pulse Cycle }}$	$\mathrm{t}_{\mathrm{BCY}}$	$4 \mathrm{t}_{\text {CLK }}$		$4 \mathrm{t}_{\text {CLK }}$		$4 \mathrm{t}_{\text {cLK }}$		ns	
Write Cycle (HGDC↔CPU)									
Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Address Setup to $\overline{W R} \downarrow$	$t_{A W}$	0		0		0		ns	
Address Hold from WR \uparrow	$t_{\text {WA }}$	10		10		10		ns	
WR Pulse Width	t_{ww}	80	$\mathrm{t}_{\mathrm{WCY}}-\mathrm{t}_{\text {CLK }}$	70	$\mathrm{t}_{\text {WCY }}-\mathrm{t}_{\text {CLK }}$	60	$t_{\text {WCY }}-t_{\text {CLK }}$	ns	
Data Setup to WR \uparrow	$t_{\text {dw }}$	65		55		45		ns	
Data Hold from WR	$t_{\text {wD }}$	10		10		10		ns	
$\overline{\text { WR Puise Cycle }}$	$\mathrm{t}_{\text {WCY }}$	$4 \mathrm{t}_{\text {CLK }}$		$4 \mathrm{t}_{\text {CLK }}$		$4 \mathrm{t}_{\text {CLK }}$		ns	

DMA Read Cycle (HGDC \leftrightarrow CPU)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
DACK Setup to $\overline{\text { DI }} \downarrow$	t_{KA}	0		0		0		ns	
DACK Hold from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{t}_{\text {RK }}$	0		0		0		ns	
$\overline{\text { RD Pulse Width }}$	$\mathrm{t}_{\text {RR2 }}$	$\mathrm{t}_{\text {RO2 }}+20$		$\mathrm{t}_{\text {RO2 } 2}+20$		$\mathrm{t}_{\mathrm{RO2}}+20$		ns	
Data Delay from $\overline{\mathrm{RD}}$!	$\mathrm{t}_{\mathrm{RO} 2}$		$1.5 \mathrm{t}_{\text {CLK }}+80$		$1.5 \mathrm{t}_{\text {cLK }}+70$		$1.5 \mathrm{t}_{\text {cLK }}+60$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DREQ Delay from 2XWCLK \uparrow	$\mathrm{t}_{\text {REQ }}$		100		85		75	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DREQ Setup to DACK I	$\mathrm{tak}_{\text {¢ }}$	0		0		0		ns	
DACK High Level Width	t_{ok}	$\mathrm{t}_{\text {cık }}$		$\mathrm{t}_{\text {cık }}$		$\mathrm{t}_{\text {cık }}$		ns	
DACK Pulse Cycle	t_{E}	$4 \mathrm{t}_{\text {cik }}$.		$4 \mathrm{t}_{\text {clik }}$.		$4 \mathrm{tcuk}^{\text {che }}$		ns	
DREQ I Delay from DACK!	$\mathrm{t}_{\text {Ka(R) }}$		$\mathrm{t}_{\text {CLK }}+100$		$\mathrm{t}_{\text {cıK }}+90$		$\mathrm{t}_{\text {cıK }}+80$	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
DACK Low-level Width	$\mathrm{t}_{\text {LK }}$	$2 \mathrm{t}_{\text {CLK }}$		$2 \mathrm{t}_{\text {cLK }}$		2 tcLu		ns	

*for high byte and low byte transfers: $\mathrm{t}_{\mathrm{E}}=5 \mathrm{t}_{\mathrm{cIK}}$
DMA Write Cycle (GDC \leftrightarrow CPU)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
DACK Setup to WR \downarrow	t_{kw}	0		0		0		ns	
DACK Hold from WR \dagger	t_{wk}	0		0		0		ns	

R/M/W Cycle \quad (GDC \leftrightarrow Display Memory)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Address/Data Delay from 2XWCLK \uparrow	t_{AD}	20	105	20	90	15	80	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Address/Data Floating from 2XWCLK \uparrow	$\mathrm{t}_{\text {off }}$	20	105	20	90	15	80	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Input Data Setup to 2XWCLK!	$\mathrm{t}_{\text {IIS }}$	0		0		0		ns	
Input Data Hold from 2XWCLK!	$\mathrm{t}_{\text {DIH }}$	t_{DE}		t_{DE}		t_{DE}		ns	
DBIN Delay from 2XWCLK \downarrow	$t_{\text {DE }}$	20	80	20	70	15	60	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
ALE \uparrow Delay from 2XWCLK \uparrow	$t_{\text {RR }}$	20	80	20	70	15	60	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
ALE \downarrow Delay from 2XWCLK \downarrow	$\mathrm{t}_{\text {RF }}$	20	65	20	55	15	50	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
ALE Width	$\mathrm{t}_{\text {Rw }}$	$1 / 3 \mathrm{t}$ CLK		$1 / 3 \mathrm{t}$ cLK		$1 / 3 \mathrm{t}$ cık		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
ALE Low Width	$\mathrm{t}_{\text {RL }}$	$1.5 \mathrm{t}_{\text {cLK }}-30$		$1.5 \mathrm{t}_{\text {CLK }}-30$		$1.5 \mathrm{t}_{\text {CLK }}-30$		ns	
Address Setup to ALE \}	$t_{A A}$	30		30		30		ns	

Display Cycle \quad (GDC \leftrightarrow Display Memory)

Parameter	Symbol	7220D Limits		7220D-1 Limits		7220D-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Video Signal Delay from 2XWCLK \uparrow	tvo		90		80		70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Input Cycle \quad (GDC \leftrightarrow Display Memory)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Input Signal Setup to 2XWCLK \uparrow	$\mathrm{t}_{\text {Ps }}$	10		10		10		ns	
Input Signal Width	$\mathrm{t}_{\text {pw }}$	$\mathrm{t}_{\text {cık }}$		$\mathrm{t}_{\text {cık }}$		$\mathrm{t}_{\text {cık }}$		ns	

Clock (2XWCLK)

Parameter	Symbol	7220AD Limits		7220AD-1 Limits		7220AD-2 Limits		Unit	Test Conditions
		Min	Max	Min	Max	Min	Max		
Clock Rise Time	t_{CR}		15		15		15	ns	
Clock Fall Time	t_{cF}		15		15		15	ns	
Clock High Pulse Width	t_{CH}	70		61		52		ns	
Clock Low Pulse Width	t_{cl}	70		61		52		ns	
Clock Cycle	$\mathrm{t}_{\text {cıK }}$	165	10,000	145	10,000	125	10,000	ns	

Microprocessor Interface Write Timing

Microprocessor Interface Read Timing

Microprocessor Interface DMA Write Timing

Microprocessor Interface DMA Read Timing

Display Memory Display Cycle Timing

Display Memory RMW Timing

Display and RMW Cycles (1x Zoom)

TIMING WAVEFORMS

Light Pen and External Sync Input Timing

Clock Timing (2XWCLK)

Video Sync Signals Timing

Interlaced Video Timing

TIMING WAVEFORMS

Video Horizontal Sync Generator Parameters

Video Vertical Sync Generator Parameters

Cursor-Image Bit Flag

TIMING WAVEFORMS

VIDEO FIELD TIMING

DRAWING INTERVALS

DMA REQUEST INTERVALS

 checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, check information does not convey to the purchaser of the products described any license under the patent rights of Such information does not convey to the purchaser of the products described any license under the patent rights of
SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best SMC or others. SM

CRT 8002 $\mu \mathrm{PC}$ FAMILY

CRT Video Display Attributes Controller Video Generator VDAC $^{\text {m }}$

FEATURES

On chip character generator (mask programmable) 128 Characters (alphanumeric and graphic) 7×11 Dot matrix blockOn chip video shift register
Maximum shift register frequency

CRT 8002A	20 MHz
CRT 8002B	15 MHz
CRT 8002C	10 MHz
Access time	400 ns

Internal character generator (ROM) Wide graphics Thin graphics External inputs (fonts/dot graphics)On chip attribute logic-character, field Reverse video Character blank Character blink Underline Strike-thruFour on chip cursor modes Underline Blinking underline Reverse video Blinking reverse videoProgrammable character blink rateProgrammable cursor blink rate

PIN CONFIGURATION

Expandable character set
External fonts
Alphanumeric and graphic
RAM, ROM, and PROMOn chip address bufferOn chip attribute buffer+5 volt operationTTL compatibleMOS N-channel silicon-gate COPLAMOS ${ }^{\circledR}$ processCLASP ${ }^{\circledR}$ technology-ROM and optionsCompatible with CRT 5027 VTAC® ${ }^{\circledR}$

The SMC CRT 8002 Video Display Attributes Controller (VDAC) is an N -channel COPLAMOS® MOS/LSI device which utilizes CLASP® technology. It contains a 7X11X128 character generator ROM, a wide graphics mode, a thin graphics mode, an external input mode, character address/data latch, field and/or character attribute logic, attribute latch, four cursor modes, two programmable blink rates, and a high speed video shift register. The CRT 8002 VDAC $^{\text {TM }}$ is a companion chip to SMC's CRT 5027 VTAC. Together these two chips comprise the circuitry required for the display portion of a CRT video terminal.
The CRT 8002 video output may be connected directly to a CRT monitor video input. The CRT 5027 blanking output can be connected directly to the CRT 8002 retrace blank input to provide both horizontal and vertical retrace blanking of the video output.
Four cursor modes are available on the CRT 8002. They are: underline, blinking underline, reverse video block, and blinking reverse video block. Any one of these can be mask programmed as the cursor function. There is a separate cursor blink rate which can be mask programmed to provide a 15 Hz to 1 Hz blink rate.

The CRT 8002 attributes include: reverse video, character blank, blink, underline, and strike-thru. The character blink rate is mask programmable from 7.5 Hz to 0.5 Hz and has a duty cycle of $75 / 25$. The underline and strike-thru are similar but independently controlled functions and can be mask programmed to any number of raster lines at any position in the character block. These attributes are available in all modes.
In the wide graphic mode the CRT 8002 produces a graphic entity the size of the character block. The graphic entity contains 8 parts, each of which is associated with one bit of a graphic byte, thereby providing for 256 unique graphic symbols. Thus, the CRT 8002 can produce either an alphanumeric symbol or a graphic entity depending on the mode selected. The mode can be changed on a per character basis.
The thin graphic mode enables the user to create single line drawings and forms.
The external mode enables the user to extend the onchip ROM character set and/or the on-chip graphics capabilities by inserting external symbols. These external symbols can come from either RAM, ROM or PROM.

MAXIMUM GUARANTEED RATINGS*

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS Low-level, $\mathrm{V}_{\text {IL }}$ High-level, V_{IH}	2.0		0.8	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	excluding VDC excluding VDC
INPUT VOLTAGE LEVELS-CLOCK Low-level, V_{11} High-level, V_{IH}	4.3		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	See Figure 6
OUTPUT VOLTAGE LEVELS Low-level, V_{OL} High-level, V_{OH}	2.4		0.4	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, 74 \mathrm{LSXX} \text { load } \\ & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Leakage, IL (Except CLOCK) Leakage, IL (CLOCK Only)			$\begin{aligned} & 10 \\ & 50 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mu}$	$\begin{aligned} & 0 \leq V_{\text {IN }} \leq V_{c c} \\ & 0 \leq V_{\text {IN }} \leq V_{c c} \end{aligned}$
INPUT CAPACITANCE Data LD/허 CLOCK		10 20 25		pF pF pF	@ 1 MHz @ 1 MHz @ 1 MHz
POWER SUPPLY CURRENT Icc		100		mA	
A.C. CHARACTERISTICS See Figure 6, 7					

SYMBOL	PARAMETER	CRT 8002A		CRT 8002B		CRT 8002C		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
VDC	Video Dot Clock Frequency	1.0	20	1.0	15	1.0	10	MHz
PW_{H}	VDC-High Time	15.0		23		40		ns
PW ${ }_{\text {L }}$	VDC-Low Time	15.0		23		40		ns
$t_{\text {cr }}$	LD/ $\overline{\text { SH }}$ cycle time	400		533		800		ns
$t_{\text {r. }} t_{\text {f }}$	Rise, fall time		10		10		10	ns
$\mathrm{t}_{\text {SEt-UP }}$	Input set-up time	≥ 0		≥ 0		≥ 0		ns
$\mathrm{t}_{\text {HOLD }}$	Input hold time	15		15		15		ns
$t_{\text {PDI, }} \mathrm{t}_{\text {PDO }}$	Output propagation delay	15	50	15	65	15	100	ns
t_{1}	LD/ $\overline{\text { SH }}$ set-up time	10		15		20		ns
t_{2}	LD/SH hold time	15		15		15		ns

AC TIMING DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

The video output contains the dot stream for the selected row of the alphanumeric, wide graphic, thin graphic, or external character after processing by the attribute logic, and the retrace blank and cursor inputs.
In the alphanumeric mode, the characters are ROM programmed into the 77 dots, (7X11) allocated for each of the 128 characters. See figure 5. The top row (Rø) and rows R12 to R15 are normally all zeros as is column C7. Thus, the character is defined in the box bounded by R1 to R11 and C \emptyset to C6. When a row of the ROM, via the attribute logic, is parallel loaded into the 8-bit shift-register, the first bit serially shifted out is C7 (A zero; or a one in REVID). It is followed by C6, C5, through Cø.
The timing of the Load/ Shift pulse will determine the number of additional (-- , zero to N) backfill zeros (or ones if in REVID) shifted out. See figure 4. When the next Load/ $\overline{\text { Shift }}$ pulse appears the next character's row of the ROM, via the attribute logic, is parallel loaded into the shift register and the cycle repeats.
The 8 bit shift-register parallel-in load or serial-out shift modes are established by the Load/Shift input. When low, this input enables the shift register for serial shifting with each Video Dot Clock pulse. When high, the shift register parallel (broadside) data inputs are enabled and synchronous loading occurs on the next Video Dot Clock pulse. During parallel loading, serial data flow is inhibited. The Address/Data inputs (A $\emptyset-A 7$) are latched on the negative transition of the Load/Shift input. See timing diagram, figure 7. Frequency at which video is shifted.
In the Alphanumeric Mode the 7 bits on inputs (A $\varnothing-A 6$) are internally decoded to address one of the 128 available characters ($A 7=X$). In the External Mode, A \emptyset-A7 is used to insert an 8 bit word from a user defined external ROM, PROM or RAM into the on-chip Attribute logic. In the wide Graphic Modes A \varnothing-A7 is used to define one of 256 graphic entities. In the thin Graphic Mode A \varnothing-A2 is used to define the 3 line segments.
+5 volt power supply
These 4 binary inputs define the row address in the current character block.
A positive level on this input enables data from the Reverse Video, Character Blank, Underline, Strike-Thru, Blink, Mode Select \emptyset, and Mode Select 1 inputs to be strobed into the on-chip attribute latch at the negative transition of the Load/Shift pulse. The latch loading is disabled when this input is low. The latched attributes will remain fixed until this input becomes high again. To facilitate attribute latching on a character by character basis, tie ATTBE high. See timing diagram, figure 7.
When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SR \emptyset-SR7), providing a solid line segment throughout the character block. The operation of strike-thru is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which strike-thru is to be placed as well as to program the strike-thru to be 1 to N raster lines high. Actually, the strike-thru decoder (mask programmable) logic allows the strike-thru to be any number or arrangement of horizontal lines in the character block. The standard strikethru will be a double line on rows R5 and R6.
When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SRØ-SR7), providing a solid line segment throughout the character block. The operation of underline is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which underline is to be placed as well as to program the underline to be 1 to N raster lines high. Actually, the underline decoder (mask programmable) logic allows the underline to be any number or arrangement of horizontal lines in the character block. The standard underline will be a single line on R11.
When this input is low and RETBL $=0$, data into the Attribute Logic is presented directly to the shift register parallel inputs. When reverse video is high data into the Attribute Logic is inverted and then presented to the shift register parallel inputs. This operation reverses the data and field video. See table 1. When this input is high, the parallel inputs to the shift register are all set low, providing a blank character line segment. Character blank will override blink. The operation of Character Blank is modified by the Reverse Video input. See table 1.
This input is used as the clock input for the two on-chíp mask programmable blink rate dividers. The cursor blink rate ($50 / 50$ duty cycle) will be twice the character blink rate ($75 / 25$ duty cycle). The divisors can be programmed from $\div 4$ to $\div 30$ for the cursor ($\div 8$ to $\div 60$ for the character):
When this input is high and RETBL $=0$ and $\mathrm{CHABL}=0$, the character will blink at the programmed character blink rate. Blinking is accomplished by blanking the character block with the internal Character Blink clock. The standard character blink rate is 1.875 Hz .
These 2 inputs define the four modes of operation of the CRT 8002 as follows: Alphanumeric Mode - In this mode addresses A \varnothing-A6 ($A 7=X$) are internally decoded to address 1 of the 128 available ROM characters. The addressed character along with the decoded row will define a 7 bit output from the ROM to be loaded into the shift register via the attribute logic.
Thin Graphics Mode - In this mode A $\emptyset-A 2$ ($A 3-A 7=X$) will be loaded into the thin graphic logic along with the row addresses. This logic will define the segments of a graphic entity as defined in figure 2. The top of the entity will begin on row 0000 and will end on a mask programmable row.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
$\begin{gathered} 25 \\ 26 \\ \text { (cont.) } \end{gathered}$				External Mode - In this mode the inputs Aด-A7 go directly from the character latch into the shift register via the attribute logic. Thus the user may define external character fonts or graphic entities in an external PROM, ROM or RAM. See figure 3. Wide Graphics Mode - In this mode the inputs A $\emptyset-A 7$ will define a graphic entity as described in figure 1. Each line of the graphic entity is determined by the wide graphic logic in conjunction with the row inputs R \emptyset to R3. In this mode each segment of the entity is defined by one of the bits of the 8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic entities. These entities can butt up against each other to form a contiguous pattern or can be interspaced with alphanumeric characters. Each of the entities occupies the space of 1 character block and thus requires 1 byte of memory. These 4 modes can be intermixed on a per character basis.
27	CURSOR	Cursor	1	When this input is enabled 1 of the 4 pre-programmed cursor modes will be activated. The cursor mode is on-chip mask programmable. The standard cursor will be a blinking (at 3.75 Hz) reverse video block. The 4 cursor modes are: Underline-In this mode an underline (1 to N raster lines) at the programmed underline position occurs. Blinking Underline-In this mode the underline blinks at the cursor rate. Reverse Video Block-In this mode the Character Block is set to reverse video. Blinking Reverse Video Block-In this mode the Character Block is set to reverse video at the cursor blink rate. The Character Block will alternate between normal video and reverse video. The cursor functions are listed in table 1.
28	RETBL	Retrace Blank	1	When this input is latched high, the shift register parallel inputs are unconditionally cleared to all zeros and loaded into the shift register on the next Load/Shift pulse. This blanks the video, independent of all attributes, during horizontal and vertical retrace time.

TABLE 1

CURSOR	RETBL	REVID	CHABL	UNDLN*		FUNCTION
X	1	X	X	X	"0'	S.R. All
0	0	0	0	0	D	(S.R.) All
0	0	0	0	1	"1"	(S.R.)*
					D	(S.R.) All others
0	0	0	1	X	'0]'	(S.R.) All
0	0	1	0	0	D',	(S.R.) All
0	0	1	0	1	"0'	(S.R.)*
0	0	1	1	X	"1"	(S.R.) All others (S.R.) All
Underline*	0	0	0	X	"1"	(S.R.)*
					D,	(S.R.) All others
Underline*	0	0	1	X	"1"	(S.R.)*
					"0")	(S.R.) All others
Underline*	0	1	0	X	"0"	(S.R.)* ${ }^{\text {² }}$
					D	(S.R.) All others
Underline*	0	1	1	X	"0"'	(S.R.)*
					"1"	(S.R.) All others
Blinking** Underline*	0	0	0	X	"1"	(S.R.)* Blinking
					D	(S.R.) All others
Blinking** Underline*	0	0	1	X	"1"	(S.R.)* Blinking
					"0"	(S.R.) All others
Blinking** Underline*	0	1	0	X	"0"	(S.R.)* Blinking
					D	(S.R.) All others
Blinking** Underline*	0	1	1	X	"0"'	(S.R.)* Blinking
					"1"	(S.R.) All others
REVID Black	0	0	0	0	$\overline{\text { D }}$	(S.R.) All
REVID Block	0	0	0	1	"0'	(S.R.)*
					D	(S.R.) All others
REVID Block	0	0	1	X	"1"	(S.R.) All
REVID Block	0	0	0	1		(S.R.) *
					\bar{D}	(S.R.) All others
REVID Block	0	1	0	0	D,	(S.R.) All
REVID Block	0	1	0	1	"1"	(S.R.)*
					D	(S.R.) All others
REVID Block.	0	1	1	X	"0"	(S:R.) All
Blink** REVID Block	0	0	0	0	$\left\{\begin{array}{l} \text { Alternate Normal Video/REVID } \\ \text { At Cursor Blink Rate } \end{array}\right.$	
Blink** REVID Block	0	0	0	1		
Blink** REVID Block	0	0	1	X		
Blink** REVID Block	0	1	0	0		
Blink** REVID Block	0	1	0	1		
Blink** REVID Block	0	1	1	X		

[^9]
FIGURE 5

ROM CHARACTER BLOCK FORMAT

CONSULT FACTORY FOR CUSTOM FONT AND OPTION PROGRAMMING FORMS.

FIGURE 3
EXTERNAL MODE MS $\varnothing=1$ MS1=ø

	C7	C6	C5	C4	C3	C2	C1	C0	BF	BF	\cdots
Rø. - R15	A7	A6	A5	A4	A3	A2	A1	A	A7	A7	\cdots

CRT Video Display-Controller Video Generator VDAC'"

ATTRIBUTES

Blink Rate

The character blink rate will be 1.875 Hz
Strike-Thru
Underline will be a single horizontal line at row R11
Cursor
Cursor will be a blinking reverse video block, blinking at 3.75 Hz The strike-thru will be a double line at rows R5 and R6

CRT Video Display-Controller Video Generator VDAC'"

ATTRIBUTES

Underline

Underline will be a single horizontal line at R8

Cursor

Cursor will be a blinking reverse video block, blinking at 3.75 Hz

Blink Rate

The character blink rate is 1.875 Hz
Strike-Thru
The strike-thru will be a single horizontal line at R4

CRT 8002-005

CRT Video Display-Controller Video Generator VDAC ${ }^{\prime \prime \prime}$

THIN GRAPHICS MODE

ATTRIBUTES

Underline

Underline will be a single horizontal line at R12 Cursor
Cursor will be a reverse video block

Blink Rate

The character blink rate is 1.875 Hz

Strike-Thru

The strike-thru will be a double line at rows R5 and R6

CRT Video Display-Controller Video Generator VDAC ${ }^{\text {"' }}$

ATTRIBUTES

Underline

Underline will be a single horizontal line at R11 Cursor
Cursor will be a blinking reverse video block, blinking at 3.75 Hz

Blink Rate

The character blink rate is 1.875 Hz
Strike-Thru
The strike-thru will be a double line at
rows R5 and R6

STANDARD MICROSYSTEMS CORPORATION

CRT Video Display-Controller Video Generator VDAC ${ }^{\text {"' }}$

ATTRIBUTES

Underline

Underline will be a double horizontal line at R7 and R8

Cursor

Cursor will be a reverse video block

Blink Rate

The character blink rate is 1.875 Hz
Strike-Thru
The strike-thru will be a single horizontal line at R4

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applicaions; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

CRT Video Display Attributes Controller Video Generator VDAC ${ }^{\text {m }}$

FEATURES

On chip character generator (mask programmable) 128 Characters (alphanumeric and graphic) 7×11 Dot matrix blockOn chip video shift register Maximum shift register frequency 25 MHzROM Access time 310 nsOn chip horizontal and vertical retrace video blankingNo descender circuitry requiredFour modes of operation (intermixable)Internal character generator (ROM) Wide graphics Thin graphics External inputs (fonts/dot graphics)
\square On chip attribute logic-character, field Reverse video Character blank Character blink Underline Strike-thruOn chip cursorProgrammable character blink rateProgrammable cursor blink rateSubscriptableExpandable character set External fonts Alphanumeric and graphic RAM, ROM, and PROM

PIN CONFIGURATION

Compatible with CRT 5027/37 VTAC®

General Description

The SMC CRT 8002H Video Display Attributes Controller (VDAC) is an n-channel COPLAMOS® MOS/LSI device. It contains a 7X11X128 character generator ROM, a wide graphics mode, a thin graphics mode, an external input mode, character address/data latch, field and/or character attribute logic, attribute latch, four cursor modes, two programmable blink rates, and a high speed video shift register. The CRT 8002H VDAC is a companion chip to SMC's CRT 5027/37 VTAC@. Together these two chips comprise the circuitry required for the display portion of a CRT video terminal.
The CRT 8002 H video output may be connected directly to a CRT monitor video input. The CRT 5027/37 blanking output can be connected directly to the CRT 8002 H retrace blank input to provide both horizontal and vertical retrace blanking of the video output.
The CRT 8002H attributes include: reverse video, character blank, blink, underline, and strike-thru. The character blink rate is mask programmable from 7.5 Hz to 1.0 Hz and has a duty cycle of $75 / 25$. The underline
and strike-thru are similar but independently controlled functions and can be mask programmed to any number of raster lines at any position in the character block. These attributes are available in all modes.
In the wide graphic mode the CRT 8002 H produces a graphic entity the size of the character block. The graphic entity contains 8 parts, each of which is associated with one bit of a graphic byte, thereby providing for 256 unique graphic symbols. Thus, the CRT 8002 H can produce either an alphanumeric symbol or a graphic entity depending on the mode selected. The mode can be changed on a per character basis.
The thin graphic mode enables the user to create single line drawings and forms.
The external mode enables the user to extend the onchip ROM character set and/or the on-chip graphics capabilities by inserting external symbols. These external symbols can come from either RAM, ROM or PROM.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground ... +8.0 V
Negative Voltage on any Pin, with respect to ground 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
			0.8	V	excluding VDC
High-level, V_{IH}	2.0			V	excluding VDC
INPUT VOLTAGE LEVELS-CLOCK					
Low-level, $\mathrm{V}_{1 \mathrm{l}}$			0.8	V	
High-level, $\mathrm{V}_{\text {IH }}$	4.3			V	See Figure 6
OUTPUT VOLTAGE LEVELS ${ }^{\text {a }}$ (0.4					
Low-level, $\mathrm{V}_{\text {ol }}$			0.4	V	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}, 74 \mathrm{LSXX}$ load
High-level, $\mathrm{V}_{\text {OH }}$	2.4			V	$\mathrm{I}_{\text {OH }}=-20 \mu \mathrm{~A}$
INPUT CURRENT					
Leakage, IL (Except CLOCK)			10	$\mu \mathrm{A}$	$0 \leq V_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$
Leakage, IL (CLOCK Only)			50	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$
INPUT CAPACITANCE					
Data ${ }_{\text {c\|c\|c\|c }}$					
LD/SH					
CLOCK ${ }^{\text {a }}$ (25 pF @ 1 MHz					
POWER SUPPLY CURRENT $l_{c c}$		100		mA	
A.C. CHARACTERISTICS					
See Figure 6, 7					

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
VDC	Video Dot Clock Frequency	1.0	25	MHz
PW $_{H}$	VDC-High Time	11.0		ns
PW_{L}	VDC-Low Time	11.0		ns
$\mathrm{t}_{\text {cy }}$	LD/SH cycle time	310		ns
$\mathrm{t}_{r}, \mathrm{t}_{\mathrm{t}}$	Rise, fall time		9	ns
$\mathrm{t}_{\text {SET-UP }}$	Input set-up time	≥ 0	ns	
$\mathrm{t}_{\text {HoLD }}$	Input hold time	15	ns	
$\mathrm{t}_{\text {PDI, }} \mathrm{t}_{\text {PDO }}$	Output propagation delay	15	ns	
t_{1}	LD/SH set-up time	5	ns	
t_{2}	LD/SH hold time	5		ns

FUNCTION

The video output contains the dot stream for the selected row of the alphanumeric, wide graphic, thin graphic, or external character after processing by the attribute logic, and the retrace blank and cursor inputs.
In the alphanumeric mode, the characters are ROM programmed into the 77 dots, (7×11) allocated for each of the 128 characters. See figure 5 . The top row (Rø) and rows R12 to R15 are normally all zeros as is column C7. Thus, the character is defined in the box bounded by R1 to R11 and C \varnothing to C6. When a row of the ROM, via the attribute logic, is parallel loaded into the 8-bit shift-register, the first bit serially shifted out is C7 (A zero; or a one in REVID). It is followed by C6, C5, through Cø.
The timing of the Load/ Shift pulse will determine the number of additional (- , zero to N) backfill zeros (or ones if in REVID) shifted out. See figure 4. When the next Load/ Shift pulse appears the next character's row of the ROM, via the attribute logic, is parallel loaded into the shift register and the cycle repeats.
The 8 bit shift-register parallel-in load or serial-out shift modes are established by the Load/Shift input. When low, this input enables the shift register for serial shifting with each Video Dot Clock pulse. When high, the shift register parallel (broadside) data inputs are enabled and synchronous loading occurs on the next Video Dot Clock pulse. During parallel loading, serial data flow is inhibited. The Address/Data inputs (A \varnothing-A7) are latched on the negative transition of the Load/Shift input. See timing diagram, figure 7.
Frequency at which video is shifted.
In the Alphanumeric Mode the 7 bits on inputs (Aø-A6) are internally decoded to address one of the 128 available characters $(A 7=X)$. In the External Mode, A $\emptyset-A 7$ is used to insert an 8 bit word from a user defined external ROM, PROM or RAM into the on-chip Attribute logic. In the wide Graphic Modes A \emptyset-A7 is used to define one of 256 graphic entities. In the thin Graphic Mode Aø-A2 is used to define the 3 line segments.
+5 volt power supply
These 4 binary inputs define the row address in the current character block. Ground
A positive level on this input enables data from the Reverse Video, Character Blank, Underline, Strike-Thru, Blink, Mode Select \emptyset, and Mode Select 1 inputs to be strobed into the on-chip attribute latch at the negative transition of the Load/Shift pulse. The latch loading is disabled when this input is low. The latched attributes will remain fixed until this input becomes high again. To facilitate attribute latching on a character by character basis, tie ATTBE high. See timing diagram, figure 7.
When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SRø-SR7), providing a solid line segment throughout the character block. The operation of strike-thru is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which strike-thru is to be placed as well as to program the strike-thru to be 1 to N raster lines high. Actually, the strike-thru decoder (mask programmable) logic allows the strike-thru to be any number or arrangement of horizontal lines in the character block. The standard strikethru will be a double line on rows R5 and R6.
When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SR $\emptyset-S R 7$), providing a solid line segment throughout the character block. The operation of underline is modified by Reverse Video (see table 1). In addition, an on-chip ROM programmable decoder is available to decode the line count on which underline is to be placed as well as to program the underline to be 1 to N raster lines high. Actually, the underline decoder (mask programmable) logic allows the underline to be any number or arrangement of horizontal lines in the character block. The standard underline will be a single line on R11.
When this input is low and RETBL $=0$, data into the Attribute Logic is presented directly to the shift register parallel inputs. When reverse video is high data into the Attribute Logic is inverted and then presented to the shift register parallel inputs. This operation reverses the data and field video. See table 1. When this input is high, the parallel inputs to the shift register are all set low, providing a blank character line segment. Character blank will override blink. The operation of Character Blank is modified by the Reverse Video input. See table 1.
This input is used as the clock input for the two on-chíp mask programmable blink rate dividers. The cursor blink rate ($50 / 50$ duty cycle) will be twice the character blink rate ($75 / 25$ duty cycle). The divisors can be programmed from $\div 4$ to $\div 30$ for the cursor $(\div 8$ to $\div 60$ for the character).
When this input is high and RETBL $=0$ and $\mathrm{CHABL}=0$, the character will blink at the programmed character blink rate. Blinking is accomplished by blanking the character block with the internal Character Blink clock. The standard character blink rate is 1.875 Hz .
These 2 inputs define the four modes of operation of the CRT 8002 as follows: Alphanumeric Mode - In this mode addresses A $\emptyset-A 6$ (A7 $=X$) are internally decoded to address 1 of the 128 available ROM characters. The addressed character along with the decoded row will define a 7 bit output from the ROM to be loaded into the shift register via the attribute logic.
Thin Graphics Mode - In this mode AD-A2 (A3-A7 $=X$) will be loaded into the thin graphic logic along with the row addresses. This logic will define the segments of a graphic entity as defined in figure 2. The top of the entity will begin on row 0000 and will end on a mask programmable row.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	INPUT/ OUTPUT	FUNCTION
$\begin{gathered} 25 \\ 26 \\ \text { (cont.) } \end{gathered}$				External Mode - In this mode the inputs A \varnothing-A7 go directly from the character latch into the shift register via the attribute logic. Thus the user may define external character fonts or graphic entities in an external PROM, ROM or RAM. See figure 3. Wide Graphics Mode - In this mode the inputs A $\emptyset-A 7$ will define a graphic entity as described in figure 1. Each line of the graphic entity is determined by the wide graphic logic in conjunction with the row inputs R \emptyset to R3. In this mode each segment of the entity is defined by one of the bits of the 8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic entities. These entities can butt up against each other to form a contiguous pattern or can be interspaced with alphanumeric characters. Each of the entities occupies the space of 1 character block and thus requires 1 byte of memory. These 4 modes can be intermixed on a per character basis.
27	CURSOR	Cursor	1	When this input is enabled 1 of the 4 pre-programmed cursor modes will be activated. The cursor mode is on-chip mask programmable. The standard cursor will be a blinking (at 3.75 Hz) reverse video block. The 4 cursor modes are: Underline-In this mode an underline (1 to N raster lines) at the programmed underline position occurs. Blinking Underline-In this mode the underline blinks at the cursor rate. Reverse Video Block-In this mode the Character Block is set to reverse video. Blinking Reverse Video Block-In this mode the Character Block is set to reverse video at the cursor blink rate. The Character Block will alternate between normal video and reverse video. The cursor functions are listed in table 1.
28	RETBL	Retrace Blank	1	When this input is latched high, the shift register parallel inputs are unconditionally cleared to all zeros and loaded into the shift register on the next Load/Shift pulse. This blanks the video, independent of all attributes, during horizontal and vertical retrace time.

FIGURE 5
ROM CHARACTER BLOCK FORMAT

										Rows	R3	R2	R1	$R \varnothing$
$\begin{aligned} \text { (ALL ZEROS) } & \rightarrow 0 \\ & \left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right.\end{aligned}$	0	0	0	0	0	0	0	-	-	$\mathrm{R} \varnothing$	0	0	0	0
	10	0	0	0	0	0	0	-	-	R1	0	0	0	1
	0	0	0	0	0	0	0	-	-	R2	0	0	1	0
	0	0	0	0	0	0	0	-	-	R3	0	0	1	1
	0	0	0	0	0	0	0	-	-	R4	0	1	0	0
	0	0	0	0	0	0	0	-	-	R5	0	1	0	1
	0	0	0	0	0	0	0	-	-	R6	0	1	1	0
	0	0	0	0	0	0	0	-	-	R7	0	1	1	1
	0	0	0	0	0	0	0	-	-	R8	1	0	0	0
	0	0	0	0	0	0		-	-	R9	1	0	0	1
	0	0	0	0	0	0	0	-	-	R1ø	1	0	1	0
	0	0	0	0	0	0	0	-	-	R11	1	0	1	1
(ALL ZEROS) $\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right.$	0	0	0	0	0	0	0	-	-	R12	1	1	0	0
		0	0	0	0	0	0	-	-	R13	1	1	0	1
		0	0	0	0	0	0	-	-	R14	1	1	1	0
		0	0	0	0	0	0	-	-	R15	1	1	1	1
										EXTENDED ZEROS (BACK FILL) FOR INTERCHARACTER SPACING (NUMBER CONTROLLED BY LD/SH, VDC TIMING)				
*COLUMN 7 IS ALL ZEROS (REVID $=0$) COLUMN 7 IS SHIFTED OUT FIRST														

CONSULT FACTORY FOR CUSTOM FONT AND OPTION PROGRAMMING FORMS.

FIGURE 1
WIDE GRAPHICS MODE
MS $=\varnothing$ MS1=ø

*ON CHIP ROM PROGRAMMABLE TO 2,3, OR 4 LINE MULTIPLES * \cdot Length determined by ld/sh, vDC timing

EXAMPLE: 10010110

$B F=$ back fill

FIGURE 2
THIN GRAPHICS MODE

X= DON'T CARE

- THE INSIDE SEGMENT IS MASK PROGRAMMABLE TO ROW 0000
-• LENGTH DETERMINED BY LD/SH, VDC TIMING

FIGURE 3
EXTERNAL MODE
MS $0=1$ MS1=ø

$B F=$ back fill

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The tions; consequently complete information sufficient for construction purposes is not necessarily given. The
information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

CRT Video Attributes Controller Video Generator VAC

FEATURES

\square ON CHIP VIDEO SHIFT REGISTER
Maximum shift register frequency -20 MHz
Maximum character clock rate -2.5 MHzON CHIP HORIZONTAL AND VERTICAL RETRACE VIDEO BLANKING
\square ON CHIP GRAPHICS GENERATIONON CHIP ATTRIBUTE LOGIC-CHARACTER, FIELD
Reverse video
Character blank
Character blink
Underline
Strike-thru
\square ON CHIP BLINKING CURSORON CHIP DATA BUFFERON CHIP ATTRIBUTE BUFFER+5 VOLT OPERATIONTTL COMPATIBLEMOS N-CHANNEL SILICON-GATE COPLAMOS® PROCESS

PIN CONFIGURATION

COMPATIBLE WITH CRT 5027/37 VTAC® AND CRT 9007 VPAC

GENERAL DESCRIPTION

The SMC CRT 8021 Video Attributes Controller (VAC) is an n-channel COPLAMOS® MOS/LSI device. It contains wide and thin graphics logic, attributes logic, a data latch, field and character attribute latch, a blinking cursor, and a high speed video shift register. The CRT 8021 VAC is a companion to SMC's CRT 5027/37 VTAC® or CRT 9007 VPAC. The CRT 8021 and a character ROM combined with either a CRT 5027/37 or a CRT 9007 comprises the major circuitry required for the display portion of a CRT video terminal.

The CRT 8021 video output may be connected directly to a CRT monitor video input. The CRT 5027/37 or CRT 9007 blanking output can be connected directly to the CRT 8021 retrace blank input to provide both horizontal and vertical retrace blanking of the video output.
A blinking cursor is available on the CRT 8021. There is a separate cursor blink rate which is twice the character blink rate and has a duty cycle of 50/50.
The CRT 8021 attributes include: reverse video, character blank, blink, underline, and strike-thru. The character blink rate has a duty cycle of $75 / 25$. The underline and
strike-thru are similar but independently controlled functions. These attributes are available in all modes.

The thin graphic mode enables the user to create single line drawings and forms.

In the wide graphic mode the CRT 8021 produces a graphic entity the size of the character block. The graphic entity contains 8 parts, each of which is associated with one bit of a graphic byte, thereby providing 256 unique graphic symbols. Thus, the CRT 8021 can produce either alphanumeric symbols or various graphic entities depending on the mode selected. The mode can be changed on a per character basis.
The CRT 8021 is available in two versions. The CRT 8021 provides an eight-part graphic entity which fills the character block. The CRT 8021 is designed for seven dot wide, nine or eleven dot high characters in nine by twelve or ten by twelve character blocks.
The CRT 8021-003 provides a six part graphic entity for five by seven or five by nine characters in characterblocks of up to seven by ten dots.

AC TIMING DIAGRAM

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Positive Voltage on any Pin, with respect to ground .. 8.0 V
Negative Voltage on any Pin, with respect to ground $-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS Low-level, VIL High-level, V_{IH}	2.0		0.8	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	excluding VDC excluding VDC
input voltage levels-clock Low-level, VIL High-level, V_{IH}	4.3		0.8	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	See Figure 7
OUTPUT VOLTAGE LEVELS Low-level, Vol High-level, V_{OH}	2.4		0.4	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{oL}}=0.4 \mathrm{~mA}, 74 \mathrm{LSXX} \text { load } \\ & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \end{aligned}$
INPUT CURRENT Leakage, IL (Except CLOCK) Leakage, IL (CLOCK Only)			$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \leq V_{I N} \leq V_{c c} \\ & 0 \leq V_{I N} \leq V_{c c} \end{aligned}$
INPUT CAPACITANCE Data LD/ $\overline{\mathrm{SH}}$ CLOCK		10 20 25		pF pF pF	@ 1 MHz @ 1 MHz @ 1 MHz
POWER SUPPLY CURRENT Icc		100		mA	
A.C. CHARACTERISTICS See Figure 6, 7					

SYMBOL	PARAMETER	CRT 8021		UNITS
		MIN.	MAX.	
VDC	Video Dot Clock Frequency	1.0	20	MHz
PW_{H}	VDC-High Time	15.0		ns
PW	VDC-Low Time	15.0		ns
t_{Cr}	LD/ $\overline{\mathrm{SH}}$ cycle time	400		ns
t_{r}, t_{f}	Rise, fall time		10	ns
$\mathrm{t}_{\text {SET-UP }}$	Input set-up time	≥ 0		ns
$\mathrm{t}_{\text {HoLD }}$	Input hold time	15		ns
$\mathrm{t}_{\text {PDI, }} \mathrm{t}_{\text {PDO }}$	Output propagation delay	15	50	ns
t_{1}	LD/SH set-up time	10		ns
t_{2}	LD/ $\overline{\mathrm{SH}}$ hold time	5		ns

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	NAME	$\begin{array}{\|c\|} \hline \text { INPUT/ } \\ \text { OUTPUT } \\ \hline \end{array}$	FUNCTION
1	VIDEO	Video Output	0	The video output contains the dot stream for the selected row of the wide graphic, thin graphic, or external character after processing by the attribute logic, and the retrace blank and cursor inputs. The timing of the Load/Shift pulse will determine the number of additional (——, zero to N) backfill zeros (or ones if in REVID) shifted out. See figure 4. When the next Load/Shift pulse appears the next character via the attribute logic, is parallel loaded into the shift register and the cycle repeats.
2	LD/ $\overline{\text { SH }}$	Load/Shift	1	The 8 bit shift-register parallel-in load or serial-out shift modes are established by the Load/Shift input. When low, this input enables the shift register for serial shifting with each Video Dot Clock pulse. When high, the shift register parallel (broadside) data inputs are enabled and synchronous loading occurs on the next Video Dot Clock pulse. During parallel loading, serial data flow is inhibited. The Address/Data inputs (AD-A7) are latched on the negative transition of the Load/Shift input. See timing diagram, figure 1.
3	VDC	Video Dot Clock	1	Frequency at which video is shifted.
4-11	A0-A7	Address/Data	1	In the External Mode, AØ-A7 is used to insert an 8 bit word from a user defined external ROM, PROM or RAM into the on-chip Attribute logic. In the wide Graphic Mode A $\emptyset-A 7$ is used to define one of 256 graphic entities. In the thin Graphic Mode $A \emptyset-A 2$ is used to define the 3 line segments.
12	V cc	Power Supply	PS	+5 volt power supply.
13, 14, 15, 16	R2, R3, R1, R0	Row Address	1	These 4 binary inputs define the row address in the current character block.
17	GND	Ground	GND	Ground
18	ATTBE	Attribute Enable	1	A positive level on this input enables data from the Reverse Video, Character Blank, Underline, Strike-Thru, Blink, Mode Select Ø, and Mode Select 1 inputs to be strobed into the on-chip attribute latch at the negative transition of the Load/Shift pulse. The latch loading is disabled when this input is low. The latched attributes will remain fixed until this input becomes high again. To facilitate attribute latching on a character by character basis, tie ATTBE high. See timing diagram, figure 1.
19	STKRU	Strike-Thru	1	When this input is high and RETBL $=0$, the parallel inputs to the shift register are forced high (SR0-SR7), providing a solid line segment throughout the character block. The operation of strike-thru is modified by Reverse Video (see table 1). The strike-thru is a double line on rows R5 and R6 for the CRT 8021 and a single line on row R4 for the CRT 8021-003.
20	UNDLN	Underline	1	When this input is high and RETBL $=0$, the paraliel inputs to the shift register are forced high (SRD-SR7), providing a solid line segment throughout the character block. The operation of underline is modified by Reverse Video (see table 1). The underline is a single line of R11 for the CRT 8021 and a single line on R8 for the CRT 8021-003.
21	REVID	Reverse Video	1	When this input is low and RETBL $=0$, data into the Attribute Logic is presented directly to the shift register parallel inputs. When reverse video is high data into the Attribute Logic is inverted and then presented to the shift register parallel inputs. This operation reverses the data and field video. See table 1.
22	CHABL	Character Blank	I	When this input is high, the parallel inputs to the shift register are all set low, providing a blank character line segment. Character blank will override blink. The operation of Character Blank is modified by the Reverse Video input. See table 1.
23	V SYNC	V SYNC	I	This input is used as the clock input for the two on-chip blink rate dividers. The cursor blink rate ($50 / 50$ duty cycle) will be twice the character blink rate (75/25 duty cycle).
24	BLINK	Blink	I	When this input is high and RETBL $=0$ and $\mathrm{CHABL}=0$, the character will blink at the character blink rate. Blinking is accomplished by blanking the character block with the internal Character Blink clock. The character blink rate is 1.875 Hz when V SYNC $=60 \mathrm{~Hz}$.
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	MS1 MSø	Mode Select 1 Mode Select \emptyset	1	These 2 inputs define the three modes of operation of the CRT 8002 as follows: Thin Graphics Mode - In this mode A0-A2, (A3-A7 $=X$) will be loaded into the thin graphic logic along with the row addresses. This logic will define the segments of a graphic entity as defined in figure 6. Character Mode - In this mode the inputs A $\emptyset-A 7$ go directly from the character latch into the shift register via the attribute logic. Thus the user may define external character fonts or graphic entities in an external PROM, ROM or RAM. See figure 3. Wide Graphics Mode - In this mode the inputs A $\emptyset-A 7$ will define a graphic entity as described in figure5. Each line of the graphic entity is determined by the wide graphic logic in conjunction with the row inputs RØ to R3. In this mode each segment of the entity is defined by one of the bits of the 8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic entities. These entities can butt up against each other to form a contiguous pattern or can be interspaced with alphanumeric characters. Each of the entities occupies the space of 1 character block and thus requires 1 byte of memory. These 3 modes can be intermixed on a per character basis.
	MS1	MS0 M	ODE	
	1 0 0	Thin Graphics Character Mode Wide Graphics		
27	CURSOR	Cursor	1	When this input is enabled the cursor will be activated. The cursor will be a blinking (at 3.75 Hz when V SYNC $=60 \mathrm{~Hz}$) reverse video block. In this mode the Character Block is set to reverse video at the cursor blink rate. The Character Block will alternate between normal video and reverse video.
28	RETBL	Retrace Blank	1	When this input is latched high, the shift register parallel inputs are unconditionally cleared to all zeros and loaded into the shift register on the next Load/Shift pulse. This blanks the video, independent of all attributes, during horizontal and vertical retracetime.

TABLE 1

CURSOR	RETBL	REVID	CHABL	UNDLN*		FUNCTION
X	1	X	X	X	"0"	(S.R.) All
0	0	0	0	0	D	(S.R.) All
0	0	0	0	1	"1"	(S.R.)*
					D	(S.R.) All others
0	0	0	1	x	" 0 "	(S.R.) All
0	0	1	0	0	$\bar{\square}$	(S.R.) All
0	0	1	0	1	" 0 "	(S.R.)* (S.R.) All others
0	0	1	1	X	"1"	(S.R.) All
Blink** REVID Block	0	0	0	0	$\left\{\begin{array}{l}\text { Alternate Normal Video/REVID } \\ \text { At Cursor Blink Rate }\end{array}\right.$	
Blink** REVID Block	0	0	0	1		
Blink** REVID Block	0	0	1	X		
Blink** REVID Block	0	1	0	0		
Blink** REVID Block	0	1	0	1		
Blink** REVID Block	0	1	1	X		

*At Selected Row Decode **At Cursor Blink Rate
Note: If Character is Blinking at Character Rate, Cursor will change it to Cursor Blink Rate

FIGURE 2
TYPICAL CHARACTER MODE BLOCK FORMATS
CRT 8021
(ALL ZEROS) \rightarrow
(ALL ZEROS)

ROWS R3 R2 R1 R0

R \varnothing	0	0	0	0
$R 1$	0	0	0	1

0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	1
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

EXTENDED ZEROS (BACK
FILL) FOR INTERCHARACTER SPACING (NUMBER CONTROLLED BY LD/SH,
COLUMN 7 IS SHIFTED OUT FIRST
Note: Dotted line shows typical character display area.

FIGURE 3

CHARACTER MODE

MS® = 1 MS1= \emptyset

$\mathrm{BF}=$ back fill

VIDEO DATA																			
9	DOT FIELD	A7	$A 6$	$A 5$	$A 4$	$A 3$	$A 2$	$A 1$	$A 0$	$A 7$	$A 7$	$A 6$	$A 5$	$A 4$	$A 3$	$A 2$	$A 1$	$A 0$	$A 7$

FIGURE 5 WIDE GRAPHICS MODE

$\mathbf{M S} 0=\boldsymbol{0} \mathbf{M S} 1=0$

-ON CHIP ROM PROGRAMMABLE TO 2, 3, OR 4 LINE MULTIPLES \because CAN BE PROGRAMMED FROM 1 TO 7 BITS \cdots LENGTH DETERMINED BY LD/SH, vDC TIMING

EXAMPLE: 10010110

CRT 8021

CRT 8021-003

FIGURE 6
THIN GRAPHICS MODE MS $\varnothing=\varnothing$ MS1 $=1$

CRT 8021

CRT 8021-003

FIGURE 7

FIGURE 8
TYPICAL CRT 8021 CONFIGURATION FOR COMBINED CHARACTER AND GRAPHICS MODES

FIGURE 9. CRT 8021 TYPICAL μ P CONFIGURATION (CHARACTER MODE ONLY)

Single Row Buffer SRB

FEATURES:

Low Cost Solution to CRT Memory Contention ProblemProvides Enhanced Processor Throughput for CRT Display SystemsProvides 8 Bit Wide Variable Length Serial MemoryPermits Active Video on All Scan Lines of Data RowDynamically Variable Number of Characters per Data Row ...64, 80, 132, ... up to a Maximum of 135Cascadable for Data Rows Greater than 135 CharactersStackable for Invisible Attributes or Character Widths of Greater than 8 BitsThree-State Outputs3.3MHz Typical Read/Write Data RateStatic OperationCompatible with SMC CRT 5037, CRT 9007, and other CRT Controllers24 Pin Dual In Line Package+5 Volt Only Power SupplyTTL Compatible Inputs and OutputsAvailable in 135 Byte Maximum Length (CRT 9006-135) or 83 Byte Maximum Length (CRT 9006-83)PIN CONFIGURATION

APPLICATIONS:

\square CRT Data Row BufferBlock-Oriented BufferPrinter BufferSynchronous Communications BufferFloppy Disk Sector Buffer

GENERAL DESCRIPTION

The SMC Single Row Buffer (SRB) provides a low cost solution to memory contention between the system processor and CRT controller in video display systems.
The SRB is a RAM-based buffer which is loaded with character data from system memory during the first scan line of each data row. While data is being written into the RAM it is also being output through the multiplexer onto the Data Ouput
(DOUT) Lines. During subsequent scan lines in the data row, the system will disable Write Enable (WREN) and cause data to be read out from the internal RAM for CRT screen refresh, thereby releasing the system memory for processor access for the remaining $\mathrm{N}-1$ scan lines where N is the number of scan lines per data row. The SRB enhances processor throughput and permits a flicker-free display of data.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
1-4	DATA OUTPUTS	DOUT3-DOUTø	Data Outputs from the internal output latch.
5	CLOCK	CLK	Character clock. The negative-going edge of CLK clocks the latches. When CKEN (pin 8) is high, CLK will increment the address counter.
6	WRITE ENABLE	WREN	When $\overline{\text { WREN }}$ is low, data from the input latch is transferred directly to the output latch and simultaneously written into sequential locations in the RAM.
7	CLEAR COUNTER	$\overline{\text { CLRCNT }}$	A negative transition on $\overline{C L R C N T}$ clears the RAM address counter. $\overline{\text { CLRCNT }}$ is normally asserted low near the beginning of each scan line.
8	CLOCK ENABLE	CKEN	When CKEN is high, CLK will clock the address counter. The combination of CKEN high and WREN low will allow the writing of data into the RAM.
9-12	DATA INPUTS	DIN0-DIN3	Data Inputs from system memory.
13	POWER SUPPLY	V_{cc}	+5 Volt supply.
14-17	DATA INPUTS	DIN4-DIN7	Data Inputs from system memory.
;	OVERFLOW FLAG	OF	This output goes high when the RAM address counter reaches its maximum count. If cascaded operation of multiple CRT 9006's is desired for more than 135 bytes, OF may be used to drive the CKEN input of the second row buffer chip.
19	OUTPUT ENABLE	$\overline{O E}$	When $\overline{\mathrm{OE}}$ is low, the data outputs DOUTØ-DOUT7 are enabled. When $\overline{\mathrm{OE}}$ is high, DOUTØ-DOUT7 present a high impedance state.
20-23	DATA OUTPUTS	DOUT7-DOUT4	Data Outputs from the internal output latch.
24	GROUND	GND	Ground.

OPERATION

For CRT operation, the Write Enable (WREN) signal is made active for the duration of the top scan line of each data row. Clear Counter ($\overline{\mathrm{CLRCNT}}$) typically occurs at the beginning of each scan line (HSYNC may be used as input to CLRCNT). Data is continually clocked into the input latch by CLK. When Clock Enable (CKEN) occurs, the data in the input latch (Write Data) is written into the first location of RAM. At the negative-going edge of the next clock, the address counter is incremented, the next input data is latched into the input latch, and the new data is then written into the RAM. Loading the RAM continues until one clock after CKEN goes inactive or until the

RAM has been fully loaded (135 bytes). While data is being written into the RAM, it is also being output through the multiplexer onto the Data Output (DOUT) lines. Each byte is loaded into the output latch one clock time later than it is written into the RAM. Output of the data during the first scan line permits the Video Display Controller (such as the CRT 8002) to display video on the first scan line. During subsequent scanlines in the datarow, the system will disable Write Enable (WREN) and cause data to be read out from the internal RAM, thereby freeing the system memory for processor access for the remaining N -1 scan lines where N is the number of scan lines per datarow.

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground . 0.3 M
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \pm 5 \%$, unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
DC CHARACTERISTICS					
Input Voltage Levels Low Level V_{IL} High Level V_{H}	2.0		0.8	$\begin{aligned} & V \\ & V \end{aligned}$	
Output Voltage Levels Low Level Vol	24		0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$
Input Current Leakage, ILL			10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$
Output '1' Leakage			10	$\mu \mathrm{A}$	
Output '0' Leakage (Off State)			10	$\mu \mathrm{A}$	
Input Capacitance CLK All other inputs		$\begin{aligned} & 30 \\ & 10 \end{aligned}$	45 15	pF	
$\begin{aligned} & \text { Power Supply Current } \\ & \text { Icc (SRB-135) } \\ & \text { Icc (SRB-83) } \end{aligned}$			$\begin{aligned} & 115 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
AC CHARACTERISTICS					
$\begin{gathered} \mathrm{t}_{\text {cy }} \\ \text { (SRB135) } \\ \text { (SRB83) } \end{gathered}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 330 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$t_{\text {CkL }}$ (SRB135) (SRB83)	$\begin{aligned} & 240 \\ & 320 \end{aligned}$	$\begin{aligned} & 190 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { DC } \\ & \text { DC } \end{aligned}$	ns	
$t_{\text {ckh }}$ (SRB135) (SRB83)	$\begin{aligned} & 28 \\ & 34 \end{aligned}$		$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \text { tckR } \\ & \text { (SRB135) } \\ & \text { (SRB83) } \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{CKH}}=28 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{CKH}}=34 \mathrm{~ns} \end{aligned}$
$t_{\text {CKF }}$ (SRB135) (SRB83)			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns	$\begin{aligned} & \mathrm{t}_{\text {cKL }}=240 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{CLK}}=320 \mathrm{~ns} \end{aligned}$
tDSET $t_{\text {DHOLD }}$	65 5 0			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\text {ENCKP }} \\ & \mathrm{t}_{\mathrm{ENCKN}} \\ & \quad(\mathrm{SRB} 135) \\ & \quad \text { (SRB83) } \end{aligned}$	$\begin{gathered} 0 \\ 100 \\ 125 \end{gathered}$			ns ns ns	
$t_{\text {Enhold }}$ twrckn (SRB135) (SRB83)	$\begin{gathered} 0 \\ 100 \\ 125 \end{gathered}$			ns ns ns	
$t_{\text {WENHLD }}$ $t_{\text {DOUT }}$	0		175	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
$\mathrm{t}_{\text {TSON }}$ $t_{\text {tsoff }}$ tofon			175 175 175	ns ns ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
$\begin{aligned} & \text { tcLRs } \\ & \text { (SRB135) } \\ & \text { (SRB83) } \\ & \text { t }_{\text {CLRH }} \end{aligned}$	100 125 0			ns ns ns	

FIGURE 1: AC CHARACTERISTICS

FIGURE 2: SINGLE ROW BUFFER READ TIMING

FIGURE 3: SINGLE ROW BUFFER WRITE TIMING

FIGURE 2: TYPICAL CRT CONTROLLER CONFIGURATION WITH SINGLE ROW BUFFER

FIGURE 4:
TYPICAL READ TIMING FOR SRB CASCADED CONFIGURATION

Notes: $\mathrm{N}=134$ FOR CRT9006-135
$\mathrm{N}=82$ FOR CRT9006-83
EXAMPLE IS FOR $N+3$ CHARACTERS TOTAL
A, B REFER TO DEVICES A\&B IN FIGURE 5

FIGURE 5:
TYPICAL CASCADE OF SINGLE ROW BUFFERS - 270 BYTES TOTAL

CRT Video Processor and Controller VPAC ${ }^{\text {w }}$

FEATURES

\square Fully Programmable Display Format
Characters per Data Row (8-240)
Data Rows per Frame (2-256)
Raster Scans per Data Row (1-32)
\square Programmable Monitor Sync Format
Raster Scans/Frame (4-2048)
Front Porch-Horizontal (Negative or Positive)

- Vertical

Sync Width—Horizontal (1-128 Character Times)

- Vertical (2-256 Scan Lines)

Back Porch - Horizontal

- VerticalDirect Outputs to CRT Monitor
Horizontal Sync
Vertical Sync
Composite Sync
Composite Blanking
Cursor CoincidenceBinary Addressing of Video Memory
Row-Table Driven or Sequential Video Addressing Modes
Programmable Status Row Position and Address Registers
Bidirectional Partial or Full Page Smooth ScrollAttribute Assemble Mode
Double Height Data Row Mode保
rogrammable DMA Burst Mode
Arrangements
Light Pen Register
Cursor Horizontal and Vertical Position Registers
Maskable Processor Interrupt Line
Internal Status Register
Three-state Video Memory Address Bus
Partial or Full Page Blank Capability
Two Interlace Modes: Enhanced Video and Alternate
Scan Line

PIN CONFIGURATION
Ability to Delay Cursor and Blanking with respect to Active VideoProgrammable for Horizontal Split Screen Applications Graphics Compatible Ability to Externally Sync each Raster Line, each Field Single +5 Volt Power Supply TTL Compatible on All Inputs and Outputs
VT-100 Compatible
\square RS-170 Interlaced Composite Sync Available

GENERAL DESCRIPTION

The CRT 9007 VPAC $^{\text {™ }}$ is a next generation video processor/ controller-an MOS LSI integrated circuit which supports either sequential or row-table driven memory addressing modes. As indicated by the features above, the VPAC ${ }^{\text {M }}$ provides the user with a wide range of programmable features permitting low cost implementation of high performance CRT systems. Its 14 address lines can directly address up to 16 K of video memory. This is equivalent to eight pages of an 80 character by 24 line CRT display. Smooth or jump scroll operations may be performed anywhere within the addressable memory. In addition, status rows can be defined anywhere on the screen.
In the sequential video addressing mode, a Table Start Register points to the address of the first character of the first data row on the screen. It can be easily changed to produce a scrolling effect on the screen. By using this register in conjunction with two auxiliary address registers and two sequential break registers, a screen roll can be produced with a stable status row held at either the first or last data row position.

In the row-table driven video addressing mode, each row in the video display is designated by its own address. This provides the user with greater flexibility than sequential addressing since the rows of characters are linked by pointers instead of residing in sequential memory locations. Operations such as data row insertion, deletion, and replication are easily accomplished by manipulating pointers instead of entire lines. The row table itself can be stored in memory in a linked list or in a contiguous format. The VPAC ${ }^{\text {TM }}$ works with a variety of memory contention schemes including operation with a Single Row Buffer such as the CRT 9006, a Double Row Buffer such as the CRT 9212, or no buffer at all, in which case character addresses are output during each displayable scan line.
User accessable internal registers provide such features as light pen, interrupt enabling, cursor addressing, and VPAC ${ }^{\text {TM }}$ status. Ten of these registers are used for screen formatting with the ability to define over 200 characters per data row and up to 256 data rows per frame. These 10 registers contain the "vital screen parameters".

FIGURE 1: CRT 9007 BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PROCESSOR INTERFACE:

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{gathered} 7,5,4,2,39 \\ 37,10,9,8,6 \\ 3,1,38,36 \end{gathered}$	Video Address 13-0	VA13-VA0	These 14 signals are the binary address presented to the video memory by the CRT 9007. The function depends on the particular CRT 9007 mode of operation. VA13-6 are outputs only. VA5-0 are bidirectional. -Double Row Buffer Configuration: VA13-0 are active outputs for the DMA operations and are in their high impedance state at all other times. -Single Row Buffer Configuration: VA13-0 are active outputs during the first scan line of each data row and are in their high impedance state at all other times. -Repetitive Memory Addressing Configuration: VA13-0 are active outputs at all times except during horizontal and vertical retrace at which time they are in their high impedance state. If row table addressing is used for either single row buffer or repetitive memory addressing modes, VA13-0 are active outputs during the horizontal retrace at each data row boundary to allow the CRT 9007 to retrieve the row table address. For processor read/write operations VA5-0 are inputs that select the appropriate internal register.
$\begin{aligned} & 16,17,18,19 \\ & 20,22,23,24 \end{aligned}$	Video Data 7-0	VD7-VD0	Bidirectional video data bus: during processor Read/write operations data is transferred via VD7-VD0 when chip strobe ($\overline{\mathrm{CS}}$) is active. These lines are in their high impedance state when CS is inactive. During CRT 9007 DMA operations, data from video memory is input via VD7-VD0 when a new row table address is being retrieved or when the attribute latch is being updated in the attribute assemble mode. VD7-VD0 are outputs when the external row buffer is updated with a new attribute in the attribute assemble mode.
25	Chip strobe	$\overline{\mathrm{CS}}$	Input; this signal when active low, allows the processor to read or write internal CRT 9007 registers. When reading from an internal CRT 9007 register, the chip strobe ($\overline{C S}$) enables the output drivers. When writing to an internal CRT 9007 register, the trailing edge of this signal latches the incoming data. Figure 2 shows all processor read/write timing.
26	Reset	$\overline{\mathrm{RST}}$	Input; this active low signal puts the CRT 9007 into a known, inactive state and insures that the horizontal sync ($\overline{\mathrm{HS}}$) output is inactive. Activating this input has the same effect as a RESET command. After initialization, a START command causes normal CRT 9007 operation. See processor addressable registers section, Register 16 for the reset state definition.
27	Interrupt	INT	Output; an interrupt to the processor from the CRT 9007 occurs when this signal is active high. The interrupt returns to its inactive low state when the status register is read.

DESCRIPTION OF PIN FUNCTIONS CONT'D

CRT INTERFACE:

PIN NO.	NAME	SYMBOL	FUNCTION
11	Visible Line Time	VLT	Output; this signal is active high during all visible scan lines and during the horizontal trace times at vertical retrace. This signal can be used to gate the character clock (CCLK) when supplying data to a character generator from a single or double row buffer.
12	Vertical Sync	$\overline{\mathrm{VS}}$	Open drain output; this signal determines the vertical position of displayed text by initiating a vertical retrace. Its position and pulse width are user programmable. The open drain allows the vertical frame rate to be synchronized to the line frequency when using monitors with DC coupled vertical amplifiers. If the $\overline{\mathrm{VS}}$ output is pulled active low externally before the CRT 9007 itself initiates a vertical sync, the CRT 9007 will start its own vertical sync at the next leading edge of horizontal sync (HS).
13	Horizontal Sync	$\overline{\mathrm{HS}}$	Open drain output; this signal determines the horizontal position of displayed text by initiating a horizontal retrace. Its position and pulse width are user programmable. During hardware and software reset, this signal is inactive high. The open drain allows the horizontal scan rate to be synchronized to an external source. If the $\overline{\mathrm{HS}}$ output is pulled low externally before the CRT 9007 itself initiates a horizontal sync, the CRT 9007 will start its own horizontal sync on the next character clock ($\overline{\mathrm{CCLK}}$).
14	Character Clock	$\overline{\overline{C C L K}}$	Input; this signal defines the character rate of the screen and is used by the CRT 9007 for all internal timing. A minimum high voltage of 4.3 V must be maintained for proper chip operation.
15	Data Row Boundary	$\overline{\text { DRB }}$	Output: this signal is active low for one full scan line (from VLT trailing edge to VLT trailing edge) at the top scan line of each new data row. This signal can be used to swap buffers in the double row buffer mode. It indicates the particular horizontal retrace time that the CRT 9007 outputs addresses (VA13-VA0) for single row buffer operation. There will always be one extra $\overline{\text { DRB }}$ signal which will become active during the first scan line of the vertical retrace interval.
34	Cursor	CURS	Output; this signal marks the cursor position on the screen as specified by the horizontal and vertical cursor registers. The signal is active for one character time at the particular character position for all scan lines within the data row. For double height or width characters, this signal is active for 2 consecutive CCLK's in every scan line within the data row. For double height characters, this signal can be programmed to be active at the proper position for 2 consecutive data rows. CURS is also used to signal either a double height or double width data row by becoming active during the horizontal retrace (CBLANK active) prior to a double height or double width scan line. The time of activation and deactivation is a function of the addressing mode, buffer configuration and the scan line number. See section of Double height/width for details.
35	Composite Blank	CBLANK	Output. This signal when active high, indicates that a retrace (either horizontal or vertical) will be performed. The signal remains active for the entire retrace interval as programmed. It is used to blank the video to a CRT.

USER SELECTABLE PINS: (see Tables 4 and 5)

PIN NO.	NAME	SYMBOL	FUNCTION
28, 29, 30, 31	Scan Line 3Scan Line 0	SL3-SL0	Output; these 4 signals are the direct scan line counter outputs, in binary form, that indicate to the character generator the current scan line. These signals continue to be updated during the vertical retrace interval. SL3 and SL0 are the most and least significant bits respectively.
28	Direct Memory Access Request	DMAR	Output; this signal is the DMA request issued by the CRT 9007. It will only become active if the acknowledge (ACK) input is inactive. It remains active high throughout the entire DMA operation.
28	Vertical Blank	VBLANK	Output; this signal is active high only during the vertical retrace period.
29	Write Buffer Enable	WBEN	Output; this active high signal is used to gate the clock feeding the write buffer in a double row buffer configuration.
29 or 32	Composite Sync	$\overline{\text { CSYNC }}$	Output; this signal provides a true RS-170 composite sync waveform with equalization pulses and vertical serrations in both interlace and noninterlace formats. Figure 3 illustrates the CSYNC output in both interlaced and noninterlaced formats.
30	Scan Line Gate	$\overline{\text { SLG }}$	Output; this active low signal is used as a clock gate. It captures the correct 5 or $6 \overline{\text { CCLK }}$'s and, in conjunction with SLD (pin 31), allows scan line information to be loaded serially into an external shift register.
31	Scan Line Data	SLD	Output; this signal allows one to load an external shift register with the current scan line count. The count is presented least significant to most significant bit during the 5 or $6 \overline{\text { CCLK's }}$ framed by SLG. With this form of scan line representation, it is possible to define up to 32 scan lines per data row. The external shift register must be at least 5 bits in length. Even though 6 shifts can occur one should only use the 5 last bits shifted to define the scan line count. The extra shift occurs in interlace or double height character mode to allow the scan line count to be adjusted to its proper value. Figures 4 and 5 illustrate the serial scan line timing.
32	Light Pen Strobe	LPSTB	Input; this signal strobes the current row/column position into the light pen register at its positive transition.
33	Acknowledge	ACK	Input; this active high signal acknowledges a DMA request. It indicates that the processor bus has entered its high impedance state and the CRT 9007 may access video memory. It is not recommended to deactivate this signal during a CRT 9007 DMA cycle because the CRT 9007 will not shut down in a predictable amount of time.
33	Three State Control	$\overline{\text { TSC }}$	Input; this signal, when active low, places VA13-VA0 in their high impedance state.

Single Row Buffer Operation

The CRT 9007 configured with a CRT 9006 Single Row Buffer is shown in figure 6. The use of the CRT 9006 Single Row Buffer requires that the buffer be loaded at the video painting rate during the top scan line of each data row. However, after the CRT 9006 is loaded, the CRT 9007 address lines enter their high impedance state for the remaining N 1 scan lines of the data row, thereby permitting full proces-
sor access to memory during these scan lines. The percentage of total memory cycles available to the processor is approximately $[(N-1) / N] \times 100$ where N is the total number of scan lines per data row. For a typical system with 12 scan lines per data row this percentage is 92%. Figure 7 illustrates typical timing for the CRT 9007 used with the CRT 9006 Single Row Buffer.

FIGURE 6: CRT 9007 CONFIGURATION WITH SINGLE ROW BUFFER

FIGURE 7: CRT 9007 SINGLE ROW BUFFER TIMING (32 CHARACTERS PER DATA ROW)

Double Row Buffer Operation

Figure 8 shows the CRT 9007 used in conjunction with a CRT 9212 Double Row Buffer. The Double Row Buffer has a read buffer which is read at the painting rate of the CRT during each scan line in the data row. While the read buffer is being read and supplying data to the character generator for the current displayed data row, the write buffer is being loaded with the next data row to be displayed. This arrangement allows for relaxed write timing to the write buffer as it may be filled in the time it takes for N scan lines on the CRT to be painted where N is the number of scan lines per data row. Used in this configuration, the CRT 9007 takes advantage of the relaxed write buffer timing by stealing memory cycles from the processor to fill the write buffer (Direct memory access operation). The CRT 9007 sends the DMAR (DMA request) signal, awaits an ACK (acknowledge) signal and then drives out on VA13-VA0 the address at which the next video data resides. The CRT 9007 then activates the WBEN (write buffer enable) signal to write the data into the buffer. If for example there are 80 characters per data row, the CRT 9007 performs 80 DMA operations. The user has the ability to program the number of DMA cycles performed during each DMAR-ACK sequence, as well as
the delay between each DMAR-ACK sequence, via the DMA CONTROL REGISTER (RA). If 8 DMA operations are performed for each ACK received, 10 such DMAR-ACK sequences must be performed to completely fill the write buffer. The programmed delay allows the user to evenly distribute the DMA operations so as not to hold up the processor for an excessive length of time. This feature also permits other DMA devices to be used and allows the processor to respond to real time events. In addition, the user has the ability to disable the CRT 9007 DMA mechanism. Figure 9 illustrates typical timing for the CRT 9007 used with the CRT 9212 Double Row Buffer.
Since the CRT 9212 Double Row Buffer has separate inputs for read and write clocks (RCLK, WCLK), it is possible to display proportional character widths (variable number of dots per character) by reading out the buffer at a character clock rate determined by the particular character. The writing of the buffer can be clocked from a different and constant character clock. Figure 10 illustrates the CRT 9007 used with two double row buffers and a CRT 9021 Video Attributes Controller chip to provide proportional character display.

FIGURE 10: CRT 9007 CONFIGURATION FOR PROPORTIONAL CHARACTER DISPLAY

Repetitive Memory Addressing Operation

In this operation mode, the CRT 9007 will repeat the sequence of video addresses for every scan line of every data row. The CRT 9007 address bus will enter its high impedance state during all horizontal retrace intervals (except the retrace interval at a data row boundary if the CRT 9007 is configured in a row driven addressing mode). This arrangement allows for such low end contention schemes as retrace intervention (the processor is only allowed access to video memory during retrace intervals)
and processor priority (the processor has an unlimited access to video memory). A high end contention scheme can be employed which uses a double speed memory such that in a single character period both the processor and the CRT 9007 are permitted access to video memory at predetermined time slots. Figure 11 illustrates the CRT 9007 configured with a double speed memory. Typical timing for this mode is illustrated in figure 12.

FIGURE 11: CRT 9007 CONFIGURATION WITH DOUBLE SPEED MEMORY

FIGURE 12: CRT 9007 REPETITIVE MEMORY ADDRESS TIMING (32 CHARACTERS PER DATA ROW)

Attribute Assemble Operation

This configuration allows the user to retain an 8 bit wide video memory in which attributes occupy memory locations but not positions on the CRT. This mode assumes that every other display position in video memory contains an attribute. During one clock cycle, attribute data is latched into the CRT 9007; during the next clock cycle a character location is addressed. The attribute data is driven out along with a WBEN signal allowing the character plus its associated attribute to be written simultaneously to two 8 bit double row buffers. Figure 13 illustrates the memory organization used for the Atribute Assemble mode. The first entry in each data row must begin with an attribute.
Figure 14 shows the CRT 9007 configured in the Attribute Assemble mode used with two CRT 9212 Double Row Buffers and $8,16 \mathrm{Kx1}$ dynamic RAMS. This mode, since it retains an 8 bit wide memory while providing all the advantages of a 16 bit wide memory, lends itself to some cost effective designs using dynamic RAMS. The CRT 9007 will refresh dynamic RAMS because twice the number of the programmed characters per data row are accessed sequentially for each data row. ${ }^{*}$ Figure 15 illustrates typical timing of the CRT 9007 used in the Attribute Assemble mode.

Memory Address (typ) Memory Data (8 bits)

ODOO	Attribute 0
0D01	Character 0
OD02	Attribute 1
0D03	Character 1
0	0
0	0
0	0
2 N	Attribute N
$2 N+1$	Character N

Figure 13: Attribute Assemble Memory Organization
*Note: For 50 Hz operation there usually is about 3 milliseconds extra vertical blanking where refreshing might fail. In this situation the CRT 9007 can be programmed with äbout 5 more "dummy" data rows while extending the vertical blank signal. This allows the CRT 9007 to start addressing video miemory much earlier within the vertical blanking interval and hence provide refresh to the dynamic RAMS. When displaying double height or double width data rows, only half as many sequential locations are accessed each data row and dynamic RAM refresh might fail.

FIGURE 14: CRT 9007 CONFIGURATION FOR ATTRIBUTE ASSEMBLE MODE

Smooth Scroll Operation

Smooth scroll requires that all or a portion of the screen move up or down an integral number of scan lines at a time. 2 user programmable registers allow one to define the "start data row" and the "end data row" for the smooth scroll qperation. A SMOOTH SCROLL OFFSET REGISTER (R17), when used in conjunction with a CRT 9007 vertically timed interrupt, allows the user to synchronize the update of the offset register to the vertical frame rate. The offset register causes the scan line counter outputs of the CRT 9007 to start at the programmed offset value rather than zero for
the data row that starts the smooth scroll interval. To allow complete flexibility in smooth scroll direction and rate, one can update the offset register in the positive as well as negative direction and can also offset any number of scan lines each frame. Since a smooth scroll can momentarily result in a partial data row consisting of one scan line, the loading of the write buffer under DMA operations for the start and end data row of the smooth scroll operation is forced to occur in one scan line. This condition overrides the programmable DMA CONTROL REGISTER (RA).

FIGURE 15: CRT 9007 ATTRIBUTE ASSEMBLE TIMING (32 CHARACTERS PER DATA ROW)

Row Table Addressing

In this addressing mode, each data row in video memory is designated by its own starting address. This provides greater flexibility with respect to screen operations than with other addressing schemes used by previous CRT controlliers. The row table, which is a list of starting addresses for each data row, can be configured in one of 2 ways. The choice of row table format is highly dependent upon the particular application and the programmer's preference since each format allows full utilization of the CRT 9007 features.

Contiguous Row Table Format

In this format, the TABLE START REGISTER (RC and RD) points to the address where the row table begins. The contents of the first 2 locations define the starting address of the first data row. These 2 bytes define a 14 bit address where the first byte is the low order 8 bits and the second byte is the high order 6 bits. The 2 most significant bits of the second byte define double height/width characteristics to the current data row. The contents of the third and fourth locations define the address where the second data row begins. Figure 16 illustrates the contiguous row table organization in video memory.

Linked List Row Table Format

In this format the TABLE START REGISTER (RC and RD) points to the memory location which starts the entire addressing sequence into operation. The first byte read is the lower 8 bits and the second byte read is the upper 6 bits of the next data row's start address. The 2 most significant bits of the second byte define double height/width characteristics for the data row about to be read. The third, fourth, fifth, etc., bytes read are the first, second, third, etc., characters of the current data row. Figure 17 illustrates the linked list row table organization in video memory.

FIGURE 17: LINKED LIST ROW TABLE ADDRESS FORMAT

Sequential Addressing ${ }^{1}$

In this addressing mode, characters on the display screen are located in successive memory locations. The TABLE START REGISTER (RC and RD) points to the address of the first character of the first data row on the screen. In this mode the TABLE START REGISTER does not point to the start of a table but the start of the screen. As each character
is read by the CRT 9007 for display refresh, the internal video address register is incremented by one to access the next character.
For more versatile systems operation in the sequential addressing mode, SEQUENTIAL BREAK REGISTER 1 (R10) and SEQUENTIAL BREAK REGISTER 2 (R12) may be used to define the data rows at which two additional
sequential display areas begin. Note that DATA ROW END REGISTER (R12) is defined as SEQUENTIAL BREAK REGISTER 2 (R12) for the sequential addressing mode only. The starting addresses for these two additional display areas are defined by AUXILIARY ADDRESS REGISTER 1 (RE and RF) and AUXILIARY ADDRESS REGISTER2 (R13 and R14). When the raster begins painting a data row equal to the number programmed in one of the sequential break registers, the CRT 9007 addresses the video memory sequentially starting with the address specified by the corresponding auxiliary address register. Figure 18 illustrates a display with 80 characters per data row having sequential breaks at data rows 3 and 6 .
Using the sequential addressing mode with 2 breaks, it is possible to roll a portion of the screen and keep the rest of the screen stable. Double height/width characteristics can be attached to the 2 sequentially addressed screens defined by SEQUENTIAL BREAK REGISTERS 1 and 2 by using the 2 most significant bits of AUXILIARY ADDRESS REGISTERS 1 and 2. See the description of these 2 registers for their bit definition.

TABLE START REGISTER $=1000$
AUXILIARY ADDRESS REGISTER $1=2000$
AUXILIARY ADDRESS REGISTER $2=0800$
SEQUENTIAL BREAK REGISTER $1=3$
SEQUENTIAL BREAK REGISTER $2=6$

Data Row	Address range 0	1000 to 104 F
1	1050 to 109 F	
2	10 A 0 to 10 FF	
3	2000 to 204 F	(Break 1)
4	2050 to 209 F	
5	$20 A 0$ to 20 FF	
6	0800 to 084 F	(Break 2)
7	0850 to 089F	
8	$08 A 0$ to 08EF	
	0	
	0	

Figure 18: Sequential Addressing Example With Two Breaks

Double Height/Width Operation

When double height/width characters $(2 \mathrm{XH} / 2 \mathrm{XW})$ are displayed, the following will occur:

1. the CRT 9007 will address half as many characters for each data row by incrementing its address every other character clock.
2. the high speed video shift register supplying serial video to the CRT must shift out dots at half frequency.
3. For double height, the scan line counter outputs (SL3SLO or SLG, SLD) are incremented every other scan line.
The CRT 9007 is informed of the double height or double width display modes via the 2 most significant bits of the row table address or the 2 most significant bits of the AUXILIARY ADDRESS registers depending on the selected addressing mode. In any case, once the information is obtained by the CRT 9007, it must initiate the 3 tasks listed above. Tasks 1 and 3 are performed as appropriate and task 2 is performed using the CURS output of the CRT 9007 during CBLANK (horizontal retrace) to signal the external logic that a change in the dot shift frequency is required. The exact time of activation and deactivation of the CURS signal during horizontal retrace is a function of addressing mode, operation mode and actual scan line number to be painted. Tables 1 and 2 show the cursor activation and deactivation times as a function of the buffer configuration and addressing mode for the top scan line of a new data row. Tables 1 and 2 assume a cursor skew of zero. A cursor skew will effect the cursor position during trace as well as retrace time. For all subsequent scan lines, the CURS signal is activated 3 CCLK's after VLT trailing edge and stays active for exactly 1 CCLK assuming no cursor skew. When the cursor is placed on a double height or double width data row, it will become active for 2 CCLK's to allow the cursor to be displayed as double width. If the cursor position is programmed to reside

OPERATION MODE	ADDRESSING MODE	
	Row Driven (linked list or contiguous)	Sequential
Repetitive Memory Addressing	1 CCLK after high byte of row table read	1 CCLK after TSC leading edge
Single row buffer	1 CCLK after high byte of row table read	1 CCLK after TSC leading edge
Double row buffer	1 CCLK after high byte of row table read	1 CCLK after ACK leading edge

Table 1: Double Height/Width CURS activation for top scan line of new data row.
in the top half of a double height data row, it may become active for all scan lines in both the current and next data row to allow the cursor to be displayed as dounble height.

For row driven addressing, a particular data row or pair of data rows can appear in one of the following ways as a function of the two most significant bits of the row table address (bits 15 and 14).
-Single height, single width (Row table address bits 15, $14=00$). The CRT 9007 will display the particular data row as single height, single width.
-Single height, double width (Row table address bits 15, $14=01$). The CRT 9007 will display the particular data row as single height double width by accessing half as many characters as appear in a single width data row. The CURS signal becomes active during horizontal retrace in the manner described previously.
—Double height, double width top half (Row table address bits $15,14=10$). In addition to providing the special timing associated with single height double width data rows, the scan line counter is started from zero and incremented every other scan line until N scan lines are painted (N is the number of scan lines per single height data row). In this way, new dot information appears every other scan line and the top half of the data row appears in N scan lines.
—Double Height, Double Width Bottom Half (Row table address bits 15, $14=11$)-Same as Double Height, Double Width Top except the scan line counter is started from $\mathrm{N} / 2$ (or ($\mathrm{N}-1$)/2 if N is odd), and incremented every other scan line until N scan lines are painted. In single row buffer operation, a double height bottom data row can only stand alone during a smooth scroll operation; otherwise it is assumed to follow a double height top data row.

OPERATION MODE	ADDRESSING MODE	
	Row driven (linked list or contiguous)	Sequential
Repetitive Memory Addressing	at the leading edge of VLT	at the leading edge of VLT
Single row buffer	at the leading edge of VLT	at the leading edge of VLT
Double row buffer	1 CCLK after leading edge of CURS	1 CCLK after leading edge of CURS

Table 2: Double Height/Width CURS deactivation for top scan line of new data row.

PROCESSOR ADDRESSABLE REGISTERS

All CRT 9007 registers are selected by specifying the address on VA5-0 and asserting CS. All 14 bit registers are written or read as two consecutive 8 bit registers addressed low byte first. Only the VERTICAL CURSOR REGISTER and the HORIZONTAL CURSOR REGISTER are read/write registers with 2 different addresses for read or write operations. The register address assigned to each register represents the actual address in hexadecimal form that must appear on VA5-0. Figure 2 illustrates all processor to CRT 9007 register timing. Tables 3a, 3b, and 3c summarize all register bits and provide register addresses.

HORIZONTAL TIMING REGISTERS

The following 4 registers define the horizontal timing parameters. Figure 19 relates the horizontal timing to these registers.

CHARACTERS PER HORIZONTAL PERIOD (R0)

This 8 bit write only register, programmed in units of character times, represents the total number of characters in the horizontal period (trace plus retrace time). This register is programmed with the binary number N where N is the total characters in the horizontal period. The horizontal period should not be programmed for less than 12 characters.

CHARACTERS PER DATA ROW (R1)

This 8 bit write only register, programmed in units of char-
acter times, represents the number of displayable characters during the horizontal trace interval. The difference R0 minus R1 represents the number of character times reserved for horizontal retrace. This register is programmed with the binary number ($\mathrm{N}-1$) where N is the displayable characters per data row.

HORIZONTAL DELAY (R2)

This 8 bit write only register, programmed in units of character times, represents the time between the leading edge of horizontal sync and leading edge of VLT. This register is programmed with N where N represents the time of horizontal delay. By programming this time greater than the horizontal blank interval, one can obtain negative front porch (horizontal sync begins before the horizontal blank interval).

HORIZONTAL SYNC WIDTH (R3)

This 8 bit write only register defines the horizontal sync width in units of character times. The start of the sync pulse is defined by the HORIZONTAL DELAY REGISTER and the end is independent of the start of the active display time. This register is programmed with N where N is the horizontal sync width. However this register must be programmed less than or equal to $[(A / 2)-1]$ where A is the programmed contents of REGISTER 0 rounded to the smallest even integer.

VERTICAL TIMING REGISTERS

The following 5 registers define the vertical timing parameters. Figure 20 relates the vertical timing to these registers.

VERTICAL SYNC WIDTH (R4)

This 8 bit write only register defines the vertical sync width in units of horizontal periods. The start of this signal is defined by the delay register (R5) and the end is independent of the start of the active display time. This register is programmed with N where N is the vertical SYNC width.

VERTICAL DELAY (R5)

This 8 bit write only register, programmed in units of horizontal periods, represents the time between the leading edge of vertical sync and the leading edge of the first VLT after the vertical retrace interval. This register is programmed with $(\mathrm{N}+1)$ where N represents the time of the vertical delay.

VISIBLE DATA ROWS PER FRAME (R7)

This 8 bit write only register defines the number of data rows
displayed on the screen. This register is programmed with ($\mathrm{N}-1$) where N is the number of data rows displayed.

SCAN LINES PER DATA ROW (H8)

The 5 LSBs of this write only register define the number of scan lines per data row. These 5 bits are programmed with ($\mathrm{N}-1$) where N is the number of scan lines per data row. When programming for scan lines per data row greater than 16, only the serial scan line pin option (SLD, SLG) can be used.

SCAN LINES PEI. VERTICAL F siRIOD (R8; R9)
Registers R9 and the 3 most significant bits of R8 define the number of scan lines for the entire frame. R8 contains the 3 most significant bits of the 11 bit programmed value and R9 contains the 8 least significant bits of the 11 bit programmed value. The 11 bits are programmed with N where N is the number of scan lines per frame. In the 2 interlace modes, the programmed value represents the number of scan lines per field.

FIGURE 19: CRT 9007 HORIZONTAL TIMING

FIGURE 20: CRT 9007 VERTICAL TIMING

PIN CONFIGURATION/SKEW BITS REGISTER (R6)

This 8 bit write only register is used to select certain pin configurations and to skew (delay) the cursor and the blank signals independently with respect to the video signal sent to the monitor. The bits take on the following definition:

Bit 7, 6 (Pin Configuration)

These 2 bits, as illustrated in tables 4 and 5, define all pinout configurations as a function of double row buffer mode and non double row buffer mode. (The buffer mode is defined in the CONTROL REGISTER bits 3,2, and 1.) The attribute assemble mode is assumed to be a double row buffer mode and obeys table 4.

Bits 5, 4, 3 (Cursor skew)
These three bits define the number of character clocks the cursor signal is skewed (delayed) from the VLT signal. The

REGISTER R6 BITS		CRT 9007 PIN NUMBER					
7	6	28	29	30	31	32	33
0	1	DMAR	WBEN	$\overline{\text { SLG }}$	SLD	CSYNC	ACK
1	1	DMAR	WBEN	SLG	SLD	LHSTB	ACK
0	0		NOT PERMITTED				
1	0	NOT PERMITTED					

Table 4: Pin configuration for double row buffer and attribute assemble modes.

VLT signal is active for all characters within a data row and a non skewed cursor will always become active within the active VLT time at the designated position. The cursor can be skewed from 0 to 5 character clocks (Bits 5, 4 and 3 programmed from 000 to 101, bit 5 is the most significant bit; bit 3 is the least significant bit). For double height/width data rows, the cursor signal appearing during horizontal retrace is also skewed as programmed.
Bits 2, 1, 0 (Blank skew)
These three bits define the number of character clocks the horizontal blank component of the CBLANK signal is skewed (delayed) from the VLT signal. The edges of VLT will line up exactly with the edges of the horizontal component of the CBLANK signal if no skew is programmed. The CBLANK can be skewed from 0 to 5 character clocks (Bits 2, 1 and 0 programmed from 000 to 101, bit 2 is the most significant bit; bit 0 is the least significant bit).

REGISTER 6	BITS	CRT 9007 PIN NUMBER					
7	6	28	29	30	31	32	33
0	0	SL3	SL2	SL1 SLO	$\overline{\text { CSYNC }}$	$\overline{\text { TSC }}$	
1	0	SL3	SL2	SL1	SLO	LPSTB	TSC
1	1	VBLANK	CSYNC	SLG SLD	LPSTB	TSC	
0	1	NOT PERMITTED					

Table 5: Pin configuration for Single Row Buffer and Repetitive Memory Addressing Modes.

DMA CONTROL REGISTER (RA)

This 8 bit write only register allows the user to set up a DMA burst count and delay as well as disable the DMA mechanism of the CRT 9007. The register bits have the following definition:

Bit 7 (DMA Disable)

A logic one will immediately force the CRT 9007 DMA request to the inactive level and the CRT 9007 address bus (VA13VAO) will enter its high impedance state. After enabling the DMA mechanism by setting this bit to a logic zero, a start command must be issued (see START COMMAND, R15).
Bits 6, 5, 4 (DMA Burst Delay)
These 3 bits define the number of clock delays ($\overline{\mathrm{CCLK}}$) between successive DMAR-ACK sequences. Bit 6 is the most and bit 4 is the least significant bit respectively. When programmed with a number N, the CRT 9007 will delay for $4(N+1)$ clock cycles before initiating another DMA request. If 111 is programmed, however, this will result in a zero delay allowing all characters to be retrieved from video RAM in one DMA burst regardless of the value programmed for the DMA burst count.
Bits 3, 2, 1, 0 (DMA Burst Count)

These 4 bits define the number of DMA operations in one DMAR-ACK sequence. Bit 3 is the most and bit 0 is the least significant bit respectively. When programmed with a number N, the CRT 9007 will produce $4(N+1)$ DMA cycles before relinquishing the bus. When programmed with 0000, the minimum DMA Burst will occur $(4 \times 1=4)$ and when programmed with 1111 the maximum DMA Burst will occur $(4 \times 16=64)$. When bits 6,5 , and 4 are programmed with 111, no DMA delay will occur and the Burst count will equal the number of programmed characters per data row as specified in R1. Refer to figures 9 and 15 which illustrate a DMA burst of 16 and a DMA delay of 8 for double row buffer and attribute assemble modes respectively. For single row buffer operation, no DMA delay is permitted and bits 6, 5, 4 must be programmed with 000.

CONTROL REGISTER (RB)

This 7 bit write only register controls certain frame operations as well as specifying the operation mode used. Internal to the CRT 9007, this register is double buffered. Changes in the register are reflected into the CRT 9007 at a particular time during vertical retrace. This allows the user to update the CONTROL REGISTER at any time without running the risk of destroying the frame or field currently being painted.

The bits take on the following definition:
Bit 6 ($\mathrm{PB} / \overline{\mathrm{SS}}$)
$=0$; The smooth scroll mechanism is enabled permitting the SMOOTH SCROLL OFFSET REGISTER (R17) to be loaded in the scan line counter (SL30 or SLG, SLD signals) allowing for a scroll on the screen of a predetermined number of scan lines per frame or field. The starting and ending of the smooth scroll operation is defined by the DATA ROW START REGISTER (R11) and DATA ROW END REGISTER (R12) respectively.
$=1$; The page blank mechanism is enabled. The CBLANK signal is made active high for a continuous period of time starting and ending at the data row defined by the DATA ROW START REGISTER (R11) and DATA ROW END REGISTER (R12) respectively.
Bits 5, 4 (Interlace)-these 2 bits define one of 3 displayed modes as illustrated in figure 21
$=00$; Non interlaced display
= 10; Enhanced video interlace. This display mode will produce an interlaced frame with the same dot information painted in adjacent odd/even scan lines.
$=11$; Normal video interlace. This display mode will produce an interlaced frame with odd scan lines of characters displayed in odd fields and even scan lines displayed in even fields. This mode can be used to allow the screen to show twice as many data rows at half the height since it effectively doubles the character density on the screen.
$=01$; This combination is not permitted.
Bits 3, 2, 1 (Operation modes): These 3 bits define the various buffer configuration modes as follows:
= 000; (Repetitive memory addressing) -In this mode the address information (VA13-VAO) appears during every visible scan line and the address bus enters its high impedance state during all retrace intervals. When using a row driven addressing mode (linked list or contiguous), the address bus is in the high impedance state for all retrace intervals except the horizontal retrace interval prior to the top scan line of a new data row. This period can be distinguished from other retrace intervals because the DRB (data row boundary) signal is active.
= 001; (Double row buffer) - In this mode, the CRT 9007 will address a particular data row from video memory one data row prior to the time when it is displayed on the CRT. During vertical retrace, the first data row is retrieved and loaded into the double row buffer. At the next data row boundary (in this case at the end of vertical retrace), the first data row feeds the character generator while the second data
row is retrieved from video memory. The address bus will enter its high impedance state in accordance with the DMA mechanism for address bus arbitration.
$=100 ;($ Single row buffer $)$-In this mode, during the first scan line of each data row, the CRT 9007 will address video memory, load the buffer and feed the character generator at the painting rate of the CRT. If the CRT 9007 is used in a row driven addressing mode, it will drive the address bus during the retrace period prior to the first scan line of each data row in order to retrieve the row table address. It will automatically enter the high impedance state at the end of the first visible scan line of each data row. If the CRT 9007 is used in a sequential addressing mode, it will drive the address bus only during the visible line time of the first scan line of each data row.
$=111$; (Attribute assemble)-In the attribute assemble mode, character data and attribute data are shared in consecutive alternating byte locations in memory. When the CRT 9007 reads an attribute byte, it loads it into its internal attribute latch. During the next memory access, a character byte is fetched. At this time the CRT 9007 isolates its bus from the main system bus and outputs the previously latched attribute. A WBEN signal is produced during every character byte fetch to allow the character and its associated attribute to be simultaneously latched into two double row buffers. This mode assumes that there exists twice as many byte locations as there are displayable character positions on the CRT. The first byte of every data row is assumed to be an attribute.
All other combinations of the CONTROL REGISTER bits 3, 2, 1 are not permitted.
Bit $0(\overline{2 X C} / 1 X C)$: This bit allows for either single or double height cursor display when the cursor is placed within a double height data row as follows:
$=1$; (Single height cursor) -The CURS signal will appear during every scan line for single height data rows and will appear only during the top half or bottom half of a double height data row depending upon where the VERTICAL CURSOR REGISTER (R18, R38) defines the CURSOR data row.
$=0$; (Double height cursor) - If the VERTICAL CURSOR REGISTER (R18, R38) places the cursor in the top half of a double height data row, the CURS signal will appear during every scan line of the top half (the current data row) and the bottom half (the next data row) of the double height data row. If the cursor is placed in the bottom half of a double height data row or if it is placed in a single height data row, the CURS signal will only appear during the one particular data row.

FIGURE 21: CRT 9007 INTERLACE MODES

TABLE START REGISTER (RC AND RD)

This 16 bit write only register contains a 14 bit address which is used in a variety of ways depending on the addressing mode chosen; the 2 remaining bits define the addressing mode. Register C contains the lower 8 bits of the 14 bit address. The 6 least significant bits of register D contain the upper 6 bits of the 14 bit address. The 2 most significant bits of register D define four addressing modes as follows:

Register D bits 7, 6 :
$=00$; (Sequential addressing mode) -The CRT 9007 will address video memory in a sequential fashion starting with the 14 bit address contained in REGISTER D bits 5-0 and REGISTER C bits 7-0. 2 sequential breaks are allowed as defined by SEQUENTIAL BREAK 1 (R10) using AUXILIARY ADDRESS REGISTER 1 (RE and RF) and SEQUENTIAL BREAK 2 (R12) using AUXILIARY ADDRESS REGISTER 2 (R13 and R14).
= 01; (Sequential roll addressing mode) -The CRT 9007 will address video memory in a sequential fashion starting with the 14 bit address contained in REGISTER D bits 5-0 and REGISTER C bits 7-0. SEQUENTIAL BREAK REGISTER 1 and AUXILIARY ADDRESS REGISTER 1 can be used to cause one sequential break as described in the sequential addressing mode. A second break in the sequential addressing can be defined by SEQUENTIAL BREAK REGISTER 2 (R12) and AUXILIARY ADDRESS REGISTER 2 (R13 and R14) permitting up to 3 separate sequentially addressed screens to be painted.
= 10; (Contiguous row table mode) - The CRT 9007 will address video memory according to the contiguous row table format. The 14 address bits contained in REGISTER D bits 5-0 and REGISTER C bits 7-0 define an address that points to the beginning of the contiguous row table.
= 11; (Linked list row table mode) -The CRT 9007 will address video memory according to the linked list row table format. The 14 address bits contained in REGISTER D bits 5-0 and REGISTER C bits 7-0 define the address at which the second row table entry and the first data row reside.

AUXILIARY ADDRESS REGISTER 1 (RE and RF)
This 16 bit write only register contains a 14 bit address. The 6 least significant bits of REGISTER F contain the upper order 6 bits of the 14 bit address and REGISTER E contains the 8 lower order bits of the 14 bit address. When the current data row equals the value programmed in SEQUENTIAL BREAKREGISTER 1 (R10) the remainder of the screen is addressed sequentially starting at the 14 bit address specified in this register. This sequential break overrides any row driven addressing mode used prior to the sequential break.

The 2 most significant bits of REGISTER F allow one to attach double height and/or double width characteristics to every data row in this sequentially addressed area in the following way:

For Double row buffer or attribute assemble mode REGISTER F Bits 7, 6
$=00$; single height single width
$=01$; single height double width
$=10$; even data rows are double height double width top half odd data rows are dpuble height double width bottom half
$=11$; odd data rows are double height double width top half even data rows are double height double width bottom half

For Single row buffer or repetitive memory addressing mode REGISTER F Bits 7, 6
$=00$; single height single width
$=01$; single height double width
$=10$; odd data rows are double height double width top half even data rows are double height double width bottom half
$=11$; even data rows are double height double width top half
odd data rows are double height double width bottom half

SEQUENTIAL BREAK REGISTER 1 (R10)

This 8 bit write only register defines the data row number in which a new sequential video address begins as specified by AUXILIARY ADDRESS REGISTER 1 (RE and RF). To disable the use of this break, the register should be loaded with a data row count greater than the number of displayable data rows on the screen.

DATA ROW START REGISTER (R11)

This 8 bit write only register defines the first data row number at which a page blank or smooth scroll operation will begin. Bit 6 of the CONTROL REGISTER determines if a page blank or smooth scroll operation will occur.

DATA ROW END/SEQUENTIAL BREAK REGISTER 2 (R12)

This 8 bit write only register has a dual function depending on the addressing mode used. For row driven addressing (contiguous or linked list as specified by the 2 most significant bits of the TABLE START REGISTER) this register
defines the data row number which ends either a page blank or smooth scroll operation. The row numerically one less than the row defined by this register is the last data row on which the page blank or smooth scroll will occur. To use the page blank feature to blank a portion of the screen that includes the last displayed data row, this register must be programmed to zero. For sequential addressing, this register can cause a break in the sequential addressing at the data row number specified and a new sequential addressing sequence begins at the address contained in AUXILIARY ADDRESS REGISTER 2.

AUXILIARY ADDRESS REGISTER 2 (R13 and R14)

This 16 bit write only register contains a 14 bit address. The 6 least significant bits of REGISTER 14 contain the upper order 6 bits of the 14 bit address and REGISTER 13 contains the 8 lower order bits of the 14 bit address. In the row driven addressing mode, this register is automatically loaded by the CRT 9007 with the current table address. The two most significant bits of REGISTER 14 specify one of four combinations of row attributes (for example double height
double width) on a row by row basis. Refer to the section entitled Double Height/Double Width operation for the meaning of these 2 bits. In the sequential addressing mode, this register can be loaded by the processor with a 14 bit address and a 2 bit row attributes field. The bit positions are identical for the row driven addressing mode. When the current data row equals the value programmed in DATAROW END/SEQUENTIAL BREAK REGISTER 2 (R12), the remainder of the screen is addressed sequentially starting at the location specified by the programmed 14 bit address. The 2 most significant bits of register 14 allow one to attach double height and or double width characteristics to every data row in this sequentially addressed area. The bit definitions take on the same meaning as the 2 most significant bits of AUXILIARY ADDRESS REGISTER 1 and affect the display in an identical manner.

START COMMAND (R15)

After all vital screen parameters are loaded, a START command can be initiated by addressing this dummy register location within the CRT 9007. A START command must be issued after the DMA mechanism is enabled (DMA CONTROL REGISTER bit 7).

RESET COMMAND (R16)

The CRT 9007 can be reset via software by addressing this dummy location. Activation of the RST input pin or initiating this software command will effect the CRT 9007 in an identical manner. The reset state of the CRT 9007 is defined as follows:

CRT 9007 outputs Reset state

VA13-0	High impedance Vigh impedance
VD7-0	High
HS	High
VS	High
CBLANK	Low
CURS	Low
VLT	High
DRB	Low
INT	Low
Pin 28	Low
Pin 29	Low
Pin 30	Low
Pin 31	Low

SMOOTH SCROLL OFFSET REGISTER (R17)

This register is loaded with the scan line offset number to allow a smooth scroll operation to occur. The offset register causes the scan line counter output of the CRT 9007 to start at the programmed value rather than zero for the data row that starts the smooth scroll interval. The start is specified in the DATA ROW START REGISTER (R11). Typically, this register is updated every frame and it ranges from zero (no offset) to a maximum of the programmed scan lines per data row (maximum offset). For example, if 12 scan lines per data row are programmed (scan line 0 to scan line 11) an offset of zero will cause an unscrolled display. An offset of one will cause a display starting at scan line 1 and ending at scan line 11 (eleven scan lines total). An offset of eleven will cause a display starting at scan line eleven.
The next scan line will be zero, starting the subsequent data row. To allow smooth scroll of double height rows, the programmed range of the register is from zero to twice the programmed scan lines per data row. Whenever the offset register if greater than the programmed scan lines per data row, bit 7 of the register must be set to a logic 1 (offset overflow). It must be set to a logic zero at all other times. The 6 bit offset value occupies bits 6 through 1. Bit 0 must always be programmed with a logic zero. By setting the offset overflow (bit 7) to a logic 1, it is possible to have the bottom half
of a double height data row stand alone in Single Row Buffer Mode by programming the scrolled data row as double height top half and loading R17 with the proper value.

VERTICAL CURSOR REGISTER (R18 or R38)

This 8 bit read/write register specifies the data row in which the cursor appears. To write into this register it is addressed as R18 and to read from this register it is addressed as R38.

HORIZONTAL CURSOR REGISTER (R19 or R39)

This 8 bit read/write register specifies the character position in which the cursor appears. To write into this register it is addressed as R19 and to read from this register it is addressed as R39.
It should be noted that the vertical and horizontal cursor is programmed in an $X-Y$ format with respect to the screen and not dependant upon a particular location in video memory. The cursor will remain stationary during all scroll operations.

INTERRUPT ENABLE REGISTER (R1A)

This 3 bit write only register allows each of the three CRT 9007 interrupt conditions to be individually enabled or disabled according to the following definition:
Bit 6 (Vertical retrace interrupt)-This bit, when set to a logic one, will cause the CRT 9007 to activate the INT signal when a vertical retrace (i.e., the start of the vertical blanking interval) begins.
Bit 5 (Light pen interrupt)—This bit, when set to a logic one, will cause the CRT 9007 to activate the INT signal when the LIGHT PEN REGISTER (R3B, R3C) captures an X-Y coordinate. This interrupt, which occurs at the beginning of vertical retrace, reflects the occurrence of a LPSTB input on the frame or field just painted. This interrupt need not be enabled when other CRT 9007 interrupt conditions are enabled since the STATUS REGISTER (R3A) will flag the occurance of a light pen update and servicing can be done off of other interrupts.
Bit 0 (Frame timer)—This bit, when set to a logic one, allows the CRT 9007 to activate the INT signal once every frame or field at a time when a potential smooth scroll update may occur. In this way the user can use the frame timer interrupt as both a real time clock and can service smooth scroll updates and other frame oriented operations by using the appropriate status bits. This interrupt will occur after the last row table entry is read by the CRT 9007. In single row buffer operation, this will occur one data row before the start of vertical retrace. In double row buffer operation, this will occur two data rows before the start of vertical retrace.

STATUS REGISTER (R3A)

This 5 bit register flags the various conditions that can potentially cause an interrupt regardless of whether the corresponding condition is enabled for interrupt. In this way some or all of the conditions can be reported to the processor via the STATUS REGISTER. If some of the conditions are enabled for interrupt, the processor, in response to an interrupt, simply has to read the STATUS REGISTER to determine the cause of the interrupt. The bit definition of the STATUS REGISTER is as follows:
Bit 7 (Interrupt Pending)—This bit will set when any other status bit, having its corresponding interrupt enabled, experiences a 0 to 1 transition. In this manner, when the processor services a potential CRT 9007 interrupt, it only has to test the interrupt pending bit to determine if the CRT 9007 caused the interrupt. If it did, the individual bits can then be tested to determine the details of the CRT 9007 interrupt. Any noninterruptable status change (corresponding interrupt enable bit reset to a logic 0) will not be reflected in the interrupt pending bit and must be polled by
the processor in order to provide service. The interrupt pending bit is reset when the status register is read. All other bits except Light Pen Update are reset to a logic 0 at the end of the vertical retrace interval. The light pen update bit is reset to a logic 0 when the HORIZONTAL LIGHT PEN REGISTER is read.
Bit 6 (Vertical Retrace)—A logic 1 indicates that a vertical retrace interval has begun.
Bit 5 (Light Pen Update)-A logic 1 indicates that a new coordinate has been strobed into the LIGHT PEN REGISTER. It is reset to a logic zero when the HORIZONTAL LIGHT PEN REGISTER is read. The light pen coordinates may have to be modified via software depending on light pen characteristics.
Bit 2 (odd/even)-For a normal video interlaced display, this bit is a logic 1 when the field about be painted is an odd field and is a logic zero when the field about be painted is an even field.

Bit 0 (Frame timer occurred)-This bit becomes a logic 1 either one or two data rows before the start of vertical retrace. Since this bit is set when the CRT has finished reading the row table for the frame or field just painted, it permits row table manipulation to start at the earliest possible time.

VERTICAL LIGHT PEN REGISTER (R3B)

This 8 bit read only register contains the vertical coordinate captured at the time the CRT 9007 received a light pen strobe signal (LPSTB).

HORIZONTAL LIGHT PEN REGISTER (R3C)

This 8 bit read only register contains the horizontal coordinate captured at the time the CRT 9007 received a light pen strobe signal. When a coordinate is captured, the appropriate status bit is set and further transitions on LPSTB are ignored until this register is read. The reading of this register will reset the light pen status bit in the STATUS REGISTER. The captured coordinate may have to be modified in software to allow for light pen response.

FIGURE 3: TYPICAL SYNC WAVEFORMS FOR INTERLACED AND NON-INTERLACED MODES

FIGURE 4: SERIAL SCAN LINE TIMING: NON INTERLACE OR SINGLE WIDTH CHARACTERS

FIGURE 5: SERIAL SCAN LINE TIMING: INTERLACE OR DOUBLE HEIGHT DATA ROWS

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range Storage Temperature Range

Lead Temperature (soldering, 10 sec.)
Positive Voltage on any Pin, with respect to ground

Negative Voltage on any Pin, with respect to ground
mage to the device. This is
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other
condition above those indicated in the operational sections of this specification is not implied.
not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
$\begin{aligned} & V_{1 \mathrm{~L}} \\ & V_{1 H 1} \\ & V_{1 H 2} \end{aligned}$	Input voltage Low High High	$\begin{aligned} & 2.0 \\ & 4.3 \\ & \hline \end{aligned}$		0.8	$\begin{aligned} & V \\ & V \\ & V \\ & \hline \end{aligned}$	all inputs except CCLK CCLK input; see note 4
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Output voltage } \\ & \text { Low } \\ & \text { High } \end{aligned}$	2.4		0.4	$\stackrel{V}{V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{L} 1} \\ & \mathrm{I}_{\mathrm{L} 2} \end{aligned}$	Input leakage current			$\begin{gathered} 10 \\ 50 \\ -300 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0 \leq V_{\mathbb{N}} \leqslant 3.5 \mathrm{~V} ; \text { excluding } \overline{C C L K} \\ & V_{\mathbb{I N}}=5 \mathrm{~V} ; \text { for } \mathrm{CCLK} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text {; for CCLK } \end{aligned}$
$\begin{aligned} & \mathrm{C}_{\text {IN1 }} \\ & \mathrm{C}_{\text {IN }} \end{aligned}$	Input capacitance		$\begin{aligned} & 10 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	all inputs except CCLK CCLK input
Icc	Power supply current		100	170	mA	

AC ELECTRICAL CHARACTERISTICS ${ }^{3} ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$

NOTE: 1. Timing measured from the 1.5 V level of the rising edge of CCLR to the 2.4 V (high) or 0.4 V (low) voltage level of the output unless otherwise noted.
2. Reference points are 2.4 V high and 0.4 V low
3. Loading on all outputs is 30 pF except where noted.
4. This level must be reached before the next falling edge of CCLK.

FIGURE 25: RECOMMENDED $\overline{\text { CCLK }}$ DRIVER CIRCUIT

FIGURE 22: CRT 9007 TIMING PARAMETERS: OUTPUT SIGNALS

CRT Video Attributes Controller VAC

FEATURES

On chip video shift registerMaximum shift register frequency CRT 9021A 30 MHz CRT 9021B 28.5 MHzOn chip attributes logic Reverse video Character blank Character blink Underline Full/half intensityFour modes of operation Wide graphics Thin graphics Character mode without underline Character mode with underlineOn Chip logic for double height/double width charactersAccepts scan line information in parallel or serial formatFour cursor modes dynamically selectable via 2
input pins
Underline
Blinking underline
Reverse video
Blinking reverse video
Programmable character blink rate

PIN CONFIGURATION
Programmable cursor blink rateOn chip data and attribute latches
+5 volt operationTTL compatible
MOS n-Channel silicon gate COPLAMOS ${ }^{\oplus}$ processCompatible with CRT 5037 VTAC®; CRT 9007 VPAC ${ }^{\text {™ }}$

GENERAL DESCRIPTION

The SMC CRT 9021 Video Attributes Controller (VAC) is an n-channel COPLAMOS MOS/LSI device containing Graphics logic, attributes logic, data and attributes latches, cursor control, and a high speed video shift register. The CRT 9021, a character generator ROM and a CRT controller such as the CRT 9007 provide all of the major circuitry for the display portion of a CRT video terminal.

The CRT 9021 serial video output may be connected directly to a CRT monitor's video input. The maximum video shift register frequency of 28.5 MHz or 30 MHz allows for CRT displays of up to 132 characters per data row.

The CRT 9021 attributes include: reverse video, underline, character blank, character blink, and full/ half intensity selection. In addition, when used in conjunction with theCRT 9007 VPAC ,'m the CRT 9021 will provide double height or double width characters.
Four programmable cursor modes are provided on the CRT 9021. They are: underline, blinking under-
line, reverse video character block, and blinking reverse video character block. When used in the serial scan line input mode, the cursor mode may be selected via two input pins. When used in the parallel scan line input mode, the cursor mode is a mask program option and is fixed at the time of manufacture.
Two graphics modes are provided. In the wide graphics mode, the CRT 9021 produces a graphic entity the size of the character block. The graphic entity contains eight parts, each of which is associated with one bit of the input byte, thereby providing 256 unique graphic symbols. The thin graphics mode enables the user to create thin line drawings and forms.
In both graphics modes, continuous horizontal and vertical lines may be drawn. Additional flexibility is provided by allowing the mask programming of the placement and dimensions of the blocks or lines within a character block. In the thin graphics mode, mask programming allows serrated horizontal or vertical lines.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{gathered} 1,28,27,26, \\ 25,24,23, \\ 22 \end{gathered}$	Data	D7-D0	In the character mode, the data on these inputs is passed through the Attributes logic into the 8 bit high speed video shift register. The binary information on D7 will be the first bit output after the LD/SH input goes low. In the thin or wide graphics mode these 8 inputs will individually control the on/off condition of the particular portion of the character block or line drawing. Figures 2 and 3 illustrate the wide and thin graphics modes respectively and their relationships to D7-D0
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Mode Select 0 Mode Select 1	$\begin{aligned} & \text { MS0 } \\ & \text { MS1 } \end{aligned}$	These 2 inputs define the four modes of operation of the CRT 9021 as follows: MS1, MSO $=00$; Wide graphics mode = 10; Thin graphics mode $=01$; Character mode without underline $=11$; Character mode with underline See section entitled Display Modes for details.
4	Reverse Video	REVID	When this input and Retrace Blank (RETBL) are both low, data from the Attributes and Graphics logic is presented directly to the video shift register. When this input is high and RETBL is low, the Attribute and Graphics logic will invert the data before presenting it to the video shift register.
5	Character blank	CHABL	When this input is high, the parallel inputs to the video shift register are all set low (or high depending on the state of REVID) thus providing a constant video level for the entire length of the character block.
6	Blink	BLINK	When this input is high and both the RETBL and CHABL inputs are low, the character will blink at the programmed character blink rate. Blinking is accomplished by causing the video to go to the background level during the "off" portion of the Character Blink cycle. This video level may be either the white or black level depending on state of REVID. The duty cycle for the character blink is 75/25 (on/ off). This input is ignored if it coincides with the CURSOR input and the cursor is formatted to blink.
7	Intensity In	INTIN	The INTIN input along with the INTOUT output provides a user controlled general purpose attribute. Data input to INTIN will appear at INTOUT with the same delay as that from any other attribute input to the serial video output (VIDEO). By using an external mixing circuit, it is possible to raise or lower the voltage level of the video output to produce such attributes as "half intensity" or "intensity".

DESCRIPTION OF PIN FUNCTIONS CONT'D

PIN NO.	NAME	SYMBOL	FUNCTION
8	Supply Voltage	$+5 \mathrm{~V}$	+5 volt power supply
9	Attribute Enable	ATTEN	When this input is high, the internal attribute latch is updated at the positive going edge of the LD/SH input with data appearing on the REVID, CHABL, MS1, MS0, BLINK and INTIN inputs. By selectively bringing this input high, the user will update the attribute only at specific character times; all subsequent characters will carry with them the attributes last updated thus allowing "field" or "embedded" attributes. When using a wide video memory where attribute bits are attached to every character, the internal attribute latch may be updated at each character by tieing this input high (thus allowing for "invisible" attributes)..
10	Intensity Out	INTOUT	This output is used in conjunction with the INTIN input to provide a three character pipeline delay to allow for general purpose attributes (such as intensity) to be implemented. See INTIN (pin 7).
11	Cursor	CURSOR	When this input is high and RETBL is low, the programmed cursor format will be displayed. When this input is high, and RETBL is high, the CRT 9021 enters the double width mode. See section entitled cursor formats for details.
12	Retrace Blank	RETBL	When this input is high, the parallel inputs to the video shift register are unconditionally cleared to all zeros and loaded on the next $\overline{\mathrm{LD}} / \mathrm{SH}$ pulse. This forces the VIDEO output to a low voltage level, independent of all attributes, for blanking the CRT during horizontal and vertical retrace time.
13	$\overline{\text { Load/Shift }}$	$\overline{\mathrm{LD}} / \mathrm{SH}$	The 8 bit video shift register parallel-in load or serial-out shift operation is established by the state of this input. When high, this input enables the shift register for serial shifting with each video dot clock pulse (VDC input). When low, the video shift register is parallel loaded on the next video dot clock pulse and all data and attributes are moved to the next position in the internal pipeline. In addition, input data and attributes are latched on the positive transition of $\overline{\mathrm{LD}} / \mathrm{SH}$.
14	Video	VIDEO	The Video output provides the serial dot stream to the CRT. Video is shifted out on the rising edge of the video dot clock VDC. The timing of the $\overline{\mathrm{LD}} / \mathrm{SH}$ input will determine the number of backfill dots. See figure 5 .
15	Video Dot Clock	VDC	This input clock controls the rate at which video is shifted out on the VIDEO output.
16	Scan line 3/Block Cursor	SL3/BKC	This input has two separate functions depending on the way scan line information is presented to the CRT 9021. Parallel scan line mode-This input is the most significant bit of the binary scan line row address. Serial scan line mode-This input controls the cursor's physical dimensions. If high the cursor will appear as a reverse video block (the entire character cell will be displayed in reverse video). If low, the cursor will appear as an underline on the scan line(s) programmed.
17	Scan line 2/Blink Cursor	SL2/BLC	This input has two separate functions depending on the way scan line information is presented to the CRT 9021. Parallel scan line mode-This input is the second most significant bit of the binary scan line row address. Serial scan line mode-This input if low, will cause the cursor to alternate between normal and reverse video at the programmed cursor blink rate. The duty cycle for the cursor blink is $50 / 50$ (on/off). If this input is high, the cursor will be non-blinking.
18	Scan Line 1/Scan Line Gate	SL1/\/SLG	This input has two separate functions depending on the way scan line information is presented to the CRT 9021. Parallel scan line mode-This input is the next to the least significant bit of the binary scan line row address. Serial scan line mode-This input will be low for 5 or $6 \overline{\mathrm{LD}} / \mathrm{SH}$ pulses to allow the scan line information to be serially shifted into the serial scan line shift register. If this signal is low for 7 or more $\overline{L D} /$ SH pulses, the CRT 9021 will assume the parallel input scan line row address mode.
19	Scan line 0/Scan Line data	SLO/SLD	This input has two separate functions depending on the way scan line information is presented to the CRT 9021. Refer to figure 6. Parallel scan line mode-This input is the least significant bit of the binary scan line row address. Serial scan line mode-This input will present the scan line information in serial form (least significant bit first) to the CRT 9021 and permits the proper scan line information to enter the serial scan line shift register during the LD/SH pulses framed by $\overline{\text { SLG (pin 18). }}$
20	Ground	GND	Ground
21	Vertical Sync	$\overline{\text { VSYNC }}$	This input is typically connected to the vertical sync output of the CRT controller and is used as the clock input for the two on-chip mask programmable blink rate dividers. The cursor blink rate (50/50 duty cycle) will always be twice the character blank rate ($75 / 25$ duty cycle). In addition, the internal attributes are reset when this input is low. The $\overline{V S Y N C}$ input is also used to determine the scan line mode (parallel or serial) used. See the section "Scan Line Input Modes".

ATTRIBUTES FUNCTION

Retrace Blank	-The RETBL input causes the VIDEO to go to the zero (black) level regardless of the state of all other inputs.		grammed to blink (not controlled by the BLINK input), the video alternates from normal to reverse video at
Reverse Video	-The REVID input causes inverted data to be loaded into the video shift		50% duty cycle. The cursor blink rate always overrides the character blink
	register.		rate when they both appear at the
Character Blank	-The CHABL input forces the video to go to the current background level as defined by Reverse Video.	Intensity (Half Intensity)	same character position. -The INTiN input and the INTOUT output allow an intensity (or half
Underline	-MS1, MS0 = 1,1 forces the video to go to the inverse of the background level for the scan line(s) programmed for underline.		intensity) attribute to be carried through the pipeline of the CRT 9021. An external mixer can be used to combine VIDEO and INTOUT to cre-
Blink	-The BLINK input will cause characters to blink by forcing the video to the background level 25% of the time and allowing the normal video for 75% of the time. When the cursor is pro-	Table 1 illustra attributes as a SOR and RET	ate the desired video level. See figure 8. he effect of the REVID, CHABL, UNDLN ction of the cursor format and the CURinputs.

TABLE 1: CRT 9021 ATTRIBUTE COMBINATIONS

CURSOR FORMAT	CRT 9021 INPUTS					VIDEO SHIFT REGISTER LOADED WITH:	
	RETBL	CURSOR	REVID	CHABL	UNDLN		
X	1	X	X	X	X	all zero's	
	0	0	0	0	0	data	
	0	0	0	0	1	One's for selected scan line(s); Data for all other scan lines.	
	0	0	0	1	X	All zero's	
	0	0	1	0	0	$\overline{\text { data }}$	
	0	0	1	0	1	Zero's for selected scan line(s); data for all other scan lines.	
	0	0	1	1	X	One's for all scan lines.	
	0	1	0	0	X^{\prime}	One's for selected scan line(s) for cursor; data for all other scan lines.	
UN	0	1	0	1	X	One's for selected scan line(s) for cursor; zero's for all other scan lines.	
UNDERLINE	0	1	1	0	X	Zero's for selected scan line(s) for cursor; Data for all other scan lines.	
	0	1	1	1	X^{\prime}	Zero's for selected scan line(s) for cursor; one's for all other scan lines.	
	0	1	0	0	X	One's for selected scan line(s) blinking; Data for all other scan lines.	
BLINKING ${ }^{3}$	0	1	0	1	X	One's for selected scan line(s) blinking; zero's for all other scan lines.	
UNDERLINE ${ }^{2}$	0	1	1	0	X	Zero's for selected scan line(s) blinking; Data for all other scan lines.	
	0	1	1	1	X	Zero's for selected scan line(s) blinking; one's for all other scan lines.	
	0	1	0	0	0	$\overline{\text { Data for all scan lines. }}$	
	0	1	0	0	1	Zero's for selected scan line(s) for underline; data for all other scan lines.	
REVID BLOCK	0	1	0	1	X	One's for all scan lines.	
	0	1	1	0	0	Data for all scan lines	
	0	1	1	0	1	One's for selected scan line(s) for underline; data for all other scan lines.	
	0	1	1	1	X	Zero's for all scan lines.	
$B^{B L I N K I N G}{ }^{3}$ REVID BLOCK	0	1	0	0	0	On Data for all scan lines.	Off Data for all scan lines.
	0	1	0	0	1	Zero's for selected scan line(s) for underline; Data for all other scan lines.	One's for selected scan line(s) for underline; Data for all other scan lines.
	0	1	0	1	X	One's for all scan lines.	Zero's for all scan lines.
	0	1	1	0	0	Data for all scan lines.	Data for all scan lines.
	0	1	1	0	1	One's for selected scan line(s); Data for all other scan lines.	Zero's for selected scan line(s); Data for all other scan lines.
	0	1	1	1	X	Zero's for all scan lines.	One's for all scan lines.

[^10]Inputs MS1 and MS0 select one of four display modes. All attributes except underline operate independent of the display mode used. Figures 8 a and 8 b illustrate a typical CRT 9021 configuration which operates in all display modes for both the parallel and serial scan line modes respectively.

MS1, MS0 $=00$	-Wide Graphics Mode. In this display mode, inputs D7-D0 define a graphics entity as illustrated in figure 2. Note that individual bits in D7-D0 will illuminate particular portions of the character block. Table 2 shows all programming ranges possible when defining the wide graphic boundaries. No underline is possible in this display mode.	MS1, MS0 = 01
MS1, MS0 $=10$	-Thin Graphics Mode. In this display mode, inputs D7-D0 define a graphic entity as illustrated in figure 3. Note that individual bits in D7-D0 will illuminate particular horizontal or vertical line segments within	MS1, MS0 $=11$

the character block. Table 3 shows all programming ranges possible when defining the thin graphics boundaries. No underline is possible in this display mode.
-Character Mode Without Underline. In this display mode, inputs D7-D0 go directly from the input latch to the video shift register via the Attributes and Graphics logic. This mode requires either a bit mapped system RAM (1 bit in RAM equals 1 pixal on the CRT) or an external character generator as shown in figures 8a and 8b.
-Character Mode With Underline. Same operation as MS1, MS0 $=01$ with the underline attribute appearing on the scan line(s) mask programmed.

FIGURE 2: WIDE GRAPHICS MODE FOR STANDARD CRT 9021

SL3-SL0 ROW \# C7 C6 C5 C4 C3 C2 C1 C0 BF BF o o o VERTICALHEIGHT HORIZONTALPOSITION												
0000	R0		D4				D0			R0-R		PROGRAMMABLE
0001	R1					1	D1			R6-P	R15	PROGRAMMABLE
0010	R2					1	D6			R0-P	R15*	PROGRAMMABLE
0011	R3	D7		D0		D6	D7			R0-P	R15*	PROGRAMMABLE
0100	R4											
0101	R5		D2		D3							
0110	R6					I		HOR	IZON	NTA	AL LENGTH	VERTICAL POSITION
0111	R7					1						
1000	R8			D1		I	D2			C7-	C3	PROGRAMMABLE
1001	R9					,	D3			C3-	BF	PROGRAMMABLE
1010	R10					1	D4			C7-	BF*	PROGRAMMABLE
1011	R11		D5				D5			C7-	BF*	PROGRAMMABLE
1100	R12											
1101	R13						D7 D		D4	D3	D2 $\mathrm{D}^{\text {1 }}$ D0	
1110	R14					,					D2 1	DATA INPUT ON D7-D0
1111	R15	-		-		-_」				These	e values are	fixed

FIGURE 3: THIN GRAPHICS MODE FOR STANDARD CRT 9021

Backfill is a mechanism that allows a character width of Method B greater than 8 dots and provides dot information (usually blanks) for all dot positions beyond 8. The character width is defined by the period of the $\overline{L D} / S H$ input. For the character modes, backfill is added to the tail end of the character by two methods which are mask programmable.
Method A - The backfill (BF) dots will be the same as the dot displayed in position C7.

- The backfill (BF) dots will be the same as the dot displayed in position C0.

For the wide graphics mode, the backfill dots will always be the same as the dot displayed in position C0 (method B) with no programmable option.

CURSOR FORMATS

Four cursor formats are possible with the CRT 9021. If the parallel scan line input mode is used, one of four cursor formats may be selected as a mask programmed option. If the serial scan line input mode is used, the cursor format is selected via input pins 16 and 17 (SL3/BKC, SL2/BLC). See Table 5. The four cursor modes are as follows:
$\begin{array}{ll}\text { Underline } & \begin{array}{l}\text { - } \\ \text { underline. The position and width } \\ \text { und } \\ \text { of the cursor underline is mask }\end{array} \\ \text { programmed. }\end{array}$ Block video block (The entire character

Blinking Reverse - The cursor will appear as a reverse Video Block video block and the entire block
cell will be displayed in reverse video). (character plus background) will alternate between normal and reverse video at the masked programmed cursor blink rate.

Scan Line Input Mode	Pin 17	Pin 16	Cursor Function
Serial	1	0	Underline Reverse Video Block Blinking Underline Blinking Reverse Video Block
Parallel	0	0	1
X	X	Mask programmable Only	

TABLE 5: CURSOR FORMATS

DOUBLE WIDTH MODE

In order to display double width characters, video must be shifted out at half frequency and the video shift register must receive new information (parallel load) every other $\overline{\mathrm{LD}} / \mathrm{SH}$ input pulse. In order to divide the video dot clock (VDC) and the LD/SH pulse internally at the proper time, the cursor input should be pulsed during RETBL prior to the scan line to be displayed as double width. The CURSOR input must remain low for a minimum of $1 \mathrm{LD} /$ SH period from the leading edge of RETBL. The CURSOR input can stay high for the entire RETBL time but should not extend into active video. If it does, a cursor will be displayed. It is assumed that the CRT con-
troller knows when a particular scan line should be double width and it should activate the CURSOR in the manner just described. Double height/double width characters can also be displayed if the scan line count is incremented by the CRT controller every other scan line. With respect to the CRT 9021, no distinction between double width and double height display is necessary. Figure 4 illustrated timing for both single and double width modes. The CRT 9007, which supports double height double width characters, will produce the CURSOR signal as required by the CRT 9021 with no additional hardware.

SCAN LINE INPUT MODES

Scan line information can be introduced into the CRT 9021 in parallel format or serial format. Table 6 illustrates the pin definition as a function of the scan line input mode. The CRT 9021 will automatically recognize the proper scan line mode by observing the activity on pin 18. In parallel mode, this input will be stable for at least 1 scan line and in serial mode this input will remain low for about 5 or $6 \overline{\mathrm{LD}} / \mathrm{SH}$ periods. If pin 18 goes active low for less than seven but more than two continuous $\overline{\mathrm{LD}} / \mathrm{SH}$ periods during the last scan line that has an active low on the VSYNC input, the serial mode will be locked in for the next field. The parallel scan line input
mode will be selected for the next field if the following two conditions occur during VSYNC low time. First, at least one positive transition must occur on pin 18 and second, pin 18 must be low for seven or more LD/SH periods. Refer to figure 7 for timing details.

Scan Line Input Mode	CRT 9021 Pin Number			
	19	18	17	16
Serial	SLD	$\overline{\text { SLG }}$	BLC	BKC
Parallel	SL0	SL1	SL2	SL3

TABLE 6: PIN DEFINITION FOR PARALLEL AND SERIAL SCAN LINE MODES

PROGRAM OPTIONS

The CRT 9021 has a variety of mask programmed options. Tables 2 and 3 illustrate the range of these options for the wide and thin graphics modes respectively. Table 4 illus-
trates the range of the miscellaneous mask programmed options. In addition, Tables 2, 3 and 4 show the mask programmed options for the standard CRT 9021.

1-Attributes include MSO , MSI, BLINK, CHABL, INTENSITY, REVID

FIGURE 4: CRT 9021 FUNCTIONAL I/O TIMING

MAXIMUM GUARANTEED RATINGS*

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS INPUT VOLTAGE LEVELS Low Level $\mathrm{V}_{\text {IL }}$ Low Level V_{I}. High Level V_{IH} High Level V_{1+2}	$\begin{aligned} & 2.0 \\ & 4.3 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.65 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	All inputs except VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$ For VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$ inputs All inputs except VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$ For VDC, $\overline{\text { LD }} / \mathrm{SH}$ input
OUTPUT VOLTAGE LEVELS Low Level V_{o} High Level $\mathrm{V}_{\text {OH }}$	2.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{\mathrm{OL}}=0.4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \end{aligned}$
INPUT LEAKAGE CURRENT Leakage $\mathrm{I}_{\mathrm{L} 1}$ Leakage $\mathrm{I}_{\mathrm{L} 2}$			$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$0 \leqslant \mathrm{~V}_{\text {IN }}<\mathrm{V}_{\text {cc }}$; excluding VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$ $0 \leqslant V_{\text {IN }} \leqslant V_{\text {cc }}$; for VDC $\overline{L D} /$ SH
INPUT CAPACITANCE $\mathrm{C}_{\text {IN }}$ $\mathrm{C}_{\mathbb{N} 2}$ $\mathrm{C}_{\mathbb{N} 3}$		$\begin{aligned} & 10 \\ & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{pf} \\ & \mathrm{pf} \\ & \mathrm{pf} \end{aligned}$	Excluding VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$ For $\overline{L D} / \mathrm{SH}$ For VDC
POWER SUPPLY CURRENT $I_{c c}$		50		mA	

AC CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
VDC $1 / t_{\text {cr } 1}$ VDC frequency $1_{\text {ckL }}$ VDC low $\mathrm{t}_{\mathrm{CKH}}$ VDC high $\mathrm{t}_{\mathrm{CKR}} \mathrm{VDC}$ rise time $\mathrm{t}_{\text {CKF }}$ VDC fall time	$\begin{gathered} 10.0 \\ 10.0 \\ 10 \\ 10 \end{gathered}$		$\begin{array}{r} 30.0 \\ 28.5 \\ \\ 10 \\ 10 \\ \hline \end{array}$	$\begin{gathered} \mathrm{MHZ} \\ \mathrm{MHZ} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{gathered}$	CRT 9021A; see note 1 CRT 9021B Measured from 10% to 90% points Measured from 90% to 10% points
$\begin{gathered} \hline \overline{\mathrm{LD} / \mathrm{SH}} \\ \mathrm{t}_{\mathrm{cy} 2} \\ t_{\mathrm{s} 1} \\ t_{\mathrm{H} 1} \\ \hline \end{gathered}$	$\begin{gathered} 290 \\ 315 \\ 7 \\ 0 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	CRT 9021A; see note 1 CRT 9021B
INPUT SETUP AND HOLD $\mathrm{t}_{\mathrm{s} 2}$ $t_{\mathrm{H} 2}$	$\begin{gathered} 35 \\ 0 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
MISCELLANEOUS TIMING $t_{\text {PD }}$ $t_{\text {ow }}$	$\mathrm{t}_{\mathrm{cY} 2}$		35	ns	$C_{L}=15 \mathrm{pf}$

1-These parameters are Preliminary.

FIGURE 5: CRT 9021 INPUT/OUTPUT TIMING

FIGURE 6: SERIAL SCAN LINE MODE TIMING

FIGURE 7: SERIAL/PARALLEL SCAN LINE MODE SELECTION TIMING

TABLE 2
WIDE GRAPHICS MASK PROGRAMMING OPTIONS

OPTION	CHOICES	STANDARD CRT 9021
Height of graphic block*	any scan line(s)	R0, R1, R2
D7 and D3	any scan line(s)	R3, R4, R5
D6 and D2	any scan line(s)	R6, R7, R8
D5 and D1	any scan line(s)	R9, R10, R11, R12, R13, R14, R15
D4 and D0	any number of dots 0 to 8	C7, C6, C5, C4
Width of D7, D6, D5, D4**	any number of dots 0 to 8	C3, C2, C1, C0, BF

* Any graphic block pair can be removed by programming for zero scan lines.
** Total number of dots for both must be equal to the total dots per character with no overlap.

TABLE 3
THIN GRAPHICS MASK PROGRAMMING OPTIONS

OPTION	CHOICES	STANDARD CRT 9021
Backfill	C1 or C0	C0
Horizontal position for		
$\begin{aligned} & \text { D2 and D3 } \\ & \text { D4 } \\ & \text { D5 } \\ & \hline \end{aligned}$	any scan line(s) R0-R15 any scan line(s) R0-R15 any scan line(s) R0-R15	$\begin{aligned} & \hline \text { R5 } \\ & \text { R0 } \\ & \text { R11 } \\ & \hline \end{aligned}$
Horizontal length for		
$\begin{aligned} & \mathrm{D}^{2} \\ & \mathrm{D}^{2} \end{aligned}$	any continuous dots $\mathrm{C} 7-\mathrm{CO}, \mathrm{BF}$ all dots not covered by D2	$\begin{aligned} & \mathrm{C} 7-\mathrm{C} 3 \\ & \mathrm{C} 3-\mathrm{BF} \end{aligned}$
Blanked dots for serrated horizontal lines		
$\begin{aligned} & \text { D2 } \\ & \text { D3 } \\ & \text { D4 and D5 } \end{aligned}$	any dot(s) $\mathrm{C} 7-\mathrm{CO}, \mathrm{BF}$ any $\operatorname{dot}(\mathrm{s}) \mathrm{C} 7-\mathrm{CO}, \mathrm{BF}$ any $\operatorname{dot}(\mathrm{s}) \mathrm{C} 7-\mathrm{CO}, \mathrm{BF}$	none none none
Vertical position for		
$\begin{aligned} & \text { D0 and D1 } \\ & \text { D6' } \\ & \text { D7' } \end{aligned}$	any $\operatorname{dot}(\mathrm{s}) \mathrm{C} 7-\mathrm{CO}, \mathrm{BF}$ any $\operatorname{dot}(\mathrm{s}) \mathrm{C} 6-\mathrm{CO}, \mathrm{BF}$ any dot(s) C7-C0	$\begin{aligned} & \mathrm{C} 3 \\ & \mathrm{BF} \\ & \mathrm{C} 7 \end{aligned}$
Vertical length for		
$\begin{aligned} & \text { D0 } \\ & \text { D1 } \\ & \text { D6 } \\ & \text { D7 } \end{aligned}$	any scan line(s) all scan lines not used by D0 no choice; always R0-R15 no choice; always R0-R15	R0 to R5 R6 to R15 R0 to R15 R0 to R15

1-D7 must always come before D6 with no overlap; otherwise D6 is lost.
2-D2 and D3 must always overlap by one and only one dot.

TABLE 4
MISCELLANEOUS MASK PROGRAMMING OPTIONS

OPTION	CHOICES	STANDARD CRT 9021
Backfill in character mode	C7 or C0	C7
Character blink rate (division of VSYNC frequency)	8 to 60; divisible by 4 $(7.5 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz})^{1}$	$\begin{gathered} 32 \\ (1.875 \mathrm{~Hz})^{1} \end{gathered}$
Cursor blink rate ${ }^{2}$	Twice the character blink rate	$\begin{gathered} 16 \\ (3.75 \mathrm{~Hz})^{1} \end{gathered}$
character underline position	any scan line(s) R0-R15	R11
cursor underline ${ }^{3}$	any scan line(s) R0-R15	not applicable
cursor format ${ }^{4}$	underline Blinking underline Reverse video block Blinking reverse video block	Blinking reverse video block

[^11]

Video Terminal Logic Controller

FEATURES
\square Built-in High Frequency ($4-14 \mathrm{MHz}$) Oscillator
Built-in Video Shift Register
Built-in Character Generator
\square Bi-Directional Smooth Scroll Capability
Visual Attributes Include Reverse Video, Intensity Control, Underline and Character Blank \square Separate HSYNC, VSYNC and VIDEO Outputs
Composite Sync (RS170 Compatible) Output
Absolute (RAM address) Cursor Addressing
\square MASK Programmable Video Parameters:
Dots Per Character Block (6-8)
Raster Scans Per Data Row (8-12)
Characters Per Data Row (32, 48, 64, 80)
Data Rows Per Page ($8,10,12,16,20,24$ or 25)
Horizontal Blanking (8-64Characters)
Horizontal Sync Front Porch (0-7 Characters)
Horizontal Sync Duration (1-64 Characters)
Horizontal Sync Polarity
Two Values of Vertical Blanking
Two Values of Vertical Sync Front Porch ($0-63$ Scan Lines)
Two Values of Vertical Sync Duration (1-16 Scan Lines)
Vertical Sync Polarity
Internal 128 Character 5x8 Dot Font Character/Cursor Underline Position Scan Row and Column for Thin Graphics Entity Segments
Scan Rows and Columns for Wide Graphics Entity Elements
Software Enabled Non-Scrolling 25th Data Row Available with 25 Data Row/Page Display
\square Non-Interlace Display Format
\square Separate Display Memory Bus Eliminates Contention

PIN CONFIGURATION

DA8 0	40	DA7
DA9 2	39	DA6
DA10 0	38	DA5
GND 4	37	DA4
XTAL2 5	36] DA3
XTAL1 06	35	DA2
VIDEO 07	34	DA1
INTOUT 88	33	DAO
DWR 0	32	DB7
DDO 010	31	DB6
DD1 11	30	DB5
DD2 012	29	DB4
DD3 13	28	DB3
DD4 14	27	DB2
DD5 15	26	DB1
DD6 16	25	\bigcirc DB0
DD7 417	24	A / \bar{D}
HSYNC 18	23	**
VSYNC 419	22	**
CSYN 20	21	VCC

CRT 9028	CRT 9128
Pin 23	$\overline{\mathrm{RD}}$
Pin 22	$\overline{\mathrm{WR}}$

ProblemsFill (Erase) Screen CapabilityStandard 8-bit Data Bus Microprocessor InterfaceWide Graphics with Six Independently Addressable Segments Per Character SpaceThin Graphics with Four Independently Addressable Segments Per Character SpaceSingle +5 V SupplyCOPLAMOS ${ }^{\text {® }} \mathrm{n}$-Channel Silicon Gate TechnologyTTL Compatible

GENERAL DESCRIPTION

The CRT 9028 VTLC and CRT 9128 VTLC are mask programmable 40 pin COPLAMOS ${ }^{\circledR}$ n-channel MOS/LSI Video Display Controller Chips that combine video timing, video attributes, alphanumeric and graphics generation, smooth scroll and screen buffer interface functions.

The VTLC incorporates many of the features (previously requiring a number of external components) required in building a low cost yet versatile display interface. An internal mask programmable 128 character font provides for a full ASCII character set. Wide graphics allow plotting and graphing capabilities while thin graphics and visual attributes can make the display of forms straight-forward.

Two pinout configurations enhance the versatility of the VTLC. The CRT 9028 controls data flow over the processor system data bus through separate read ($\overline{\mathrm{RD}}$) and write ($\overline{\mathrm{WR}}$) strobes for use with the $8085,8051, Z 80^{\circledR}, 8086$, and
similar microprocessors or microcomputers. The CRT 9128 regulates the data flow with a data strobe ($\overline{\mathrm{DS}}$) and read/ write (R / \bar{W}) enable signals for use with the $6500, \mathrm{Z8}^{\text {M }}, 68000$ and similar microprocessors or microcomputers.

The VTLC provides two independent data buses; one bus that interfaces to the processor and one that interfaces to the display memory. Data is transferred to the display memory from the processor through the VTLC eliminating contention problems and the need for a separate row buffer.

The VTLC has an internal crystal oscillator requiring only an external crystal to operate. Masked constants for critical video timing simplify programming, operation and improve reliability. A separate non-scrolling status line (enabled or disabled by the processor) is available for displaying system status.

FIGURE 1. VTLC FUNCTIONAL BLOCK DIAGRAM
DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	1/0	NAME	DESCRIPTION
3-1, 40-33	DA10-0	0	Display Address	11 bit address bus to display memory
4	GND		Ground	Ground Connection
5,6	XTAL2,1	1	Crystal 2,1	External Crystal An external TTL level clock may be used to drive XTAL. 1 (in which case XTAL2 is left floating).
7	$\overline{\text { VIDEO }}$	0	$\overline{\text { Video Output }}$	This output is a digital TTL waveform used to develop the VIDEO and composite VIDEO signals to the monitor. The polarity of this signal is: \quad HIGH $=$ BLACK LOW = WHITE
8	INTOUT	0	Intensity Output	This pin is the intensity level modification attribute bit (synchronized with the video data output).
9	DWR	0	$\begin{aligned} & \hline \overline{\text { Display }} \\ & \hline \text { Write } \end{aligned}$	Write strobe to display memory
17-10	DD7-0	1/O	Display Data	8-bit bidirectional data bus to display memory
18	HSYNC	0	Horizontal Sync	Horizontal sync signal to monitor
19	VSYNC	0	Vertical Sync	Vertical sync signal to monitor
20	CSYNC	0	Composite Sync	This output is used to generate an RS170 compatible composite VIDEO signal for output to a composite VIDEO monitor.
21	$V_{c c}$		Power	5.0 V power connection
CRT 9028				
22	$\overline{W R}$	1	Write Strobe	Causes data on the microprocessor data bus to be strobed into the VTLC
23	$\overline{\mathrm{RD}}$	1	Read Strobe	Causes data from the VTLC to be strobed onto the microprocessor data bus
CRT 9128				
22	R/W	I	Read/Write Select	Determines whether the processor is reading data from or writing data into the VTLC (high for read, low for write)
23	$\overline{\text { DS }}$	1	Data Strobe	Causes data to be strobed into or out of the VTLC from the microprocessor data bus depending on the state of the R/W signal
24	A/ \bar{D}	1	Register Select	The state of this input pin will determine whether the data is being read from, or written to, the address or status register, or a data register.
32-25	DB7-0	I/O	Processor Data Bus	8-bit bi-directional processor data bus

DESCRIPTION OF OPERATION*

THE VTLC INTERNAL REGISTERS CRT 9028

Addressing of the internal VTLC data registers of the CRT 9028 is accomplished through the use of the A / \bar{D} select input qualified by the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes.

A / \bar{D}	$\overline{R D}$	$\overline{W R}$	REGISTER OPERATION
0	1	0	WRITE TO DATA REGISTER
0	0	1	READ DATA REGISTER
1	1	0	WRITE TO ADDRESS REGISTER
1	0	1	READ STATUS REGISTER

CRT 9128

Addressing of the internal VTLC data registers of the CRT 9128 is accomplished through use of the A / \bar{D} and R / \bar{W} select inputs qualified by the $\overline{\mathrm{DS}}$ strobe.

A / \bar{D}	$\overline{\mathrm{DS}}$	R / \bar{W}	REGISTER OPERATION
0	0	0	WRITE TO DATA REGISTER
0	0	1	READ DATA REGISTER
1	0	0	WRITE TO ADDRESS REGISTER
1	0	1	READ STATUS REGISTER

The contents of the seven processor programmable registers located in the upper left hand side of the Functional Block Diagram of figure 1 indicate the memory locations from which screen data is to be fetched and displayed as well as the selected modes of display operation. These registers are addressed indirectly via the Address Register.

To access one of the seven eight-bit registers, the processor must first load the Address Register with the threebit address of the selected data register. The next read or write to a data register will then cause the data register pointed to by the Address Register to be accessed. The Line A / \bar{D} controls whether writing is occurring to the Address Register or to a data register. When a read operation is performed, A / \bar{D} controls access to either the Status Register or to the data register selected by the Address Register.

REGISTER DESCRIPTION

ADDRESS REGISTER

Writing a byte to the ADDRESS register will select the specified register the next time the processor writes to or reads the VTLC data registers. The data register addresses are as follows:

STATUS REGISTER

When reading the STATUS register, the DONE bit (DB7 of STATUS Register) will represent the current status of the

CHARACTER register. This bit is used to synchronize data transfers between the processor and the VTLC. The VTLC will set the DONE bit to a logic one after completing a byte transfer command or a FILL operation. The DONE bit is set to a logic zero by reading from, or writing to, the CHARACTER register. The processor must wait until the DONE bit is 1 before attempting to change the CURSOR ADDRESS, in order to write a character to, or read a character from, the CHARACTER register.

STATUS REGISTER

| DB7 | | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DONE | \times | \times | \times | \times | \times | X | X | |

DONE $=1$ signifies that external processor is allowed to access cursor ADDRESS and/or CHARACTER registers.
DONE $=0$ signifies that external processor must wait until VTLC completes transfer of data between display memory and CHARACTER register.

DATA REGISTERS

FILADD (Fill Address) This register contains the RAM address of the character following the last address to be filled. Writing to this register will enable the VTLC "fill" circuitry. The FILL operation will then be triggered by the next processor write to the CHARACTER register. The FILL operation will write the character in the CHARACTER register to every location in display memory starting with the address specified in the CURLO and CURHI registers through the location preceeding the address specified in the FILADD register. The cursor position is not changed after a FILL operation. Note that the address bits DA3-DA0 are internally forced to 0 forcing the FILADD address to be $00,16,32$, etc. to 1920. The CURLO and CURHI registers will not be changed by this operation. Writing to the CHARACTER register will cause the VTLC to reset DB7 of the STATUS register to "0". Bit 7 will be set to 1 after the VTLC has filled the last memory location specified.

> FILADD REGISTER

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
$X \quad$ DA10 DA9 DA8 DA7 DA6 DA5 DA4

ADDRESS						TYPE	REGISTER		
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
X	X	X	X	0	1	1	0	Write	CHIP RESET
X	X	X	X	1	0	0	0	Write	TOSADD
X	X	X	X	1	0	0	1	Write	CURLO
X	X	X	X	1	0	1	0	Write	CURHI
X	X	X	X	1	0	1	1	Write	FILADD
X	X	X	X	1	1	0	0	Write	ATTDAT
X	X	X	X	1	1	0	1	RD/WR	CHARACTER
X	X	X	X	1	1	1	0	Write	MODE REGISTER

($\mathrm{X}=$ don't care)

TOSADD (Top of Screen Address) This register contains the RAM address of the first character displayed at the top of the video monitor screen. In addition, this register controls selection of either of two mask programmable vertical scan rates.

Note that address bits DA3-DAO are internally forced to 0 forcing the first address at the beginning of each row to be 00, 16, 32, etc. to 1920.

The most significant bit of this register (TIM) is used to select between the two mask programmed sets of vertical retrace parameters (scan A and scan B). This allows software selection of, for example, $50 / 60 \mathrm{HZ}$.

$$
\begin{aligned}
& \mathrm{TIM}=0 \text { enable raster scan } \mathrm{A}(60 \mathrm{~Hz}) \\
& \mathrm{TIM}=1 \text { enable raster scan } \mathrm{B}(50 \mathrm{~Hz})
\end{aligned}
$$

CURLO (Cursor Low) This register contains the eight lower order address bits of the RAM cursor address. All FILL screen and character transfer operations begin at the memory location pointed to by this address.

CURLO REGISTER

| DB7 | DB6 | DB5 DB4 DB3 DB2 DB1 DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DA7 | DA6 | DA5 DA4 DA3 DA2 DA1 DA0 |

CURHI (Cursor High) This register contains the three higher address bits of the RAM cursor address (DA10, DA9, DA8). All FILL screen and character transfer operations begin at the memory location pointed to by this address. In addition, this register contains the Smooth Scroll Offset Values SS3-SS0 which determine the number of scan lines that the data is shifted on the screen. The MSB of this register (SLE-status line enable) is the enable for the non-scrolling status line (this feature is available only on a part programmed for 25 data rows).

CURHI REGISTER

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
SLE SS3 SS2 SS1 SS0 DA10 DA9 DA8
SLE $=1$ enables non-scrolling 25th status line
SLE $=0$ disables and blanks nonscrolling status line

SS3-SS0 Smooth Scroll Offset Value
ATTDAT (Attribute Data) This register specifies the visual attributes of the video data and the cursor presentation. The visual attributes specified in the ATTDAT register (DB3-DB0) are enabled or disabled by a TAG bit that is appended to the ASCII character written to the CHARACTER register. Every character on the screen with its TAG bit set is displayed with the same attribute.

Changing the Attribute register will change the attribute of every "tagged" character on the screen. The functions of the remaining bits in the ATTDAT register are not affected by the display character's TAG bit.

There are two display modes, "alphanumerics" and "graphics". In the alphanumeric mode, visual attributes may be selected by the TAG bit. In the graphics mode, a tagged character will be a normal alphanumeric character. This allows a screen to display a mix of graphic and alphanumeric characters or visually attributed alphanumeric characters. The display variations of the alphanumerics and graphics modes are summarized by the following:

ATTDAT REGISTER

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

DB7	MODE SELECT	$\begin{aligned} \text { DB7 } & =1 \\ \text { DB7 } & =0\end{aligned}$	enables graphics mode display (No attributes allowed) enables alpha mode display
DB6	CURSOR SUPPRESS	DB6 $=1$ DB6 $=0$	inhibits VIDEO display at cursor time by forcing the VIDEO output to background level during cursor display time enables VIDEO display at cursor time Note: a blinking cursor display can be achieved by toggling this bit under processor control.
DB5	CURSOR DISPLAY	$\begin{aligned} \mathrm{DB} 5 & =1 \\ \mathrm{DB5} & =0 \end{aligned}$	enables underline cursor display enables block cursor display Note: An underline cursor in an underline character attribute field will be dashed.
DB4	SCREEN	$D B 4=1$ $\mathrm{DB4}=0$	for white screen and black characters for black screen and white characters Note: this is a screen attribute (versus character attribute) bit and sets the default Video background level.

MODE The AUTO INCREMENT bit in this register specifies whether or not the display memory character address is automatically incremented by the VTLC after every read/write of the CHARACTER register. Note: The visible cursor position is not affected.

MODE REGISTER

| DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AUTO | X | X | X | X | X | X | X | INC

DB7 AUTO \quad DB7 $=1$ to enable INCREMENT automatic character address
The RAM address is incremented after the VTLC completes a display memory access initiated by a processor to RAM or RAM to processor character transfer.

DB7 $=0$ to disable automatic increment

CHARACTER This register allows access to the display memory for both byte transfers and FILL operations. In BYTE Transfer Write Mode, the processor first writes a character to this
register. The VTLC takes that character and stores it in the display memory in the location specified by the CURLO and CURHI registers. In Byte Transfer Read Mode, the processor reads this register causing the VTLC to fetch the character whose address is specified in the CURLO and CURHI registers from the display memory and place it in the CHARACTER register. The processor then reads the character and initiates another fetch from memory cycle. In FILL mode, writing a byte to this register will initiate a FILL operation. All VTLC/memory data transfers take place during horizontal and vertical video retrace blank time.

CHARACTER REGISTER
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
TAG BIT + 7 BIT ASCII CHARACTER

CHARACTER SET

Using the DB7-DBO data bus I/O pins and the MOD SEL bit in the ATTDAT register, the user can address 128 characters, a six segment "wide graphics" and a four segment "thin graphics" entity. Included in the 128 mask programmable characters can be the 96 standard ASCII characters and 32 special characters.

A. (MODE SEL = 1) GRAPHICS MODE

This mode allows an intermix of alpha-numeric and graphics characters. No attributes are permitted in this mode. If TAG $\mathrm{BIT}=1$, the character will be an alphanumeric. If TAG BIT $=0$, the character will be a graphics character.

CHARACTER REGISTER

ALPHANUMERIC: TAG BIT = 1

DB7	DB6	DB5	DB4	DB3	DB2	DB1
TAG $=1$	DB0					

DB6-DB0 Specify character

CHARACTER REGISTER

GRAPHICS: TAG BIT $=0$
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 TAG $=0$ W/T SEG6 SEG5 SEG4 SEG3 SEG2 SEG1

DB6 $\mathrm{W} / \mathrm{T}=1$ specifies a wide graphics character
$\mathrm{W} / \mathrm{T}=0$ specifies a thin graphics character

WIDE GRAPHICS ONLY:

DB5-4 SEG6-5 = 1 to turn on graphics entity segment
SEG6-5 $=0$ to turn off graphics entity segment

Note that DB5 and DB4 have no meaning in the thin graphics entity.

WIDE AND THIN GRAPHICS:
DB3-0 SEG4-1 if any bit $=1$, corresponding graphics entity segment ON

It any bit $=0$, corresponding graphics entity segment OFF

B. (MOD SEL $=0)$ ALPHA-NUMERICS MODE

This mode allows display of alpha-numeric characters with attributes. If DB7 is set to a logical one, the attribute(s) specified in the ATTDAT register will be enabled for that character. if TAG BIT is cleared, attributes will not be enabled for that character.

CHARACTER REGISTER

DB7	DB6	DB5	DB4	DB3	DB2	DB1 \quad DB0
TAG	H	ALPHA-NUMERIC	CHARACTER $\rightarrow-1$			

DB7 $=1$ to enable attribute(s) for character. DB7 $=0$ to disable attribute(s) for character.

DB6-DB0 Specify character

SEGMENT	SEGMENT
6	3
SEGMENT	SEGMENT
5	2
SEGMENT	
4	SEGMENT 2
WIDE GRAPHICS ENTITY	

NOTE: scan line and column of segment locations are mask programmable.

NOTE: scan line and column of segment
locations are mask programmable.

DESCRIPTION OF SYSTEM OPERATION

The VTLC circuitry provides two control functions. One function interprets and controls data from the system processor interface through the data bus DB7-DB0 as shown in the Processor Timing of figure 3. The other function generates and refreshes the video image on the screen through
the DD7-DD0 data bus as shown in the Display Memory Timing of figure 2. Because the system data bus is isolated from the display data bus, the VTLC maintains complete control over access to display memory. All data flow between display RAM and the processor or the VTLC takes place through the VTLC. Refer to the VTLC Display Memory Access Timing of figure 7.

DISPLAY MEMORY ACCESS

Processor/display memory access is accomplished through the CHARACTER register of the VTLC. All processor transfers to or from the CHARACTER register take place only when the DONE bit is high. The DONE bit is used to synchronize data transfers between the VTLC and the processor as shown in the Typical Processor To Display Memory Transfer of figure 6. When the processor needs to store a byte of data in the display memory, it will write the byte to the CHARACTER register of the VTLC. The VTLC will immediately reset the DONE bit indicating that the transfer hardware is busy. At the next blanked Video time, the VTLC will store the byte in the display memory, increment the character address, (if auto increment is enabled) and set the DONE bit. When the processor needs to read a byte of data from the display memory, it will read the CHARACTER register. The VTLC will fetch the desired byte from the display memory during the next blanked VIDEO time, increment the character address (if enabled), and set the DONE bit. When the processor detects that the DONE bit is set, it will read the CHARACTER register to get the data byte from the VTLC. This read will reset the DONE bit and cause the VTLC to fetch the next byte of data from the memory.

If auto increment is not enabled, the processor must set the cursor address in the CURLO and CURHI register to the address of the memory location being read from, or written into, before every access to the CHARACTER register.

It should be noted that Auto Increment does not affect the visible cursor location. If auto-increment is enabled, the current character location will equal the cursor position only for the first character transfered following an update of the CURLO and CURHI registers. Note that the DONE bit must be high before attempting to update the cursor registers because the loading of the cursor registers will reset the character position counters to the cursor position.

SMOOTH SCROLL

The VTLC may be programmed to do either "jump" or "smooth" scrolling. Jump scrolling moves the data up or down the monitor screen one data row at a time. Smooth scrolling moves the data up the monitor screen one scan line at a time. The number of scan lines and the rate they move up the screen is under processor control.

Smooth scroll is controlled through manipulation of the SS3-SS0 bits of the CURHI register. These bits represent the binary address of the first scan line of the first data row displayed on the monitor screen (the data row whose beginning address is in the TOSADD register). When the value represented by these bits is incremented, the video data on the monitor screen moves up by the same number of scan lines. After the address of the last scan line of the data row is loaded into the CURHI register and the VIDEO data has moved up the last scan line of the data row, the processor resets the SS3-SS0 address to point to scan line

0 and does a jump scroll. Jump scroll is accomplished by incrementing the RAM address in the TOSADD register by a data row length (so that it points to the address of the first character of the new top data row on the monitor).

When programmed for a data row of 80 characters/data row display (1920 data words), for example, the display RAM contains 25 actual rows of data (2000 RAM locations). If the smooth scroll offset equals zero, the VTLC will display the 1919 RAM locations following the top of screen address when displaying data. The first data row is partially scrolled off the screen and the 25th data row is scrolled onto the screen when the smooth scroll offset is incremented. The VTLC will now display the 1999 RAM locations following the top of screen address (wrapping to 0 after address 1999). After the VTLC does a jump scroll, the processor will program it to erase the line just scrolled off the screen (preparing it to be scrolled onto the screen). This line now becomes the non-displayed 25th data row.

NON-SCROLLING STATUS LINE

The non-scrolling status line is only functional on a VTLC that has been programmed for 25 data rows. This data row
will remain stationary at the bottom of the screen and will not move up the screen when the remainder of the display data is scrolled. Otherwise, VIDEO data on the status line may be manipulated as though it were normal display data. The smooth scroll offset will not function properly when the status line is enabled. The memory address of the characters on the status line are always characters 1920-1999.
NOTE: If the part is programmed for 25 data rows an additional mask option must be specified which makes the 25th data row either fixed (always displayed) or a status row (enabled/disabled by the SLE bit).

CHIP RESET

The CRT 9028 and CRT 9128 Chip Reset requires two steps. The system processor first writes the reset address to the address register of the VTLC. The system processor then writes a dummy character to the VTLC Data register. Writing to the Data register resets the chip. The only state affected by the reset function is the setting of the DONE bit in the STATUS register.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .)
$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground
$+8.0 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure cañ result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T A=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted.)

PARAMETER	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS INPUT VOLTAGE LEVELS Low-level, Vil High-Level, Vih OUTPUT VOLTAGE LEVELS Low-level, Vol				

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Address. Hold Time $\mathrm{t}_{\mathrm{AHT}}$	25			ns	
Output Hold From Address Change t_{OH}	15			ns	
Address Access Time $t_{A A}$			250	ns	
PRO'CESSOR TIMING Address Read/Write Set-up $\mathrm{t}_{\text {ARWS }}$	160			ns	
Write Pulse Width $t_{\text {wPW }}$	160			ns	
Write Hold Time $\mathrm{t}_{\text {wht }}$	15			ns	
Read Set-up Time $t_{\text {RST }}$			200	ns	
Read Data Valid $\mathrm{T}_{\text {fov }}$.	0			ns	
Read Pulse Width $t_{\text {tpw }}$	250			ns	
Data Write Falling Set-up $t_{\text {Dwfs }}$	120			ns	
Data Write Rising Set-up $t_{\text {DWF }}$	160			ns	

Crystal specification (Applies for 4-14 MHz): Series Resonant 50 ohms max series resistance 1.5 pf typ parallel capacitance Operation below 4 MHz requires external crystal oscillator

NOTE: DISPLAY ADDRESS BUS DA10-DAO MUST NOT CHANGE WHILE DWR IS LOW
FIGURE 2. DISPLAY MEMORY TIMING

FIGURE 3. PROCESSOR TIMING

FIGURE 4. VERTICAL AND HORIZONTAL SYNC TIMING

NOTE: Delays between pulse edges and pulse width values may vary due to mask programmable features.
*H represents horizontal interval

$d=$ HSYN Delay -CSYN Delay
WITHIN VERTICAL SYNC PULSE TIME

FIGURE 5. VIDEO SIGNAL TIMING

FIGURE 6. TYPICAL PROCESSOR TO DISPLAY MEMORY TRANSFER

I. ROM CHARACTER BLOCK FORMAT:

COLUMN DOT	-	C7	C6	C5	C4	C3	C	C1
SCAN LINE 0	-.	0	0	0	0	0	0	0
SCAN LINE 1	-	0						0
SCAN LINE 2		0						0
SCAN LINE 3	-	0	CHARACTER BLOCK 5×8 CELL					0
SCAN LINE 4	-	0						0
SCAN LINE 5		0						0
SCAN LINE 6	-	0						0
SCAN LINE 7		0						0
SCAN LINE 8	-	0						0
SCAN LINE 9	-	0	0	0	0	0	0	0

DOTS PER CHARACTER: 7
DOT CLOCK XTAL FREQUENCY ($\mathrm{MHz):}$ 10.92II. HORIZONTAL TIMING (IN CHARACTER TIMES):
CHARACTERS PER DATA ROW: 80
HORIZONTAL BLANKING: 20
HORIZONTAL SYNC DELAY: 4
HORIZONTAL SYNC PULSE WIDTH: 8
HORIZONTAL SYNC POLARITY: NEGATIVE ACTIVE

HSYNC

III. VERTICAL TIMING:

CHARACTER ROWS: 24
SCAN LINES PER CHARACTER:
TOTAL VISIBLE SCAN LINES:
VERTICAL SYNC POLARITY:
NEGATIVE ACTIVE
IV. VERTICAL SYNC TIMING (IN SCAN LINES):

60 Hz VERTICAL BLANKING: 20
60 Hz VERTICAL SYNC DELAY: 4
60 Hz VERTICAL SYNC PULSE WIDTH: 8
ALTERNATE (50 Hz) VERTICAL BLANKING: 72
ALTERNATE (50 Hz) VERTICAL SYNC DELAY: 30
ALTERNATE (50 Hz) VERTICAL SYNC PULSE WIDTH: 10

V. COMPOSITE SYNC OUTPUT (IN CHARACTER TIMES):

COMPOSITE SYNC DELAY:
COMPOSITE SYNC PULSE WIDTH:

VI. UNDERLINE ATTRIBUTE AND CURSOR LINE:

SCAN LINE 9
VII. WIDE GRAPHICS FIGURE DEFINITION:

VIII. THIN GRAPHICS FIGURE DEFINITION:

COLUMN DOT ->	C7 C6 C5	C4	$\mathrm{C} 3 \quad \mathrm{C} 2 \quad \mathrm{C} 1$
SCAN LINE 0 ->			
SCAN LINE 1 ->		S	
SCAN LINE 2 ->		M	
SCAN LINE 3 ->		$\stackrel{\mathrm{N}}{\mathrm{T}}$	
SCAN LINE 4 ->		3	
SCAN LINE 5 ->	SEGMENT 4		SEGMENT 2
SCAN LINE 6 ->		S	
SCAN LINE 7 ->		G	
SCAN LINE 8 ->		N	
SCAN LINE 9 ->		1	

> SEGMENT $4=$ SCAN LINE $5 ;$ C7, C6, C5, C4 SEGMENT $3=$ C4; SCAN LINES $0,1,2,3,4,5$ SEGMENT $2=$ SCAN LINE $5 ;$ C4, C3, C2, C1 SEGMENT $1=$ C4; SCAN LINES $5,6,7,8,9$

STANDARD MICROSYSTEMS CORPORATION tions; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

CRT Video Attributes Controller VAC

FEATURES

On chip 12 bit shift register3 speed versions:
CRT 9041A -33 MHz
CRT 9041B-30MHz
CRT $9041 \mathrm{C}-28.5 \mathrm{MHz}$On chip attributes logic
Reverse video
Character blank
Character blink to blank
Character blink between any two of four video intensity levels
Two independent underline attributes
Foưr video intensity levels
Two general purpose attributesWide graphics modeThin graphics modeReverse screen inputOn chip logic for double height/double width data rowsAccepts scan line information in parallel or serial format
\square Supports multiple cursors
\square Four cursor modes dynamically selectable
via 2 input pins Underline Blinking underline Reverse video block Blinking reverse video blockMask programmable cursor blink rate and duty cycle

PIN CONFIGURATION

CURS	1	40	Vcc
RETBL	2	39	GP2O
LD/SH	3	38	GP10
VDC	4	37	HINTO
VIDEO	5	36	BOLDO
DST	6	35	ATTEN
D11	7	34	CHABL
D10	8	33	UL2/GP21
D9	9	32	XCURS/GP1I
D8	10	31	HINTI
D7	11	30	BOLDI
D6	12	29	BLINK
D5	13	28	RS
D4	14	27	REVID
D3	15	26	MS1
D2	16	25	MSø
D1	17	24	VSYNC
D0	18	23	SLO/SLD
SL3/BKC	19	22	SL1/SLG
GND	20	21	SL2/BLC

GENERAL DESCRIPTION

The SMC CRT 9041 Video Attributes Controller (VAC) is an n-channel COPLAMOS ${ }^{\circledR}$ MOS/LSI device containing graphics logic, attributes logic, data and attribute latches, cursor control, and a high speed video shift register. The CRT 9041, a character generator ROM, and a CRT controller such as the CRT 9007 provide all of the major circuitry for the display portion of a CRT video terminal.

The CRT 9041 serial video output may be connected directly to a CRT monitor's video input. The CRT 9041 is available in three speed versions: 28.5 MHZ (9041C), 30 MHZ (9041B) and 33 MHZ (9041A).

The CRT 9041 attributes include: reverse video, 2 underlines, character blank, and character blink. Character blink may be to background, or between any 2 of 4 possible video intensity levels. Two output pins define 4 video levels: half, three quarters, full, and bold. When used in conjunction with the CRT $9007 \mathrm{VPAC}^{\text {m" }}$, the CRT 9041 will provide double height or double width data row display.

Two cursor input pins allow simultaneous display of two cursors. Each of these cursors can be displayed in one of 4 display formats: underline, blinking underline, reverse video character block, and blinking reverse video character
block. When used in the serial scan line input mode, each cursor may be displayed in any of the 4 cursor display modes as selected via the two input pins. When used in the parallel scan line input mode, each cursor display mode is mask programmable and fixed at the time of manufacture.

The cursor format or the parallel scan line information can be changed on a character by character basis to allow different cursor formats on separate areas of the screen or for superscripted or subscripted characters.

Two graphics modes are provided. In the wide graphics mode, the CRT 9041 produces a graphic entity the size of the character block. The graphic entity contains eight parts, each of which is associated with one bit of the input byte thereby providing 256 unique graphic symbols. The thin graphics mode enables the user to create thin line drawings and forms. In both graphics modes, continuous horizontal and vertical lines may be drawn. Additional flexibility is provided through the mask programming of the placement and dimensions of the blocks or lines within a character block. In the thin graphics mode, mask programming allows serrated horizontal lines.

FIGURE 1: CRT 9041 BLOCK DIAGRAM
DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
1	Cursor	CURS	When this input is high and RETBL is low, the programmed cursor format will be displayed. When this input is high, and RETBL is high, the CRT 9041 enters the double width mode. See section entitled "Cursor Formats" for details.
2	Retrace Blank	RETBL	When this input is high, the parallel inputs to the video shift register are unconditionally cleared to all zeros and loaded on the next $\overline{\mathrm{LD}} / \mathrm{SH}$ pulse. This forces the Video output to a low voltage level, independent of all attributes for blanking the CRT during horizontal and vertical retrace time.
3	Load/Shift	$\overline{\mathrm{LD}} / \mathrm{SH}$	The' 12 bit video shift register parallel-in load or serial-out shift operation is established by the state of this input. When high, this input enables the shift register for serial shifting with each video dot clock pulse (VDC input). When low, the video shift register is parallel loaded on the next video dot clock pulse and all data and attributes are moved to the next position in the internal pipeline. In addition, input data and attributes are latched on the positive transition of $\overline{\mathrm{LD}} / \mathrm{SH}$. If the period of this signal is greater than 12 dots, video information will be supplied in the form of backfill dots as specified in the mask programmed options.
4	Video Dọt Clock	VDC	This input clock controls the rate at which video data is shifted out on the VIDEO output.
5	Video	VIDEO	The Video output provides the serial dot stream to the CRT. Video data is shifted out on the rising edge of the video dot clock VDC. The timing of the $\overline{L D} / \mathrm{SH}$ input will determine the number of backfill dots.
6	Dot Stretch	DST	This input determines if all dots in the video stream will be stretched by one dot. In normal video, all 1's are stretched and in reverse video all 0's are stretched. This input enters the CRT 9041 along with D11-D0 with one $\overline{\mathrm{LD}} / \mathrm{SH}$ delay. Updating can occur each $\overline{\mathrm{LD}} / \mathrm{SH}$ to allow selected dot stretching on a character by character basis. A high voltage will cause the dot stretch and a low voltage will inhibit the dot stretch mechanism. See section entitled "Dot Stretch" for details.
7-18	Data	D11-D0	In the character mode, the data on these inputs are passed through the attributes logic into the 12 bit high speed video shift register. The binary information on D11 will be the first bit output after the LD/SH input goes low. In the thin or wide graphics mode only the D11 through D4 inputs will individually control the on/off condition of the particular portion of the character block or line drawing. Tables 5 and 6 illustrate the wide and thin graphics modes respectively and their relationships to D11-D4.

PIN NO.	NAME	SYMBOL	FUNCTION
19	Scan line 3/ Block Cursor	SL3/BKC	Information on this input is delayed $2 \overline{\mathrm{LD}}$ 'SH cycles before entering the Attribute and Graphics Logic. As a result, this input can be changed on a character basis to allow the cursor format to enter the CRT 9041 as an attribute or to allow the parallel scan line information to change on a character basis. This input has two separate functions depending on the way scan line information is presented to the CRT 9041. In the Parallel Scan Line Mode, this input is the most significant bit of the binary scan line row address. In the Serial Scan Line Mode, this input controls the cursor's physical dimensions. If high, the cursor will appear as a reverse video block (the entire character cell will be displayed in reverse video). If low, the cursor will appear as an underline on the scan line(s) programmed. (See Table 4.)
20	Ground	GND	Ground
21	Scan line 2/ Blink Cursor	SL2/BLC	Information on this input is delayed $2 \overline{\mathrm{LD}} / \mathrm{SH}$ cycles before entering the Attributes and Graphics Logic. As a result, this input can be changed on a character basis to allow the cursor format to enter the CRT 9041 as an attribute or to allow the parallel scan line information to change on a character basis. This input has two separate functions depending on the way scan line information is presented to the CRT 9041. (See Table 4.)
22	Scan Line 1/ Scan Line Gate	SL1/SLG	This input has two separate functions depending on the way scan line information is presented to the CRT 9041. In the Parallel Scan Line Mode this input is the next to the least significant bit of the binary scan line row address. In this mode the information presented is delayed $2 \overline{\mathrm{LD}} / \mathrm{SH}$ cycles before entering the Attributes and Graphics Logic to allow the scan line information to be changed on a character basis. In the Serial Scan Line Mode this input will be low for 5 or $6 \overline{\mathrm{LD} / \mathrm{SH}}$ pulses to allow the scan line information to be serially shifted into the serial scan line shift register. If this signal is low for 7 or more $\overline{L D} /$ SH pulses, the CRT 9041 will assume the parallel input scan line row address mode.
23	Scan line 0/ Scan Line data	SLO/SLD	This input has two separate functions depending on the way scan line information is presented to the CRT 9041. Refer to Table 4. In the Parallel Scan Line Mode this input is the least significant bit of the binary scan line row address. The information presented in this mode is delayed 2 $\overline{\mathrm{LD}} / \mathrm{SH}$ cycles before entering the Attributes and Graphics Logic to allow the scan line information to be changed on a character basis. In the Serial Scan Mode this input will present the scan line information in serial form (least significant bit first) to the CRT 9041 and permits the proper scan line information to enter the serial scan line shift register during the $\overline{\mathrm{LD}} /$ SH pulses framed by SLG.
24	$\begin{aligned} & \overline{\text { Vertical }} \\ & \overline{\text { Sync }} \end{aligned}$	VSYNC	This input is typically connected to the vertical sync output of the CRT controller and is used as the clock input for the on-chip mask programmable blink rate dividers. The cursor blink rate can be a multiple or submultiple of the character blink which is selectable as a mask program option (see Table 10.) In addition, the internal attributes are reset when this input is low. The VSYNC input is also used to determine the scan line mode (parallel or serial) used. See the section "Scan Line Input Modes".
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	Mode Select 0 Mode Select 1	MSO	These 2 inputs define the four modes of operation of the CRT 9041 as follows:
			MS1 MS0 \quad MODE
			0 0 Wide graphics mode 1 0 Thin graphics mode 0 1 Character mode without underline one 1 1 Character mode with underline one
			See section entitled Display Modes for details.
27	Reverse Video	REVID	When this input and Retrace Blank (RETBL) are both low, data from the Attributes and Graphics Logic is presented directly to the video shift register. When this input is high and RETBL is low, the Attribute and Graphics Logic will invert the data before presenting it to the video shift register.
28	Reverse Screen	RS	This input defines the base background level of the screen. A low on this input will cause normal (non-reverse) video to appear white with a black background. A high on this input will cause normal (non-reverse) video to appear black with a white background.

PIN NO.	NAME	SYMBOL	FUNCTION
29	Blink	BLINK	When this input is high and both the RETBL and CHABL inputs are low, the character will blink at the programmed character blink rate. This input allows a character to blink between 2 of 4 levels of video or to the background level according to one of the 3 mask programmable blink tables (Tables 1, 2 and 3). The duty cycle for the character blink is mask programmable at either $75 / 25$ (off/on) or 50/50.
30	Bold in	BOLDI	The BOLDI input along with the BOLDO output provides a user with a Bold (high intensity) attribute on a character by character basis. Data input on BOLDI will appear at BOLDO with the same delay as that from any other attribute input to the serial video output (VIDEO). By using an external mixing circuit, it is possible to raise the voltage level of the video output to produce the bold attribute.
31	Half intensity in	HINTI	The HINTI input along with the HINTO output provides a user with a half intensity attribute on a character by character basis. Data input on HINTI will appear at HINTO with the same delay as that from any other attribute input to the serial video output (VIDEO). By using an external mixing circuit, it is possible to lower the voltage level of the video output to produce the half intensity attribute.
32	Extra Cursor/ General Purpose Attribute 1 In	XCURS/ GP1I	This input has a dual function. It can produce a second cursor with either a dynamically selectable format or a masked programmed format. If no scan line(s) are programmed for the XCURS format (or if the programmed scan lines are beyond the range of the actual scan lines), this input will simply be pipelined through the CRT 9041 to produce a user controlled general purpose attribute. Data appearing on this input is pipelined to the GP1O with the same delay as that from any other attribute input and can affect the video as desired. Whether XCURS is used or not, data appearing on this input will be pipelined to the GP1O output.
33	Underline 2 General Purpose Attribute 2 in	$\begin{aligned} & \text { UL2/ } \\ & \text { GP2I } \end{aligned}$	This input has a dual function. It can produce a second underline (UL2) at the masked programmed scan line(s). If no scan line(s) are programmed for underline 2, this input will simply be pipelined through the CRT 9041 to produce a user controlled general purpose attribute. Data appearing on this input is pipelined to the GP2O with the same delay as that from any other attribute input and can affect the video as desired. Whether UL2 is used or not, data appearing on this input will be pipelined to the GP2O output. Note that underline 1 is selected via the MS0 and MS1 inputs.
34	Character Blank	CHABL	When this input is high, the parallel inputs to the video shift register are all set low (or high depending on the state of REVID and RS) thus providing a constant video level for the entire length of the character block. Only the cursor is visible in a character blank field.
35	Attribute Enable	ATTEN	When this input is high, the internal attribute latch is updated at the positive going edge of the LD/SH input with data appearing on the REVID, CHABL, MS1, MS0, BLINK, BOLDI, HINTI, UL2/GP2I, DST RS, and XCURS/GP1I inputs. By selectively bringing this input high, the user will update the attribute only at specific character times; all subsequent characters will carry with them the attributes last updated thus allowing "field" or "embedded" attributes. When using a wide video memory where attribute bits are attached to every character, the internal attribute latch may be updated at each character by tying this input high (thus allowing "invisible" attributes). All attributes are reset by the VSYNC input.
36	Bold out Out	BOLDO	This output is used in conjunction with the BOLDI input to provide a three character pipeline delay when creating a high intensity effect on the video bit stream. In addition, this output is activated independent of the BOLDI signal during certain character and cursor blink operations according to Tables 1, 2 and 3.
37	Half Intensity Out	HINTO	This output is used in conjunction with the HINTI input to provide a three character pipeline delay when creating a half intensity effect on the video bit stream. In addition, this output is activated independent of the HINTI signal during certain character and cursor blink operations according to Tables 1, 2 and 3.
38	General Purpose Attribute 1 out	GP10	This output is used in conjunction with the XCURS/GP1I input and provides a three character pipeline delay to allow for general purpose attributes to be implemented.
39	General Purpose Attribute 2 out	GP2O	This output is used in conjunction with the UL2/GP21 input and provides a three character pipeline delay to allow for general purpose attributes to be implemented.
40	Supply Voltage	Vcc	+5 volt power supply.

ATTRIBUTES FUNCTIONS

Reverse - The REVID input causes inverted data to be Video
Character - The CHABL input forces the video to go to Blank the current background level as defined by Reverse Video and Reverse screen. This attribute blanks all video with the exception of both cursor displays.
Underline - MS1, MSO = 1,1 or UL2 = 1: either condition forces the video to the inverse of the background level (all 1's or all 0's) for all scan line(s) programmed for underline. The two underlines are independent.
Half - The HINTI input and the HINTO output allow Intensity a half intensity attribute to be carried through the pipeline of the CRT 9041. An external mixer can be used to combine VIDEO and HINTO to create a decreased white level in the video.

Retrace - The RETBL input causes the VIDEO to go Blank

Bold - The BOLDI input and the BOLDO output allow a bold (high intensity) attribute to be carried through the pipeline of the CRT 9041. An external mixer can be used to combine VIDEO and BOLDO to create an increased white level in the video.
Blink - The BLINK input will cause characters to blink in a number of mask programmable ways. Referring to Tables 1,2 or 3, video can be made to blink between 2 or 4 possible video levels with either a 50/50 on/off or a 75/25 on/off duty cycle. The tables also illustrate that the blink levels can be programmed to be a function of the reverse video input attribute. A blinking cursor overrides the character blink for the scan lines programmed for cursor. The CRT 9041 can implement character blinking in several different mask programmable visual formats as shown in the Tables. The blink function illustrated in Table 2 implements CRT 9021 compatibility blinking.

The CRT 9041 may be mask programmed for one of three combinations of blinking operation. These are illustrated respectively in Tables 1, 2, and 3 . Since 4 levels of video are possible, Tables 1 and 3 define the video blinking between 2 video levels and Table 2 defines the video blinking to the background level making this table compatible with the CRT 9021.

The Non-blink Option Table 1A shows the state of the video DATA (DATA = non inverted video, $\overline{\text { DATA }}=$ inverted video) and the value of the output attributes (BOLDO, HINTO) that can be applied to the video DATA as a function of the four input attributes. The BLINK $=0$ inputs in Table 1A result in a non-character blink display as compared to the video DATA shown in the Blink Combinations Option Table 1B.
(1) Reverse video $=($ REVID $)$ and $(\overline{\mathrm{RS}})$ or $(\overline{\mathrm{REVID}})$ and (RS)

TABLE 1A: NON-BLINK COMBINATIONS OPTION TABLE

INPUTS				VIDEO	OUTPUTS	
BLINK	REVERSE VIDEO (1)	BOLDI	HINTI		BOLDO	HINTO
0	0	0	0	DATA	0	0
0	0	0	1	DATA	0	1
0	0	1	0	DATA	1	0
0	0	1	1	DATA	1	1
0	1	0	0	DATA	0	1
0	1	0	1	DATA	0	1
0	1	1	0	DATA	0	0
0	1	1	1	DATA	1	1

TABLE 1B: BLINK COMBINATIONS OPTION TABLE

The Blink Combinations Option Table 1B shows the state of the video DATA (DATA $=$ non inverted video; $\overline{\text { DATA }}=$ inverted video) during a character blink cycle (TIME A = OFF, TIME B = ON). The values of the output attributes (BOLDO, HINTO) that can be applied to the video DATA are determined by the state of the four input attributes. The BLINK = 1 inputs in Table 1B result in a blinking character display as compared to the non-blinking video DATA shown in the Non-blink Combinations Option Table 1A. Since 4 levels of video are possible, Table 1B defines video blinking between 2 video levels. This is shown in the explanation Table 1C below. It should be noted that the designation NORMAL, $1 / 2$ INTENSITY, $3 / 4$ INTENSITY and BOLD have been used arbitrarily. The actual video levels caused by the BOLDO and HINTO are defined by the external video mixing circuit.

TABLE 1 C

BOLDO	HINTO	INTENSITY LEVEL	BLINK BETWEEN THESE 2 LEVELS (OFF-ON) NON REVERSE REVERSE VIDEO	
				VIDEO

*The duty cycle for the blink with respect to the video, HINT, BOLD is mask programmable with the following choices:
$A=75 \%$ OR $50 \% B=25 \%$ OR 50% ($A+B$ must equal 100\%)
(2) The combinations in Table 1 allow the user to define the cursor and the character blink interaction. A non-blinking cursor adds one more inversion to either a non-blinking character or a blinking character. A blinking cursor overrides a character blink for the scan lines programmed for cursor. A blinking cursor will introduce and then remove one more inversion to either a non-blinking character or a blinking character.

TABLE 2A: ALTERNATE NON-BLINK COMBINATIONS FOR CRT 9021 COMPATIBILITY

INPUTS				VIDEO	OUTPUTS	
BLINK	REVERSE VIDEO	BOLDI	HINTI		BOLDO	HINTO
0	0	0	0	DATA	0	0
0	0	0	1	DATA	0	1
0	0	1	0	DATA	1	0
0	0	1	1	DATA	1	1
0	1	0	0	DATA	0	0
0	1	0	1	DATA	0	1
0	1	1	0	DATA	1	0
0	1	1	1	DATA	1	1

The Alternate Non-blink Combinations for CRT 9021 Compatibility Table 2A show the state of the video DATA (DATA $=$ non inverted video; $\overline{\text { DATA }}=$ inverted video) and the value of the output attributes (BOLDO, HINTO) that can be applied to the video DATA as a function of the four input attributes. The BLINK $=0$ inputs in Table 2A result in a noncharacter blink display as compared to video DATA shown in Alternate Blink Combinations for CRT 9021 Compatibility Table 2B.

TABLE: 2B BLINK COMBINATIONS OPTION TABLE

The Alternate Blink Combinations for CRT 9021 Compatability Table 2B show the state of the video DATA (DATA = non inverted video; DATA $=$ inverted video) during a character blink cycle (TIME A = OFF, TIME B = ON). The values of the output attributes (BOLDO, HINTO) that can be applied to the video DATA are determined by the state of the four input attributes. The BLINK $=1$ inputs in Table 2 B result in a blinking character display as compared to the non-blinking video DATA shown in the Alternate Non-Blink Combinations for CRT Compatibility Table 2A. In this table, the BOLDO and HINTO attributes are controlled by the BOLDI and HINTI attributes making them truly general purpose.
*The duty cycle for the blink with respect to the video, HINT, BOLD is mask programmable with the following choices:
$A=75 \%$ OR $50 \% B=25 \%$ OR 50% ($A+B$ must equal 100%)
(1) The combinations in Table 2 allow the user to define the cursor and the character blink interaction. A non-blinking cursor adds one more inversion to either a non-blinking character or a blinking character. In both cases the character blinks to the background video level. A blinking cursor overrides a character blink for the scan lines programmed for cursor. A blinking cursor will introduce and then remove one more inversion to either a non-blinking cursor or a blinking character.

TABLE 3A: NON-BLINK COMBINATIONS FOR THE STANDARD CRT 9041 (CRT 9041-004)

INPUTS				VIDEO	OUTPUTS	
BLINK	REVERSE VIDEO	BOLDI	HINTI		BOLDO	HINTO
0	0	0	0	DATA	0	0
0	0	0	1	DATA	0	1
0	0	1	0	DATA	1	0
0	0	1	1	DATA	1	1
0	1	0	0	DATA	0	0
0	1	0	1	DATA	0	1
0	1	1	0	DATA	1	0
0	1	1	1	DATA	1	1

The Non-blink Combinations for the Standard CRT 9041 of Table 3A shows the state of the video data (DATA $=$ non inverted video; DATA $=$ inverted video) and the value of the output attributes (BOLDO, HINTO) that can be applied to the video DATA as a function of the four input attributes. The BLINK $=0$ inputs in Table 3A result in a non-character blink display as compared to video DATA shown in the Blink Combinations for the Standard CRT 9041 of Table 3B.

TABLE 3B: BLINK COMBINATIONS FOR THE STANDARD CRT 9041 (CRT 9041-004)

INPUTS				NON-CURSOR(2)		OUTPUTS			
BLINK REVERSE BOLDI HINTI						BOLDO		HINTO	
				- A*	${ }^{*}$	A^{*} -	B*	A*-	B^{*}
1	0	0	0	DATA	DATA	0	0	0	1
1	0	0	1	DATA	DATA	0	1	1	1
1	0	1	0	DATA	DATA	1	0	0	0
1	0	1	1	DATA	DATA	1	0	1	0
1	1	0	0	DATA	DATA	0	0	0	1
1	1	0	1	DATA	DATA	0	1	1	1
1	1	1	0	DATA	DATA	1	0	0	0
1	1	1	1	DATA	DATA	1	0	1	0

The Blink Combinations for the Standard CRT 9041 of Table 3B shows the state of the video DATA (DATA = non inverted video; $\overline{\text { DATA }}=$ inverted video) during a character blink cycle (TIME A = OFF, TIME B = ON). The values of the output attributes (BOLDO, HINTO) that can be applied to the video DATA are determined by the state of the four input attributes. The BLINK = 1 inputs in Table 3B result in the blinking character display as compared to the nonblinking video DATA shown in the Non-Blink Combinations for the Standard CRT 9041 Table 3A. Since 4 levels of video are possible, Table 3B defines video blinking between 2 video levels. This is shown by the explanation Table 3C below. It should be noted that the designation NORMAL, $1 / 2$ INTENSITY, $3 / 4$ INTENSITY and BOLD have been used arbitrarily. The actual video level caused by the BOLDO and HINTO are defined by the external video mixing circuit.

TABLE 3C

BOLDO	HINTO	INTENSITY LEVEL	BLINK BETWEEN THESE 2 LEVELS (OFF-ON) NON REVERSE REVERSE VIDEO VIDEO	
0	0	NORMAL (N)	N-1/2	N-1/2
0	1	$1 / 2$ INTENSITY (1/2)	$1 / 2-3 / 4$	$1 / 2-3 / 4$
1	0	BOLD (B)	B-N	B-N
1	1	3/4 INTENSITY (3/4)	$3 / 4-N$	$3 / 4-N$

*The duty cycle for the blink with respect to the video, HINT, BOLD is mask programmable with the following choices:

$$
\begin{aligned}
& A=75 \% \text { OR } 50 \% B=25 \% \text { OR } 50 \% ~(A+B \text { must equal } \\
& 100 \%)
\end{aligned}
$$

(2)The scan lines programmed for a non-blinking cursor force a non-blinking or blinking character to a normal video level and introduce one more level of inversion. A blinking cursor adds one more level of inversion to the video during the blink time to a non-blinking or blinking character.

CURSOR FORMATS

Four cursor formats are possible with the CRT 9041. If the parallel scan line input mode is used, one of four cursor formats may be selected as a mask programmed option for each cursor independently. If the serial scan line input is used, the cursor format is dynamically selectable on a character by character basis via input pins 21 and 19 (SL2/ BLC, SL3/BKC). See Table 4. The four cursor formats are as follows:

Underline - The cursor will appear as an underline. The position and width of the cursor underline is mask programmed. An underline cursor will add one more level of inversion to the video on the programmed scan line(s) for underline cursor.

Blinking - The cursor will appear as an underline and Underline introduce and then remove one more level of inversion to the video on the programmed scan line(s) for cursor underline. The cursor blink rate and duty cycle is mask programmable as outlined in Tables 1, 2 or 3.

Reverse - The cursor will appear as a reverse video

Video
Block

Blinking
Reverse
Video

- The cursor will appear as a blinking reverse video block. The cursor will introduce and then remove one more level of inversion to the video for all scan lines in the character cell. The cursor blink rate and duty cycle is mask programmable as outlined in Tables 1,2 or 3.

In the parallel scan line mode it is possible to change the scan line count on a character by character basis. If the scan inputs are stable a time TS2 (figure 2) prior to the next rising edge of the LD/SH input the scan line count will enter the delay latch of the CRT 9041. In the serial scan line mode, it is possible to change the cursor format on a character by character basis with the timing identical to that described in the parallel scan line mode (TS2). This timing is shown in the AC timing diagram, Figure 2.

TABLE 4: CURSOR FORMATS

Scan Line Input Mode	(PIN21) SL2/BLC	(PIN19) SL3/BKG	Cursor Function
	1	0	Underline Serial
1	1	Reverse Video Block	
Parallel	0	0	Blinking Underline Blinking Reverse Video Block
X	X	Mask programmable only	

DISPLAY MODES

Inputs MS1 and MS0 select one of four display modes. All attributes except underline operate independent of the display mode used. Figures 6a and 6b illustrate a typical CRT 9041 configuration which operates in all display modes for the parallel and serial scan line modes respectively.

MS1,MS0 $=00-$ Wide Graphics Mode.
In this display mode, inputs D11-D4 define a graphic entity as illustrated in Table 5. Note that individual bits in D11-D4 will illuminate particular portions of the character block. Table 5 shows all programming ranges possible when defining the wide graphics boundaries. Only underline 2 is possible in this display mode.

MS1,MS0 $=10-$ Thin Graphics Mode.
In this display mode inputs D11-D4 define a graphic entity as illustrated in Table 6. Note that individual bits in D11-D4 will illuminate particular horizontal or vertical line segments within the character block. Table 6 shows all programming ranges possible when defining the thin graphics boundaries. Only underline 2 is possible in this display mode.

MS1,MS0 = 01-Character Mode without Underline 1. In this display mode, inputs D11-D4 go directly from the input latch to the video shift register via the Attributes and Graphics Logic. This mode requires either a bit mapped system RAM (1 bit in RAM equals 1 pixel on the CRT) or a character generator as shown in Figures 6a and 6b. Underline 2 is available in this display mode.

MS1,MS0 = 11-Character Mode with Underline 1.
Same operation as MS1, MS0 = 01 with the underline attribute byte appearing on the scan line(s) mask programmed. Underline 2 is available in this display mode.

TABLE 5: WIDE GRAPHICS MODE

SL3-SLO ROW\# C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 BF BF...

$\mathrm{H} 0, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~W} 0, \mathrm{~W} 1$, are mask programmable. The values shown are for the CRT 9041-004.

TABLE 6: THIN GRAPHICS MODE

	VERTICAL HEIGHT	HORIZONTAL POSITION
D4	R0-R5	PROGRAMMABLE
D5	R6-R15	PROGRAMMABLE
D10	R0-R15*	PROGRAMMABLE
D11	R0-R15*	PROGRAMMABLE
	HORIZONTAL LENGTH	VERTICAL POSITION
D6	C11-C7	PROGRAMMABLE
D7	C7-BF	PROGRAMMABLE
D8	C11-BF*	PROGRAMMABLE
D9	C11-BF*	PROGRAMMABLE

The height of D4 and D5, the length of D6 AND D7, and the position of D4-D11 are mask programmable. The values shown are for the CRT 9041-004. *These values are fixed

DOUBLE WIDTH MODE

In order to display double width characters, video must be shifted out at half frequency and the video shift register must receive new information (parallel load) every other $\overline{\mathrm{LD}} / \mathrm{SH}$ input pulse. In order to divide the video dot clock (VDC) and the $\overline{\mathrm{LD}} / \mathrm{SH}$ pulse internally at the proper time, the cursor input should be pulsed during RETBL prior to the scan line to be displayed as double width. The CURSOR input must remain low for a minimum of $1 \overline{\mathrm{LD}} / \mathrm{SH}$ period from the leading edge of RETBL. The CURSOR input can stay high for the entire RETBL time but should not extend into active video. If it does, a cursor will be displayed. It is assumed that the CRT controller knows when a particular scan line should be double width and it should activate the CURSOR in the manner just described. Double height/double width characters can also be displayed if the scan line count is incremented by the CRT controller every other scan line. Figure 5 illustrates timing for both single and double width modes. The CRT 9007, which supports double height double width characters, will produce the cursor signal as required by the CRT 9041 with no additional hardware. It should be noted that the XCURSOR input will not affect the double width logic on the CRT 9041 in any way.

SCAN LINE INPUT MODES

Scan line information can be introduced into the CRT 9041 in parallel format or serial. Table 7 illustrates the pin definition as a function of the scan line input mode. The CRT 9041 will automatically recognize the scan line mode by observing the activity on pin 22. In parallel mode, this input will be active low for at least 1 scan line and in serial mode this input will remain low for about 5 or $6 \overline{\mathrm{LD}} / \mathrm{SH}$ periods. If pin 22 goes active low for less than seven but more than two continuous $\overline{\mathrm{LD}} / \mathrm{SH}$ periods during the last scan line that has an active low on the VSYNC input, the serial mode will be locked in for the next frame. The parallel scan line input mode will be selected for the next frame if the following two conditions occur during the VSYNC low time. First, at least one positive transition must occur on pin 22 and second, pin 22 must be low for seven or more $\overline{\mathrm{LD}} / \mathrm{SH}$ periods. Refer to Figure 4 for timing details. Whenever the CRT 9041 detects a change of scan line modes (from parallel to serial or visa versa), the internal blink counter will be initialized to a known count value. This allows the user to achieve phase synchronization of the blink rates from two or more CRT 9041 's. This is useful if one multiplexes alternate dots from two CRT 9041's to double the allowable video dot rate.

TABLE 7: PIN DEFINITION FOR PARALLEL

Scan Line Input Mode	CRT 9041 Pins			
	23	22	21	19
Serial	SLD	SLG	BLC	BKC
Parallel	SLO	SL1	SL2	SL3

DOT STRETCH

Dot stretch is a mechanism whereby a single illuminated dot will never stand alone in the video stream. This eliminates the intensity variation otherwise found between single and multiple dots by raising the intensity level of single dots up to the level of consecutively displayed dots. To accomplish this, each illuminated dot (represented by a logic " 1 ") will be extended into the next dot position. The foilowing example illustrates the dot stretch mechanism.

Input bit pattern (D11-D0)	100101100100
Output bit pattern	110111110110

For reverse video, logic " 0 "'s are stretched (logic " 1 " represents the background of the reverse video character). The following example illustrates the mechanism in reverse video.

$$
\begin{array}{ll}
\text { Input bit pattern (D11-DO) } & 010011001000 \\
\text { Reverse video pattern } & 101100110111 \\
\text { Output bit pattern } & 100100010011
\end{array}
$$

In all cases, the next load of the shift register will always load the D11 bit to the output regardless of the value of the video output prior to the load. This dot stretch mechanism can be enabled on a character by character basis (or scan line by scan line) and is controlled by the DST input which is updated each LD/SH period. The dot stretch signal enters the CRT 9041 with the D11-D0 inputs. In all cases, backfill (BF) is not affected by the dot stretch input.

BACKFILL

Backfill is a mechanism that allows a character width of greater than 12 dots and provides dot information (usually blanks) for all dots beyond 12 . The character width is defined by the period of the $\overline{L D} / \mathrm{SH}$ input. For the character modes, backfill is added to the end of the character by two methods which are mask programmable.
Method A- The backfill (BF) dots will be the same as the dot displayed in position C11.
Method B- The backfill (BF) dots will be the same as the dots displayed in position C 0 .

MAXIMUM GUARANTEED RATINGS*

Negative Voltage on any Pin, with respect to ground $\ldots \ldots .$.
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted) DC CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS Notice This mina
INPUT VOLTAGE LEVELS					Some parametric Imita taral specift
Low Level V_{1}			0.8	V	All inputs except VDC, $\overline{\mathrm{LD} / \mathrm{SH}}$
Low Level $\mathrm{V}_{\text {IL }}$			0.65	V	For VDC, $\overline{L D} / \mathrm{SH}$ input
High Level $\mathrm{V}_{\text {H11 }}$	2.0			V	All inputs except VDC, $\overline{L D} / \mathrm{SH}$
High Level $\mathrm{V}_{\text {H1 }}$	4.3			V	For VDC, LD/SH input
OUTPUT VOLTAGE LEVELS					
Low Level $\mathrm{V}_{\text {o }}$			0.4	V	$\mathrm{I}_{\mathrm{OH}}=0.4 \mathrm{~mA}$
High Level V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$
INPUT LEAKAGE CURRENT					
Leakage $\mathrm{I}_{\mathrm{L} 1}$			10	$\mu \mathrm{A}$	$0 \leqslant \mathrm{~V}_{\text {IN }}<\mathrm{V}_{\text {cc }}$; excluding VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$
Leakage $\mathrm{I}_{\text {L2 }}$			50	$\mu \mathrm{A}$	$0 \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {cc }}$; for VDC, $\overline{\text { LD } / S H}$
INPUT CAPACITANCE					
$\mathrm{C}_{\text {(N1 }}$					Excluding VDC, $\overline{L D} / \mathrm{SH}$
$\mathrm{C}_{\text {IN2 }}$		35		pf	LD/SH
$\mathrm{C}_{\text {In }}$		35		pf	VDC
POWER SUPPLY CURRENT I		95		mA	

AC CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
VDC	1.0		33.0	MHZ	CRT9041A
$1 / \mathrm{tcy}^{1} \mathrm{VDC}$ frequency	1.0		30.0	MHZ	CRT9041B
	1.0		28.5	MHZ	CRT9041C
$\mathrm{t}_{\text {ckl }}$ VDC low	10			ns	
$\mathrm{t}_{\text {cкн }} \mathrm{VDC}$ high	10			ns	
$\mathrm{t}_{\text {ckR }}$ VDC rise time			10	ns	Measured from 10\% to 90\% points
$\mathrm{t}_{\text {ckF }} \mathrm{VDC}$, fall time			10	ns	Measured from 90% to 10% points
LD/SH					
$\mathrm{t}_{\text {cy } 2}$	250			ns	CRT9041A (1)
	270			ns	CRT9041B (1)
	300			ns	CRT9041C (1)
$\mathrm{t}_{\text {s }}$	7			ns	
t_{H}	0			ns	
INPUT SETUP AND HOLD					
$\mathrm{t}_{\text {S2 }}$	60			ns	CRT9041A For inputs SLG, SLD,
	80			ns	CRT9041B For inputs SLG, SLD,
	110			ns	CRT9041C VSYNC
	35			ns	For all other inputs except VDC, LD/SH, SLG, SLD, VSYNC
$t_{\text {H2 }}$	10			ns	For inputs SLG, SLD, VSYNC
	0			ns	For all inputs except VDC, $\overline{\mathrm{LD}} / \mathrm{SH}$, SLG, SLD, VSYNC
MISCELLANEOUS TIMING $t_{\text {PD }}$					
			30	ns	CRT9041A
			33	ns	CRT9041B
			35	ns	CRT9041C
$\mathrm{t}_{\text {ow }}$	$\mathrm{t}_{\mathrm{c} \mathrm{\gamma} 2}$				

(1) When mask programmed for CRT 9021 compatibility TCY2 will be slower.

FIGURE 2: CRT 9041 INPUT/OUTPUT TIMING

FIGURE 3: SERIAL SCAN LINE MODE TIMING

FIGURE 4: SERIAL/PARALLEL SCAN LINE MODE SELECTION TIMING

1-Attributes include MSO, MSI, BLINK, CHABL, HINT, BOLD, REVID and XCURS

FIGURE 5: CRT 9041 FUNCTIONAL I/O TIMING

PROGRAM OPTIONS

The CRT 9041 has a variety of mask programmed options. Tables 8 and 9 illustrate the range of these options for the wide and thin graphics modes respectively. Table 10 illustrates the range of the miscellaneous other mask programmed options. In addition, Tables 8, 9 and 10 show the mask programmed options for the CRT 9041-004.

TABLE 8: WIDE GRAPHICS MASK PROGRAMMING OPTIONS

OPTION	CHOICES	CRT 9041-004
Height of Graphic		
block *		
D11 AND D7	any scan line(s)	R0,R1,R2
D10 AND D6	any scan line(s)	R3,R4
D9 AND D5	any scan line(s)	R5,R6
D8 AND D4	any scan line(s)	R7 thru R15
Width of graphic	any consecutive	C11 thru C7
block**	dots	
D11,D10,D9,D8	C11 thru C0	
D7,D6,D5,D4	all remaining dots	C6 thru C0 not specified above
plus BF		

*Any graphic block pair can be removed by programming for zero scan lines.
**Total number of dots for both must be equal to the total dots per character with no overiap. D11,D10,D9 and D8 must always be to the left of D7-D4.

$\mathrm{H} 0, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{~W} 0, \mathrm{~W} 1$, are mask programmable. The values shown are for the CRT 9041-004.

TABLE 9: THIN GRAPHICS MASK PROGRAMMING OPTIONS

(1) D6 and D7 must always overlap by 1 dot. This overlap may be blanked by specifying the proper column(s) in the serration program line. D7 must always be to the right of D6.
(2) D11 must always come before D10 with no overlap: otherwise D10 is lost.

THIN GRAPHICS

	VERTICAL HEIGHT	HORIZONTAL POSITION
D4	R0-R5	PROGRAMMABLE
D5	R6-R15	PROGRAMMABLE
D10	R0-R15	PROGRAMMABLE
D11	Ro-R15*	PROGRAMMABLE
	HORIZONTAL LENGTH	VERTICAL POSITION
D6	C11-C7	PROGRAMMABLE
D7	C7-BF	PROGRAMMABLE
D8	C11-BF*	PROGRAMMABLE
D9	C11-BF*	PROGRAMMABLE

[^12]TABLE 10: MISCELLANEOUS MASK PROGRAMMING OPTIONS

OPTION	CHOICES	"STANDARD" CRT 9041-004
Backfill in character mode	C11 or C0	C11
Character blink rate (division of VSYNC frequency)	7.5 Hz to 0.5 Hz (1) (1)	$1.25 \mathrm{~Hz}(1)$
Cursor blink rate (2)	same as, half, or twice the charac- ter blink rate	2.50 Hz (1)
Character blink duty cycle	$50 / 50$ or 75/25	$50 / 50$
Cursor blink duty cycle	$50 / 50$ or 75/25	$50 / 50$
Character underline 1 position	any scan line(s) R0 thru R15	R8
Character underline 2 position	any scan line(s) R0 thru R15	R10
Cursor underline position	any scan line(s) R0 thru R15	R9
Extra cursor underline position	any scan line(s) R0 thru R15	R11
Cursor format (3)	underline blinking underline reverse video block blinking reverse video block	blinking reverse video block
Extra cursor format (3)	underline blinking underline reverse video block blinking reverse video block	blinking underline
Blink table	Tabbe 1 Table 2 Table 3	Table 3
CURSOR or XCURSOR effect on BOLDO and HINTO	no effect or force to zero at cursor position	force to zero at cursor position.

(1) Assumes VSYNC input frequency of 60 HZ .
(2) Valid only if the cursor is formatted to blink.
(3) Valid for the parallel scan line mode only.

FIGURE 6a: CRT 9041 SYSTEM CONFIGURATION IN PARALLEL SCAN LINE MODE

FIGURE 6b: CRT 9041 SYSTEM CONFIGURATION IN SERIAL SCAN LINE MODE

Enhanced Video Terminal Logic Controller

FEATURES

Built-in High Frequency ($4-18.7 \mathrm{MHz}$) OscillatorBuilt-in Video Shift RegisterBuilt-in Character Generator (128 Characters, 7×11 Dot Font)Bi-Directional Smooth Scroll CapabilityVisual Attributes Include Reverse Video, Intensity
Control, Underline, and Character Blank and BlinkSeparate HSYNC, VSYNC and VIDEO OutputsComposite Sync (RS170 Compatible) Output
Absolute (RAM address) Cursor Addressing
MASK Programmable Video Parameters:
Dots Per Character Block (8-9)
Raster Scans Per Data Row (11-13)
Characters Per Data Row $(32,48,64,80)$
Data Rows Per Page ($8,10,12,16,20,24$ or 25)
Horizontal Blanking (8-64 Characters)
Horizontal Sync Front Porch (0-7 Characters)
Horizontal Sync Duration (1-64 Characters)
Horizontal Sync Polarity
Two Values of Vertical Blanking
Two Values of Vertical Sync Front Porch (0-63 Scan Lines)
Two Values of Vertical Sync Duration (1-16 Scan Lines)
Vertical Sync Polarity
Internal 128 Character 7x11 Dot Font
Character/Cursor Underline Position
Character/Cursor Blink Rate
Scan Row and Column for Thin Graphics Entity Segments
Scan Rows and Columns for Wide Graphics Entity ElementsSoftware Enabled Non-Scrolling 25th Data Row Available with 25 Data Row/Page Display
\square Non-Interlace Display Format

PIN CONFIGURATION

\square Embedded Attribute or Tag Bit Attribute CapabilitySeparate Display Memory Bus Eliminates Contention Problems

\square FilFill (Erase) Screen CapabilityStandard 8-bit Data Bus Microprocessor InterfaceWide Graphics with Six Independently Addressable Segments Per Character Space
\square Thin Graphics with Four Independently Addressable Segments Per Character SpaceSingle +5 V Supply
\square COPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate Technology
\square TTL Compatible

GENERAL DESCRIPTION

The CRT 9053 EVTLC and CRT 9153 EVTLC are mask programmable 40 pin COPLAMOS ${ }^{\circledR}$ n-channel MOS/LSI Video Display Controller Chips that combine video timing, video attributes, alphanumeric and graphics generation, smooth scroll and screen buffer interface functions.

The EVTLC incorporates many of the features (previously requiring a number of external components) required in building a low cost yet versatile display interface. An internal mask programmable 128 character font provides for a full ASCII character set. Wide graphics allow plotting and graphing capabilities while thin graphics and visual attributes can make the display of forms straight-forward.

Two pinout configurations enhance the versatility of the EVTLC. The CRT 9053 controls data flow over the processor system data bus through separate read ($\overline{R D}$) and write
$(\overline{W R})$ strobes for use with the $8085,8051, \mathrm{ZBO}^{\circledR}, 8086$, and similar microprocessors or microcomputers. The CRT 9153 regulates the data flow with a data strobe ($\overline{\mathrm{DS}}$) and read/ write (R/W) enable signals for use with the $6500, \mathrm{Z8}^{\text {™ }}, 68000$ and similar microprocessors or microcomputers.
The EVTLC provides two independent data buses; one bus that interfaces to the processor and one that interfaces to the display memory. Data is transferred to the display memory from the processor through the EVTLC eliminating contention problems and the need for a separate row buffer.

The EVTLC has an internal crystal oscillator requiring only an external crystal to operate. Masked constants for critical video timing simplify programming, operation and improve reliability. A separate non-scrolling status line (enabled or disabled by the processor) is available for displaying system status.

FIGURE 1. EVTLC FUNCTIONAL BLOCK DIAGRAM
DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	1/0	NAME	DESCRIPTION
3-1, 40-33	DA10-0	0	Display Address	11 bit address bus to display memory
4	GND		Ground	Ground Connection
5,6	XTAL2,1	1	Crystal 2,1	External Crystal An external TTL level clock may be used to drive XTAL1 (in which case XTAL2 is left floating).
7	$\overline{\text { VIDEO }}$	0	$\overline{\text { Video Output }}$	This output is a digital TTL waveform used to develop the VIDEO and composite VIDEO signals to the monitor. The polarity of this signal is: \quad HIGH = BLACK LOW $=$ WHITE
8	INTOUT	0	Intensity Output	This pin is the intensity level modification attribute bit (synchronized with the video data output).
9	$\overline{\text { DWR }}$	0	$\begin{aligned} & \overline{\overline{\text { Display }}} \overline{\text { Write }} \end{aligned}$	Write strobe to display memory
17-10	DD7-0	1/O	Display Data	8-bit bidirectional data bus to display memory
18	HSYNC	0	Horizontal Sync	Horizontal sync signal to monitor
19	VSYNC	0	Vertical Sync	Vertical sync signal to monitor
20	CSYNC	0	Composite Sync	This output is used to generate an RS170 compatible composite VIDEO signal for output to a composite VIDEO monitor.
21	$\mathrm{V}_{\text {cc }}$		Power	5.0 V power connection
CRT 9053				
22	$\overline{W R}$	1	Write Strobe	Causes data on the microprocessor data bus to be strobed into the EVTLC
23	$\overline{\mathrm{RD}}$	1	Read Strobe	Causes data from the EVTLC to be strobed onto the microprocessor data bus
CRT9153				
22	R/W	1	Read/Write Select	Determines whether the processor is reading data from or writing data into the EVTLC (high for read, low for write)
23	$\overline{\text { DS }}$	1	Data Strobe	Causes data to be strobed into or out of the EVTLC from the microprocessor data bus depending on the state of the R/W signal
24	A / \bar{D}	1	Register Select	The state of this input pin will determine whether the data is being read from, or written to, the address or status register, or a data register.
32-25	DB7-0	I/O	Processor Data Bus	8-bit bi-directional processor data bus

THE EVTLC INTERNAL REGISTERS CRT 9053

Addressing of the internal EVTLC data registers of the CRT 9053 is accomplished through the use of the A / \bar{D} select input qualified by the $\overline{R D}$ and $\overline{W R}$ strobes.

A / \bar{D}	$\overline{R D}$	$\overline{W R}$	REGISTER OPERATION
0	1	0	WRITE TO DATA REGISTER
0	0	1	READ DATA REGISTER
1	1	0	WRITE TO ADDRESS REGISTER
1	0	1	READ STATUS REGISTER

CRT9153

Addressing of the internal EVTLC data registers of the CRT 9153 is accomplished through use of the A / \bar{D} and R/ \bar{W} select inputs qualified by the $\overline{D S}$ strobe.

A / \bar{D}	$\overline{\mathrm{DS}}$	R / \bar{W}	REGISTER OPERATION
0	0	0	WRITE TO DATA REGISTER
0	0	1	READ DATA REGISTER
1	0	0	WRITE TO ADDRESS REGISTER
1	0	1	READ STATUS REGISTER

The contents of the eight processor programmable registers located in the upper left hand side of the Functional Block Diagram of figure 1 indicate the memory locations from which screen data is to be fetched and displayed as well as the selected modes of display operation. These registers are addressed indirectly via the Address Register.

To access one of the eight eight-bit registers, the processor must first load the Address Register with the threebit address of the selected data register. The next read or write to a data register will then cause the data register pointed to by the Address Register to be accessed. The Line A / \bar{D} controls whether writing is occurring to the Address Register or to a data register. When a read operation is performed, A / \bar{D} controls access to either the Status Register or to the data register selected by the Address Register.

REGISTER DESCRIPTION

ADDRESS REGISTER

Writing a byte to the ADDRESS register will select the specified register for the next time the processor writes to or reads the EVTLC data registers. The data register addresses are as follows:

ADDRESS					TYPE	REGISTER			
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
x	x	x	x	0	1	1	0	Write	CHIP RESET
x	x	x	x	1	0	0	0	Write	TOSADD
x	x	x	x	1	0	0	1	Write	CURLO
x	x	x	x	1	0	1	0	Write	CURHI
x	x	x	x	1	0	1	1	Write	FILADD
x	x	x	x	1	1	0	0	Write	ATTDAT
x	x	x	x	1	1	0	1	RD/WR	CHARACTER
x	x	x	x	1	1	1	0	Write	MODE1 REGISTER
x	x	x	x	1	1	1	1	Write	MODE2 REGISTER

STATUS REGISTER

When reading the STATUS register, the DONE bit (DB7 of STATUS Register) will represent the current status of the CHARACTER register. This bit is used to synchronize data transfers between the processor and the EVTLC. The EVTLC will set the DONE bit to a logic one after completing a byte transfer command or a FILL operation. The DONE
bit is set to a logic zero by reading from, or writing to, the CHARACTER register. The processor must wait until the DONE bit is 1 before attempting to change the CURSOR ADDRESS, in order to write a character to, or read a character from, the CHARACTER register.

STATUS REGISTER

| DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DONE | \times |

DONE $=1$ signifies that external processor is allowed to access CURSOR ADDRESS and/or CHARACTER registers.
DONE $=0$ signifies that external processor must wait until EVTLC completes transfer of data between display memory and CHARACTER register.

DATA REGISTERS

FILADD (Fill Address) This register contains the RAM address of the character following the last address to be filled. Writing to this register will enable the EVTLC "fill" circuitry. The FILL operation will then be triggered by the next processor write to the CHARACTER register. The FILL operation will write the character in the CHARACTER register to every location in display memory starting with the address specified in the CURLO and CURHI registers through the location preceding the address specified in the FILADD register. The cursor position is not changed after a FILL operation. Note that the address bits DA3-DAO are internally forced to 0 forcing the FILADD address to be $00,16,32$, etc. to 1920. The CURLO and CURHI registers will not be changed by this operation. Writing to the CHARACTER register will cause the EVTLC to reset DB7 of the STATUS register to " 0 ". Bit 7 will be set to 1 after the EVTLC has filled the last memory location specified.

FILADD REGISTER					
DB7	DB6	DB5 DB4	DB3	DB2	DB1
X	DA10	DA9	DA8	DA7	DA6
DA5	DA4				

TOSADD (Top of Screen Address) This register contains the RAM address of the first character displayed at the top of the video monitor screen. In addition, this register controls selection of either of two mask programmable vertical scan rates.

TOSADD REGISTER			
DB7	DB6	DB5 DB4 DB3 DB2 DB1 DB0	
TIM	DA10	DA9 DA8 DA7 DA6 DA5 DA4	

Note that address bits DA3-DAO are internally forced to 0 forcing the first address at the beginning of each row to be 00, 16, 32, etc. to 1920.

The most significant bit of this register (TIM) is used to select between the two mask programmed sets of vertical retrace parameters (scan A and scan B). This allows software selection of, for example, $50 / 60 \mathrm{HZ}$.
TIM $=0$ enable raster scan $A(60 \mathrm{~Hz})$
TIM = 1 enable raster scan $B(50 \mathrm{~Hz})$

CURLO (Cursor Low) This register contains the eight lower order address bits of the RAM cursor address. All FILL screen and character transfer operations begin at the memory location pointed to by this address.

CURLO REGISTER

DB7	DB6	DB5 DB4 DB3 DB2 DB1 DB0
DA7	DA6	DA5 DA4 DA3 DA2 DA1 DA0

CURHI (Cursor High) This register contains the three higher address bits of the RAM cursor address (DA10, DA9, DA8). All FILL screen and character transfer operations begin at the memory location pointed to by this address. In addition, this register contains the Smooth Scroll Offset Values SS3-SSO which determine the number of scan lines that the data is shifted on the screen. The MSB of this register (SLE-status line enable) is the enable for the non-scrolling status line.

$\frac{\text { CURHI REGISTER }}{}$| DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 |
| :--- |
| SLE SS3 SS2 SS1 SS0 DA10 DA9 DA8 |
| SLE $=1$ enables non-scrolling 25th |
| status line |
| SLE $=\varnothing$ disables and blanks non- |
| scrolling status line |.

SS3-SS0 Smooth Scroll Offset Value
ATTDAT (Screen Attribute Data) Two attribute modes are provided. In the "tag bit" attribute mode, the MSB of each character is used to "tag" those characters which are to be enhanced with the attribute specified by the ATTDAT register. This allows individual characters to be attributed, but with the limitation that only one attribute style may be enabled for a specific screen. This is compatible with the CRT9028/9128, and is specified as the 9×28 operation mode. In the "embedded attribute" mode, multiple attributes may be displayed on one screen. This is specified as the 9×53 operation mode. See "MODE 2" register for selection of 9×28 and 9×53 modes.

The ATTDAT register specifies the visual attributes of the video data, in 9×28 operation mode, and the cursor presentation. The visual attributes specified in the ATTDAT register (DB3DBO) are enabled or disabled by a TAG bit that is appended to the ASCII character written to the CHARACTER register. Every character on the screen with its TAG bit set is displayed with the same attribute. Changing the Attribute register will change the attribute of every "tagged" character on the screen. Character attributes in the 9×53 mode are determined by specific attribute characters embedded in the character data stream as explained below in the section titled CHARACTER SETS. The functions of the remaining bits in the ATTDAT register are not
affected by the display character's TAG bit. NOTE: All 8 bits are valid for the 9×28 mode. In the 9×53 mode the only bits that are recognized are DB6, 5 and 4 .

ATTDAT REGISTER

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

$\begin{array}{ll}\text { DB7 } & \text { (1) } \\ & \text { MODE } \\ & \text { SELECT }\end{array}$	$\begin{aligned} \text { DB7 } & =1 \\ \text { DB7 } & =0 \end{aligned}$	enables graphics mode display (No attributes allowed) enables alpha mode display Note: See CHARACTER SETS for definition of characters available in each mode.

DB6 CURSOR DB6 $=1$ inhibits VIDEO disSUPPRESS play at cursor time by forcing the VIDEO output to background level during cursor display time
DB6 $=0$ enables VIDEO display at cursor time Note: A blinking cursor display can be achieved by toggling this bit under processor control.

DB5 CURSOR DB5 = 1 enables underline cursor display
DB5 $=0$ enables block cursor display Note: An underline cursor in an underline character attribute field will be dashed.

DB4 SCREEN DB4 $=1$ for white screen and black characters
DB4 $=0$ for black screen and white characters Note: This is a screen attribute (versus character attribute) bit and sets the default video background level.

${ }^{(1)}$ These bits not recognized in 9×53 mode and represent don't care states.

MODE 1 The AUTO INCREMENT bit in this register specifies whether or not the display memory character address is automatically incremented by the EVTLC after every read/write of the CHARACTER register. Note: The visible cursor position is not affected.

MODE 1 REGISTER

| DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AUTO | \times | \times | X | X | X | X | X | INC

DB7 AUTO $\quad \mathrm{DB7}=1$ to enable INCREMENT automatic character address
The RAM address is incremented after the EVTLC completes a display memory access initiated by a processor to RAM or RAM to processor character transfer.

DB7 $=0$ to disable automatic increment.

MODE 2 This register contains two bits which control operational modes of the device. DBO controls whether the device operates as a 9×53 or emulates the 9×28. In the 9×28 mode the device is fully compatible with the CRT 9028/ 9128 with the exception of the higher density character set. DB1 enables the cursor blink function where the blink rate is a mask programmable feature (see CRT 9053/9153 coding sheet.) This function is automatically disabled when in 9×28 mode.

MODE 2 REGISTER

DB1 CURSOR	DB1 =1 will enable
BLINK	blinking cursor.
	DB1 $=0$ will disable
	blinking cursor and state
	of cursor is controlled by
	DB6 in ATTDAT register.

DB0 9x53
ENABLE

> DB0 $=1$ will enable operation as a $9053 /$ 9153 .
> $D B=0$ will enable operation as $9028 / 9128$.

CHARACTER
This register allows access to the display memory for both byte transfers and FILL operations. In BYTE Transfer Write Mode, the processor first writes a character to this register. The EVTLC takes that character and stores it in the display memory in the location specified by the CURLO and CURHI registers. In Byte Transfer Read Mode, the processor reads this register causing the EVTLC to fetch the character whose address is specified in the CURLO and CURHI registers from the display memory and place it in the CHARACTER register. The processor then reads the character and initiates another fetch from memory cycle. In FILL mode, writing a byte to this register will initiate a FILL operation. All EVTLC/memory data transfers take place during horizontal and vertical video retrace blank time.

CHARACTER REGISTER
$\frac{\text { DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 }}{8 \text { BIT CHARACTER }}$ (2)
${ }^{(2)}$ See next section, CHARACTER SETS, for definition of 8 bit characters.

CHARACTER SETS

The character set consists of 128 characters, a six segment "wide graphics" and a four segment "thin graphics" entity. Included in the 128 mask programmable characters can be the 96 standard ASCII characters and 32 special characters.

9x28 OPERATION MODE (MODE 2: $\mathrm{DBO}=0$)

A. GRAPHICS MODE - (ATTDAT: DB7 = 1)

This mode allows an intermix of alphanumeric and graphics characters. No attributes are permitted in this mode. If DB7 $=1$, the character will be alphanumeric. If DB7 $=0$, the character will be a graphics character. DB7 is "tag bit".

ENTITY	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CHARACTER THIN(1)	1	1			CHARACTER DATA			
GRAPHICS	0	0	X	X	SEG4	SEG3	SEG2	SEG1
WIDE GRAPHICS	0	1	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

B. ALPHANUMERICS MODE- (ATTDAT:DB7 = 0)

This mode allows display of alphanumeric characters with attributes. If DB7 is set to a logical one, the attribute(s) specified in the ATTDAT register will be enabled for that character. If DB7 is cleared, attributes will not be enabled for that character. DB7 is "tag bit".

ENTITY	DB7	DB6	DB5	DB4	DB3	DB2	DB1
CHARACTER (Attr enabled)	1	1	DB0				
CHARACTER (No attribute)	0	1	CHARACTER DATA				

9x53 OPERATION MODE (MODE 2: DB0 = 1)

This mode allows the use of embedded field attributes where the desired attribute for any given string of one or more consecutive characters is defined by an attribute character which is part of the character data stream and is located immediately in front of the characters to be attributed. A second attribute character should be located immediately following the string of attributed characters to restore the normal display mode. Since the specific attribute characters occupy character positions, they are actually displayed as spaces.

ENTITY	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CHARACTER	0	1			CHARACTER DATA			
ATTRIBUTE								
CHARACTER	1	0	0	BLANK	BLINK	INT	UNDLN	RV
THIN(1) GRAPHICS	1	0	1	x	SEG4	SEG3	SEG2	SEG1
WIDE GRAPHICS	1	1	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

${ }^{(1)}$ Graphics segments are turned on when bit is set to a "1".
${ }^{(2)}$ A specific field attribute is enabled by setting the appropriate bit and disabled by resetting the bit. Attributes can be mixed. The following defines the available attributes indicated in the ATTRIBUTE CHARACTER.

DB4 (BLANK)-Suppresses character video output.
DB3 (BLINK)-Causes character to blink at mask programmed rate.
DB2 (INTENSITY)-Controls INTOUT output pin.
DB1 (UNDERLINE)-Causes character to be underlined.
DB0 (REVERSE VIDEO)-Reverses foreground/background video levels.

GRAPHICS CHARACTERS ${ }^{(3)}$

SEGMENT	SEGMENT
6	3
SEGMENT	SEGMENT
5	2
SEGMENT	SEGMENT
4	1

WIDE GRAPHICS ENTITY

	SEGMENT 3
SEGMENT 4	SEGMENT 2 SEGMENT 1
THIN GRAPHICS ENTITY	
(3) Scan line and column of segment	
locations are mask programmable.	

DESCRIPTION OF SYSTEM OPERATION

The EVTLC circuitry provides two control functions. One function interprets and controls data from the system processor interface through the data bus DB7-DB0 as shown in the Processor Timing of figure 3. The other function generates and refreshes the video image on the screen through the DD7-DD0 data bus as shown in the Display Memory Timing of figure 2. Because the system data bus is isolated from the display data bus, the EVTLC maintains complete control over access to display memory. All data flow between display RAM and the processor or the EVTLC takes place through the EVTLC. Refer to the EVTLC Display Memory Access Timing of figure 7.

DISPLAY MEMORY ACCESS

Processor/display memory access is accomplished through the CHARACTER register of the EVTLC. All processor transfers to or from the CHARACTER register take place only when the DONE bit is high. The DONE bit is used to synchronize data transfers between the EVTLC and the processor as shown in the Typical Processor To Display Memory Transfer of figure 6. When the processor needs to store a byte of data in the display memory, it will write the byte to the CHARACTER register of the EVTLC. The EVTLC will immediately reset the DONE bit indicating that the transfer hardware is busy. At the next blanked Video time, the EVTLC will store the byte in the display memory, increment the character address, (if auto increment is enabled) and set the DONE bit. When the processor needs to read a byte of data from the display memory, it will read the CHARACTER register. The EVTLC will fetch the desired byte from the display memory during the next blanked VIDEO time, increment the character address (if enabled), and set the DONE bit. When the processor detects that the DONE bit is set, it will read the CHARACTER register to get the data byte from the EVTLC. This read will reset the DONE bit and
cause the EVTLC to fetch the next byte of data from the memory.

If auto increment is not enabled, the processor must set the cursor address in the CURLO and CURHI register to the address of the memory location being read from, or written into, before every access to the CHARACTER register.

It should be noted that Auto Increment does not affect the visible cursor location. If auto-increment is enabled, the current character location will equal the cursor position only for the first character transfered following an update of the CURLO and CURHI registers. Note that the DONE bit must be high before attempting to update the cursor registers because the loading of the cursor registers will reset the character position counters to the cursor position.

SMOOTH SCROLL

The EVTLC may be programmed to do either "jump" or "smooth" scrolling. Jump scrolling moves the data up or down the monitor screen one data row at a time. Smooth scrolling moves the data up the monitor screen one scan line at a time. The number of scan lines and the rate they move up the screen is under processor control.

Smooth scroll is controlled through manipulation of the SS3-SS0 bits of the CURHI register. These bits represent the binary address of the first scan line of the first data row displayed on the monitor screen (the data row whose beginning address is in the TOSADD register). When the value represented by these bits is incremented, the video data on the monitor screen moves up by the same number of scan lines. After the address of the last scan line of the data row is loaded into the CURHI register and the VIDEO data has moved up the last scan line of the data row, the processor resets the SS3-SS0 address to point to scan line 0 and does a jump scroll. Jump scroll is accomplished by incrementing the RAM address in the TOSADD register by a data row length (so that it points to the address of the first character of the new top data row on the monitor).

When programmed for a data row of 80 characters/data row display (1920 data words), for example, the display RAM contains 25 actual rows of data (2000 RAM locations). If the smooth scroll offset equals zero, the EVTLC will display the 1919 RAM locations following the top of screen address when displaying data. The first data row is partially scrolled off the screen and the 25th data row is scrolled onto the screen when the smooth scroll offset is incremented. The EVTLC will now display the 1999 RAM locations following the top of screen address (wrapping to 0 after address 1999). After the EVTLC does a jump scroll, the processor will program it to erase the line just scrolled off the screen (preparing it to be scrolled onto the screen). This line now becomes the non-displayed 25th data row.

NON-SCROLLING STATUS LINE

The non-scrolling status line is only functional on a EVTLC that has been programmed for 25 data rows. This data row will remain stationary at the bottom of the screen and will not move up the screen when the remainder of the display data is scrolied. Otherwise, VIDEO data on the status line may be manipulated as though it were normal display data. The smooth scroll offset will not function properly when the status line is enabled. The memory address of the characters on the status line are always characters 1920-1999.
NOTE: If the part is programmed for 25 data rows an additional mask option must be specified which makes the 25 th data row either fixed (always displayed) or a status row (enabled/disabled by the SLE bit).

CHIP RESET

The CRT 9053 and CRT 9153 Chip Reset requires two steps. The system processor first writes the reset address to the address register of the EVTLC. The system processor then writes a dummy character to the EVTLC Data register. Writing to the Data register resets the chip. See the DONE timing in figure 6 . This reset process causes the MODE 2 register to be set to the " 00 " state which disables the blinking cursor and enables the 9×28 operation mode.

ROM CHARACTER BLOCK FORMAT												
COLUMN DOT	->	C8	C7	C6	C5	C4	C3	C 2	C1	C0		
SCAN LINE 0	->	0	0	0	0	0	0	0	0	0		
SCAN LINE 1	->	0								0	Dots/Character: 8 dots/character cell :=>C8-C1 displayed 9 dots/character cell $=>\mathrm{C8} \cdot \mathrm{C} 0$ displayed	
SCAN LINE 2	->	0								0	Column dot C 0 will be the same as column dot C 8 when more than 8 dots/character cell are specified when generating alpha-numerics.	
SCAN LINE 3	->	0								0	NOTE: The maximum dot clock crystal frequency is dependent on the dots/character programmed:	
SCAN LINE 4	->	0								0		
SCAN LINE 5	->	0		MASK PROGRAMMABLE CHARACTER BLOCK (FONT) 7×11						0	DOTS/CHARACTER	MAX XTAL FREQ
SCAN LINE 6	->	0								0	8 dots 9 dots	16.62 MHz max* 18.7 MHz max*
SCAN LINE 7	->	0								0	-These values are preliminary	
SCAN LINE 8	->	0								0	```Scan Lines per Character: 11 scan lines/character => SL0-SL10 displayed 12 scan lines/character => SL0-SL11 displayed 13 scan lines/character => SL0-SL12 displayed```	
										0		
SCAN LINE 9	->	0								0		
SCAN LINE 10	->	0								0	Thin and Wide Graphics: Dots mask programmed for vertical column C1 will be the same as backfill Columns 0 when generating wide and thin graphics.	
SCAN LINE 11	->	0								0		
SCAN LINE 12	->	0	0	0	0	0	0	0	0	0		
Mask programmable options-The ROM character block format above shows the 7X11 mask programmable character font within the character cell as defined by dots C 8 through C 0 and scan lines 0 through 12.												

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .) $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground
$+8.0 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T A=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted.)

PARAMETER		MIN	TYP	MAX	UNIT
DC CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low-level, Vil					
High-Level, Vih					
OUTPUT VOLTAGE LEVELS					
Low-level, Vol					

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Address Hold Time $\mathrm{t}_{\mathrm{AHT}}$	50			ns	
Output Hold From Address Change t_{OH}	15			ns	
Address Access Time $t_{A A}$			250	ns	
PROCESSOR TIMING Address Read/Write Set-up	160			ns	
Write Pulse Width $t_{\text {WPW }}$	160			ns	
Write Hold Time $\mathrm{t}_{\text {WHT }}$	15			ns	
Read Set-up Time $t_{\text {RST }}$			200	ns	
Read Data Valid Thov	0			ns	
Read Pulse Width $t_{\text {tpw }}$	250			ns	
Data Write Falling Set-up $t_{\text {DWFS }}$	120			ns	
Data Write Rising Set-up $t_{\text {DWRS }}$	160			ns	

Crystal specification (Applies for 4-18.7 MHz):
Series Resonant
50 ohms max series resistance
1.5 pf typ parallel capacitance

Operation below 4 MHz requires external crystal oscillator

NOTE: DISPLAY ADDRESS BUS DA10-DAO MUST NOT CHANGE WHILE DWR IS LOW
FIGURE 2. DiSPLAY MEMORY TIMING

FIGURE 3. PROCESSOR TIMING

NOTE: Video parameters above are mask programmable
FIGURE 4. VERTICAL AND HORIZONTAL SYNC TIMING

NOTE: Delays between pulse edges and pulse width values may vary due to mask programmable features.
*H represents horizontal interval

FIGURE 5. VIDEO SIGNAL TIMING

FIGURE 6. TYPICAL PROCESSOR TO DISPLAY MEMORY TRANSFER

I. ROM CHARACTER BLOCK FORMAT:

DOTS PER CHARACTER:
DOT CLOCK XTAL FREQUENCY (MHz):
17.1072
II. HORIZONTAL TIMING (IN CHARACTER TIMES):

CHARACTERS PER DATA ROW: 80
HORIZONTAL BLANKING: 19
HORIZONTAL SYNC DELAY: 4
HORIZONTAL SYNC PULSE WIDTH: 8
HORIZONTAL SYNC POLARITY: NEGATIVE ACTIVE

HSYNC

III. VERTICAL TIMING:

CHARACTER ROWS: 25
SCAN LINES PER CHARACTER: $\frac{\times 12}{300}$
TOTAL VISIBLE SCAN LINES:
NEGATIVE ACTIVE
IV. VERTICAL SYNC TIMING (IN SCAN LINES):

60 Hz VERTICAL BLANKING: 20
60 Hz VERTICAL SYNC DELAY: 4
60 Hz VERTICAL SYNC PULSE WIDTH: 8
ALTERNATE (50 Hz) VERTICAL BLANKING: 84
ALTERNATE (50 Hz) VERTICAL SYNC DELAY: 17
ALTERNATE (50 Hz) VERTICAL SYNC PULSE WIDTH: 34

VSYNC

v. COMPOSITE SYNC OUTPUT (IN CHARACTER TIMES)

COMPOSITE SYNC DELAY:
2
COMPOSITE SYNC PULSE WIDTH:

VI. BLINK RATES (@ 60 Hz VSYNC):

CHARACTER-
BLINK RATE: $\quad 1.25 \mathrm{~Hz}$
DUTY CYCLE: 75/25
CURSOR-
BLINK RATE: $\quad 2.5 \mathrm{~Hz}$
DUTY CYCLE: 50/50
VII. UNDERLINE ATTRIBUTE:

CHARACTER UNDERLINE:
CURSOR UNDERLINE:

SCAN LINE 11
SCAN LINE 11
VIII. WIDE GRAPHICS FIGURE DEFINITION:

COLUMN ->		3 C 2 C 1		
SCAN LINE $0 \rightarrow$			${ }^{7}$	
SCAN LINE $1 \rightarrow$				
SCAN LINE 2 ->	SEGMENT 6	SEGMENT 3	H 2	
SCAN LINE $3->$				H2 = SCAN LINES 0, 1, 2, 3
SCAN LINE 4 ->			*	
SCANLINE 4 ->				H1 = SCAN LINES 4, 5, 6, 7
SCAN LINE $5 \rightarrow$				
SCAN LINE $6 \rightarrow$	SEGMENT 5	SEGMENT 2	H1	H0 = SCAN LINES 8, 9, 10, 11
SCAN LINE $7 \rightarrow>$				$\mathrm{W} 1=\mathrm{C}, \mathrm{C} 7, \mathrm{C} 6, \mathrm{C}, \mathrm{C} 4$
SCAN LINE 8 ->			7	
SCAN LINE 8 ->				$W_{0}=C 3, C 2, C 1, C 0$
SCAN LINE 9 ->	SEGMENT 4	SEGMENT 1	HO	
SCAN LINE $10->$	SEGMENT 4	SEGMENT 1		
SCAN LINE $11->$			1	

IX. THIN GRAPHICS FIGURE DEFINITION:

\section*{STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible

Double Row Buffer DRB

FEATURES

Low Cost Solution to CRT Memory Contention ProblemProvides Enhanced Processor Throughput for CRT Display SystemsReplaces Shift Registers or Several RAM and Counter IC's in CRT Display SystemPermits Display of One Data Row While Next Data Row is Being LoadedData May be Written into Buffer at Less Than the Video Painting RateDouble Data Row Buffer Permits Second Data Row to be Loaded Anytime during the Display of the Preceding Data RowPermits Active Video on All Scan Lines of Data RowDynamically Variable Number of Characters per Data Row-...64, 80, 132, ...up to a Maximum of 135Cascadable for Data Rows Greater than 135 CharactersStackable for "Invisible Attributes"
or Character Widths of Greater than 8 Bits

PIN CONFIGURATION

Three-State Outputs
\square Up to 4 MHz Read/Write Data Rate
\square Compatible with SMC CRT 5037, CRT 9007, and other CRT Controllers
$\square 28$ Pin Dual-In-Line Package
$\square+5$ Volt Only Power SupplyTTL Compatible

GENERAL DESCRIPTION

The CRT 9212 Double Row Buffer (DRB) provides a low cost solution to memory contention between the system processor and the CRT controller in video display systems.

The CRT 9212 DRB is a RAM-based buffer which provides two rows of buffering. It appears to the system as two octal shift registers of dynamically variable length ($2-135$ bytes) plus steering logic.

The CRT 9212 permits the loading of one data row
while the previous data row is being displayed. The loading of data may take place during any of the scan line times of the data row. This relaxed time-constraint allows the processor to perform additional processing on the data or service other high priority interrupt conditions (such as a Floppy Disk DMA request) which may occur during a single video scan line. The result is enhanced processor throughput and flicker-free display of data.

FIGURE 2: CRT 9212 DOUBLE ROW BUFFER READ TIMING

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
$\begin{gathered} 3-0,28, \\ 16-13 \\ \hline \end{gathered}$	Data inputs	DIN0-DIN7	DINO-DIN7 are the data inputs from the system memory.
12-9, 7-4	Data outputs	DOUTODOUT7	DOUT0-DOUT7 are the data outputs from the CRT 9212 internal data output latch. Valid information will appear on DOUTO-DOUT7 two RCLK periods after the rising edge of REN. This introduces two pipeline delays when supplying data to the character generator.
17	Read Clock	$\overline{\text { RCLK }}$	"read" buffer and moves data through the internal pipeline at the trailing edge.
18	Toggle Signal	$\overline{\text { TOG }}$	TOG alternates the function of each buffer between read and write. TOG normally occurs at every data row boundary. Switching of the buffers occurs when both TOG and CLRCNT are low.
19	$\overline{\text { Clear Counter }}$	$\overline{\text { CLRCNT }}$	Clear Counter clears the current "read" address counter at the next RCLK positive edge. CLRCNT is normally asserted low at the beginning of each horizontal retrace interval. CLRCNT clears the current "write" address counter when the TOG is active.
20	Read Enable	REN	REN enables the loading of data from the selected "read" buffer into the output latch. Data is loaded when Read Clock is active.
21	Write Overflow	WOF	WOF high indicates that data is being written into the last memory position (position 135). When WOF is high, further writing into the selected "write" buffer is disabled. WOF may be connected to the WEN1 or WEN2 inputs of a second CRT 9212 for cascaded operation where data row lengths of greater than 135 characters are desired. See figure 4.
22	Read Overflow	ROF	The Read Overflow output is high when data is being read from the last memory position (position 135). ROF high disables further reading from the selected "read" buffer. ROF may be connected to the REN input of a second CRT 9212 for cascaded operation where data row lengths of greater than 135 characters are desired. DOUTO-7 will switch into a high impedance state at the second positive transition of RCLK after ROF goes high. See figure 4.
24, 25	Write Enable	WEN1, WEN 2	WEN allows input data to be written into the selected "write" buffer during WCLK active. Both WEN1 and WEN 2 must be high to enable writing. WEN1 has an internal pullup resistor allowing it to assume a high if pin 24 is left open.
26	Output Enable	$\overline{O E}$	When the $\overline{O E}$ input is low, the data outputs DOUTO-DOUT7 are enabled. When OE is high, DOUTO-DOUT7 present a high impedance state. OE has an internal pulldown resistor allowing it to assume a low if pin 26 is left open.
27	$\overline{\text { Write Clock }}$	$\overline{\text { WCLK }}$	WCLK clocks input data into the selected "write" buffer and increments the current "write" address register when WEN1 and WEN2 are high.
8	Power Supply	$V_{c c}$	+5 Volt supply
23	Ground	GND	Ground

OPERATION

Figure 1 illustrates the internal architecture of the CRT 9212. It contains 135 bytes of RAM in each of its two buffers. In normal operation, data is written into the input latch on the positive-going edge of Write Clock (WCLK). When both Write Enable (WEN1, WEN 2) signals go high, the next WCLK causes data from the input latch to be written into the selected buffer (1 or 2) and the associated address counter to be incremented by one. Loading of the selected RAM buffer continues until WEN goes inactive or until the buffer has been fully loaded. At the next data row boundary, the Toggle Signal (TOG) will go low. When Clear Counter (CLRCNT) goes low, the next Read Clock ($\overline{\mathrm{RCLK}}$) will begin to reset both buffer address counters to zero, switching the buffer just loaded from a "write buffer" to a "read buffer", permitting the next row of data to be written into the other buffer. Data from the current "read" buffer is read out of the buffer and to the output latch whenever Read Enable (REN) is high during a Read Clock ($\overline{\text { RCLK }}$). Each read-out from
the buffer RAM causes the "read" address counter to be incremented. REN is normally high during the entire visible line time of each scan line of the data row. CLRCNT resets the present "read" address counter. The negative edge of CLRCNT is detected by the CRT 9212 and the internal "read" address counter is cleared independent of the CLRCNT pulse width. The CLRCNT input may be tied to the REN input for proper operation.

Figures 2 and 3 illustrate the functional timing for reading and writing the CRT 9212. It is possible to cascade two or more CRT 9212's to allow for data storage greater than 135 bytes by employing the read overflow (ROF) and write overflow (WOF) outputs. Figure 4 illustrates two CRT 9212's cascaded together.

The CRT 9212 is compatible with the CRT 9007 video processor and controller (VPAC $^{\text {™ }}$) and the CRT 8002 video display attributes controller (VDAC ${ }^{\text {™ }}$). A typical video configuration employing the three parts is illustrated in figure 5.

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .)
$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground . -0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$)

PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS
DC CHARACTERISTICS INPUT VOLTAGE LEVELS Low Level V_{IL} High Level V_{1+1} High Level $\mathrm{V}_{\text {H2 }}$	$\begin{aligned} & 2.0 \\ & 4.2 \\ & \hline \end{aligned}$		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	excluding $\overline{R C L K} ; \overline{W C L K}$ RCLK, WCLK
OUTPUT VOLTAGE LEVELS Low Level V_{oL} High Level V_{OH}	2.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	
INPUT LEAKAGE CURRENT High Leakage $\mathrm{I}_{\text {LH1 }}$ Low Leakage I_{LL} High Leakage $\mathrm{I}_{\mathrm{LH} 2}$ Low Leakage $I_{\text {LL }}$			$\begin{array}{r} 10 \\ 10 \\ 400 \\ 400 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	excluding $\overline{O E}$ excluding WEN1 WEN1 $\overline{O E}$
INPUT CAPACITANCE $\mathrm{C}_{\mathrm{IN1}}$ $\mathrm{C}_{1 \mathrm{~N}_{2}}$		$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	excluding $\overline{\text { RCLK }}, \overline{\text { WCLK }}$ RCLK, WCLK
POWER SUPPLY CURRENT $l_{c c}$		100		mA	

AC CHARACTERISTICS ${ }^{1}$

$\mathrm{t}_{\text {crw }}$	300			ns	Write clock period
$\mathrm{t}_{\text {cYR }}$	300			ns	Read clock period
$\mathrm{t}_{\text {cKH }}$	247		DC	ns	
$\mathrm{t}_{\text {ckL }}$	33			ns	
$\mathrm{t}_{\text {ckR }}$			10	ns	measured from 10\% to 90\% points
$\mathrm{t}_{\text {ckF }}$			10	ns	measured from 90% to 10\% points
t_{DS}	50			ns	referenced to WCLK
t_{DH}	0			ns	referenced to WCLK
$\mathrm{t}_{\mathrm{EN} \mathbf{1}^{2}}$	0			ns	
$\mathrm{t}_{\text {EN2 }}{ }^{2}$	100			ns	
$\mathrm{t}_{\text {ENH }}{ }^{2}$	0			ns	
t_{Dv}			175	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; referenced from $\overline{\mathrm{RCLK}}$
$\mathrm{t}_{\text {DoFF }}$			175	ns	
$\mathrm{t}_{\text {Don }}$			175	ns	
$\mathrm{t}_{0{ }^{3}}$			175	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
t_{cs}	100			ns	
${ }_{\text {t }}^{\mathrm{t}_{\mathrm{cH} \mathrm{T}^{4}}}$	0	$1 t_{\text {crw }}$		ns	

1 - Reference points for all AC parameters are 2.4 V high and 0.4 V low.
2 - For REN, referenced from RCLK; for WEN1 or WEN2 referenced to WCLK.
3 - For ROF, referenced from $\overline{\text { RCLK }}$; for WOF referenced from WCLK.
4 - At least 1 WCLK rising edge must occur between CLRCNT or TOG (whichever occurs last) and WEN (= WEN1-WEN2).

FIGURE 5: CRT 9212 CONFIGURED WITH THE CRT 9007 VPAC AND THE CRT 8002 VDAC ${ }^{\text {M }}$

FIGURE 6: CRT 9212 I/O TIMING

FIGURE 3: CRT 9212 DOUBLE ROW BUFFER WRITE TIMING

FIGURE 4: CRT 9212 CASCADED CONFIGURATION FOR DATA ROW LENGTHS UP TO 270 CHARACTERS

Video Engine for Windows VIEW

FEATURES

$\square 127$ Independent Windows Max per ScreenWindows Specified Relative to Screen Window Number
$X-Y$ Start Coordinate
X-Y End Coordinate
Display Memory Address
\square Attributes Can be Specified on a Window Basis Window Priority
8 Parallel Attributes per Window
Background Windows
$\square 32$ Max Visible Horizontal Breaks per Scan LineThree Internal Break BuffersProgrammable Cursor OutputFully Programmable Display FormatNormal or Interlaced DisplayExternal Synchronization of Horizontal and Vertical Drives AvailableIndependent Display and System Buses 24 Bit X-Y Display Memory Address Bus 16 Bit Address/Data Bus to System MemorySeparate Clocks for Display and System BusesDMA Master Capabifity for Interfacing to System Memory

PIN CONFIGURATION

Automatic and Transparent Dynamic RAM Refresh for Display Memory

GENERAL DESCRIPTION

The CRT 97C11 Video Engine for Windows (VIEW) is a third generation CRT controller that is designed to support twodimensional mapping of video data to a display screen. The VIEW can be used in both bit-map and alphanumeric types of display interfaces. It allows real time manipulation of independent windows on the screen with a minimum of processor intervention.
The system or graphics processor communicates with the VIEW via a window list in system memory. The size and screen location of each window and address pointers to the contents of each window are maintained in this list. The VIEW generates display memory addresses by reconciling the X and Y memory address coordinates at which the win-
dows start and end with the X and Y raster addresses. The VIEW preprocesses and stores this information in three internal break buffers.
As the VIEW generates the display memory addresses for the windows, it automatically resolves priority conflicts that arise when two or more windows overlap. Background windows are output by repetitively addressing a pattern word which significantly optimizes the use display memory. The VIEW can also buffer and output general purpose attribute bits for each window that it displays as it generates that window's addresses. Automatic dynamic RAM refresh addressing during horizontal and vertical retrace intervals is also supported.

Floppy Disk/Hard Disk

$\begin{gathered} \text { Part } \\ \text { Number } \end{gathered}$	Description	Sector/ Format	Density	$\begin{gathered} \text { Data } \\ \text { Bus } \\ \hline \end{gathered}$	Side/Head Select Output	Power Supplies	Package	Page
FDC765A/765-2	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	40 DIP	459-474
FDCT265	Micro Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	40 DIP	459-474
FDC72C65	CMOS Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \mathrm{PLCC} \end{aligned}$	475-476
FDCr2C66	CMOS Micro Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	$\begin{aligned} & 40 \mathrm{DIP} \text { } \\ & 44 \mathrm{PLCC} \end{aligned}$	475-476
FDC9266	Floppy Disk Controller/Formatter with data separator, and write precompensation generator	Soft	Double	True	Yes	+5	40 DIP/ 44 PLCC	523-538
FDC9267	Floppy Disk Controller/Formatter with high performance analog data separator and write precompensation generator	Soft	Double Quad	True	Yes	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \text { PLCC } \end{aligned}$	539-554
FDC9268	Enhanced Floppy Disk Controller/ Formatter with Data Separator and Write Precompensation Generator	Soft	Double Quad	True	Yes	+ 5	$\begin{gathered} 40 \mathrm{DIP} l \\ 44 \text { PLCC } \end{gathered}$	555-556
FDC9216/B	Floppy Disk Data Separator	Soft/Hard	Double	NA	NA	+5	8 DIP	493-496
FDC9229T/BT	Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double	NA	NA	+5	$\begin{array}{r} 20 \text { DIP } \\ 28 \text { PLCC } \end{array}$	497-504
FDC92036/B	Enhanced CMOS Floppy Disk Data Separator	Soft/Hard	Double Quad	NA	NA	+5	8 DIP	505-508
FDC9238/B/BT/T	Enhanced CMOS Floppy Disk Data Separator and Clock Generator	Soft/Hard	Double Quad	NA	NA	+5	14 DIP	509-512
FDC9239B/BT/T	Enhanced CMOS Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double Quad	NA	NA	+5	$\begin{aligned} & 20 \text { DIP } 1 \\ & 28 \text { PLCC } \end{aligned}$	513.520
FDC92C49	Analog CMOS Floppy Disk Data Separator, Head Load Timer, Write Precompensation Generator	Soft/Hard	Double Quad	NA	NA	+5	24 DIP 1 28 PLCC	521-522
FDC1791	Floppy Disk Controller/Formatter	Soft	Double	Inverted	No	+5, +12	40 DIP	477.492
FDC1793	Floppy Disk Controller/Formatter	Soft	Double	True	No	+5, +12	40 DIP	477-492
FDC1795	Floppy Disk Controller/Formatter	Soft	Double	Inverted	Yes	+5, +12	40 DIP	477-492
FDC1797	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5, +12	40 DIP	477-492
FDC9791	Floppy Disk Controller/Formatter	Soft	Double	Inverted	No	+5	40 DIP	557-572
FDC9793	Floppy Disk Controller/Formatter	Soft	Double	True	No	+5	40 DIP	557.572
FDC9795	Floppy Disk Controller/Formatter	Soft	Double	Inverted	Yes	+5	40 DIP	557.572
FDC9797	Floppy Disk Controller/Formatter	Soft	Double	True	Yes	+5	40 DIP	557.572
HDC1100-XX	Hard Disk Controller	Soft	Double	True	NA	+ 5	20 DIP	573-592
HDCY261	Hard Disk Controller (ST506/SMD)	Soft/Hard	Double	True	Yes	+5	40 DIP	593-594
HDC9223	Analog Data Separator Support Circuit	Soft	Double	NA	NA	+12	14 DIP	595-598
HDC9224	Hard/Floppy Disk Controller Up to 4 drives with tape back-up	$\begin{array}{\|c\|} \text { Soft } \\ \text { (ST-506) } \\ \hline \end{array}$	Double	True	Yes	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \text { PLCC } \\ & \hline \end{aligned}$	599-634
HDC9225	Disk Buffer Management Unit	ST-506	Double	True	NA	+5	48 DIP	635-646
HDC9226	Hard Disk Data Separator	ST-506	Double	NA	NA	+5	$\begin{array}{r} 24 \mathrm{DIP}! \\ 28 \mathrm{PLCC} \\ \hline \end{array}$	647-654
HDC922T	High Performance Hard Disk And Floppy Disk Data Separators	$\begin{array}{c\|} \hline \text { Soft } \\ \text { (ST-506) } \\ \hline \end{array}$	Double Quad	NA	N.A	+5	28 DIP	655-662

Single/Double Density Floppy Disk Controller

FEATURES
\square IBM Compatible in both Single and Double Density Recording Formats (FDC765A)Sony (EMCA) Compatible Recording Format (FDC7265)Programmable Data Record Lengths: 128, 256, 512, or 1024 Bytes/SectorMulti-Sector and Multi-Track Transfer Capability Drive Up to 4 Floppy DisksData Scan Capability-will scan a Single Sector or an entire cylinder's worth of data fields, comparing on a Byte by Byte Basis, data in the Processor's Memory with data read from the DisketteData Transfers in DMA or Non-DMA Mode
Parallel Seek Operations on up to four drives
Compatible with Most Microprocessors
Single Phase 8 MHz Clock
Single +5 Volt Power Supply
COPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate Technology
\square Available in 40-Pin Dual-in-Line Package

PIN CONFIGURATION

GENERAL DESCRIPTION

The FDC765A is an LSI floppy disk controller (FDC) chip, which contains the circuitry and control functions for interfacing a processor to 4 floppy disk drives. It is capable of either IBM 3740 single density format (FM), or IBM System 34 double density format (MFM) including double-sided recording. The FDC765A provides control signals which simplify the design of an external phase-locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy disk interface.
The FDC7265 is an addition to the FDC family that has been designed specifically for the Sony Micro Floppydisk ${ }^{\oplus}$ drive. The FDC7265 is pin-compatible and electrically equivalent to the 765A but utilizes the Sony recording format. The FDC7265 can read a diskette that has been formatted by the FDC765A.
Each of these devices is also available in a -2 version. The -2 versions represent a reduction from 4 -micron to 3 -micron design rule. Functionally is the same. Minor differences between the two versions are detailed in the AC Characteristics table. The -2 versions are only available in the plastic package at this time.
Hand-shaking signals are provided in the FDC765A/ FDC7265 which make DMA operation easy to incorporate with the aid of an external DMA controller chip. The FDC will operate in either the DMA or non-DMA mode. In the nonDMA mode the FDC generates interrupts to the processor
every time a data byte to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.
There are 15 commands which the FDC765A/FDC7265 will execute. Each of these commands requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

> Read Data
> Read ID
> Specify
> Read Track
> Scan Equal
> Scan High or Equal Scan Low or Equal

Read Deleted Data
Write Data
Format Track
Write Deleted Data
Seek
Recalibrate
Sense Interrupt Status
Sense Drive Status

Address mark detection circuitry is internal to the FDC which simplifies the phase-locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable. The FDC765A/ FDC7265 offers additional features such as multi-track and multi-side read and write commands and single and double density capabilities.

BLOCK DIAGRAM

SYSTEM CONFIGURATION

DESCRIPTION OF PIN FUNCTIONS

PIN			INPUT/ OUTPUT	$\begin{gathered} \text { CONNECTION } \\ \text { TO } \\ \hline \end{gathered}$	FUNCTION
NO.	SYMBOL	NAME			
1	RST	Reset	Input	Processor	Places FDC in idle state. Resets output lines to FDD to " 0 " (low). Does not effect SRT, HUT or HLT in Specify command. If RDY pin is held high during Reset, FDC will generate interrupt 1.024 ms later. To clear this interrupt use Sense Interrupt Status command.
2	$\overline{\mathrm{RD}}$	Read	Input(1)	Processor	Control signal for transfer of data from FDC to Data Bus, when "0" (low).
3	$\overline{\mathrm{WR}}$	Write	Input(1)	Processor	Control signal for transfer of data to FDC via Data Bus, when "0" (low).
4	$\overline{\mathrm{CS}}$	Chip Select	Input	Processor	IC selected when " 0 " (low), allowing $\overline{R D}$ and $\overline{W R}$ to be enabled.
5	A_{0}	Data/Status Reg Select	Input(1)	Processor	Selects Data Reg ($\mathrm{A}_{0}=1$) or Status Reg ($\mathrm{A}_{0}=0$) contents of the FDC to be sent to Data Bus.
6-13	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Data Bus	Input(1) Output	Processor	Bi-Directional 8-Bit Data Bus.
14	DRQ	Data DMA Request	Output	DMA	DMA Request is being made by FDC when DRW = " 1 '.
15	$\overline{\text { DACK }}$	DMA Acknowledge	Input	DMA	DMA cycle is active when " 0 " (low) and Controller is performing DMA transfer.
16	TC	Terminal Count	Input	DMA	Indicates the termination of a DMA transfer when " 1 " (high). It terminates data transfer during Read/Write/Scan command in DMA or interrupt mode.
17	IDX	Index	Input	FDD	Indicates the beginning of a disk track.
18	INT	Interrupt	Output	Processor	Interrupt Request Generated by FDC.
19	CLK	Clock	Input		Single Phase 8 MHz Squarewave Clock.
20	GND	Ground			D.C. Power Return.
21	WCK	Write Clock	Input		Write data rate to FDD. FM $=500$ $\mathrm{kHz}, \mathrm{MFM}=1 \mathrm{MHz}$, with a pulse width of 250 ns for both FM and MFM.
22	RDW	Read Data Window	Input	Phase Lock Loop	Generated by PLL, and used to sample data from FDD.
23	RDD	Read Data	Input	FDD	Read data from FDD, containing clock and data bits.
24	VCO	VCO Sync	Output	Phase Lock Loop	Inhibits VCO in PLL when " 0 " (low), enables VCO when " 1 ."
25	WE	Write Enable	Output	FDD	Enables write data into FDD.
26	MFM	MFM Mode	Output	Phase Lock Loop	MFM mode when " 1 ," FM mode when " 0 ."
27	HD	Head Select	Output	FDD	Head 1 selected when " 1 " (high). Head 2 selected when " 0 " (low).
28,29	US ${ }_{1}, \mathrm{US}_{0}$	Unit Select	Output	FDD	FDD Unit Selected.
30	WDA	Write Data	Output	FDD	Serial clock and data bits to FDD.
31, 32	$\mathrm{PS}_{1}, \mathrm{PS}_{0}$	Precompensation (pre-shift)	Output	FDD	Write precompensation status during MFM mode. Determines early, late, and normal times.
33	FLT/TR ${ }_{0}$	Fault/Track 0	Input	FDD	Senses FDD fault condition, in Read/Write mode; and Track 0 condition in Seek mode.
34	WP/TS	Write Protect/ Two-Side	Input	FDD	Senses Write Protect status in Read/Write mode; and Two Side Media in Seek mode.

DESCRIPTION OF PIN FUNCTIONS

PIN			INPUT/ OUTPUT	$\begin{gathered} \text { CONNECTION } \\ \text { TO } \end{gathered}$	FUNCTION
NO.	SYMBOL	NAME			
35	RDY	Ready	Input	FDD	Indicates FDD is ready to send or receive data.
36	HDL	Head Load	Output	FDD	Command which causes read/ write head in FDD to contact diskette.
37	FR/STP	Fit Reset/Stop	Output	FDD	Resets fault F.F. in FDD in Read/ Write mode, contains stop pulses to move head to another cylinder in Seek mode.
38	LCT/DIR	Low Current/ Direction	Output	FDD	Lowers Write current on inner tracks in Read/Write mode, determines direction head will stop in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal.
39	$\overline{\mathrm{RW}} / \mathrm{SEEK}$	Read Write/SEEK	Output	FDD	When "1" (high) Seek mode selected and when " 0 " (low) Read/ Write mode selected.
40	$V_{c c}$	+5V			DC Power.

Note: (1) Disabled when CS = 1 .

DESCRIPTION OF INTERNAL REGISTERS

The FDC765A/7265 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8-bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and used to
facilitate the transfer of data between the processor and FDC.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and A_{0} is shown below.

\mathbf{A}_{0}	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	FUNCTION
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
DB_{0}	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB ${ }_{1}$	FDD 1 Busy	D, B	FDD number 1 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB2	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	FDD number 2 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{3}	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB_{4}	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
DB5	Execution Mode	EXM	This bit is set only during execution phase in non-DMA mode. When DB_{5} goes low, execution phase has ended, and result phase was started. It operates only during NON-DMA mode of operation.
DB6	Data Input/Output	DIO	Indicates direction of data transfer between FDC and Data Register. If DIO = " 1 " then transfer is from Data Register to the Processor. If DIO = " 0 ", then transfer is from the Processor to Data Register.
DB_{7}	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the Processor. Both bits DIO and RQM should be used to perform the hand-shaking functions of "ready" and "direction" to the processor.

The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus. The max time between the last RD or WR during command or result phase and DIO and RQM getting set or reset is $12 \mu \mathrm{~s}$. For this reason every time Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The max time from the trailing edge of the last RD in the result phase to when DB_{4} (FDC Busy) goes low is $12 \mu \mathrm{~s}$.

COMMAND SEQUUENCE

The FDC is capable of performing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the FDC and the processor, it is convenient to consider each command as consisting of three phases:
Command Phase: The FDC receives all information required to perform a particular operation from the processor.
Execution Phase: The FDC performs the operation it was instructed to do.
After completion of the operation, status and other housekeeping information are made available to the processor.

COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
A	Address Line 0	A_{0} controls selection of Main Status Register ($\mathrm{A}_{0}=0$) or Data Register ($\mathrm{A}_{0}=1$).
C	Cylinder Number	C stands for the current/selected Cylinder (track) number 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a Sector.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8 -bit Data Bus, where D_{7} stands for a most significant bit, and D_{0} stands for a least significant bit.
DTL	Data Length	When N is defined as 00 , DTL stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder. During Read or Write operation FDC will stop data transfer after a sector \# equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1 , as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ($\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a read or write operation has occurred (16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multi-Track	If $M T$ is high, a multi-track operation is to be performed. If $M T=1 \cdot$ after finishing Read/Write operation on side 0 FDC will automatically start searching for sector 1 on side 1 .
N	Number	N stands for the number of data bytes written in a Sector.
NCN	New Cylinder Number	NCN stands for a new Cylinder number, which is going to be reached as a result of the Seek operation. Desired position of Head.
ND	Non-DMA Mode	ND stands for operation in the Non-DMA Mode.
PCN	Present Cylinḍer Number	PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS Command. Position of Head at present time.
R	Record	R stands for the Sector number, which will be read or written.
R/W	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address Mark.
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD. (1 to 16 ms in 1 ms increments.) Stepping Rate applies to all drives, ($F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, etc.).
ST0 ST1 ST2 ST3		ST 0-3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $\mathrm{A}_{0}=0$). ST 0-3 may be read only after a command has been executed and contain information relevant to that particular command.
STP		During a Scan operation, if STP $=1$, the data in continguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP $=2$, then alternate sectors are read and compared.
US0, US1	Unit Select	US stands for a selected drive number 0 or 1.

INSTRUCTION SET (1) (2)

Note: (1) Symbols used in this table are described at the end of this section.
(2) A0 should equal binary 1 for all operations.
(3) $\mathrm{x}=$ Don't care, usually made to equal binary 0 .

INSTRUCTION SET (CONT.)

FUNCTIONAL DESCRIPTION OF COMMANDS

Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number ("R") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data
from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal; the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and theh at the end of the sector terminate the Read Data Command.

The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.

Multi-Track MT	MFM/FM MF	$\begin{gathered} \text { Bytes/Sector } \\ \mathrm{N} \end{gathered}$	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskette
$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & (128)(26)=3,328 \\ & (256)(26)=6,656 \end{aligned}$	26 at Side 0 or 26 at Side 1
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & (128)(52)=6,656 \\ & (256)(52)=13,312 \end{aligned}$	26 at Side 1
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & (256)(15)=3,840 \\ & (512)(15)=7,680 \\ & \hline \end{aligned}$	15 at Side 0 or 15 at Side 1
$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & (256)(30)=7,680 \\ & (512)(30)=15,360 \end{aligned}$	15 at Side 1
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	$\begin{aligned} (512)(8) & =4,096 \\ (1024)(8) & =8,192 \end{aligned}$	8 at Side 0 or 8 at Side 1
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	$\begin{aligned} (512)(16) & =8,192 \\ (1024)(16) & =16,384 \end{aligned}$	8 at Side 1

Table 1. Transfer Capacity

The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1 , Side 0 and completing at Sector L, Side 1 (Sector L = last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, the DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.
If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

Write Data

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified Head Settling Time (defined in the Specify Command), and begins reading ID Fields. When all four bytes loaded during the command ($\mathrm{C}, \mathrm{H}, \mathrm{R}, \mathrm{N}$) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.
After writing data into the current sector, the Sector Number stored in " R " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) flag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- EN (End of Cylinder) Flag

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ($\mathrm{SK}=0$), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when $S K=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode, or the FDC sets the OR (Over Ruri) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the value for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N , when the processor terminates the Command.

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	0	Equal to EOT	C + 1	NC	$R=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$\mathrm{C}+1$	NC	$\mathrm{R}=01$	NC
0	0	Less than EOT	NC	NC	$R+1$	NC
	0	Equal to EOT	NC	LSB	$R=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	C + 1	LSB	$R=01$	NC

Notes: 1. NC (No Change): The same value as the one at the beginning of command execution.
2. LSB (Least Significant Bit): The least significant bit of H is complemented.

- ND (No Data) Flag
- Head Unload Time Interval
- ID Information when the processor terminates command (see Table 2)
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every 27μ s in the FM mode, and every 13μ s in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

Write Deleted Data

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

Read Deleted Data

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field and SK $=0$ (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If SK $=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

Read A Track

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire

Format	Sector Size	N	SC	GPL(1	GPL(3)(3)
8' Standard Floppy					
FM Mode	128 bytes/sector	00	1A	07	1B
	256	01	OF	0E	2 A
	512	02	08	1B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode (4)	256	01	1A	OE	36
	512	02	OF	1 B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM Mode (4)	256	01	12	OA	OC
	256	01	10	20	32
	512	02	08	2 A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF
$311 / 2^{\prime \prime}$ Sony Micro Floppydisk ${ }^{\text {® }}$					
FM Mode	128 bytes/sector	0	OF	07	1B
	256	1	09	OE	2A
	512	2	05	1B	3A
MFM Mode (4)	256	1	OF	0E	36
	512	2	09	1B	54
	1024	3	05	35	74

Table 3
Notes: (1) Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) All values except sector size and hexidecimal.
(4) In MFM mode FDC cannot perform a Read/Write/ format operation with 128 bytes/sector. $(\mathrm{N}=00)$
data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when number of sectors read is equal to EOT. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

Read ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

Format A Track

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/ cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and N (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.
The processor must send new values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N to the FDC for each sector on the track. If FDC is set for DMA mode, it will issue 4 DMA requests per sector. If it is set for interrupt mode, it will issue four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$ and N load for each sector. The contents of the R register is incremented by one after each sector is formatted, thus, the R register contains a value of R when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.
If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.
Table 3 shows the relationship between N, SC, and GPL for various sector sizes:

Scan Commands

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of $D_{\text {FDD }}=D_{\text {PROCESSOR }} ; D_{\text {FDD }} \leqslant D_{\text {PROCES }}$. SOR, or $\mathrm{D}_{\text {FDD }} \geqslant \mathrm{D}_{\text {PROCESSOR }}$. The hexidecimal byte of $F F$ either from memory or from FDD can be used as a mask byte because it always meet the condition of the compare. Ones
complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremental ($R+S T P \rightarrow R$), and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 = SN	BIT 3 = SH	
Scan Equal	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & D_{\text {FFD }}=D_{\text {PROCESSOR }} \\ & D_{\text {FDD }} \neq D_{\text {PROCESSOR }} \end{aligned}$
Scan Low or Equal	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & D_{\text {FID }}<D_{\text {PROOCESSOR }} D_{\text {PROCESSOR }} \\ & D_{\text {FDD }}>D_{\text {PROCESSSOR }} \end{aligned}$
Scan High or Equal	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & D_{\text {FDD }} D_{\text {PROCESSOR }} \\ & D_{\text {FDD }}>D_{\text {PRRCEESOR }} \\ & D_{\text {FDD }}<D_{\text {PROCESSSOR }} \end{aligned}$

Table 4
If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If SK $=1$, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case ($\mathrm{SK}=1$), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (Multi-Track) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=02$, MT $=0$, the sectors are numbered sequentially 1 through 26, and we start the Scan Command at sector 21 ; the following will happen. Sectors 21,23 and 25 will be read, then the next sector (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT has been set at 25 or the scanning started at sector 20, then the Scan Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or 13 $\mu \mathrm{s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. FDC has four independent Present Cylinder Registers for each drive. They are clear only after Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN < NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.)

The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{DB}_{0}{ }^{-}$ DB_{3} in Main Status Register are set during seek operation and are cleared by Sense Interrupt Status command.
During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once. No other command could be issued for as long as FDC is in process of sending Step Pulses to any drive.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
If the time to write 3 bytes of seek command exceeds 150 $\mu \mathrm{s}$, the timing between first two Step Pulses may be shorter than set in the Specify command by as much as 1 ms .

Recalibrate

The function of this command is to retract the read/write head within the FDD to the Track O position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulses have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1s (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the Seek Command, also applies to the RECALIBRATE Command.

Sense Interrupt Status

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read ID Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in NON-DMA Mode, DB5 in Main Status Register is high. Upon entering Result Phase this bit gets clear. Reason 1 and 4 does not require Sense Interrupt Status command. The interrupt is cleared by reading/writing data to FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This com-
mand when issued resets the interrupt signal and via bits 5,6 , and 7 of Status Register 0 identifies the cause of the interrupt.

SEEK END BITS 5	INTERRUPT CODE		
	BIT 6	BIT 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate Command
1	1	0	Abnormal Termination of Seek or Recalibrate Command

Table 5
Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).
Issuing Sense Interrupt Status Command without interrupt pending is treated as an invalid command.

Specify

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms ($01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} . .$. OF $=240 \mathrm{~ms}$). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms ($F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, \mathrm{D}=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254
ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6$ $\mathrm{ms} . . .7 \mathrm{~F}=254 \mathrm{~ms}$).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2 .
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND =1) the NONDMA mode is selected, and when ND $=0$ the DMA mode is selected.

Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

Invalid

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the FDC765A during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high (" 1 ") indicating to the processor that the FDC is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find an 80 hex indicating an invalid command was received.
A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.
In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

STATUS REGISTER IDENTIFICATION

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
$\begin{aligned} & \mathrm{D}_{7} \\ & \mathrm{D}_{6} \end{aligned}$	Interrupt Code	IC	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=0$ Normal Termination of Command, (NT). Command was completed and properly executed.
D_{6}			$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=1$ Abnormal Termination of Command, (AT). Execution of Command was started, but was not successfully completed.
			$D_{7}=1 \text { and } D_{6}=0$ Invalid Command issue, (IC). Command which was issued was never started.
			$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=1$ Abnormal Termination because during command execution the ready signal from FDD changed state.
D_{5}	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
D_{4}	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
D_{3}	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
D_{2}	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
D_{1}	Unit Select 1	US 1	These flags are used to indicate a Drive Unit. Number at Interrupt.
D_{0}	Unit Select 0	US 0	

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1(CONT.)			
D_{7}	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
D_{6}			Not used. This bit is always 0 (low).
D_{5}	Data Errror	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
D_{4}	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set.
D_{3}			Not used. This bit always 0 (low).
D_{2}	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.
D	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
D	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
D_{7}		CM	Not used. This bit is always 0 (low).
D_{6}	Control Mark		During executing the READ DATA or SCAN Command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
D_{5}	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
D_{4}	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of C on the medium is different from that stored in the IDR, this flag is set.
D_{3}	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set.
D_{2}	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of C on the medium is different from that stored in the IDR and the content of C is $F F$, then this flag is set.
D_{0}	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
D_{7}	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
D_{6}	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D_{5}	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
D_{4}	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
D_{3}	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D_{2}	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

PROCESSOR INTERFACE

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to Data Register, CPU should wait for 12μ s before reading MSR. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written in the FDC. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the FDC. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 = 1 and D7 $=1$) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the FDC is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the FDC is in the NON-DMA Mode, then the receipt of each data byte (if FDC is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT =1). The generation of a Read signal (RD $=0$) or Write signal (WR $=0$) will reset the Interrupt as well as output the Data onto the Data bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$) for MFM and 27μ sor FM mode, then it may poll the Main Status Register and then bit D7 (RQM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the FDC is in the DMA Mode, no Interrupts are generated during the Execution Phase. The FDC generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK $=0$ (DMA Acknowledge) and a $\overline{R D}=0$ (Read signal). When the DMA Acknowledge signal goes low ($\overline{\text { DACK }}=0$) then the DMA Request is reset ($\mathrm{DRQ}=0$). If a Write Command has been programmed then a WR signal will appear instead of $\overline{\mathrm{RD}}$. After the Execution Phase has been completed (Terminal Count has occurred) or EOT sector was read/written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT = 0).

It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The FDC will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The FDC contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (ST0, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after completing a command. The particular command which has been executed determines how many of the Status Registers will be read.
The bytes of data which are sent to the FDC to form the Command Phase, and are read out of the FDC in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the FDC, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the FDC is ready for a new command.

POLLING FEATURE OF THE FDC765A/7265

After the Specify command has been sent to the FDC, the Unit Select line US0 and US1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the FDC polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the FDC will generate an interrupt. When Status Register 0 (ST0) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the FDC occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands.

AC TEST CONDITION

INPUT/OUTPUT

CLOCK

AC TESTING

Clocks are driven at 3.0 V for a logic " 1 " and 0.3 V for a logic " 0 ." Timing measurements are made at 2.4 V for a logic " 1 " and 0.65 V for a logic " 0 ."

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Abstract

Operating Temperature $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Power Dissipation . 1 Watt COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Low Voltage	V_{t}	-0.5		0.8	V	
Input High Voltage	V_{1}	2.6		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Output Low Voltage	V_{0}	\because		0.45	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		$\mathrm{V}_{c c}$	V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {LL }(\text { d }}$	-0.5		0.65	V	
Input High Voltage (CLK + WR Clock)	$\mathrm{V}_{1 H}(\mathrm{~d})$	2.4		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
V_{cc} Supply Current	I_{cc}			150	mA	
Input Load Current	I			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {iv }}=\mathrm{V}_{\text {cc }}$
(All Input Pins)	${ }_{4}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Output Leakage Current	$\mathrm{ILOH}^{\text {L }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Low Level Output Leakage Current	$\mathrm{I}_{\text {LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

NOTE: (1)Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
CAPACITANCE $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Capacitance	$\mathrm{C}_{\mathrm{N}(\text { (})}$			20	pF	All Pins Except Pin
Input Capacitance	$\mathrm{C}_{\text {IN }}$			10	pF	Under Test Tied to
Output Capacitance	$\mathrm{C}_{\text {out }}$			20	pF	AC Ground

AC CHARACTERISTICS $\mathrm{T}_{\mathrm{a}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS						UNIT	TEST CONDITIONS
		765A, 7265			765A-2, 7265				
		MIN	TYP(1)	MAX	MIN	TYP(1)	MAX		
Clock Period	${ }_{\text {der }}$	120	125	500	120	125	500	ns	
Clock Active (High, Low)	ϕ_{0}	40			40			ns	
Clock Rise Time	ψ_{1}			20			20.	ns	
Clock Fall Time	ψ_{1}			20			20	ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Set Up Time to $\overline{\mathrm{RD}}$!	$\mathrm{T}_{\text {AR }}$	0			0			ns	
$A_{0}, \overline{C S}, \overline{D A C K}$ Hold Time from $\overline{\mathrm{RD}}$!	$\mathrm{T}_{\text {BA }}$	0			0			ns	
$\overline{\mathrm{RD}}$ Width	$\mathrm{T}_{\text {RR }}$	250			200			ns	
Data Access Time from $\overline{\mathrm{RD}}$!	$\mathrm{T}_{\text {RO }}$			200			140	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
DB to Float Delay Time from $\overline{\mathrm{RD}} \uparrow$	T ${ }_{\text {DF }}$	20		100	10		85	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{A}_{0}, \overline{\mathrm{CS}}$, DACK Set Up Time to WR !	$\mathrm{T}_{\text {AW }}$	0			0			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\text { DACK }}$ Hold Time to $\overline{\text { WR }} \uparrow$	$T_{\text {wa }}$	0			0			ns	
WF Width	Tww	250			200			ns	
Data Set Up Time to WR \uparrow	Tow	150			100			ns	
Data Hold Time from WR \uparrow	Two	5			0			ns	
INT Delay Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\text {Bi }}$			500			400	ns	
INT Delay Time from $\overline{\text { WR }} \uparrow$	$T_{\text {w }}$			500			400	ns	
DRQ Cycle Time	$\mathrm{T}_{\mathrm{MCY}}$	13			13			$\mu \mathrm{S}$	
DRQ Delay Time from $\overline{\text { DACK }}$!	$\mathrm{T}_{\text {AM }}$			200			140	ns	
DRQ \uparrow to DACK \downarrow Delay	$\mathrm{T}_{\text {M }}$	2			2			$\phi_{\text {cr }}$	
DACK width	$\mathrm{T}_{\text {AA }}$	2			2			$\phi_{C r}$	
TC Width	TTC	1			1			¢or	
Reset Width	$\mathrm{T}_{\text {RST }}$	14			14			$\phi_{C Y}$	
WCK CYCLE TIME	$T_{\text {wCy }}$		16 8			$\begin{array}{r}16 \\ 8 \\ \hline\end{array}$		μs	$\begin{array}{ll} \text { MFM }=0 & 51 / 4^{\prime \prime} \\ \text { MFM }=1 & 51 / 4^{\prime \prime} \end{array}$
			8			8			$\begin{array}{ll} \hline \text { MFM }=0 \quad 8^{\prime \prime} \\ \text { MFM } & =1 \\ \hline \end{array}$
			8 4			8 4			$\begin{array}{lll} \text { MFM }=0 & 31 / 2^{\prime \prime}(5) \\ \text { MFM }=1 & 31 / 2^{\prime \prime}(5) \\ \hline \end{array}$
			$\begin{array}{r} \hline 16 \\ 8 \end{array}$			$\begin{aligned} & 16 \\ & 16 \end{aligned}$			$\begin{array}{ll} \hline \text { MFM }=0 & 31 / 1^{\prime \prime}(6) \\ \text { MFM }=1 & 31 / 2^{\prime \prime}(6) \end{array}$
WCK Active Time (High)	T_{0}	80	250	350	80	250	350	ns	
CLK \uparrow to WGGK \uparrow Delay	$\mathrm{T}_{\text {cWH }}$	0		40	0		40	ns	
CLK \uparrow to WCK \downarrow Delay	$\mathrm{T}_{\text {cWL }}$	0		40	0	:	40	ns	
WCK Rise Time ${ }^{\text {i* }}$	$\mathrm{T}_{\text {r }}$			20			20	ns	,
WCK Fall Time	T_{1}			20			20	ns	
Pre-Shift Delay Time from WCK \uparrow	$T_{\text {cP }}$	20		100	20		100	ns	
WDA Delay Time from WCK \uparrow	T_{CD}	20		100	20		100	ns	
RDD Active Time (High)	$\mathrm{T}_{\text {RDD }}$	40			40			ns	
Window Cycle Time	TwCr		$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		"	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\mu \mathrm{S}$	$\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$
Window Hold Time to/from RDD	$\mathrm{T}_{\text {Row }}$ $T_{\text {wRD }}$	15			15			ns	
$U^{0} \mathrm{~S}_{0,1}$ Hold Time to $\overline{\text { RW/SEEK }}$ I	Tus.	12			12			$\mu \mathrm{s}$	8 MHz Clock Period
SEEK/RW Hold Time to LOW CURRENT/DIRECTION \uparrow	$\mathrm{T}_{\text {SD }}$	7			7			$\mu \mathrm{S}$	
LOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP \uparrow	$\mathrm{T}_{\text {DST }}$	1.0			1.0			$\mu \mathrm{S}$	
US 0,1 Hold Time from FAULT RESET/ STEP \uparrow	$\mathrm{T}_{\text {STU }}$	5.0			5.0			$\mu \mathrm{s}$	
STEP Active Time (High)	$\mathrm{T}_{\text {STP }}$	6.0	7.0	8.0	6.0	7.0	8.0	$\mu \mathrm{S}$	
STEP Cycle Time	$\mathrm{T}_{\text {SC }}$	33	(3)	(3)	33	(3)	(3)	$\mu \mathrm{S}$	
FAULT RESET Active Time (High)	$\mathrm{T}_{\text {FR }}$	8.0		10	8.0		10.0	$\mu \mathrm{S}$	
Write Data Width	$\mathrm{T}_{\text {woo }}$	$\mathrm{T}_{0} .50$			$\mathrm{T}_{0} \mathrm{~F}^{50}$			ns	
$U_{\text {O, }}$ Hold Time After SEEK	$\mathrm{T}_{\text {SU }}$	15			15			$\mu \mathrm{S}$	8 MHz Clock Period
Seek Hold Time from DIR	Tos	30			30			$\mu \mathrm{s}$	
DIR Hold Time after STEP	$T_{\text {STD }}$	24			24			$\mu \mathrm{s}$	
Index Pulse Width	$\mathrm{T}_{10 \mathrm{X}}$	10			4			$\phi_{\text {cy }}$	
$\overline{R D} \downarrow$ Delay from DRQ	$\mathrm{T}_{\text {M }}$	800			800			ns	8 MHz Clock Period
$\bar{W} \mathrm{~F} \downarrow$ Delay from DRQ	$\mathrm{T}_{\text {MW }}$	250			250			ns	
$\bar{W} E$ or $\overline{R D}$ Response Time from DRQ \uparrow	$\mathrm{T}_{\text {MRW }}$			12			12	$\mu \mathrm{S}$	

NOTES: (1) μ Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of 4 and 2 are applied to Mini-floppy.
(3) Under Software Contro. The range is from 1 ms to 16 ms at 8 MHz Clock Period, and 2 to 32 ms at 4 MHz Clock Period.
(4) For mini-floppy applications, ϕ_{Cy} must be 4 mHz .
(5) Sony microfloppy $31 / 2^{\prime \prime}$ drive ($8^{\prime \prime}$ compatible).
(6) Sony microfloppy $31 / 2^{\prime \prime}$ drive ($51 / 4^{\prime \prime}$ compatible).

TIMING DIAGRAMS

FAULTRESET = FILE UNSAFERESET

TERMINAL COUNT

Programmable Floppy Disk Controller

FEATURES

FDC765A compatibleIBM Compatible in both Single and Double Density Recording Formats (FDC72C65)\square Sony (EMCA) Compatible Recording Format (FDC72C66)Selectable Data Recording Lengths: 128, 256, 512 or 1024 Bytes/SectorMulti-Sector and Multi-Track Transfer CapabilitySector Read/Write Capability (128 Bytes/Sector only)Drive Up to 4 Floppy Disk DrivesCRC FunctionProgrammable Step and Head Load/Unload TimeData Scan CapabilityTransfer in DMA or Non-DMA ModeParallel Seek Operation on up to 4 DrivesWrite Precompensation SignalSoftware Reset CapabilitySingle Phase Clock 8 MHz for Standard Floppy Disk 4 MHz for Mini Floppy DiskAvailable in 40-pin DIP or 52-pin Flat Pack

PIN CONFIGURATION

GENERAL DESCRIPTION

The FDC72C65 is an enhanced pin-compatible CMOS version of the industry standard FDC765A. The FDC72C65 contains the circuitry and control functions for interfacing a processor to 4 floppy-disk drives. It is capable of supporting either IBM 3740 Single Density format (FM) or IBM System 34 Double Density format (MFM) including double-sided recording. The FDC72C65 provides control signals which simplify the design of an external phase lock loop and write precompensation circuitry. The FDC72C65 handles most of the burdens associated with implementing a floppy-disk interface.

The FDC72C66 is the CMOS equivalent to the FDC7265, designed specifically for the Sony Micro Floppydisk drive. The FDC72C66 can utilize the Sony recording format.

There are 18 separate commands which the FDC will execute. Three commands are new and provide the system programmer with a software RESET and ON/OFF switches for low power mode (a benefit to battery powered portable computers).

FEATURES

SOFT SECTOR FORMAT COMPATIBILITYAUTOMATIC TRACK SEEK WITH VERIFICATIONACCOMMODATES SINGLE AND DOUBLE DENSITY FORMATSIBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)

READ MODE
Single/Multiple Sector Read with Automatic Search or Entire Track Read
Selectable 128 Byte or Variable Length RecordWRITE MODE
Single/Multiple Sector Write with Automatic Sector Search
Entire Track Write for Diskette InitializationPROGRAMMABLE CONTROLS
Selectable Track to Track Stepping Time
Side Select Compare
\square
SYSTEM COMPATIBILITY
Double Buffering of Data 8 Bit Bi-Directional Bus for Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible
On-chip Track and Sector Registers/Comprehensive Status InformationWRITE PRECOMPENSATION (MFM AND FM)
SIDE SELECT LOGIC (FDC 1795, FDC 1797)\square WINDOW EXTENSION
(IN MFM)

PIN CONFIGURATION

INCORPORATES ENCODING/DECODING AND ADDRESS MARK CIRCUITRYCOMPATIBLE WITH FD179X-02COPLAMOS® n-CHANNEL MOS TECHNOLOGYCOMPATIBLE WITH THE FDC 9216 FLOPPY DISK DATA SEPARATOR

GENERAL DESCRIPTION

The FDC 179X is an MOS/LSI device which performs the functions of a Floppy Disk Controller/Formatter in a single chip implementation. The basic FDC 179X chip design has evolved into six specific parts: FDC 1791, FDC 1792, FDC 1793, FDC 1794, FDC 1795, and the FDC 1797.

This FDC family performs all the functions necessary to read or write data to any type of floppy disk drive. Both $8^{\prime \prime}$ and $514^{\prime \prime}$ (mini-floppy) drives with single or double density storage capabilities are supported. These n-channel MOS/LSI devices will replace a large amount of discrete logic required for interfacing a host processor to a floppy disk.
The FDC 1791 is IBM 3740 compatible in single density mode (FM) and System 34 compatible in double density mode (MFM). The FDC 1791 contains enhanced features necessary to read/write and format a double
density diskette. These include address mark detection, FM and MFM encode and decode logic, window extension, and write precompensation.
The FDC 1793 is identical to the FDC 1791 except the DAL lines are TRUE for systems that utilize true data busses.
The FDC 1792 operates in the single density mode only. Pin 37 ($\overline{\mathrm{DDEN}}$) of the FDC 1792 must be left open for proper operation. The FDC 1794 is identical to the FDC 1792 except the DAL lines are TRUE for systems that utilize true data busses. The FDC 1795 adds side select logic to the FDC 1791. The FDC 1797 adds the side select logic to the FDC 1793.
The processor interface consists of an 8 bit bidirectional bus for data, status, and control word transfers. This family of controllers is configured to operate on a multiplexed bus with other bus-oriented devices.

PIN NO.	NAME	SYMBOL	FUNCTION
1	NO CONNECTION	NC	This pin is internally connected to the substrate bias generator and must be left open.
20	GROUND	$V_{S S}$	Ground
21	POWER SUPPLY	$V_{C C}$	$+5 V$
40	POWER SUPPLY	$V_{D D}$	+12 V
19	MASTER RESET	$\overline{M R}$	A logic low on this input resets the device and loads HEX 03 into the command register. The Not Ready (Status Bit 7) is reset during $\overline{M R}$ ACTIVE. When $\overline{M R}$ is brought to a logic high a Restore Command is executed, regardless of the state of the Ready signal from the drive. Also, HEX 01 is loaded into the sector register.

COMPUTER INTERFACE:

FLOPPY DISK INTERFACE:

15	STEP	STEP	Step and direction motor control. The step output contains a pulse for each step.
16	DIRECTION	DIRC	Direction Output is active high when stepping in, active low when stepping out.
17	EARLY	LATE	Indic Indicates that the write data pulse occurring while Early is active (high) should be shifted early for write precompensation.
18	LATE	TEST	Thigh) should be shifted late for write is used for testing purposes only and should be tied to +5V or left open by the user unless interfacing to voice coil actuated motors.
22	TEST	HLT	When a logic high is found on the HLT input the head is assumed to be engaged.
23	HEAD LOAD TIMING		

PIN NO.	NAME	SYMBOL	FUNCTION
25	READ GATE (1791/3)	RG	A high level on this output indicates to the data separator circuitry that a field of zeros (or ones) has been encountered, and is used for synchronization.
25	SIDE SELECT OUTPUT $(1795,1797)$	SSO	The logic level of the Side Select Output is directly controlled by the ' S ' flag in Type II or III commands. When $S=1$, SSO is set to a logic 1. When $\mathrm{S}=0, \mathrm{SSO}$ is set to a logic 0 . The Side Select Output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a MASTER RESET condition.
26	READ CLOCK	RCLK	A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i.e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not.
27	$\overline{\text { RAW READ }}$	$\frac{\overline{\mathrm{RAW}}}{\text { READ }}$	The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition.
28	HEAD LOAD	HLD	The HLD output controls the loading of the Read-Write head against the media.
29	TRACK GREATER THAN 43	TG43	This output informs the drive that the Read/Write head is positioned between tracks 44-76. This output is valid only during Read and Write Commands.
30	WRITE GATE	WG	This output is made valid before writing is to be performed on the diskette.
31	WRITE DATA	WD	A 250 ns (MFM) or 500 ns (FM) pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats.
32	READY	READY	This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7.
33	$\begin{aligned} & \hline \text { WRITE FAULT/ } \\ & \hline \text { VFO ENABLE } \end{aligned}$	WF/VFOE	This is a bi-directional signal used to signify writing faults at the drive, and to enable the external PLO data separator. When $W G=1$, Pin 33 functions as a $\overline{W F}$ input. If $\overline{W F}=0$, any write command will immediately be terminated. When $W G=0$, Pin 33 functions as a VFOE output. VFOE will go low during a read operation after the head has loaded and settled (HLT=1). On the 1795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go active until the last bit of the second CRC byte of the Data Field. On the 1791/3, VFOE will remain low until the end of the Data Field.
34	TRACK 00	$\overline{\text { TROO }}$	This input informs the FDC179X that the Read/Write head is positioned over Track 00.
35	INDEX PULSE	$\overline{\mathrm{P}}$	This input informs the FDC179X when the index hole is encountered on the diskette.
36	WRITE PROTECT	$\overline{\text { WPRT }}$	This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit.
37	$\overline{\text { DOUBLE DENSITY }}$	$\overline{\text { DDEN }}$	This pin selects either single or double density operation. When $\overline{D D E N}=0$, double density is selected. When $\overline{D D E N}=1$, single density is selected. This line must be left open on the 1792/4.

The FDC 179X-02 major functional blocks are as follows: Data Shift Register-This 8-bit register assembles serial data from the Read Data input (RAW READ) during Read operations and transfers serial data to the Write Data output during Write operations.
Data Register-This 8-bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In Disk Write operations information is transferred in parallel from the Data Register to the Data Shift Register.
When executing the Seek command the Data Register holds the address of the desired Track position. This register is loaded from the DAL and gated onto the DAL under processor control.
Sector Register (SR)-This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.
Command Register (CR)-This 8 -bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a Force Interrupt. The command register can be loaded from the DAL, but not read onto the DAL. Status Register (STR) - This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed.

This register can be read onto the DAL, but not loaded from the DAL.
CRC Logic - This logic is used to check or to generate the 16 -bit Cyclic Redundancy Check (CRC). The polynomial is: $\mathrm{G}(\mathrm{x})=\mathrm{x}^{16}+\mathrm{x}^{12}+\mathrm{x}^{5}+1$.
Track Register-This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head stepped in (towards track 76) and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL. This Register should not be loaded when the device is busy.
The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.
Arithmetic/Logic Unit (ALU)-The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.
Timing and Control-All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
AM Detector-The address mark detector detects ID, data and index address marks during ready and write operations.

OPERATION

FDC 1791, FDC 1793, FDC 1795 and FDC 1797 have two modes of operation according to the state of DDEN (Pin 37). When $\overline{D D E N}=1$, single density is selected. In either case, the CLK input (Pin 24) is at 2 MHz . However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double density. When the clock is at 2 MHz , the stepping rates of $3,6,10$, and 15 ms are obtaınable. When CLK equals 1 MHz these times are doubled.
DDEN must be left open for the FDC 1792 and FDC 1794.

Disk Read Operation

Sector lengths of 128, 256, 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1." For MFM formats, DDEN should be placed to a logical " 0 ." Sector lengths are determined at format time by a special byte in the "ID" field. If this Sector length byte in the ID field is zero, then the sector length is 128 bytes. If 01 then 256 bytes. If 02 , then 512 bytes. If 03, then the sector length is 1024 bytes. The number of sectors per track can be from 1 to 255 sectors. The number of tracks is from 0 to 255 tracks.
For read operations, the FDC 179X requires $\overline{\text { RAW READ }}$ Data (Pin 27) signal which is a 250 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is
provided by some drives but if not, it may be derived externally by Phase lock loops, one shots, or counter techniques. In addition, a Read Gate Signal is provided as an output (Pin 25) which can be used to inform phase lock loops when to acquire synchronization. When reading from the media in FM, RG is made true when 2 bytes of zeroes are detected. The FDC179X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the FDC179X is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of " 00 " or " $F F$ " are detected. The FDC179X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes.
During read operations ($W G=0$), the $\overline{\mathrm{VFOE}}$ (Pin 33) is provided for phase lock loop synchronization. VFOE will go active when:
a) Both HLT and HLD are True
b) Settling Time, if programmed, has expired
c) The 179 X is inspecting data off the disk

If $\overline{\mathrm{WF}} / \overline{\mathrm{VFOE}}$ is not used, leave open or tie to a 10 K resistor to +5 .
On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is
transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost by having new data transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached.

Disk Write Operation

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution against erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the FDC179X before the Write Gate signal can be activated. Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set. The Write Fault input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated. On detection of this fault the FDC179X terminates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive.
For write operations, the FDC179X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM ($\overline{\mathrm{DDEN}}=1$)
and 250 ns pulses in MFM ($\overline{\operatorname{DDEN}}=0$). Write Data provides the unique address marks in both formats.
Also during write, two additional signals are provided for write precompensation. These are EARLY (Pin 17) and LATE (Pin 18). EARLY is active true when the WD pulse appearing on (Pin 30) is to be written early. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the FDC179X. The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.
On Disk Write operations the Data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

COMMAND WORDS

The FDC179X will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Table 1.

Table 1. Command Summary

		BITS							
COMMAND	TYPE	7	6	5	4	3	2	1	0
Restore	I	0	0	0	0	h	V	r_{1}	r_{0}
Seek	I	0	0	0	1	h	V	r_{1}	r_{0}
Step	I	0	0	1	u	h	V	r_{1}	r_{0}
Step In	I	0	1	0	u	h	V	r_{1}	r_{0}
Step Out	I	0	1	1	u	h	V	r_{1}	r_{0}
Read Sector	II	1	0	0	m	$\mathrm{~F}_{2}$	E	F_{1}	0
Write Sector	II	1	0	1	m	$\mathrm{~F}_{2}$	E	F_{1}	a_{0}
Read Address	III	1	1	0	0	0	E	0	0
Read Track	III	1	1	1	0	0	E	0	0
Write Track	III	1	1	1	1	0	E	0	0
Force Interrupt	IV	1	1	0	1	I_{3}	I_{2}	I_{1}	I_{0}

Type I Commands

The Type I Commands are Restore, Seek, Step, Step-In, and Step-Out. Each of the Type I Commands contains a rate field $\left(r_{0} r_{1}\right)$, which determines the stepping motor rate as defined in Table 2.
The Type I Commands contain a head load flag (h) which determines if the head is to be loaded at the beginning of the command. If $h=1$, the head is loaded at the beginning of the command (HLD output is made active). If $h=0$, HLD is deactivated. Once the head is loaded, the head will remain engaged until the FDC179X receives a command that specifically disengages the head. If the FDC179X is idle (busy=0) for 15 revolutions of the disk, the head will be automatically disengaged (HLD made inactive).
The Type I Commands also contain a verification (V) flag which determines if a verification operation is to take place on the destination track. If $\mathrm{V}=1$, a verification is performed, if $V=0$, no verification is performed.
During verification, the head is loaded and after an internal 15 ms delay, the HLT input is sampled. When HLT is active (logic true), the first encountered ID field if read off the disk. The track address of the ID field is then compared to the Track Register; if there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match but there is valid ID CRC, an interrupt
is generated, and Seek Error Status bit (Status bit 4) is set and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FDC179X terminates the operation and sends an interrupt (INTRQ).
The Step, Step-In, and Step-Out commands contain an Update flag (u). When $\mathrm{u}=1$, the track register is updated by one for each step. When $u=0$, the track register is not updated.
On the FDC 1795/7 devices, the SSO output is not affected during Type 1 commands, and an internal side compare does not take place when the (V) Verify Flag is $o n$.

Restore (Seek Track 0)

Upon receipt of this command the Track 00 (TROO) input is sampled. if TROO is active low indicating the Read-Write head is positioned over track 0 , the Track Register is loaded with zeroes and an interrupt is generated. If TROO is not active low, stepping pulses (pins 15 to 16) at a rate specified by the $r_{1} r_{0}$ field are issued until the TROO input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TROO input does not go active low after 255 stepping pulses, the FDC179X terminates operation, interrupts, and sets the Seek error status bit. A verification operation takes place if the V flag is set. The h bit allows the head to be loaded at the start of command. Note that the Restore command is executed when MR goes from an active to an inactive state.

Seek

This command assumes that the Track Register contains the track number of the current position of the ReadWrite head and the Data Register contains the desired track number. The FDC179X will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

Step

Upon receipt of this command, the FDC179X issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. If the u flag is on, the Track Register is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

Step-In

Upon receipt of this command, the FDC179X issues one stepping pulse in the direction towards track 76. If the u flag is on, the Track Register is incremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

Step-Out

Upon receipt of this command, the FDC179X issues one stepping pulse in the direction towards track 0 . If the u flag is on, the Track Register is decremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of command. An interrupt is generated at the completion of the command.

Head Positioning

The period of each positioning step is specified by the r field in bits 1 and 0 of the command word. After the last directional step an additional 15 milliseconds of head settling time takes place if the Verify flag is set in Type I commands. Note that this time doubles to 30 ms for a 1 MHz clock. If TEST $=0$, there is zero settling time. There is also a 15 ms head settling time if the E flag is set in any Type II or III command.
The rates (shown in Table 2) can be applied to a StepDirection Motor through the device interface.
Step-A $2 \mu \mathrm{~s}$ (MFM) or $4 \mu \mathrm{~s}$ (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output.
Direction (DIRC) - The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid 12μ sefore the first stepping pulse is generated.
When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by setting bit $2(\mathrm{~V}=1)$ in the command word to a logic 1. The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. The FDC179X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated.

Table 2. Stepping Rates

$\frac{\text { CLK: }}{\text { DDEN: }}$		$\begin{gathered} 2 \mathrm{MHz} \\ 0 \\ \mathrm{TEST}=1 \end{gathered}$	$\begin{gathered} 2 \mathrm{MHz} \\ \frac{1}{\mathrm{TEST}}=1 \end{gathered}$	$\begin{gathered} 1 \mathrm{MHz} \\ 0 \\ \mathrm{TEST}=1 \end{gathered}$	$\begin{gathered} 1 \mathrm{MHz} \\ \frac{1}{\mathrm{TEST}}=\mathrm{i} \end{gathered}$	$\begin{gathered} 2 \mathrm{MHz} \\ \mathrm{X} \\ \mathrm{TEST}=0 \end{gathered}$	$\begin{gathered} 1 \mathrm{MHz} \\ \mathrm{X} \\ \mathrm{TEST}=0 \\ \hline \end{gathered}$
0	0	3 ms	3 ms	6 ms	6 ms	184/s	$368 \mu \mathrm{~s}$
0	1	6 ms	6 ms	12 ms	12 ms	$190 \mu \mathrm{~s}$	$380 \mu \mathrm{~s}$
1	0	10 ms	10 ms	20 ms	20 ms	198 $\mu \mathrm{s}$	$396 \mu \mathrm{~s}$
1	1	15 ms	15 ms	30 ms	30 ms	$208 \mu \mathrm{~s}$	$416 \mu \mathrm{~s}$

The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set ($h=1$), at the end of the Type I command if the verify flag ($\mathrm{V}=1$), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with ($\mathrm{h}=0$ and $\mathrm{V}=0$); or if the FDC179X is in an idle state (non-busy) and 15 index pulses have occurred.
Head Load Timing (HLT) is an input to the FDC179X which is used for the head engage time. When HLT=1, the FDC179X assumes the head is completely engaged.

The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a one shot. The output of the one shot is then used for HLT and supplied as an input to the FDC179X.

Head Load Timing

When both HLD and HLT are true, the FDC179X will then read from or write to the media. The "and" of HLD and HLT appears as a status bit in Type I status.

> TYPE I COMMANDS FLAG SUMMARY $h=$ Head Load Flag (Bit 3)

Type II Commands

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type II Command into the Command Register, the system must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. If the E flag $=1$ (this is the normal case) HLD is made active and HLT is sampled until true after a 15 msec delay. If the E flag is 0, HLD is made active and HLT is sampled with no delay until true. The ID field and Data Field format are shown below.
When an ID field is located on the disk, the FDC179X compares the Track Number on the ID field with the Track Register. If there is not a match, the next encountered ID field is read and a comparison is again made. If there
is a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered $i D$ field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The FDC179X must find an ID field with a Track number, Sector number, side number, and CRC within four revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3) and the command is terminated with an interrupt.
Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If $\mathrm{m}=0$, a single sector is read or written and an interrupt is generated at the completion of the command. If $m=1$, multiple records are read or written with the sector register internally updated so that an address verification can occur on the next record. The FDC179X will read or write multiple records starting with the sector presently in the sector register. The FDC179X will continue to read or write multiple records and update the sector register until the sector register exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.
If the Sector Register exceeds the number of sectors on the track, the Record-Not-Found status bit will be set.
The Type II commands also contain side select compare flags. When $\mathrm{C}=0$, no side comparison is made. When $\mathrm{C}=1$, the LSB of the side number is read off the ID Field of the disk and compared with the contents of the (S) flag. If the S flag compares with the side number recorded in the ID field, the 179X continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.
The FDC1795/7 READ SECTOR and WRITE SECTOR commands include a ' b ' flag. The ' b ' flag, in conjunction with the sector length byte of the ID Field, allows different byte lengths to be implemented in each sector. For IBM compatability, the 'b' flag should be set to a one. The ' s ' flag allows direct control over the SSO Line (Pin 25) and is set or reset at the beginning of the command, dependent upon the value of this flag.

Sector Length Table	
Sector Length	Number of Bytes
Field (hex)	in Sector (decimal)
00	128
01	256
02	512
03	1024

Field Format

| GAP | ID | TRACK | SIDE | SECTOR | SECTOR | CRC | CRC | GAP | DATA | | | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | CRC

In MFM only, IDAM and DATA AM are preceded by three bytes of A1 with clock transition between bits 4 and 5 missing.

Read Sector

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data field is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the Record-NotFound status bit is set and the operation is terminated. When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and the Lost Data Status bit is set. This sequence continues until the complete data field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command).
At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown below:

STATUS
BIT 5
1 Deleted Data Mark
0
Data Mark

Write Sector

Upon receipt of the Write Sector command, the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The FDC179X counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeros in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on the disk as determined by the a_{0} field of the command as shown below:

a_{0}	Data Address Mark (Bit 0)
1	Deleted Data Mark
0	Data Mark

The FDC179X then writes the data field and generates DRQ's to the computer. If the DRQ is not serviced in time for continuous writing the Lost Data Status Bit is set and a byte of zeros is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated.

BIT								
7	6	5	4	3	2	1	0	COMMAND
1	0	0	m	$\mathrm{~F}_{2}$	E	F_{1}	0	READ SECTOR
1	0	1	m	$\mathrm{~F}_{2}$	E	F_{1}	a_{0}	WRITE SECTOR

DATA ADDRESS MARK (
(a)
[$0=$ Write hex FB (data) into Data Address Mark field - $=$ Write hex F8 (deleted data) into Data AM field

DELAY (E) $-\left[\begin{array}{l}0=\text { No delay between HLD activation and HLT Sampling } \\ 1=15\end{array}\right.$ $1=15 \mathrm{~ms}$ delay between HLD activating and HLT Sampling
$F_{2}(1791 / 3)$ SIDE SELECT FLAG (S)
(S)
$[0=$ Compare for side 0 L1=Compare for side 1
MULTIPLE SECTORS
(m)
$\left\{\begin{array}{l}0=\text { Read (or Write) Single Sectors } \\ 1=\text { Read (or Write) Multipl }\end{array}\right.$
1 = Read (or Write) Multiple Sectors

Figure 1. Type II and III Flag Summary

Type III Commands

There are three Type III Commands:

- READ ADDRESS - Read the next ID field (6 bytes) into the FDC.
- READ TRACK-Read all bytes of the entire track, including gaps.
- WRITE TRACK-Write all bytes to the entire track, including gaps.

Read Address

Upon receipt of the Read Address command, the head is loaded and the Busy Status Bit is set. The next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:

TRACK ADDR	SIDE NUMBER	SECTOR ADDRESS	SECTOR LENGTH	CRC 1	CRC 2
1	2	3	4	5	6

Although the CRC characters are transferred to the computer, the FDC179X checks for validity and the CRC
error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register. At the end of the operation an interrupt is generated and the Busy Status is reset.

Read Track

Upon receipt of the Read Track command, the head is loaded and the Busy Status bit is set. Reading starts with the leading edge of the first encountered index pulse and continues until the next index pulse. As each byte is assembled it is transferred to the Data Register and the Data Request is generated for each byte. No CRC checking is performed. Gaps are included in the input data stream. The accumulation of bytes is synchronized to each Address Mark encountered. Upon completion of the command, the interrupt is activated. RG is not activated during the Read Track Command. An internal side compare is not performed during a Read Track.

Write Track

Upon receipt of the Write Track command, the head is loaded and the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which

*DR=F5 WRITE 3 TIMES MFM ONLY
Figure 2. IBM Compatible Sector/Track Format
time the interrupt is activated. The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeros is substituted. Address Marks and CRC characters are written on the disk by detecting certain data byte patterns in the outgoing data stream as shown in the table below. The CRC generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR in FM or by receipt of F5 in MFM.
Disk formatting (initialization) is accomplished by the Write Track command. Each byte for the entire track must be provided for proper formatting. This includes gap as well as data bytes.
The sequence required to format a diskette begins with positioning the Read/Write head at the desired track. Once this has been done, it is necessary to perform a Write Track command to store all the information on a track. The Write Track command uses DRQ to request each byte from the system MPU, starting with the byte at the beginning of the physical Index Pulse and ending with the last gap bytes at the end of the track. Figure 2 illustrates the IBM standard for track formatting.
Normally, each data byte stored on the diskette must be generated by the system MPU and passed into the FDC Data Register. However, there are exceptions to this rule. If a data byte of hex F5 through FE is entered into the Data Register, then the FDC recognizes this as an AM with missing clocks or CRC generation code. Consequently, F5 through FE must not be used in gaps, data fields, or ID fields, as this will disrupt normal operation of the FDC during formatting.

Type IV Commands

Force Interrupt is the only Type IV command. This command permits the MPU to terminate (abort) any command in progress. Figure 3 tabulates the Type IV command option bits.
The four bits, $\mathrm{I}_{0}-\mathrm{I}_{3}$, are used to select the condition of the interrupt occurrence. Regardless of which bit is set, any command currently being executed is immediately terminated and the Busy status bit is cleared, indicating "Not Busy". Then, when the condition is met, INTRQ goes high, causing the required interrupt.
If $I_{0}-I_{3}$ are all " 0 ", no interrupt occurs, but any currently executing command is immediately terminated. If more than one condition is selected, then the interrupt occurs when any of the conditions is met.
To clear the interrupt, it is necessary to read the Status Register or to write the Command Register. An exception, however, is for $l_{3}=1$ (Immediate Interrupt). For this case, the interrupt is cleared with another Force Interrupt command with $\mathrm{I}_{0}-\mathrm{I}_{3}$ all low.

Status Register

The Status Register permits the MPU to monitor a variety of conditions in the FDC. For each command, the individual status bits have their own meaning. When a command is initiated (except for the Force Interrupt command), the Busy status bit is set and the others are cleared or updated. If the Force Interrupt command is entered when another command is in progress, the Busy status bit is cleared, but the others remain unaffected. However, if the Force Interrupt command is initiated when there is not another command in progress, the other status bits are cleared or updated and represent the Type I Command status. Figure 4 illustrates the meaning of the status bits for each command.

Figure 3. Force Interrupt Command Flags

Figure 4A. Status Register Summary

COMMAND	STATUS BIT							
	7	6	5	4	3	2	1	0
ALL TYPE I	Not Ready	Write Protect	Head Loaded	Seek Error	CRC Error	Track 0	Index	Busy
READ SECTOR	Not Ready	0	Record Type	Rec not Found	CRC Error	Lost Data	DRQ	Busy
WRITE SECTOR	Not Ready	Write Protect	Write Fault	Rec not Found	CRC Error	Lost Data	DRQ	Busy
READ ADDRESS	Not Ready	0	0	Rec not Found	CRC Error	Lost Data	DRQ	Busy
READ TRACK	Not Ready	0	0	0	0	Lost Data	DRQ	Busy
WRITE TRACK	Not Ready	Write Protect	Write Fault	0	0	Lost Data	DRQ	Busy

Figure 4B. Status Description for Type I Commands

BIT	NAME	MEANING
S7	NOT READY	This bit when set indicates the drive is not ready. When reset it indicates that the drive is ready. This bit is an inverted copy of the Ready input and logically 'ored' with MR.
S6	PROTECTED	When set, indicates Write Protect is activated. This bit is an inverted copy of WRPT input.
S5	HEAD LOADED	When set, it indicates the head is loaded and engaged. This bit is a logical "and" of HLD and HLT signals.
S4	SEEK ERROR	When set, the desired track was not verified. This bit is reset to 0 when updated.
S3	CRC ERROR	CRC encountered in ID field.
S2	TRACK 00	When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted copy of the TR00 input.
S1	INDEX	When set, indicates index mark detected from drive. This bit is an inverted copy of the IP input.
S0	BUSY	When set command is in progress. When reset no command is in progress.

Figure 4C. Status Description for Type II and III Commands

BIT	NAME	MEANING
S7	NOT READY	This bit when set indicates the drive is not ready. When reset, it indicates that the drive is ready. This bit is an inverted copy of the Ready input and 'ored' with MR. The Type II and III Commands will not execute unless the drive is ready.
S6	WRITE PROTECT	On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a Write Protect. This bit is reset when updated.
S5	RECORD TYPE/ WRITE FAULT	On Read Record: It indicates the record-type code from data field address mark. I=Deleted Data Mark. 0 = Data Mark. On any Write: It indicates a Write Fault. This bit is reset when updated.
S4	RECORD NOT FOUND (RNF)	When set, it indicates that the desired track, sector, or side were not found. This bit is reset when updated.
S3	CRC ERROR	If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in data field. This bit is reset when updated.
S2	LOST DATA	When set, it indicates the computer did not respond to DRQ in one byte time. This bit is reset to zero when updated.
S1	DATA REQUEST	This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read Operation or the DR is empty on a Write operation. This bit is reset to zero when updated.
S0	BUSY	When set, command is under execution. When reset, no command is under execution.

Write Data Timing:

These values are doubled when $C L K=1 \mathrm{MHz}$.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .)
$+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground $+15 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 5 \%$ unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS Input Voltage Levels						
Low Level, VIL				0.8	V	
High Level, V_{IH}		2.6			V	
Output Voltage Levels						
Low Level Vol				0.45	V	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
High Level $\mathrm{V}_{\text {о }}$		2.8			V	$\mathrm{IOH}=100 \mu \mathrm{~A}$
Output Leakage, ILo				10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$
Input Leakage, IIL				10	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\text {DD }}$
Output Capacitance			5		pf	
Input Capacitance			10		pf	
Power Dissipation				500	mW	
AC CHARACTERISTICS						
Processor Read Timing						
Address Setup Time	$t_{\text {setr }}$	50			ns	Figure 5
Address Hold Time	thldr	10			ns	Figure 5
$\overline{R E}$ Pulse Width ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$t_{\text {te }}$	400			ns	Figure 5
DRQ Reset Time	$t_{\text {DRR }}$			500	ns	Figure 5
INTRQ Reset Time	$\mathrm{t}_{\text {IRR }}$		500*	3000*	ns	Figure 5
Data Delay Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$t_{\text {dacc }}$			350	ns	Figure 5
Data Hold Time ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	$\mathrm{t}_{\mathrm{DOH}}$	50		150	ns	Figure 5
Microprocessor Write Timing						
Address Setup Time	$\mathrm{t}_{\text {SETw }}$	50			ns	Figure 6
Address Hold Time	$\mathrm{t}_{\text {HLDW }}$	10			ns	Figure 6
WE Pulse Width	$t_{\text {we }}$	350			ns	Figure 6
DRQ Reset Time	torr			500	ns	Figure 6
INTRQ Reset Time	$\mathrm{t}_{\text {IRR }}$		500*	3000*	ns	Figure 6
Data Setup Time	tos	250			ns	Figure 6
Data Hold Time	$t_{\text {DH }}$	70			ns	Figure 6
Disk Input Data Timing						
RAWREAD Pulse Width	$t_{\text {pw }}$	100^{*}	200		ns	Figure 7, See Note
Clock Setup Time	t_{d}	40			ns	Figure 7 See Note
Clock Hold Time for MFM	$t_{\text {cd }}$	40			ns	Figure 7
Clock Hold Time for FM	t_{cs}	40			ns	Figure 7
RAWREAD Cycle Time	$t_{b c}$	1500			ns	1800 at $70^{\circ} \mathrm{C}$, Figure 7
RCLK High Pulse Width ${ }_{\text {FM }}^{\text {MFM }}$	ta_{a}	0.8 0.8	$1^{*}{ }^{*}$		$\mu \mathrm{s}$	Figure 7 Figure 7
RCLK High Pulse Widt FM	$t a$	0.8 0.8	2* ${ }^{\text {* }}$		$\mu \mathrm{S}$	Figure 7 Figure 7
RCLK Low Pulse Width ${ }_{\text {MFM }}$	$t_{\text {b }}$	0.8 0.8	${ }^{1 *}$		$\mu \mathrm{S}$	Figure 7 Figure 7
RCLK Cycle Time MFM	$t_{\text {c }}$		${ }^{\text {2* }}$		$\mu \mathrm{s}$	Figure 7
RCLK Cycle Time FM	t_{c}		4^{*}		$\mu \mathrm{s}$	Figure 7
Miscellaneous Timing CLK Low Pulse Width	$\mathrm{tcD}^{\text {c }}$	230	250	20000	ns	Figure 8
CLK High Pulse Width	tcD2	200	250	20000	ns	Figure 8
STEP Pulse Width MFM	$t_{\text {STP }}$	2*			$\mu \mathrm{s}$	Figure 8
STEP Pulse Width	tstp	4*			$\mu \mathrm{S}$	Figure 8
DIRC Setup Time	$t_{\text {dir }}$		12		$\mu \mathrm{s}$	Figure 8
MR Pulse Width	$\mathrm{t}_{\text {MR }}$	50*			$\mu \mathrm{s}$	Figure 8
IP Pulse Width	t_{IP}	10*			$\mu \mathrm{s}$	Figure 8
WF Pulse 'Width	$t_{\text {WF }}$	10*			$\mu \mathrm{s}$	Figure 8
CLK Cycle Time	$\mathrm{tcrc}^{\text {che }}$		0.5*		$\mu \mathrm{s}$	Figure 8

[^13]Figure 5. Microprocessor Read Timing

Figure 6. Microprocessor Write Timing

Figure 7. Disk Input Timing

Figure 8. Miscellaneous Timing

Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of $128,256,512$, or 1024 bytes.

IBM 3740 Format

This single-density (FM) format utilizes 128 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 9.

IBM System 34 Format

This double-density (MFM) format utilizes 256 bytes/sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 10.

Non-IBM Formats

Unique (non-IBM) formats are permissible providing the following restrictions are understood.

- Sector length may only be $128,256,512$, or 1024 bytes.
- Gap sizes must conform to Figure 11.

	DATA BYTE (hex)	NO. OF BYTES	COMMENTS
	4E	807	- Gap 5 (Post Index)
	00	12]	
	F6	3	Writes C2
	FC	1	Index AM
	4 E	507	
-	00	12	Gap 1
	F5	3	Writes A1
ONESECTOR-\|(1)	FE	1	ID AM
	XX	1	Track Number (00-4C)
	0X	1	Side Number (00 or 01)
	XX	1	Sector Number $(01-1 \mathrm{~A})$
	01	1	Sector Length (256 Bytes)
	F7	1	Causes 2-Byte CRC to be Written
		$\left.\begin{array}{l}22 \\ 12\end{array}\right]-$ Gap 2 (ID Gap)	
	00		
	F5	3	Writes A1
	FB	1	Data AM
	40	256	Data Field
	F7	1	Causes 2-Byte CRC to be Written
	4E	$\begin{gathered} 54 \\ 598^{(2)} \end{gathered}$	Part of Gap 3 (Data Gap)
gure 10.	4E		Gap 4 (Pre Index)
IBM System-34 rmatting	NOTES: 1. THIS PATTERN MUST BE		
		THIS PATTERN MUST BE WRITTEN 26 TIMES PER	
			WRiting Hex DC COMPLETES E AND GENERATES ERRUPT.

GAP	SINGLE DENSITY (FM)	DOUBLE DENSITY (MFM)	NOTE
Gap 1	16 bytes FF	16 bytes 4 E	2
Gap 2	11 bytes FF 6 bytes 00	22 bytes $4 F$ 12 bytes 00 3 bytes A1	1
Gap 3	10 bytes FF 4 bytes 00	16 bytes $4 E$ 8 bytes 00 3 bytes A1	2
Gap 4	16 bytes FF	16 bytes $4 E$	2

NOTES: 1. THESE BYTES COUNTS ARE EXACT.
2. THESE BYTES COUNTS ARE MINIMUM

EXCEPT FOR 3 BYTES A1, WHICH IS EXACT.
Figure 11. Gap Size Limitations

STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

Floppy Disk Data Separator FDDS

FEATURES

PERFORMS COMPLETE DATA SEPARATION FUNCTION FOR FLOPPY DISK DRIVESSEPARATES FM OR MFM ENCODED DATA FROM ANY MAGNETIC MEDIAELIMINATES SEVERAL SSI AND MSI DEVICES NORMALLY USED FOR DATA SEPARATIONNO CRITICAL ADJUSTMENTS REQUIREDCOMPATIBLE WITH STANDARD MICROSYSTEMS' FDC 1791, FDC 1793 AND OTHER FLOPPY DISK CONTROLLERSSMALL 8-PIN DUAL-IN-LINE PACKAGE+5 VOLT ONLY POWER SUPPLYTTL COMPATIBLE INPUTS AND OUTPUTSPIN CONFIGURATION

GENERAL DESCRIPTION

The Floppy Disk Data Separator provides a low cost solution to the problem of converting a single stream of pulses from a floppy disk drive into separate Clock and Data inputs for a Floppy Disk Controller.
The FDDS consists primarily of a clock divider, a longterm timing corrector, a short-term timing corrector, and reclocking circuitry. Supplied in an 8-pin Dual-In-Line
package to save board real estate, the FDDS operates on +5 volts only and is TTL compatible on all inputs and outputs.
The FDC 9216 is available in two versions; the FDC 9216, which is intended for $51 / 4^{\prime \prime}$ disks and the FDC 9216B for $51 / 4^{\prime \prime}$ and $8^{\prime \prime}$ disks.

FLOPPY DISK DATA SEPARATOR BLOCK DIAGRAM

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION		
1	$\overline{\text { Disk Data }}$	$\overline{\text { DSKD }}$	Data input signal direct from disk drive. Contains combined clock and data waveform.		
2	Separated Clock	SEPCLK	Clock signal output from the FDDS derived from floppy disk drive serial bit stream.		
3	Reference Clock	REFCLK	Reference clock input		
4	Ground	GND	Ground		
5,6	Clock Divisor	$\begin{aligned} & \text { CD0, } \\ & \text { CD1 } \end{aligned}$	CDO and CD1 control the internal clock divider circuit. The internal clock is a submultiple of the REFCLK according to		
			CD1 0 0 1 1	$\begin{gathered} \text { CDO } \\ 0 \\ 1 \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} \text { Divisor } \\ 1 \\ 2 \\ 4 \\ 8 \end{gathered}$
7	$\overline{\text { Separated Data }}$	$\overline{\text { SEPD }}$	SEPD is th	utput	
8	Power Supply	$V_{D D}$	+5 volt pow	ply	

FIGURE 1
TYPICAL SYSTEM CONFIGURATION ($51 / 4^{\prime \prime}$ Drive, Double Density)

OPERATION

A reference clock (REFCLK) of between 2 and 8 MHz is divided by the FDDS to provide an internal clock. The division ratio is selected by inputs CD0 and CD1. The reference clock and division ratio should be chosen per table 1.
The FDDS detects the leading edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPARATED CLOCK output.

Separate short and long term timing correctors assure accurate clock separation.
The internal clock frequency is nominally 16 times the SEPCLK frequency. Depending on the internal timing correction, the internal clock may be a minimum of 12 times to a maximum of 22 times the SEPCLK frequency.
The reference clock (REFCLK) is divided to provide the internal clock according to pins CD0 and CD1.

TABLE 1:

CLOCK DIVIDER SELECTION TABLE

DRIVE $\left(\mathbf{8}^{\prime \prime}\right.$ or $\left.51_{4}{ }^{\prime \prime}\right)$	DENSITY (DD or SD)	REFCLK MHz	CD1	CDO	REMARKS
8	DD	8	0	0	
8	SD	8	0	1	$\}$ Select eitherone
8	SD	4	0	0	
$51 / 4$	DD	8	0	1	$\}$ Select either one
$51 / 4$	DD	4	0	0	
$51 / 4$	SD	8	1	0	$\}$ Selectany one
$55^{1 / 4}$	SD	4	0	1	
$51 / 4$	SD	2	0	0	

FIGURE 2

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) ... $+325^{\circ} \mathrm{C}$
Positive Voltage on any Pin, with respect to ground . +8.0 V
Negative Voltage on any Pin, with respect to ground ... 0.3 V
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	Min.	Typ.	Max.	Units	Comments
D.C. CHARACTERISTICS					
INPUT VOLTAGE LEVELS					
Low Level $\mathrm{V}_{\text {IL }}$			0.8	V	
High Level V_{1+}	2.0			V	
OUTPUT VOLTAGE LEVELS					
Low Level VoL			0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
High Level V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
INPUT CURRENT					
Leakage IIL			10	$\mu \mathrm{A}$	$\mathrm{O} \leq \mathrm{V}_{1 N} \leq \mathrm{V}_{\mathrm{DD}}$
INPUT CAPACITANCE All Inputs			10	pF	
POWER SUPPLY CURRENT ID			60	mA	
A.C. CHARACTERISTICS					
Symbol					
f_{cy} REFCLK Frequency	0.2		4.3	MHz	FDC 9216
f_{cy} R REFCLK Frequency	0.2		8.3	MHz	FDC 9216B
tckн ${ }_{\text {cke }}$ REFCLK High Time	50		2500	ns	
$t_{\text {ckl }}$ REFCLK Low Time	50		2500	ns	
tsoon REFCLK to SEPD "ON" Delay	25	100	250	ns	
$t_{\text {sdof }}$ REFCLK to SEPD "OFF" Delay	25	100	250	ns	
$t_{\text {spck }}$ REFCLK to SEPCLK Delay	35			ns	
toll ${ }^{\text {d }}$ DSKD Active Low Time	0.1		100	$\mu \mathrm{s}$	
tolh DSKD Active High Time	0.2		100	$\mu \mathrm{s}$	

FIGURE 3: AC CHARACTERISTICS

FLOPPY DISK INTERFACE CIRCUIT

FEATURES

Digital Data Separator Performs complete data separation function for floppy disk drives Separates FM and MFM encoded data No critical adjustments necessary $51 / 4^{\prime \prime}$ and $8^{\prime \prime}$ compatible\square Variable Write PrecompensationInternal Crystal Oscillator CircuitTrack-Selectable Write PrecompensationRetriggerable Head-Load TimerCompatible with the FDC 179X, 765, and other standard Floppy Disk ControllersCOPLAMOS ${ }^{\circledR}$ n-channel MOS TechnologySingle +5 Volt SupplyTTL Compatible

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The FDC 9229 is an MOS integrated circuit designed to complement either the 179X or 765 (8272) type of floppy disk controller chip. It incorporates a digital data separator, write precompensation logic, and a head-load timer in one 0.3 -inch wide 20 -pin package. A single pin will configure the chip to work with either the 179X or 765 type of controller. The FDC 9229 provides a number of different dynamically selected precompensation values so that different values
may be used when writing to the inner and outer tracks of the floppy disk drive. The FDC 9229 operates from a +5 V supply and simply requires that a TTL-level clock be connected to the CLKIN pin. All inputs and outputs are TTL compatible.

The FDC 9229 is available in two versions: The FDC 9229/T are intended for $51 / 4^{\prime \prime}$ drives and the FDC 9229B/T for $51 / 4^{\prime \prime}$ and $8^{\prime \prime}$ drives.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	1/O	DESCRIPTION
1	$\overline{\text { DSKD }}$	I	This input is the raw read data received from the drive. (This input is active low.)
2	FDCSEL	1	This input signal, when low, programs the FDC 9229 for a 179X type of LSI controller. When FDCSEL is high, the FDC 9229 is programmed for a 765 (8272) type of controller. (See fig. 4.)
3	MINI	1	The state of this input determines whether the FDC 9229 is configured to support $8^{\prime \prime}$ or $51 / 4^{\prime \prime}$ floppy disk drive interfaces. It is used in conjunction with the DENS input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency, the precompensation value, the head load delay time (when in 179X mode) and the HLT/CLK frequency (when in 765 mode). (See figs. 2, 3, and 4.)
4	DENS	1	The state of this input determines whether the FDC 9229 is configured to support single density (FM) or double density (MFM) floppy disk drive interfaces. It is used in conjunction with the MINI input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency when in the 765 mode. (See figs. 2,3 , and 4 .)
5	SEPCLK	0	A square-wave window clock signal output derived from the $\overline{\text { DSKD }}$ input.
6	SEPD	0	This output is the regenerated data pulse derived from the raw data input ($\overline{\mathrm{DSKD}}$). This signal may be either active low or active. high as determined by FDCSEL (pin 2).
7	WDOUT	0	The precompensated WRITE DATA stream to the drive.
8	HLT/CLK	0	When in the 765 mode (FDCSEL high), this output is the master clock to the floppy disk controller. When in the 179X mode, this signal goes high after the head load delay has occured following the HLD input going high. This output is retriggerable. (See fig. 3.)
9	CLKOUT	0	This signal is the write clock to the floppy disk controller. Its frequency is determined by the state of the MINI, DENS, and FDCSEL input pins. (See fig. 3.)
10	GND		Ground
11	CLKIN	1	This input is for direct connection to a 16 MHz or 8 MHz single-phase TTL-level clock.
12	WDIN	1	The write data stream from the floppy disk controller.
13	EARLY	1	When this input is high, the current WRITE DATA pulse will be written early to the disk.
14	LATE	1	When this input is high, the current WRITE DATA pulse will be written late to the disk. When both EARLY and LATE are low, the current WRITE DATA pulse will be written at the nominal position.
15	HLD	1	This input is only used in 179X mode. A high level at this input causes a high level on the HLT/CLK output after the specified head-load time delay has elapsed. The delay is selected by the state of the MINI output. (See fig. 3.)
16	TEST	1	This input (when low) decreases the head-load time delay and initializes the data separator. This pin is for test purposes only. This input has an internal pull-up resistor and should be tied high or disconnected for normal operation.
17	PO	1	P2-P0 select the amount of precompensation applied to the write data. (See fig. 2.)
18	P1	,	
19	P2	,	
20	V_{cc}		+ 5 VOLT SUPPLY

OPERATION

Data Separator

The CLKIN input clock is internally divided by the FDC 9229 to provide an internal clock. The division ratio is selected by the FDCSEL, MINI and DENS inputs depending on the type of drive used. (See fig. 1.)
The FDC 9229 detects the leading (negative) edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPCLK output.
Separate short- and long-term timing correctors assure accurate clock separation.
The SEPCLK frequency is nominally $1 / 16$ the internal clock frequency. Depending on the internal timing correction, the duration of any SEPCLK half-cycle may vary from a nominal of 8 to a minimum of 6 and a maximum of 11 internal clock cycles.

INPUTS			
FDCSEL	DENS	MIN I	IVISOR
0	0	0	2
0	0	1	4
0	1	0	4
0	1	1	8
1	0	0	4
1	0	1	8
1	1	0	2
1	1	1	4

FIG. 1

always two internal clock cycles

Precompensation

The desired precompensation delay is determined by the state of the P0, P1 and P2 inputs of the FDC 9229 as per fig. 2. Logic levels present on these pins may be changed dynamically as long as the inputs are stable during the time the floppy disk controller is writing to the drive and the inputs meet the minimum setup time with respect to the write data from the floppy disk controller.

MINI	P2	P1	P0	PRECOMP VALUE
0	0	0	0	0 ns
0	0	0	1	62.5 ns
0	0	1	0	125 ns
0	0	1	1	187.5 ns
0	1	0	0	250 ns
0	1	0	1	250 ns
0	1	1	0	312.5 ns
0	1	1	1	312.5 ns

MINI	P2	P1	P0	PRECOMP VALUE
1	0	0	0	0 ns
1	0	0	1	125 ns
1	0	1	0	250 ns
1	0	1	1	375 ns
1	1	0	0	500 ns
1	1	0	1	500 ns
1	1	1	0	625 ns
1	1	1	1	625 ns

NOTE: All values shown are obtained with a 16 MHz reference clock. Multiply pre-comp values by two for 8 MHz operation.

FIG. 2 WRITE PRECOMPENSATION VALUE SELECTION

OPERATION (CONT'D)

Head Load Timer

The head load time delay is either 40 ms or 80 ms , depending on the state of MINI. (See fig. 3.) The purpose of this delay is to ensure that the head has enough time to engage properly. The head load timer is only used in the 179X mode; it is non-functional in the 765 mode.

The FDC 179X initiates the loading of the floppy disk drive head by setting HLD high. The controller then waits the programmed amount of time until the HLT signal from the FDC 9229 goes high before starting a read or write operation.

INPUTS			OUTPUTS	
FDCSEL	DENS	MINI	CLKOUT	HLT/CLK
0	0	0	2 MHz	$40 \mathrm{~ms}^{\star}$
0	0	1	1 MHz	$80 \mathrm{~ms}^{*}$
0	1	0	2 MHz	$40 \mathrm{~ms}^{*}$
0	1	1	1 MHz	$80 \mathrm{~ms}^{\star}$
1	0	0	500 KHz	8 MHz
1	0	1	250 KHz	4 MHz
1	1	0	1 MHz	8 MHz
1	1	1	500 KHz	4 MHz

NOTE: All values shown are obtained with a 16 MHz reference clock. Divide all frequencies and multiply all periods by two for 8 MHz operation.
*May be mask programméd at factory to any value from 1 to 512 ms in $15.625 \mu \mathrm{~s}$ increments (MINI low) or 1 to 1024 ms in $31.25 \mu \mathrm{~s}$ increments (MINI high).

FIG. 3 CLOCK AND HEAD LOAD TIME DELAY SELECTION

INPUTS			FLOPPY DISK DRIVE TYPE	FLOPPY DISK DRIVE DENSITY	FLOPPY DISK CONTROLLER TYPE
FDCSEL	DENS	MINI			
0	0	0	8" DRIVE	DOUBLE	179X
0	0	1	51/4" DRIVE	DOUBLE	179X
0	1	0	8" DRIVE	SINGLE	179X
0	1	1	51/4" DRIVE	SINGLE	179X
1	0	0	8" DRIVE	SINGLE	765 (82.72)
1	0	1	51/4" DRIVE	SINGLE	765 (8272)
1	1	0	$8{ }^{\prime \prime}$ DRIVE	DOUBLE	765 (8272)
1	1	1	51/4" DRIVE	DOUBLE	765 (8272)

FIG. 4 FLOPPY DISK DRIVE AND CONTROLLER SELECTION

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range -55° to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground $+8.0 \mathrm{~V}$
Negative Voltage on any I/O Pin, with respect to ground -0.3V
Power Dissipation 0.75W
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$)

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
DC CHARACTERISTICS INPUT VOLTAGE Low Level V_{1} High Level V_{H}	$\begin{array}{r} -0.3 \\ 2.0 \\ \hline \end{array}$		$\begin{gathered} 0.8 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$	Except CLKIN
CLKIN INPUT VOLTAGE Low Level High Level	$\begin{array}{r} -0.3 \\ 2.4 \end{array}$		$\begin{gathered} 0.8 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
OUTPUT VOLTAGE Low Level V_{ol} High Level $\mathrm{V}_{\text {OH }}$	2.4		0.4	$\begin{aligned} & V \\ & v \end{aligned}$	$\begin{aligned} & I_{\mathrm{OL}}=1.6 \mathrm{~mA} \text { except HLT/CLK } \\ & \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, \mathrm{HLT} / \mathrm{CLK} \text { only } \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \text { except HLT/CLK } \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{HLT} / \mathrm{CLK} \text { only } \end{aligned}$
POWER SUPPLY CURRENT I_{cc}			100	mA	
INPUT LEAKAGE CURRENT $1 /$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0$ to V_{cc}
INPUT CAPACITANCE $\mathrm{C}_{\text {IN }}$			$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Except CLKIN CLKIN only

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
AC ELECTRICAL CHARACTERISTICS	All times assume CLKIN $=16 \mathrm{MHz}$ unless otherwise specified)				
CLKIN frequency	$\begin{aligned} & 3.95 \\ & 3.95 \end{aligned}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16.2 \\ 8.1 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { FDC } 9229 B \\ & \text { FDC } 9229 \end{aligned}$
CLKIN DUTY CYCLE	25		75	\%	
$\mathrm{t}_{\text {ckon }}$	465	500	515	ns	FDCSEL = low; $\mathrm{MINI}=$ high.
	215	250	265	ns	FDCSEL = low; MINI = low.
	90	125	140	ns	FDCSEL $=$ high.
$\mathrm{t}_{\text {wdo }}$	280	312.5	350	ns	Time Doubles with MINI $=1$
$\mathrm{t}_{\text {d }}$	50		400	ns	
$\mathrm{t}_{\text {dNEC }}$	0		400	ns	
$\mathrm{t}_{\text {woE }}$	500			ns	9 clock times ± 1 clock time
$\mathrm{t}_{\text {wan }}$		precomp value $2 \times$ precomp value			See fig. 2
$t_{\text {wal }}$					See fig. 2
t_{5}	1.0			$\mu \mathrm{s}$	

TYPICAL SYSTEM IMPLEMENTATION-765 (8272) FDC

*The FDC9229/B, as all other NMOS integrated circuits, presents a high impedance on all inputs.

To avoid soft errors caused by transmission line effects and noise where there is long cabling between the floppy disk drive and the controller board, the use of a (non-inverting) TTL schmidt-trigger input gate or bus transceiver is recommended at the DSKD input to the FDC9229/B.

TYPICAL SYSTEM IMPLEMENTATION—179X FDC

*The FDC9229/B, as all other NMOS integrated circuits, presents a high impedance on all inputs.
To avoid soft errors caused by transmission line effects and noise where there is long cabling between the floppy disk drive and the controller board, the use of a (non-inverting) TTL schmidt-trigger input gate or bus transceiver is recommended at the DSKD input to the FDC9229/B.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

CMOS Floppy Disk Data Separator

FEATURES

High Performance Digital Data SeparatorPin Replacement for FDC9216Performs complete data separation function for floppy disk drivesEliminates all adjustments normally associated with high performance data separatorsSingle +5 Volt SupplyFully TTL compatibleFabricated in power saving CMOSCompatible with $3.5^{\prime \prime}, 5.25$ " and $8^{\prime \prime}$ drives and data rates up to 500 KBs16-Bit half Cell Divide Algorithm greatly improves performance over conventional digital designsPIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The FDC 92C36 is a CMOS integrated circuit. It incorporates a high performance, synthetic phase locked loop digital data separator in one 0.3 inch wide 8 pin package.
The use of a high performance synthetic phase locked loop allows the system designer to replace a costly and board consuming analog data separator (and the tuning normally
required with an analog design) with a cost effective, single chip digital circuit.
The FDC 92C36 is available in two versions: the FDC 92C36 are intended for $51 / 4^{\prime \prime}$ drives using data rates of 250 KBs and the FDC 92C36B for $31 / 2^{\prime \prime}, 51 / 4^{\prime \prime}$, and $8^{\prime \prime}$ drives using data rates of 500 KBs .

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
1	Disk Data	$\overline{\text { DSKD }}$	Data input signal direct from disk drive. Contains combined clock and data waveform.
2		Separated Clock	SEPCLK
3	Reference Clock	REFCLK	Reck signal output from the FDDS derived from floppy disk drive serial bit stream.
4	Ground	GND	Ground
5,6	Clock Divisor	CD0,	CD0 and CD1 control the internal clock divider circuit. Refer to Table 1.
7		Separated Data	$\overline{\text { CD1 }}$
8	SEPD	$\overline{\text { SEPD }}$ is the data output of the FDDS	
8	Power Supply	$V_{D D}$	+5 volt power supply

OPERATION

A reference clock (REFCLK) of 8 or 16 MHz is divided by the FDDS to provide an internal clock. The division ratio is selected by inputs CD0 and CD1. The reference clock and division ratio should be chosen per table 1.
The FDDS detects the leading edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPARATED CLOCK output.

Separate short and long term timing correctors assure accurate clock separation.
The SEPCLK frequency is nominally $1 / 32$ the internal clock frequency. Depending on the internal timing correction, the duration of any SEPCLK half-cycle may vary from a nominal of 16 to a minimum of 12 and a maximum of 21 internal clock cycles.

CD1	CDO	TABLE 1		$\begin{gathered} \text { DIVISOR } \\ \text { f(REFCLK)/f(INTCLK) } \end{gathered}$
		8MHz REFCLK	16MHz REFCLK	
0	0	not used	$51 / 4^{\prime \prime}$ SD	4
0	1	$\begin{aligned} & 8^{\prime \prime} \text { SD } \\ & 51 / 4^{\prime \prime} D D \end{aligned}$	8" DD	1
1	0	$51 / 4^{\prime \prime}$ SD	$\begin{aligned} & 8^{\prime \prime} \text { SD } \\ & 51 / 4^{\prime \prime} D D \end{aligned}$	2
1	1	Illegal	Illegal	Illegal

FIGURE 2

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .) ... $+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground.. 7.0 V
Negative Voltage on any I/O Pin, with respect to ground ... -0.3 V
Power Dissipation
0.75W
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

Parameter	SYMBOL	Min.	Typ.	Max.	Units	Comman
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS						LIMIN
Low Level V_{1}				0.8		
High Level $\mathrm{V}_{\text {IH }}$		2.0				䢒
OUTPUT VOLTAGE LEVELS						
Low Level $\mathrm{V}_{\text {OL }}$				0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
High Level $\mathrm{V}_{\text {OH }}$		2.4			V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
Leakage It				10	$\mu \mathrm{A}$	$\mathrm{O}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DD }}$
INPUT CAPACITANCE						
All Inputs				10	pF	
POWER SUPPLY CURRENT				TBD	mA	
A.C. CHARACTERISTICS						
Symbol						
REFCLK Frequency		1.0	8.0			FDC 92C36
REFCLK Frequency	${ }_{\text {foy }}$	1.0	16.0	16.2.	MHz	FDC 92C36B

FIGURE 3: AC CHARACTERISTICS

TYPICAL SYSTEM CONFIGURATION
(51/4" Drive, Double Density)

CMOS Floppy Disk Data Separator and Clock Generator

FEATURES

High Performance Digital Data Separator with Synthetic Oscillator and Phase Lock Loop for industry standard FDC 765A and FDC 7265Performs complete data separation function for floppy disk drivesEliminates all adjustments normally associated with high performance data separatorsCompatible with $3.5^{\prime \prime}, 5.25^{\prime \prime}$ and $8^{\prime \prime}$ drives and data rates up to 500 KBsInternal Crystal Oscillator Circuit provides all clocks required by FDC 765A and FDC 7265Fabricated in power saving CMOS16-Bit half Cell Divide Algorithm greatly improves performance over conventional digital designsSingle +5 Volt supplyFully TTL compatiblePIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The FDC 9238 is a CMOS integrated circuit designed to complement the FDC 765A (8272A) or the FDC 7265 floppy disk controller. It incorporates a high performance, synthetic phase locked loop digital data separator and clock generator in one 0.3 inch wide 14 pin package.
The use of a high performance synthetic phase locked loop data separator allows the system designer to replace (without sacrificing performance) a costly and board consuming
analog data separator (and the tuning normally required with an analog design) with a cost effective, single chip digital circuit.
The FDC 9238 is available in four versions: the FDC 9238/T which is intended for disk transfer rates up to 250 kilobits per second and the FDC 9238B/T is intended for disk transfer rates up to 500 kilobits per second.

FDC 9238 BLOCK DIAGRAM
 high impedance on all inputs.
To avoid soft errors caused by transmission line effects and noise where there is long cabling between the floppy disk drive and the controller board, the use of a (non-inverting) TTL schmidttrigger input gate or bus transceiver is recommended at the DSKD input to the FDC9238 B.

TYPICAL SYSTEM IMPLEMENTATION

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	I/O	DESCRIPTION
1	V $_{\text {cc }}$	1	This pin MUST be tied to $V_{c c}$.

OPERATION

The high performance digital data separator incorporated in the FDC 9238 will accept data from the floppy disk drive at $125 \mathrm{KHz}, 250 \mathrm{KHz}$, or 500 KHz data rates and output the appropriate regenerated clock and data signals.
The heart of the digital floppy disk data separator section is a synthetic oscillator phase locked loop. One half-bit cell of the incoming data stream corresponds to one cycle of the synthetic oscillator. Each oscillator cycle consists nominally of 16 phase slices. The circuit, therefore, needs a phase slice clock with a frequency of 16 times the half-bit cell time. Detection of an input pulse away from the center of its halfbit "slot" causes a phase correction to be applied to the synthetic oscillator, bringing the center of the half-bit slot closer to the pulse.

The end-of-cycle signal from the synthetic oscillator defines the derived clock waveform and the duration of each halfbit slot. If there is a flux transition during the half-bit slot, it is remembered and used to regenerate the data waveform pulses immediately following the end-of-cycle.
A short history of input pulse detections (which induce phase corrections by the FDC 9238) is kept. This history is used to allow subsequent phase corrections to request upward or downward changes in center frequency, and helps compensate for drive speed variations. This, along with separate short term and long term correction algorithms, assures accurate floppy disk data separation.

MAXIMUM GUARANTEED RATINGS

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground $+7.0 \mathrm{~V}$
Negative Voltage on any I/O Pin, with respect to ground -0.3V
Power Dissipation 0.25W

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output.

PRELIMINARY
ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%\right)$
_ parametric limits are subjecification.

PARAMETER	MIN	TYP	MAX	UNIT	CONDITION
DC CHARACTERISTICS INPUT VOLTAGE Low (V_{L}) High (V_{H})	$\begin{array}{r} -0.3 \\ 2.0 \end{array}$		$\begin{aligned} & 0.8 \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	V	Except XTAL/CLKIN
XTAL/CLKIN INPUT VOLTAGE Low (V_{12}) High (V_{tH})	$\begin{array}{r} -0.3 \\ 3.2 \end{array}$		$\begin{aligned} & 1.5 \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	V	
```OUTPUT VOLTAGE Low (Vol) High ( \(\mathrm{V}_{\mathrm{OH}}\) )```	2.4		0.4	V	$\begin{aligned} & \mathrm{L}_{\mathrm{oL}}=1.6 \mathrm{ma}, \text { except CLK } \\ & \mathrm{L}_{\mathrm{oL}}=0.4 \mathrm{ma}, \text { CLK only } \\ & \mathrm{L}_{\mathrm{OH}}=-100 \mu \mathrm{a}, \text { except CLK } \\ & \mathrm{L}_{\mathrm{oH}}=-400 \mu \mathrm{a}, \text { CLK only } \end{aligned}$
POWER SUPPLY CURRENT $\mathrm{I}_{\mathrm{cc}}$		TBD			
INPUT LEAKAGE CURRENT IL		TBD			
INPUT CAPACITANCE $\mathrm{C}_{\text {IN }}$		TBD			
AC ELECTRICAL CHARACTERISTICS	(All times assume XTAL/CLKIN $=16 \mathrm{MHz}$ unless otherwise specified)				FDC 9238B/BT FDC 9238/T
CLKIN Frequency	$\begin{aligned} & 3.95 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 16 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 16.2 \\ 8.1 \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
CLKIN Duty Cycle	40		60	\%	
$\mathrm{T}_{\text {СLкон }}$	90	125	140	ns	



Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications: consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed fur inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## ENHANCED FLOPPY DISK INTERFACE CIRCUIT

## FEATURES

Digital Data SeparatorPerforms complete data separation function for floppy disk drives
Separates FM and MFM encoded data
No critical adjustments necessary $3^{1 / 2 \prime 2}, 5^{1 / 4 \prime} 4^{\prime \prime}$ and $8^{\prime \prime}$ compatibleVariable Write Precompensation$\square$ Internal Crystal Oscillator CircuitTrack-Selectable Write PrecompensationRetriggerable Head-Load TimerFully compatible with FDC 179X, FDC 765A and FDC 726516-Bit Cell Divide Algorithm Improves PerformanceFabricated in Low Power CMOSSingle +5 Volt SupplyTTL Compatible; Fully Compatible with the FDC 9229

PIN CONFIGURATION


## FUNCTIONAL DESCRIPTION

The FDC 9239 is a CMOS integrated circuit designed to complement either the 179X or 765 (8272) type of floppy disk controller chip. It incorporates a digital data separator, write precompensation logic, and a head-load timer in one 0.3 -inch wide 20 -pin package. A single pin will configure the chip to work with either the 179X or 765 type of controller. The FDC 9239 provides a number of different dynamically selected precompensation values so that different
values may be used when writing to the inner and outer tracks of the floppy disk drive. The FDC 9239 operates from $\mathrm{a}+5 \mathrm{~V}$ supply.
The FDC 9239 is available in four versions: the FDC 9239/ T which is intended for $51 / 4^{\prime \prime}$ drives and the FDC 9239B/T for $3^{1 / 2^{\prime \prime}}, 5^{1 / 4^{\prime \prime}}$ and $8^{\prime \prime}$ drives. (The/T versions require a TTL clock input.)

## DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	1/O	DESCRIPTION
1	$\overline{\text { DSKD }}$	1	This input is the raw read data received from the drive. (This input is active low.)
2	FDCSEL	1	This input signal, when low, programs the FDC 9239 for a 179X type of LSI controller. When FDCSEL is high, the FDC 9239 is programmed for a 765 (8272) or 7265 floppy disk controller. (See fig. 4.)
3	MINI	1	The state of this input determines whether the FDC 9239 is configured to support $8^{\prime \prime}$ or $5^{1} / 4^{\prime \prime}$ floppy disk drive interfaces. It is used in conjunction with the DENS input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency, the precompensation value, the head load delay time (when in 179X mode) and the HLT/CLK frequency (when in 765 mode). See figs. 2, 3, and 4.)
4	DENS	1	The state of this input determines whether the FDC 9239 is configured to support single density (FM) or double density (MFM) floppy disk drive interfaces. It is used in conjunction with the MINI input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency when in the 765 mode. (See figs. 2, 3, and 4.)
5	SEPCLK	0	A square-wave window clock signal output derived from the $\overline{\text { DSKD }}$ input.
6	SEPD	0	This output is the regenerated data pulse derived from the raw data input (DSKD). This signal may be either active low or active high as determined by FDCSEL (pin 2).
7	WDOUT	0	The precompensated WRITE DATA stream to the drive.
8	HLT/CLK	0	When in the 765 mode (FDCSEL high), this output is the master clock to the floppy disk controller. When in the 179X mode, this signal goes high after the head load delay has occured following the HLD input going high This output is retriggerable. (See fig. 3.)
9	CLKOUT	0	This signal is the write clock to the floppy disk controller. Its frequency is determined by the state of the MINI, DENS and FDCSEL input pins. (See fig. 3.)
10	GND		Ground
11	XTAL 1/CLKIN	1	This input is for direct connection to a 16 MHz or 8 MHz single-phase TTL-level clock, or one lead from an 8 MHz or 16 MHz crystal.
12	WDIN	1	The write data stream from the floppy disk controller.
13	EARLY	1	When this input is high, the current WRITE DATA pulse will be written early to the disk.
14	LATE	1	When this input is high, the current WRITE DATA pulse will be written late to the disk.   When both EARLY and LATE are low, the current WRITE DATA pulse will be written at the nominal position.
15	HLD	1	This input is only used in 179X mode. A high level at this input causes a high level on the HLT/CLK output after the specified head-load time delay has elapsed. The delay is selected by the state MINI output. (See fig. 3.) In 765 mode this pin should be grounded.
16	XTAL2	1	The second lead from an 8 MHz or 16 MHz crystal is connected to this pin. In those applications, using a TTL clock, this pin should be left floating.
17	PO	1	P2-P0 select the amount of precompensation applied to the write data. (See fig. 2.)
18	P1	1	
19	P2	1	
20	$\mathrm{V}_{\text {c }}$		+ 5 VOLT SUPPLY

## OPERATION

## Data Separator

The CLKIN input clock is internally divided by the FDC 9239 to provide an internal clock. The division ratio is selected by the FDCSEL, MINI and DENS inputs depending on the type of drive used. (See fig. 1.)
The FDC 9239 detects the leading (negative) edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPCLK output.
Separate short- and long-term timing correctors assure accurate clock separation.
The SEPCLK frequency is nominally $1 / 32$ the internal clock frequency. Depending on the internal timing correction, the duration of any SEPCLK half-cycle may vary from a nominal of 16 to a minimum of 12 and a maximum of 21 internal clock cycles.

INPUTS			
FDCSEL	DENS	MINI	
0	0	0	DIVISOR
0	0	1	1
0	1	0	2
0	1	1	2
1	0	0	4
1	0	1	2
1	1	0	4
1	1	1	1
		2	2



BLOCK 9239 DIAGRAM

## OPERATION (CONT'D)

## Precompensation

The desired precompensation delay is determined by the state of the P0, P1 and P2 inputs of the FDC 9239 as per fig. 2. Logic levels present on these pins may be changed dynamically as long as the inputs are stable during the time the floppy disk controller is writing to the drive and the inputs meet the minimum setup time with respect to the write data from the floppy disk controller.

## Head Load Timer

The head load time delay is either 40 ms or 80 ms , depending on the state of MINI. (See fig. 3.) The purpose of this delay is to ensure that the head has enough time to engage properly. The head load timer is only used in the 179X mode; it is non-functional in the 765 or 7265 mode.

The FDC 179X initiates the loading of the floppy disk drive head by setting HLD high. The controller then waits the programmed amount of time until the HLT signal from the FDC 9239 goes high before starting a read or write operation.

MINI	P2	P1	P0	PRECOMP VALUE
0	0	0	0	0 ns
0	0	0	1	62.5 ns
0	0	1	0	125 ns
0	0	1	1	187.5 ns
0	1	0	0	250 ns
0	1	0	1	250 ns
1	0	0	0	0 ns
1	0	0	1	125 ns
1	0	1	0	250 ns
1	0	1	1	375 ns
1	1	0	0	500 ns
1	1	0	1	500 ns
1	1	1	0	625 ns
1	1	1	1	625 ns

NOTE: All values shown are obtained with a 16 MHz reference clock. Multiply pre-comp values by two for 8 MHz operation.

FIG. 2 WRITE PRECOMPENSATION VALUE SELECTION

INPUTS			OUTPUTS				
FDCSEL	DENS	MINI	CLKOUT	HLT/CLK	16 MHZ INPUT CLOCK	8 MHZ INPUT CLOCK	CONTROLLER
0	0	0	2 MHz	$40 \mathrm{~ms}^{*}$	8" Double Density	5114" Double Density	179X
0	0	1	1 MHz	$80 \mathrm{~ms}^{*}$	$51 / 4^{\prime \prime}$ Double Density	Not Permitted	179X
0	1	0	2 MHz	$40 \mathrm{~ms}^{*}$	$8{ }^{\prime \prime}$ Single Density	$51 / 4^{\prime \prime}$ Single Density	179X
0	1	1	1 MHz	$80 \mathrm{~ms}^{*}$	$51 / 4^{\prime \prime}$ Single Density	Not Permitted	179X
1	0	0	500 KHz	8 MHz	8" Single Density	51/4" Single Density	765 (8272)
1	0	1	250 KHz	4 MHz	$51 / 4^{\prime \prime}$ Single Density	Not Permitted	765 (8272)
1	1	0	1 MHz	8 MHz	8 " Double Density	$51 / 4{ }^{\prime \prime}$ Double Density	765 (8272)
1	1	1	500 KHz	4 MHz	$51 / 4^{\prime \prime}$ Double Density	Not Permitted	765 (8272)

NOTE: $33^{1 / 2 \prime}$ drive users should consult drive specifications to determine if drive data rate equals 5.25 " or $8^{\prime \prime}$ standards.
*NOTE: All values shown are obtained with a 16 MHz reference clock. Divide all frequencies and multiply all periods by two for 8 MHz operation.

FIG. 3 CLOCK/HEAD LOAD TIME DELAY AND FLOPPY DISK DRIVE/CONTROLLER SELECTION

## MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$55^{\circ}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. )	$+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground	+7.0V
Negative Voltage on any I/O Pin, with respect to ground	-0.5V
Power Dissipation	0.25W

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS ${ }^{\text {min }}$
DC CHARACTERISTICS   INPUT VOLTAGE   Low Level ${ }^{\prime \prime}$   High Level $\mathrm{V}_{\text {tH }}$	$\begin{array}{r} -0.3 \\ 2.0 \\ \hline \end{array}$		$\begin{gathered} 0.8 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	Except CLKIN
XTAL/CLKIN INPUT VOLTAGE   Low ( $\mathrm{V}_{\mathrm{L}}$ )   $\operatorname{High}\left(V_{1 H}\right)$	$\begin{array}{r} -0.3 \\ 3.2 \\ \hline \end{array}$		$\begin{gathered} 1.5 \\ \left(\mathrm{~V}_{\mathrm{cc}}\right) \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
OUTPUT VOLTAGE   Low Level ${ }_{0}$ L   High Level $\mathrm{V}_{\text {OH }}$	2.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \text { except HLT/CLK } \\ & \mathrm{I}_{\mathrm{OL}}=0.4 \mathrm{~mA}, \mathrm{HLT} / \mathrm{CLK} \text { only } \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \text { except HLT/CLK } \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{HLT} / \mathrm{CLK} \text { only } \end{aligned}$
POWER SUPPLY CURRENT $I_{c c}$			20	mA	
INPUT LEAKAGE CURRENT II			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to $\mathrm{V}_{\mathrm{Cc}}$
INPUT CAPACITANCE $\mathrm{C}_{\text {IN }}$		TBD		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Except CLKIN CLKIN only

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%\right)$

PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS ${ }^{\text {a }}$
AC ELECTRICAL CHARACTERISTICS					
CLKIN frequency	3.95	16	16.2	MHz	FDC 9239B
	3.95	8	8.1	MHz	FDC 9239
CLKIN DUTY CYCLE	40		60	\%	
$\mathrm{t}_{\text {ckon }}$	465	500	515	ns	FDCSEL $=$ low; $\mathrm{MINI}=$ high
	215	250	265	ns	FDCSEL $=$ low; $\mathrm{MINI}=$ low
	90	125	140	ns	FDCSEL $=$ high
$t_{\text {woo }}$	150	312.5	350	ns	Time Doubles with MINI-1
$t_{\text {d }}$	50		400	ns	
$\mathrm{t}_{\text {dNEC }}$	0		400	ns	
$\mathrm{t}_{\text {wdE }}$	500	562.5 precomp value $2 \times$ precomp value		ns	9 clock times $\pm 1$ clock time
$\mathrm{t}_{\text {wav }}$					See fig. 2
$\mathrm{t}_{\text {wal }}$					See fig. 2
$\mathrm{t}_{\text {s }}$	1.0			$\mu \mathrm{S}$	

## AC TIMING CHARACTERISTICS



TYPICAL SYSTEM IMPLEMENTATION—765 (8272) FDC OR 7265 FDC


[^14]TYPICAL SYSTEM IMPLEMENTATION—179X FDC OR 979X FDC

*The FDC9239/B, as all other CMOS integrated circuits, presents a high impedance on all inputs.

To avoid soft errors caused by transmission line effects and noise where there is long cabling between the floppy disk drive and the controller board, the use of a (non-inverting) TTL schmidt-trigger input gate or bus transceiver is recommended the DSKD input to the FDC9239/B.

## STANDARD.MICROSYSTEMS CORPORATION



Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However. no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

PRELIMINARY

## Analog Floppy Disk Data Separator (AFDDS)

## FEATURES

Analog Data Separator performs complete data separation for floppy disk drives Separates FM and MFM encoded data $3-1 / 2^{\prime \prime}, 5-1 / 4^{\prime \prime}$ and $8^{\prime \prime}$ compatibleNo critical adjustments necessaryVariable Write PrecompensationInternal Crystal OscillatorFully compatible with FDC765AHigh Performance Analog Pase Locked LoopFabricated in Low Power CMOSTTL Compatible I/OSingle +5 V SupplyPRELIMINARY
PIN CONFIGURATION


## GENERAL DESCRIPTION

The FDC92C49 CMOS Analog Floppy Disk Data Separator (AFDDS) performs high performance analog data separation on data from a floppy disk drive. The FDC92C49 is compatible with $3.5^{\prime \prime}, 5.25^{\prime \prime}$ and $8^{\prime \prime}$ floppy disk drives, and provides all clocks required by the industry standard FDC765A and FDC7265 floppy disk controllers.
The FDC92C49 incorporates all the active components necessary to implement analog floppy disk data separation, eliminating the need for discrete transistors. Only a
crystal and a few external resistors and capacitors are required. Using the FDC92C49 and a floppy disk controller chip, a system designer can build a highly reliable, cost efficient double or single density floppy disk data subsystem requiring no tuning adjustments.
Six different user selectable values for write precompensation assure reliable positioning of data when writing to disk.

Tin
Circuit diagrams utilizing SMC products are included as a means of illustrating typical applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore,
such information does not convey to the purchaser of the products described any license under the patent rights of such information does not convey to the purchaser of the products described any license under the patent rights of
SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

# Single/Double Density Enhanced Floppy Disk Controller 

## PIN CONFIGURATION

## FEATURES

Combination Floppy Disk Controller and Floppy Disk InterfaceSoftware compatible with industry standard FDC 765AOn chip digital data separator eliminates critical analog adjustmentsOn-chip drive control logic reduces component count.IBM compatible in both single and double density recording formatsProgrammable data record lengths: 128, 256, 512, or 1024 bytes/sectorMulti-sector and multi-track transfer capabilityControls up to 4 floppy disk drives Data Scan Capability-will scan a single sector or entire track's worth of data fields, comparing on a byte by byte basis, data in the processor's memory with the data read from the disketteData transfers in DMA or nonDMA modeSingle 8 MHz TTL clock inputSingle +5 Volt power supply


Parallel Seek operations on up to four drivesCompatible with most microprocessors

## GENERAL DESCRIPTION

The FDC 9266 is a monolithic combination of the industry standard FDC 765A Floppy Disk Controller and the FDC 9229 Floppy Disk Interface Circuit. It preserves all of the processor hardware and software interfaces to the FDC 765A, and contains on-chip circuitry to simplify drive interfacing.

These on-chip enhancements include a digital data separator, compatible with $5.25^{\prime \prime}$ and $8^{\prime \prime}$ drives. The data separator separates both FM (Single Density) and MFM (Double Density) encoded data, and requires no external adjustments.

The FDC 9266 also allows variable write precompensation, which is track selectable.

These enhancements greatly reduce the number of components required to interface floppy disks to a microprocessor system.

There are 15 separate commands which the FDC 9266 will execute. Each of these commands requires multiple 8-bit
bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data	Write Data
Read ID	Format a Track
Read Deleted Data	Write Deleted Data
Read a Track	Seek
Scan Equal	Recalibrate (Restore to Track 0)
Scan High or Equal	Sense Interrupt Status
Scan Low or Equal	Sense Drive Status

Read Data
Read ID
Read a Track Scan Equal Scan High or Equal Specify

Address mark detection circuitry is internal to the FDC which simplifies the read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The FDC 9266 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.


## BLOCK DIAGRAM



TYPICAL APPLICATION

## DESCRIPTION OF PIN FUNCTIONS

PIN			INPUT/ OUTPUT	$\begin{gathered} \text { CONNECTION } \\ \text { TO } \\ \hline \end{gathered}$	FUNCTION
NO.	SYMBOL	NAME			
1	RST	Reset	Input	Processor	Places FDC in idle state. Resets output lines to FDD to " 0 " (low). Does not effect SRT, HUT or HLT in Specify command. If RDY pin is held high during Reset, FDC will generate interrupt 1.024 ms later. To clear this interrupt use Sense Interrupt Status command.
2	$\overline{\overline{R D}}$	Read	Input(1)	Processor	Control signal for transfer of data from FDC to Data Bus, when "0" (low).
3	$\overline{\text { WR }}$	Write	Input(1)	Processor	Control signal for transfer of data to FDC via Data Bus, when "0" (low).
4	$\overline{\text { CS }}$	Chip Select	Input	Processor	IC selected when " 0 " (low), allowing RD and WR to be enabled.
5	$\mathrm{A}_{0}$	Data/Status Reg Select	Input(1)	Processor	Selects Data Reg ( $\mathrm{A}_{0}=1$ ) or Status Reg $\left(\mathrm{A}_{0}=0\right)$ contents of the FDC to be sent to Data Bus.
6-13	$\mathrm{DB}_{0}-\mathrm{DB}_{7}$	Data Bus	Input(1) Output	Processor	Bi-Directional 8-Bit Data Bus.
14	DRQ	Data DMA   Request	Output	DMA	DMA Request is being made by FDC when DRW = " 1 .
15	$\overline{\text { DACK }}$	DMA   Acknowledge	Input	DMA	DMA cycle is active when " 0 " (low) and Controller is performing DMA transfer.
16	TC	Terminal Count	Input	DMA	Indicates the termination of a DMA transfer when " 1 " (high). It terminates data transfer during Read/Write/Scan command in DMA or interrupt mode.
17	IDX	Index	Input	FDD	Indicates the beginning of a disk track.
18	INT	Interrupt	Output	Processor	Interrupt Request Generated by FDC.
19	TEST	Test	Input		This pin is for test purposes only. Should be left tied high in normal operation.
20	GND	Ground			D.C. Power Return.
21	MINI	Mini	Input	Processor	This input, when set to " 1 " (high), configures the FDC for operation with 5.25 " floppies. If reset to " 0 " (low), then the FDC is configured for 8" drive operation.
22	CLK	$\begin{aligned} & 8 \mathrm{MHz} \\ & \text { TTL Clock } \\ & \hline \end{aligned}$	Input		Device clock.
23	$\overline{\text { DSKD }}$	Raw Data	Input	FDD	Raw data from drive.
24,31,32	PO, P1, P2	Precompensation Select	Input	Processor	These pins select the amount of precompensation applied to the write data.
25	WE	Write Enable	Output	FDD	Enables write data into FDD.
26	MFM	MFM Mode	Output		MFM mode when " 1 ," FM mode when " 0 ."
27	HD	Head Select	Output	FDD	Head 1 selected when " 1 " (high). Head 2 selected when "0" (low).
28, 29	US ${ }_{1}$, US $_{0}$	Unit Select	Output	FDD	FDD Unit Selected.
30	WD OUT	Write Data Out	Output	FDD	Serial clock and data bits to FDD.
33	$\mathrm{FLT} / \mathrm{TR}_{0}$	Fault/Track 0	Input	FDD	Senses FDD fault condition, in Read/Write mode; and Track 0 condition in Seek mode.
34	WP/TS	Write Protect/ Two-Side	Input	FDD	Senses Write Protect status in Read/Write mode; and Two Side Media in Seek mode.

DESCRIPTION OF PIN FUNCTIONS

PIN			INPUT/ OUTPUT	$\begin{gathered} \text { CONNECTION } \\ \text { TO } \\ \hline \end{gathered}$	FUNCTION
NO.	SYMBOL	NAME			
35	RDY	Ready	Input	FDD	Indicates FDD is ready to send or receive data.
36	HDL	Head Load	Output	FDD	Command which causes read/ write head in FDD to contact diskette.
37	FR/STP	Fit Reset/Stop	Output	FDD	Resets fault F.F. in FDD in Read/ Write mode, contains stop pulses to move head to another cylinder in Seek mode.
38	LCT/DIR	Low Current/ Direction	Output	FDD	Lowers Write current on inner tracks in Read/Write mode, determines direction head will stop in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal.
39	$\overline{\text { RW/SEEK }}$	Read Write/SEEK	Output	FDD	When " 1 " (high) Seek mode selected and when " 0 " (low) Read/ Write mode selected.
40	$\mathrm{V}_{\mathrm{cc}}$	+5V			DC Power.

Note: (1) Disabled when CS = 1 .

## DESCRIPTION OF INTERNAL REGISTERS

The FDC 9266 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8-bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8-bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The Status Register may only be read and used to
facilitate the transfer of data between the processor and FDC 9266.
The relationship between the Status/Data registers and the signals $\overline{R D}, \overline{W R}$, and $A_{0}$ is shown below.

$\mathbf{A}_{0}$	$\overline{\mathrm{RD}}$	$\overline{\mathbf{W R}}$	FUNCTION
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
$\mathrm{DB}_{0}$	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
DB ${ }_{1}$	FDD 1 Busy	D, B	FDD number 1 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
$\mathrm{DB}_{2}$	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	FDD number 2 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
$\mathrm{DB}_{3}$	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any of the bits is set FDC will not accept read or write command.
$\mathrm{DB}_{4}$	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
$\mathrm{DB}_{5}$	Execution Mode	EXM	This bit is set only during execution phase in non-DMA mode. When $\mathrm{DB}_{5}$ goes low, execution phase has ended, and result phase was started. It operates only during NON-DMA mode of operation.
DB6	Data Input/Output	DIO	Indicates direction of data transfer between FDC and Data Register. If DIO = " 1 " then transfer is from Data Register to the Processor. If DIO = " 0 ", then transfer is from the Processor to Data Register.
$\mathrm{DB}_{7}$	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the Processor. Both bits DIO and RQM should be used to perform the hand-shaking functions of "ready" and "direction" to the processor.

[^15]

## COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
$\mathrm{A}_{0}$	Address Line 0	$\mathrm{A}_{0}$ controls selection of Main Status Register ( $\mathrm{A}_{0}=0$ ) or Data Register ( $\mathrm{A}_{0}=1$ ).
C	Cylinder Number	C stands for the current/selected Cylinder (track) number 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a Sector.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8 -bit Data Bus, where $D_{7}$ stands for a most significant bit, and $D_{0}$ stands for a least significant bit.
DTL	Data Length	When $N$ is defined as 00 , DTL stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder. During Read or Write operation FDC will stop date transfer after a sector \# equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1 , as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ( $H=H D$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a read or write operation has occurred ( 16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multi-Track	If MT is high, a multi-track operation is to be performed. If $\mathrm{MT}=1$ after finishing Read/Write operation on side 0 FDC will automatically start searching for sector 1 on side 1 .
N	Number	N stands for the number of data bytes written in a Sector.
NCN	New Cylinder Number	NCN stands for a new Cylinder number, which is going to be reached as a result of the Seek operation. Desired position of Head.
ND	Non-DMA Mode	ND stands for operation in the Non-DMA Mode.
PCN	Present Cylinder Number	PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS Command. Position of Head at present time.
R	Record	R stands for the Sector number, which will be read or written.
R/W	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address Mark.
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD. (1 to 16 ms in 1 ms increments.) Stepping Rate applies to all drives, ( $F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, etc.).
$\begin{aligned} & \hline \text { ST0 } \\ & \text { ST } 1 \\ & \text { ST2 } \\ & \text { ST3 } \end{aligned}$	$\begin{aligned} & \text { Status } 0 \\ & \text { Status } 1 \\ & \text { Status } 2 \\ & \text { Status 3 } \end{aligned}$	ST 0-3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $\mathrm{A}_{0}=0$ ). ST 0-3 may be read only after a command has been executed and contain information relevant to that particular command.
STP		During a Scan operation, if STP $=1$, the data in continguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP $=2$, then alternate sectors are read and compared.
USO, US1	Unit Select	US stands for a selected drive number 0 or 1 .



Noto: (1) Symbols used in this table are described at the end of this section.
(2) $A_{0}$ should equal binary 1 for all operations.
(3) $\mathrm{x}=$ Don't care, usually made to equal binary 0 .

## INSTRUCTION SET (CONT.)



## FUNCTIONAL DESCRIPTION OF COMMANDS

## Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the.Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number ("R") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data
from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command.

The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and $N$ (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.

Multi-Track MT	$\underset{M F}{\substack{\text { MFM/FM }}}$	Bytes/Sector	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskette
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$(128)(26)=3,328$ $(256)(26)=6,656$	26 at Side 0 or 26 at Side 1
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & (128)(52)=6,656 \\ & (256)(52)=13,312 \end{aligned}$	26 at Side 1
$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \\ & \hline \end{aligned}$	$\begin{aligned} & (256)(15)=3,840 \\ & (512)(15)=7,680 \\ & \hline \end{aligned}$	15 at Side 0 or 15 at Side 1
1	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & (256)(30)=7,680 \\ & (512)(30)=15,360 \end{aligned}$	15 at Side 1
$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	$\begin{aligned} &(512)(8)=4,096 \\ &(1024)(8)=8,192 \\ & \hline \end{aligned}$	8 at Side 0 or 8 at Side 1
$\begin{aligned} & 1 \\ & 1 . \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	$\begin{aligned} (512)(16) & =8,192 \\ (1024)(16) & =16,384 \end{aligned}$	8 at Side 1

Table 1. Transfer Capacity

The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1 , Side 0 and completing at Sector L, Side 1 (Sector L = last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, the DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.

At the completion of the Read Data command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.

If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set (SK = 0), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when $\mathrm{SK}=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the value for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N , when the processor terminates the Command.

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	0	Less than EOT	NC	NC	$R+1$	NC
	0	Equal to EOT	$\mathrm{C}+1$	NC	$R=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$\mathrm{C}+1$	NC	$R=01$	NC
0	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	0	Equal to EOT	NC	LSB	$R=01$	NC
	1	Less than EOT	NC	NC	$R+1$	NC
	1	Equal to EOT	C + 1	LSB	$\mathrm{R}=01$	NC

Notes: 1. NC (No Change): The same value as the one at the beginning of command execution.
2. LSB (Least Significant Bit): The least significant bit of H is complemented.

## Write Data

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified Head Settling Time (defined in the Specify Command), and begins reading ID Fields. When all four bytes loaded during the command ( $\mathrm{C}, \mathrm{H}, \mathrm{R}, \mathrm{N}$ ) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.
After writing data into the current sector, the Sector Number stored in " R " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operation" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) flag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- EN (End of Cylinder) Flag
- ND (No Data) Flag
- Head Unload Time Interval
- ID Information when the processor terminates command (see Table 2)
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode, and every $13 \mu$ s in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

## Write Deleted Data

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

## Read Deleted Data

This command is the same as the Read Data Command except that when the FDC detects a Data Address Märk at the beginning of a Data Field and SK $=0$ (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If SK $=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

## Read A Track

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire

Format	Sector Size	N	SC	GPL	L(2)(3)
8' Standard Floppy					
FM Mode	128 bytes/sector	00	1A	07	1B
	256	01	OF	0E	2A
	512	02	08	1B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM   Mode (4)	256	01	1A	OE	36
	512	02	OF	1B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM   Mode (4)	256	01	12	OA	0 C
	256	01	10	20	32
	512	02	08	2 A	50
	1024	03	04	80	FO
	2048	04	02	C8	FF
	4096	05	01	C8	FF

## Table 3

Notes: (1) Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) All values except sector size and hexidecimal.
(4) In MFM mode FDC cannot perform a Read/Write/ format operation with 128 bytes/sector. $(\mathrm{N}=00)$
data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when number of sectors read is equal to EOT. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status register 1 to a 1 (high), and terminates the
command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

## Read ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

## Format A Track

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/ cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and $N$ (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.

The processor must send new values for $C, H, R$, and $N$ to the FDC 9266 for each sector on the track. If FDC is set for DMA mode, it will issue 4 DMA requests per sector. If it is set for interrupt mode, it will issue four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$ and N load for each sector. The contents of the R register is incremented by one after each sector is formatted, thus, the $R$ register contains a value of $R$ when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.

If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.

Table 3 shows the relationship between N, SC, and GPL for various sector sizes.

## Scan Commands

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of $D_{\text {FDD }}=D_{\text {PROCESSOR }}, D_{\text {FDD }} \leqslant D_{\text {PROCES }}$ sor, or $D_{\text {FDD }} \geqslant D_{\text {PROCESSOR }}$. The hexidecimal byte of $F F$ either from memory or from FDD can be used as a mask byte because it always meet the condition of the compare. Ones
complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremental $(R+S T P \rightarrow R)$, and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 = SN	BIT $3=$ SH	
Scan Equal	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & D_{\text {PDD }}=D_{\text {PROCESSOR }} \\ & D_{\text {FDD }} \neq D_{\text {PROCESSOR }} \end{aligned}$
Scan Low or Equal	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {PROCESSOR }} \\ & \mathrm{D}_{\text {FDD }}<\mathrm{D}_{\text {PROCESSOR }} \\ & \mathrm{D}_{\text {FDD }}>\mathrm{D}_{\text {PROCESSOR }} \\ & \hline \end{aligned}$
Scan High or Equal	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & D_{\text {FOD }}=D_{\text {PROCESSOR }} \\ & D_{\text {FPD }}>D_{\text {PROCESSOR }} \\ & D_{\text {PDD }}<D_{\text {PROCESSSOR }} \end{aligned}$

Table 4
If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If SK $=1$, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case (SK = 1), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (Multi-Track) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=02$, MT $=0$, the sectors are numbered sequentially 1 through 26, and we start the Scan Command at sector 21; the following will happen. Sectors 21, 23 and 25 will be read, then the next sector (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT has been set at 25 or the scanning started at sector 20, then;the Scan Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or 13 $\mu \mathrm{s}$ (MFM Mode). If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

## Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. FDC has four independent Present Cylinder Registers for each drive. They are clear only after Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:

PCN < NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.)

The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{DB}_{0^{-}}$ $\mathrm{DB}_{3}$ in Main Status Register are set during seek operation and are cleared by Sense Interrupt Status command.
During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once. No other command could be issued for as long as FDC is in process of sending Step Pulses to any drive.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
If the time to write 3 bytes of seek command exceeds 150 $\mu \mathrm{s}$, the timing between first two Step Pulses may be shorter than set in the Specify command by as much as 1 ms .

## Recalibrate

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulses have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both is (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the Seek Command, also applies to the RECALIBRATE Command.

## Sense Interrupt Status

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read ID Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in NON-DMA Mode, DB5 in Main Status Register is high. Upon entering Result Phase this bit gets clear. Reason 1 and 4 does not require Sense Interrupt Status command. The interrupt is cleared by reading/writing data to FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This com-
mand when issued resets the interrupt signal and via bits 5,6 , and 7 of Status Register 0 identifies the cause of the interrupt.

$\begin{array}{c}\text { SEEK } \\ \text { END }\end{array}$	$\begin{array}{c}\text { INTERRUPT } \\ \text { CODE }\end{array}$		
	BIT 6	BIT 7	CAUSE

polarity\end{array}\right]\)

Table 5
Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).
Issuing Sense Interrupt Status Command without interrupt pending is treated as an invalid command.

## Specify

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms $(01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} . . \mathrm{OF}=240 \mathrm{~ms}$ ). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, \mathrm{D}=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write operation starts. This timer is programmable from 2 to 254
ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6$ $\mathrm{ms} . .7 \mathrm{~F}=254 \mathrm{~ms}$ ).
The time intervals mentioned above are a direct function of the clock (CLK on pin 19). Times indicated above are for an 8 MHz clock, if the clock was reduced to 4 MHz (mini-floppy application) then all time intervals are increased by a factor of 2.
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND = 1) the NONDMA mode is selected, and when ND $=0$ the DMA mode is selected.

## Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

## Invalid

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the FDC 9266 during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high (" 1 ") indicating to the processor that the FDC 9266 is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find an 80 hex indicating an invalid command was received.
A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.
In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

## STATUS REGISTER IDENTIFICATION

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
$\begin{aligned} & \mathrm{D}_{7} \\ & \mathrm{D}_{6} \end{aligned}$	Interrupt Code	IC	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=0$   Normal Termination of Command, (NT). Command was completed and properly executed.
$\mathrm{D}_{6}$			$D_{7}=0 \text { and } D_{6}=1$   Abnormal Termination of Command, (AT).   Execution of Command was started, but was not successfully completed.
			$D_{7}=1 \text { and } D_{6}=0$   Invalid Command issue, (IC). Command which was issued was never started.
			$D_{7}=1 \text { and } D_{6}=1$   Abnormal Termination because during command execution the ready signal from FDD changed state.
$\mathrm{D}_{5}$	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
$\mathrm{D}_{4}$	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
$\mathrm{D}_{3}$	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
$\mathrm{D}_{2}$	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
$\mathrm{D}_{1}$	Unit Select 1	US 1	These flags are used to indicate a Drive Unit. Number at Interrup
$\mathrm{D}_{0}$	Unit Select 0	US 0	These flags are used to indicate a Drive Unit. Number at interrupt.


BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1(CONT.)			
$\mathrm{D}_{7}$	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
$\mathrm{D}_{6}$			Not used. This bit is always 0 (low).
$\mathrm{D}_{5}$	Data Errror	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
D4	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set.
$\mathrm{D}_{3}$			Not used. This bit always 0 (low).
$\mathrm{D}_{2}$	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.
D,	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
$\mathrm{D}_{0}$	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
$\mathrm{D}_{7}$			Not used. This bit is always 0 (low).
$\mathrm{D}_{6}$	Control Mark	CM	During executing the READ DATA or SCAN Command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
$\mathrm{D}_{5}$	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
$\mathrm{D}_{4}$	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of $C$ on the medium is different from that stored in the IDR, this flag is set.
$\mathrm{D}_{3}$	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set.
$\mathrm{D}_{2}$	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D,	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of $C$ on the medium is different from that stored in the IDR and the content of C is $F F$, then this flag is set.
D	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
$\mathrm{D}_{7}$	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
$\mathrm{D}_{6}$	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
$\mathrm{D}_{5}$	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
$\mathrm{D}_{4}$	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
$\mathrm{D}_{3}$	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
$\mathrm{D}_{2}$	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D 1	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

## PROCESSOR INTERFACE

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to Data Register, CPU should wait for $12 \mu$ s before reading MSR. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written in the FDC 9266. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the FDC 9266. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 $=1$ and D7 $=1$ ) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the FDC 9266 is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the FDC 9266 is in the NON-DMA Mode, then the receipt of each data byte (if FDC 9266 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT $=1$ ). The generation of a Read signal ( $\overline{R D}=0$ ) or Write signal ( $\overline{W R}=0$ ) will reset the Interrupt as well as output the Data onto the Data bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$ ) for MFM and $27 \mu \mathrm{~s}$ for FM mode, then it may poll the Main Status Register and then bit D7 (RQM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the FDC 9266 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The FDC 9266 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a $\overline{\text { DACK }}=0$ (DMA Acknowledge) and a $\overline{R D}=0$ (Read signal). When the DMA Acknowledge signal goes low $(\overline{\mathrm{DACK}}=0)$ then the $D M A$ Request is reset $(D R Q=0)$. If a Write Command has been programmed then a WR signal will appear instead of RD. After the Execution Phase has been completed (Terminal Count has occurred) or EOT sector was read/written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT $=0$ ).

It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The FDC 9266 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The FDC 9266 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (STO, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after completing a command. The particular command which has been executed determines how many of the Status Registers will be read.
The bytes of data which are sent to the FDC 9266 to form the Command Phase, and are read out of the FDC 9266 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the FDC 9266, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the FDC 9266 is ready for a new command.

## POLLING FEATURE OF THE FDC 9266

After the Specify command has been sent to the FDC 9266, the Unit Select line US0 and US1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the FDC 9266 polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the FDC 9266 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the FDC 9266 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands.

## AC TEST CONDITION



## AC TESTING

## PRECOMPENSATION

The desired precompensation delay is determined by the state of the P0, P1 and P2 inputs. Logic levels present on these pins may be changed dynamically as long as the inputs are stable during the time the floppy disk controller is writing to the drive.

P2	P1	P0	PRECOMP VALUE
0	0	0	0 NS
0	0	1	125 NS
0	1	0	250 NS
0	1	1	$375 \mathrm{NS}^{*}$
1	0	0	$500 \mathrm{NS}^{*}$

WRITE PRECOMPENSATICN VALUE SELECTION
*NOTE: Precomp values of 375 ns and 500 ns are valid only with $51 / 4$ " drives.

## DATA SEPARATOR

The FDC 9266 detects the leading (negative) edges of the disk data pulses and adjusts the phase of the internal clock to provide the internal SEPCLK signal.
Separate short- and long-term timing correctors assure accurate clock separation.

## ELECTRICAL CHARACTERISTICS

## absolute maximum ratings*




All Input Voltages ......................................................................................................... -0.5 to +7 Volts


$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Low Voltage	$\mathrm{V}_{1}$	-0.5		0.8	V	
Input High Voltage	$\mathrm{V}_{1}$	2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$			0.45	V	$\mathrm{I}_{\mathrm{oL}}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		$\mathrm{V}_{\text {cc }}$	V	$\mathrm{IOH}^{\text {O }}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK + WR Clock)	$\mathrm{V}_{\text {L( }(\text { ) }}$	-0.5		0.65	V	
Input High Voltage (CLK + WR Clock)	$\mathrm{V}_{1 H(\$)}$	2.4		$V_{c c}+0.5$	V	
$\mathrm{V}_{\text {cc }}$ Supply Current	$\mathrm{I}_{\mathrm{cc}}$			200	mA	
Input Load Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{cc}}$
(All Input Pins)	$\mathrm{l}_{\mathrm{L}}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
High Level Output Leakage Current	$\mathrm{I}_{\mathrm{LOH}}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Low Level Output Leakage Current	$\mathrm{I}_{\mathrm{LO}}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

NOTE: (1)Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
DC CHARACTERISTICS $T_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Capacitance				20	pF	All Pins Except Pin
Input Capacitance	$\mathrm{C}_{\text {iv }}$			10	pF	Under Test Tied to
Output Capacitance	$\mathrm{C}_{\text {OUt }}$			20	pF	AC Ground

AC CHARACTERISTICS $T_{a}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Clock Period	$\phi_{\text {cr }}$	120	125	130	ns	
Clock Active (High, Low)	$\phi_{0}$	40			ns	
Clock Rise Time	$\phi_{r}$			20	ns	
Clock Fall Time	$\phi_{1}$			20	ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\text { DACK }}$ Set Up Time to $\overline{\mathrm{RD}}$ !	$\mathrm{T}_{\text {AB }}$	0			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Hold Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\text {AA }}$	0			ns	
$\overline{\mathrm{RD}}$ Width	$\mathrm{T}_{\text {RR }}$	250			ns	
Data Access Time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{T}_{\text {Ro }}$			200	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
DB to Float Delay Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\mathrm{DF}}$	20		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{A}_{0}, \overline{\mathrm{CS}}$, $\overline{\mathrm{DACK}}$ Set Up Time to $\overline{\mathrm{WR}} 1$	$\mathrm{T}_{\text {AW }}$	0			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\text { DACK }}$ Hold Time to $\overline{\mathrm{WR}} \uparrow$	$\mathrm{T}_{\mathrm{wa}}$	0			ns	
WR Width	$\mathrm{T}_{\text {ww }}$	250			ns	
Data Set Up Time to WR $\uparrow$	$\mathrm{T}_{\text {ow }}$	150			ns	
Data Hold Time from $\overline{\mathrm{WR}} \uparrow$	$\mathrm{T}_{\text {wo }}$	5			ns	
INT Delay Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\text {R1 }}$			500	ns	
INT Delay Time from WR $\uparrow$	$\mathrm{T}_{\mathrm{w}}$			500	ns	
DRQ Cycle Time	$\mathrm{T}_{\mathrm{MCr}}$	13			$\mu \mathrm{S}$	
DRQ Delay Time from $\overline{\text { DACK }}$ ।	$\mathrm{T}_{\text {AM }}$			200	ns	
TC Width	$\mathrm{T}_{\text {TC }}$	1			$\phi_{\text {cr }}$	
Reset Width	$\mathrm{T}_{\text {RST }}$	14			$\psi_{c r}$	
US 0,1 Hold Time to RW/SEEK $\dagger$	$\mathrm{T}_{\text {us }}$	12			$\mu \mathrm{S}$	
SEEK/RW Hold Time to LOW CURRENT/DIRECTION $\uparrow$	$\mathrm{T}_{\text {so }}$	7			$\mu \mathrm{S}$	
LOW CURRENT/DIRECTION Hold Time to FAULT RESET/STEP $\dagger$	$\mathrm{T}_{\text {DST }}$	1.0			$\mu \mathrm{S}$	8 MHz Clock Period
$\mathrm{US}_{0,1}$ Hold Time from FAULT RESET/ STEP $\dagger$	$\mathrm{T}_{\text {stu }}$	5.0			$\mu \mathrm{S}$	
STEP Active Time (High)	$\mathrm{T}_{\text {STP }}$	6.0	7.0		$\mu \mathrm{s}$	
STEP Cycle Time	$\mathrm{T}_{\text {sc }}$	33	(2)	(2)	$\mu \mathrm{S}$	
FAULT RESET Active Time (High)	$\mathrm{T}_{\mathrm{FB}}$	8.0		10	$\mu \mathrm{s}$	
US 0,1 Hold Time After SEEK	$\mathrm{T}_{\text {su }}$	15			$\mu \mathrm{S}$	
Seek Hold Time from DIR	$\mathrm{T}_{\text {DS }}$	30			$\mu \mathrm{S}$	8 MHz Clock Period
DIR Hold Time after STEP	$\mathrm{T}_{\text {SID }}$	24			$\mu \mathrm{S}$	
Index Pulse Width	$\mathrm{T}_{10 \mathrm{X}}$	10			$\phi_{C r}$	
$\overline{\mathrm{RD}}$ \| Delay from DRQ	$\mathrm{T}_{\text {MR }}$	800			ns	
WR 1 Delay from DRQ	$\mathrm{T}_{\text {M }}$	250			ns	8 MHz Clock Period
$\overline{W E}$ or $\overline{\mathrm{RD}}$ Response Time from DRQ 1	$\mathrm{T}_{\text {Mrw }}$			12	$\mu \mathrm{s}$	

NOTES: (1) Typical values for $T_{a}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(2) Under Software Control. The range is from 1 ms to 16 ms for $8^{\prime \prime}$ floppies, and 2 to 32 ms for $51 / 4^{\prime \prime}$ floppies.

## TIMING DIAGRAMS



FLT RESET

FAULTRESET $=$ FILE UNSAFERESET



TERMINAL COUNT

TC


For more information, please consult:
Technical Note 6-1 (Digital Data Separation)


# Single/Double Density Floppy Disk Controller With High Performance Analog Data Separator 

## FEATURES

$\square$ IBM Compatible in both Single and Double Density Recording Formats
$\square$ High Performance self tuning Analog Data Separator
$\square$ Software compatible with Industry Standard FDC 765AProgrammable Data Record Lengths: 128, 256, 512, or 1024 Bytes/SectorMulti-Sector and Multi-Track Transfer CapacityDrive Up to 4 Floppy DisksData Scan Capability - will scan a Single Sector or an entire cylinder's worth of data fields, comparing on a Byte to Byte Basis, data in the Processor's Memory with data read from the DisketteData Transfer in DMA or Non-DMA ModeParallel Seek Operations on up to four drivesCompatible with Most MicroprocessorsSingle Phase 16 MHz ClockSingle +5 Volt Power SupplyAvailable in 40-Pin Dual-in-Line Package
$\square$ COPLAMOS®n-Channel Silicon Gate Technology

PIN CONFIGURATION
PACKAGE: 40-pin D.I.P.


## GENERAL DESCRIPTION

The FDC 9267 is an enhanced floppy disk controller that integrates the SMC 765A Floppy Disk Controller with a high performance data separator. The controller portion contains the circuitry for interfacing a micro-processor to four floppy disk drives. The high performance, self tuning ana$\log$ data separator is capable of recovering data with $2 \mu \mathrm{~s}$, $4 \mu \mathrm{~s}$ and $8 \mu \mathrm{~s}$ bit cells. This allows the device to be used in systems with $3.5^{\prime \prime}, 5.25^{\prime \prime}$ or $8^{\prime \prime}$ drives that are single or double sided using FM or MFM encoding.
The FDC 9267 is $100 \%$ software compatible with the industry standard SMC FDC 765A. This ensures full diskette and system level compatibility.
The FDC 9267 provides hand-shaking signals for DMA purposes. It will operate in DMA or non-DMA mode. In non-

DMA mode an interrupt is generated each time a byte is available.

There are 15 commands the FDC 9267 is capable of performing. Each command requires multiple byte transfers to specify the operation. The following commands are available:

Read Data	Write Data
Read ID	Format Track
Read Deleted Data	Write Deleted Data
Read Track	Sek
Scan Equal	Scan High or Equal
Scan Low or Equal	Sense Drive Status
Specify Sense	Interrupt Status

Write Data
ormat Track Seek
Scan High or Equal
Interrupt Status

## TYPICAL APPLICATION



DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	DESCRIPTION
1	RESET	RESET	This input, when high, places the FDC 9267 into an idle state and forces the output signals to the floppy drive low. Reset does not affect SRT, HUT or HLT in Specify command. If the RDY pin is held high during reset, the FDC 9267 will generate an interrupt 1.024 ms later. To clear this interrupt use the Sense Interrupt Status Command.
2	READ	$\overline{\mathrm{RD}}$	This input, when low, allows data to transfer from the FDC 9267 to the data bus.
3	WRITE	$\overline{\mathrm{WR}}$	This input, when low, allows data to transfer from the data bus to the FDC 9267.
4	CHIP SELECT	$\overline{\mathrm{CS}}$	This input, when low, selects the FDC 9267 thus enabling RD and WR.
5	ADDRESS 0	A0	This input, when high, allows the data register to be read or written. When low, it allows the status register to be read.
$\begin{aligned} & 6,7,8,9,10,11 \\ & 12,13 \end{aligned}$	DATA BUS 0-7	DB0-7	Bi -directional 8 bit data bus.
14	DMA REQUEST	DRQ	This output, when high, indicates that the FDC 9267 is requesting a DMA transfer. To allow easier system interfacing, and to insure full compatibility, DRQ is typically active $1 \mu \mathrm{~s}$ prior to the data byte being available (during disk read operations).
15	DMA   ACKNOWLEDGE	$\overline{\text { DACK }}$	This input, when low, indicates to the FDC 9267 that a DMA request is being acknowledged.
16	TERMINAL COUNT	TC	When high, this input indicates the termination of a DMA, polled, or interrupt driven transfer. It terminates data transfer during READ/ WRITE/SCAN command in DMA or interrupt mode.
17	INDEX	IDX	This input, when high, informs the FDC 9267 of the beginnning of the disk track.
18	INTERRUPT	INT	This output, when high, indicates the FDC 9267 is requesting an interrupt.
19	PRECOMP 1	P1	Input used to select desired precompensation value. Refer to table 6.
20	GROUND	GND	
21	PUMPDOWN	PD	This output, when high, causes the VCO frequency to decrease.
22	CLOCK	CLK	This input is a 16 mhz square wave clock.
23	RAW DATA IN	$\overline{\text { RDIN }}$	This input is the raw read data from the floppy drive.
24	PUMP UP	$\overline{\text { PU }}$	This output, when low, causes the VCO frequency to increase.
25	WRITE ENABLE	WE	This output, when high, enables the floppy disk drive to write data.
26	WRITE DATA OUT	WDOUT	This output is the precompensated serial data signal to the floppy disk drive.
27	HEAD SELECT	HD	When high, this outputs selects head 1 . When low, head 2 is selected.
28, 29	UNIT SELECT	US1-0	These two outputs are the encoded form of unit select 0 thru 3.
30	VCO CLOCK	VCOCLK	This input is the VCO signal from the VCO. The VCO frequency is nominally 2 mHz .
31	PRECOMP 0	PO	Input used to select desired precompensation value. Refer to table 6.
32	MINI	MINI	This input, when high, configures the FDC 9267 for operation with floppy disk data rates of 125 Kbs or 250 Kbs .

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	DESCRIPTION
33	FAULT/TRACK 0	FLT/TR0	This input senses floppy disk drive fault conditions in read/write mode; and track 0 in seek mode.
34	WRITE PROTECT TWO SIDED	WP/TS	This input senses write protect status in the read/write mode; and two sided media in the seek mode.
35	READY	RDY	When high, this input indicates the floppy disk drive is ready for transfers.
36	HEAD LOAD	HDL	When high, this output causes the floppy disk read/write head to contact the disk.
37	FAULT RESET/STEP	FR/STP	When high and in the read/write mode this output will reset the fault flip flop. In the seek mode this output is used to step the head.
38	LOW CURRENT/ DIRECTION	LCT/DIR	In the read/write mode, this output lowers the write current when writing on the inner tracks. In the seek mode, this output determines the direction the head will step. A fault reset pulse is issued at the beginning of each read or write command prior to the occurance of the head load signal.
39	READ WRITE/SEEK	$\overline{\text { RW/SEEK }}$	When this output is high the seek mode is selected. When low, the read/write mode is selected.
40	POWER	Vcc	

NOTE: For optimum performance, stray capacitance (on the printed circuit board) must be minimized between the PUMPDOWN and
the PUMPUP pins. Printed circuit board traces to these pins should be as short and as symetrical as possible.

## DESCRIPTION OF INTERNAL REGISTERS

The FDC 9267 contains two registers which may be accessed by the main system processor; a Status Register and a Data Register. The 8 -bit Main Status Register contains the status information of the FDC, and may be accessed at any time. The 8 -bit Data Register (actually consists of several registers in a stack with only one register presented to the data bus at a time), which stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data Register in order to program or obtain the results after a particular command. The

Status Register may only be read and used to facilitate the transfer of data between the processor and FDC. The relationship between the Status Data Registers and the signals $\mathrm{RD}, \overline{\mathrm{WR}}$, and $\mathrm{A}_{0}$ is shown below.

$\mathbf{A}_{\boldsymbol{0}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	FUNCTION
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

The bits in the Main Status Register are defined as follows:

BIT NUMBER	NAME	SYMBOL	DESCRIPTION
$\mathrm{DB}_{0}$	FDD 0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	$\begin{array}{l}\text { FDD number 0 is in the Seek mode. If any of the bits } \\ \text { are set. FDC will not accept read or write command. }\end{array}$
$\mathrm{DB}_{1}$	FDD 1 Busy	$\mathrm{D}_{1} \mathrm{~B}$	$\begin{array}{l}\text { FDD number } 1 \text { is in the Seek mode. If any of the bits } \\ \text { are set FDC will not accept read or write command. }\end{array}$
$\mathrm{DB}_{2}$	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	$\begin{array}{l}\text { FDD number 2 is in the Seek mode. If any of the bits } \\ \text { are set FDC will not accept read or write command. }\end{array}$
$\mathrm{DB}_{3}$	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	$\begin{array}{l}\text { FDD number 3 is in the Seek mode. If any of the bits } \\ \text { are set FCC will not accept read or write command. }\end{array}$
$\mathrm{DB}_{4}$	FDC Busy	CB	$\begin{array}{l}\text { A read or write command is in process. FDC will not } \\ \text { accept any other command. }\end{array}$
$\mathrm{DB}_{5}$	Execution Mode	EXM	$\begin{array}{l}\text { This bit is set only during execution phase in non-DMA } \\ \text { mode. When DB }\end{array}$
and result phase was staw, execution phase has ended, It operates only during			

DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus. When MINI is low, the max time between the iast RD or WR during command or result phase and DIO and RQM getting set or reset is
$12 \mu \mathrm{~s}$. For this reason, every time Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The max time from the trailing edge of the last RD in the phase to when DB4 (FDC Busy) goes low is $12 \mu \mathrm{~s}$. These times must be doubled (to $24 \mu \mathrm{~s}$ ) when MINI is high.


COMMAND SEQUENCE
The FDC is capable of performing 15 different commands. Each command is initiated by a multi-byte transfer from the processor, and the result after execution of the command may also be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information between the FDC and the processor, it is convenient to consider each command as consisting of three phases:
Command Phase: The FDC receives all information required to perform a particular operation from the processor.
Execution Phase: The FDC performs the operation Result Phase:
it was instructed to do.
After completion of the operation, status and other housekeeping information are made available to the processor.

## COMMAND SYMBOL DESCRIPTION

SYMBOL	NAME	DESCRIPTION
$\mathrm{A}_{0}$	Address Line 0	$\mathrm{A}_{0}$ controls selection of Main Status Register ( $\mathrm{A}_{0}=0$ ) or Data Register ( $A_{0}=1$ ).
C	Cylinder Number	C stands for the current/selected Cylinder (track) number 0 through 76 of the medium.
D	Data	$D$ stands for the data pattern which is going to be written into a Sector.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data Bus	8 -bit Data Bus, where $D_{7}$ stands for a most significant bit, and $D_{0}$ stands for a least significant bit.
DTL	Data Length	When N is defined as 00 , DTL stands for the data length which users are going to read out or write into the Sector.
EOT	End of Track	EOT stands for the final Sector number on a Cylinder. During Read or Write operation FDC will stop data transfer after a sector \# equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCOs will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	$H$ stands for head number 0 or 1, as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin 27. ( $\mathrm{H}=\mathrm{HD}$ in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD ( 2 to 254 ms in 2 ms increments).
HUT	Head Unload Time	HUT stands for the head unload time after a read or write operation has occurred ( 16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected, and if it is high, MFM mode is selected.
MT	Multi-Track	If MT is high, a multi-track operation is to be performed. If MT = 1 after finishing Read/Write operation on side 0 FDC will automatically start searching for sector 1 on side 1.
N	Number	N stands for the number of data bytes written in a Sector.
NCN	New Cylinder Number	NCN stands for a New Cylinder Number, which is going to be reached as a result of the Seek operation. Desired position of Head.
ND	Non-DMA Mode	ND stands for operation in the Non-DMA Mode.
PCN	Present Cylinder Number	PCN stands for the Cylinder number at the completion of SENSE INTERRUPT STATUS Command. Position of Head at present time.
R	Record	$R$ stands for the Sector number, which will be read or written.
R/W	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address Mark.
SRT	Step Rate Time	SRT stands for the Stepping Rate for the FDD. ( 1 to 16 ms in 1 ms increments.) Stepping Rate applies to all drives, ( $F=1 \mathrm{~ms}, \mathrm{E}=2 \mathrm{~ms}$, etc.).
$\begin{aligned} & \text { STO } \\ & \text { ST1 } \\ & \text { ST } 2 \\ & \text { ST } 3 \end{aligned}$		ST 0-3 stand for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register (selected by $\mathrm{A}_{0}=0$ ). ST 0-3 may be read only after a command has been executed and contain information relevant to that particular command.
STP		During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); and if STP $=2$, then alternate sectors are read and compared.
US0, US1	Unit Select	US stands for a selected drive number 0 or 1.

INSTRUCTION SET (1) (2)


Note: (1) Symbols used in this table are described at the end of this section.
(2) $A_{0}$ should equal binary 1 for all operations.
(3) $x=$ Don't care, usualliv made to equal binary 0 .

## INSTRUCTION SET (CONT.)



## FUNCTIONAL DESCRIPTION OF COMMANDS

## Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified head settling time (defined in the Specify Command), and begins reading ID Address Marks and ID fields. When the current sector number ("R") stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC outputs data (from the data field) byte-to-byte to the main system via the data bus.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the data
from the next sector is read and output on the data bus. This continuous read function is called a "Multi-Sector Read Operation." The Read Data Command may be terminated by the receipt of a Terminal Count signal. TC should be issued at the same time that the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but will continue to read data from the current sector, check CRC (Cyclic Redundancy Count) bytes, and then at the end of the sector terminate the Read Data Command.

The amount of data which can be handled with a single command to the FDC depends upon MT (multi-track), MF (MFM/FM), and N (Number of Bytes/Sector). Table 1 below shows the Transfer Capacity.

Multi-Track MT	$\begin{gathered} \text { MFM/FM } \\ \text { MF } \end{gathered}$	$\begin{aligned} & \text { Bytes/Sector } \\ & \mathrm{N} \end{aligned}$	Maximum Transfer Capacity (Bytes/Sector) (Number of Sectors)	Final Sector Read from Diskette
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$0$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & (128)(26)=3,328 \\ & (256)(26)=6,656 \end{aligned}$	26 at Side 0 or 26 at Side 1
1	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & (128)(52)=6,656 \\ & (256)(52)=13,312 \end{aligned}$	26 at Side 1
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & (256)(15)=3,840 \\ & (512)(15)=7,680 \end{aligned}$	15 at Side 0 or 15 at Side 1
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 01 \\ & 02 \end{aligned}$	$\begin{aligned} & (256)(30)=7,680 \\ & (512)(30)=15,360 \end{aligned}$	15 at Side 1
$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} &(512)(8)=4,096 \\ &(1024)(8)=8,192 \\ & \hline \end{aligned}$	8 at Side 0 or 8 at Side 1
1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 02 \\ & 03 \end{aligned}$	$\begin{aligned} (512)(16) & =8,192 \\ (1024)(16) & =16,384 \end{aligned}$	8 at Side 1

Table 1. Transfer Capacity

The "multi-track" function (MT) allows the FDC to read data from both sides of the diskette. For a particular cylinder, data will be transferred starting at Sector 1 , Side 0 and completing at Sector L, Side 1 (Sector $L=$ last sector on the side). Note, this function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, the DTL defines the data length which the FDC must treat as a sector. If DTL is smaller than the actual data length in a Sector, the data beyond DTL in the Sector, is not sent to the Data Bus. The FDC reads (internally) the complete Sector performing the CRC check, and depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF Hexidecimal.
At the completion of the Read Data command, the head is not unloaded until after Head Unload Time Interval (specified in the Specify Command) has elapsed. If the processor issues another command before the head unloads then the head settling time may be saved between subsequent reads. This time out is particularly valuable when a diskette is copied from one drive to another.
If the FDC detects the Index Hole twice without finding the right sector, (indicated in "R"), then the FDC sets the ND (No Data) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
After reading the ID and Data Fields in each sector, the FDC checks the CRC bytes. If a read error is detected (incorrect CRC in ID field), the FDC sets the DE (Data Error) flag in Status Register 1 to a 1 (high), and if a CRC error occurs in the Data Field the FDC also sets the DD (Data Error in Data Field) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)

If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit (bit D5 in the first Command Word) is not set ( $\mathrm{SK}=0$ ), then the FDC sets the CM (Control Mark) flag in Status Register 2 to a 1 (high), and terminates the Read Data Command, after reading all the data in the Sector. If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. The CRC bits in the deleted data field are not checked when $S K=1$.
During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode*, or the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Read Data Command.
If the processor terminates a read (or write) operation in the FDC, then the ID Information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 2 shows the value for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N , when the processor terminates the Command.

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			C	H	R	N
0	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	0	Equal to EOT	$\mathrm{C}+1$	NC	$R=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$\mathrm{C}+1$	NC	$R=01$	NC
0	0	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	0	Equal to EOT	NC	LSB	$R=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$\mathrm{C}+1$	LSB	$\mathrm{R}=01$	NC

Notes: 1. NC (No Change): The same value as the one at the beginning of command execution.
2. LSB (Least Significant Bit): The least significant bit of $H$ is complemented.

- ND (No Data) Flag
- Head Unload Time Interval
- ID Information when the processor terminates command (see Table 2)
- Definition of DTL when $N=0$ and when $N \neq 0$

In the Write Data mode, data transfers between the processor and FDC, via the Data Bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode, and every $13 \mu s$ in the MFM mode. If the time interval between data transfers is longer than this then the FDC sets the OR (Over Run) flag in Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bit 7 and 6 set to 0 and 1 respectively.)

## Write Deleted Data

This command is the same as the Write Data Command except a Deleted Data Address Mark is written at the beginning of the Data Field instead of the normal Data Address Mark.

## Read Deleted Data

This command is the same as the Read Data Command except that when the FDC detects a Data Address Mark at the beginning of a Data Field and $S K=0$ (low), it will read all the data in the sector and set the CM flag in Status Register 2 to a 1 (high), and then terminate the command. If SK $=1$, then the FDC skips the sector with the Data Address Mark and reads the next sector.

## Read A Track

This command is similar to READ DATA Command except that this is a continuous READ operation where the entire

## Write Data

A set of nine (9) bytes are required to set the FDC into the Write Data mode. After the Write Data command has been issued the FDC loads the head (if it is in the unloaded state), waits the specified Head Settling Time (defined in the Specify Command), and begins reading ID Fields. When all four bytes loaded during the command ( $\mathrm{C}, \mathrm{H}, \mathrm{R}, \mathrm{N}$ ) match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus, and outputs it to the FDD.
After writing data into the current sector, the Sector Number stored in " $R$ " is incremented by one, and the next data field is written into. The FDC continues this "Multi-Sector Write Operátion" until the issuance of a Terminal Count signal. If a Terminal Count signal is sent to the FDC it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written then the remainder of the data field is filled with 00 (zeros).
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (incorrect CRC) in one of the ID Fields, it sets the DE (Data Error) flag of Status Register 1 to a 1 (high), and terminates the Write Data Command. (Status Register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
The Write Command operates in much the same manner as the Read Command. The following items are the same, and one should refer to the Read Data Command for details:

- Transfer Capacity
- EN (End of Cylinder) Flag
"Time refers to $8^{\prime \prime}$ mode (MINI = low). When using 5.25 " mode, these times are doubled.

Format	Sector Size	N	SC	GPL(1)	PL(2)3
8" Standard Floppy					
FM Mode	128 bytes/sector	00	1A	07	1B
	256	01	OF	0E	2A
	512	02	08	1 B	3A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode (4)	256	01	1A	0E	36
	512	02	OF	1 B	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02	C8	FF
	8192	06	01	C8	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	C8	FF
	2048	04	01	C8	FF
MFM   Mode (4)	256	01	12	0A	0C
	256	01	10	20	32
	512	02	08	2 A	50
	1024	03	04	80	F0
	2048	04	02	C8	FF
	4096	05	01	C8	FF
$31 / 2^{\prime \prime}$ Sony Micro Floppydisk ${ }^{\circledR}$					
FM Mode	128 bytes/sector	0	OF	07	1B
	256	1	09	0E	2A
	512	2	05	1B	3A
MFM Mode (4)	256	1	0F	0E	36
	512	2	09	1B	54
	1024	3	05	35	74

Table 3
Notes: (1) Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sections.
(2) Suggested values of GPL in format command.
(3) All values except sector size and hexidecimal.
(4) In MFM mode FDC cannot perform a Read/Write/ format operation with 128 bytes/sector. $(\mathrm{N}=00)$
data field from each of the sectors are read. Immediately after encountering the INDEX HOLE, the FDC starts reading all data fields on the track, as continuous blocks of data. If the FDC finds an error in the ID or DATA CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR, and sets the ND flag of Status Register 1 to a 1 (high) if there is no comparison. Multi-track or skip operations are not allowed with this command.

This command terminates when number of sectors read is equal to EOT. If the FDC does not find an ID Address Mark on the diskette after it encounters the INDEX HOLE for the second time, then it sets the MA (missing address mark) flag in Status register 1 to a 1 (high), and terminates the command. (Status Register 0 has bits 7 and 6 set to 0 and 1 respectively.)

## Read ID

The READ ID Command is used to give the present position of the recording head. The FDC stores the values from the first ID field it is able to read. If no proper ID Address Mark is found on the diskette, before the INDEX HOLE is encountered for the second time then the MA (Missing Address Mark) flag in Status Register 1 is set to a 1 (high), and if no data is found then the ND (No Data) flag is also set in Status Register 1 to a 1 (high). The command is then terminated with Bits 7 and 6 in Status Register 0 set to 0 and 1 respectively. During this command there is no data transfer between FDC and the CPU except during the result phase.

## Format A Track

The Format Command allows an entire track to be formatted. After the INDEX HOLE is detected, Data is written on the Diskette; Gaps, Address Marks, ID Fields and Data Fields, all per the IBM System 34 (Double Density) or System 3740 (Single Density) Format are recorded. The particular format which will be written is controlled by the values programmed into N (number of bytes/sector), SC (sectors/ cylinder), GPL (Gap Length), and D (Data Pattern) which are supplied by the processor during the Command Phase. The Data Field is filled with the Byte of data stored in D. The ID Field for each sector is supplied by the processor; that is, four data requests per sector are made by the FDC for C (Cylinder Number), H (Head Number), R (Sector Number) and $N$ (Number of Bytes/Sector). This allows the diskette to be formatted with nonsequential sector numbers, if desired.
The processor must send new values for $C, H, R$, and $N$ to the FDC for each sector on the track. If FDC is set for DMA mode, it will issue 4 DMA requests per sector. If it is set for interrupt mode, it will issue four interrupts per sector and the processor must supply C, H, R and $N$ load for each sector. The contents of the R register is incremented by one after each sector is formatted, thus, the $R$ register contains a value of $R$ when it is read during the Result Phase. This incrementing and formatting continues for the whole track until the FDC encounters the INDEX HOLE for the second time, whereupon it terminates the command.
If a FAULT signal is received from the FDD at the end of a write operation, then the FDC sets the EC flag of Status Register 0 to a 1 (high), and terminates the command after setting bits 7 and 6 of Status Register 0 to 0 and 1 respectively. Also the loss of a READY signal at the beginning of a command execution phase causes bits 7 and 6 of Status Register 0 to be set to 0 and 1 respectively.
Table 3 shows the relationship between N, SC, and GPL for various sector sizes:

## Scan Commands

The SCAN Commands allow data which is being read from the diskette to be compared against data which is being supplied from the main system. The FDC compares the data on a byte-by-byte basis, and looks for a sector of data which meets the conditions of $D_{\text {FDD }}=D_{\text {PROCESSOR }}, D_{\text {FDD }} \leqslant D_{\text {PROCES }}$ SOR, or $D_{\text {FDD }} \geqslant D_{\text {PROCESSOR }}$. The hexidecimal byte of $F F$ either from memory or from FDD can be used as a mask byte because it always meet the condition of the compare. Ones
complement arithmetic is used for comparison (FF = largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremental ( $\mathrm{R}+\mathrm{STP} \rightarrow \mathrm{R}$ ), and the scan operation is continued. The scan operation continues until one of the following conditions occur; the conditions for scan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count signal is received.

If the conditions for scan are met then the FDC sets the SH (Scan Hit) flag Status Register 2 to a 1 (high), and terminates the Scan Command. If the conditions for scan are not met between the starting sector (as specified by R) and the last sector on the cylinder (EOT), then the FDC sets the SN (Scan Not Satisfied) flag of Status Register 2 to a 1 (high), and terminates the Scan Command. The receipt of a TERMINAL COUNT signal from the Processor or DMA Controller during the scan operation will cause the FDC to complete the comparison of the particular byte which is in process, and then to terminate the command. Table 4 shows the status of bits SH and SN under various conditions of SCAN.

COMMAND	STATUS REGISTER 2		COMMENTS
	BIT 2 = SN	BIT $3=$ SH	
Scan Equal	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {PROCESSOR }} \\ & \mathrm{D}_{\text {FDD }} \neq \mathrm{D}_{\text {PROCESSSOR }} \end{aligned}$
Scan Low or Equal	$\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\text {FDD }}=\mathrm{D}_{\text {PROCESSOR }} \\ & \mathrm{D}_{\text {FDD }}<\mathrm{D}_{\text {PROCESSSO }} \\ & \mathrm{D}_{\text {FDD }}>\mathrm{D}_{\text {PROCESSSOR }} \end{aligned}$
Scan High or Equal	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & D_{\text {FDD }}=D_{\text {PROCESSOR }} \\ & D_{\text {FDD }}>D_{\text {PRRCESSOR }} \\ & D_{\text {FDD }}<D_{\text {PROCESSOR }} \\ & \hline \end{aligned}$

Table 4
If the FDC encounters a Deleted Data Address Mark on one of the sectors (and SK = 0), then it regards the sector as the last sector on the cylinder, sets CM (Control Mark) flag of Status Register 2 to a 1 (high) and terminates the command. If $\mathrm{SK}=1$, the FDC skips the sector with the Deleted Address Mark, and reads the next sector. In the second case (SK = 1), the FDC sets the CM (Control Mark) flag of Status Register 2 to a 1 (high) in order to show that a Deleted Sector had been encountered.
When either the STP (contiguous sectors $=01$, or alternate sectors $=02$ sectors are read) or the MT (Multi-Track) are programmed, it is necessary to remember that the last sector on the track must be read. For example, if STP $=02$, MT = 0, the sectors are numbered sequentially 1 through 26, and we start the Scan Command at sector 21; the following will happen. Sectors 21, 23 and 25 will be read, then the next sector (26) will be skipped and the Index Hole will be encountered before the EOT value of 26 can be read. This will result in an abnormal termination of the command. If the EOT has been set at 25 or the scanning started at sector 20, then the Scan Command would be completed in a normal manner.
During the Scan Command data is supplied by either the processor or DMA Controller for comparison against the data read from the diskette. In order to avoid having the OR (Over Run) flag set in Status Register 1, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM Mode) or 13 $\mu s$ (MFM Mode)*. If an Overrun occurs the FDC ends the command with bits 7 and 6 of Status Register 0 set to 0 and 1, respectively.

## Seek

The read/write head within the FDD is moved from cylinder to cylinder under control of the Seek Command. FDC has four independent Present Cylinder Registers for each drive. They are clear only after Recalibrate command. The FDC compares the PCN (Present Cylinder Number) which is the current head position with the NCN (New Cylinder Number), and if there is a difference performs the following operation:
PCN $<$ NCN: Direction signal to FDD set to a 1 (high), and Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low), and Step Pulses are issued. (Step Out.)

The rate at which Step Pulses are issued is controlled by SRT (Stepping Rate Time) in the SPECIFY Command. After each Step Pulse is issued NCN is compared against PCN, and when NCN = PCN, then the SE (Seek End) flag is set in Status Register 0 to a 1 (high), and the command is terminated. At this point FDC interrupt goes high. Bits $\mathrm{DB}_{0}-$ $\mathrm{DB}_{3}$ in Main Status Register are set during seek operation and are cleared by Sense Interrupt Status command.
During the Command Phase of the Seek operation the FDC is in the FDC BUSY state, but during the Execution Phase. it is in the NON BUSY state. While the FDC is in the NON BUSY state, another Seek Command may be issued, and in this manner parallel seek operations may be done on up to 4 Drives at once. No other command could be issued for as long as FDC is in process of sending Step Pulses to any drive.
If an FDD is in a NOT READY state at the beginning of the command execution phase or during the seek operation, then the NR (NOT READY) flag is set in Status Register 0 to a 1 (high), and the command is terminated after bits 7 and 6 of Status Register 0 are set to 0 and 1 respectively.
If the time to write 3 bytes of seek command exceeds 150 $\mu \mathrm{s}$, the timing between first two Step Pulses may be shorter than set in the Specify command by as much as 1 ms .

## Recalibrate

The function of this command is to retract the read/write head within the FDD to the Track 0 position. The FDC clears the contents of the PCN counter, and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is low, the Direction signal remains 0 (low) and Step Pulses are issued. When the Track 0 signal goes high, the SE (SEEK END) flag in Status Register 0 is set to a 1 (high) and the command is terminated. If the Track 0 signal is still low after 77 Step Pulses have been issued, the FDC sets the SE (SEEK END) and EC (EQUIPMENT CHECK) flags of Status Register 0 to both 1s (highs), and terminates the command after bits 7 and 6 of Status Register 0 is set to 0 and 1 respectively.
The ability to do overlap RECALIBRATE Commands to multiple FDDs and the loss of the READY signal, as described in the Seek Command, also applies to the RECALIBRATE Command.

## Sense Interrupt Status

An Interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read ID Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. Scan Commands
2. Ready Line of FDD changes state
3. End of Seek or Recalibrate Command
4. During Execution Phase in the NON-DMA Mode

Interrupts caused by reasons 1 and 4 above occur during normal command operations and are easily discernible by the processor. During an execution phase in NON-DMA Mode, DB5 in Main Status Register is high. Upon entering Result Phase this bit gets clear. Reason 1 and 4 does not require Sense Interrupt Status command. The interrupt is cleared by reading/writing data to FDC. Interrupts caused by reasons 2 and 3 above may be uniquely identified with the aid of the Sense Interrupt Status Command. This com-

[^16]mand when issued resets the interrupt signal and via bits 5,6 , and 7 of Status Register 0 identifies the cause of the interrupt.

SEEK   END   BITS 5	$\begin{aligned} & \hline \text { INTERRUPT } \\ & \text { CODE } \end{aligned}$		CAUSE
	BIT 6	BIT 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate Command
1	1	0	Abnormal Termination of Seek or Recalibrate Command

Table 5

Neither the Seek or Recalibrate Command have a Result Phase. Therefore, it is mandatory to use the Sense Interrupt Status Command after these commands to effectively terminate them and to provide verification of where the head is positioned (PCN).
Issuing Sense Interrupt Status Command without interrupt pending is treated as an invalid command.

## Specify

The Specify Command sets the initial values for each of the three internal timers. The HUT (Head Unload Time) defines the time from the end of the Execution Phase of one of the Read/Write Commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms $(01=16 \mathrm{~ms}, 0=32 \mathrm{~ms} . . \mathrm{OF}=240 \mathrm{~ms}$ ). The SRT (Step Rate Time) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of $1 \mathrm{~ms}(F=1 \mathrm{~ms}, E=2 \mathrm{~ms}, D=3 \mathrm{~ms}$, etc.). The HLT (Head Load Time) defines the time between when the Head Load signal goes high and when the Read/Write
operation starts. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6$ $\mathrm{ms} . . .7 \mathrm{~F}=254 \mathrm{~ms}$ ).
The time interval mentioned above is a direct function of the MINI (pin 32). Times indicated above are for MINI set to 0. In a mini floppy application all time intervals are increased by a factor of 2 .
The choice of DMA or NON-DMA operation is made by the ND (NON-DMA) bit. When this bit is high (ND =1) the NONDMA mode is selected, and when ND $=0$ the DMA mode is selected.

## Sense Drive Status

This command may be used by the processor whenever it wishes to obtain the status of the FDDs. Status Register 3 contains the Drive Status information stored internally in FDC registers.

## Invalid

If an invalid command is sent to the FDC (a command not defined above), then the FDC will terminate the command after bits 7 and 6 of Status Register 0 are set to 1 and 0 respectively. No interrupt is generated by the FDC 9267 during this condition. Bit 6 and bit 7 (DIO and RQM) in the Main Status Register are both high (" 1 ") indicating to the processor that the FDC 9267 is in the Result Phase and the contents of Status Register 0 (STO) must be read. When the processor reads Status Register 0 it will find an 80 hex indicating an invalid command was received.
A Sense Interrupt Status Command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC will consider the next command to be an Invalid Command.
In some applications the user may wish to use this command as a No-Op command, to place the FDC in a standby or no operation state.

## STATUS REGISTER IDENTIFICATION

BIT			DESCRIPTION
NO.	NAME	SYMBOL	
$\begin{aligned} & \hline D_{7} \\ & D_{6} \end{aligned}$	Interrupt Code	IC	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=0$   Normal Termination of Command, (NT). Command was completed and properly executed.
$\mathrm{D}_{6}$			$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=1$   Abnormal Termination of Command, (AT).   Execution of Command was started, but was not successfully completed.
			$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=0$   Invalid Command issue, (IC). Command which was issued was never started.
			$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=1$   Abnormal Termination because during command execution the ready signal from FDD changed state.
$\mathrm{D}_{5}$	Seek End	SE	When the FDC completes the SEEK Command, this flag is set to 1 (high).
$\mathrm{D}_{4}$	Equipment Check	EC	If a fault Signal is received from the FDD, or if the Track 0 Signal fails to occur after 77 Step Pulses (Recalibrate Command) then this flag is set.
$\mathrm{D}_{3}$	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single sided drive, then this flag is set.
$\mathrm{D}_{2}$	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
$\mathrm{D}_{1}$	Unit Select 1	US 1	These flags are used to indicate a Drive Unit. Number at Interrupt.
$\mathrm{D}_{0}$	Unit Select 0	US 0	These flags are used to indicate a Drive Unit. Number at interrupt.


BIT			DESCRIPTION
NO.	NAME	SYMBOL	
STATUS REGISTER 1 (CONT.)			
$\mathrm{D}_{7}$	End of Cylinder	EN	When the FDC tries to access a Sector beyond the final Sector of a Cylinder, this flag is set.
$\mathrm{D}_{6}$			Not used. This bit is always 0 (low).
$\mathrm{D}_{5}$	Data Errror	DE	When the FDC detects a CRC error in either the ID field or the data field, this flag is set.
$\mathrm{D}_{4}$	Over Run	OR	If the FDC is not serviced by the main-systems during data transfers, within a certain time interval, this flag is set.
$\mathrm{D}_{3}$			Not used. This bit always 0 (low).
$\mathrm{D}_{2}$	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN Command, if the FDC cannot find the Sector specified in the IDR Register, this flag is set.
			During executing the READ ID Command, if the FDC cannot read the ID field without an error, then this flag is set.
			During the execution of the READ A Cylinder Command, if the starting sector cannot be found, then this flag is set.
D	Not Writable	NW	During execution of WRITE DATA, WRITE DELETED DATA or Format A Cylinder Command, if the FDC detects a write protect signal from the FDD, then this flag is set.
$\mathrm{D}_{0}$	Missing Address Mark	MA	If the FDC cannot detect the ID Address Mark after encountering the index hole twice, then this flag is set.
			If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the same time, the MD (Missing Address Mark in Data Field) of Status Register 2 is set.
STATUS REGISTER 2			
$\mathrm{D}_{7}$			Not used. This bit is always 0 (low).
$\mathrm{D}_{6}$	Control Mark	CM	During executing the READ DATA or SCAN Command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
$\mathrm{D}_{5}$	Data Error in Data Field	DD	If the FDC detects a CRC error in the data field then this flag is set.
$\mathrm{D}_{4}$	Wrong Cylinder	WC	This bit is related with the ND bit, and when the contents of C on the medium is different from that stored in the IDR, this flag is set.
$\mathrm{D}_{3}$	Scan Equal Hit	SH	During execution, the SCAN Command, if the condition of "equal" is satisfied, this flag is set.
$\mathrm{D}_{2}$	Scan Not Satisfied	SN	During executing the SCAN Command, if the FDC cannot find a Sector on the cylinder which meets the condition, then this flag is set.
D	Bad Cylinder	BC	This bit is related with the ND bit, and when the content of $C$ on the medium is different from that stored in the IDR and the content of $C$ is $F F$, then this flag is set.
$\mathrm{D}_{0}$	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
STATUS REGISTER 3			
$\mathrm{D}_{7}$	Fault	FT	This bit is used to indicate the status of the Fault signal from the FDD.
$\mathrm{D}_{6}$	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
$\mathrm{D}_{5}$	Ready	RY	This bit is used to indicate the status of the Ready signal from the FDD.
$\mathrm{D}_{4}$	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
$\mathrm{D}_{3}$	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
$\mathrm{D}_{2}$	Head Address	HD	This bit is used to indicate the status of Side Select signal to the FDD.
D	Unit Select 1	US 1	This bit is used to indicate the status of the Unit Select 1 signal to the FDD.
D	Unit Select 0	US 0	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

## PROCESSOR INTERFACE

During Command or Result Phases the Main Status Register (described earlier) must be read by the processor before each byte of information is written into or read from the Data Register. After each byte of data read or written to Data Register, CPU should wait for $12 \mu$ s before reading MSR. Bits D6 and D7 in the Main Status Register must be in a 0 and 1 state, respectively, before each byte of the command word may be written in the FDC 9267. Many of the commands require multiple bytes, and as a result the Main Status Register must be read prior to each byte transfer to the FDC 9267. On the other hand, during the Result Phase, D6 and D7 in the Main Status Register must both be 1's (D6 $=1$ and $D 7=1$ ) before reading each byte from the Data Register. Note, this reading of the Main Status Register before each byte transfer to the FDC 9267 is required in only the Command and Result Phases, and NOT during the Execution Phase.
During the Execution Phase, the Main Status Register need not be read. If the FDC 9267 is in the NON-DMA Mode, then the receipt of each data byte (if FDC 9267 is reading data from FDD) is indicated by an Interrupt signal on pin 18 (INT $=1$ ). The generation of a Read signal ( $\mathrm{RD}=0$ ) or Write signal ( $\mathrm{WR}=0$ ) will reset the Interrupt as well as output the Data onto the Data bus. If the processor cannot handle Interrupts fast enough (every $13 \mu \mathrm{~s}$ ) for MFM and $27 \mu \mathrm{~s}$ for FM mode, then it may poll the Main Status Register and then bit D7 (RQM) functions just like the Interrupt signal. If a Write Command is in process then the WR signal performs the reset to the Interrupt signal.
If the FDC 9267 is in the DMA Mode, no Interrupts are generated during the Execution Phase. The FDC 9267 generates DRQ's (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK $=0$ (DMA Acknowledge) and a $\overline{\text { RD }}=0$ (Read signal). When the DMA Acknowledge signal goes low ( $\mathrm{DACK}=0$ ) then the DMA Request is reset $(\mathrm{DRQ}=0)$. If a Write Command has been programmed then a WR signal will appear instead of RD. After the Execution Phase has been completed (Terminal Count has occurred) or EOT sector was read/written, then an Interrupt will occur (INT = 1). This signifies the beginning of the Result Phase. When the first byte of data is read during the Result Phase, the Interrupt is automatically reset (INT $=0$ ).

It is important to note that during the Result Phase all bytes shown in the Command Table must be read. The Read Data Command, for example has seven bytes of data in the Result Phase. All seven bytes must be read in order to successfully complete the Read Data Command. The FDC 9267 will not accept a new command until all seven bytes have been read. Other commands may require fewer bytes to be read during the Result Phase.
The FDC 9267 contains five Status Registers. The Main Status Register mentioned above may be read by the processor at any time. The other four Status Registers (STO, ST1, ST2, and ST3) are only available during the Result Phase, and may be read only after completing a command. The particular command which has been executed determines how many of the Status Registers will be read.
The bytes of data which are sent to the FDC 9267 to form the Command Phase, and are read out of the FDC 9267 in the Result Phase, must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result Phases are allowed. After the last byte of data in the Command Phase is sent to the FDC 9267, the Execution Phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is automatically ended and the FDC 9267 is ready for a new command.

## POLLING FEATURE OF THE FDC9267

After the Specify command has been sent to the FDC 9267, the Unit Select line USO and US1 will automatically go into a polling mode. In between commands (and between step pulses in the SEEK command) the FDC 9267 polls all four FDD's looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing) then the FDC 9267 will generate an interrupt. When Status Register 0 (STO) is read (after Sense Interrupt Status is issued), Not Ready (NR) will be indicated. The polling of the Ready line by the FDC 9267 occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands.

## AC TEST CONDITION



## AC TESTING

## PRECOMPENSATION

The desired precompensation delay is determined by the state of the MINI, PO and P1 inputs. Logic levels present on these pins may be changed dynamically as long as the inputs are stable during the time the floppy disk controller is writing to the drive.

NOTE: The duration of the write pulse from pin 26 (WDOUT) is to be a minimum of 250 ns . for all precomp values.

MINI	P1	P0	PRECOMP
0	0	0	0.0 ns
0	0	1	62.5 ns
0	1	0	125.0 ns
0	1	1	187.5 ns
1	0	0	0.0 ns
1	0	1	125.0 ns
1	1	0	250.0 ns
1	1	1	375.0 ns

TABLE 6
WRITE PRECOMPENSATION VALUE SELECTION

## TIMING DIAGRAMS




FIGURE 1: VCOCLK TIMING


FIGURE 2: PRECOMP VALUE TIMING


FIGURE 3: PUMPUP TO PUMPDOWN TIMING


FIGURE 4: PUMPDOWN TO PUMPUP TIMING

## ELECTRICAL CHARACTERISTICS

## ABSOLUTE MAXIMUM RATINGS*


$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $\mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Input Low Voltage	$\mathrm{V}_{\mathrm{LL}}$	-0.3		0.8	V	
Input High Voltage	$\mathrm{V}_{1}$	2.0		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		$V_{c c}$	V	$\mathrm{IOH}=-200 \mu \mathrm{~A}$
Input Low Voltage (CLK)	$\mathrm{V}_{\text {L }}($ ( $)$	-0.3		0.65	V	
Input High Voitage (CLK)	$\mathrm{V}_{1 H(\$)}$	2.4		$\mathrm{V}_{\mathrm{cc}}+0.5$	V	
$\mathrm{V}_{\mathrm{cc}}$ Supply Current	$I_{c c}$			200	mA	
Input Load Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cC }}$
(All Input Pins)	$\mathrm{L}_{1}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
High Level Output Leakage Current	$\mathrm{I}_{\text {LOH }}$			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {cc }}$
Low Level Output Leakage Current	$\mathrm{I}_{\text {LOL }}$			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.45 \mathrm{~V}$

NOTE: (1)Typical values for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

DC CHARACTERISTICS $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP	MAX		
Clock Input Capacitance	$\mathrm{C}_{\mathrm{IN}_{(\text {( })}}$			20	pF	All Pins Except Pin
Input Capacitance	$\mathrm{C}_{1}$			10	pF	Under Test Tied to
Output Capacitance	$\mathrm{C}_{\text {out }}$			20	pF	AC Ground

AC CHARACTERISTICS $T_{a}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

PARAMETER	SYMBOL	LIMITS			UNIT	TEST CONDITIONS
		MIN	TYP(1)	MAX		
Clock period Clock Active (High, Low)	$\begin{aligned} & \phi_{\mathrm{CY}} \\ & \phi_{0} \end{aligned}$	$\begin{gathered} 58 \\ 40 \% \end{gathered}$	62.5	$\begin{aligned} & 250 \\ & 60 \% \end{aligned}$	ns	
Clock Rise Time	$\phi_{r}$			10	ns	
Clock Fall Time	$\phi_{\text {t }}$			10	ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Set Up Time to $\overline{\mathrm{RD}} \downarrow$	$\mathrm{T}_{\text {AR }}$	0			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}$, DACK Hold Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\text {RA }}$	0			ns	
$\overline{\mathrm{RD}}$ Width	$\mathrm{T}_{\text {RR }}$	250			ns	
Data Access Time from $\overline{\mathrm{RD}} \downarrow$	$\mathrm{T}_{\text {Ro }}$			200	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
DB to Float Delay Time from $\overline{\mathrm{R}} \overline{\mathrm{D}} \uparrow$	$\mathrm{T}_{\mathrm{DF}}$	20		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Set Up time to $\overline{\mathrm{WR}} \downarrow$	$\mathrm{T}_{\text {AW }}$	0			ns	
$\mathrm{A}_{0}, \overline{\mathrm{CS}}, \overline{\mathrm{DACK}}$ Hold Time to $\overline{\mathrm{WR}} \uparrow$	$\mathrm{T}_{\text {w }}$	0			ns	
$\overline{\text { WR Width }}$	$\mathrm{T}_{\text {ww }}$	250			ns	
Data Set Up Time to $\overline{W R} \uparrow$	$\mathrm{T}_{\mathrm{D}}$	150			ns	
Data Hold Time from $\overline{W R} \uparrow$	$\mathrm{T}_{\text {w }}$	5			ns	
INT Delay Time from $\overline{\mathrm{RD}} \uparrow$	$\mathrm{T}_{\mathrm{RI}}$			500	ns	
INT Delay Time from WR $\uparrow$	$\mathrm{T}_{\text {w }}$			500	ns	
DRQ Cycle Time	$\mathrm{T}_{\text {MCY }}$	13			$\mu \mathrm{s}$	
DRQ Delay Time from $\overline{\text { DACK }} \downarrow$	$\mathrm{T}_{\text {AM }}$			200	ns	
TC Width	$\mathrm{T}_{\text {TC }}$	2			$\phi_{C r}$	
Reset Width	$\mathrm{T}_{\text {RST }}$	28			$\phi_{\mathrm{Cr}}$	
RDD Active Time (High)	$\mathrm{T}_{\text {RDD }}$	40			ns	
Window Cycle Time	$\mathrm{T}_{\mathrm{wcy}}$		$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\mu \mathrm{S}$	$\begin{aligned} & \text { MFM }=0 \\ & \text { MFM }=1 \end{aligned}$
Window Hold Time to/from RDD	$\begin{aligned} & \mathrm{T}_{\text {Row }} \\ & \mathrm{T}_{\text {wion }} \end{aligned}$	15			ns	
US, Hold Time to $\overline{\text { RW/SEEK } \uparrow}$	$\mathrm{T}_{\text {us }}$	12			$\mu \mathrm{s}$	16 MHz Clock Period MINI pin $=0$
SEEK RW Hold Time to LOW CURRENT/DIRECTION $\uparrow$	$\mathrm{T}_{\text {so }}$	7			$\mu \mathrm{S}$	
LOW CURRENT DIRECTION Hold Time to FAULT RESET/STEP $\uparrow$	$\mathrm{T}_{\text {DSt }}$	1.0			$\mu \mathrm{S}$	
US, Hold Time from FAULT RESET/ STEP $\uparrow$	$\mathrm{T}_{\text {stu }}$	5.0			$\mu \mathrm{S}$	
Step Active Time (High)	$\mathrm{T}_{\text {STP }}$	6.0	7.0		$\mu \mathrm{S}$	
Step Cycle Time	$\mathrm{T}_{\mathrm{Sc}}$	33			$\mu \mathrm{S}$	
FAULT RESET Active Time (High)	$\mathrm{T}_{\text {FR }}$	8.0		10	$\mu \mathrm{s}$	
Write Data Width (WDOUT)	$\mathrm{T}_{\text {woo }}$	250			ns	
US, Hold Time After SEEK	$\mathrm{T}_{\text {su }}$	15			$\mu \mathrm{s}$	16 MHz Clock Period MINI $\operatorname{pin}=0$
Seek Hold Time from DIR	$\mathrm{T}_{\mathrm{DS}}$	30			$\mu \mathrm{S}$	
DIR Hold Time after STEP	$\mathrm{T}_{\text {STD }}$	24			$\mu \mathrm{s}$	
Index Pulse Width	$\mathrm{T}_{10 \times}$	20			$\phi_{\text {cr }}$	
$\overline{W R} \downarrow$, Delay from DRQ	$\mathrm{T}_{\text {Mw }}$	250			ns	16MHz Clock Period MINI $\operatorname{pin}=0$
$\overline{\mathrm{WE}}$ or $\overline{\mathrm{RD}}$ Response Time from DRQ $\uparrow$	$\mathrm{T}_{\text {MRW }}$			12	$\mu \mathrm{S}$	
VCOCLK Period	$\mathrm{T}_{\mathrm{vp}}$	. 46	. 5	. 56	$\mu \mathrm{S}$	Figure 1
Rise and Fall Times				10	ns	Figure 1
Unit Select to Valid PRECOMP Value	$\mathrm{T}_{\mathrm{pv}}$			100	ns	Figure 2
Pump Reset Time	$\mathrm{T}_{\text {pres }}$			20	ns	Figure 3
Rise and Fall Times				10	ns	Figure 3

[^17](3) Sony microfloppy $31 / 2^{\prime \prime}$ drive ( $8^{\prime \prime}$ compatible).
(4) Sony microfloppy $31 / 2^{\prime \prime}$ drive ( $5^{1 / 4^{\prime \prime}}$ compatible).

## TIMING DIAGRAMS



PRELIMINARY

## Integrated Single／Double Density Floppy Disk Controller

## FEATURES

$\square$ Combination Floppy Disk Controller and Floppy Disk InterfaceSoftware compatible with industry standard FDC765AOn chip digital data separator eliminates critical analog adjustmentsIBM compatible in both single and double density recording formatsProgrammable data record lengths： $128,256,512$ ，or 1024 bytes／sectorMulti－sector and multi－track transfer capabilityControls up to 4 floppy disk drivesData Scan Capability－will scan a single sector or entire track＇s worth of data fields，comparing on a byte to byte basis，data in the processors memory with the data read from the disketteData transfer in DMA or non－DMA modeSingle 16 MHz TTL clock inputParallel seek operations on up to 4 drivesCompatible with most microprocessorsCOPLAMOS／n－channel silicon gate technologyAvailable in 40－pin Dual－In－Line and 44－pin PLCC packages

PIN CONFIGURATION

RESET	1	407	Vcc
$\overline{\text { RD }}$	2	$39]$	RW／SEEK
$\overline{\text { WR }}$	3	$38 \square$	LCT／DIR
$\overline{\mathrm{CS}}$	4	37	FR／STP
$\mathrm{A}_{0}$	5	36 ص	HDL
$\mathrm{DB}_{0}$	6	35	RDY
$\mathrm{DB}_{1}$	7	34 口	WP／TS
$\mathrm{DB}_{2}$	8	33 ص	$\mathrm{FLT} / \mathrm{TR}_{0}$
$\mathrm{DB}_{3}$	9	32 口	$\mathrm{P}_{2}$
$\mathrm{DB}_{4}$	10	31 ص	$P_{1}$
$\mathrm{DB}_{5}$	11	$30 \square$	WDOUT
$\mathrm{DB}_{6}$	12	29 ］	US ${ }_{0}$
$\mathrm{DB}_{7}$	13	28	US ${ }_{1}$
DRQ	14	27	HD
$\overline{\text { DACK }}$	15	26	MFM
TC	16	25	WE
IDX	17	24 ص	$\mathrm{P}_{0}$
INT	18	$23 \square$	$\overline{\text { DSKD }}$
TEST	19	22 口	CLK
GND	20	21 ］	MINI

PACKAGE：40－pin D．I．P．


## GENERAL DESCRIPTION

The FDC9268 is a monolithic combination of the industry standard FDC765A Floppy Disk Controller and the FDC9239 Enhanced Floppy Disk Interface Circuit．It pre－ serves all of the processor hardware and software inter－ faces to the 765A，and contains on－chip circuitry to simplify drive interfacing．
These on－chip enhancements include a digital data sepa－ rator，compatible with $3.5^{\prime \prime}, 5.25^{\prime \prime}$ and $8^{\prime \prime}$ floppy disk drives． The FDC9268 separates both FM（Single Density）and MFM （Double Density）encoded data．The FDC uses a high per－
formance 16－bit cell divide algorithm which produces sig－ nificant improvements in soft error rates over existing designs．The FDC9268＇s high performance is achieved without any external adjustments．
The FDC9268 also allows variable write precompensation， which is track selectable．

These enhancements greatly reduce the number of com－ ponents required to interface floppy disks to a micropro－ cessor system．

There are 15 commands which the FDC9268 will execute. Each of these commands requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The following commands are available:

Read Data<br>Format a Track<br>Read a Track<br>Recalibrate<br>Scan Low or Equal<br>Write Data<br>Read Deleted Data<br>\section*{Seek}

Address mark detection circuitry is internal to the FDC which simplifies the read electronics. The track stepping rate, head load time, and head unload time may be programmed by the user. The FDC9268 offers many additional features such as multiple sector transfers in both read and write with a single command, and full IBM compatibility in both single and double density modes.

## FDC9266 COMPATIBILITY

The FDC9268 is software and hardware compatible with the FDC9266 with the following qualifications pertaining to Precomp and clock input.
-A 16 MHz clock is used on the FDC9268.
-The precomp specifications for the FDC9267 and FDC9266 can be used for the FDC9268 with the following qualification. Whenever the precomp select line $P_{2}$ is
active, the FDC9268 uses the maximum precomp available in that mode (i.e. 375 nsec in the $5-1 / 4^{\prime \prime}$ mode and 187.5 nsec in the $8^{\prime \prime}$ mode).

MINI	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{0}}$	PRECOMP VALUE (nsec)
1	0	0	0	0
1	0	0	1	125.0
1	0	1	0	250.0
1	0	1	1	375.0
1	1	0	0	375.0
1	1	0	1	375.0
1	1	1	0	375.0
1	1	1	1	375.0
0	0	0	0	0
0	0	0	1	62.5
0	0	1	0	125.0
0	0	1	1	187.5
0	1	0	0	187.5
0	1	0	1	187.5
0	1	1	0	187.5
0	1	1	1	187.5

Write Precompensation Value Selection

# Floppy Disk Controller/Formatter FDC 

## FEATURES

+ 5 VOLT ONLY VERSION OF FDC179X-02SOFT SECTOR FORMAT COMPATIBILITYaUTOMATIC TRACK SEEK WITH VERIFICATIONACCOMMODATES SINGLE AND DOUBLE DENSITY FORMATSIBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)READ MODE
Single/Multiple Sector Read with Automatic Search or Entire Track Read
Selectable 128 Byte or Variable Length RecordWRITE MODE
Single/Multiple Sector Write with Automatic Sector Search
Entire Track Write for Diskette InitializationPROGRAMMABLE CONTROLS
Selectable Track to Track Stepping Time
Side Select CompareSYSTEM COMPATIBILITY
Double Buffering of Data 8 Bit Bi -Directional Bus for Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible
On-chip Track and Sector Registers/Comprehensive Status InformationWRITE PRECOMPENSATION (MFM AND FM)SIDE SELECT LOGIC (FDC 9795, FDC 9797)
WINDOW EXTENSION (IN MFM)

## PIN CONFIGURATION

NC $\overbrace{1}$	40	NC
WE 2	39	INTRQ
$\overline{C S} 3$	38	DRQ
$\overline{R E} 04$	37	DDEN ${ }^{\text {. }}$
$\mathrm{A}_{0} \mathrm{~S}$	36	WPRT
$\mathrm{A}_{1} \mathrm{C}$	35	$\overline{\mathrm{P}}$
DALO* 7	34	$\overline{\text { TROO }}$
DAL 1* 8	33	$\overline{\text { WF }}$
DAL $2 * 9$	32	READY
DAL 3* 10	31	WD
DAL 4* 11	30	WG
DAL 5* 12	29	TG43
DAL 6* 13	28	HLD
DAL 7 - 14	27	RAW READ
STEP 15	26	RCLK
DIRC 16	25	RG/SSŌ
EARLY 17	24	CLK
LATE 18	23	HLT
MR 19	22	TEST
GND 20	21	$+5 \mathrm{~V}$

*INVERTED BUS FOR FDC 9791, FDC 9795 PACKAGE: 40 pin D.I.P.INCORPORATES ENCODING/DECODING AND ADDRESS MARK CIRCUITRYCOMPATIBLE WITH FDC 179X-02COPLAMOS ${ }^{\circledR}$ n-CHANNEL MOS TECHNOLOGYCOMPATIBLE WITH THE FDC 9216 FLOPPY DISK DATA SEPARATOR

## GENERAL DESCRIPTION

The FDC 979X is an MOS/LSI device which performs the functions of a Floppy Disk Controller/Formatter in a single chip implementation. The basic FDC 979X chip design has evolved into four specific parts: FDC 9791, FDC 9793, FDC 9795, and the FDC 9797.
This FDC family performs all the functions necessary to read or write data to any type of floppy disk drive. Both $8^{\prime \prime}$ and $51 / 4^{\prime \prime}$ (mini-floppy) drives with single or double density storage capabilities are supported. These $n$ channel MOS/LSI devices will replace a large amount of discrete logic required for interfacing a host processor to a floppy disk.

The FDC 9791 is IBM 3740 compatible in single density mode (FM) and System 34 compatible in double density
mode (MFM). The FDC 9791 contains enhanced features necessary to read/write and format a double density diskette. These include address mark detection, FM and MFM encode and decode logic, window extension, and write precompensation.
The FDC 9793 is identical to the FDC 9791 except the DAL lines are TRUE for systems that utilize true data busses.
The FDC 9795 adds side select logic to the FDC 9791. The FDC 9797 adds the side select logic to the FDC 9793.
The processor interface consists of an 8 bit bidirectional bus for data, status, and control word transfers. This family of controllers is configured to operate on a multiplexed bus with other bus-oriented devices.


DESCRIPTION OF PIN FUNCTIONS

PIN NO	NAME	SYMBOL	FUNCTION
1	NO CONNECTION	This pin is internally connected to the substrate bias generator and   must be left open.	
20	GROUND	$V_{S S}$	Ground   21
40	POWER SUPPLY	NO CONNECTION	NC
19	$\overline{M A S T E R ~ R E S E T ~}$	$\overline{M R}$	This pin is not connected.
A logic low on this input resets the device and loads HEX 03 into   the Command register. The Not Ready (Status Bit 7) is reset during   MR ACTIVE. When $\overline{M R}$ is brought to a logic high a Restore   Command is executed. regardless of the state of the Ready signal   from the drive. Also. HEX 01 is loaded into the sector register.			

COMPUTER INTERFACE:

2	WRITE ENABLE	$\overline{W E}$	A logic low on this input gates data on the DAL into the selected register when $\overline{\mathrm{CS}}$ is low.
3	$\overline{\text { CHIP SELECT }}$	$\overline{\mathrm{CS}}$	A logic low on this input selects the chip and the parallel data bus (DAL).
4	$\overline{\text { READ ENABLE }}$	$\overline{R E}$	A logic low on this input controls the placement of data from a selected register on DALø-DAL7 when $\overline{C S}$ is low.
5,6	REGISTER SELECT LINES	A0, A1	These inputs select the register to receive/transfer data on the DAL lines under $\overline{R E}$ and $\overline{W E}$ control:
7-14	DATA ACCESS LINES	$\begin{aligned} & \text { DALO- } \\ & \text { DAL7 } \end{aligned}$	Eight bit Bidirectional bus used for transfer of data, control, and status. This bus is a receiver enabled by WE or a transmitter enabled by RE. The Data Bus is inverted on the FDC 9791, FDC 9792 and FDC 9795.
24	CLOCK	CLK	This input requires a free-running square wave clock for internal timing reference, 2 MHz for $8^{\prime \prime}$ drives, 1 MHz for $5 \frac{1 / 4^{\prime \prime}}{}$ drives.
38	DATA REQUEST	DRQ	This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write operations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operations, respectively. Use a 10K pull-up resistor to +5 V .
39	INTERRUPT REQUEST	INTRQ	This open drain output is set at the completion or termination of any operation and is reset when a new command is loaded into the command register or the status register is read. Use a 10 K pull-up resistor to +5 V .

## FLOPPY DISK INTERFACE:

| 15 | STEP | STEP | Step and direction motor control. The step output contains a pulse <br> for each step. |
| :---: | :--- | :---: | :--- | :--- |
| 16 | DIRECTION | DIRC | Direction Output is active high when stepping in, active low when <br> stepping out. |
| 17 | EARLY | EARLY | Indicates that the write data pulse occurring while Early is active <br> (high) should be shifted early for write precompensation. |
| 18 | LATE | TATE | Indicates that the write data pulse occurring while Late is active <br> (high) should be shifted late for write precompensation. |
| 22 | TEST | This input is used for testing purposes only and should be tied to <br> t5V or left open by the user unless interfacing to voice coil <br> actuated motors. |  |
| 23 | HEAD LOAD TIMING | HLT | When a logic high is found on the HLT input the head is assumed <br> to be engaged. |


PIN NO.	NAME	SYMBOL	FUNCTION
25	READ GATE (9791/3)	RG	A high level on this output indicates to the data separator circuitry that a field of zeros (or ones) has been encountered, and is used for synchronization.
25	SIDE SELECT OUTPUT $(9795,9797)$	SSO	The logic level of the Side Select Output is directly controlled by the ' $S$ ' flag in Type II or III commands. When $S=1$, SSO is set to a logic 1. When $\mathrm{S}=0, \mathrm{SSO}$ is set to a logic 0 . The Side Select Output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a MASTER RESET condition.
26	READ CLOCK	RCLK	A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i.e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not.
27	RAW READ	$\frac{\overline{\mathrm{RAWW}}}{\text { READ }}$	The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition.
28	HEAD LOAD	HLD	The HLD output controls the loading of the Read-Write head against the media.
29	TRACK GREATER THAN 43	TG43	This output informs the drive that the Read/Write head is positioned between tracks 44-76. This output is valid only during Read and Write Commands.
30	WRITE GATE	WG	This output is made valid before writing is to be performed on the diskette.
31	WRITE DATA	WD	A 250 ns (MFM) or 500 ns (FM) pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats.
32	READY	READY	This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7.
33	$\begin{aligned} & \text { WRITE FAULT/' } \\ & \text { VFO ENABLE } \end{aligned}$	$\overline{\text { WF/VFOE }}$	This is a bi-directional signal used to signify writing faults at the drive, and to enable the external PLO data separator. When $W G=1$, Pin 33 functions as a WF input. If $\mathrm{WF}=0$, any write command will immediately be terminated. When $W G=0$, $\operatorname{Pin} 33$ functions as a VFOE output. VFOE will go low during a read operation after the head has loaded and settled (HLT =1). On the 9795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go active until the last bit of the second CRC byte of the Data Field. On the 9791/3, VFOE will remain low until the end of the Data Field.
34	TRACK 00	$\overline{\text { TROO }}$	This input informs the FDC 979X that the Read/Write head is positioned over Track 00.
35	INDEX PULSE	$\overline{\mathrm{P}}$	This input informs the FDC 979X when the index hole is encountered on the diskette.
36	WRITE PROTECT	$\overline{\text { WPRT }}$	This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit.
37	DOUBLE DENSITY	$\overline{\text { DDEN }}$	This pin selects either single or double density operation. When $\overline{\mathrm{DDEN}}=0$, double density is selected. When $\overline{\mathrm{DDEN}}=1$, single density is selected.

## FUNCTIONAL DESCRIPTION

The FDC 979X major functional blocks are as follows:
Data Shift Register - This 8-bit register assembles serial data from the Read Data input (RAW READ) during Read operations and transfers serial data to the Write Data output during Write operations.
Data Register - This 8-bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In Disk Write operations information is transferred in parallel from the Data Register to the Data Shift Register.
When executing the Seek command the Data Register holds the address of the desired Track position. This register is loaded from the DAL and gated onto the DAL under processor control.
Sector Register (SR) - This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.
Command Register (CR) - This 8-bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a Force Interrupt. The command register can be loaded from the DAL, but not read onto the DAL.
Status Register (STR) - This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed.

This register can be read onto the DAL, but not loaded from the DAL.
CRC Logic-This logic is used to check or to generate the 16 -bit Cyclic Redundancy Check (CRC). The polynomial is: $G(x)=x^{16}+x^{12}+x^{5}+1$.
Track Register - This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head stepped in (towards track 76) and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL. This Register should not be loaded when the device is busy.
The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.
Arithmetic/Logic Unit (ALU) - The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.
Timing and Control-All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
AM Detector - The address mark detector detects ID, data and index address marks during ready and write operations.

## OPERATION

FDC 9791, FDC 9793, FDC 9795 and FDC 9797 have two modes of operation according to the state of DDEN (Pin 37). When $\overline{D D E N}=1$, single density is selected. In either case, the CLK input (Pin 24) is at 2 MHz . However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double density. When the clock is at 2 MHz , the stepping rates of $3,6,10$ and 15 ms are obtainable. When CLK equals 1 MHz these times are doubled.

## Disk Read Operation

Sector lengths of $128,256,512$ or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1". For MFM formats, DDEN should be placed to a logical " 0 ". Sector lengths are determined at format time by a special byte in the "ID" field. If this Sector length byte in the ID field is zero, then the sector length is 128 bytes. If 01 then 256 bytes. If 02 , then 512 bytes. If 03 , then the sector length is 1024 bytes. The number of sectors per track can be from 1 to 255 sectors. The number of tracks is from 0 to 255 tracks.
For read operations, the FDC 979X requires $\overline{\text { RAW READ }}$ Data (Pin 27) signal which is a 250 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is
provided by some drives but if not, it may be derived externally by Phase lock loops, one shots, or counter techniques. In addition, a Read Gate Signal is provided as an output (Pin 25) which can be used to inform phase lock loops when to acquire synchronization. Whien reading from the media in FM, RG is made true when 2 bytes of zeroes are detected. The FDC 979X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the FDC 979X is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of " 00 " of "FF" are detected. The FDC 979X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes.
During read operations ( $W G=0$ ), the $\overline{\mathrm{VFOE}}$ (Pin 33) is provided for phase lock loop synchronization. VFOE will go active when:
a) Both HLT and HLD are True
b) Settling Time, if programmed, has expired
c) The 979 X is inspecting data off the disk

If $\overline{W F} / \overline{\mathrm{VFOE}}$ is not used, leave open or tie to a 10 K resistor to +5 .
On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is
transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost by having new data transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached.

## Disk Write Operation

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution against erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the FDC 979X before the Write Gate signal can be activated.
Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set. The Write Fault input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated. On detection of this fault the FDC 979X terminates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive.
For write operations, the FDC 979X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM ( $\overline{\mathrm{DDEN}}=1$ )
and 250 ns pulses in MFM ( $\overline{\operatorname{DDEN}}=0$ ). Write Data provides the unique address marks in both formats.
Also during write, two additional signals are provided for write precompensation. These are EARLY (Pin 17) and LATE (Pin 18). EARLY is active true when the WD pulse appearing on (Pin 30) is to be written early. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the FDC 979X. The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.

On Disk Write operations the Data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

## COMMAND WORDS

The FDC 979X will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Table 1.

Table 1. Command Summary

		BITS							
COMMAND	TYPE	7	6	5	4	3	2	1	0
Restore	I	0	0	0	0	h	V	$\mathrm{r}_{1}$	$\mathrm{r}_{0}$
Seek	I	0	0	0	1	h	V	$\mathrm{r}_{1}$	$\mathrm{r}_{0}$
Step	I	0	0	1	u	h	V	$\mathrm{r}_{1}$	$\mathrm{r}_{0}$
Sep In	I	0	1	0	u	h	V	$\mathrm{r}_{1}$	$\mathrm{r}_{0}$
Step Out	I	0	1	1	u	h	V	$\mathrm{r}_{1}$	$\mathrm{r}_{0}$
Read Sector	II	1	0	0	m	$\mathrm{~F}_{2}$	E	$\mathrm{F}_{1}$	0
Write Sector	II	1	0	1	m	$\mathrm{~F}_{2}$	E	$\mathrm{F}_{1}$	$\mathrm{a}_{0}$
Read Address	III	1	1	0	0	0	E	0	0
Read Track	III	1	1	1	0	0	E	0	0
Write Track	III	1	1	1	1	0	E	0	0
Force Interrupt	IV	1	1	0	1	$\mathrm{I}_{3}$	$\mathrm{I}_{2}$	$\mathrm{I}_{1}$	$\mathrm{I}_{0}$

## Type I Commands

The Type I Commands are Restore, Seek, Step, Step-In, and Step-Out. Each of the Type I Commands contains a rate field $\left(r_{0} r_{1}\right)$, which determines the stepping motor rate as defined in Table 2.
The Type I Commands contain a head load flag (h) which determines if the head is to be loaded at the beginning of the command. If $h=1$, the head is loaded at the beginning of the command (HLD output is made active). If $h=0$, HLD is deactivated. Once the head is loaded, the head will remain engaged until the FDC 979X receives a command that specifically disengages the head. If the FDC 979X is idle (busy =0) for 15 revolutions of the disk, the head will be automatically disengaged (HLD made inactive).
The Type I Commands also contain a verification (V) flag which determines if a verification operation is to take place on the destination track. If $\mathrm{V}=1$, a verification is performed, if $V=0$, no verification is performed.
During verification, the head is loaded and after an internal 15 ms delay, the HLT input is sampled. When HLT is active (logic true), the first encountered ID field if read off the disk. The track address of the ID field is then compared to the Track Register; if there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match but there is valid ID CRC, an interrupt
is generated, and Seek Error Status bit (Status bit 4) is set and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FDC 979X terminates the operation and sends an interrupt (INTRQ).
The Step, Step-In, and Step-Out commands contain an Update flag ( u ). When $\mathrm{u}=1$, the track register is updated by one for each step. When $u=0$, the track register is not updated.
On the FDC 9795/7 devices, the SSO output is not affected during Type 1 commands, and an internal side compare does not take place when the (V) Verify Flag is on.

## Restore (Seek Track 0)

Upon receipt of this command the Track 00 (TR00) input is sampled. if TROO is active low indicating the Read-Write head is positioned over track 0 , the Track Register is loaded with zeroes and an interrupt is generated. If TROO is not active low, stepping pulses (pins 15 to 16) at a rate specified by the $r_{1} r_{0}$ field are issued until the TROO input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TROO input does not go active low after 255 stepping pulses, the FDC 979X terminates operation, interrupts, and sets the Seek error status bit. A verification operation takes place if the V flag is set. The h bit allows the head to be loaded at the start of command. Note that the Restore command is executed when MR goes from an active to an inactive state.

## Seek

This command assumes that the Track Register contains the track number of the current position of the ReadWrite head and the Data Register contains the desired track number. The FDC 979X will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the $V$ flag is on. The $h$ bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

## Step

Upon receipt of this command, the FDC 979X issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. If the u flag is on, the Track Register is updated. The $h$ bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

## Step-In

Upon receipt of this command, the FDC 979X issues one stepping pulse in the direction towards track 76. If the u flag is on, the Track Register is incremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the $V$ flag is on. The $h$ bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

## Step-Out

Upon receipt of this command, the FDC 979X issues one stepping pulse in the direction towards track 0 . If the u flag is on, the Track Register is decremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the $V$ flag is on. The $h$ bit allows the head to be loaded at the start of command. An interrupt is generated at the completion of the command.

## Head Positioning

The period of each positioning step is specified by the $r$ field in bits 1 and 0 of the command word. After the last directional step an additional 15 milliseconds of head settling time takes place if the Verify flag is set in Type I commands. Note that this time doubles to 30 ms for a 1 MHz clock. If TEST $=0$, there is zero settling time. There is also a 15 ms head settling time if the E flag is set in any Type II or III command.
The rates (shown in Table 2) can be applied to a StepDirection Motor through the device interface.
Step-A $2 \mu \mathrm{~S}$ (MFM) or $4 \mu \mathrm{~s}$ (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output.
Direction (DIRC) - The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid $12 \mu$ sefore the first stepping pulse is generated.
When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by setting bit $2(\mathrm{~V}=1)$ in the command word to a logic 1 . The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. The FDC 979X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated.

Table 2. Stepping Rates


The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set ( $h=1$ ), at the end of the Type I command if the verify flag ( $\mathrm{V}=1$ ), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with ( $\mathrm{h}=0$ and $\mathrm{V}=0$ ); or if the FDC 979X is in an idle state (non-busy) and 15 index. pulses have occurred.
Head Load Timing (HLT) is an input to the FDC 979X which is used for the head engage time. When HLT $=1$, the FDC 979X assumes the head is completely engaged.

The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a one shot. The output of the one shot is then used for HLT and supplied as an input to the FDC 979X.


When both HLD and HLT are true, the FDC 979X will then read from or write to the media. The "and" of HLD and HLT appears as a status bit in Type I status.

> TYPE I COMMANDS FLAG SUMMARY $\begin{gathered}h=\text { Head Load Flag (Bit 3) } \\ h=1, \text { Load head at beginning } \\ h=0 \text {, Unload head at beginning } \\ V=\text { Verify flag (Bit } 2 \text { ) } \\ V=1, \text { Verify on destination track } \\ V=0, \text { No verify } \\ r_{1} r_{0}=\text { Stepping motor rate (Bits 1-0) }\end{gathered}$

Refer to Table 2 for rate summary $\underline{u=U p d a t e ~ f l a g ~(B i t ~ 4) ~}$
$u=1$, Update Track register
$u=0$, No update

## Type II Commands

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type Il Command into the Command Register, the system must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. If the E flag $=1$. (this is the normal case) HLD is made active and HLT is sampled until true after a 15 msec delay. If the $E$ flag is $0, H L D$ is made active and HLT is sampled with no delay until true. The ID field and Data Field format are shown below.
When an ID field is located on the disk, the FDC979X compares the Track Number on the ID field with the Track Register. If there is not a match, the next encountered ID field is read and a comparison is again made. If there
is a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The FDC 979X must find an ID field with a Track number, Sector number, side number, and CRC within four revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3 ) and the command is terminated with an interrupt.
Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If $\mathrm{m}=0$, a single sector is read or written and an interrupt is generated at the completion of the command. If $m=1$, multiple records are read or written with the sector register internally updated so that an address verification can occur on the next record. The FDC 979X will read or write multiple records starting with the sector presently in the sector register. The FDC 979X will continue to read or write multiple records and update the sector register until the sector register exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.
If the Sector Register exceeds the number of sectors on the track, the Record-Not-Found status bit will be set.
The Type II commands also contain side select compare flags. When $\mathrm{C}=0$, no side comparison is made. When $\mathrm{C}=1$, the LSB of the side number is read off the ID Field of the disk and compared with the contents of the ( S ) flag. If the S flag compares with the side number recorded in the ID field, the 979X continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.
The FDC 9795/7 READ SECTOR and WRITE SECTOR commands include a 'b' flag. The 'b' flag, in conjunction with the sector length byte of the ID Field, allows different byte lengths to be implemented in each sector. For IBM compatability, the 'b' flag should be set to a one. The ' $s$ ' flag allows direct control over the SSO Line (Pin 25) and is set or reset at the beginning of the command, dependent upon the value of this flag.

Sector Length Table (9791/3 only)	
Sector Length	Number of Bytes
Field (hex)	in Sector (decimal)
00	128
01	256
02	512
03	1024

Field Format


In MFM only, IDAM and DATA AM are preceded by three bytes of A1 with clock transition between bits 4 and 5 missing.

## Read Sector

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data field is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the Record-NotFound status bit is set and the operation is terminated. When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and the Lost Data Status bit is set. This sequence continues until the complete data field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command).
At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown below:

STATUS
BIT 5

1	Deleted Data Mark
0	Data Mark

## Write Sector

Upon receipt of the Write Sector command, the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The FDC 979X counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeros in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on the disk as determined by the $a_{0}$ field of the command as shown below:

$a_{0}$	Data Address Mark (Bit 0)
1	Deleted Data Mark
0	Data Mark

The FDC 979X then writes the data field and generates DRQ's to the computer. If the DRQ is not serviced in time for continuous writing the Lost Data Status Bit is set and a byte of zeros is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated.

BIT								
7	6	5	4	3	2	1	0	COMMAND
1	0	0	$m_{1}$	$F_{2}$	$E$	$F_{1}$	0	READ SECTOR
1	0	1	m	$\mathrm{~F}_{2}$	E	$\mathrm{F}_{1}$	$\mathrm{a}_{0}$	WRITE SECTOR

DATA ADDRESS MARK $\left(a_{0}\right)-[0=$ Write hex FB (data) into Data Address Mark field
$F_{1}(9791 / 3)$ SIDE COMPARE FLAG (C) $-\left[\begin{array}{l}0=\text { Side number not tested } \\ 1=\text { ide }\end{array}\right.$
$\mathrm{F}_{1}(9795 / 7)$ SIDE SELECT FLAG $(\mathrm{S})-\left[\begin{array}{l}0=\text { Update } \mathrm{SSO} \text { to } 0 \\ 1=\text { Update SSO to } 1\end{array}\right.$
DELAY $(E)-\quad 0=$ No delay between HLD activation and HLT Sampling
$F_{2}(9791 / 3)$ SIDE SELECT FLAG (S) $-\left[\begin{array}{l}0=\text { Compare for side } 0 \\ 1=C\end{array}\right.$ $\left[\mathrm{F}_{2}(9791 / 3) \operatorname{SIDE~SELECT} \operatorname{FLAG}(\mathrm{S})-L 1=\right.$ Compare for side 1 $\square$
$F_{2}(9795 / 7)$ SECTOR LENGTH FLAG

(b) $\left[\right.$| 0 | Sector Length Field |  |  |  |
| ---: | ---: | ---: | ---: | :---: |
| 00 | 01 | 10 | 11 |  |
| 1 | $\begin{array}{rrrr\|}\hline 256 & 512 & 1024 & 128 \\ 128 & 256 & 512 & 1024 \\ \hline\end{array}$ |  |  |  |

MULTIPLE SECTORS (m) $-\left[\begin{array}{l}0=\text { Read (or Write) Single Sectors } \\ 1=\text { Read (or Write) Multiple Sectors }\end{array}\right.$

Figure 1. Type II and III Flag Summary

## Type III Commands

There are three Type III Commands:

- READ ADDRESS - Read the next ID field ( 6 bytes) into the FDC.
- READ TRACK—Read all bytes of the entire track, including gaps.
- WRITE TRACK-Write all bytes to the entire track, including gaps.


## Read Address

Upon receipt of the Read Address command, the head is loaded and the Busy Status Bit is set. The next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:

TRACK   ADDR	SIDE   NUMBER	SECTOR   ADDRESS	SECTOR   LENGTH	CRC   1	CRC   2
1	2	3	4	5	6

Although the CRC characters are transferred to the computer, the FDC979X checks for validity and the CRC
error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register. At the end of the operation an interrupt is generated and the Busy Status is reset.

## Read Track

Upon receipt of the Read Track command, the head is loaded and the Busy Status bit is set. Reading starts with the leading edge of the first encountered index pulse and continues until the next index pulse. As each byte is assembled it is transferred to the Data Register and the Data Request is generated for each byte. No CRC checking is performed. Gaps are included in the input data stream. The accumulation of bytes is synchronized to each Address Mark encountered. Upon completion of the command, the interrupt is activated. RG is not activated during the Read Track Command. An internal side compare is not performed during a Read Track.

## Write Track

Upon receipt of the Write Track command, the head is loaded and the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which


[^18]Figure 2. IBM Compatible Sector/Track Format
time the interrupt is activated. The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set; and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeros is substituted. Address Marks and CRC characters are written on the disk by detecting certain data byte patterns in the outgoing data stream as shown in the table below. The CRC generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR in FM or by receipt of F5 in MFM.
Disk formatting (initialization) is accomplished by the Write Track command. Each byte for the entire track must be provided for proper formatting. This includes gap as well as data bytes.
The sequence required to format a diskette begins with positioning the Read/Write head at the desired track. Once this has been done, it is necessary to perform a Write Track command to store all the information on a track. The Write Track command uses DRQ to request each byte from the system MPU, starting with the byte at the beginning of the physical Index Pulse and ending with the last gap bytes at the end of the track. Figure 2 illustrates the IBM standard for track formatting.
Normally, each data byte stored on the diskette must be generated by the system MPU and passed into the FDC Data Register. However, there are exceptions to this rule. If a data byte of hex F5 through FE is entered into the Data Register, then the FDC recognizes this as an AM with missing clocks or CRC generation code. Consequently, F5 through FE must not be used in gaps, data fields, or ID fields, as this will disrupt normal operation of the FDC during formatting.

## Type IV Commands

Force Interrupt is the only Type IV command. This command permits the MPU to terminate (abort) any command in progress. Figure 3 tabulates the Type IV command option bits.
The four bits, $\mathrm{I}_{0}-\mathrm{I}_{3}$, are used to select the condition of the interrupt occurrence. Regardless of which bit is set, any command currently being executed is immediately terminated and the Busy status bit is cleared, indicating "Not Busy". Then, when the condition is met, INTRQ goes high, causing the required interrupt.
If $I_{0}-I_{3}$ are all " 0 ", no interrupt occurs, but any currently executing command is immediately terminated. If more than one condition is selected, then the interrupt occurs when any of the conditions is met.
To clear the interrupt, it is necessary to read the Status Register or to write the Command Register. An exception, however, is for $\mathrm{I}_{3}=1$ (Immediate Interrupt). For this case, the interrupt is cleared with another Force Interrupt command with $\mathrm{I}_{0}-\mathrm{I}_{3}$ all low.

## Status Register

The Status Register permits the MPU to monitor a variety of conditions in the FDC. For each command, the individual status bits have their own meaning. When a command is initiated (except for the Force Interrupt command), the Busy status bit is set and the others are cleared or updated. If the Force Interrupt command is entered when another command is in progress, the Busy status bit is cleared, but the others remain unaffected. However, if the Force Interrupt command is initiated when there is not another command in progress, the other status bits are cleared or updated and represent the Type I Command status. Figure 4 illustrates the meaning of the status bits for each command.


Figure 3. Force Interrupt Command Flags

Figure 4A. Status Register Summary

COMMAND	STATUS BIT							
	7	6	5	4	3	2	1	0
ALL TYPE I	Not Ready	Write Protect	Head Loaded	Seek Error	CRC Error	Track 0	Index	Busy
READ SECTOR	Not Ready	0	Record Type	Rec not Found	CRC Error	Lost Data	DRQ	Busy
WRITE SECTOR	Not Ready	Write Protect	Write Fault	Rec not Found	CRC Error	Lost Data	DRQ	Busy
READ ADDRESS	Not Ready	0	0	Rec not Found	CRC Error	Lost Data	DRQ	Busy
READ TRACK	Not Ready	0	0	0	0	Lost Data	DRQ	Busy
WRITE TRACK	Not Ready	Write Protect	Write Fault	0	0	Lost Data	DRQ	Busy

Figure 4B. Status Description for Type I Commands

BIT	NAME	MEANING					
S7	NOT READY	This bit when set indicates the drive is not ready. When reset it indicates that the drive is   ready. This bit is an inverted copy of the Ready input and logically 'ored' with MR.					
S6	PROTECTED	When set, indicates Write Protect is activated. This bit is an inverted copy of WRPT input.	$	$	S5	HEAD LOADED	When set, it indicates the head is loaded and engaged. This bit is a logical "and" of HLD   and HLT signals.
:---	:---	:---					
S4	SEEK ERROR	When set, the desired track was not verified. This bit is reset to 0 when updated.					
S3	CRC ERROR	CRC encountered in ID field.					
S2	TRACK 00	When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted copy   of the TR00 input.					
S1	INDEX	When set, indicates index mark detected from drive. This bit is an inverted copy of the   IP input.					
S0	BUSY	When set command is in progress. When reset no command is in progress.					

Figure 4C. Status Description for Type II and III Commands

BIT	NAME	MEANING
S7	NOT READY	This bit when set indicates the drive is not ready. When reset, it indicates that the drive   is ready. This bit is an inverted copy of the Ready input and 'ored' with MR. The Type II   and III Commands will not execute unless the drive is ready.
S6	WRITE PROTECT	On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a Write   Protect. This bit is reset when updated.
S5	RECORD TYPE/   WRITE FAULT	On Read Record: It indicates the record-type code from data field address mark.   1=Deleted Data Mark. 0=Data Mark. On any Write: It indicates a Write Fault. This bit is   reset when updated.
S4	RECORD NOT   FOUND (RNF)	When set, it indicates that the desired track, sector, or side were not found. This bit is reset   when updated.
S3	CRC ERROR	If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in data   field. This bit is reset when updated.
S2	LOST DATA	When set, it indicates the computer did not respond to DRQ in one byte time. This bit is   reset to zero when updated.
S1	DATA REQUEST	This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read Operation   or the DR is empty on a Write operation. This bit is reset to zero when updated.
S0	BUSY	When set, command is under execution. When reset, no command is under execution.

## Write Data Timing:

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Write Data Pulse Width	$T_{w p}$	$\begin{aligned} & 450 \\ & 150 \end{aligned}$	( $\begin{gathered}500 \\ 200 \\ 2 \\ 1 \\ 2,3, \text { or } 4\end{gathered}$	$\begin{aligned} & 550 \\ & 250 \end{aligned}$	nsec nsec	FM
Write Gate to Write Data	$\mathrm{T}_{\mathrm{wg}}$				$\mu \mathrm{sec}$   $\mu \mathrm{sec}$	MFM   FM
						MFM
Write data cyle Time	Tbc	125			$\mu \mathrm{sec}$ nsec	$\pm$ CLK Error
Early (Late) to Write Data	$\mathrm{T}_{\text {s }}$		2, 3, or 4			MFM
Early (Late) From	$\mathrm{T}_{\mathrm{h}}$	125			nsec	MFM
Write Data			1			
Write Gate off from WD	Twf				$\mu \mathrm{sec}$	FM
			1		$\mu \mathrm{sec}$	MFM
WD Valid to Clk	Twdl	100			nsec	CLK $=1 \mathrm{MHZ}$
		50			nsec	CLK $=2 \mathrm{MHZ}$
WD Valid after Clk	$T_{w d 2}$	$\begin{array}{r} 100 \\ 30 \end{array}$			nsec	CLK $=1 \mathrm{MHZ}$
					nsec	CLK $=2 \mathrm{MHZ}$

These values are doubled when CLK $=1 \mathrm{MHz}$.


WRITE DATA/CLOCK RELATIONSHIP

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $+325^{\circ} \mathrm{C}$
Positive Voltage on Pin 40, with respect to ground $+15 \mathrm{~V}$

Negative Voltage on any Pin, with respect to ground $-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS						
Input Voltage Levels						
Low Level, VIL				0.8	V	
High Level, $\mathrm{V}_{\mathrm{IH}}$		2.0			V	
Output Voltage Levels						
Low Level Vol				0.45	V	$\mathrm{l}_{\mathrm{LL}}=1.6 \mathrm{~mA}$
High Level $\mathrm{V}_{\text {OH }}$		2.4			V	$\mathrm{IOH}=100 \mu \mathrm{~A}$
Output Leakage, ILo				10	$\mu \mathrm{A}$	$0.4 \leqslant 3.5 \mathrm{~V}$
Input Leakage, IIL				10	$\mu \mathrm{A}$	$0.4 \leqslant 3.5 \mathrm{~V}$
Output Capacitance			5		pf	
Input Capacitance			10		pf	
Supply Current				160	mA	
AC CHARACTERISTICS						
Processor Read Timing						
Address Setup Time	$t_{\text {setr }}$	50			ns	Figure 5
Address Hold Time	$\mathrm{t}_{\text {HLDR }}$	10			ns	Figure 5
$\overline{\mathrm{RE}}$ Pulse Width ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ )	$t_{\text {te }}$	400			ns	Figure 5
DRQ Reset Time	torr			500	ns	Figure 5
INTRQ Reset Time	$\mathrm{t}_{\text {IRR }}$		500*	3000*	ns	Figure 5
Data Delay Time ( $\mathrm{C}_{L}=50 \mathrm{pF}$ )	t ${ }_{\text {acc }}$			350	ns	Figure 5
Data Hold Time ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ )	toor	50		150	ns	Figure 5
Microprocessor Write Timing						
Address Setup Time	$\mathrm{t}_{\text {setw }}$	50			ns	Figure 6
Address Hold Time	thlow	10			ns	Figure 6
WE Pulse Width	$t_{\text {we }}$	350			ns	Figure 6
DRQ Reset Time	$t_{\text {DRR }}$			500	ns	Figure 6
INTRQ Reset Time	$\mathrm{t}_{\text {IRR }}$		500*	3000*	ns	Figure 6
Data Setup Time	tos	250			ns	Figure 6
Data Hold Time	$\mathrm{t}_{\mathrm{DH}}$	70			ns	Figure 6
Disk Input Data Timing						
RAWREAD Pulse Width	$t_{\text {pw }}$	100*	200		ns	Figure 7, See Note
Clock Setup Time	$\mathrm{t}_{\mathrm{d}}$	40			ns	Figure 7 See Note
Clock Hold Time for MFM	$t_{\text {cd }}$	40			ns	Figure 7
Clock Hold Time for FM	$t_{\text {cs }}$	40			ns	Figure 7
RAWREAD Cycle Time mFM	$t_{b c}$	1500			ns	1800 at $70^{\circ} \mathrm{C}$, Figure 7
RCLK High Pulse Width ${ }_{\text {FM }}^{\text {MFM }}$	$\mathrm{ta}_{\mathrm{a}}$	0.8 0.8	$1^{*}{ }^{*}$		$\mu \mathrm{s}$	Figure 7
FM	ta	0.8	${ }^{2 *}$		$\mu \mathrm{s}$	Figure 7
RCLK Low Pulse Width FM	$t_{b}$	0.8 0.8	${ }^{1}{ }^{*}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$	Figure 7
RCLK Cycle Time MFM			${ }^{\text {2 }}$		$\mu \mathrm{s}$	Figure 7
RCLK Cycle Time FM	$t_{c}$		4*		$\mu \mathrm{s}$	Figure 7
CLK Low Pulse Width CLK High Pulse Width	$t_{\text {cD1 }}$ $\mathrm{t}_{\text {CD2 }}$	230	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$	ns	Figure 8 Figure 8
STEP Pulse Width MFM		$2^{*}{ }^{*}$			$\mu \mathrm{s}$	Figure 8
STEP Pulse Width FM	$\mathrm{t}_{\text {STP }}$	4*			$\mu \mathrm{s}$	Figure 8
	$t_{\text {dir }}$		12		$\mu \mathrm{s}$	Figure 8
MR Pulse Width	$t_{\text {MR }}$				$\mu \mathrm{s}$	Figure 8
IP Pulse Width	tip	$10^{*}$			$\mu \mathrm{s}$	Figure 8
WF Pulse Width	twf	10*			$\mu \mathrm{s}$	Figure 8
CLK Cycle Time	tcre		0.5*		$\mu \mathrm{S}$	Figure 8

[^19]Figure 5.
Microprocessor Read Timing


Figure 6.
Microprocessor Write Timing


Figure 7. Disk Input Timing


Figure 8. Miscellaneous Timing


## DISK FORMATS

Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of $128,256,512$, or 1024 bytes.

## IBM 3740 Format

This single-density (FM) format utilizes 128 bytes/ sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 9.

## IBM System 34 Format

This double-density (MFM) format utilizes 256 bytes/sector. The bytes to be generated by the system MPU for use in the execution of the Write Track command are shown in Figure 10.

## Non-IBM Formats

Unique (non-IBM) formats are permissible providing the following restrictions are understood.

- Sector length may only be $128,256,512$, or 1024 bytes.
- Gap sizes must conform to Figure 11.

Figure 9. Byte Sequence for IBM 3740 Formatting
\(\left.$$
\begin{array}{|c|c|l|}\hline \begin{array}{c}\text { DATA } \\
\text { BYTE } \\
\text { (hex) }\end{array} & \begin{array}{c}\text { NO. OF } \\
\text { BYTES }\end{array} & \begin{array}{l}\text { COMMENTS } \\
\hline \text { FF }\end{array}
$$ <br>

\hline FC \& 40 \& 6\end{array}\right]\)| Gap 5 |
| :--- |
| FF Post Index) |
| O0 |

NOTES: 1. THIS PATTERN MUST BE WRITTEN 26 TIMES PER TRACK
2. CONTINUE WRITING HEX FF UNTIL FDC COMPLETES SEQUENCE AND GENERATES NTRQ INTERRUPT

	DATA BYTE (hex)	NO. OF BYTES	COMMENTS
	4E	807	- Gap 5
	00	12]	
	F6	3	Writes C2
	FC	1	Index AM
	4E	507	
$\Gamma$	00	12.	-Gap 1
	F5	3	Writes A1
	FE	1	ID AM
	XX	1	Track Number (00-4C)
	0X	1	Side Number (00 or 01)
	xx	1	Sector Number $(01-1 A)$
	01	1	Sector Length (256 Bytes)
	F7	1	Causes 2-Byte CRC to be Written
	4 E	$\left.\begin{array}{c} 22 \\ 12 \\ 3 \end{array}\right]-$	Gap 2 (ID Gap)
	F5		Writes A1
	F5		
	FB	1	Data AM
	40	256	Data Field
	F7	1	Causes 2-Byte CRC to be Written
gure 10.	$4 \mathrm{E}$	54   (2)	Part of Gap 3 (Data Gap)
	4E	598	Gap 4 (Pre Index)
te Sequence   IBM System-34 rmatting	NOTES: 1. THIS PATTERN MUST BE		
		THIS PATTERN MUST BE WRITTEN 26 TIMES PER TRACK.	
		CONTINUE WRITING HEX 4E UNTIL FDC COMPLETES	WRITING HEX dC COMPLETES AND GENERATES ERRUPT


GAP	SINGLE   DENSITY   (FM)	DOUBLE   DENSITY   (MFM)	NOTE
Gap 1	16 bytes FF	16 bytes 4E	2
Gap 2	11 bytes FF   6 bytes 00	22 bytes 4F   12 bytes 00   3 bytes A1	1
Gap 3	10 bytes FF	16 bytes 4E   8 bytes 00 00   3	
Gap 4	16 bytes FF	16 bytes 4E	2

NOTES: 1. THESE BYTES COUNTS ARE EXACT.
2. THESE BYTES COUNTS ARE MINIMUM

EXCEPT FOR 3 BYTES A1, WHICH IS EXACT
Figure 11. Gap Size Limitations

## Hard Disk Serial to Parallel Converter

## FEATURES

Single +5 Volt Power SupplyDouble BufferedByte Strobe Outputs5 MBit Shift RateSerial Input/Parallel Out20 Pin DIPn-Channel COPLAMOS ${ }^{\circledR}$ Silicon Gate Technology
## PIN CONFIGURATION

$\begin{array}{ccc} \text { CLK } & 1 & 5 \\ \text { NC } & 2 & \square \end{array}$	$\begin{aligned} & 20 \mathrm{~V} \mathrm{cc} \\ & 19 \mathrm{EN} \end{aligned}$
$\overline{\text { BCLR }} 3$ -	$\square 18$ NRZ
TEST 4 [	$\square 17 \overline{\mathrm{ST}}$
DOO 5 L	$\geq 16$ DOUT
D01 6 L	$\square 15$ BDONE
D02 7 L	$\square 14$ SHFCLK
D03 8 [	] 13 D07
D04 9 -	] 12 D06
$\mathrm{v}_{\text {ss }} 10$ [	] 11 D05

## GENERAL DESCRIPTION

The HDC 1100-01 converts NRZ data from a Winchester disk drive into eight bit parallel form. Additional inputs are provided to initiate the conversion process, as well as output strobes to indicate the completion.

The HDC 1100-01 contains two sets of 8 bit registers. This allows one register to be read (in parallel) while serial data is being shifted into the other.


DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	CLK	CLOCK	NRZ data is entered into the 8-bit shift register on the low-to-high transition of clock.
2	NC	NO CONNECTION	No connection. This pin is to be left open by the user.
3	$\overline{\text { BCLR }}$	BYTE CLEAR	When this line is at a logic 0 , the BDONE (pin 15) line is held reset.
4	TEST	TESTINPUT	This pin must be left open by the user.
5-9, 11-13	D00-D07	DATAO-DATA7	8 bit parallel data outputs.
10	$\mathrm{V}_{\text {ss }}$	GROUND	Ground.
14	SHFCLK	SHIFT CLOCK	Inverted copy of CLOCK (pin 1) which is active when $\mathrm{EN}(\mathrm{pin} 19)$ is at a logic 1.
15	BDONE	BYTE DONE	This signal is forced to a logic 1 signifying 8 bits of data have been assembled. BDONE remains in a logic 1 state until reset by a logic 0 on the BCLR (pin 3) line.
16	DOUT	DATA OUT	Serial Data Output from the 8th stage of the internal shift register. DOUT is in a high impedance state whenever EN (pin 19) is at a logic 0 .
17	$\overline{\text { ST }}$	START	This line enables the byte counter and is used for synchronization. It must be held to a logic 1 prior to first data bit on the NRZ (Pin 18) line.
18	NRZ	NRZ DATA	NRZ serial data is entered on this pin and clocked by the low to high transition of CLK (pin 1).
19	EN	ENABLE	When this signal is at a logic 0, DOUT, $\overline{\text { SHFCLK }}$, and BDONE outputs are in a high impedance state.
20	$\mathrm{V}_{c c}$	$V_{c c}$	+5 V power supply input.

## OPERATION

Prior to shifting data through the device, the HDC 1100-01 must be synchronized to the data stream. The ST line (Pin 17 high) is used to hold the internal bit counter in a cleared state until valid data (NRZ) and clocks (CLK) are entered. The ST line is a synchronous input and therefore requires one full cycle of the CLK line (Pin 1) to occur in order to accept a ST condition. After this happens, the device is ready to perform serial to parallel conversions.
Data is entered on the NRZ line and clocked into the 8-bit shift register on the low-to-high transition of CLK. The ST line must be set low during the low time of CLK. Data is accepted on low-to-high transition of the clock while the high-to-low transition of CLK increments the bit counter. After 8 data bits have been entered the final high-to-low transition of CLK sets an internal latch tied to the BDONE line (Pin 15). At the same time, the contents of the shift register are parallel loaded into an 8 bit register making the parallel data available on the D00-D07 outputs. BDONE will remain in a latched state until the $\overline{B C L R}$ is set to a logic 0 , clearing off the BDONE signal. BCLR is a level triggered input and must be set back to a logic 1 before the next 8 bits are shifted through the register. $\overline{B C L R}$ has no effect on the serial shifting process. When the next 8 bits are received, BDONE will again be set and the operation continues.

When interfacing to a microprocessor, BDONE is used to indicate a parallel byte is ready to be read. As the processor reads the data out of the D00-D07 lines, the BCLR line should be strobed to clear off BDONE in anticipation of the next assembled byte. An address decode signal generated at the host may be used for this purpose. During a powerup condition, the state of BDONE is indeterminant. It is recommended that BCLR be strobed low after power-up to insure that BDONE is cleared.
The serial output line from the last stage of the shift register is available on the DOUT pin. An inverted copy of CLK is available on the SHFCLK pin. Both DOUT (Pin 16) and SHFCLK (Pin 14) can be used to drive another shift register external to the device.
The three signals BDONE, DOUT, and SHFCLK can be placed in a high impedance state by setting EN (Pin 19) to a logic 0 . Likewise, EN must be at a logic 1 in order for these signals to be active.
The TEST pin is internally OR'ed with the $\overline{S T}$ line to inhibit the bit counter. It is recommended that TEST be left open by the user. An internal pull-up resistor is tied to this pin to satisfy the appropriate logic level required internally for proper device operation.


SYMBOL	PARAMETER	MIN	TYP ${ }_{1}$	MAX	UNIT	CONDITION
$\mathrm{V}_{\text {II }}$	Input Low Voltage	-0.2		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.4			V	
$V^{\circ}$	Output Low Voltage			0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
$\mathrm{V}_{\text {cc }}$	Supply Voltage Supply Current	4.5	5.0	$5.5$ $100$	$\mathrm{V}$	All Outputs Open

AC ELECTRICAL CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{t}_{\mathrm{c}}$	CLK FREQUENCY	0		5.25	MHZ	
$\mathrm{t}_{\text {LS }}$	$\downarrow$ CLK to ST	0			nsec	$\overline{\text { ST }}=1(\min 200 \mathrm{nsec})$
$\mathrm{t}_{\mathrm{HS}}$	$\uparrow$ CLK to ST	0			nsec	ST $=1$ ( $\min 200 \mathrm{nsec}$ )
$\mathrm{t}_{\mathrm{os}}$	Data set-up to † CLK	15			nsec	
$t_{\text {ve }}$	BDONE valid from $\dagger$ CLK	65		110	nsec	$\mathrm{EN}=1$
$\mathrm{t}_{\text {RS }}$	BDONE reset from BCLR			110	nsec	$\mathrm{EN}=1$
$\mathrm{t}_{\text {Bw }}$	BCLR Pulse Width	50			nsec	$\mathrm{EN}=1$
$t_{\text {sc }}$	$\uparrow$ CLK to $\$ SHFCLK & & & 90 & nsec & $\mathrm{EN}=1$					
$\mathrm{t}_{\mathrm{cs}}$	$\downarrow$ CLK to $\uparrow$ SHFCLK			100	nsec	$\mathrm{EN}=1$
$t_{\text {sD }}$	Data delay from $\uparrow$ SHFCLK			55	nsec	$\mathrm{EN}=1$
$\mathrm{t}_{\text {fo }}$	Enable to DOUT ACTIVE			90	nsec	
$\mathrm{t}_{\mathrm{DH}}$	Data Hold w.r.t. $\dagger$ CLK	25			nsec	

NOTES: 1. Typical Values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$


Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## Hard Disk Improved MFM Generator

## FEATURES

Single +5 Volt Power SupplyWrite PrecompensationAddress Mark Generation5 Mbit Data RateConverts NRZ to MFM20 Pin DIPn-Channel COPLAMOS ${ }^{\circledR}$ Silicon Gate TechnologyPIN CONFIGURATION

$\overline{N R Z} 1 \square$	$\square 20 \mathrm{Vcc}$
SKPEN 2.	$\square 19 \mathrm{AO}$
WCLK 3-	$\square 18 \mathrm{~A} 1$
WCLK 4 [	$\square 17$ MR
RWC 5 -	$\square 16$ MFM
$\overline{\text { CS } 64}$	$\square 15$ INTRQ
DRQCLK 7 ¢	$\square 14$ DRQ
$\overline{\text { INTCLK }} 8$ C	] 13 EARLY
$\overline{\text { 2XDR } 9 \text { - }}$	12 LATE
vss 10 L	$\square 11 \mathrm{NOM}$

## GENERAL DESCRIPTION

The HDC 1100-12 "improved" MFM Generator converts serial NRZ data into an MFM (Modified Frequency Modulated) data stream. The MFM signal may be used to record information on a Winchester Disk.
In addition, the HDC 1100-12 generates Write Precompen-
sation signals required to compensate for bit shift effects on the recording medium.

The HDC 1100-12 has the ability to delete clock pulses in the outgoing data stream in order to record Address Marks.


DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	$\overline{\text { NRZ }}$	$\overline{\overline{\text { NON-RETURN-TO }}}$ZERO	NRZ data input that is strobed into the MFM generator   by WCLK ( $\downarrow$ ).
2	SKPEN	SKIP ENABLE	This input arms the SKIP logic for recording Address   Marks when set to a logic 1.
3	$\overline{\text { WCLK }}$	WRITE CLOCK	Complimentary clock inputs. $\overline{\text { NRZ data is clocked into }}$   the MFM Generator on the high-to-low transition of   WCLK (pin 3).
4	$\overline{\text { WRITE CLOCK }}$		

## OPERATION

The HDC 1100-12 is divided into two sections: MFM Generator and Interrupt Logic. The MFM Generator converts NRZ data into MFM data and provides Write Precompensation signals. The Interrupt Logic may be used to generate Interrupt signals. The two sections of the device are isolated and have no common input or output signals.
Prior to entering data, the SKPEN line must be set to a logic 0 to enable only clocks in the data stream. Data is entered on the NRZ line and strobed on the high-to-low transition of WCLK. The encoded NRZ data appears on the MFM (pin 16) output lagging by one clock cycle.

Write Precompensation signals EARLY, LATE, and NOM are generated as each data or clock pulse becomes available at the input when RWC is logic 1.
The SKPEN signal is used to record a unique data/clock pattern as an Address Mark, using A1 data with 0A clock. This pattern is used for synchronization prior to data or ID fields that are read from the disk.
When the SKPEN signal is set to a logic 1 , the internal skip
logic is enabled. As long as zeroes are being shifted into the NRZ line, the device generates normal MFM data. On receipt of the first non-zero bit (typically the MSB of the A1 16) the skip logic begins to count WCLK cycles. When the MFM generator tries to produce a clock between data bits 2 and 3 , the skip logic disables the MFM generator during that time. The result for $\mathrm{A1}_{16}$ data is a clock pattern of $0 \mathrm{~A}_{16}$ instead of $\mathrm{OE}_{16}$. Although other data patterns may be used,

$\overline{\mathbf{M R}}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	$\overline{\mathbf{C S}}$	$\overline{\mathbf{D R Q}}$	$\overline{\mathbf{N T R Q}}$
0	X	X	X	H	H
1	X	X	1	$\mathrm{Q}_{N}$	$\mathrm{Q}_{N}$
1	0	0	0	H	$\mathrm{Q}_{N}$
1	1	1	0	$\mathrm{Q}_{N}$	H
1	1	0	0	$\mathrm{Q}_{N}$	$\mathrm{Q}_{N}$
1	0	1	0	$\mathrm{Q}_{N}$	$\mathrm{Q}_{N}$

X $=$ Don't care
$Q_{N}=$ remains at previous state
INTERRUPT REQUEST LOGIC TABLE
the MSB of the pattern inust be a $1\left(80_{16}\right.$ or higher) in order to enable the skip logic at the proper time. After the skip logic has performed, it then disables itself and MFM data is recorded normally starting with the succeeding byte. To reenable the skip logic again, the SKPEN line must be strobed.

The Interrupt Logic is used to clear Data Requests (DRQ)
and Interrupt Requests (INTRQ) by selecting $\overline{\mathrm{CS}}$ (pin 6) in combination with AO and A1. The MR (Master Reset) signal is used to clear both $\overline{D R Q}$ and INTRQ simultaneously. DRQ and INTRQ can be set to a logic 0 only by a low level or DRQCLK and INTCLK respectively. The signal will remain at a logic 0 until cleared by a $\overline{M R}$ or proper address selection via CS, A1 and AO.

LAST DATA SENT		SENDING	$\begin{gathered} \hline \text { TO BE SENT } \\ \text { NEXT } \\ \hline \end{gathered}$	EARLY	LATE	NOM
X	1	1	0	H	L	L
X	0	1	1	L	H	L
0	0	0	1	H	L	L
1	0	0	0	L	H	L
ANY OTHER PATTERN				L	L	H

WRITE PRECOMPENSATION LOGIC TABLE

MAXIMUM GUARANTEED RATINGS*						
Storage Temperature Range						
Positive Voltage on any I/O Pin, with respect to ground . . . . . . . . . . . . . . . . . . . . . . . . 4 ,						
Power Dissipa						mets $s_{0} / 4 \rightarrow 1.0$ watt
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and turmmghorn						
device at these	any other condition above	cated in	perati			
DC ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$						
SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.2		0.8	V	
$V_{\text {IH }}$	Input High Voltage	2.4			V	
V OL	Output Low Voltage			0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
$V_{c c}$	Supply Voltage	4.5	5.0	5.5	V	
$l_{\text {cc }}$	Supply Current			100	mA	All Outputs Open

AC ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{t}_{\text {fr }}$	WCLK FREQUENCY			5.25	MHZ	
$\mathrm{t}_{\mathrm{os}}$	Data Setup w.r.t. 1 WCLK	10			nsec	
$\mathrm{t}_{\mathrm{DH}}$	Data hold w.r.t. $\downarrow$ WCLK	25			nsec	
$\mathrm{t}_{\text {MF }}$	$\uparrow$ WCLK to $\uparrow$ MFM delay			210	nsec	Pin 1 LOW
$\mathrm{t}_{\text {FM }}$	$\downarrow$ WCLK to $\downarrow$ MFM delay			230	nsec	Pin 1 LOW
$t_{\text {wn }}$	Data delay to NOM from 1 WCLK			240	nsec	
$t_{\text {we }}$	Data delay to EARLY from			230	nsec	
	$\downarrow$ WCLK					
$t_{\text {wL }}$	Data delay to LATE from $\downarrow$ WCLK			230	nsec	
$t_{\text {M }}$	Master reset pulse width	50			nsec	
$\mathrm{t}_{\text {MD }}$	$\downarrow$ MR to $\uparrow$ DRQ			150	nsec	
$\mathrm{t}_{\text {M }}$	LMR to $\uparrow$ INTRQ			150	nsec	
$\mathrm{t}_{\mathrm{o}}$	DRQCLK pulse width	50			nsec	
$\mathrm{t}_{10}$	$\overline{\text { INTCLK }}$ pulse width	50			nsec	
$\mathrm{t}_{\mathrm{D}}$	$\downarrow \overline{\text { DRQCLK }}$ to $\overline{\mathrm{DRQ}}$			120	nsec	
$t_{11}$	$\downarrow \overline{\text { NTCLK }}$ to $\overline{\text { NTRQ }}$			120	nsec	
$t_{\text {AD }}$	$\downarrow$ AX to $\uparrow \overline{\text { DRQ }}$			145	nsec	
$t_{A 1}$	$\uparrow A X$ to $\uparrow \overline{\text { NTRQ }}$			160	nsec	
$\mathrm{t}_{\mathrm{co}}$	$\downarrow \overline{C S}$ to $\uparrow \overline{\mathrm{DRQ}}$			145	nsec	
$\mathrm{t}_{\mathrm{c} \text { }}$	$\downarrow \overline{\mathrm{CS}}$ to $\uparrow \overline{\mathrm{INTRQ}}$			180	nsec	
$\mathrm{t}_{\text {RN }}$	$\uparrow$ RWC to $\downarrow$ NOM			145	nsec	
$\mathrm{t}_{\text {TE }}$	$\downarrow \overline{\text { 2XDR }}$ to $\uparrow$ EARLY			75	nsec	
$\mathrm{t}_{\text {TN }}$	$\downarrow \overline{2 X D R}$ to $\uparrow$ NOM			75	nsec	
$\mathrm{t}_{\mathrm{TL}}$	$\downarrow \overline{2 X D R}$ to $\uparrow$ LATE			75	nsec	

Notes: 1. Typical Values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}$.



STANDARD MICROSYSTEMS CORPORATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## Hard Disk Address Mark Detector

## FEATURES

Single +5 Volt Power SupplyDecodes A1-OASynchronous Clock/Data Outputs5 MBit Data RateAddress Mark Detection20 Pin DIP
n-Channel COPLAMOS ${ }^{\circledR}$ Silicon Gate Technology

PIN CONFIGURATION


## GENERAL DESCRIPTION

The HDC 1100-03 Address Mark Detector Provides an efficient means of detecting Address Mark Fields in an MFM (NRZ) data stream. MFM clocks and data are fed to the device along with a window clock generated by an external data separator. The HDC 1100-03 searches the data stream
for a DATA $=$ A1, CLK $=0$ A pattern and produces and AM DET signal when the pattern has been found. NRZ data is output from the device for driving a serial/parallel converter. An uncommitted latch is also provided for use by the data separator circuitry if required.


## DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	$\overline{\text { RCLK }}$	READ CLOCK	Complimentary clock inputs used to clock DIN and
3	RCLK	READ CLOCK	CLK IN into the AM detector.
2	$\overline{\text { DIN }}$	DATA INPUT	MFM data pulses from the external Data Separator are connected on this line.
4	$\overline{\text { CLK IN }}$	$\overline{\text { CLOCK INPUT }}$	MFM clock pulses from the external Data Separator are connected on this line.
5	$\overline{\text { DOUT }}$	$\overline{\text { DATA OUTPUT }}$	Data Output from the internal Data Shift register, synchronized with DCLK.
6,7,13, 17	NC	No Connection	To be left open by the user.
$\begin{gathered} \hline 8 \\ 11 \end{gathered}$	$\overline{\overline{\text { TEST1 }}}$	$\begin{aligned} & \overline{\text { TEST } 1} \\ & \text { TEST } 2 \end{aligned}$	To be left open by the user.
9	ENDET	ENABLE DETECTION	A logic 1 on this line enables the detection logic to search for a data $\mathrm{A} 1_{16}$ and clock.
10	$V_{\text {ss }}$	$\mathrm{V}_{\text {ss }}$	GROUND.
12	DCLK	DATA CLOCK	Clock output that is synchronized with DATA OUT (Pin 5).
14	$\overline{\text { QOUT }}$	LATCH OUTPUT	Signal output from the uncommitted latch.
15	$\overline{\text { AMDET }}$	ADDRESS MARK DETECT	Complimentary Address Mark Detector output. These signals will go active when a Data $=A 1$, Clock $=O A$
16	AMDET	ADDRESS MARK DETECT	signals will go active when a Data $=A 1_{16}$ Clock $=0 A_{16}$ pattern is detected in the data stream.
18	CP	CLOCK PULSE	A low-to-high transition on this line will cause the QOUT (Pin 14) to be latched at a logic 0 .
19	$\overline{\text { RST }}$	$\overline{\text { RESET }}$	A logic 0 on this line will cause the QOUT (Pin 14) signal to be set at a logic 1.
20	$\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}$	+5 V power supply input.

## OPERATION

Prior to shifting data through the device, the internal logic must be initialized. While the ENDET (Pin 9) line is at a logic 0 , shifting of data will be inhibited and AMDET, AMDET, DCLK, and DATA OUT will remain inactive.
When ENDET is at a logic 1 , shifting is enabled. NRZ data is entered on the DIN line (Pin 2) and shifted on the high-to-low transition of $\overline{\text { RCLK }}$ (Pin 1). NRZ clocks are entered on the $\overline{C L K} \operatorname{IN}$ line, and shifted on the high-to-low transition of RCLK (Pin 3). The DOUT line (Pin 5) is tied to the last stage of the Internal Data Shift register and will reflect information clocked into the $\overline{\mathrm{DIN}}$ line delayed by 8 bits.
While each bit is being shifted, a 16 bit comparator is continuously checking the parallel contents of the shift registers for the DATA $=A 1_{16}$ CLK $=0 \mathrm{~A}_{16}$ pattern. When this pattern is detected, AMDET will be set to a logic 0 and AMDET will be set to a logic 1. $\overline{\text { AMDET and AMDET will }}$ remain latched until the device is re-initialized by forcing

## ENDET to a logic 0.

When an AM is detected, DCLK, will begin to toggle. Data present on the DOUT line may then be clocked into an external serial/parallel converter. DCLK will remain inactive when ENDET is held at a logic 0.
An uncommitted edge-triggered flip/flop has been provided to facilitate the detection of high-frequency by the data separator, but may be used for any purpose. The low-to-high transition of CP (Pin 18) will set the QOUT (Pin 14) to a logic 0 . QOUT may be reset back to a logic 1 by a low level on the RST line (Pin 19).
TEST1 and TEST2 are output lines. TEST1 is an active low pulse when an $\mathrm{A} 1_{16}$ is detected, and TEST2 is an active low pulse when a $0 A_{16}$ is detected. These signals are used for test points and therefore should be left open by the user if not required.

Operating Temperature Range .............................................................................. $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temperature Range ................................................................................... $-55^{\circ}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) ................................................................................. $+300^{\circ} \mathrm{C}$
Positive Voltage on any I/O Pin, with respect to ground ..................................................................... 7.0 V
Negative Voltage on any I/O Pin, with respect to ground -0.2V
Power Dissipation
*Stresses above those listed may cause permanent damage to the device. This is a stress rat $\%$ naration of the device at these or at any other condition above those indicated in the operational sections of

DC ELECTRICAL CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP 1	MAX	UNIT	CONDITIC.
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.2		0.7	V	
$\mathrm{~V}_{\text {IH }}$	Input High Voltage	2.4			V	
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage					
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{oL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{cc}}$	Supply Voltage	4.5	5.0	5.5	V	$\mathrm{I}_{\mathrm{oH}}=-200 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{cc}}$	Supply Current			100	mA	All Outputs Open

AC ELECTRICAL CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{t}_{\mathrm{RC}}$	RCLK Frequency			5.25	MHZ	
$\mathrm{t}_{\text {ST }}$	Data Setup time	40			nsec	
$\mathrm{t}_{\text {HT}}$	Data Hold time	10			nsec	
$\mathrm{t}_{\mathrm{DD}}$	DOUT to DCLK DELAY			110	nsec	
$t_{\text {RD }}$	$\downarrow$ RCLK to ¢ DCLK			120	nsec	
$\mathrm{t}_{\text {RA }}$	$\downarrow \overline{\text { RCLK }}$ to $\uparrow$ AMDET			115	nsec	
$\mathrm{t}_{\mathrm{RM}}$	$\downarrow \overline{\text { RCLK }}$ to $\downarrow$ AMDET			125	nsec	
$\mathrm{t}_{\mathrm{RO}}$	$\downarrow \overline{\text { RCLK }}$ to DOUT			135	nsec	
$t_{\text {EA }}$	$\downarrow$ ENDET to $\downarrow$ AMDET			130	nsec	
$\mathrm{t}_{\mathrm{RO}}$	$\downarrow \overline{\text { RST }}$ to $\uparrow$ QOUT			110	nsec	
$t_{\text {Rw }}$	Pulse width of RST	50			nsec	
$\mathrm{t}_{\mathrm{cw}}$	CP Pulse width	90			nsec	
$t_{\text {co }}$	$\uparrow$ CP to $\downarrow$ QOUT			106	nsec	



Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor
devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## Hard Disk CRC Checker/Generator

## FEATURES

$\square$ Single +5 Volt Power Supply
$\square$ Generates/Checks CRC
$\square$ Latched Error Outputs
$\square$ CCITT-16 CRC
$\square$ Automatic Preset
$\square 20$ Pin DIPn-Channel COPLAMOS ${ }^{\circledR}$ Silicon Gate Technology

PIN CONFIGURATION


## GENERAL DESCRIPTION

The HDC 1100-04 CRC Checker/Generator generates a stream. In addition to the transmitted CRC output, compliCyclic Redundancy Checkword from a serial data stream, and checks for the proper CRC in a received serial data
mentary latched "CRCOK" outputs are provided to indicate CRC errors in the check mode.


DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	$\overline{\text { DIN }}$	DATA INPUT	Active low serial input data stream is used to generate/ check the 2 byte CRC word.
2	$\overline{\text { DOCK }}$	$\begin{aligned} & \hline \overline{\text { DATA OR CRC }} \\ & \hline \text { WORD CLOCK } \end{aligned}$	After a byte of data has been transferred, in, this input signal is used to latch the state of DOCE in an internal D flop with a high to low transition.
3	$\overline{\text { SHFCLK }}$	$\overline{\text { SHIFT CLOCK }}$	The falling edge shifts data bits into the CRC generator/checker. It also transfers the CRC check word to DOUT in the write mode (DOCE = LOW). The rising edge also activates the CRCOK lines in the read mode when no error is found.
4,5	N.C.	NO CONNECTION	
6	$\overline{\text { CWE }}$	$\begin{aligned} & \text { CHECK WORD } \\ & \text { ENABLE } \end{aligned}$	This active low output indicates that the CRC checkword is being output on the DOUT line. When CWE is high, data is being output on DOUT.
7	DOCE	DATA OR CRC ENABLE	Initially, this input line is held high to direct input data (pin 1) to the output data (pin 11). After the next to the last BYTE is transmitted but before the last BYTE occurs DOCE must be low to direct the 2 CRC check bytes to DOUT (pin 11).   DOCE must be maintained low for a minimum of 2 byte times. DOCE is used only in the write mode.
8	$\overline{\text { CRCIZ }}$	$\overline{\text { CYCLIC }}$ REDUNDANCY CHECK INITIALIZE	When this line is at a logic 0 , the SKPCLK output line is held high and the CRC generator is held preset to hex "FFFF."
9	N.C.	NO CONNECTION	NO CONNECTION
10	$\mathrm{V}_{\text {ss }}$	GROUND	GROUND.
11	$\overline{\text { DOUT }}$	DATA OUTPUT	In the write mode, this line outputs the unmodified data stream along with the 2 byte CRC word appended to the end of the stream.
12	SKPCLK	SKIP CLOCK	The first high-to-low transition on $\overline{\text { DIN }}$ (pin 1) resets SKPCLK low and enables the CRC to either generate or check the CRC word.
13	CRCOK	CYCLIC   REDUNDANCY   CHECK OKAY	In the read mode, after the 2 byte CRC word is entered on $\overline{\mathrm{DIN}}$ and no error has been detected, this line is set high to indicate no errors have occurred. This line will then remain high as long as $\overline{\text { DIN }}$ is maintained high.
14	WCLK	WRITE CLOCK	This input clock is divided by 16 to produce TIMCLK (pin 15) and has no effect on the rest of the internal circuitry.
15	TIMCLK	TIMING CLOCK	See above.
16	$\overline{\text { CRCOK }}$	$\begin{aligned} & \overline{\text { CYCLIC }} \\ & \text { REDUNDANCY } \end{aligned}$ CHECK OKAY	Complementary output version of CRCOK (pin 13).
17-19	N.C.	NO CONNECTION	
20	$\mathrm{V}_{\mathrm{cc}}$	$V_{c c}$	+5 V power supply input.

## OPERATION

Prior to shifting data thru the device (either in the read or write modes) the CRC generator/checker is initialized by strobing the CRCIZ (pin 8) low. This forces the SKPCLK (pin 12) line to the high state. The first low going transition on DIN (pin 1), namely the most significant bit of an address mark, resets the SKPCLK line. The HDC 110-04 has now been properly initialized and is ready to generate/check the CRC bytes. The CRCOK and CRCOK lines should be set to their inactive states.
In the write mode, initially the DOCE (pin 7) is held high and a pseudo DOCK is produced by supplying a string of zeros before the address mark. This ensures the proper state of the internal D flip flip to gate input data to the output line $\overline{\text { DOUT (pin 11). As shown in the block diagram the CWE }}$
(pin 6) will be set high. Sometime between the next to the last and the last DOCK that indicates the end of the data stream, DOCE ( $\operatorname{pin} 7$ ) is lowered to ensure the smooth transition of the 2 byte CRC checkword to the output line DOUT (pin 11).
DOCE must be maintained low for a minimum of 2 byte times. After the CRC word is generated, DOUT will produce a string of zeros (i.e., held high). This portion of the circuitry is dormant in the read mode.

After proper initialization, input data is entered on DIN (pin 1) along with the 2 byte CRC word for the read mode of operation. At the end of the data stream, if no errors were detected the CRCOK (pin 13) is set high. Accordingly the
complementary output (pin 16) is set low. These output states will be maintained as long as DIN is held high and CRCIZ (pin 8) is not strobed. If the CRCOK lines do not become active, an error has been detected and a re-try is in order. If successive re-tries fail, an error flag may be
set to determine a further course of action as desired by the user.

WCLK is divided by 16 to produce TIMCLK which may be used as a buffered step clock for SA1000 compatible drives.

## MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range						
Positive Voltage on any I/O Pin, with respect to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7.0 V						
'Stresses above those listed may cause permanent damage to the device. This is a stress rat:. device at these or at any other condition above those indicated in the operational sections of this spu.   DC ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$						
SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.2		0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.4			V	
$V_{\text {o }}$	Output Low Voltage			0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{cc}}$	Supply Voltage	4.5	5.0	5.5	V	
$\mathrm{l}_{\mathrm{cc}}$	Supply Current			100	mA	All Outputs Open

AC ELECTRICAL CHARACTERISTICS: $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$t_{\text {wT }}$	$\uparrow$ WCLK to $\downarrow$ TIMCLK			95	nsec	
$\mathrm{t}_{\text {w }}$	$\uparrow$ WCLK to TTIMCLK			85	nsec	
$\mathrm{t}_{\mathrm{zs}}$	$\downarrow$ CRCIZ to $\uparrow$ SKPCLK			120	nsec	
$\mathrm{t}_{\mathrm{zk}}$	CRCIZ pulse width	90			nsec	
$\mathrm{t}_{\mathrm{BS}}$	DOCE set up time w.r.t.	20			nsec	
	$\downarrow$ DOCK					
$\mathrm{t}_{\mathrm{BH}}$	DOCE hold time w.r.t.	40			nsec	
	$\downarrow$ DOCK					
$t_{\text {D }}$	Din to DOUT delay			105	nsec	CWE set high


SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{t}_{\mathrm{DK}}$	$\downarrow \overline{\text { DIN }}$ to $\downarrow$ SKPCLK			120	nsec	
$t_{\text {bw }}$	$\overline{\text { DIN P.W. to reset SKPCLK }}$	50			nsec	
$t_{\text {c }}$	$\downarrow \overline{\text { DOCK }}$ to $\downarrow \overline{\mathrm{CWE}}$			120	nsec	
$\mathrm{t}_{\mathrm{BC}}$	$\downarrow \overline{\text { DOCK }}$ to $\uparrow \overline{\text { CWE }}$			120	nsec	
$\mathrm{t}_{\text {sc }}$	$\overline{\text { SHFCLK }}$ frequency			5.25	MHZ	
$\mathrm{t}_{\text {SR }}$	$\uparrow \overline{\text { SHFCLK }}$ to $\uparrow$ CRCOK			85	nsec	
$\mathrm{t}_{\text {sc }}$	$\uparrow \overline{\text { SHFCLK }}$ to $\downarrow \overline{\text { CRCOK }}$			90	nsec	
$\mathrm{t}_{\text {IN }}$	$\downarrow \overline{\text { DOCK }}$ to $\downarrow \overline{\text { DIN }}$			90	nsec	

Notes: 1. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$


Initialize


Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor
devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## Hard Disk Parallel to Serial Converter

## FEATURES

$\square$ Single +5 Volt Power SupplyDouble BufferedByte Strobe Outputs5 Mbit Data RateParallel In/Serial Out20 Pin DIPn-Channel COPLAMOS ${ }^{\circledR}$ Silicon Gate Technology

PIN CONFIGURATION

D0 1 [	$\square 20 \mathrm{vc}$
D1 2 [	] 19 EN
D2 3 [	$\square 18 \mathrm{NC}$
D3 4 [	$\square 17$ TEST
D4 5 -	$\square 16$ BDONE
D5 6 -	$\square 15$ DOUT
D6 7 [	$\square 14$ SHFCLK
D7 8 -	$\square 13$ LD
SHFCLK 9 [	$\square 12$ WCLK
$\mathrm{V}_{\mathrm{ss}} 10$ [	$\square 11 \overline{\text { DCLK }}$

## GENERAL DESCRIPTION

The HDC 1100-05 converts bytes of parallel data to a serial data stream for writing to disk memories or other serial devices. Parallel data is entered via the D0-D7 lines. A synchronous byte counter is used to signify that 8 bits of data
have been shifted out and that the 8 bit latch is ready to be reloaded. The double buffering of the data permits another byte to be loaded while the previous byte is in the process of being shifted.


DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	SYMBOL	NAME	FUNCTION
1-8	D0-D7	DATA 0-DATA 7	8 bit parallel data inputs (bit $7=\mathrm{MSB}$ ).
9	SHFCLK	SHIFT CLOCK	Inverted copy of $\overline{\mathrm{WCLK}}$ (pin 12) which is active when ENABLE (pin 19) is at a logic 0 .
10	$V_{\text {ss }}$	GROUND	GROUND.
11	$\overline{\text { DCLK }}$	$\overline{\text { DATA CLOCK }}$	Active low input signal resets the BDONE (pin 16) latch. The low-to-high (trailing edge) clocks the input data into the internal 8 bit latch.
12	$\overline{\text { WCLK }}$	WRITE CLOCK	The high-to-low ( $\downarrow$ ) edge of this clock signal is used to shift the data out serially. The low-to-high ( $\uparrow$ ) edge is used to update the internal byte counter (modulo 8).
13	$\overline{\mathrm{LD}}$	$\overline{\text { LOAD }}$	This active low signal indicates that the Byte Counter is being preset to 1 . Normally left open by the user.
14	SHFCLK	SHIFT CLOCK	Delayed copy of $\overline{\text { WCLK }}$ (pin 12) which is active when EN (pin 19) is at a logic 0 .
15	DOUT	DATA OUT	Serial data output enabled by EN (pin 19).
16	BDONE	BYTE DONE	This output signal is forced to a logic 1 whenever 8 bits of data have been shifted out. BDONE remains in this state unless reset by the loading of another byte of data.
17	TEST	TESTINPUT	This pin must be left open by the user.
18	NC	No Connection	NO CONNECTION
19	$\overline{\mathrm{EN}}$	ENABLE	This active low signal enables DOUT, $\overline{\text { SHFCLK }}$, SHFCLK, and BDONE outputs. When high, these output signals are in a high impedance state.
20	$\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}$	+5 power supply input.

## OPERATION

Prior to loading the HDC 1100-05, it is recommended that 00 H (or FF) be loaded into the input buffers to ensure that DOUT is at a fixed level. EN (pin 19) is set to a logic 0 to enable the device outputs.
Data is entered on the D0-D7 input lines and is strobed into the data latches on the rising edge of DCLK (pin 11). $\overline{\text { DCLK }}$ also resets BCONE (pin 16). The first BDONE that comes up simply means that the HDC 1100-05 is ready to accept another byte of data and that the previous byte entered is in the process of being shifted out. If the BDONE is serviced prior to every 8th WRITE CLOCK pulse the output data will represent a contiguous block of the bytes entered. Due to the asynchronous nature of the HDC 1100-05, the input data will be available in serial form at the output anywhere from 8 to 16 write clock cycles later.
Data is shifted out on the high-to-low transition of the WCLK (pin 12). The low-to-high transition of WCLK increments a byte counter which in turn sets the BDONE signal high after 8 bits of data have been shifted out. The low-to-high tran-
sition of BDONE also causes the loading of the data buffer into the shift register. The data buffer is now ready to be reloaded with the next byte.

The loading of the next byte automatically clears the BDONE signal. The entire process as outlined above is repeated. BDONE always needs to be serviced within 8 WCLK cycles unless the next byte to be transmitted is the same as the previous byte.

Four signals, BDONE, DOUT, SHFCLK, and SHFCLK, can be placed in a high impedance state of setting EN (pin 19) to a logic 1. Likewise, EN must be at a logic 0 in order for these signals to drive any external device.
The TEST pin is internally OR'd with the counter output to produce the $\overline{\mathrm{LD}}$ (pin 13) signal. This is used to inhibit the bit counter by external means for test purposes. It is recommended that TEST be left open by the user. An internal pullup register is tied to this pin to satisfy the appropriate logic level required for proper device operation.

Operating Temperature Range						
Storage Tempe	re Range .					$-55^{\circ}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+30{ }^{\text {a }}$. ${ }^{\circ} \mathrm{C}$						
Positive Voltage on any I/O Pin, with respect to ground................................................ +7.0 V						
Negative Voltage on any I/O Pin, with respect to ground $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.						
Power Dissipati						1 - ........ 1.0 watt
Stresses above those listed may cause permanent damage to the device. This is a stress rati						
device at these or at any other condition above those indicated in the operational sections of this $\mathrm{s} \mu$ -   DC ELECTRICAL CHARACTERISTICS: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$						
SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITIUI.
$\mathrm{V}_{\mathrm{IL}}$	Input Low Voitage	-0.2		0.8	V	
$\mathrm{V}_{\mathrm{OH}}$	Input High Voltage	2.4			V	
V O	Output Low Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4			V	$\mathrm{I}_{\text {OH }}=-200 \mu \mathrm{~A}$
$\mathrm{V}_{\text {cc }}$	Supply Voltage	4.5	5.0	5.5	V	
$\mathrm{I}_{\text {cc }}$	Supply Current			100	mA	All Outputs Open

AC ELECTRICAL CHARACTERISTICS: $T_{A}=0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{V}_{\mathrm{Ss}}=0 \mathrm{~V}$

SYMBOL	PARAMETER	MIN	TYP ${ }^{1}$	MAX	UNIT	CONDITION
$\mathrm{t}_{\mathrm{wc}}$	WCLK frequency			5.25	MHZ	
$\mathrm{t}_{\text {dw }}$	DCLK pulse width	50			nsec	
$\mathrm{t}_{\text {DS }}$	Data set-up w.r.t. $\uparrow$ DCLK	30			nsec	
$\mathrm{t}_{\mathrm{DH}}$	Data hold time w.r.t. ¢ DCLK	30			nsec	
$\mathrm{t}_{\mathrm{DB}}$	$\downarrow$ DCLK to $\downarrow$ BDONE			130	nsec	$\mathrm{EN}=0$
$\mathrm{t}_{\mathrm{D}}$	$\downarrow$ WCLK to DOUT			130	nsec	$\mathrm{EN}=0$
$\mathrm{t}_{\text {SH }}$	$\downarrow$ WCLK to $\downarrow$ SHFCLK			75	nsec	$\mathrm{EN}=0$
$\mathrm{t}_{\mathrm{HS}}$	$\downarrow$ WCLK to $\uparrow$ SHFCLK			70	nsec	$\mathrm{EN}=0$
$\mathrm{t}_{\text {we }}$	$\uparrow$ WCLK to $\uparrow$ TBDONE	75		180	nsec	
$\mathrm{t}_{\text {ES }}$	$\downarrow$ EN to BDONE, DOUT			25	nsec	
$\mathrm{t}_{\text {c }}$	$\uparrow$ SHFCLK ACTIVE			50	nsec	

NOTES: 1. Typical Values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}$


Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

PRELIMINARY

## Hard Disk Controller

## FEATURES

Flexible interface to various types of Hard Disk DrivesProgrammable Track FormatControls up to 8 DrivesParallel Seek Operation CapabilityMulti-sector and Multi-track Transfer CapabilityData Scan and Data Verify CapabilityHigh Level Commands, Including:READ DATA SEEK (Normal or Buffered)
READ ID WRITE DATA WRITE ID RECALIBRATE (Normal or Buffered) READ DIAGNOSTIC (SMD Only) SPECIFY
SCAN DATA SENSE INTERRUPT STATUS VERIFY DATA SENSE DRIVE STATUS VERIFY ID DETECT ERROR CHECKNRZ, FM, or MFM Data FormatMaximum Data Transfer Rate: 12 MHzError Detection and Correction CapabilitySimple I/O Structure: Compatible with Most MicroprocessorsAll Inputs and Outputs except Clock Pins are TTLCompatible (Clock Pins Require Pull-up)Single +5 V Power Supply40-Pin Dual-in-line PackageCOPLAMOS ${ }^{\circledR}$ n-Channel Silicon Gate Technology

PIN CONFIGURATION


## GENERAL DESCRIPTION

The HDC7261 Hard Disk Controller is an intelligent microprocessor peripheral designed to control a number of different types of disk drives. It is capable of supporting either hard-sector or soft-sector disks and provides all control signals that interface the controller with either SMD disk interfaces or Seagate floppy-like drives. Its sophisticated instruction set minimizes the software overhead for the host microprocessor. By using the DMA controller, the microprocessor needs only to load a few command bytes into the HDC7261 and all the data transfers associated with read,
write, or format operations are done by the HDC7261 and the DMA controller. Extensive error reporting, verify commands, ECC, and CRC data error checking assure reliable controller operation. The HDC7261 provides internal address mark detection, ID verification, and CRC or ECC checking and verification. An eight-byte FIFO is used for loading command parameters and obtaining command results. This makes the structuring of software drivers a simple task. The FIFO is also used for buffering data during DMA read/write operations.

## High Performance Analog Data Separator Support Circuit (ADSSC) For Hard Disk

## FEATURES

Significantly reduces component count in hard disk systemsCompletely compatible with the HDC 9226 Hard Disk Data Separator and the HDC 9224 Universal Disk ControllerSimplifies design and improves performance of ST506 Hard Disk Controller sub-systemEliminates costly critical "tune up" adjustmentsSpace saving 14 pin packageMonolithic analog solution reduces critical pc board layoutSingle +12 V power supplyPrinted Circuit Board Artwork available to facilitate prototyping and evaluationPIN CONFIGURATION


## GENERAL DESCRIPTION

The HDC 9223 Analog Data Separator Support Circuit (ADSSC) is a 14 pin device, which when used with the HDC 9224 Universal Disk Controller and the HDC 9226 Hard Disk Data Separator significantly simplifies the design of a high performance hard disk data separator.
The HDC 9223, combined with the HDC 9226 and a few
resistors and capacitors, forms a phase locked loop which performs phase and frequency locking onto either the MFM or FM data stream output by ST506 or ST412 type drives.
By reducing the number of critical discrete components to a minimum and eliminating all critical adjustments, the HDC 9223 and HDC 9226 simplify the task of the designer.


DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	DESCRIPTION
1	Read Gate	RDGATE	This active high input controls the gain of the loop. A high level   decreases the gain and a low level increases the gain.
2	$\overline{\text { Pump Up }}$	$\overline{\text { PMPUP }}$	This active low input causes the VCO to increase its frequency.
3	$\overline{\text { Pump Down }}$	$\overline{\text { PMPDWN }}$	This active low input causes the VCO to decrease its frequency.
4	Digital Ground	GND	This is the ground connection for the digital circuitry within the   HDC 9223.
5	Four Times VCO	$4 \times$ VCO	This is the VCO output. It will vary from 18 to 22 MHz as a function of   the $\overline{\text { PMPUP and }} \overline{\text { PMPDWN input signals. }}$
6	External Capacitor   Connection 1	CX1	An 8.2 pf external NPO capacitor is connected across pins 6 and 7.

## DESCRIPTION OF OPERATION

The functional block diagram of the HDC 9223 is shown in Figure 1. The major functional blocks within the HDC 9223 are a voltage controlled oscillator (VCO), an active loop filter, and a pulse amplifier. The gain of the pulse amplifier is controlled by the RDGATE logic input.
The voltage controlled ocsillator generates the $4 \times \mathrm{VCO}$ output (nominally 20 MHz ). The frequency of this output is determined by the signals on the PMPUP and PMPDWN inputs to the HDC 9223. Since the half bit time for data from
the disk is 100 ns , the HDC 9226 divides the frequency of the $4 x V C O$ signal in half, and compares the phase and frequency of the resulting 10 MHz signal to that of the incoming data. The HDC 9226 then varies the pulse width on the PMPUP and PMPDWN lines to adjust the output frequency of the VCO on the HDC 9223, closing the loop.
A voltage regulator and bandgap voltage reference ensure power supply rejection and stable VCO operation.

## MAXIMUM GUARANTEED RATINGS

Operating Temperature Range ................................................................................... 0 to 70 C
Storage Temperature Range .......................................................................... 55 to +150 C
Lead Temperature (soldering, 10 sec ) .......................................................................... +300 C
Positive Voltage on any Pin, with respect to Ground ........................................................ $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Negative Voltage on any Pin, with respect to Ground ............................................................. -0.5 V
Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the "Maximum Guaranteed Ratings" not be exceeded, or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when AC power is switched off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibly exists it is suggested that a clamp circuit be used.

DC ELECTRICAL SPECIFICATIONS
( $\mathrm{TA}=0 \mathrm{C}$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=12.0 \mathrm{~V} \pm 5 \%$ )

## AC ELECTRICAL CHARACTERISTICS

(TA $=0 \mathrm{C}$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} \pm 5 \%$ )



FIGURE 4: TYPICAL CIRCUIT CONFIGURATION

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications: consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

# Universal Disk Controller 

## FEATURES

Programmable Disk Drive Interface and Formats

Seagate (ST506) or user definable Hard Disk FormatsIBM Compatible Single or Double Density Floppy Disk FormatsControls $8^{\prime \prime}, 5.25^{\prime \prime}$, and $3.5^{\prime \prime}$ drives Controls tape drives for tape backup of disksFull CRC generation and checking Internal or External Error detection Programmable user-transparent Error correction
Programmable automatic retry option Programmable internal write precompensation logicRead/Write commands with automatic seek
Multiple sector read/write transfers Sector interleave capability Internal address mark generation and detectionProgrammable track step rates Supports both buffered and unbuffered seeks
Polling command allows overlapping seeksPowerful, high level command set
Controls up to 4 drives with up to 16 heads per drive up to 2048 cylinders per drive up to 256 sectors per track

Flexible System InterfaceBuilt-in DMA controller capable of addressing up to 16 MBytesSupports either private or virtual buffer memory addressing schemes

PIN CONFIGURATION

$\square$ User readable Interrupt, Chip Status, and Drive Status registers Programmable Interrupt Mask TTL compatible Standard 40 pin DIP package Single +5 volt supply

## GENERAL DESCRIPTION

The HDC 9224 Universal Disk Controller (UDC) is a 40 pin, n-channel MOS/LSI device capable of interfacing up to 4 Winchester-type hard disks and/or industry standard floppy disks to a processor. The chip is programmable to support both the Seagate (ST506) and user defined hard disk formats, as well as IBM compatible 8", $5.25^{\prime \prime}$ and $3.5^{\prime \prime}$ single and double density formats.

A powerful and sophisticated command set reduces the software overhead required to implement a combined hard disk/floppy disk controller. These commands include:

## Drive Select

Step out 1 cylinder
Restore Drive
Read Physical Sectors
Write Logical Sectors Chip Reset
Poll Drives for Ready
Tape Back-up
The HDC 9224 can use both private memory or shared memory buffers with the chip's internal DMA controller pro-
viding up to 24 bit addresses over an 8 bit data bus. This enables the HDC 9224 to address up to 16 megabytes of memory, and allows the hardware designer tremendous flexibility in system design.

Several techniques of error detection and correction are implemented on the HDC 9224. One user selected method allows the chip to detect and transparently correct a read error in the data-stream, without external logic. Another technique allows the designer complete control over the ECC algorithm, by using external logic or system software to detect and correct the error. As a further aid in error handling, the HDC 9224 allows the user to specify the number of read retries to be attempted before an error is reported to the host processor by the HDC 9224.

The HDC 9224 features a versatile track format command which allows formatting with interleaved sectors. The chip needs only 3 or 4 bytes of external memory space per sector (depending on format selected). This feature allows the designer to optimize sector interleaving for optimum throughput.


BLOCK DIAGRAM OF DATA PATH IN HDC 9224
DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	DESCRIPTION
1	Power	$\mathrm{V}_{\text {cc }}$	+5 volt power supply pin
22.	Ground	$\mathrm{V}_{\text {ss }}$	System ground
16	Chip Select	$\overline{\mathrm{CS}}$	This signal (when active) selects the HDC 9224 for communications with the host processor. This signal is normally derived by decoding the high order address bits. It is active low.
$\begin{aligned} & 17,18 \\ & 19,20 \\ & 21,23 \\ & 24,25 \end{aligned}$	Data Bus 7-0	DB7-0	All system processor reads and writes, (including status reads, initialization, disk parameters, and commands) are 8 bit transfers which utilize these lines. When the UDC is accessing memory, data is input or output on these lines. Data on these lines is valid only when $\overline{\text { DATA STROBE }}(\overline{\mathrm{DS}})$ is active low.
8-15	Aux Bus 7-0	AB7-0	These 8 pins are used to output drive control signals and DMA Address information.   Additionally, these pins are used to input drive status information.
4	Command/ $/ \overline{\text { Data }}$	$C / \bar{D}$	During processor to UDC communications, this input is used to indicate whether a command or data transfer will follow.   If this pin is low, data may be written to, or read from, the internal data registers. If this pin is high, the processor may write commands or read command results from the UDC.
7	Read/Write	$\mathrm{R} / \overline{\mathrm{W}}$	When the processor is communicating to the UDC, a high on this input line indicates a (processor) request for a UDC read operation, and a low indicates a (processor) request for a write operation.
			$\mathrm{R} / \overline{\mathrm{W}} \mathrm{C} / \overline{\mathrm{D}}$ Operation
			0 0 Write to register file   0 1 Write to command reg.   1 0 Read from register file   1 1 Read Interrupt Status Register

During UDC initiated operations, this pin becomes an output, and is used to indicate a read operation (logic 1) or write operation (logic 0 ) to external memories.

PIN NO.	NAME	SYMBOL	DESCRIPTION
6	Data Strobe	$\overline{\text { DS }}$	This active low pin functions as both an input and output. When the processor is writing to the UDC, the trailing edge of an active (low) signal applied to this pin indicates that the data on DB7-0 is valid, and the data is latched into the appropriate UDC register on the rising edge.   When the processor is reading from the UDC, the trailing edge of an active (low) signal applied to this pin is used to clock out the desired UDC register on to DB7-0.   During UDC initiated DMA operations, the UDC drives this pin low to either read or write data from memory. On DMA read cycles, data is clocked in on the trailing edge. On DMA write operations, the data on DB7-0 is valid anytime this pin is active (low).   When this pin is high (logic 1), DB7-0 return to a high impedance state.
2	Interrupt	INT	This active high output is used by the UDC whenever it wants to interrupt the processor. The interrupt pin is reset to its inactive (low) state when the UDC interrupt status register is read.
30	DMA In Progress	DIP	This active high output becomes active whenever the UDC is actually performing a DMA operation.
28	DMA Request	DMAR	This active high output becomes active whenever the UDC requires the system bus to perform a memory cycle, and ACK is inactive. During hard disk operations, it remains active until the sector transfer is complete.   During floppy disk operations, it is active for 1 byte transfer time.   The UDC shows that is has released the system bus by resetting this signal to its inactive (low) state.
5	Acknowledge	ACK	This active high signal from the processor tells the UDC that the processor has released the system bus and the UDC may access system memory.
37	Write Data	WDATA	This pin is used to output serial data from the UDC to the drive, in either FM or MFM format. In both cases, data is output with the most significant bit first.
38	Late	LATE	This output (when active high) indicates that the current flux transition appearing on WDATA is to be written late.
39	Early	EARLY	This output (when active high) indicates that the current flux transition appearing on WDATA is to be written early.
27	Write Gate	WGATE	This output (when active high) indicates the drive should allow a write operation.
40	$\overline{\text { Read Data }}$	$\overline{\text { RDATA }}$	This input pin contains the serial bit stream read from the drive, in either FM or MFM format. Media flux reversals are indicated by a negative transition.
3	Read Clock	RCLK	This input is generated by the external data separator. Its frequency should selfadjust to the variations in bit width in the data stream from the drive. This clock supplies a window to indicate half-bit-cell boundaries.
26	Read Gate	RDGATE	This output pin is used to enable the external data separator, compensate for write to read recovery time of the drive, and filter out the write splice in gaps 2 and 3. The timing of this signal is dependent upon the type of drive (hard or floppy) being used.   RDGATE is inactive at all times except when the UDC is actually performing a read operation or an internal ECC operation.
29	$\overline{\text { ECC Time }}$	$\overline{\text { ECCTM }}$	When the UDC is used in external ECC mode, this output pin becomes active (low) during the time the UDC is reading the ECC bytes from memory or external ECC chip, when executing a WRITE command.   It is also active during internal ECC correction operations, and for either one (write) or two (read) byte times after DIP (pin 30) becomes inactive following a sector transfer. This shows the system processor when it should service the UDC buffer.
32,35	Select 1,0	S1,S0	These active high outputs are used by external logic to select either the source or destination for data transfers occuring via AB7-0. The following table defines the specific transfer being called for by the UDC. (Note that S1-0 are valid only when STB is active low.)


PIN NO.	NAME	SYMBOL	DESCRIPTION
34	$\overline{\text { Strobe }}$	$\overline{\text { STB }}$	This active low output indicates when the host processor should read or write to AB7-0, as indicated by S1-0.   When AB7-0 are used as outputs from the UDC, data is valid anytime this signal is active (low).   When AB7-0 are used as inputs to the UDC, data is clocked in on the rising edge of this signal.
36	DEVICE CLOCK	CLK	This input is the double frequency clock used by the UDC for all internal timing operations.   Eight inch hard disk drives (with a nominal bit time of 230 ns ) require an input of 8.696 MHz ( 115 ns period).   $5.25^{\prime \prime}$ hard disks (with a nominal bit time of 200 ns ) require a 10 MHz input ( 100 ns period).   Eight inch, $5.25^{\prime \prime}$ and $3.5^{\prime \prime}$ floppy drives all require a 10 MHz clock, which is internally prescaled by the UDC to the correct frequency, as determined from the Drive Select command and MODE register.   This input requires an external pull-up resistor, as it is not TTL-level compatible. See figure 2.
31	$\overline{\text { Reset }}$	$\overline{\text { RST }}$	This active low input will force the UDC into the following known state:   INT-Inactive low   WDATA-Inactive low   ECCTM-Inactive high   DMAR-Inactive low   EARLY-Inactive low   C/D-Input   AB7-0-Input   LATE-Inactive low   R/W-Input   DB7-0-Input   WGATE-Inactive low   DIP-Inactive low   RDGATE-Inactive low   $\overline{\mathrm{DS}}$-Input   An active low on this pin has the same effect as a RESET Command.
33	DMA Clock	DMACLK	All UDC DMA operations will be synchronized to this clock input. Three DMACLK periods are required for each DMA byte transfer.

## OVERVIEW OF UDC REGISTERS

The HDC 9224 has three types of internal, processor addressable registers; Read/Write, Read Only, and Write Only. These registers are addressed by an internal register pointer that is set by the SET REGISTER POINTER command.

All register data is passed to and from the UDC via the data bus (DB7-0).

The internal register pointer is automatically incremented with each register access until it points to the DATA Register. This insures that all subsequent register accesses will address the DATA register.

PROCESSOR ACESSIBLE REGISTERS

REGISTER ADDR	WRITE	READ
0	DMA7-0	DMA7-0
2	DMA15-8	DMA15-8
3	Desired Sector	Desired Sector
4	Desired Head	Current Head
5	Desired Cylinder	Current Cylinder
7	Sector Count	Temporary Storage
8	Mode	Chip Status
9	Interrupt/Command	Drive Status
	Terminator	
COMMAND	Current Command	Interrupt Status

Three internal registers (OUTPUT 1, OUTPUT 2, and INPUT. DRIVE STATUS) which are not directly addressable by the processor are accessed by the UDC. The information contained in these registers is used in disk interfacing and is input or output on UDC Pins AB7-0. The following table describes these registers and the signals they output or input on AB7-0.

## UDC ADDRESSABLE REGISTERS

DRIVE STATUS REGISTER (input)	Select Pins $\mathbf{S 1}=\mathbf{0}, \mathbf{S 0}=\mathbf{0}$
AB7-ECC Error	AB6-Index Pulse
AB5—Seek Complete	AB4-Track 00
AB3-User Defined	AB2-WVite Protect
AB1—Drive Ready	AB0-Write Fault


OUTPUT 1 (Output)	Select Pins S1 $=1, \mathbf{S 0}=\mathbf{0}$
AB7-Drive Select 3	AB6—Drive Select 2
AB5——Drive Select 1	AB4—Drive Select 0
AB3-Programmable	AB2——rogrammable Outputs
Outputs (see text)	AB0—Programmable Outputs
AB1-Programmable	
Outputs	


OUTPUT 2 (Output)	Select Pins S1 $=1, \mathbf{S 0}=\mathbf{1}$
AB7-Drive Select 3	AB6-Reduce Write Current
AB5-Step Direction	AB4-Step Pulse
AB3-Desired Head (Bit 3)	AB2-Desired Head (Bit 2)
AB1—Desired Head (Bit 1)	AB0-Desired Head (Bit 0)

Select Pins S1 $=1, \mathrm{~S} 0=1$ Reduce Write Curren AB4-Step Pulse AB2-Desired Head (Bit 2) AB0-Desired Head (Bit 0)

Additionally, several registers (DMA7-0, DMA15-8, DMA23-16, DESIRED SECTOR, DESIRED CYLINDER, SECTOR COUNT, and RETRY COUNT) serve an alternate purpose. These registers are used by the FORMAT TRACK command to hold parameters. This alternate register utilization is described in detail under the FORMAT TRACK command.

## DESCRIPTION OF UDC REGISTERS

## DMA 7-0

(R/W Register; Address 0)
This 8-bit read/write register is loaded with the low order byte (MSB in bit 7) of the DMA buffer memory starting address.

## DMA 15-8

(R/W Register; Address 1)
This 8 -bit read/write register is loaded with the middle order byte (MSB in bit 7) of the DMA buffer memory starting address.
DMA 23-16
(R/W Register; Address 2)
This 8 bit read/write register is loaded with the high order byte (MSB in bit 7) of the DMA buffer memory starting address.

Prior to the data transfer portion of a read or write command, the UDC writes the contents of the DMA registers to an external counter. This transfer (from the registers to the external counter) is accomplished by the UDC with 3 separate outputs on AB7-0, with the contents of DMA 24-16 being transfered first. (In memory areas that require less than 24 bit addressing, the higher order bits are overwritten. The external counter must be incremented with the UDC's $\overline{\mathrm{DS}}$ signal after each byte transfer.

If, during read operations, an error is detected during the data transfer, a retry will occur (if so programmed), and the three DMA registers will re-initialize the external counter to the original starting address.

During multiple sector read/write operations, the DMA address contained in the DMA registers will be incremented by the size of the sector selected at each sector boundary. This ensures that during read operations the address contained in the DMA registers always corresponds to the proper memory starting address of the sector currently being read.


DMA COUNTER OPERATION

## DESIRED SECTOR REGISTER

(R/W Register;
Address 3)
This 8 -bit read/write register is loaded with the starting sector number of a multiple sector read/write operation. Except for the last sector of the operation, this register is incremented after each sector is written or read without error.
If the UDC terminates a command because of an error, this register will normally contain the bad sector number, and may be read by the processor.

## DESIRED HEAD REGISTER

(Write Register;
Address 4)
This 8 -bit write only register is loaded with the 4-bit head number, and the upper 3 bits of the desired cylinder number.

## BIT 7 ALWAYSO

BITS 6-4 MSBs of the Desired Cylinder number
BITS 3-0 Desired Head Number.
The desired head number is output on AB3-0 during OUTPUT 2 times.
DESIRED CYLINDER REGISTER (Write Register; Address 5)
This 8 -bit write only register is loaded with the 8 low order bits of the desired cylinder (MSB in Bit 7). Combined with the 3 high order bits loaded into the DESIRED HEAD REGISTER, these 11 bits form the desired cylinder number, which is checked by read and write operations during the Check ID portion of the command.
SECTOR COUNT REGISTER
(Write Register;
Address 6)
This 8 -bit write only register is loaded with the number of sectors to be operated on by the read or write command. This allows multiple sectors on the same cylinder to be either written or read.

## RETRY COUNT REGISTER

(Write Register;
Address 7)
This 8 -bit write only register is loaded with the number of times the UDC should retry to read a data field before reporting an error. Additionally, this register is loaded with the user programmable output signals that the UDC outputs on ABO-3 during OUTPUT 1 times.

The retry count is loaded (in 1's complement format) into the 4 most significant bits of this register.

The user programmable output signals are loaded into the 4 least significant bits of the register.
$\begin{array}{ll}\text { BITS 7-4 } & \text { Desired Retry Count (in 1's complement } \\ \text { format) }\end{array}$

## MODE REGISTER

(Write Register; Address 8)
This 8 -bit write only register defines the operating mode of the UDC as follows:
BIT 7 (DRIVE DATA TYPE)
This bit determines how the UDC decodes data from the drive.

BIT $7=(1)$ : UDC configured for hard disk use. (Level transitions)
BIT 7 = (0): UDC configured for floppy use. (Pulse inputs)
BITS 6,5 (CRC/ECC Enable Code)
These bits determine the error detection/correction code generated and checked by the UDC.

DB6	DB5	CODE GENERATED/CHECKED
0	0	CRC
0	1	External ECC
1	0	Internal 32 bit ECC without correction
1	1	Internal 32 bit ECC with correction

With internal ECC selected the UDC will transfer 4 extra bytes during reads and writes. Normal CRC checking is still done on all ID fields.
With external ECC selected the UDC will flag an ECC error via BIT 7 of the DRIVE STATUS REGISTER. Normal CRC checking is still done on all ID fields.
If neither internal or external ECC is selected, then the UDC will perform CRC checks on both data and ID fields.

DRIVE TYPE			5.25" HARD DISK	8" FLOPPY	5.25" FLOPPY
DB2	DB1	DB0	STEP RATE	STEP RATE	STEP RATE
1	1	1	12.8 ms	128 ms	256 ms
1	1	0	6.4 ms	64 ms	128 ms
1	0	1	3.2 ms	32 ms	64 ms
1	0	0	1.6 ms	16 ms	32 ms
0	1	1	0.8 ms	8 ms	16 ms
0	1	0	0.4 ms	4 ms	8 ms
0	0	1	0.2 ms	2 ms	4 ms
0	0	0	17.6 us *	176 us *	352 us *
0	0	0	21.8 us **	218 us **	436 us **
Pulse Width:			11.2 us	112 us	224 us

*This rate applies for SEEK commands only
**This rate applies for RESTORE commands only
(DOUBLE ALL OF THE ABOVE TIMES FOR SINGLE DENSITY (FM) OPERATIONS.)

BIT 4 (Single or Double Density)
This bit determines whether the UDC will perform its operations in either single or double density.

> BIT $4=(1)$ Single Density (FM) Format
> BIT $4=(0)$ Double Density (MFM) Format

BIT 3 (ALWAYS 0)
BITS 2,1,0 (Step Rate Select)
These bits are programmed to select the desired drive step rate. Note that all step rates are determined by the type of drive and density selected, and are scaled from the CLK input.
The UDC can output extremely rapid step rate pulses if these bits are set to 000 . This is useful when the UDC is controlling drives which support buffered seeks. For other speeds, please refer to the table above.

## INTERRUPT/COMAND TERMINATION REGISTER

(Write Register; Address 9)
This 8-bit write only register allows the programmer to mask out a number of conditions that would cause termination of a command. (Such termination occurs when the DONE bit in the INTERRUPT STATUS register is set.) One bit in this register also controls the generation of interrupts when either the DONE bit or the READY CHANGE bit in the INTERRUPT STATUS register go active.

## BIT 7 (CRC PRESET)

Setting this bit to " 1 " will cause the CRC register to preset to 1 for CRC generation and checking. Setting this bit to " 0 " will cause the CRC register to preset to 0 for CRC generation and checking.
ID field CRC and data field CRC or ECC are generated and tested from the first A1 HEX byte in the ID field.
BIT 6 (ALWAYS "0")
This bit should always be set to " 0 " by the user. Failure to do this may result in unreliable operation.
BIT 5 (INT ON DONE)
If this bit is set (to "1"), an interrupt will occur when the DONE bit in the INTERRUPT STATUS register is set. If this bit is reset (to " 0 "), no interrupt will be generated for this condition.
BIT 4 (DELETED DATA MARK)
If this bit is set (to " 1 "), the DONE bit in the INTERRUPT STATUS register will be set when the DELETED DATA

MARK bit in the CHIP STATUS register goes active, and the command will terminate when the current sector operation is completed.

## BIT 3 (USER DEFINED)

If this bit is set (to " 1 "), the DONE bit in the INTERRUPT STATUS register will be set when the USER DEFINED status bit in the DRIVE STATUS register goes active, and the command will terminate when the current sector operation is completed.
BIT 2 (WRITE PROTECT)
If this bit is set to (to " 1 "), the write or write format command in progress will terminate and the DONE bit in the INTERRUPT STATUS register will be set when the WRITE PROTECT bit in the DRIVE STATUS register goes active.
BIT 1 (READY CHANGE)
If this bit is set (to " 1 "), an interrupt will occur when the READY CHANGE bit in the INTERRUPT STATUS register is set. If this bit is reset (to " 0 "), no interrupt will be generated for this condition.
The user should note that as a drive is selected or deselected, it is possible for the ready line from the drive to change state, and care should be taken in the design of the interrupt handler.
BIT 0 (WRITE FAULT)
If this bit is set (to " 1 "), the write or write format command in progress will terminate and the DONE bit in the INTERRUPT STATUS register will be set when the WRITE FAULT status bit in the DRIVE STATUS register is set. The command in progress will terminate when the current sector operation is completed.

## DATA/DELAY REGISTER (R/W Register; Address <br> 0AH)

This 8 -bit read/write register serves a dual purpose. During UDC writes, data is placed in this register for recording to the disk. During UDC reads, recovered data is fetched from this register for storage into memory. All transfers occur via DB7-0, under DMA control.

Additionally, this register is loaded with the HEAD LOAD TIMER COUNT when the Drive Select command is issued. (Note that the actual amount of head load time is this value, times a value predetermined by the UDC, based on the type of drive selected. For more information, please see the Drive Select command description.)

## COMMAND REGISTER

(Write Register)
This 8 -bit write only register is used to pass commands to the UDC. Valid commands are given to the UDC by setting $C / \bar{D}$ high and $R / \bar{W}$ active high, while strobing $\overline{D S}$ active (low).

## CURRENT HEAD REGISTER <br> Read Register; <br> Address 4)

This 8-bit read only register is updated from the disk when a valid ID field sync mark is found while executing a read ID field command sequence. This register contains the actual head number, bad sector flag, and the 3 most significant bits of the cylinder number, as specified during formatting.

BIT 7 = (1) Last sector read had BAD SECTOR bit set BIT $7=(0)$ Last sector read had BAD SECTOR bit reset.
BITS 6-4 Three most significant bits of the current cylinder. (Most significant bit in Bit 6.)
BITS 3-0 Current Head Number (MSB in bit 3).

## CURRENT CYLINDER REGISTER (Read Register;

Address 5)
This 8-bit read only register is updated from the disk when a valid ID field sync mark is found while executing a read ID field command sequence. This register will contain the 8 least significant bits of the cylinder ID number, as specified during formatting. (The 3 most significant bits of the 11 bit cylinder ID number are contained as part of the CURRENT HEAD REGISTER.)

INTERRUPT STATUS REGISTER (Read Register)
This 8-bit read only register contains status information associated with interrupt conditions and errors that occur during disk operation. This register is read by setting $C / \bar{D}$ high, and $R / W$ high.

When the Interrupt Status register is read, the INT output signal from the UDC will be reset (to an inactive low level).

## BIT 7 (INTERRUPT PENDING)

A "1" indicates that either DONE bit or READY CHANGE bit has gone active. The user may disable these interrupts by setting the appropriate bits in the INTERRUPT/COMMAND TERMINATION, REGISTER. This bit is reset (to " 0 ") by reading the Interrupt Status register.

## BIT 6 (DMA REQUEST)

A " 1 " indicates that the UDC requires a data transfer either to or from its data register. This bit is reset (to " 0 ") by the data transfer.

## BIT 5 (DONE)

A " 1 " indicates that the current command is completed. This bit is reset (to " 0 ") when a new command is issued.

BIT 4,3 (COMMAND TERMINATION CODE)
(Valid only when DONE is set)
These two bits indicate the command termination conditions:

BIT 4	BIT 3	CONDITIONS
0	0	Successful command termination
0	1	Execution error in READ ID
1	0	Sequence
Execution error in SEEK Sequence		
1	1	Execution error in DATA field

More detailed command termination error information is obtained by reading the Chip Status register.

BIT 2 (READY CHANGE)
A "1" indicates that the "ready" signal from the drive has experienced a low-to-high or high-to-low transition. (This shows that the drive has either become ready or become not ready.) This bit is reset (to " 0 ") by reading the Interrupt Status register.

BIT 1 (OVERRUN/UNDERRUN)
A " 1 " indicates that a overrun or underrun condition has occured during a read or write command. These conditions occur when the UDC does not receive an acknowledge (to a DMA request) by the time a byte is ready for transfer to or from the processor.
This bit can only be reset (to " 0 ") with a RESET command or a high on the RESET pin.

## BIT 0 (BAD SECTOR)

A " 1 " indicates that a bad sector (as indicated from the MSB of the head ID byte in the ID field) has been encountered. This bit is reset when a new command is issued, or a good sector is read.

CHIP STATUS REGISTER (Read Register; Address 8)
This 8-bit read only register supplies additional chip status information. The information in this register is only valid between the time that the DONE bit is set in the INTERRUPT STATUS register and the time when the next command is issued to the UDC.

## BIT 7 (RETRY REQUIRED)

If a retry was attempted by the UDC during the execution of any read or write command, this bit is set (to " 1 ").

BIT 6 (ECC CORRECTION ATTEMPTED)
If the internal ECC circuitry has attempted to correct a bad sector, this bit is set (to " 1 ").

BIT 5 (CRC/ECC ERROR)
If the UDC detects a CRC error or an ECC error, this bit is set (to "1").

## BIT 4 (DELETED DATA MARK)

If the UDC reads a deleted data mark in the ID field, this bit is set (to " 1 "), otherwise it is reset (to " 0 ").

## BIT 3 (SYNC ERROR)

If the UDC does not find a sync mark when it is attempting to read either an ID or data field, then this bit is set (to " 1 "). The command being executed will terminate when this bit is set.

## BIT 2 (COMPARE ERROR)

If the information contained in the DESIRED HEAD and DESIRED CYLINDER registers does not match that contained in an ID field on the disk, this bit is set (to " 1 "). The command being executed will terminate when this bit is set.

## BIT 1,0 (PRESENT DRIVE SELECTED)

These two binary encoded bits represent the drive currently selected and correspond to the Drive Select bits set in the Output 1 and Output 2 latches.

BIT 1	BIT 0	DRIVE SELECTED
0	0	0
0	1	1
1	0	2
1	1	3

## DRIVE STATUS REGISTER

(Read Register; Address 9)
This 8-bit read only register contains status information generated by the drives, external ECC Chip (if any), and a user definable input to the UDC from the drive.

To save pins on the UDC, the 8 status lines are input on AB7-0 and are latched in this internal register. The UDC will update this register whenever it is not using AB7-0 to output DMA counter values, OUTPUT 1, or OUTPUT 2 data. When configured as described below, the UDC will input drive status signals and interpret them as follows. In all cases, a logic " 1 " is considered the active input.

## BIT 7 (ECC ERROR)

This bit is set (to " 1 ") when the ECC ERROR signal is generated by an external ECC chip. This signal is input to the UDC on AB7.

BIT 6 (INDEX)
This bit is set (to " 1 ") when the INDEX signal from the selected drive is active. Typically, index pulses from the drives are active for 10us-100us for each disk revolution. This signal is input to the UDC on AB6.

## BIT 5 (SEEK COMPLETE)

This bit is set (to " 1 ") when the SEEK COMPLETE signal from the selected drive is active. This bit will go active when the heads of the selected drive have settled over the desired track (at the completion of a seek).
When a drive supplies this signal, reading and writing should not be attempted until SEEK COMPLETE is set (to " 1 "). This signal is input on AB5.
For floppy disk operation, where the drives normally do not provide this signal, a retriggerable one shot could be used to generate a SEEK COMPLETE signal (if desired).

## BIT 4 (TRACK 00)

This bit is set (to " 1 ") when the TRACK 00 signal from the selected drive is active. This indicates that the heads on the selected drive are positioned over track 0 . This signal is input on AB4.

## BIT 3 (USER DEFINED)

This bit is set (to " 1 ") when the USER DEFINED signal is active. This signal is input on AB3.

BIT 2 (WRITE PROTECT)
This bit is set (to " 1 ") when the WRITE PROTECT signal from the selected drive is active. When set, this bit indicates that the disk in the selected drive is write protected. This signal is input on $A B 2$.
BIT 1 (READY)
This bit is set (to " 1 ") when the READY signal from the selected drive is active. When set, this bit indicates that the drive is ready to execute commands. This signal is input on AB1.

## BIT 0 (WRITE FAULT)

This bit is set (to " 1 ") when the WRITE FAULT signal from the selected drive is active. This signal, when active, indicates that a condition exists at the drive that would cause improper writing on the disk. This signal is input to the UDC on ABO.

## TEMPORARY STORAGE REGISTERS

The UDC contains two temporary storage registers, used by the UDC for internal operations. The host processor should not attempt to read or modify these registers, as unpredictable results may occur.

## UDC COMMAND OVERVIEW

The HDC 9224 has 16 high-level commands that provide the user with a high degree of flexibility and control. All of the commands for the UDC can be thought of as falling into one of two basic groups.
The first group handles the "housekeeping" required by the drives and the UDC itself. These commands are:

```
RESET STEP OUT 1 CYLINDER
STEP IN }1\mathrm{ CYLINDER
DRIVE SELECT
DESELECT DRIVES
SET REGISTER POINTER
RESTORE DRIVE
POLL DRIVES
```

The second group comprises the "READ/WRITE" functions required in a magnetic disk subsystem. These commands are:
SEEK/READ ID TAPE BACKUP (READ/
FORMAT TRACK WRITE)
READ TRACK READ SECTORS LOGICAL
READ SECTORS PHYSICAL
WRITE SECTORS LOGICAL
An internal status byte, which contains the BAD SECTOR, DELETED DATA and OVER/UNDER RUN bits, along with the current state of the READY, WRITE PROTECT, WRITE FAULT, and USER DEFINED lines, is checked at various times during command execution.
This internal status byte is examined before the execution of all READ/WRITE commands, and is also checked just prior to the completion of all commands (except for RESET, where its values would be meaningless.)
This byte is also checked by the UDC between sector operations during the execution of READ LOGICAL, READ PHYSICAL, WRITE LOGICAL and WRITE PHYSICAL commands.

The UDC makes decisions regarding command termination and interrupt generation based on the contents of this status byte, and the state of the bits in the INTERRUPT/ COMMAND TERMINATION register. (Note that "write protect" and "write fault" status may cause command termination only during write and format operations.)

All commands (except RESET) terminate with the DONE bit in the INTERRUPT STATUS register being set. This bit may also be considered to be an inverted "busy" line, as the UDC resets it upon receipt of a valid command.

During all READ/WRITE group commands (except FORMAT TRACK and BACKUP), the UDC utilizes some common command execution sequences. Prior to entering each sequence the UDC sets the COMMAND TERMINATION bits (in the INTERRUPT STATUS register) to a known state. If a command fails to execute properly, these bits may then be used to determine where the command aborted.

The sequences common to the READ/WRITE group commands are as follows:

1. READ ID FIELD (Command Termination Code $=0-1$ ) First, the UDC attempts to find an ID Field Sync mark. If no sync mark is found within 33,792 byte times (byte time $=$ time to read one byte from the type of drive selected), the SYNC ERROR bit (in the CHIP STATUS register) is set (to " 1 "), and the command is terminated.

During this phase, the UDC will raise and drop RDGATE up to 256 times (as it attempts to read each sector on the cylinder).


After the ID Field is found, the UDC reads it and updates it CURRENT HEAD and CURRENT CYLINDER registers. This information was written to the disk during formatting.
Next, the UDC checks the CRC of the ID field which was read. If it is incorrect, the UDC sets (to " 1 ") the CRC ERROR status bit (in the CHIP STATUS register) and terminates the command.
If the CRC is correct, the UDC then calculates the direction and number of step pulses required to move the head from the current cylinder to the cylinder specified in the DESIRED HEAD REGISTER. These pulses, and the direction bit are output during the OUTPUT 2 times.
If a command should terminate while in the sequence, the COMMAND TERMINATION bits will be set to 0-1.
2. VERIFY
(Command Termination Code $=1-0$ ) After the UDC has read the ID Field, it attempts to verify that it has found the correct cylinder. To do this, the UDC tries to find an ID Field sync mark on the selected disk. If the UDC is unable to find an ID Field sync mark within 33,792 byte times, the SYNC ERROR bit (in the CHIP STATUS register) is set to " 1 ", and the command is terminated.
The UDC, after finding the ID Field sync mark, then reads the ID field and compares the information on the disk to the information contained in the DESIRED CYLINDER, DESIRED HEAD and DESIRED SECTOR registers.
The UDC will hunt for sync marks and read ID fields until the desired sector is found. If the desired sector is not located within 33,792 byte times, then the COMPARE ERROR bit (in the CHIP STATUS register) is set to " 1 ", and the command is terminated.
After the correct sector is found, the UDC checks the CRC for the sector ID Field. If this is found to be incorrect, the UDC sets to " 1 " the CRC/ECC ERROR bit in the CHIP STATUS register, and the command is terminated.
(When the UDC is executing a READ PHYSICAL or WRITE PHYSICAL command, ID Fields are checked only until the first sector to be transfered is found. No ID Field checking is performed on subsequent sectors, although CRC checking is done.)
If a command should terminate while in this sequence, the COMMAND TERMINATION bits will be set to 1-0.
3. DATA TRANSFER
(Command Termination Code =1-1)
If a READ PHYSICAL or READ LOGICAL command is being executed, the UDC will try to find a data sync mark (FBhex or F8hex) on the disk. If the sync mark found is $F 8$ h, then the UDC will set the DELETED DATA MARK bit in the CHIP STATUS register.
After a data sync mark is found, the UDC then updates its CURRENT HEAD and CURRENT CYLINDER registers from the information found on the disk and initiates a DMA request. If the host processor does not respond to the request within 1 byte time, then the UDC will set to " 1 " the OVER/UNDERRUN status bit in the INTERRUPT STATUS register, and the command will terminate.
Using DMA, the UDC transfers a sector's worth of data, and then reads the ECC and/or CRC bytes. If a CRC error or uncorrectable ECC error is detected, the UDC will decrement the RETRY REGISTER, set the RETRY REQUIRED status bit (in the CHIP STATUS
register), and return to the VERIFY sequence.
If the UDC cannot read the sector, and the count in the ENTRY COUNT register has expired, then the CRC/ ECC Error bit (in the CHIP STATUS register) is set, and the command terminates.
During a multi-sector transfer, the UDC updates the DMA registers after all sector operations, including the last one, and the SECTOR COUNT register is decremented. If the SECTOR COUNT register equals 0 , then the command is terminated. If the SECTOR COUNT register is not equal to 0 , then the UDC will increment the DESIRED SECTOR register, re-initialize the RETRY COUNT register (to its original value) and return to the VERIFY sequence.
If a command should terminate while in this sequence, the command termination bits will be set to 1-1.


## MULTIPLE SECTOR READ OPERATIONS

## COMMAND DESCRIPTION

## RESET

$($ Hex Value $=00)$
This command causes the UDC to return to a known state. This command allows the system software to reset the chip, and has the same effect as RST input becoming active.

## DESELECT DRIVE

(Hex Value = 01)
This command causes all of the drive select bits (Drive Select $0-3$ ) in the OUTPUT 1 and OUTPUT 2 registers to become inactive.

## RESTORE DRIVE

(Hex Values = 02, 03)
This command will cause the HDC 9224 to output step pulses to the selected drive, so as to move the head back to Track 00. Before each step pulse, the UDC first checks the TRK00 and READY bits in the DRIVE STATUS register. If TRKOO is active (high) or READY is inactive (low), then the UDC will terminate the command.
The UDC will output up to 4096 step pulses. If the drive does not respond with an active (high) TRK00 signal within this period, the UDC will terminate the command with the DONE bit set (to "1") and the COMMAND TERMINATION CODE bits set to 1-0. (These bits are contained in the INTERRUPT STATUS register.)
This command takes two forms:

COMMAND BYTE	RESULT
02	The command will terminate, and an inter-   rupt generated after the UDC has issued the   step pulses.
03	The command will terminate, and an inter-   rupt generated after the d dive has provided   a SEEK COMPLETE signal to the UDC.   (This is useful in systems with "buffered   seek" drives.)

This command uses the step rate value loaded into the MODE register.

## STEP IN 1 CYLINDER

(Hex Values $=04,05$ )
This command will cause the HDC 9224 to issue one step pulse towards the inner most track. This command is generally used during track formatting, and takes two forms:

COMMAND BYTE	RESULT
04	The command will terminate, and an inter-   rupt generated after the UDC issues the   step pulse.
05	The command will not terminate until the   UDC recognizes the SEEK COMPLETE   signal from the selected drive. Upon rec-   ognition of SEEK COMPLETE the UDC will   generate an interrupt.

This command uses the step rate value programmed into the MODE register.

## STEP OUT 1 CYLINDER

(Hex Values $=06,07$ )
This command will cause the HDC 9224 to issue one step pulse towards the outer most track (Track 00). This command is generally used during track formatting, and takes two forms:

COMMAND BYTE	RESULT
06	This command will terminate, and an inter-   rupt generated after the UDC issues the   step pulse.
07	This command will not terminate until the   UDC recognizes the SEEK COMPLETE
signal from the selected drive. Upon rec-	
ognition of the SEEK COMPLETE, the UDC	
will generate an interrupt.	

This command uses the step rate value programmed into the MODE Register.

## POLL DRIVES

(Hex Values = 10 thru 1F)
This command polls the drives for a SEEK COMPLETE signal allowing the user to perform simultaneous seeks on up to four drives. Polling is enabled by setting (to 1) the appropriate bit in the command word: bit 0 for drive 0 thru to bit 3 for drive 3.
This command executes as follows:
The UDC will output a drive select for the first drive in the polling sequence and look for a SEEK COMPLETE status input from the polled drive. If the polled drive has not completed a seek, then this line remains low (logic 0 ), and the UDC selects the next drive in the polling sequence. This continues until the UDC detects a SEEK COMPLETE signal from a drive, which causes the DONE bit in the Interrupt Status register to be set, and the command terminates.
The UDC will continue to select the drive that produced the SEEK COMPLETE signal, allowing the user to read the DRIVE STATUS register to determine which drive caused the command termination.
The POLL DRIVES command must be preceeded by DESELECT.

DRIVE SELECT
(Hex Values $=20$ thru 3F)
This command will cause one of (up to) four drives to be selected for operation. Any previously selected drive is deselected by this command. Bits 0 and 1 in the command word indicate (in binary form) which of the (up to) four drives has been selected.

COMMAND WORD		DRIVE   SELECTED   DB1 DB0
0	0	Drive 0
0	1	Drive 1
1	0	Drive 2
1	1	Drive 3

Decoded drive select signals are then placed on the data bus (via AB7-AB4) during OUTPUT 1 times and should be latched externally.
Since the HDC 9224 can interface both hard disks and floppy disks to a processor, the Drive Select command needs to also specify the type of drive being selected. Bits 2 and 3 in the command word are used to pass this information to the chip, and take the following form:

COMMAND WORD		TYPE   OF DRIVE
DB3	DB2	( 0

NOTE: Microfloppy system designers should determine whether the drive they have chosen to use in the system is compatible with 8 " floppy drives or $5.25^{\prime \prime}$ floppy drives, and use the appropriate values from the table above.
Note that eight inch Winchester-type drives require an 8.696 MHz system clock. All other drives require a 10 MHz system clock. It is not possible for the UDC to derive internally the clocks required for floppy disk operation from the 8.696 MHz clock required by 8 inch Winchester drives.
To insure compatibility with various drives, the HDC 9224 features a programmable head load timer. Head load delay may be inhibited by resetting the Delay Bit (Bit 4) in the Drive Select command word to 0. If Bit 4 is set (to 1), then the head load delay timer is configured with the value in the DATA/DELAY register (Register A), multiplied by value shown below:

DRIVE AND FORMAT SELECTED	HEAD LOAD TIMER INCREMENT   (BIT $4=1$ = Delay Enabled)	
5.25" HARD DISK   (Double Density)	200 usec	(The HEAD LOAD TIMER is set to a value equal to this increment times the number in the DATA/DELAY register.)
5.25" HARD DISK   (Single Density)	400 usec	
8" FLOPPY   (Double Density)	2 msec	
$8^{\prime \prime}$ FLOPPY (Single Density)	4 msec	
5.25" FLOPPY   (Double Density)	4 msec	
5.25" FLOPPY (Single Density	8 msec	

The Drive Select command also optimizes certain characteristics of the HDC 9224 for the type of drive selected.

IF HARD DISK SELECTED:
-DMA mechanism works in burst mode and the bus is held for the entire sector transfer.
-The RDGATE and WRGATE output signals follow the timing relationships shown in Figures 12A and 12B.
-The GAP lengths are as shown in Table 1.


## IF FLOPPY DISK SELECTED:

-DMA mechanism transfers an 8-bit byte, and releases the bus.
-The RDGATE and WRGATE output signals follow the timing relationships shown in Figures 12A and 12B.
-The GAP lengths are as shown in Table 1.
-The CLK input clock is prescaled (internally) to create an internal clock compatible with the floppy disk data rates.

## SET REGISTER POINTER (Hex Values $=40$ to 4A)

This command causes the register pointer to point to a register. The desired register number is loaded into the 4 least significant bits of the command word. (MSB in BIT 3).
The register pointer is incremented by the UDC on each register access, until it points to the DATA register. This reduces the number of times the user must set the register pointer during read and write operation.
Care should be taken to ensure that only valid register values are loaded into the command word. (Valid register numbers are 0 thru OAH.)

## SEEK/READ ID

(Hex Values $=50$ to 57)
This command will cause the UDC to read the first sector ID field found from the currently selected drive, head, and cylinder. The MODE register should contain the correct value for step rate and density options.
After reading the ID field the UDC will examine the command word and execute the specified options. Bits 2 thru 0 in the command word are used to specify the following options:
BIT 2 = 1 STEP ENABLE. The UDC will execute the step sequence, and position the head on the track specified by the DESIRED CYLINDER register.
BIT $2=0$ STEP DISABLE. No step pulses will be issued by the UDC.

BIT 1 = 1 WAIT FOR COMPLETE. The UDC will proceed to the verify sequence only after the drive has issued a SEEK COMPLETE signal.
BIT $1=0$ DO NOT WAIT FOR COMPLETE. The UDC will proceed to the verify sequence after the last step pulse has been issued.

BIT $0=1$ VERIFY ID. The UDC will execute the VERIFY sequence after operations selected by the previous options have finished.
BIT $0=0$ DISABLE VERIFY ID. The UDC will not enter the VERIFY sequence. Instead, the command will terminate.
The order in which these options execute is: STEP, COMPLETE, VERIFY ID. Any combination of these option bits may be specified in the command word.

READ SECTORS PHYSICAL (Hex Values $=58$ and 59)
This command will cause the UDC to read up to a full track from the disk. The user specifies the MODE, DESIRED CYLINDER, DESIRED HEAD, and DESIRED SECTOR along with the SECTOR COUNT. The UDC will find the requested cylinder and sector and set up to begin the data transfer.
(If using drives which support buffered seeks, BITS 2-0 in the MODE SELECT register should be set to 0-0-0. This will cause the UDC to wait for a SEEK COMPLETE signal from the drive prior to entering the verify sequence.)
If a BAD SECTOR bit is read (from the sector ID field) the UDC will set the COMMAND TERMINATION bits (in the INTERRUPT STATUS register) to $1-0$, and set the DONE bit (in the INTERRUPT STATUS register) to 1, and terminate the command.

After each sector is successfully read, the SECTOR COUNT register is decremented. If the SECTOR COUNT register is not yet equal to 0 the process is repeated for the next physical sector on the track. This command also will terminate if the Index pulse is received from the drive.
(Note that after the first sector is found, no further comparison is made against sector numbers found on the disk as the DESIRED SECTOR register value may not correspond to the next physical sector on the disk because of sector interleaving.)
This command takes two forms allowing the user to specify the desired transfer option. The options are specified by Bit 0 in the command word, and are:
BIT $0=1$ TRANSFER ENABLE. The UDC will transfer the data fields to (external) memory, using DMA.
BIT $0=0$ TRANSFER DISABLE. The UDC will NOT transfer any data to (external) memory, but all error detection circuitry will be enabled and errors reported. This is useful in detecting bad sectors and tracks on the disk.
Before executing this command, the user must set the RETRY COUNT to 0 . This is done by loading the high order nybble in the RETRY COUNT register to "1111" (zero in 1's complement format). Failure to do this will result in unpredictable performance because the DESIRED SECTOR register value may not correspond to the next physical sector on the disk.
READ TRACK
$($ Hex Values $=5 A$ and 5B)
When this command is issued, the UDC will read the data from the entire track on which the selected drive is currently sitting. The UDC will begin reading when it detects the leading edge of an index mark signal from the drive, and terminate reading when it detects the next leading edge of an index mark signal. Sync detect is performed for the ID field, but no error checking is done on the data field.
This command allows the user to specify a data transfer option, using Bit 0 in the command word. These options are:
BIT $0=1$ TRANSFER ALL DATA. The UDC will transfer the ID field and data fields to (external) memory.
BIT $0=0$ TRANSFER ONLY IDs. The UDC will transfer only ID fields to the (external) memory. This is useful during tape backup operations.
READ SECTORS LOGICAL (Hex Values $=5 \mathrm{C}$ to 5F) When this command is issued, the UDC will read up to a full track from the selected drive. Prior to reading the data from the disk, the UDC will use the information in the MODE, DESIRED CYLINDER, DESIRED SECTOR and DESIRED HEAD registers to locate the correct track, sector and drive surface (using the previously described VERIFY sequence).
(If using drives which support buffered seeks, BITS 2-0 in the MODE SELECT register should be set to 0-0-0. This will cause the UDC to wait for a SEEK COMPLETE signal from the drive prior to entering the verify sequence.)
Before the command is issued, the system processor must also load the desired values into the MODE, SECTOR COUNT, RETRY COUNT and the three DMA registers.
When reading multiple sectors, the read command must be configured with ECC correction disabled. If a hard error is detected, the sector count must be set to one, retry count to zero, and ECC correction enabled. The sector can then be read and corrected. After the error has been corrected, ECC correction can be disabled, retry can be re-enabled, and the remainder of the data can be read.
After the desired track and sector is found and verified, the DATA TRANSFER sequence begins. After each successful sector transfer, the UDC increments the DESIRED SECTOR register (except after the last sector is transferred), decrements the SECTOR COUNT register, and reenters the VERIFY sequence. This process continues until

the SECTOR COUNT register is equal to 0 (or an error occurs).
This command has four options, which are specified by Bit 1 and Bit 0 of the command word. The four options are:
BIT $1=1$ BAD SECTOR BYPASS. If, during the read, the UDC finds a sector with the BAD SECTOR bit set (from the sector ID field on the disk), the sector be skipped, the sector count will not be decremented, and the sector number will not be changed.
BIT $1=0$ BAD SECTOR TERMINATE. If, during a read, the UDC finds a sector with the BAD SECTOR bit set, the UDC will set the COMMAND TERMINATION CODE to $1-0$, set the BAD SECTOR status bit and the DONE status bit, and terminate the command (with an interrupt, if enabled). All of the above named status bits are contained in the INTERRUPT STATUS register.
BIT $0=1$ TRANSFER ENABLED. The UDC will transfer data from the disk to the system. The DMA REQUEST status bit (in the INTERRUPT STATUS register) will be set when the UDC requires servicing.

BIT0 $=0$ TRANSFER DISABLED. The UDC will not transfer data read from the disk, but all error checking circuitry will be enabled.

## FORMAT TRACK

(Hex Values 60 to 7F)
This command causes the UDC to format the current cylinder from the leading edge of one index mark to the leading edge of the next index mark. The format chosen is dependent on the Drive Select command.
During execution of the FORMAT TRACK command, the UDC will fetch all required ID field data from external memory, and write it to the disk, along with format constants supplied automatically by the UDC. This reduces the number of bytes required to format a sector to 3 or 4 , depending on the format chosen.
Before the FORMAT TRACK command can be given, the system processor must:

1. Generate an ID Field table for the track in UDC memory area. This ID Field Table consists of:
CYLINDER BYTE
HEAD BYTE
SECTOR NUMBER BYTE
SECTOR SIZE/ECC SIZE BYTE (not required for ST-506 formats) repeated for each sector on the track.


The UDC can format a track with interleaved sectors by staggering the sector numbers. For example, to format a 32 sector track, with a sector interleave factor of 4 , the system processor would set up the ID Field table sector numbers as follows:
$0,8,16,24,1,9,17,25,2,10,18,26,3,11,19$,
27...7,15,23,31.
(Note that when formatting in ST506 mode, only three bytes are required for each sector, while four bytes are needed for IBM or user defineable formats. Also note that sector numbers start with zero (0) on ST506 compatible format, and start with one (1) on IBM formatted floppy diskettes.)
2. Load the UDC DMA registers with the starting address of the external memory buffer containing the ID Field data just created.
3. Issue the DRIVE SELECT command, which moves the DMA registers to the CURRENT HEAD, CURRENT CYLINDER, and a TEMPORARY REGISTER. (This is necessary because the UDC will now re-use the DMA registers to hold format parameters).
When formatting multiple cylinders, the system processor does not need to re-issue DRIVE SELECT between cylinders as the STEP IN and STEP OUT commands preserve the DMA addresses and format parameters. It is necessary, however, to update the ID Field table, described in \#1, above.
4. Load the DESIRED HEAD register with the proper value.
5. Load the following values (in the format shown) into the registers indicated below:

PARAMETER	FORMAT	REGISTER
GAP 0 Size	two's complement format	DMA 7-0
GAP 1 Size	two's complement format	DMA 15-8
GAP 2 Size	two's complement format	DMA 23-16
GAP 3 Size	two's complement format	Desired Sector
Sync Size	one's complement format	Desired Cylinder
Sector Count	one's complement format	Sector Count
Sector Size	one's complement format	Retry Count
Mult.		

## FORMAT PARAMETERS TABLE

When using ST506/PC (fixed length) hard disk format, the values for GAP 0 and GAP 1 must both be set to the same number, and loaded into the appropriate DMA register.
The Sector Size Multiple programs the UDC to format with a sector size that is a multiple of 128 data field bytes. For example, to format a track with a sector data field size of 512 bytes, then the Sector Size Multiple would be set to FD hex, which is " 2 " in one's complement notation.
In ST506/PC format, the sector size is fixed at 512 bytes. In IBM floppy disk format, the sector sizes allowed are $128,256,512$, or 1024 bytes. With user defineable hard disk formats, allowed sector sizes are 128, 256, 512, 1024, 2048, 4096, 8192, or 16384 bytes.
6 . Load the MODE register to specify the step rate, single or double density option, and CRC/ECC options.
7. Step to the desired track. For the first track, this is normally done by issuing a RESTORE DRIVE command, to return the heads to Cylinder 000, then use the STEP IN 1 or STEP OUT 1 commands to move the head to subsequent cylinders on the disk.
8. Issue the FORMAT TRACK command. All data fields on the disk will be filled with E5 hex. In double density recording (MFM) all gaps will be filled with 4E hex, while in single density (FM) all gaps will be filled with FF hex. This format is compatible for IBM specifications for floppy disks.
9. To Format additional tracks, it is only necessary to update the ID Field table (step 1) and repeat steps 7 and 8. Do NOT modify the DESIRED HEAD register when formatting additional tracks with the same head. If it is necessary to change the DESIRED HEAD register, the system processor must repeat all steps described above.
The FORMAT TRACK command allows the user to specify several options. These options are specified by setting the appropriate low order bits in the command word. The bit mapping for these options are:
BIT $4=1$ Write Deleted Data Mark. During the format process, the UDC will write the deleted data mark (F8 hex) for the data address field.
BIT $4=0$ Write Normal Data Mark. During the format process, the UDC will write the normal data field address mark (FB hex).

BIT $3=1$ Write with Reduced Current. When this bit is set, the Reduced Write Current Output will go high (active) during the Output 2 time slot.
BIT $3=0$ Write with Normal Current. When this bit is reset, the Reduced Write Current Output wil remain low (inactive) during the Output 2 time slot.
Bits 2, 1, and 0 are used to select the Write Precompensation value to be used during the format of disks. The following table specifies these values:
SECTOR SIZE FIELD BITS

DB2	DB1	DB0	IBM FD FORMAT	HD FORMAT
0	0	0	128 bytes/sector	128 bytes $/$ sector
0	0	1	256 bytes $/$ sector	256 bytes $/$ sector
0	1	0	512 bytes/sector	512 bytes $/$ sector
0	1	1	1024 bytes/sector	1024 bytes $/$ sector
1	0	0	not used	2048 bytes $/$ sector
1	0	1	not used	4096 bytes $/$ sector
1	1	0	not used	8192 bytes $/$ sector
1	1	1	not used	16,384 bytes $/$ sector

FORMAT ECC TYPE FIELD

| DB7 | DB6 | DB5 | DB4 | HD FORMAT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 4 ECC bytes generated/checked |
| 1 | 1 | 1 | 1 | 5 ECC bytes generated/checked (1) |
| 1 | 1 | 1 | 0 | 6 ECC bytes generated/checked (1) |
| 1 | 1 | 0 | 1 | 7ECC bytes generated/checked (1) |
| note 1: WITH EXTERNAL ECC |  |  |  |  |

## IBM FLOPPY DISK FORMAT:

ID FIELD	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	
CYLINDER	track number	
HEAD	side number	
SECTOR	sector number	sector size
SECTOR SIZE		(2 bits)

HARD DISK FORMAT: ST506 PC FORMAT (512 BYTES)

ID FIELD	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
CYLINDER   HEAD	cylinder number (8 LSB's)   bad cyl \# cyl \# cyl \# hd \# hd \# hd \# hd \#   sectorbit 10 bit 9 bit 8 bit 3 bit 2 bit 1 bit 0   flag   SECTOR$\quad$ sector number

HARD DISK FORMAT: (USER SELECTABLE
SECTOR SIZE)


BIT 2	BIT 1	BIT 0	Precompensation   (For Floppy Disks)
0	1	0	None, enable EARLY and LATE   Outputs   1
0	0	1	600 nsec, Minifloppy only   5000 nsec, Minifloppy only   1
1	1	1	400 nsec, Minifloppy only
1	0	0	300 nsec
0	0	1	100 nsec   100 nsec   None, suppress EARLY and   LATE Outputs

WRITE SECTORS LOGICAL (Hex Values A0 thru BF, E0 thru FF)
This command will cause the UDC to write logically consecutive sectors on the disk. Before issuing this command, the system processor must load the following UDC registers:

```
DESIRED SECTOR DESIRED CYLINDER
DESIRED HEAD
DMA 7-0
DMA 23-16
RETRY COUNT
```

Since retries during a write command are not valid, the high order nybble of the RETRY register should be set to 0 , in 1 's complement format (1111).


Before writing data to the selected disk drive, the UDC will read the current ID field, step to the desired cylinder and verify that it has located the correct cylinder and sector. (These steps were described previously under "UDC Command Overview").

After the "Verify" sequence is done, the "data transfer" sequence begins. The UDC will first write either a Data Mark (FB hex) or Deleted Data Mark (F8 hex) on the disk, as selected by the user (see below). Then the UDC will transfer a sector's worth of data (using DMA) from the memory area specified by the DMA registers. After writing out the sector, CRC or ECC bytes will be written as specified by the MODE register.
Next, the SECTOR COUNT register is decremented, and if not yet equal to 0 , the operation continues for the next logical sector.
This command allows the user to specify several options.

These options are specified by bits in the command word and are as follows:

BIT $6=1$ BAD SECTOR BYPASS. The UDC will bypass the sectors with the BAD SECTOR FLAG set in the ID field.
BIT $6=0$ BAD SECTOR TERMINATION. The UDC will terminate the command when it locates a sector with the BAD SECTOR FLAG flag set in the ID field. In addition, the COMMAND TERMINATION CODE Status bits will be set to 1-0, the BAD SECTOR status bit will be set, the DONE status bit will be set, and if not masked, an interrupt will be generated.

BIT $5=1$ WRITE LOGICAL COMMAND BIT (Always set to "1"" for Write logical command).
BIT $4=1$ DELETED DATA MARK. Data will be written with a Deleted Data Mark (F8 hex) in the ID field.
BIT $4=0$ NORMAL DATA MARK. Data will be written with a Normal Data Mark (FB hex) in the ID field.

BIT $3=1$ REDUCED WRITE CURRENT. Setting this bit will cause the UDC's Reduced Write Current output to go high.
BIT $3=0$ NORMAL WRITE CURRENT. Resetting this bit will cause the UDC's Reduced Write Current output to go low.

Bits 2, 1, and 0 are used to select the Write Precompensation value to be used during writes to disks. The table below specifies these values.

BIT 2	BIT 1	BIT 0	Precompensation   (For Floppy Disks)
0	1	0	None, enable EARLY and LATE   Outputs
1	0	1	600 nsec, Minifloppy only   0
1	1	500 nsec, Minifloppy only	
1	1	1	400 nsec, Minifloppy only
1	1	0	300 nsec
1	0	0	200 nsec
0	0	1	100 nsec   None, suppress EARLY and   LATE Outputs

NOTE: For hard disks, precompensation is handled with an external delay line, which is connected to the EARLY and LATE Outputs of the UDC. These lines toggle in response to the data pattern being written to the disk.

## WRITE SECTORS PHYSICAL (Hex Values 80 thru 9F, C0 thru DF)

This command will cause the UDC to write physically consecutive sectors on the disk. Before issuing this command, the system processor must load the following UDC registers:

```
DESIRED SECTOR
DESIRED HEAD
DMA 7-0
DMA 23-16
RETRY COUNT
```

Since retries during a write command are not valid, the high order nybble of the RETRY register should be set to 0 , in 1 's complement format (1111).
Before writing data to the selected disk drive, the UDC will read the current ID field, step to the desired cylinder and
verify that it has located the correct cylinder and sector. (These steps were described previously under "UDC Command Overview").
After the "Verify" sequence is done, the "data transfer" sequence begins. The UDC will first write either a Data Mark (FB hex) or Deleted Data Mark (F8 hex) on the disk, as selected by the user (see below). Then the UDC will transfer a sector's worth of data (using DMA) from the memory area specified by the DMA registers. After writing out the sector, CRC or ECC bytes will be written as specified by the MODE register. Next, the SECTOR COUNT register is decremented, and if not yet equal to 0 , the operation continues for the next physical sector.
This command allows the user to specify several options. These options are specified by bits in the command word and are as follows:

BIT $6=1$ BAD SECTOR BYPASS. The UDC will bypass the sectors with the BAD SECTOR FLAG set in the ID field.

BIT $6=0$ BAD SECTOR TERMINATION. The UDC will terminate the command when it locates a sector with the BAD SECTOR FLAG flat set in the ID field. In addition, the COMMAND TERMINATION CODE Status bits will be set to $1-0$, the BAD SECTOR status bit will be set, the DONE status bit will be set, and if not masked, an interrupt will be generated.

BIT $5=0$ WRITE PHYSICAL COMMAND BIT (Reset to "0" for Write Physical Command).

BIT $4=1$ DELETED DATA MARK. Data will bè written with a Deleted Data Mark (F8 hex) in the ID field.
BIT $4=0$ NORMAL DATA MARK. Data will be written with a Normal Data Mark (FB hex) in the ID field.

BIT 3 = 1 REDUCED WRITE CURRENT. Setting this bit will cause the UDC's Reduced Write Current output to go high.
BIT $3=0$ NORMAL WRITE CURRENT. Resetting this bit will cause the UDC's Reduced Write Current output to go low.

Bits 2, 1, and 0 are used to select the Write Precompensation value to be used during writes to floppy disks. The table below specifies these values.

BIT 2	BIT 1	BIT 0	Precompensation   (For Floppy Disks)
0	1	0	None, enable EARLY and LATE   Outputs
1	0	1	600 nsec , Minifloppy only   0
1	1	1	500 nsec, Minifloppy only
1	1	1	400 nsec, Minifloppy only
1	0	0	300 nsec
0	0	1	100 nsec   0

NOTE: for hard disks, precompensation is handled with an external delay line, which is connected to the EARLY and LATE Outputs of the UDC. These lines toggle in response to the data pattern being written to the disk.

TAPE BACK-UP
(Hex Values = 08 to 0F)
The TAPE BACK-UP command set provides the system with the capability of transferring data to and from a tape drive in continuous blocks. TAPE BACK-UP utilizes the UDC's DMA, data conversion, error detection/correction and sector count circuitry.
Because of the mechanical and electronic differences between tape drives and disk drives, some of the register bits described earlier in this data sheet change functions when the UDC is executing the TAPE BACKUP COMMAND. In many cases, the CLK input to the UDC will also need to be changed to compensate for the slower data rate from tape drives.

## TAPE BACKUP REGISTER DESCRIPTION

The following bits in the UDC's register file assume the functions listed below when executing the BACK-UP command and should be programmed accordingly.
The following tables describe the differences in register usage when the UDC is executing the TAPE BACKUP command. (Complete TAPE BACKUP register bit maps are located in rear of the data sheet.)

## MODE REGISTER

Bit $2=116$ byte sync detect delay enable $=016$ byte sync detect delay disabled
Bit $1=1$ TAPE BACKUP Write Enable (writing) $=0$ TAPE BACKUP Write Disable (reading)
Bit $0=1$ Tape mark enable (short block) = 0 Tape mark disable (long block)

## RETRY COUNT REGISTER

Bits 7-4 Retry should be disabled, by setting these bits to "1". (Retry Disabled)
Bits 3-0 program outputs (user controlled). Bit 3 is typically used for write enable to the tape drive.
Bits 0 and 1 are typically used for tape driven motion control as per drive manufacturer's specification.

## DESIRED CYLINDER

Bits 7-4	ECC Type Field:			
DB7	DB6	DB5	DB4	ECC TYPE
0	0	0	0	4 ECC bytes generated/
1	1	1	1	5 ECC bytes generated/
1	1	1	0	6 ECC bytecked generated/
1	1	0	1	7 ECC bytecked generated/
checked				

note: 5, 6, 7 byte ECCs are generated and checked by hardware external to the UDC.

DESIRED CYLINDER   Bit 3   Bits 2-0								
	Always 1   Data Block Size:                     DB2					DB1	DBO	DATA BLOCK SIZE
	0	0	0	128 bytes				
	0	0	1	256 bytes				
	0	1	0	512 bytes				
	0	1	1	1024 bytes				
	1	0	0	2048 bytes				
	1	0	1	4096 bytes				
	1	1	0	8192 bytes				
	1	1	16,384 bytes					

Remember that the UDC internal ECC code can correct up to a 4 K byte long Data Block, but that the larger the Data Block the greater the probability of a miscorrection.

Also, when executing the TAPE BACKUP command, the DRIVE SELECT command is altered slightly, as illustrated below:

DRIVE SELECT COMMAND								
Bit \#	7	6	5	4	3	2	1	0
Drive Select	0	0	1	Ramp Up/Down delay enable	1	$\begin{gathered} \text { CLK } \\ \text { divisor } \end{gathered}$	1	1


DB2	CLOCK DIVISOR FOR TAPE
0	CLK is divided by 10 (similar to $8^{\prime \prime}$ floppy divisor).
1	CLK is divided by 20 (similar to $5.25^{\prime \prime}$ floppy divisor).

These bits, in conjunction with Bits 4 and 7 of the MODE register, will allow selection of both FM and MFM recording on tape, with a tape format that resembles IBM compatible floppy disk formats.
Setting the Drive Type bits to 1,0 or 1,1 will also cause the UDC to take on the following characteristics:
-DMA mechanism transfers a byte (8 bits) and relinquishes the bus.
-The RDGATE and WRGATE output signals have timing characteristics as shown in Figures 12A and 12B of the UDC spec.
-The gap lengths are as illustrated in Table 1 or the UDC spec.
-Tape format parameters will be as per Table 1 of the UDC spec.

## COMMAND EXECUTION OVERVIEW

The tape backup command allows the user a convenient method of backing up either floppy or hard disks to tape. The UDC may be interfaced to either cartridge or cassette type tape drives, working in either streaming or start/stop mode.
Read and Write functions of TAPE BACKUP share a common command byte. The three LSB's of the MODE register are also used by the TAPE BACKUP command to specify user options, and to select between tape read or tape write mode.
Two kinds of blocks may be specified when reading or writing dependent on the state of the TAPE MARK ENABLE bit in the MODE register:

1. DATA BLOCK. The length of the data block (also called a long block) is equal to:
$2^{n *} 128$ bytes where $n$ is an integer between 0 and 7 inclusive. The desired length of the data block ( $2^{n}$ ) is programmed into the desired cylinder register.
2. TAPE MARK. The minimum length of the tape mark (also called a short block) is 3 bytes. The maximum length of the tape mark is 257 bytes. The desired length is programmed into the sector count register.
Multiple data block transfers are accomplished by programming the 1 's complement of the desired number of data blocks to be transferred into the sector count register.
The three LSB's of the MODE register function as part of the BACK-UP command word. The WRITE ENABLE bit determines whether loading the BACK-UP command into the UDC will initiate execution of a BACK-UP READ or BACK-UP WRITE sequence. The TAPE MARK ENABLE bit determines whether the UDC will write a short or long block of data on the tape and the DELAY ENABLE bit determines whether or not the RDGATE signal is stretched when it coincides with a sync mark when reading the tape. The remaining bits in the command word are as follows:

| COMMAND | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BACK-UP <br> (READING) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | xfer |
| BACK-UP <br> (WRITING) | 0 | 0 | 0 | 0 | 1 |  |  | enable |

## BACK-UP READ

When reading a short block, only CRC is checked. When reading a long block, CRC or ECC will be checked, depending on the CRC/ECC bits in the Mode register.
Bit $0=1$ Data transfer enabled, error checking enabled $=0$ Data transfer disabled, error checking enabled

## BACK-UP WRITE

When writing, the precompensation value is derived from the CLK frequency as follows:

Bit 2	Bit 1	Bit 0	Precompensation
0	1	0	None, enable EARLY and LATE
1	0	1	6 CLK cycle periods
0	1	1	5 CLK cycle periods
1	1	1	4 CLK cycle periods
1	1	0	3 CLK cycle periods
1	0	0	2 CLK cycle periods
0	0	1	1 CLK cycle period
0	0	0	None, suppress EARLY and LATE

PRECOMPENSATION SELECT FOR BACK-UP COMMAND

## TAPE BACKUP SYSTEM CONFIGURATION NOTES

(A schematic showing a typical system implementation using the TAPE BACKUP feature is contained in Schematic Diagram 2.)

1. Proper operation of the TAPE BACKUP command requires that the tape drive be addressed as DRIVE \#3 by the UDC.
2. During the UDC's OUTPUT 2 period external circuitry must enable a separate latch to receive the user defined 10 bits and tape track number bits. This latch should use the DRIVE SELECT 3 signal (output during the OUTPUT 2 period) so that the contents of the latch may only be changed when the tape drive is selected.
Four additional drive control signals may be loaded into the four LSB's of the RETRY COUNT register. These additional outputs are latched externally during OUTPUT 1 times for use by the tape drive. These outputs would normally be used to control tape drive Write Enable logic (bit 3) and tape motion (bits 0 and 1), and tape motor on and off (bit 2).
3. It is important to consider the time required for a tape drive to come up to operating speed when using the TAPE BACKUP command. Also, to insure adequate spacing between tape blocks, a delay is frequently required before stopping tape motion. The UDC has a programmable Ramp Up and Ramp Down timer to allow for easier implementation. The desired delay is programmed into the DATA/DELAY register before issuing the DRIVE SELECT " 3 " command.

CLOCK   DIVISOR   BIT	DENSITY BIT   MODE   REGISTER   BIT 4 4	TIME IN SECONDS PER   DELAY REGISTER COUNT
1	1 (Single)	1 CLK Cycle $* 80000$
1	0 (Double)	1 CLK Cycle $* 40000$
0	1 (Single)	1 CLK Cycle $* 40000$
0	0 (Double)	1 CLK Cycle $* 20000$




The UDC will issue a normal interrupt (with the command termination code set to 0-0) when the RAMP UP or RAMP DOWN timer has expired.
4. BACK-UP WRITE. The user will first request the UDC to perform a disk READ TRACK command, with the TRANSFER ENABLE bit in the command word reset. This will cause the UDC to transfer only the ID field information to memory.
The TAPE BACKUP command will then be issued causing the UDC to write this ID information to the tape as a tape mark (typically 96 bytes for a drive formatted with a 3 byte/sector ID field or 128 bytes for a drive formatted with a four byte/sector ID field. The data fields should then be transferred to the tape in a similar manner.
The UDC may be used with either "Streaming" or "Start/ Stop" type tape drives. This is illustrated by the following examples:
A. START/STOP TAPE DRIVE:
typically transfers $1 / 2$ or 1 disk track at a time as illustrated by the following flow chart:


When controlling a start/stop tape drive, the UDC will write the data "block by block". The system will issue a Drive Select command to the UDC with the Tape Motion, Motor On and Write Enable bits set to start and write data to the tape.
The UDC will interrupt the system after the completion of the Ramp Up Delay indicating that the tape drive is up to speed. This interrupt is distinguished by the Command Termination Code of 0-0 (normal completion of command).
The System then outputs the Write command (for a long or short block) and waits for the command termination interrupt. The UDC will write the Sync mark and tape mark or data block on the tape.
When the System receives the interrupt indicating completion of the Write command, it will issue another drive select command with the Motor On and Write Enable bits set to stop the drive. The UDC will interrupt the system after completion of the Ramp Down Delay indicating that the tape has stopped moving.
The UDC will turn the Write Gate signal on when it is writing data and off when it is not, without regard to the tape motion. The Write Gate signal is used to generate "gaps" on the tape between the data blocks. This is done by externally forcing the two Data outputs with the Write Gate signal such that the Data + signal is high and the Data - signal is low when the UDC is not writing data to the tape (Write Gate is off):


WRITE GATE:



## B. STREAMING TAPE DRIVE:

typically transfers 1 sector at a time as illustrated by the following flow chart:


Control of a streaming tape drive is similar to that of a start/stop drive. The tape is started at the beginning of the data transfer and stopped after the last block is written to the tape. The tape is not stopped in between blocks. The UDC will however turn the Write Gate signal on when it is writing data and off when it is not so that gaps will be written (with external hardware) on the tape between the data blocks.
5. BACK-UP READ. The data is read from the tape (in either start/stop or streamer mode) and buffered in memory. The disk track is then reconstructed from the data.
The start/stop drive typically has a track (or half a track) of disk data stored as a block. It is therefore expedient to read in the data "block by block". When reading data from a streamer drive use can be made of the SECTOR COUNT register and a track's worth of data blocks may be read from the tape before generating the track on the disk.
Tape motion control is similar to that described above except that the Write Enable Bit is off to inhibit writing to the tape. The UDC reads the tape until it detects a sync mark. After detecting a sync mark the UDC will transfer the data found on the tape to memory.
6. The search count is used when reading the tape. It specifies a maximum number of blocks of 128 bytes between adjacent data blocks. If the search count expires before sync is detected, the command is terminated.
For example, if a search count of two is specified by loading the Desired Sector register with FD (hex), the UDC will search for 256 byte times before terminating the command. This will prevent the UDC from accidentally skipping a block. The search count is typically about the size of one block length. In the following figure, TM1 and TM2 are two tape marks and DB1, DB2, DB3 etc. are their associated Data Blocks:

7. 16 BYTE DELAY. Provision is made to shift the RDGATE pulse in the event that it coincides with the data block sync mark. If a tape cannot be read (sync is never detected) the tape can be re-read with the 16 byte delay enabled.

8. The DRIVE STATUS bits may be used by the tape drive if they are enabled (on the drive) by DRIVE SELECT 3. The ready change interrupt is especially handy for detecting start of tape (SOT) and end of tape (EOT) as a UDC command can be terminated by a change in state of the READY input.
9. The DATA FORMAT is as follows:

The Tape Mark sync mark (TMSYNC) is composed of three bytes of A1 (Hex) followed by one byte of FE (Hex). The Data Block sync mark (DBSYNC) is composed of three bytes of A1 (Hex) followed by one byte of FB (Hex). A1 (Hex) is encoded with the standard missing clock pattern.
The sync mark is preceeded by a "preamble" consist-
ing of bytes of 00 as per figure 2 of the UDC spec (this is required to synchronize the data separator when reading the tape). The Tape Mark and Data Block (including CRC or ECC bytes) are followed by a "postamble" consisting of one byte of 00.
Note that the postamble is not included in the Floppy Disk formats. The GAP sizes are dependent on the type of drive (start/stop or streamer) and the specific mechanical tape drive specifications.
10. Use can be made of the Sector Count register when doing a "file" (versus a "mirror image") backup on a start/stop tape drive. Instead of transferring the entire disk track to the tape in one long block, the data is moved file by file.
If, for example, it is desired to back up a file consisting of five 256 byte long Hard Disk sectors, a 2048 byte long Data Block would have to be used for an image backup (the Data Block size is specified as $2^{n}$ * 128 restricting blocks to $128,256,512$ etc.). This would result in a lot of wasted space on the tape.
If file backup is used and the Sector Count is set to five, 256 byte long Data Blocks can be used. Gaps will be generated on the tape corresponding to the time required to get the data from the disk drive (corresponding to DMA delays and the disk interleave factor).
The tape will not be stopped until the entire file is transferred. When using sector count, the UDC internal programming will create inter-block gaps of about 30 to 32 bytes on the tape in both single (FM) and double (MFM) density modes.

## SYSTEM CONFIGURATION NOTES

A simplified UDC schematic is shown in Schematic 1. The following notes may be helpful in implementation of the UDC.

1. In systems using a private memory area, it is important to know when the buffer needs servicing from the host processor. A second interrupt signal (INT2) signals the processor that servicing is needed. INT2 is generated by externally ANDING the ECCTM signal with STB1 signal. (The STB1 signal is active when the UDC is outputing the DMA address data, and occurs when STB is active (low), S 0 is active (high) and S 1 is inactive (low)).
This "interrupt" occurs only when the UDC needs the system processor to either read from or write to the buffer memory. When reading from the disk, the system processor should empty the memory buffer each time this signal becomes active. (If an ECC error is detected, and error correction is enabled, this signal will not become active until the UDC has attempted to correct the error.) When writing data to the disk, the system processor must fill the buffer each time this signal becomes active.
2. The DIP (DMA in Progress) signal is used to isolate the buffer memory from the main system memory. If 74LS244 and 74LS245 address buffers are used in the memory addressing circuits, then this signal should be used to enable or disable the address buffers, as required. This eliminates the possibility of memory contention problems.
3. Write precompensation (for floppy disks) is handled internally by the UDC. For hard disks, the LATE and EARLY signals are connected to a multiplexer which, in turn is connected to a 24 ns delay line. The EARLY and LATE signals will toggle in response to the data pattern being written. This will allow the data being written to the shifted $\pm 12 \mathrm{~ns}$ from the nominal 12 ns delay specified by hard disk manufacturers.
4. The interface to the hard disk drive data inputs and outputs requires RS-422 data tranceivers. Other disk drive
interface circuits (including floppy disk data inputs and outputs) may be 74LS series devices.
5. Since the UDC uses its Aux Bus for multiple functions, the system designer must be able to determine which function is occuring on the Aux Bus at any given time. The S0 and S1 signals, when combined with STB signal are decoded (using a 74LS138 or equivalent) to provide STB0-3 signals.
These generated signals and their respective functions are:

$$
\begin{array}{ll}
\overline{\text { STB0 }} & \text { Drive Status Input Time Slot } \\
\overline{\text { STB1 }} & \text { External DMA Address Counters Time Slot } \\
\overline{\text { STB2 }} & \text { Output } 1 \text { Time Slot } \\
\overline{\text { STB3 }} & \text { Output } 2 \text { Time Slot }
\end{array}
$$

6. The clocks required by the UDC are not TTL-level compatible. Pullup resistors (typically 390 ohms) should be used with Schottky drivers to insure that the clock signals reach the proper Input (high) level, with acceptable rise and fall times.
7. The UDC features a built-in DMA controller that requires connection to external counters. These counters are configured so that they are incremented after each byte is transferred. (The UDC's internal DMA circuits transfer the starting memory address for each read or write operation.) 74LS161 Counters are typically used in this area.
8. The DMACLK input should be tied to the master system clock, through a bus buffer. It is important to remember that three DMACLK periods are required for each DMA transfer.
9. The system design may be simplified, and costs reduced, by using the FDC 9216B Floppy Disk Data Separator, to separate raw data from the floppy disk drive into RDATA and RCLK.

## ERROR CHECKING AND CORRECTION CIRCUIT (ECC) OPERATING PRINCIPLES

The UDC will automatically detect and correct errors in the data read from the disk. Error checking may be done using industry standard CRC or ECC encoding. Error correction may be done using either internal or external ECC encoding. This section will explain ECC operation, as implemented on the UDC.
The UDC contains two 16-bit registers used by the CRC/ ECC circuits. CRC logic uses only one of these registers, while the logic for ECC uses both registers, implementing a full 32-bit algorithm.
These registers may be preset to either one or zero, using the CRC PRESET bit in the INTERRUPT/COMMAND TERMINATION register. (This allows compatibility with existing disk controllers and external ECC chips.) Both ECC and CRC are calculated beginning with the sync mark of the address (CRC) or data (ECC) field.

## CRC/ECC GENERATION

The UDC uses the following industry standard polynomials in computing the CRC and ECC check bytes:

$$
\begin{array}{ll}
\text { CRC: } & x^{16}+x^{12}+x^{5}+1 \\
\text { ECC: } & x^{32}+x^{23}+x^{21}+x^{11}+x^{2}+1
\end{array}
$$

As the UDC writes data to the disk drive, it first passes this data thru the CRC (and, if enabled, ECC) registers. After all data has been written, the remaining two (CRC) or four (ECC) bytes remaining in these registers are written to the appropriate address or data field.

## CRC/ECC CHECKING

When CRC or ECC checking is initiated, the internal CRC/ ECC registers are set to either zero or one, as required by the CRC PRESET bit in the INTERRUPT/COMMAND TERMINATION REGISTER. Data read from the disk is simultaneously shifted thru the CRC/ECC registers, and transferred to external memory.
After the CRC or ECC check bytes have been shifted thru the CRC/ECC registers, the remainder in these registers should be zero, else an error has occurred in the address or data block.
If CRC or ECC (without correction) is enabled, automatic retry (if enabled) or command termination will occur. If internal ECC with automatic correction is enabled, the correction algorithm will be executed. If the internal ECC algorithm is unable to correct the error (in one attempt), then automatic retry (if enabled) or command termination will occur.

## ECC CORRECTION

Error Correction consists of three distinct parts:

1. The CRC/ECC registers are normalized by shifting zeros thru the register. This sets up a data block which is 42,987 bits long, which corresponds to the "natural message length" of the generation polynomial. The actual number of zeros shifted through the registers depends on the difference between the natural message length of the generator polynomial and the actual length of the data block
being checked. The longest data block that can be corrected (using the internal ECC algorithm) is 4 K bytes.
2. The data input to the CRC/ECC registers is then disabled and the DMA counters are re-initialized to the starting address for this data block. The contents of the CRC/ECC registers are then "ring-shifted" until 21 consecutive zeros are detected. The remaining bits in the CRC/ECC registers compose the error syndrome. As the CRC/ECC registers are shifted, the UDC generates $\overline{\text { DS }}$ signals, causing the external DMA counters to be incremented. When the 21 consecutive zeros are detected, the DMA counters are pointing to the corrupt data.
If the error syndrome is not found within the data block the error is judged to be uncorrectable and the correction algorithm is terminated. (The data block is the length of the data field in the sector and the 4 ECC bytes. A format with a sector size of 256 bytes would have a data block size of 260 bytes.)
3. When the error syndrome is detected, the UDC will enable its ECCTM output, read the next byte from memory, exclusive-or it with the first byte of the three byte error syndrome, disable the ECCTM output and write the corrected byte back to memory. The correction process is then repeated for the next two bytes in memory.
When using internal ECC (with correction enabled), the ECCTM output is used by the external DMA counters to inhibit the counters from incrementing their addresses when correcting the erroneous bytes. When using external ECC, the ECCTM output goes active (low) when the UDC is requesting the ECC Check Bytes from the external ECC chip prior to writing them to the disk.
After a correction is completed, the UDC will then attempt to read the next sector on the disk (if the SECTOR COUNT register is still greater than zero). Anytime ECC correction has been attempted, (even if unsuccessful), the CORRECTION ATTEMPTED bit in the CHIP STATUS register will be set.
The maximum time required for one ECC Correction Cycle (using the internal algorithm) is:

2) Maximum ECC Time = ECC Cycle Time +30 byte times Since the internal algorithm has a natural message length of 42,987 bits the ECC Cycle time is 5,377 byte times. Since a period of about 30 byte times must be allowed for the read-modify-write operations, the Maximum ECC Time equals 5,407 byte times.
One byte time equals the amount of time required to read one byte for the type of drive selected. For Hard Disks, this is about 1 microsecond. This equates to approximately 1 revolution (maximum) for either $8^{\prime \prime}$ floppy disk (running in double density) or $5.25^{\prime \prime}$ hard disk.
During the entire operation, the RDGATE signal is kept active.

## MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range

$$
0 \text { to }+70 \mathrm{C}
$$

Storage Temperature Range $-55 C$ to $+150 C$
Lead Temperature (soldering, 10 sec .)
+325 C
Positive Voltage on any Pin, with respect to ground $+8 \mathrm{~V}$
Negative Voltage on any Pin, with respect to ground
$-0.3 \mathrm{~V}$
*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL CHARACTERISTICS $\mathrm{Ta}=0 \mathrm{C}$ to $+70 \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$


AC ELECTRICAL CHARACTERISTICS $\mathrm{Ta}=0 \mathrm{C}$ to $+70 \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
PROCESSOR WRITE CYCLE						
C/D, R/W, $\overline{\text { CS }}$ Setup time to DS $\downarrow$	$\mathrm{T}_{\text {DSB }}$	110			ns	FIGURE 3
C/D, R/W, CS Hold time to DS $\uparrow$	$\mathrm{T}_{\text {DSB }}$	0			ns	
$\overline{\text { DS }}$ Pulse Width	$\mathrm{T}_{\text {DSL }}$	150			ns	
DS Pulse High Time	T ${ }_{\text {DSH }}$	850			ns	
Data Bus In Setup time to $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {Dib }}^{\text {din }}$	100			ns	
Data Bus In Hold time to $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {DIA }}$	0			ns	
Data Access time from $\overline{\mathrm{DS}} \downarrow$	$\mathrm{T}_{\text {DOB }}$	75			ns	FIGURE 3
D.ata Hold time from $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {DOA }}$	10			ns	
UDC TO MEMORY TIMING						
(BUS MASTER)						
(based on 10 Mhz DMACLK Input)						
Write Setup time to $\overline{\mathrm{DS}} \downarrow$	$\mathrm{T}_{\text {wB }}$	110			ns	FIGURE 4
Write Data Strobe Width	$T_{\text {wos }}$	180			ns	
Write Hold time from $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {wa }}$	110			ns	
Data Strobe Falling Edge	$T_{\text {DSF }}$			15	ns	
Data Strobe Rising Edge	$\mathrm{T}_{\text {DSR }}$			20	ns	
Write Data Valid before $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {wDB }}$			90	ns	
Write Data Hold time after $\overline{\mathrm{DS}} \uparrow$	Twod	10			ns	
Memory Access Time	$\mathrm{T}_{\mathrm{w}}$		200		ns	


PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	COMMENTS
Read Setup time to $\overline{\overline{D S}} \downarrow$	$\mathrm{T}_{\text {RB }}$	110			ns	FIGURE 4
Read Hold time after $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {RA }}$	110			ns	
Read Data Strobe Pulse Width	$T_{\text {RDS }}$	180			ns	
Read Data Setup time to $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {RDB }}$	50			ns	
Read Data Hold time from $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {RDA }}$	0			ns	
DMACLK $\uparrow$ to $\overline{\mathrm{DS}} \downarrow$	$\mathrm{T}_{\text {DDD }}$			100	ns	
DMACLK $\uparrow$ to $\overline{\mathrm{DS}} \uparrow$	$\mathrm{T}_{\text {DDA }}$			100	ns	
SO, S1, AND STB TIMING						
STB Width   S0, S1 Hold time after $\overline{\text { STB }} \uparrow$	$\mathrm{T}_{\text {sw }}$	800 100			ns	FIGURE 7
S0, S1 Data In Seld time after STB dime to STB	$\mathrm{T}_{\text {SD }}$	100 700			ns	
Data In Hold time after STB $\uparrow$	$\mathrm{T}_{\text {DIH }}$	0			ns	
S0, S1 Setup time to STB	$T_{\text {SST1 }}$	100			ns	
Aux Bus Setup time to STB $\downarrow$	$\mathrm{T}_{\text {SST2 }}$	100			ns	
Aux Bus Hold time after STB $\uparrow$	$\mathrm{T}_{\text {SST3 }}$			100	ns	
INPUT CLOCK TIMING (10 MHz Input) Clock Rise Time						
Clock Rise Time Clock Fall Time	$\mathrm{T}_{\text {RT }} \mathrm{T}_{\text {RF }}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns	FIGURE 2
Clock Cycle High Time	$\mathrm{T}_{\text {ch }}$	40			ns	
Clock Cycle Low Time	$\mathrm{T}_{\mathrm{CL}}$	40			ns	
Clock Cycle Time	$\mathrm{T}_{\mathrm{CYC}}$	95	100	105	ns	
PRECOMPENSATION TIMING						
Early, Late Setup time (Before WDATA $\uparrow$ )	$\mathrm{T}_{\text {PB }}$	0			ns	FIGURE 9
Early, Late Hold Time (after WDATA $\downarrow$ )	$\mathrm{T}_{\text {PB }}$	50			ns	
FLOPPY INPUT DATA TIMING Window Setup time to RDCLK Window Hold time from RDDATA $\uparrow$	$\mathrm{T}_{\text {FRB }}$	50 50			ns	FIGURE 10
HARD DISK INPUT DATA TIMING Data Setup time to RDCLK $\downarrow$	$\mathrm{T}_{\text {HRB }}$	60			ns	FIGURE 10
Data Hold time after RDCLK $\downarrow$	$T_{\text {HRB }}$	10			ns	
Clock Setup time to RDCLK $\uparrow$	$\mathrm{T}_{\text {HCB }}$	60			ns	
Clock Hold time from RCLK $\uparrow$	$\mathrm{T}_{\text {HCA }}$	10			ns	
ECCTIM TIMING						
ECCTM ECCTM Hold after $\overline{D S} \bar{D} \uparrow \uparrow$	$\begin{aligned} & \mathrm{T}_{\text {EDS }} \\ & \mathrm{T}_{\text {EDH }} \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$			ns	FIGURE 10
RESET TIMING RST Pulse Width		1			$\mu s$	



SCHEMATIC 2: UDC/TAPE DRIVE INTERFACE CIRCUIT


FIGURE 3: SYSTEM PROCESSOR TO UDC TIMING


FIGURE 4: UDC TO MEMORY TIMING (BUS MASTER)


UDC DMA MEMORY TIMING FOR HARD DISK (BURST MODE)

FIGURE 5: UDC DMA MEMORY TIMING FOR HARD DISK (BURST MODE)


UDC DMA TIMING FOR
FLOPPY DISK (1 BYTE AT A TIME)

FIGURE 6: UDC DMA TIMING FOR FLOPPY DISK (1 BYTE AT A TIME)



FIGURE 11: DISK FORMATS


FIGURE 12A: RDGATE DURING DISK READ
index



FIGURE 12B: RDGATE AND WRITE GATE TIMING

STANDARD FORMAT PARAMETERS					
PARAMETER	HARD DISK	SINGLE DEN. FLOPPY	DOUBLE DEN. FLOPPY		
GAP 0 *	0	40	80		
GAP 1 *	16	26	50		
GAP 2 *	3	11	22		
GAP 3 *	18	27	54		
SYNC SIZE *	13	6	12		
SECTOR COUNT *	user selectable	user selectable	user selectable		
SECT. SIZE MULT *	user selectable	user selectable	user selectable		
RDG 1	16	73	NA		
RDG 2	6	13	24		
RDG 3	25	27	24		
WDG 2	5	11	23		
WDG 3					
	3	11	3		

TABLE 1: STANDARD FORMAT PARAMETERS

## REGISTER BIT DEFINITIONS

	7	6	5 4		3	2	1	0
DMA 7-0 (REGISTER 0)	(MSB)	LOW ORDER BYTE OF DMA BUFFER MEMORY STARTING ADDRESS						(LSB)
$\begin{gathered} \text { DMA 15-8 } \\ \text { (REGISTER 1) } \end{gathered}$	(MSB)		MIDDLE ORDER BYTE OF DMA BUFFER MEMORY STARTING ADDRESS					(LSB)
$\begin{aligned} & \text { DMA 23-16 } \\ & \text { (REGISTER 2) } \end{aligned}$	(MSB)		HIGH ORDER BYTE OF DMA BUFFER MEMORY STARTING ADDRESS					(LSB)
DESIRED SECTOR (REGISTER 3)	(MSB)		DESIRED SECTOR NUMBER					(LSB)
DESIRED HEAD (REGISTER 4)	$\underset{0}{\text { ALWAYS }}$	HIGH ORDER BITS OFDESIRED CYLINDER			DESIRED HEAD NUMBER			
DESIRED CYLINDER (REGISTER 5)	(MSB)		LOW ORDER BITS OF DESIRED CYLINDER					(LSB)
SECTOR COUNT (REGISTER 6)	(MSB)		NUMBER OF SECTORS TO BE OPERATED ON BY COMMAND					(LSB)
RETRY COUNT (REGISTER 7)	RETRY COUNT (1'S COMPLEMENT)				PROGRAMMABLE OUTPUTS			
$\begin{gathered} \text { MODE } \\ \text { (REGISTER 8) } \end{gathered}$	HARD DISK	CRC/ECC	ENABLE	SINGLE DENSITY	$\underset{0}{\text { ALWAYS }}$	STEP	RATE	SELECT
INTERRUPT/ COMMAND TERM. (REGISTER 9)	$\begin{gathered} \text { CRC PRESET } \\ 1=\text { Set to } 1 \\ 0=\text { Set to } 0 \end{gathered}$	$\underset{0}{\text { ALWAYS }}$	$\begin{aligned} & \text { INTERRUPT } \\ & \text { ON } \\ & \text { DONE } \end{aligned}$	FLAG DELETED DATA MARK	USER   DEFINED   FLAG	$\begin{aligned} & \text { FLAG } \\ & \text { WRITE } \\ & \text { PROTECT } \end{aligned}$	FLAG READY CHANGE	$\begin{aligned} & \text { FLAG } \\ & \text { WRITE } \\ & \text { FAULT } \end{aligned}$
DATA/DELAY (REGISTER A)	(MSB)		EAD LOAD DELAY MULTIPLE IS LOADED INTO THIS REGISTER DATA IS LOADED TO OR READ FROM THIS REGISTER					(LSB)
CURRENT HEAD   (READ REGISTER 4)	BAD SECTOR FLAG	HIGH ORDER BITS OFCURRENT CYLINDER(MSB)			CURRENT HEAD NUMBER			
CURRENT CYLINDER (READ REGISTER 5)	(MSB)		LOW ORDER BITS OF CURRENT CYLINDER NUMBER					(LSB)
CHIP STATUS (READ REGISTER 8)	RETRY REQUIRED	$\begin{aligned} & \text { ECC } \\ & \text { CORRECTION } \\ & \text { ATTEMPTED } \\ & \hline \end{aligned}$	CRC/ECC ERROR	$\begin{gathered} \text { DELETED } \\ \text { DATA } \\ \text { MARK READ } \\ \hline \end{gathered}$	SYNC ERROR	COMPARE ERROR	PRESENT DRIVE SELECTED	
DRIVE STATUS (READ REGISTER 9)	$\begin{aligned} & \text { ECC } \\ & \text { ERROR } \end{aligned}$	INDEX	SEEK COMPLETE	$\begin{gathered} \text { TRACK } \\ 00 \end{gathered}$	$\begin{aligned} & \text { USER } \\ & \text { DEFINED } \\ & \text { ACTIVE } \end{aligned}$	$\begin{aligned} & \text { WRITE } \\ & \text { PROTECT } \\ & \text { ACTIVE } \end{aligned}$	DRIVE   READY	WRITE FAULT
$\qquad$	INTERRUPT PENDING	DMA REQUEST	DONE	COMMAND TERMINATIONCODE		READY CHANGE	OVERRUN/ UNDERRUN	$\begin{aligned} & \text { BAD } \\ & \text { SECTOR } \end{aligned}$

TABLE 2: REGISTER BIT MAPS

UDC WRITE REGISTERS (APPLIES DURING TAPE BACKUP ONLY)

REGISTER	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
$\begin{gathered} \text { DMA 7-0 } \\ \text { (REGISTER 0) } \end{gathered}$	(MSB)	DMA BEGINNING ADDRESS BUTE (LOW ORDER BITS)						(LSB)
$\begin{gathered} \text { DMA 15-8 } \\ \text { (REGISTER 1) } \end{gathered}$	(MSB)	DMA BEGINNING ADDRESS BYTE (MIDDLE ORDER BITS)						(LSB)
$\begin{aligned} & \text { DMA 23-16 } \\ & \text { (REGISTER 2) } \end{aligned}$	(MSB)	DMA BEGINNING ADDRESS BYTE (HIGH ORDER BITS)						(LSB)
$\begin{gathered} \text { DESIRED } \\ \text { SECTOR } \\ \text { (REGISTER 3) } \end{gathered}$	(MSB)	MAXIMUM SEARCH COUNT (IN 1'S COMPLEMENT) (1)						(LSB)
$\begin{gathered} \text { DESIRED } \\ \text { HEAD } \\ \text { (REGISTER 4) } \end{gathered}$	0	0	0	0	TRK \# BIT 3	TRK \# BIT 2	TRK \# BIT 1	TRK \# BIT 0
$\begin{aligned} & \text { DESIRED } \\ & \text { CYLINDER } \\ & \text { (REGISTER 5) } \end{aligned}$	ECC TYPE				ALWAYS	DATA BLOCK SIZE		
SECTOR COUNT (REGISTER 6)	TAPE MARK BLOCK SIZE (IN 2'S COMPLEMENT + 1) (MODULO 256) (2)				DATA BLOCK COUNT (IN 1'S COMPLEMENT) (3)			
RETRY COUNT (REGISTER 7)	1	1	1	1	USER DEFINED OUTPUTS			
$\begin{gathered} \text { MODE } \\ \text { (REGISTER 8) } \end{gathered}$	$\begin{aligned} & \text { ALWAYS } \\ & \text { FOR TAPE } \end{aligned}$	CRC/ECC ENABLE CODE		SINGLE/ DOUBLE DENSITY	$\underset{0}{\text { ALWAYS }}$	$\begin{aligned} & \text { SYNC } \\ & \text { DELAY } \\ & \text { ENABLE } \end{aligned}$	WRITE ENABLE	$\begin{gathered} \text { TAPE } \\ \text { MARK } \\ \text { ENABLE } \end{gathered}$
INTERRUPT/ COMMAND TERMINATOR (REGISTER 9)	$\begin{gathered} \text { CRC } \\ \text { PRESET } \end{gathered}$	$\underset{0}{\text { ALWAYS }}$	INTERRUPT ON DONE	ALWAYS	$\begin{aligned} & \text { USER } \\ & \text { DEFINED } \end{aligned}$	$\begin{gathered} \text { FLAG } \\ \text { WRITE } \\ \text { PROTECT } \end{gathered}$	$\begin{aligned} & \text { FLAGG } \\ & \text { READY } \\ & \text { CHANGE } \end{aligned}$	FLAG WRITE FAULT

NOTES: (1) The maximum search count is composed of: 130 byte inner loop (RDGATE high 128, 2 byte times) times the number programmed (maximum of 33,150 byte times
(2) Tape mark operation
(3) Data block operation

TABLE 3: TAPE BACKUP REGISTER BIT MAPS

UDC READ REGISTERS (APPLIES TAPE BACKUP ONLY)

REGISTER	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
$\begin{gathered} \text { DMA 7-0 } \\ \text { (REGISTER 0) } \end{gathered}$	(MSB)		DMA BEGINNING ADDRESS BYTE (LOW ORDER BITS)					(LSB)
DMA 15-8 (REGISTER 1)	(MSB)		DMA BEG	ADDR	(MIDD	R BITS)		(LSB)
$\begin{aligned} & \text { DMA 23-16 } \\ & \text { (REGISTER 2) } \end{aligned}$	(MSB)		DMA BE	ADDR	E (HIG	R BITS)		(LSB)
$\begin{gathered} \text { DESIRED } \\ \text { SECTOR } \\ \text { (REGISTER 3) } \end{gathered}$	(MSB)		MAXII	ARCH	N 1'S C	ENT)		(LSB)


$\substack{\text { CURRENT } \\ \text { HEAD } \\ \text { (REGISTER 4) }}$	x	x	x	x	x	x	x


CURRENT CYLINDER (REGISTER 5)	X	X	X	X	X	X	X	X
$\begin{gathered} \text { CHIP } \\ \text { (REGITUS } \\ \text { (REGIST 8) } \end{gathered}$	X	$\begin{aligned} & \text { ECC } \\ & \text { CORRECTION } \\ & \text { ATTEMPTED } \end{aligned}$	CRC/ECC ERROR	X	X	X		


DRIVE STATUS (REGISTER 9)	USER DEFINED	$\begin{aligned} & \text { USER } \\ & \text { DEFINED } \end{aligned}$	$\begin{aligned} & \text { SEEK } \\ & \text { COMP } \end{aligned}$	$\begin{aligned} & \text { USER } \\ & \text { DEFINED } \end{aligned}$	$\begin{aligned} & \text { USER } \\ & \text { DEFINED } \end{aligned}$	WRITE PROTECT	READY	WRITE FAULT
DATA (REGISTER A)	READ DATA							
	$\begin{aligned} & \text { INT } \\ & \text { PENDING } \end{aligned}$	$\begin{aligned} & \text { DMA } \\ & \text { REG } \end{aligned}$	DONE	$\begin{array}{r} \mathrm{COO} \\ \text { TERN } \\ \mathrm{CO} \end{array}$	$\begin{aligned} & \text { NDD } \\ & \text { TION } \\ & \text { (1) } \end{aligned}$	READY	OVER/ UNDER RUN	X

NOTES: (1) Command termination bits set to:
11 for data transfer error
10 for sync error
00 for successful termination
X Don't care
TABLE 4: TAPE BACKUP REGISTER BIT MAPS

COMMAND BIT DEFINITIONS

	7	6	5	4	3	2	1	0
RESET	0	0	0	0	0	0	0	0
$\begin{gathered} \text { DESELECT } \\ \text { DRIVES } \end{gathered}$	0	0	0	0	0	0	0	1
$\begin{gathered} \text { RESTORE } \\ \text { DRIVE } \end{gathered}$	0	0	0	0	0	0	1	$\begin{aligned} & 1= \text { Buffered } \\ & \text { Seek } \\ & 0= \text { Normal } \\ & \text { Seek } \end{aligned}$
STEP IN 1 CYLINDER	0	0	0	0	0	1	0	$\begin{aligned} & 1= \text { Buffered } \\ & \text { Seek } \\ & 0= \text { Normal } \\ & \text { Seek } \end{aligned}$
STEP OUT 1 CYLINDER	0	0	0	0	0	1	1	$\begin{aligned} & 1= \text { Buffered } \\ & \text { Seek } \\ & 0= \text { Normal } \\ & \text { Seek } \end{aligned}$


POLL DRIVES	0	0	0	1	$\begin{aligned} & 1=\text { Poll Drive } 3 \\ & 0=\text { Don't Poll } \end{aligned}$	$\begin{aligned} & 1=\text { Poll Drive } 2 \\ & 0=\text { Don't Poll } \end{aligned}$	$\begin{aligned} & 1=\text { Poll Drive } 1 \\ & 0=\text { Don't Poll } \end{aligned}$	$\begin{aligned} & 1=\text { Poll Drive } 0 \\ & 0=\text { Don't Poll } \end{aligned}$
$\begin{aligned} & \text { SELECT } \\ & \text { DRIVE } \end{aligned}$	0	0	1	$1=$ Head Load Delay Enabled $0=$ Delay Disabled	TYPE OF	DRIVE	DRIVE UNIT	SELECTED


SET REGISTER POINTER	0	1	0	0	REGISTER		NUMBER	
SEEK/READ ID	0	1	0	1	0	Step Enable	Wait For Complete	Verify ID
READ SECTORS PHYSICAL	0	1	0	1	1	0	0	Enable Transfer


$\begin{aligned} & \text { READ } \\ & \text { TRACK } \end{aligned}$	0	1	0	1	1	0	1	$\begin{aligned} & 1=\text { Transfer All } \\ & 0=\text { Transfer ID } \end{aligned}$
READ SECTORS LOGICAL	0	1	0	1	1	1	$\begin{aligned} & 1= \text { Bad Sector } \\ & \text { Bypass } \\ & 0= \text { Bad } \\ & \text { Sector } \\ & \text { Terminate } \end{aligned}$	Enable Transfer


FORMAT TRACK	0	1	1	Write Deleted Data	Write With Reduced Current	PRECOMPENSATION   VALUE
WRITE SECTORS PHYSICAL	1	$\begin{aligned} & 1= \text { Bad Sector } \\ & \text { Bypass } \\ & 0= \text { Bad Sector } \\ & \text { Termination } \end{aligned}$	0	Write Deleted Data	Write With Reduced Current	PRECOMPENSATION VALUE
WRITE SECTORS LOGICAL	1	$1=$ Bad   Sector   $\quad$ Bypass   $0=$Bad   Sector   Terminate	1	Write Deleted Data	Write With Reduced Current	PRECOMPENSATION   VALUE


TAPE	0	0	0	0	1	WRITE:	PRECOMPENSATION VALUE		
BACKUP						READ:	0	0	Transfer Enable

SECTOR SIZE FIELD BITS

DB2	DB1	DB0	IBM FD FORMAT	HD FORMAT
0	0	0	128 bytes/sector	128 bytes/sector
0	0	1	256 bytes/sector	256 bytes/sector
0	1	0	512 bytes/sector	512 bytes $/$ sector
0	1	1	1024 bytes/sector	1024 bytes $/ 20 c t o r$
1	0	0	not used	2048 bytes $/$ sector
1	0	1	not used	4096 bytes/sector
1	1	0	not used	8192 bytes/sector
1	1	1	not used	16,384 bytes/sector

FORMAT ECC TYPE FIELD

| DB7 | DB6 | DB5 | DB4 | HD FORMAT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 4 ECC bytes generated/checked |
| 1 | 1 | 1 | 1 | 5 ECC bytes generated/checked (1) |
| 1 | 1 | 1 | 0 | 6 ECC bytes generated/checked (1) |
| 1 | 1 | 0 | 1 | 7 ECC bytes generated/checked (1) |
| note 1: WITH EXTERNAL ECC |  |  |  |  |

IBM FLOPPY DISK FORMAT:

ID FIELD	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	
CYLINDER	track number	
HEAD	side number	
SECTOR	sector number	sector size
SECTOR SIZE		(2 bits)

HARD DISK FORMAT: ST506 PC FORMAT (512 BYTES)

ID FIELD	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		
CYLINDER	cylinder number (8 LSB's		
HEAD	bad cyl \# cyi \# cyl \# hd \# hd \# hd \# hd \#   sectorbit 10 bit 9 bit 8 bit 3 bit 2 bit 1 bit 0   flag   SECTOR		

## HARD DISK FORMAT: (USER SELECTABLE SECTOR SIZE)

ID FIELD	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
CYLINDER	cylinder number (8 LSB's)
HEAD	bad cyl \#cyl \#cyl \# hd \# hd \# hd \# hd \#
	sectorbit 10 bit 9 bit 8 bit 3 bit 2 bit 1 bit 0 flag
SECTOR	sector number
SECTOR SIZE	ECC type $\quad X \quad \begin{gathered}\text { sector size } \\ \text { (3 bits) }\end{gathered}$

DISK FORMATS
TABLE 6

For additional information, please consult the following:

Technical Note 6-2 (9224 Overview)
Technical Note 6-4 (Using the HDC 9226 HARD
DISK DATA SEP.)
Technical Note 6-5 (Programmer's Reference
HDC 9225 Data Sheet
HDC 9226 Data Sheet
HDC 9224 Programmer's Quick Reference Card

## DISK BUFFER MANAGEMENT UNIT "DBMU"

## FEATURES

Significantly reduces chip count in hard disc systemsCompletely compatible with the HDC 9224 Universal Disk Controller$\square$ Creates a dual-port disk buffer (up to 32 K in size) using low cost static ramProgrammable sector interrupt counter allows host processor rapid access to dataOn board 10 MHz oscillator simplifies clock generationAllows disk interleave factor of 1 , improving system performance
$\square$ Fabricated in low power CMOS; fully TTL compatible


PIN CONFIGURATION


## GENERAL DESCRIPTION

The HDC 9225 Disk Buffer Management Unit (DBMU) is a 48 pin CMOS/LSI device which, when used with the HDC 9224 Universal Disk Controller, significantly reduces the total number of chips required to build a hard and floppy disk controller.
The DBMU allows low cost static rams to be used in a dualported contiguration. This allows both the system processor and the HDC 9224 Universal Disk Controller to share a common disk buffer local memory area, while eliminating system memory contention problems. This feature greatly improves overall system performance, while simplifying design.



SECTION VI

DESCRIPTION OF PIN FUNCTIONS

PIN. NO.	NAME	SYMBOL	DESCRIPTION
1,2	Crystal 1   Crystal 2	$\begin{aligned} & \text { XTAL } 1 \\ & \text { XTAL } 2 \end{aligned}$	An external 10 MHz crystal is connected to these two pins. If an external 10 MHz TTL clock is used, it should be connected to XTAL 1 with a 300 ohm pull-up resistor and XTAL 2 left floating.
34	Processor Select of Hard Disk Controller	HDCCS	This input signal is generated by the host processor and informs the DBMU that the host processor wants to read or write to the HDC 9224. The processor should not access the HDC 9224 while it is executing a previous command.
31	RAM Enable	RAMEN	This input signal is generated by the host processor to indicate to the DMBU that it wants to access the dual ported ram buffer controlled by the DBMU. If the HDC 9224 is currently using the buffer, the WAIT signal will go active, forcing the host processor into a wait state.
41	Wait	WAIT	This output signal is used to wait-state the host processor when the HDC 9224 and the host processor attempt to access the disk buffer at the same time.
37	System Read/Write	SYSR/W	This input signal from the host processor is used for host processor read/ write control of the HDC 9224 and the dual ported disk buffer.
33	HDC   Read/Write	HDCR/W	This pin is used as both an input and output. When the host processor is either reading or writing to the HDC 9224, this pin outputs the signal presented on SYSR/W. When the HDC 9224 is performing disk I/O, an input to this pin is used to generate the appropriate RAM control signal.
39	Output Enable	$\overline{\mathrm{OE}}$	This output is used to control the output enable lines of the memory used in the dual ported RAM disk buffer.
29	Strobe	STB	This input is connected to the Strobe output on the HDC 9224 and is used to decode the multiplexed Aux Bus.
38	Write Enable	$\overline{W E}$	This output is used to control the write enable lines of the memory used in the dual ported RAM disk buffer.
3	$\begin{aligned} & \text { ECC } \\ & \text { Time } \end{aligned}$	ECCTM	This input pin serves a dual purpose. When the HDC 9224 is performing error correction, an active (low) input (from the HDC 9224) to this pin inhibits the internal address counters from incrementing. This allows the HDC 9224 to correct the error using read-modify-write cycles.   When the HDC 9224 is performing a multiple sector read operation, an active (low) input on this pin, and an active (low) input on the LDADD signal to the DBMU indicates that a good sector transfer has occurred.
30	System Data Strobe	$\overline{\text { SYSDS }}$	This input signal is the data strobe generated by the system processor, and is used to synchronize all processor initiated memory cycles. This signal is passed through the DBMU to the HDC 9224 via HDCDS if the processor desires to read or write any of the HDC 9224 internal registers.
35	$\begin{gathered} \text { HDC } \\ \text { Data Strobe } \end{gathered}$	HDCDS	This bidirectional pin performs two functions. When the host processor is accessing the HDC 9224, this output is a "pass through" of the SYSDS input.   When the HDC is performing memory cycles this signal becomes an input and uses the DS signal from the HDC 9224 to generate the WE or OE signals to the buffer memory.
24	Ground	GND	System Ground
$\begin{gathered} 4-7, \\ 20-23 \end{gathered}$	Auxiliary Bus 7-0	AB 7-0	These 8 inputs are connected directly to the AB7-0 outputs of the HDC 9224. The HDC 9224 will initialize the DBMU's internal 15 bit counter at each disk sector boundary by loading the start address in a byte serial fashion (high order byte first). The information is accepted upon the LDADD signal going active (low).
$\begin{aligned} & 8-19, \\ & 25-27 \end{aligned}$	Address Bus 14-0	AD 14-0	During HDC 9224 memory cycles, these output pins point to the memory address for the data passing through the HDC 9224. This address is automatically incremented at the trailing edge of HDCDS. This bus is in a high impedance state whenever the system processor is performing memory cycles or working with the internal registers of the HDC 9224.
36	DMA IN PROGRESS	DIP	This input is generated by the HDC 9224 and informs the DBMU that the HDC 9224 is about to perform a memory cycle.

DESCRIPTION OF PIN FUNCTIONS (continued)

PIN. NO.	NAME	SYMBOL	DESCRIPTION
43	LOAD ADDRESS	$\overline{\text { LDADD }}$	This input is,used to clock the data (appearing on AB7-0) into the internal 15 bit address counter.   The HDC 9224 pulls this pin active (low) simultaneous with the ECCTM signal when a sector of valid data is in the buffer. The DBMU may be programmed to produce an interrupt on this condition.
40	$\begin{gathered} \hline \text { CPU CLOCK } \\ \text { IN } \\ \hline \end{gathered}$	$\mu$ CLKIN	This input should be connected to the CPU Clock and must be at least 4 MHz .
48	+5V	$\mathrm{V}_{\text {cc }}$	+ 5 Volts
46	Interrupt	INT	This output pin is used to interrupt the system processor. The DBMU may be programmed to produce this interrupt after a (programmed) number of sectors are successfully transferred through the DBMU.
45	Interrupt Acklowledge	INTACK	This input is generated by the processor when acknowledging a DBMU generated interrupt and will reset the INT output to its inactive (low) state.
32	$\begin{gathered} \text { Bus } \\ \text { Direction } \\ \hline \end{gathered}$	BUSDIR	This output signal controls the flow of data through an external bidirectional tristate bus driver.
42	System   Bus   Enable	SEN	This output enables the system processor data bus when the DBMU allows the processor access to the RAM buffer memory.
28	DMA Clock	DMACLK	This output signal normally runs at a frequency of 5 MHz and feeds the HDC 9224 to control the timing of all HDC 9224 memory cycles. When the HDC 9224 is accessing the RAM buffer, the low portion of this signal is stretched to slow down the HDC 9224 memory cycle and allow processor access to the RAM buffer.
47	Clock Out	CLOCK OUT	This pin provides the 10 MHz clock required by the HDC 9224. This signal conforms to the clock input specifications of the HDC 9224.
44	Reset	RESET	This input pin resets the DBMU into a known state. Additionally, the INT output is reset to logic 0 .

## DESCRIPTION OF OPERATION

## DBMU INTERRUPT GENERATION

The DBMU allows the system to empty the RAM buffer while the HDC 9224 is still filling the buffer. This can significantly improve system throughput. If the processor instructs the HDC 9224 to read multiple sectors ( N ) from the disk, the DBMU can be programmed to interrupt the processor after N sectors have been successfully transferred to the buffer.

The value $(\mathrm{N})$ is loaded into the 3 least significant bits of the upper most DMA address register in the HDC 9224 (Write Register 2), and transferred to the DBMU when the DMA address is output by the HDC 9224. (This does not cause a conflict as the DBMU only uses the lower most 15 bits of address output by the HDC 9224).

After each successful sector transfer an internal counter (in the DBMU) is incremented, and when coincidence with N is met, the DBMU issues an interrupt to the system processor.
In the case when these 3 bits $=$ " 000 ", an interrupt is generated after each sector is successfully transferred. If these 3 bits = "111" then an interrupt is generated after every 8 sectors are transferred correctly.

## MEMORY CONTENTION

The DBMU serves as an arbitrator between the HDC 9224 and the system processor whenever both request access to the RAM buffer memory. The DBMU input RAMEN sig-
nals when the system processor needs access to the RAM buffer, while HDCDS indicates that the HDC 9224 needs access to the buffer.

During each byte transfer initiated by the HDC 9224, a window is set up which will allow processor cycles to occur. If RAMEN becomes active in this window, it will be granted immediate access to the buffer. Otherwise, the DBMU will put the processor in a wait state. This window is open for a certain percentage (described below) of every byte time, and will insure that at least one processor cycle is allowed per byte time.
When the HDC 9224 is not accessing the RAM buffer, the processor window is open $100 \%$ of the time. During multiple sector transfers from the HDC 9224, the window is open for $100 \%$ of the time between sectors.

During hard disk operations, where one byte time equals 1600 ns , the processor window is open for 500 ns during each byte time, except when the HDC 9224 is loading a new DMA start address to the DBMU. This normally only occurs on sector boundaries, and in these cases, the window is open for 400 ns .

For floppy disk operation, where byte times equal 16 us, 32 us, or 64 us, the window is open for approximately $75 \%$ of each byte time. Once again, when the HDC 9224 is loading a new DMA start address to the DBMU, this window time drops to 400 ns .

The window will be open $100 \%$ of the time following the successful transfer of a sector.

## WAIT OUTPUTT TIMING

Due to the asynchronous nature of the $\overline{\text { RAMEN }}$ input with respect to the internal 10 MHz clock, the generation of WAIT may vary by approximately 50 ns . For this reason, the user has the option of selecting either an "early" WAIT or a "late" WAIT output. If "late" WAIT is selected, the WAIT signal will become active only if a wait state is needed and it will be synchronized to the 10 MHz internal clock.
If "early" WAIT is selected, the WAIT signal will be output for every RAMEN generated and if a wait state is not needed, the signal will be reset on the next rising edge of UPCLK. The selection of "early". or "late" WAIT is programmed via bit 3 of the most significant DMA Address byte (loaded into write register 2 of the HDC 9224.) When this bit is set to a logic 1 , the "late" WAIT is selected, while if this bit is reset to a logic 0 , an "early" WAIT is selected. (Upon RESET, "early" WAIT is selected.)
Note that when an HDC 9224 memory cycle is being per-
formed, the DMACLK is always stretched-even if no contention exists. The DBMU address bus AD14-0 is put into the high impedance state when the output SEN is active and is incremented at the next rising edge of the HDCDS signal.

## SYSTEM TO HDC ACCESS

When the system processor wants to access the registers in the HDC 9224, it informs the DBMU via the HDCCS input. This input is simply a decode of the system processor address bus lines reserved for the HDC register addresses.
When this signal is active, the BUSDIR signal will be activated to the state which will direct data into or out of the HDC 9224 as of a function of the SYSR/W input. It should be noted that there is no way to produce wait states during system to HDC data transfers. Because of this, it is important to remember that the system must only access the HDC 9224 only after it receives an interrupt from the HDC 9224. This will ensure that all data transfers between the RAM buffer and the HDC have concluded as a result of the DONE bit (in the HDC 9224) being set.

## MAXIMUM GUARANTEED RATINGS

Operating Temperature Range	0 to 70 C
Storage Temperature Range	-55 C to +150 C
Lead Temperature (soldering, 10 sec )	+ 300 C
Positive Voltage on any Pin, with respect to Ground.	+7V
Negative Voltage on any Pin, with respect to Ground	-0.3V
Stresses above those listed may cause permanent operation of the device at these or any other conditio ification is not implied.	only and functional ctions of this spec-

NOTE: When powering this device from laboratory or system power supplies, it is important that the "Maximum Guaranteed Ratings" not be exceeded, or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when AC power is switched off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL SPECIFICATIONS (TA $=0 \mathrm{C}$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%$ )

| Parameter | Min. | Max. | Units | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SUPPLY CURRENT |  | 20 | mA |  |


$\mathrm{V}_{\text {OH }}(1)$	2.4		V	$\mathrm{I}_{\mathrm{OH}}=400 \mathrm{uA}$
$\mathrm{V}_{\text {OH }}(2)$	4.3		V	$\mathrm{I}_{\mathrm{OH}}=400 \mathrm{uA}$ (DMACLK and CLKOU
$\mathrm{V}_{\text {OL }}(1)$		0.4	V	$\mathrm{I}_{\text {OH }}=2 \mathrm{~mA}$ for outputs except SEN
$\mathrm{V}_{\mathrm{OL}}(2)$		0.4	V	$\mathrm{I}_{\mathrm{OH}}=4 \mathrm{~mA}$ for SEN


$\begin{aligned} & \mathrm{V}_{11} \\ & \underline{\mathrm{I}_{12}} \end{aligned}$	2.0	0.8	V	
INPUT CURRENT $I_{\mathrm{H}}$   In		$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{uA} \end{aligned}$	$\begin{aligned} & V_{1 H}=2.0 \mathrm{~V} \\ & V_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS (TA $=0 \mathrm{C}$ to $\left.+70 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \pm 5 \%\right)$





FIGURE 12


FIGURE 13

FIGURE 14

FIGURE 15


FIGURE 16




FIGURE 20


FIGURE 21


FIGURE A-PROCESSOR + HDC9224 CONTENTION TIMING FOR HARD DISK


FIGURE B-PROCESSOR TO 9224 ACCESS CYCLES

[^20]
# HIGH PERFORMANCE HARD DISK DATA SEPARATOR "HDDS" 

## FEATURES

Significantly reduces component count in hard disk systemsCompletely compatible with the HDC 9224 Universal Disk ControllerSimplifies design and improves performance of ST506 Hard Disk Controller sub-systemBuilt-in write precompensation logicEliminates costly critical "tune up" adjustmentsSpace saving 24 pin package saves board space and reduces critical layout problems.Printed Circuit Board Artwork available to facilitate prototyping and evaluation

PIN CONFIGURATION

PACKAGE: 24-pin D.I.P.   PACKAGE: 28 -pin PLCC			

## GENERAL DESCRIPTION

The HDC 9226 Hard Disk Data Separator (HDDS) is a 24 pin CMOS/LSI device, which when used with the HDC 9224 Universal Disk Controller significantly simplifies the design of a high performance hard disk data separator.
The HDC 9226, combined with a few discrete components, form a phase locked loop which performs phase and fre-
quency locking onto either the FM or MFM data stream output by ST506/ST412 type drives.
By reducing the number of critical discrete components to a minimum and eliminating all critical adjustments, the HDC 9226 simplifies the task of the designer.


HDC 9226
BLOCK DIAGRAM


## DESCRIPTION OF PIN FUNCTIONS

PIN. NO.	NAME	SYMBOL	DESCRIPTION
1	Read Clock	RCLK	Read clock output with nominal frequency of 5 MHz which defines the half bit boundaries of the RDATA output.
2	Read Data	$\overline{\text { RDATA }}$	This output is the regenerated raw read data from the drive. This signal conforms to all timing requirements of the UDC.
3	Early	EARLY	This input is connected to the HDC 9224, and causes the HDDS to send out the write data early.
4	Late	LATE	This input is connected to the HDC 9224, and causes the HDDS to send out the write data late.
5	Write Data	WDATA	This input is connected to the HDC 9224, and is the MFM encoded write data signal. This signal is passed through the HDDS and is delayed according to the write precompensation inputs EARLY and LATE.
6	10 Mhz Out	10MHZOUT	This output is normally connected to the CLK input on the HDC 9224.
7, 8	Crystal 1,2	XTAL 1,2	A 10 Mhz crystal may be connected between these two inputs. If a TTL signal is used in place of a crystal, the TTL signal (with pullup) should be connected to the XTAL 1 and the XTAL 2 input should be left open.
9	5 Mhz Out	5MHZOUT	This output is normally tied to the HDC 9224 DMACLK pin in systems that do not use the HDC 9225 Disk Buffer Management Unit.
10	Write Gate	WRGATE	This input is connected to the WRGATE output of the HDC 9224. When low the RDIN input is selected and is output to the delay line via the XDL pin. When in write mode (WRGATE active), the WDATA input is selected and output to the delay line via the XDL pin for precompensation.
11	Read Gate	RDGATE	This input signal, when active, allows the external VCO to begin locking on the incoming data from the drive. When this signal is inactive, the VCO will lock on to the 5 MHz output signal.
12	Ground	GND	This is the ground pin for the device
13	Write Data Out	WDOUT	This output is the precompensated version of the WDATA input. This output is normally connected to the write data signal of the hard disk drive.
14	Read Data In	RDIN	This input is normally connected to the Disk Data output of the drive. The leading edge of this input arms the internal phase comparator, and then also asserts the PMPUP output 50 ns later.
15	4 Times VCO	4XVCO	This input is connected to the external VCO and runs at a frequency of 4 times the data rate with RDGATE asserted. This signal is internally divided by 2 and feeds the phase comparator to generate the PMPDN signal. 4XVCO is also divided by four and output as the RCLK signal.
16	Pump Down	PMPDN	When active (low) this output will decrease the frequency of the VCO.
17	Pump Up	PMPUP	When active (low) this output will increase the frequency of the VCO.
18	Delay 50 ns	DLY50	This is the 50 ns delay of the XDL signal. The 50 ns tap is used to arm the phase detector and create a reclocked version of the raw read data from the drive.
19	Excite Delay Line	XDL	During write operations, when WRGATE is active, this output is identical to WDATA, and is output to the delay line, creating precise delays which are used to perform write precompensation.   When WRGATE is inactive, this output is the image of the raw read data the RDIN input. XDL is output to the delay line and is used to provide proper arming for the phase comparator and clocking for the data recovery circuitry.
20, 21	No Connect	NC	No connection should be made to these pins.
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	Delay 40   Delay 30	$\begin{aligned} & \hline \text { DLY40 } \\ & \text { DLY30 } \end{aligned}$	These inputs are delays of 30 and 40 ns of the XDL signal, and come from the external delay line. These signals are used for the nominal, late and early positioning of the databits in the WDOUT data stream.
24	$\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}$	+5 V supply connected to this pin.

## DESCRIPTION OF OPERATION

## DATA SEPARATION

The HDC 9226, in conjunction with an external VCO, tapped delay line and filter, allows the system designer to implement a high performance phase locked loop circuit to perform phase and frequency locking onto either an MFM or FM encoded data stream (from an ST-506 style disk drive.)
In most applications, the data on the hard disk is recorded in double density (MFM). In MFM mode, an input pulse on RDIN indicates not a 1 or 0 but rather a flux transition on the media and (by definition) these flux transitions may be spaced at T, 1.5T or 2 T time intervals, where T equals the inverse of the bit data rate. For the standard ST-506 drive, these time intervals are $200 \mathrm{~ns}, 300 \mathrm{~ns}$, and 400 ns .
Due to the nature of magnetic storage phenomena, the bit spacing found on the hard disk is not constant, but instead will modulate due to magnetic effects and drive rotational speed variations. The HDC 9226 compensates for these shifts in the RDIN signal coming from the drive and regenerates RDATA and RCLK.
The RCLK signal is derived from the VCO which changes its period as a function of the variations in the raw disk data and permits the data from the drive to be correctly clocked into the HDC 9224 Universal Disk Controller, independent of the bit spacing variations found in the raw data coming from the drive.
The VCO nominally runs at 20 Mhz . Since the half bit time (for data from the disk) is 100 ns , the HDC 9226 divides the 4 XVCO signal in half and compares the phase and frequency of the VCO with the incoming data. The read data signal is regenerated by the HDC 9266 and is placed cor-
rectly within the RCLK window so as to satisfy the input timing requirements of the HDC 9224 Universal Disk Controller.

## WRITE PRECOMPENSATION GENERATOR

The HDC 9226 also performs write precompensation which is needed because of tendency of written data to "re-align" itself on the magnetic media.
Certain bit patterns, when written, and later read back, will cause a phenomena known as "peak" or "bit" shift. Since this shifting is predictable, it is common when writing to magnetic media to intentionally pre-shift when these bits are to be written. This intentional "pre-shifting" minimizes the amount of shifting which occurs when the data is read back, and facilitates proper data recovery.
The HDC 9224 recognizes those patterns which require "pre-shifting" or precompensation, and outputs EARLY and LATE signals to alert the HDC 9226 to the need for precompensation.
Typical ST-506 applications may require "pre-shifting" the data bits by approximately 10 ns (either early or late). Three taps of the delay line (DLY30, DLY40, DLY50) are normally used to implement precompensation. The HDC 9226 then outputs the precompensated data via the WDOUT pin.

## PERFORMANCE SPECIFICATIONS

Complete performance specifications and specification definitions are contained in Technical Note 6-4, which is available from SMC Sales Offices and sales representatives. Technical Note 6-4 also contains full size PC board drawings and a complete bill of materials, useful in the prototyping of designs using the HDC 9226.

## MAXIMUM GUARANTEED RATINGS

## Operating Temperature Range

Storage Temperature Range $55 C$ to $+150 C$
Lead Temperature (soldering, 10 sec ) $+325 \mathrm{C}$
Positive Voltage on any Pin, with respect to Ground $V_{c c}+0.5 \mathrm{~V}$
Negative Voltage on any Pin, with respect to Ground $-0.5 \mathrm{~V}$
Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the "Maximum Guaranteed Ratings" not be exceeded, or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when AC power is switched off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL SPECIFICATIONS (TA $=0 \mathrm{C}$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%$ )


Notes:
(1) For all outputs except 10 MHzOUT and 5 MHzOUT
(2) For 10 MHzOUT and 5 MHzOUT
(3) For all inputs except XTAL 1 and 4XVCO
(4) For XTAL1 and 4XVCO

AC ELECTRICAL CHARACTERISTICS (TA $=0 \mathrm{C}$ to $+70 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \pm 5 \%$ )

Symbol	Min.	Typ.	Max.	Unit	
T			70	ns	figure 1
$\mathrm{T}_{2}$			80	ns	figure 1
T3			65	ns	figure 2
$\mathrm{T}_{4}$			70	ns	figure 2
$\mathrm{T}_{5}$			100	ns	figure 3
$\mathrm{T}_{6}$			100	ns	figure 3
$\mathrm{T}_{7}$			35	ns	figure 4
T8			35	ns	figure 4
$\mathrm{T}_{9}$			60	ns	figure 4
$\mathrm{T}_{10}$			70	ns	figure 4
$\mathrm{T}_{11}$			65	ns	figure 5
$\mathrm{T}_{12}$			65	ns	figure 5
$\mathrm{T}_{13}$			65	ns	figure 5
$\mathrm{T}_{14}$			65	ns	figure 5
$\mathrm{T}_{15}$			45	ns	figure 6
$\mathrm{T}_{16}$			45	ns	figure 7
T 17			45	ns	figure 8
$\mathrm{T}_{18}$	45	50	55	ns	figure 9
$\mathrm{T}_{19}$		50		ns	figure 10
$\mathrm{T}_{20}$		50		ns	figure 11
$\mathrm{T}_{21}$	6			ns	figure 12
T22	50			ns	figure 12




PC 1	PC 2
PC 3	PC 4

NOTE: The printed circuit board artwork shown above is included for illustration only. Camera ready artwork is available at no charge. Contact your SMC representative or regional sales office, and ask for Technical Note TN 6-4.
Blank PC boards (based on the illustrations above) are also available to facilitate evaluation and design. Contact your SMC representative or regional sales office for more information.


Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## High Performance Dual (Hard/Floppy Disk) Data Separator DDS

## FEATURES

Single chip combines high performance analog hard disk data separator and high resolution digital floppy disk data separatorSignificantly reduces component count in hard disk and floppy systemsCompletely compatible with the HDC 9224 Universal Disk ControllerEliminates all tuning and tweaking normally required by analog data separatorsBuilt-in hard disk write precompensation logicFabricated in CMOS technologySingle +5 V supply$\square$ TTL Compatible

PIN CONFIGURATION

$\mathrm{CD}_{0}[1$	28	2XRDCLK
$\mathrm{CD}_{1}-2$	27	RESET
RCLK 3	26	$V_{c c}$
RDATA [ 4	25	DLY30
EARLY [ 5	24	DLY40
LATE 6	23	VCOOUT
WDATA [ 7	22	DLYDAT
10MHZOUT [ 8	21	XDL
$20 \mathrm{MHz} / \mathrm{XTAL}_{1}$ - 9	20	DLY50
$\mathrm{XTAL}_{2} 10$	19	PMPUP
5MHZOUT 11	18	PMPDWN
WRGATE 12	17	4XVCO
RDGATE 13	16	RD IN
GND 14	15	WDOUT

PACKAGE: 28-pin DIP

## GENERAL DESCRIPTION

The HDC 9227 Universal Disk Data Separator (UDDS) is a 28 pin CMOS/LSI device, which when used with the HDC 9224 Universal Disk Controller significantly simplifies the design of the hard disk/floppy disk sub-system.
Internally, a precision floppy disk digital data separator is
combined with the digital portion of a high performance, self tuning analog hard disk data separator.
By reducing the number of critical discrete components to a minimum and eliminating all critical adjustments, the HDC 9227 simplifies the task of the system designer.


## DESCRIPTION OF PIN FUNCTIONS

PIN \#	NAME	SYMBOL	DESCRIPTION			
1,2	CLOCK DIVISOR   O AND 1	CD $_{0}$, CD		$	$	READ CLOCK
:---						
3						
RCD and CD, control the internal clock divider circuit and hard/						
floppy mode. See table 1.						

DESCRIPTION OF PIN FUNCTIONS

PIN \#	NAME	SYMBOL	DESCRIPTION
21	XDL	XDL	During write operations when WGATE is asserted, this output is identical to WDATA. XDL is output to the delay line thus creating precise delays which are used during write precompensation. When WGATE is not asserted, this output is the raw read data on the RDIN input. XDL is output to the delay line and is used to provide proper arming for the phase comparator and clocking for the reclocking circuitry.
22	TEST OUTPUT	DLYDAT	Leave disconnected.
23	TEST OUTPUT	VCOOUT	Leave disconnected.
24, 25	$\begin{aligned} & \text { DELAY40 } \\ & \text { DELAY30 } \end{aligned}$	$\begin{aligned} & \text { DLY 40, } \\ & \text { DLY } 30 \end{aligned}$	These inputs are delays of 40 and 30 ns of the XDL signal. The 40, 50 and 30 ns delays are used respectively for nominal, late and early positioning of the bits respectively in the WDOUT signal when in the hard disk mode.
26	5 VOLTS	+5V	This pin is the +5 V power pin for the device.
27	RESET	$\overline{\text { RESET }}$	For test only. Connect to +5 V or leave disconnected.
28	2XRDCLK	2XRDCLK	When in the HARD DISK mode this output is nominally 10 MHz . When in the FLOPPY mode this output is nominally 250 KHz , 500 KHz or 1 MHz depending on the selected transfer rate.   NOTE: This output is undefined when switching between data rates, modes and during "LOCK TIME" associated with the switching of RDGATE.

## DESCRIPTION OF OPERATION

The HDC 9227 contains a complete, high performance, digital data separator for floppy disk use as well as the digital portion of an analog data separator for hard disk use.

## HARD DISK MODE

(Selected when BOTH CD $D_{0}$ and $C D_{1}=0$ )
When in the hard disk mode, the HDC 9227, in conjunction with the HDC 9223, an external tapped delay line and filter (shown in Schematic 2) allows a system designer to implement a phase locked loop to perform phase and frequency locking onto MFM encoded data from a Winchester hard disk.
In MFM format a pulse on RDIN corresponds not to a 1 or a 0 but to a flux transition on the media. These flux transitions can be spaced at T, 1.5T, or 2T, time intervals where the data transfer bit rate is $T=1 /$ Freq. For the ST 506 drive, Freq. $=5 \mathrm{MHz}$ and the flux transitions may be spaced at 200,300 or 400 nanoseconds.
Due to the phenomena of magnetic storage, the bit spacing is not constant but instead will vary due to magnetic effects and drive rotational speed variation. To compensate for this, the HDC 9227 takes the Read Data from the drive and generates two signals, RDATA and RCLK. The RCLK signal, derived from the VCO, changes period as a function of the variations in the disk data, permitting the data from the drive to be correctly clocked into the HDC 9224 independent of bit spacing variations on the media.
The VCO runs nominally at 20 MHz since the bit spacing can change in 100 ns increments and the oscillator must have the ability to adjust its frequency at this interval. The HDC 9227 divides 4 XVCO by 2 and compares the phase of this signal to the incoming data. The positive edge of RDIN arms the phase detector for sampling the phase of the two signals. The positive edge of $4 \mathrm{XVCO} / 2$ asserts PMPDN. The positive edge of DLY50 asserts PMPUP. Sampling is terminated when PMPUP and PMPDN are both asserted. The signal RCLK is generated by dividing 4XVCO by four.
When the HDC 9224 wants to read data from the disk, it asserts RGATE. This signal tells the phase locked loop to acquire bit synchronization. If Read Gate is inactive, the VCO will be locked to a crystal controlled signal of 5 MHz .

The HDC 9227 also performs hard disk write precompensation. Certain bit patterns, when written and then read back, are shifted either late or early depending on the bit pattern. Since this "bit" or "peak shift" is predictable, intentionally writing these bits late or early will compensate for the shift during read back.
The HDC 9224 recognizes these patterns, and in addition to producing the write data waveform, will generate the signals EARLY or LATE to allow the HDC 9227 to write the bits at the appropriate time. Typically, bits are written early or late by 10 ns . The last 3 taps of the delay line allow the HDC 9227 to implement the precompensation as a function of the EARLY and LATE signals. The final output write waveform is presented to the drive on the WDOUT pin.

## FLOPPY DISK MODE

(Selected when either $C D_{0}$ or $C D_{1}=1$ )
When in the floppy mode the high performance digital data separator will accept data from the drive at $125 \mathrm{~K}, 250 \mathrm{~K}$, or 500 K data rates and output the appropriate regenerated clock and data signals.
The heart of the digital floppy disk data separator section is a synthetic oscillator phase locked loop. One half-bit cell of the incoming data stream corresponds to one cycle of the synthetic oscillator. Each oscillator cycle consists nominally of 20 phase slices. The circuit therefore needs a phase slice clock with a frequency of 20 times the half-bit cell time.
Detection of an input pulse away from the center "slot" of the half-bit cell causes a phase correction to be applied to the synthetic oscillator, bringing the center of the half-bit cell closer to the pulse.
A short history of input pulse detections (which induce phase corrections by the HDC 9227) is kept. This history is used to allow subsequent phase corrections to request upward or downward changes in center frequency, and helps compensate for drive speed variations.
Since the HDC 9227 provides a precompensated WDOUT (write data output) for floppy disks, this signal can be tied directly to the floppy drive and contains the precompensated write data required by the drive.

## MAXIMUM GUARANTEED RATINGS

Operating Temperature Range
0 to 70 C
Storage Temperature Range $55 C$ to $+150 C$

Positive Voltage on any Pin, with respect to Ground ............................................................. $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Negative Voltage on any Pin, with respect to Ground . -0.5 V

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that the "Maximum Guaranteed Ratings" not be exceeded, or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when AC power is switched off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

DC ELECTRICAL SPECIFICATIONS (TA $=0 \mathrm{C}$ to $70 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%$ )

Parameter	Min.	Max.	Units	Comments $\quad{ }^{\text {a }}$
SUPPLY CURRENT Icc			mA	
OUTPUT VOLTAGE				
$\mathrm{V}_{\text {OH }}$	2.4		V	$\mathrm{I}_{\mathrm{OH}}=400 \mathrm{uA}$ (All outputs except 10MHzOUT and 5MHzOUT)
$\mathrm{V}_{\text {OH }}$	4.3		V	$\mathrm{I}_{\mathrm{OH}}=400 \mathrm{uA}$ ( 10 MHzOUT and 5MHzOUT)
$\mathrm{V}_{\text {OL }}$		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
INPUT VOLTAGE				
	2.0		V	(For all inputs except $\mathrm{XTAL}_{1}$ and 4XVCO)
$V_{\text {IL }}$		0.8	V	(For all inputs except XTAL, ${ }^{\text {a }}$ a 4 XVCO )
$V_{\text {IH }}$	3.5		V	(For XTAL, ${ }^{\text {and 4XVCO) }}$
$\mathrm{V}_{1}$		1.5	V	(For XTAL ${ }_{1}$ and 4XVCO)
INPUT CURRENT				
$\mathrm{I}_{\text {IH }}$		10	$\mu \mathrm{A}$	$\mathrm{V}_{1+}=2.0 \mathrm{~V}$
IL		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$

AC ELECTRICAL CHARACTERISTICS (TA $=0 \mathrm{C}$ to $+70 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \pm 5 \%$ )

Symbol	Min.	Typ.	Max.	Unit	Comments
T			70	ns	figure 1
$\mathrm{T}_{2}$			80	ns	figure 1
$\mathrm{T}_{3}$			65	ns	figure 3
$\mathrm{T}_{4}$			70	ns	figure 3
$\mathrm{T}_{5}$			100	ns	figure 5
$\mathrm{T}_{6}$			100	ns	figure 5
$\mathrm{T}_{11}$			65	ns	figure 2
$\mathrm{T}_{12}$			65	ns	figure 2
$\mathrm{T}_{13}$			65	ns	figure 2
$\mathrm{T}_{14}$			65	ns	figure 2
$\mathrm{T}_{15}$			45	ns	figure 4
$\mathrm{T}_{16}$			45	ns	figure 6
$\mathrm{T}_{17}$			45	ns	figure 8
$\mathrm{T}_{18}$	45	50	55	ns	figure 9
$\mathrm{T}_{19}$	25			ns	figure 10
$\mathrm{T}_{20}$	25			ns	figure 11
$\mathrm{T}_{21}$	6			ns	figure 12
$\mathrm{T}_{22}$	50			ns	figure 12
$\mathrm{T}_{23}$	25		100	ns	figure 12
$\mathrm{T}_{24}$				ns	figure 7
$\mathrm{T}^{25}$				ns	
$\mathrm{T}_{26}$				ns	figure 7
$\mathrm{T}^{27}$				ns	figure 7
$\mathrm{T}^{28}$				ns	figure 7
$\mathrm{T}_{29}$				ns	figure 7




$\mathrm{CD}_{1}$	$\mathrm{CD}_{\mathbf{0}}$	Clock Rate	Data Rate	Drive Type and Mode
0	0	10 MHz	5 Mbs	Hard Disk, MFM
0	1	20 MHz	500 Kbs	FFoppy, MFM
1	0	10 MHz	250 Kbs	Floppy, FM or MFM
1	1	5 MHz	125 Kbs	Floppy, FM

TABLE 1.

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design under the patent rights of SMC or othe
and supply the best product possible.

## Keyboard Encoder

Part Number	No. of Keys	Modes	Features	Suffix	ndard Fonts Description	Power Supplies	Package	Page
KR-9600 XX ${ }^{(1)}$	90	4	2 or N Key Rollover	$\begin{aligned} & \text {-PRO } \\ & \text {-STD } \end{aligned}$	Binary Sequential ASCII	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \text { SMT } \end{aligned}$	665-678
KR-9601 XX ${ }^{(1)}$	90	4	2 or N Key Rollover, caps-lock,-012 auto-repeat	$\begin{aligned} & \text {-STD } \\ & -012^{(2)} \end{aligned}$	Binary Sequential ASCII	+5	$\begin{aligned} & 40 \mathrm{DIP} / \\ & 44 \text { SMT } \end{aligned}$	665-678
KR-9602 XX ${ }^{11}$	90	4	2 or N Key Rollover, caps-lock, auto-repeat, serial output	$\begin{aligned} & \hline \text { STD } \\ & -005^{(2)} \end{aligned}$	Binary Sequential ASCII		$\begin{aligned} & 28 \text { DIP } / \\ & 28 \text { SMT } \end{aligned}$	665-678

[^21]
# Keyboard Encoder Read Only Memory KEM 

## FEATURES

On-chip "caps" lock (KR9601, KR9602)On-chip auto repeat (KR9601, KR9602)Contact bounce protectionN Key Rollover or Lockout operation $\square$ Hysteresis on keyboard matrix inputsTri-state TTL compatible data outputsSerial output (on KR9602 only)Quad Mode (Normal, shift, control, shift-control)High frequency clock inputPin-compatible with KR3600 (KR9600)Static charge protection on all inputs and outputs+5 volt supply
## EXTERNALLY SELECTABLE OPTIONS ON KR9600 AND KR9601

$\square$ Pulse or level data ready output signalExternal clock inputOn chip master/slave oscillatorAll 10 output bits availableLockout/Rollover external selectionChip enable external selectionData complement controlAny Key Down outputSelectable Auto-Repeat rateProgrammable Auto-Repeat rate

PIN CONFIGURATION*

FUNCTION KR9600/KR9601			
OPTION see "pin	1 C	740	x0
OPTION assignment	25	$\square 39$	x 1
OPTION chart"	35	$\square 38$	x2
OPTION	4.	[37	x3
OPTION	50	036	$\times 4$
OPTION (B9 on KR9600)	65	$\square 35$	x5
data output B8	75	$\square 34$	$\times 6$
data output B7	85	233	x7
data output B6	95	$\square 32$	x8
data output B5	$10 \square$	$\square 31$	delay node
data output B4	115	130	$\mathrm{V}_{\mathrm{cc}}$
data output B3	$12 \square$	$\square 29$	shift input
data output B2	13 L	$\square 28$	control input
data output B1	14[	227	caps lock (NC on KR9600)
Gnd	$15 \square$	226	y9
data ready	16 C	225	y8
y0	17 C	224	y7
y1	$18 \square$	$\square 23$	y6
y2	$19 \square$	$\square 22$	y5
y3	204	『21	y4
FUNCTION			
X3	15	$\square 28$	X4
X2	25	227	X5
X1	35	226	X6
X0	40	[25	X7
Scan clock	$5 \square$	24	X8
Serial clock	65	$\square 23$	Delay node
Gnd	75	P 22	$V_{\text {cc }}$
Serial output	85	221	Shift
y0	95	220	Control
y1	$10 \square$	219	Caps Lock
y2	115	218	y9
y3	12 L	117	y8
y5	14 C	-15	y6

*PLCC (J LEAD QUAD PACK) also available.

## GENERAL DESCRIPTION

The KR9600/1/2 is a keyboard encoder that contains all the logic necessary to debounce and encode SPST keyswitches into a fully decoded data output of up to 10 bits. The KR9600/1/2 contains a 3600 bit ROM, 9 stage and 10 stage ring counters, a 10 bit comparator, timing circuitry, a 90 bit memory to store the location of encoded keys for N key rollover operation, an externally controllable delay net-
work for eliminating the effect of contact bounce, an output data buffer and TTL compatible output drivers.
The KR9600 and the KR9601 provide a parallel data output in a 40 pin configuration with pin selectable options, while the KR9602 provides a serial asynchronous output in a 28 pin configuration with mask programmable options. (Ref. KR9600/1/2 custom coding information sheet).



DESCRIPTION OF PIN FUNCTIONS

NAME	SYMBOL	KR9600   PIN \#	KR9601   PIN \#	KR9602   PIN \#	FUNCTION			
X OUTPUTS	X0-X8	$40-32$	$40-32$	$4-1$   $28-24$	External outputs from the 9-stage ring   counter to the keyboard to form X-Y   matrix with the keyboard switches as   the crosspoints.			
Y INPUTS	Y0-Y9	$17-26$	$17-26$	$9-18$	External inputs from the keyboard X-Y   matrix.			
EXTERNAL CLOCK   (see note)	$* * *$	1	1	5	External clock input.	$	$	S
:---								

Note: Caps Lock and Auto-Repeat are not available on KR9600.
See option selection table for pin assignment.

## DESCRIPTION OF OPERATION

The main clocks for the KR9600 and KR9601 are derived from either an external clock source or the Internal oscillator. The KR9602 requires an external clock. The external clock is routed to a divider with a mask programmable division rate from 1 to 63 to generate the internal clock.
The keys are scanned in a nine output by ten input matrix, each key having a unique input-output combination connected to it. The inputs all go selectively to a level detector which has logically variable (1's and 0's) levels and hysteresis. The outputs are enabled one at a time from output X0 towards $\mathrm{X8}$, at a rate of $10-100 \mathrm{KHz}$, through a 9 stage ring counter. The 10 inputs are searched one at a time from YO to Y 9 , through a 10 stage ring counter, each time one of the outputs is enabled. The output and input pins all have pullups to $\mathrm{V}_{\mathrm{cc}}$ and are precharged each clock even if the scan is stopped at one key. When a level on the selected path to the comparator matches a level on the corresponding comparator input from the 10 stage ring counter and the key has not been encoded, the switch bounce delay network is enabled. The key down stroke is examined, without advance to the next key location, until the key has been stable for the length of the DELAY CAP pin to discharge. The code for the depressed key is transferred to the output data buffer and the data ready signal appears.

The scan has two modes as determined by the LOckout/ Rollover option. Once a key is determined to be down the scan will not advance if in the LOckout mode. Consequently a new key closure is not detected until the previously depressed key is released. The scan sequence will resume upon key release and the output data buffer stores the code of the last key encoded. In the Rollover mode a " 1 " is stored in the encoded key memory and the scan sequence is resumed and the code for the last encoded key remains in the data output buffer. Each depressed key is encoded regardless of the state of the previously depressed keys. The internal keyboard ROM is 10 bits wide. Bits 1-8 are output via data outputs B1B8. Bits 9 and 10 may be output as data and/or utilized respectively for Caps-lock and Auto-repeat select. This allows mask programmable selection of which keys will have caps-lock and auto-repeat. When selected, the auto repeat will commence with a "long" delay after key depression followed by "short" delays. The duration of the delays varying with the clock frequency and the state of the ARD, AR0, and AR1 signals.
A Chip Enable input is available to enable the parallel output buffer. Data Ready can be put in the high-impedance state with Chip Enable (CE) or can be open drain as a mask programmable option to facilitate wire-oring as an interrupt.

In the serial output version of KR9602, when a key is debounced and then called valid, the serial shift register is loaded with the data ( 8 bits B1-B8) from the ROM, the data from the parity generator, and the data from the start and stop bits generator. Bits B9 and B10 are internally used respectively for Caps-lock and Auto-repeat select. The data register is then allowed to shift data out at the rate of one bit per 16 clocks of the baud rate clock pin, on the negative edge of that clock. If the baud rate clock is too slow with respect to the internal clock, and the keyboard were allowed to continue scanning when the data register is loaded, then new data could be loaded on top of shifting-out data.
To avoid this, if a new key is depressed before the previous data is fully shifted out of the device, including the stop bits, the delay cap will be allowed to decay but the internal logic will delay its effect until the shift out of the previous data is completed. If the new key is released before the end of the extended delay time it will not be encoded.

## OPTION SELECTION TABLE

Since the selected coding of each key and all the options are defined during the manufacture of the chip, the coding and options can be changed to fit any particular application of the keyboard. Up to 360 codes of up to ten bits can be programmed into the KR9600/KR9601 ROM covering most popular codes such as ASCII, EBCDIC, SELECTRIC etc. as well as many specialized codes.*

## Pin Assignment for KR9600/KR9601

The chip pins from pin \#1 thru pin \#6 are optionally connected to differing logic functions. Many of the functions are available on more than one pin.

PIN	FUNCTION (input unless noted)
1	Ext clock (opt. internal divisor of 1-63)**
1	Pin 1 of Internal oscillator.
2	Pin 2 of Internal oscillator.
2	Lo/Ro CC CE ARD** AR0** AR1**
3	Pin 3 of Internal oscillator.
3	Lo/Ro CC CE ARD** AR0** AR1**
4	AKO output
4	Lo/Ro CC CE ARD** ARO** AR1**
5	AKO or B10 output
5	Lo/Ro CC CE ARD** AR0** AR1**
6	B9 or AKO** output

## Options Available for the KR9602:

The following options can be obtained on the KR9602 only with a mask program, and are not pin selectable:

Lo/Ro, CC, AUTO-REPEAT, LONG DELAY, SHORT DELAY, CLOCK DIVISOR $1,2,4,8,16,32,63$; PARITY, 1 OR 2 STOP BITS.

## Legend


${ }^{*}$ Contact local sales office for custom coding sheet.
**Not available on the KR9600.

## PROGRAMMING OPTIONS

The various options on the KR9600 and KR9601 are user selectable via externally programmable pins, but they are fixed, internally mask programmed, for the KR9602.

## Oscillator:

The main clocks are derived from either an external clock source or from the Internal oscillator. The resultant signal is then routed to a divider with a mask programmable division rate from 2 to 63 . If no division is required then the divider is bypassed. The external clock requires one pin (pin \#1), while the Internal oscillator needs three pins (pins \#1, 2, 3) for frequency selection via an external resistor and capacitor.

## Lockout/Rollover: LO/RO

This option selects the operation of the key scan when a new key is detected. In Lockout the scan stops as long as the key is down. In Rollover the scan stops till the new key is debounced by the DELAY CAP and the key code is output. Then the key position is marked as down and the scan continues until another new key is seen. The option is selected either by an external pin or internally mask programmed, fixed in either state. The external LOckout selection is optionally hi or low active. A pulldown resistor to ground is optional.

## Complement Control: CC

This option inverts the logic true state of the DATA OUT-

PUTS and can optionally additionally invert the logic true state of the DATA READY pin. The option can be internally fixed as true or false where true will output a high logic level. When externally selected the option can be either input high or low active true. The pulldown to ground is optional.

## Data Ready:

The data ready pin is optionally either a pulse or level upon an output state ready to transfer. This transfer occurs when a new key is encoded or when the current key is repeating via the repeat logic. This output is individually capable of being disabled via CE or inverted via CC. To invert DATA READY is to have the pulse go logic low or the level fall to logic low active when the output is allowed to drive out of the chip.

## Any Key Down: AKO output

The AKO output is an indicator to tell that there is at least one key determined to be depressed. The output is optionally logic high or low true. The CE can be separately used to set the output in the high impedance mode. AKO will reset one full keyboard scan time after the last key is released. AKO cannot be inverted by CC (complement control).

## Chip Enable: $\overline{\mathrm{CE}}$

The chip enable option can be internally fixed to true or
can be externally selected. When an external pin is used the true level is only low true. The true state means that the outputs connected to CE will go to the driven state from the high-impedance condition. Output pins B1-B10 are always affected by Chip Enable (CE), optional for Data Ready and Any Key Down. A pulldown to ground is optional.

## Shift Control Lock: S C L

These three pins determine what will be output in response to a new key being detected. The Caps Lock pin is optional on the KR9601 and KR9602 but it is not available on the KR9600. All three pins have optional pulldown resistors to ground. The Lock option is allowed if data bit nine of the ten data bits is programmed as true. In other words the Rom is read with no lock logic allowed, but with the full influence of the Shift and Control pins. This determines the B9 output which is used to see if this key can be shifted (be it a control code or not) by modifying the effect of the Shift upon a second read of the rom. The operation of the allowed Lock follows this table:

L	B9	S	C	Result		
F	F	F	F	N	$\begin{aligned} & \mathrm{L}=\mathrm{CAPS} \text { LOCK } \\ & \mathrm{B9}=\text { DATA OUTPUT } 9 \\ & \mathrm{~N}=\mathrm{NORMAL} \end{aligned}$	
F	F	F	T	C		
F	F	T	F	S		
F	F	T	T	SC		
F	T	F	F	N	$\begin{aligned} & \mathrm{S}=\mathrm{SHIFT} \\ & \mathrm{C}=\mathrm{CONTROL} \end{aligned}$	
F	T	F	T	C		
F	T	T	F	S	SC $=$ SHIFT and CONTROL	
F	T	T	T	SC		
T	F	F	F	N		
T	F	F	T	C		
T	F	T	F	S		
T	F	T	T	SC		
T	T	F	F	S	Force $\mathrm{N}->\mathrm{S}$	allow shift
T	T	F	T	SC		(ie $\mathrm{m}->\mathrm{M}$ ) shift of Contro
T	T	T	F	*S/N	Opt Force S $->\mathrm{N}$	allow reverse
						(ie $M->m$ )
T	T	T	T	*SC/C	Opt Force SC->C	remove shift in Shift-Control

*The mask programmable option for the removal of the shift is coded as either ON for all keys or OFF. Note that the B9 DATA output (and all the others) is the code of the second decode. Note that shift only occurs when both the lock is true and the unmodified code gives a B9 ROM output as true.

## Repeat: ARD AR0 AR1

When the Auto-repeat option is selected and a key is pressed, either of two delays can be selected. Typically a long initial delay after the key is pressed, and short delays afterwards if the key is still pressed. These delays
consist of a programmable number of scan frequency time clocks varying from 2 to 131071 clock times.
This option is masked programmable and dependent on the programming of the data bit 10 of the ten data outputs to be true for the resultant key code (after lock logic) and upon whether any repeat action should occur at all.
There are three optional pins associated with the auto repeat logic: AR0, AR1, and ARD. Each of these can individually optionally have a pulldown resistor to ground. ARD controls the selection of the initial repeat delay count code, while the combination of AR0 and AR1 controls the selection of the short delays as shown below. If no external pins are desired then those functions can be mask programmed.

## TYPICAL INITIAL REPEAT DELAY COUNTS

ARD $=$ hi 80000 clock times
ARD $=$ low 40000 clock times
The repeat delays are selected by a two bit code where one decode is used to disable the repeat operation completely.

TYPICAL SECONDARY REPEAT COUNTS

AR0	AR1	Count
0	0	All Auto-Repeat Disabled
0	1	6250
1	0	3125
1	1	1250

## Typical Example:

One typical approach would be to mask program ARD for only one long delay value and mask ARO to ground. This way one can save two option pins for ARD and ARO and still be able to select or disable auto-repeat via AR1 and have the option of having one fixed short delay value.

## ROM Data:

The actual programming data is in 10 bit wide characters with four function codes for each key position. There are 90 key positions organized as 9 " X " outputs with 10 " Y " inputs. The four functions as previously defined are Control, Shift, Normal, and Shift-Control.
The use of the optional Lock requires the programming of the B9 data bit. The use of the optional Auto-Repeat requires the programming of the B10 data bit. If the B9 or B10 outputs are used then these will show the result of the contents of the "corrected" key function data bits. The "corrected" function is the possibly changed Normal to Shift etc. etc. so that the output is that of the 'Shifted key code' NOT that of the initial key code.

## Minimum Switch Closure:



## CONDITIONS:

The clock divider is 1 so that CIkl is "same as clock IN".
A key is pressed down at XOYO but the delay cap has not timed out. Data Ready is high true and we have already had another key.
DataRP = Data Ready as a Pulse DataRL = Data Ready as a Level


Condition: Test mode autorepeat at divide by 4 and keep key down


## ELECTRICAL CHARACTERISTICS: KR9600, KR9601, KR9602

## MAXIMUM GUARANTEED RATINGS



ELECTRICAL CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, unless otherwise noted)


NOTE: The KR9600 is a direct replacement for the KR3600. Please note that due to the logic level of the KR9600, when replacing the KR3600 in a N-Key rollover system where diodes are utilized, the polarity of the diodes must be reversed.

* Divisor on ḲR9601/02 must be selected such that the resulting internal scan frequency is 10 KHz min to 100 KHz max.
** Parts optionally available in extended temperature ranges in hermetic packages. Inquire at factory.


## KR9600-PRO DESCRIPTION

The KR9600 PRO is a MOS/LSI device intended to simplify the interface of a microprocessor to a keyboard matrix. Like the other KR9600 parts, the KR9600 PRO contains all of the logic to de-bounce and encode keyswitch closures, while providing either a 2 -key or N -key rollover.

The output of the KR9600 PRO is a simple binary code which may be converted to a standard information code by a PROM or directly by a microprocessor. This permits a user maximum flexibility of key layout with simple field programming.

The code in the KR9600 is shown in Table I. The format is simple: output bits, $9,8,7,6,5,4$ and 1 are a binary sequence. The count starts at $\mathrm{XO}, \mathrm{YO}$ and increments through XOY1, XOY2...X8Y9. Bit 9 is the LSB; bit 1 is the MSB.

Bits 2 and 3 indicate the mode as follows:

Bit 2	Bit 3	
0	0	Normal
0	1	Shift
1	0	Control
1	1	Shift Control

For maximum ease of use and flexibility, an internal scanning oscillator is used, with pin selection of N-key lockout (also known as 2-key rollover) and N-key rollover. An "any-key-down" output is provided for such uses as repeat oscillator keying.
Figure 1 shows a PROM-encoded 64 key, 4 mode application, using a $256 \times 8$ PROM, and Figure 2 a full 90 key, 4 mode application utilizing a $512 \times 8$ PROM.
If N -key rollover operation is desired, it is recommended that a diode be inserted in series with each switch as shown. This prevents "phantom" key closures from resulting if three or more keys are depressed simultaneously.


TABLE 1
KR9600-PRO CODING SHEET AND OPTIONS

XY	$\begin{gathered} \text { Normal } \\ \text { B-12345678 } 910 \end{gathered}$	$\begin{gathered} \text { Shift } \\ \text { B-12345678 } 910 \end{gathered}$	$\begin{gathered} \text { Control } \\ \text { B-12345678 } 910 \end{gathered}$	Shift/Control B-12345678 910
00	000000000	001000000	010000000	011000000
01	000000001	001000001	010000001	011000001
02	000000010	001000010	010000010	011000010
03 04	000000011 000000100	001000011 001000100	010000011 010000100	011000011 011000100
05	000000101	001000101	010000101	011000101
06	000000110	00:000110	010000110	011000110
07	000000111	001000111	010000111	011000111
08	000001000	001001000	010001000	011001000
09	000001001	001001001	010001001	011001001
10	000001010	001001010	010001010	011001010
11	000001011	001001011	010001011	011001011
12	000001100	001001100	010001100	011001100
13	000001101	001001101	010001101	011001101
14	000001110	001001110	010001110	011001110
15	000001111	001001111	010001111	011001111
16	000010000	001010000	010010000	011010000
17	000010001	001010001	010010001	011010001
18	000010010	001010010	010010010	011010010
19	000010011	001010011	010010011	011010011
20	000010100	001010100	010010100	011010100
21 22	000010101 000010110	001010101 001010110	010010101 010010110	011010101 011010110
23	000010111	001010111	010010111	011010111
24	000011000	001011000	010011000	011011000
25	000011001	001011001	010011001	011011001
26	000011010	001011010	010011010	011011010
27	000011011	001011011	010011011	011011011
28	000011100	001011100	010011100	011011100
29	000011101	001011101	010011101	011011101
30	000011110	001011110	010011110	011011110
31	000011111	001011111	010011111	011011111
32	000100000	001100000	010100000	011100000
33 34	000100001	001100001 001100010	010100001 010100010	011100001
34 35	000100010	001100010 001100011	010100010 010100011	011100010 011100011
36	000100100	001100100	010100100	011100100
37	000100101	001100101	010100101	011100101
38	000100110	001100110	010100110	011100110
39	000100111	001100111	010100111	011100111
40	000101000	001101000	010101000	011101000
41	000101001	001101001	010101001	011101001
42	000101010	001101010	010101010	011101010
43 44	000101011 000101100	001101011 001101100	010101011 010101100	011101011 011101100
45	000101101	001101101	010101101	011101101
46	000101110	001101110	010101110	011101110
47	000101111	001101111	010101111	011101111
48	000110000	001110000	010110000	01.1110000
49 50	000110001 000110010	001110001 001110010	010110001 010110010	011110001 011110010
51	000110011	001110011	010110011	011110011
52	000110100	001110100	010110100	01110100
53	000110101	001110101	010110101	011110101
54	000110110	001110110	010110110	011110110
55	000110111	001110111	010110111	011110111 011111000
57	000111001	001111001	010111001	011111001
58	000111010	001111010	010111010	011111010
59	000111011	001111011	010111011	011111011
60	000111100	001111100	010111100	011111100
61	000111101	001111101	010111101	011111101
62	000111110 000111111	001111110 001111111	010111110 010111111	011111110 011111111
64	100000000	101000000	110000000	111000000
65	100000001	101000001	110000001	111000001
66	100000010	101000010	110000010	111000010
67	100000011 100000100	101000011 101000100	110000011	111000011
68	100000100 100000101	101000100 101000101	110000100 110000101	111000100 111000101
70	100000110	101000110	110000110	111000110
71	100000111	101000111	110000111	111000111
72	100001000	101001000	110001000	111001000
73 74 7	100001001	101001001	110001001	111001001
74 75	100001010 100001011	101001010 101001011	110001010 110001011	111001010 111001011
76	100001100	101001100	110001100	111001100
77	100001101	101001101	110001101	111001101
78	100001110	101001110	110001110	111001110
79	100001111	101001111	110001111	111001111
80 81	100010000 100010001	101010000 101010001	110010000 110010001	111010000 111010001
82	100010010	101010010	110010010	111010010
83	100010011	101010011	110010011	111010011
84	100010100	101010100	110010100	111010100
85	100010101	101010101	110010101	111010101
86 87	100010110 100010111	101010110 101010111	110010110 110010111	111010110
88	100011000	101011000	110011000	111011000
89	100011001	101011001	110011001	111011001

OPTIONS:
Internal Oscillator (Pins 1, 2, 3)
Lockout/Rollover (Pin 4)
Internal Resistor to GND
Lockout is Logic 1

Pulse Data Ready
Any Key Down (Pin 5) Positive Output Internal Resistor to GND on Shift and Control Pins

CODING FOR KR9600-STD

	$\begin{gathered} \text { Normal } \\ \text { B- } 12345678910 \end{gathered}$		$\underset{\text { B- } 12345678910}{\text { Shift }}$	$\begin{gathered} \text { Control } \\ \text { B-12345678910 } \end{gathered}$		Shift Control   B-12345678910	
00	1	1000111001	< 0011111001	1	1000111011	SUB	0101100001
01	q	1000110101	Q 1000100101	q	1000111111	DLE	0000100001
02	a	1000010101	A 1000000101	a	1000011111	(a)	0000000101
03	2	0101110101	Z 0101100101	2	0101111111	P	0000100101
04	HT	1001000001	HT 1001000001	HT	1001000001		1001000101
05	H	0001000101	H 0001000101	H	0001000101	H	0001000111
06	+	1101011001	+ 1101011001	+	1101011001	+	1101011011
07	SO	0111001001	> 0111111001	SO	0111000001	SO	0111000011
08	p	0000110101	(a) 0000000101	NUL	0000000001	NUL	0000000001
09	1	1000111001	! 1000011001	SOH	1000000001	SOH	1000000001
10	2	0100111001	(1) 0000000101	2	0100111011	ETB	1110100001
11	w	1110110101	W 1110100101	w	1110111111		0011100101
12	s	1100110101	S 1100100101	s	1100111111	A	1000000101
13	x	0001110101	X 0001100101	x	0001111111	Q	1000100101
14	RS	0111100001	RS 0111100001	RS	0111100001	FS	0011100001
15	\%	1010011001	\% 1010011001	\%	1010011001	\%	1010011011
16	m	1011010101	d 1011100101	CR	1011000001	CR	1011000001
17	SI	1111000001	SI 1111000001	SI	1111000001	SI	1111000011
18	$n$	0111010101	0111100101	SO	0111000001	SO	0111000001
19	2	0100111001	" 0100011001	STX	0100000001	STX	0100000001
20	3	1100111001	\# 1100011001	3	1100111011	NAK	1010100001
21	e	1010010101	E 1010000101	-	1010011111	DC3	1100100001
22	d	0010010101	D 0010000101	d	0010011111	B	0100000101
23	c	1100010101	C 1100000101	c	1100011111	R	0100100101
24	-	1111100100	- 1111100100	-	1111100100		0111100100
25	\$	0010011001	\$ 0010011001	\$	0010011001	\$	0010011011
26	L	0011000101	L 0011000101	L	0011000101	L	0011000111
27	US	1111100001	US 1111100001	US	1111100001	US	1111100011
28	6	0110111001	\& 0110011001	ACK	0110000001	ACK	0110000001
29	k	1101010101	I 1101100101	DEL	1111111101	DEL	1111111101
30	4	0010111001	\$ 0010011001	4	0010111011	DC4	0010100001
31	r	0100110101	R 0100100101	r	0100111111	ENQ	1010000001
32	1	0110010101	F 0110000101	${ }^{\text {f }}$	0110011111	C	1100000101
33	SP	0000011000	SP 0000011000	SP	0000011000	SP	0000011000
34	CAN	0001101000	( 0001011000	CAN	0001100000	BS	0001000000
35	CR	1011000001	CR 1011000001	CR	1011000001	M	1011000101
36		1101111101	( 1101111101		1101111111	K	1101000101
37	$\checkmark T$	1101000000	VT 1101000000	VT	1101000000	VT	1101000010
38	7	1110111001	, 1110011001	BEL	1110000001	BEL	1110000001
39	"	0100011001	" 0100011001		0100011001		0100011011
40	5	1010111001	\% 1010011001	5	1010111011	STX	0100000001
41	$t$	0010110101	T 0010100101	$t$	0010111111	EOT	0010000001
42	g	1110010101	g 1110000101	G	1110011111	D	0010000101
43	$\checkmark$	0110110101	$\checkmark 0110100101$	$\checkmark$	0110111111	S	1100100101
44	ETX	1100000001	ETX 1100000001	ETX	1100000001	ETX	1100000001
45		1011111101	? 1011111101	1	101111111	N	0111000101
46	?	1111111001	? 1111111001	?	1111111011	I	1101100101
47		1011011001	- 1011111001	-	1011011001	-	1011011011
	SP	1001011001	C) 1001011001	SP	1001011001	SP	1001011011
49	SP	0000011001	SP 0000011001	SP	0000011001	SP	0000011011
50	6	0110111001	$>0111111001$	6	0110111011	SOH	1000000001
51	y	1001110101	Y 1001100101	y	1001111111	DC1	1000100001
52	h	0001010101	H 0001000101	h	0001011111	E	1010000101
53	b	0100010101	B 0100000101	b	0100011111	T	0010100101
54		0101111001	- 0101011001	:	0101111011	SYN	0110100001
55	$>$	0111111001	> 0111111001	$>$	0111111011	Z	0101100101
56		1101111001	+ 1101011001		1101111011	Y	1001100101
57	NUL'	0000000001	NUL 0000000001	NUL'	0000000001	NUL	0000000001
58		0101011001	- 0101011001		0101011001		0101011011
59	!	1000011001	! 1000011001		1000011001	-	1000011011
60	7	1110111001	\& 0110011001	7	1110111011	ETX	1100000001
61	u	1010110101	U 1010100101	4	1010111111	BEL	1110000001
62	j	0101010101	J 0101000101	j	0101011111	F	0110000101
63	$n$	0111010101	N 0111000101	n	0111011111	U	1010100101
64	$=$	1011111000	= 1011111000	=	1011111010	=	0111111100
65	$<$	0011111001	< 0011111001	$<$	0011111011	W	1110100101
66	p	0000110101	P 0000100101	p	0000111111	$J$	0101000101
67	0	0000111001	) 1001011001	0	0000111011	DC2	0100100001
68	\&	0110011001	\& 0110011001	\&	0110011001	\&	0110011011
69	\#	1100011001	\# 1100011001	\#	1100011001	\#	1100011011
70	8	0001111001	* 0101011001	8	0001111011	ESC	1101100001
71	,	1001010101	- 1001000101	i	1001011111	ACK	0110000001
72	k	1101010101	K 1101000101	k	1101011111	G	1110000101
73	m	1011010101	M 1011000101	m	1011011111	$\checkmark$	0110100101
74	,	1111011001	? 1111111001	1	1111011001		110011001
75		1110011001	" 0100011001		1110011001	GS	0100011001
76	LF	0101000000	LF 0101000000	LF	0101000000	GS	1011100000
77		1011111001	+ 1101011001		1011111001	$\stackrel{+}{+}$	1101011001
78	FF	0011001001	$<0011111001$	FF	0011000001	FF	0011000011
80	9	1001111001	( $\begin{aligned} & 0001011001 \\ & 0001011001\end{aligned}$	9	0001011001 1001111011	EM	0001011011 1001100001
81	-	1111010101	O 1111000101	0	1111011111	]	1011100101
82	,	0011010101	L 0011000101	1	0011011111	$\chi$	0001100101
83		0011011001	, 0011011001		0011011001		0011011011
84		0111011001	- 0111011001		0111011001		0111011011
85		1101111001	- 0101111001		1101111001		0101111001
86	]	1011100101	[ 1101100101		1011100101		1101100101
87	-	1011011001	- 1111100101	-	1011011001	-	111100101
88	0	0000111001	00000111001	$\bigcirc$	0000111001	0	0000111001
89		1001111001	) 1001011001	HT	1001000001	HT	1001000001

OPTIONS

Internal Oscillator (Pins 1, 2, 3)
Any Key Down (Pin 4) Positive Output N-Key Rollover only
Pulse Data Ready signal

Internal Resistor to GND on Shift and Control Pins KR9600-STD outputs provides ASCII bits 1-6 on B1-B6, and bit 7 on B8


OPTIONS FOR THE KR9601-STD:
PINS 1, 2, 3 INTERNAL OSCILLATOR [Input clock divisor = 1]
PIN 4 CE [ActiveLow]
PIN 5 AR1 [AR0 fixed at Lo $=0$
FIXED LONG DELAY OF 40000 CLOCK TIMES] [FIXED SHORT DELAY OF 6250 CLOCK TIMES]
PIN 6 AKO [positive true]
Pulsed DATA READY signal
N-KEY ROLLOVER
Pull-down resistor to ground at the following pins:

```
_ SHIFT
_ CONTROL
_ CAPS-LOCK
_ ARO
```


## OPTIONS FOR THE KR9602-STD:

## N-KEY ROLLOVER

## AUTO-REPEAT

(FIXED LONG DELAY OF 40000 CLOCK TIMES) (FIXED SHORT DELAY OF 6250 CLOCK TIMES)

## 1 STOP bit.

No PARITY bit.
Input clock divisor of 63
Pull-down resistor to ground at the following pins:
-SHIFT
-CONTROL
-CAPS-LOCK

OSCILLATOR FREQUENCY vs C1 FOR KR9600/KR9601


KEYBOARD LAYOUT FOR KR9601/9602-STD


| $X 8$ |
| :--- | :--- |
| $Y 3$ | | $x 8$ |
| :--- |
| $Y 2$ |



$\times 8$
$Y 9$


$X 8$
$Y 8$


$\times 8$
$Y 7$


Part Number	Description	Feature	$\begin{gathered} \text { Max } \\ \text { Clock Freq. } \end{gathered}$	Power Supply	Package	Page
SR 5015-80, 81, 133	Quad Static Shift Register Mask Programmable Length	Load, Recirculate, Shift Controls	1 MHz	+5	16 DIP	673-676
SR 5017	Quad 133 Bit	Shift Left/Shift Right, Recirculate Controls	1 MHz	+5	16 DIP	677-680
SR 5018	Quad 81 Bit					

## Quad Static Shift Register

## FEATURES

$\square$ COPLAMOS ${ }^{\circledR}$ N Channel Silicon Gate Technology
$\square$ Variable Length—Single Mask
Programmable-1 to 134 bitsDirectly TTL-compatible on all inputs, outputs, and clockClear functionOperation guaranteed from DC to 1.0 MHzRecirculate logic on-chipSingle +5.0 V power supplyLow clock input capacitance16 pin ceramic DIP PackagePin for Pin replacement for AMI S2182, 83, 85

PIN CONFIGURATION


## APPLICATIONS

## Memory Buffering

$\square$ Unique Buffering LengthsTerminals
BLOCK DIAGRAM


## General Description

The SMC SR 5015-XXX is a quad static shift register family fabricated using SMC's COPLAMOS ${ }^{\circledR} \mathrm{N}$ channel silicon gate process which provides a higher functional density and speed on a monolithic chip than conventional MOS technology. The COPLAMOS ${ }^{\circledR}$ process provides high speed operation, low power dissipation, low clock input capacitance, and single +5 volt power supply operation.

These shift registers can be driven by either $\mathrm{T}^{2} \mathrm{~L}$ circuits or by MOS circuits and provide driving capability to MOS or $\mathrm{T}^{2} \mathrm{~L}$ circuits. This device consists of four separate static shift registers with independent input and output terminals and logic for loading, recirculating or shifting information. The SR 5015-80, SR 5015-81, and SR 5015-133 are respectively 80, 81, and 133 bit quad shift registers.

The recirculate control pin is common for registers A, B, and C. Register D has an independent recirculate control pin as well as a recirculate input pin.

A clear pin has been provided that will cause the shift register to be cleared when the pin is at Vcc . A single $\mathrm{T}^{2} \mathrm{~L}$ clock is required for operation.

The transfer of data into the register is accomplished on the low-to-high transition of the clock with the recirculate control low. For long term data storage the clock may be stopped and held in either logic state. Recirculate occurs when the recirculate control is high. Output data appears on the low-to-high transition of the clock pulse.

Bits 81 and 133 are available for flag storage.
This device has been designed to be used in high speed buffer storage systems and small recirculating memories.
Special custom configurations are achieved via single mask programming in lengths of 1 to 134 bits.

```
MAXIMÜM GUARANTEED RATINGS*
```



```
 Storage Temperature Range . %
 Lead Temperature (soldering, 10 sec.) . +325```
 Positive Voltage on any Pin, with respect to ground . 8.0V
 Negative Voltage on any Pin, with respect to ground . 0. 0.3V
 *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional
 operation of the device at these or at any other condition above those indicated in the operational sections of this
 specification is not implied.
ELECTRICAL CHARACTERISTICS (TA=0'C to 70
```

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. Characteristics					
INPUT VOLTAGE LEVELS					
Low Level, VIL			0.8	V	
High Level, VIH	Vcc-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{ma}$
High Level, Уон	Vcc-1.5	4.0		V	$\mathrm{loh}^{\text {¢ }}=100 \mu \mathrm{a}$
INPUT LEAKAGE CURRENT			1.0	$\mu \mathrm{a}$	$\mathrm{Vin}=\mathrm{Vcc}$
CLOCK, CLEAR			25	pf	
All Other			10	pf	
POWER SUPPLY CURRENT			80	ma	
A.C. Characteristics					$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
CLOCK					
PWH	300			ns	
PWL	600			ns	
Transition, tr, tf		0.02	1.0	$\mu \mathrm{s}$	
Repetition Rate, 1/T	0		1.0	MHz	
$t$ Delay	300			ns	
INPUT DATA					
to, set-up	100			ns	
to, hold	200			ns	
PWo	300			ns	
OUTPUT DATA					
RECIRCULATE CONTROL					
tr, set-up	200			ns	
tr, hold	300			ns	
PWh	500			ns	
CLEAR					
PWclear	20			$\mu \mathrm{S}$	

## TIMING DIAGRAMS



## Description of Pin Functions

Pin No.	Symbol	Name	Function
1	A	Input A	Input signal which is either high or low depending on what word is to be loaded into shift register.
2	RECABC	Recirculate ABC	Input signal when high disconnects inputs from registers and connects outputs to inputs, thus recirculating data. Recirculates only A, B, C outputs.
3	CLR	Clear	Input signal when high forces outputs to a low state immediately and clears all the registers.
4	B	Input B	Input signal for B register.
5	Oв	Output B	Output signal for B register.
6	GND	GND	Power supply Ground.
7	Vcc	+5 Volt	5 volt power supply.
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	Oc CLK	Output C Clock Input	Output signal for C register. Input signal which is normally low and pulses high to shift data into the registers. The data is clocked in on low to high edge of clock.
10	C	Input C	Input signal for C register.
11	NC	NC	
12	RECD	Recirculate Control D	Input signal which is normally low and, when goes high, disconnects Input D to register and connects Recirculate Input D to register.
13	D	Input D	Input signal for D register.
14	Oio	Output D	Output signal for D register.
15	RID	Recirculate Input D	Input signal which is the input to the $D$ register when Recirculate Control $D$ is high: $\operatorname{RECD}=1$.
16	OA	Output A	Output signal for A register.

## APPLICATIONS

Line Buffer for CRT Display . . . 80 Characters per line.


Line Buffer for Matrix Printer . . . 132 Characters per line.
 assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

## Quad Static Shift Right/Shift Left Shift Register Last In First Out Buffer LIFO

## FEATURES

COMPLAMOS ${ }^{\circledR}$ N-Channel Silicon Gate Technology.Quad 81 bit or Quad 133 bitDirectly Compatible with $T^{2}$ L, MOSOperation Guaranteed from DC to 1.0 MHzRecirculate logic on-chipSingle +5.0 V power supplyLow clock input capacitance
Single phase clock at $\mathrm{T}^{2} \mathrm{~L}$ levels
Clear function16-pin Ceramic DIP Package

## APPLICATIONS

Bi-Directional PrinterComputers-Push DownStack-LIFOBuffer data storage-memory bufferDelay lines-delay line processingDigital filtering

PIN CONFIGURATION
Telemetry SystemsTerminalsPeripheral Equipment

BLOCK DIAGRAM


## General Description

The SMC SR 5017 and SR 5018 are quad 133 (SR 5017) and quad 81 (SR 5018) bit static shift registers utilizing SMC's COPLAMOS ${ }^{\oplus} \mathrm{N}$ channel silicon gate process. The COPLAMOS ${ }^{\circledR}$ process provides high speed operation, low power dissipation, low clock input capacitance, and requires only a single +5 volt power supply.

These shift registers can be driven by either $\mathrm{T}^{2} \mathrm{~L}$ circuits or by MOS circuits and provide driving capability to MOS to $\mathrm{T}^{2} \mathrm{~L}$ circuits.

This device consists of four separate static shift registers with independent input and output terminals and logic for loading, recirculating or shifting information right or left. This shift left/shift right (L/R Control) control input is common to all registers.

The recirculate control input is common for registers $A, B$, and $C$. Register $D$ has an independent recirculate control input as well as a Recirculate Input.

A Clear input has been provided that will cause the shift register to be cleared when the input is at Vcc . A single $\mathrm{T}^{2} \mathrm{~L}$ clock input is required for operation.

The transfer of data into the register is accomplished on the low-to-high transition of the clock with the recirculate control low. For long term data storage the clock may be stopped and held in either logic state. Recirculate occurs when the recirculate control is high. Output data appears on the low-to-high transition of the clock pulse.

Bits 81 or 133 are available for flag storage.

```
MAXIMUM GUARANTEED RATINGS*
 Operating Temperature Range .. \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
 Storage Temperature Range . \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
 Lead Temperature (soldering, 10 sec.) . .. \(325^{\circ} \mathrm{C}\)
 Positive Voltage on any Pin, with respect to ground . 8.0 C
 Negative Voltage on any Pin, with respect to ground . -0.3 V
 *Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional
 operation of the device at these or at any other condition above those indicated in the operational sections of this
 specification is not implied.
ELECTRICAL CHARACTERISTICS (\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%\), unless otherwise noted)
```

Parameter	Min.	Typ.	Max.	Unit	Comments
D.C. Characteristics INPUT VOLTAGE LEVELS					
Low Level, VIL			0.8	V	
High Level, VIH	Vcc-1.5		Vcc	V	
OUTPUT VOLTAGE LEVELS					
Low Level, Vol			0.4	V	$\mathrm{loL}=1.6 \mathrm{ma}$
High Level, Уон	Vcc-1.5	4.0		V	$\mathrm{IOH}=100 \mu \mathrm{a}$
INPUT LEAKAGE CURRENT			1.0	$\mu \mathrm{a}$	$\mathrm{V}_{\mathrm{in}}=\mathrm{Vcc}$
CLOCK, CLEAR			25	pf	
All Other			10	pf	
POWER SUPPLY CURRENT			100	ma	
A.C. Characteristics					$T_{A}=+25^{\circ} \mathrm{C}$
CLOCK					
PWH	300			ns	
PWL	600			ns	
		0.02	1.0	$\mu \mathrm{s}$	
Repetition Rate, 1/T	0		1.0	MHz	
t Delay	500			ns	
INPUT DATA					
to, set-up	150			ns	
to, hold	150			ns	
PWo	300			ns	
OUTPUT DATA					
RECIRCULATE CONTROL					
tr, set-up	200			ns	
tr, hold	300			ns	
PWh	500			ns	
CLEAR					
PWclear	20			$\mu \mathrm{S}$	



## Description of Pin Functions

Symbol	Name	Pin	Function
D	Input D	1	Input signal for D register.
RID	Recirculate Input D	2	Input signal which is the input to the $D$ register when recirculate control $D$ is high: RECD $=1$.
Od	Output D	3	Output signal for D register.
CLR	Clear	4	Input signal when high forces outputs to a low state immediately and clears all the registers.
OA	Output A	5	Output signal for A register.
L/R CON	Shift Left/Shift Right Control	6	Inpuit signal which is low for loading data and for shifting right. When L/R CON is high, the register will shift left.
A	Input A	7	Input signal which is either high or low depending on what word is to be loaded into shift register.
CLK	Clock Input	8	Input signal which is normally low and pulses high to shift data into the registers. The data is clocked in on low to high edge of clock.
Vcc	5 Volt	9	5 volt power supply.
RECABC	Recirculate ABC	10	Input signal when high disconnects inputs from registers and connects outputs to inputs, thus recirculating data. Recirculates only $\mathrm{A}, \mathrm{B}, \mathrm{C}$ outputs.
Ов	Output B	11	Output signal for B register.
B	Input B	12	Input signal for B register.
C	Input C	13	Input signal for C register.
Oc	Output C	14	Output signal for C register.
GND	GND	15	Ground.
RECD	Recirculate Control D	16	Input signal which is normally low and, when goes high, disconnects Input D to register and connects RECIRCULATE INPUT D to register.



## APPLICATION

Line Buffer for Bidirectional Matrix Printer . . . 80/132 characters per line


## (n) Microprocessor Products

Part Number	Description	Size	Process	Speed	Power   Supplies	Package	Page
MPU800	Microprocessor	8 Bit	CMOS	2.5 MHz	5V	40 DIP	691-714
MPU800-1	Microprocessor	8 Bit	CMOS	1.0 MHz	5 V	40 DIP	691-714
MPU800-4	Microprocessor	8 Bit	CMOS	4.0 MHz	5V	40 DIP	691-714
MPU810A	R.AM-I/O-Timer	8 Bit	CMOS	2.5 MHz	5V	40 DIP	715-726
MPU810A-1	RAM-I/O-Timer	8 Bit	CMOS	1.0 MHz	5 V	40 DIP	715-726
MPU810A-4	RAM-I/O-Timer	8 Bit	CMOS	4.0 MHz	5V	40 DIP	715-726
MPU830	ROM-I/O	8 Bit	CMOS	2.5 MHz	SV	40 DIP	727-734
MPU830-1	ROM-1/0	8 Bit	CMOS	1.0 MHz	5V	40 DIP	727-734
MPU830-4	ROM-I/O	8 Bit	CMOS	4.0 MHz	5V	40 DIP	727-734
MPU831	I/O	8 Bit	CMOS	2.5 MHz	5V	40 DIP	727-734
MPU831	$1 / 0$	8 Bit	CMOS	1.0 MHz	5V	40 DIP	727-734
MPU831-4	I/0	8 Bit	CMOS	4.0 MHz	5V	40 DIP	727-734

## High-Performance Low-Power Microprocessor

## FEATURES

Variable Power Supply: 2.4V - 6.0 VFully Compatible Wth Z80 ${ }^{(9)}$ Instruction SetPin-Compatible With NSC800
Powerful Set of 158 Instructions10 Addressing Modes
22 Internal Registers
Low Power: 50 mW at 5 V Vcc
Multiplexed Bus Structure
On Chip Bus Controller and Clock Generator On-Chip 8 bit Dynamic RAM Refresh Circuitry $\square$ Three Speed Versions: MPU800-4 4 MHz
MPU800 $\quad 2.5 \mathrm{MHz}$
MPU800-1 1 MHzCapable of addressing 64 k bytes of memory, and 256 I/O devicesFive interrupt request lines on-chipSchmitt trigger input on reset
$\square$ Power-Save Feature

PIN CONFIGURATION


## GENERAL DESCRIPTION

The MPU800 is an 8 bit microprocessor that functions as the central processing unit (CPU) in Standard Microsystems MPU800 microcomputer family. The device is fabricated in double-poly CMOS to combine high performance with the low-power of CMOS.
Many system functions are incorporated on the device
including: vectored priority interrupts, refresh control, power save, and interrupt acknowledge.

Dedicated peripherals (MPU810 Ram I/O Timer, MPU830 ROM I/O Timer, and (MPU831 I/O Timer) have on-chip logic for direct interface to the MPU800.


DESCRIPTION OF PIN FUNCTIONS

PIN NO	NAME	SYMBOL	FUNCTION
40	+ 5 Volt	Vcc	+ 5 volt supply
20	Ground	GND	Ground
10	Crystal Out	XOUT	Crystal connection
11	Crystal In	XIN	Crystal connection; XIN may be used as an external clock input
Input/Output Signals			
12-19	Address/Data	AD0-AD7	Multiplexed Address/Data. Active high    At RD Time: Input data to CPU.   At WR Time: Output data from CPU.   At Falling Edge    of ALE Time: Least significant byte of address during memory   reference cycle. 8-bit port address during I/O   During BREQ/   reference cycle.   BACK Cycle: High impedance.
Input Signals			
33	Reset In	$\overline{\text { RESETIN }}$	Active low. Sets A (8-15) and AD (0-7) to TRI-STATE ${ }^{\oplus}$ (high impedance). Clears the contents of PC, I and R registers, disables interrupts, and causes a reset output to be activated.
36	Bus Request	$\overline{\text { BREQ }}$	Active low. Used when another device is requesting the system bus. $\overline{\mathrm{BREQ}}$ is recognized at the end of the current machine cycle, then $\mathrm{A}(8-$ $15), A D(0-7), I O / \bar{M}, \overline{R D}$, and $\overline{W R}$ are set to the high impedance mode and the request is acknowledged via the BACK output signal.
21	Non-Maskable Interrupt	$\overline{\text { NMI }}$	Active low. The non-maskable interrupt, generated by the peripheral device(s), is the highest priority interrupt request line. The interrupt is edge sensitive and only a pulse is required to set an internal flip-flop which generates the internal interrupt request. Since the NMI flip-flop is monitored on the same clock edge as the other interrupts, it must also meet the minimum set-up time spec for the interrupt to be accepted in the current machine instruction. Once the interrupt is accepted the flipflop is reset automatically, Its execution is independent of the interrupt enable flip-flop. $\overline{\text { NMI }}$ execution involves saving the PC on the stack and automatic branching to restart address X'0066 in memory.
22-4	Restart Interrupt A,B,C	$\begin{aligned} & \overline{\overline{R S T A},} \overline{\mathrm{RSTB}}, \\ & \overline{\mathrm{RSTC}} \end{aligned}$	Active low level sensitive. Restarts generated by the peripherals are recognized at the end of the current instruction if their respective interrupt enable bits and master enable bit are set. Execution is identical to NMI except interrupts are enabled for the following restart addresses:   The order of priority is fixed (highest first) as follows:   1) $\overline{\text { NMI 2) } \overline{R S T A}} 3$ ) $\overline{R S T B} 4) \overline{R S T C}$ 5) $\overline{N T R}$
25	Interrupt Request	INTR	Active low level sensitive. An interrupt request input generated by a peripheral device is recognized at the end of the current instruction provided that the interrupt enable and master interrupt enable bits are set. INTR is the lowest priority interrupt request input. Under program control, INTR can be executed in three distinct modes in conjunction with the INTA output.
38	Wait	$\overline{\text { WAIT }}$	Active low. When set low during $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ or $\overline{\mathrm{NTA}}$ machine cycles, the CPU extends its machine cycle in increments of $t$ (wait) states. The wait machine cycle continues until the WAIT input returns high.   The wait strobe input will be accepted only during machine cycles that have RD, WR or INTA strobes and during the machine cycle immediately after an interrupt has been accepted by the CPU. The later cycle has its RD strobe suppressed but it will still accept the wait.
39	Power Save	$\overline{\text { PS }}$	Active low. $\overline{\mathrm{PS}}$ is sampled at the end of the current instruction cycle. When PS is low, the CPU stops executing at the end of current instruction and keeps itself in the low-power mode. Normal operation resumes when PS is returned high.



## TIMING CONTROL

All necessary timing signals are provided by a single state inverter oscillator contained on the MPU800 chip. The chip operation frequency is equal to one half of the frequency of this oscillator. The oscillator frequency can be controlled by one of the following methods:

1. Leaving the XOUT pin unterminated and driving the XIN pin with an externally generated clock as shown in Figure 1a. When driving XIN with a square wave, the minimum duty cycle is $30 \%-70 \%$, either high or low.
2. Connecting a crystal with the proper biasing network between XIN and XOUT as shown in Figure 1b. Recommended crystal is a parallel resonance AT cut crystal.

Resistor capacitor feedback network described in earlier data sheets will not oscillate due to gain of internal inverter circuit. A modification of this circuit by adding two inverters in series between the RC network and XIN will work.
The CPU has a minimum clock frequency input ( @ XIN) of 32 kHz , which results in 16 kHz system clock speed. All registers internal to the chip are static, however there is dynamic logic which limits the minimum clock speed. The input clock can be stopped without fear of losing any data or damaging the part. You stop it in the phase of the clock that has XIN low and CLK OUT high. When restarting the CPU, precautions must be taken so that the input clock meets minimum specification. Once started, the CPU will continue operation from the same location at which it was stopped. During DC operation of the CPU, typical current
drain will be 2 mA . This current drain can be reduced by placing the CPU in a wait state during an opcode fetch cycle then stopping the clock.

## FUNCTIONAL DESCRIPTION

The MPU800 is an 8-bit general purpose microprocessor designed for stand-alone and DMA (direct memory access) applications. A minimum system can be constructed with an MPU800, and MPU810 (RAMI/O Timer) and an 27C16 (EPROM).

MPU800 uses a multiplexed bus for data and addresses. The 16 -bit address bus is divided into a high-order 8 -bit address bus that handles bits 8-15 of the address, and a low-order 8-bit mulitplexed address/data bus that handles bits $0-7$ of the address and bits $0-7$ of the data. Strobe outputs from the MPU800 (ALE, RD and WR) indicate when a valid address or data is present on the bus. IO/M indicates whether the ensuing cycle accesses memory or I/O.

During an input or output instruction, the CPU duplicates the lower half of the address $[A D(0-7)]$ onto the upper half [ $A(8-15)]$. The eight bits of address will stay on $A(8-15)$ for the entire machine cycle.

Figure 2 illustrates the timing relationship for opcode fetch cycles with and without a wait state. Figure 3 illustrates the timing relationship for memory read and write cycles with and without a wait state. Input/output cycles with and without wait state are shown in Figure 4. One wait state is automatically inserted into each I/O instruction.


FIGURE 1. Timing Control Configurations


FIGURE 2a. Opcode Fetch Cycles without WAIT States


FIGURE 2b. Opcode Fetch Cycles with WAIT States


FIGURE 3a. Memory Read/Write Cycles without $\overline{\text { WAIT }}$ States


FIGURE 3b. Memory Read and Write with WAIT States


FIGURE 4a. Input and Output Cycles without WAIT States


* $\overline{\text { WAIT }}$ state automatically inserted during 10 operation.

FIGURE 4b. Input and Output Cycles with WAIT States

## INITIALIZATION

The MPU800 and its peripheral components are initialized by RESET IN and RESET OUT. RESET IN input is associated with an on-chip Schmitt trigger that facilitates using an R-C network power-on reset scheme (Figure 5).

To ensure proper power-up conditions for the NSC800, the following power-up and initialization procedure is recommended:

1. Apply power ( $\mathrm{V}_{\mathrm{cc}}$ and GND) and set RESET IN active (low). Allow sufficient time (approximately 100 ms if crystal used) for the oscillator and internal clocks to stabilize. RESET IN must remain low for at least 3t state (CLK) times. RESET OUT, following the clock stabilization period, responds by going high, indicating to the system that the MPU800 is being reset. RESET OUT signal becomes available to reset the peripherals.
2. Set $\overline{\text { RESET IN }}$ high, following which the RESET OUT goes low and the CPU initiates the first opcode fetch cycle.

NOTE: The MPU800 initialization includes: Clear PC to X'0000 (the first opcode fetch, therefore, is from memory location X'0000). Clear registers I (Interrupt Vector Base) and R (Refresh Counter) to X'00. Clear interrupt control register bits IEA, IEB and IEC. The interrupt control bit IEI is set to 1 to maintain INS8080A/Z80A compatibility (see INTERRUPTS for more details). Maskable interrupts are disabled and the CPU enters Interrupt Mode 0 . While RESET IN is active (low), the A(8-15) and $A D(0-7)$ lines go to high impedance (TRI-STATE) and all CPU strobes go to the inactive state.

## BUS ACCESS CONTROL

Figure 6 illustrates bus access control in the MPU800. The external device controller produces an active BREQ signal that requests the bus. When the CPU responds with BACK then the bus and related control strobes go to high impedance (TRI-STATE). It should be noted that (1) BREQ is sampled at the last t state of any M machine cycle only. (2) the MPU800 will not acknowledge any interrupt/restart requests, and will not perform any dynamic RAM refresh functions until after $\overline{B R E Q}$ input signal is inactive high. (3) BREQ signal has priority over all interrupt request signals, should $\overline{B R E Q}$ and interrupt request become active simultaneously.


FIGURE 5. Power-On Reset


* SO, S1 during $\overline{B R E Q}$ will indicate same machine cycle as during cycle when $\overline{B R E Q}$ was accepted.
$t z=$ time states bus and control signals are in high impedance mode.

FIGURE 6. Bus Acknowledge Cycle

## REGISTER CONFIGURATION

The MPU800 contains 22 programmable registers as shown in Figure 7. The CPU working registers are arranged in two 8-register configurations, each of which includes an 8-bit accumulator, a flag register, and six general purpose 8 -bit registers. Only one 8 -bit register set may be active at any given moment. However, simple instructions exist that allow the programmer to exchange the active and alternate register sets.

It should also be noted that the six 8-bit general purpose registers ( $B, C, D, E, H$, and $L$ ) can be accessed as 16-bit registers ( $B C, D E$, and $H L$ ). The functions of these become apparent in the instruction set description.

## CPU Main Working Register Set

Accumulator	(8) Flags F	(8)
Register B	(8) Register C	(8)
Register D	(8) Register E	(8)
Register H	(8) Register L	(8)

CPU Alternate Working Register Set
Accumulator $\mathrm{A}^{\prime}$
(8) Flags $\mathrm{F}^{\prime}$

Register B'
(8) Register $\mathrm{C}^{\prime}$

Register $\mathrm{D}^{\prime}$
(8) Register $\mathrm{E}^{\prime}$

Register $\mathrm{H}^{\prime}$
(8) Register L'

## CPU Dedicated Registers

Index Register IX
Index Register IY
Interrupt Vector
Register I
Memory Refresh
Register R
Stack Pointer SP
Program
Counter PC
FIGURE 7. Register Configuration

## DEDICATED REGISTERS:

Program Counter (PC): The program counter contains the 16-bit address of the current instruction being fetched from memory. The PC:is incremented after its contents have been transferred to the address lines. When a program jump occurs, the new address is placed in the PC, overriding the incrementer.

Stack Pointer (SP): The stack pointer contains the 16-bit address of the current top of a stack located in external system RAM memory. The external stack memory is organized as a last-in, first-out (LIFO) file. The stack allows simple implementation of multiple level interrupts, virtually unlimited subroutine nesting and simplification of many types of data manipulation.

Index Registers (IX and IY): The two 16-bit index registers hold a 16-bit base address used in indexed addressing modes. In this mode, an index register is used as a base to point to a region in memory from which data is to be stored or retrieved. An additional byte is included in indexed instructions to specify a displacement from this base. This displacement is specified as a two's complement signed integer.

Interrupt Page Address Register (1): The MPU800 CPU can indirectly call any memory location in response to a mode 2 interrupt. The I register is used to store the highorder 8 bits of the address. The low-order 8 bits are supplied by the interrupting peripheral. This feature allows interrupt routines to be dynamically located anywhere in memory with minimal access time to the routine.

Memory Refresh Register (R): The MPU800 CPU contains a memory refresh counter to enable dynamic memories to be used with the same ease as static memories. This 8-bit register is automatically incremented after each instruction fetch. The data in the refresh counter is sent out on the lower portion of the address bus along with a refresh control signal while the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent to the programmer and does not slow down CPU operation. The programmer can load the R register for testing purposes, but this register is normally not used by the programmer.

## ACCUMULATORS AND FLAG REGISTERS

The CPU includes two 8-bit accumulators and two associated 8 -bit flag registers. The accumulator holds the results of 8 -bit arithmetic or logical operation. The flag register indicates specific conditions for 8-bit or 16-bit operations.

## FLAG REGISTERS (F, F')

The two MPU800 flag registers each contain six status bits that are set or reset (cleared) by various CPU operations (Figure 8). Four of these bits (carry, zero, sign, and parity/ overflow flags) can be tested by the programmer. The descriptions of the flags follow.

Carry Flag (C): This flag is set by the carry from the highest order bit of the accumulator during an add instruction or a borrow generated during a subtraction instruction. Specific shift and rotate instructions also affect this bit.

Zero Flag (Z): This flag is set when a zero is loaded into the accumulator as a result of an operation. Otherwise it remains clear.

Sign Flag (S): This flag stores the state of bit 7 (the sign bit) in the accumulator after an arithmetic operation. This flag is intended to be used with signed numbers.

Parity/Overflow Flag (P/V): During logical operations this flag is set when the parity of the result is even and reset when it is odd. It represents overflow when signed two's complement arithmetic operations are performed. An overflow occurs when the resultant of a two's complement operation (in the accumulator) is out of range.
The two non-testable flag register bits used for BCD arithmetic are:

Half Carry (H): The flag indicates a BCD carry or borrow result from the least significant four bits of an operation; when using the DAA (Decimal Adjust Accumulator Instruction), it is used to correct the result of a previously packed decimal add or subtract.

Add/Subtract Flag ( $\mathbf{N}$ ): Since the algorithm for correcting BCD operations is different for addition or subtraction, this flag specifies what type of instruction was executed last in order that the DAA operation will be correct for either operation.


FIGURE 8. Flag Register

## INTERRUPTS

The MPU800 has five interrupt/restart inputs, four are maskable ( $\overline{\mathrm{RSTA}}, \overline{\mathrm{RSTB}}, \overline{\mathrm{RSTC}}$, and INTR $)$ and one is nonmaskable ( $\overline{\mathrm{NMI}) . ~} \overline{\mathrm{NMI}}$, having the highest priority of all interrupts, is always serviced and cannot be disabled by the user. After recognizing an active input on $\overline{\mathrm{NMI}}$, the CPU stops before the next instruction, pushes the PC onto the stack, and jumps to address X'0066, where the user's interrupt service routine is located (i.e., restart to memory location X'0066). NMI is intended for interrupts requiring immediate attention, such as power-down, control panel, etc. $\overline{R S T A}, \overline{R S T B}$ and $\overline{R S T C}$ are restart inputs, which, if enabled, execute a restart to memory location $X^{\prime} 003 C$, X'0034, and X'002C, respectively. Note that the CPU response to the $\overline{\mathrm{NMI}}$ and $\overline{\operatorname{RST}}(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}})$ request input is
basically identical. Unlike $\overline{\mathrm{NMI}}$, however, restart request inputs must be enabled.

Figure 9 illustrates $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{RST}}$ interrupt machine cycles. M1 cycle will be a dummy opcode fetch cycle followed by M2 and M3 which are stack push operations. The following instruction will then start from the interrupts restart location.

The MPU800 also provides one more general purpose interrupt request input, INTR. When enabled, the CPU responds to INTR in one of the three modes defined by instruction IM0, IM1, and IM2 for modes 0, 1 and 2, respectively. Following reset, the CPU automatically sets itself in mode).

Interrupt (INTR) Mode 0; Similar to INS8080A mode. The CPU responds to an interrupt request by providing an INTA (interrupt acknowledge) strobe, which can be used to gate an instruction from a peripheral onto the data bus. Two wait states are automatically inserted by the CPU during the first INTA cycle to allow the interrupting device (or its controller) ample time to gate the instruction and determine external priorities. (Figure 10). This can be any instruction from one to four bytes. The most popular instruction would be a one-byte call (restart instruction) or a three-byte call (CALL NN instruction). If it is a three-byte call, the CPU issues a total of three INTA strobes. The last two read NN (which do not include wait states).

Interrupt (INTR) Mode 1: Similar to the restart interrupts except the restart location is X'0038 (Figure 9).


[^22]FIGURE 9. Non-Maskable and Restart Interrupt Machine Guide


* ${ }^{\text {t }}$ W is the CPU generated WAIT state in response to an interrupt request.

FIGURE 10. Interrupt Acknowledge Machine Cycle

Interrupt (INTR) Mode 2: With this mode, the programmer maintains a table that contains the 16 -bit starting address of every interrupt service routine. This table may be located anywhere in memory. When the mode 2 interrupt is accepted (Figure 11), a 16 -bit pointer must be formed to obtain the desired interrupt service routine starting address from the table. The upper 8 bits of this pointer are from the contents of the I register, which has been previously loaded with the desired value by the programmer. The lower 8 bits of the pointer are supplied by the interrupting device with the low-order bit forced to zero. The pointer is used to get two adjacent bytes from the interrupt service routine starting address table to complete the 16 -bit service routine starting address. The first byte of each entry in the table is the least significant (low-order) portion of the address. The programmer must obviously fill this table with the desired addresses before any interrupts are to be accepted.
Note that this table can be changed at any time to allow peripherals to be serviced by different service routines. Once the interrupting device supplies the lower portion of the pointer, the CPU automatically pushes the program counter onto the stack, obtains the starting address from the table and does a jump to this address.

The interrupts have fixed priorities built into the MPU800 as:

NMI	(Highest Priority)
RSTA	
RSTB	
RSTC	
INTR	(Lowest Priority)

## ENABLING INTERRUPTS

$\overline{N M I}$, being a non-maskable interrupt request, is executed as it occurs and can never be disabled.

The maskable interrupt inputs (RSTA, RSTB, RSTC, and INTR) are enabled under program control through the use of the interrupt control register and enable/disable interrupt instruction.

The appropriate interrupt control bits in 4-bit control register (IEA, IEB, IEC, and IEI) must be enabled in conjunction with IFF1 and IFF2, before the maskable INTR and RST $\bar{A}$, $\bar{B}, \bar{C}$ can be accepted by the CPU.

The interrupt control register is an on-chip write only output port located at port address X'BB. It can only be written to by either the OUT (C), r or OUT (N), A instructions (for example OUTI instruction will not affect Interrupt Control Register). Its contents are:

Bit	Name	Function		
0	IEI	Interrupt Enable for	INTR	
1	IEC	",	",	",
RSTC				
2	IEB	$"$,	$"$,	$"$,
3	IEA	$"$	RSTB	
			RSTA	

For example: In order to enable RSTB, CPU interrupts must be enabled and IEB must be set.

At reset, IEI bit is set and other mask bits, IEA, IEB, IEC are cleared. This maintains the software compatibility between MPU800 and INS8080A (or Z80A).
Execution of an IO block move instruction will not affect the state of the interrupt control bits. The only two instructions that will modify this write only register are OUT (C), $r$ and OUT (N), A.

## POWER-SAVE FEATURE

The MPU800 provides a unique power-save mode by the means of the $\overline{P S}$ pin. $\overline{P S}$ input is sampled at the last $t$ state of the last $M$ cycle of an instruction. After recognizing an active (low) level on PS, the MPU800 stops its internal clocks, thereby reducing its power dissipation to one half of operating power, yet maintaining all register values and internal control status. The MPU800 keeps its oscillator running, and makes the CLK signal available to the system. When in power-save the ALE strobe will be stopped high and the address lines $[A D(0-7), A(8-15)]$ will indicate the next machine address. When PS is returned high, the opcode fetch (or M1 cycle) of the CPU begins in a normal manner. Note this M1 cycle could also be an interrupt acknowledge cycle if the MPU800 was interrupted simultaneously with PS. Figure 12 illustrates the power-save feature.

In the event BREQ is asserted (low) at the end of an instruction cycle and PS is active simultaneously, the following occurs:

1. The MPU800 will go into BACK cycle
2. Upon completion of BACK cycle if PS is 'still active the CPU will go into power-save mode.


FIGURE 11. Interrupt Mode 2


## INSTRUCTION SET

In the following instruction set listing, the notation used is shown below.
b: Used in instructions employing bit mode addressing to designate one bit in a register or memory location.
cc: Designates condition codes used in conditional Jumps, Calls, and Return instructions; may be

$$
N Z=\text { Non Zero }(Z \text { Flag = 0) }
$$

$$
Z=\text { Zero }(Z \text { Flag }=1)
$$

$$
N \bar{C}=\text { Non Carry }(C \text { Flag }=0)
$$

$$
\mathrm{C}=\text { Carry }(\mathrm{C} \mathrm{Flag}=1)
$$

$\mathrm{PO}=$ Parity Odd or No Overflow ( $\mathrm{P} / \mathrm{V}=0$ )
$P E=$ Parity Even or Overflow $(P / V=1)$

$$
\mathrm{P}=\text { Positive }(\mathrm{S}=0)
$$

$$
M=\operatorname{Negative}(S=1)
$$

d: Used in instructions employing relative or indexed modes of addressing to designate 8-bit signed 2's complement displacement.
kk: Subset of cc condition codes used in conjunction with conditional relative jumps; may be NZ, Z, NC or C.
m1: Used in instructions employing register indirect or indexed modes of addressing; may be (HL), $(I X+d)$ or $(I Y+d)$.
$\mathrm{m2}$ : Used in instructions employing register indirect or direct modes of addressing; may be (BC), (DE), or ( nn ).
n: Any 8-bit binary number.
nn : Any 16 -bit binary number.
pp: Used in 16-bit arithmetic instructions employing register modes of addressing; may be BC, DE, SP, or register designated as destination operand.
qq: Used in instructions employing register modes of addressing; may be BC, DE, HL, AF, IX, or IY.
r : Used in instructions employing register mode of addressing; may be $A, B, C, D, E, H$, or $L$.
rr: Used in instructions employing register mode of addressing; may be BC, DE, HL, SP, IX, or IY.
ss: Used in instructions employing register mode of addressing; may be HL, IX, or IY.

T: Used to restart instructions employing modified page zero addressing mode; may take on hex values of $0,8,10,18,20,28,30$, or 38 .
$X_{L}: \quad$ Subscript $L$ indicates the high order byte of a 16-bit register.
$X_{H}$ : $\quad$ Subscript $H$ indicates the high-order byte of a 16bit register.
( ): Parentheses indicate the contents are considered a pointer to a memory or I/O location.

## 8-BIT LOADS

## REGISTER TO REGISTER

Mnemonic	Description	peration
LD $r_{\text {d }}, r_{\text {s }}$	Load register $r_{d}$ with $r_{s}$	$\mathrm{r}_{\mathrm{d}} \leftarrow \mathrm{r}_{\text {s }}$
LD A, ${ }^{\text {s }}$	Load ACC with register I	$\mathrm{A} \leftarrow 1$
LD I, A	Load register I with ACC	$1 \leftarrow A$
LD A, r	Load ACC with register	$A \leftarrow r$
LD r, A	Load register $R$ with ACC	$r \leftarrow A$
LD r, n	Load register $r$ with immediate data $n$	$r \leftarrow n$

## REGISTER TO MEMORY

Mnemonic	Description	Operation   LD m1, r
	Load memory from   register $r$	r
LD, m2, A	Load memory from ACC	$\mathrm{m} 2 \leftarrow \mathrm{~A}$
LD m1, n	Load memory with   immediate data n	$\mathrm{m} 1 \leftarrow \mathrm{n}$

## MEMORY TO REGISTER

Mnemonic
LD r, m1
LD A, m2

Description
Operation
$\mathrm{r} \leftarrow \mathrm{m} 1$
$\mathrm{A} \leftarrow \mathrm{m} 2$

16－BIT LOADS			NEG	Negate ACC（2＇s complement）	A $-0-A$
REGISTER TO REGISTER			CCF	Complement carry flag	CYゅCY
Mnemonic	Description	Operation			
LD rr，nn	Load register rr with	rrャnn	IMMEDIATE ADDRESSING MODE ARITHMETIC		
LD SP，ss	Load SP register with register ss	SPヶss	Mnemonic	Description	Operation
			ADD A，n ADC A，n	Add number $n$ to ACC   Add with carry number $n$	$\begin{aligned} & A \leftarrow A+n \\ & A \leftarrow A+n+C Y \end{aligned}$
REGISTER TO MEMORY			SUB $n$	to ACC	
Mnemonic	Description	Operation		Subtract number n from ACC	$A \leftarrow A-n$
			SBC A，$n$	Subtract with carry	AヶA－n－CY
LD（ nn ），rr	Load memory location nn with 16 bit register rr	$\begin{aligned} & (n n) \leftarrow \mathrm{rr}_{\mathrm{L}} \\ & (\mathrm{nn}+1) \leftarrow \mathrm{rr}_{\mathrm{H}} \\ & (\mathrm{SP}-1) \leftarrow \mathrm{q}_{H} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{q} L \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$		number $n$ from ACC AND number $n$ with ACC	$A \leftarrow A \wedge n$
PUSH qq	Push contents of 16 －bit register qq onto memory stack		ORn	OR number $n$ with ACC	$A \leftarrow A \vee n$
			XOR $n$	Exclusive OR number $n$ with ACC	$A \leftarrow A \forall n 1$
			CP n 1	Compare number $n$ to ACC	$\begin{aligned} & \text { A:n1 } \\ & \text { Z flag }-1 \end{aligned}$
MEMORY TO REGISTER					if $\mathrm{A}=\mathrm{n}$
Mnemonic	Description	Operation			Z Flag↔0
LD rr，（nn）	Load 16－bit register rr	$\mathrm{rr}_{\mathrm{L}} \leftarrow(\mathrm{nn})$	MEMORY ADDRESSED ARITHMETIC		
POP qq	Pop contents of stack to register qq	$\begin{aligned} & \mathrm{qq}_{\mathrm{L}} \leftarrow(\mathrm{SP}) \\ & \mathrm{qq} \mathrm{q}_{\mathrm{H}}-(\mathrm{SP}+1) \end{aligned}$	Mnemonic	Description	Operation
		SPヶSP＋2	ADD A，m1	Add memory to ACC	$A \leftarrow A+m 1$
			ADC A，m1	Add with carry memory	$A \leftarrow A+m 1+C Y$
8－BIT ARITHMETIC			SUB m	Subtract mem	$\leftarrow A-\mathrm{m} 1$
REGISTER ADDRESSED ARITHMETIC				ACC	
Mnemonic	Description	Operation	AND $m 1$ OR m1 XOR m 1	memory from ACC	
				AND memory with ACC OR memory with ACC Exclusive OR memory with ACC	A¢Avm1
ADD A，r	Add contents of register $r$ to ACC	$A \leftarrow A+r$			A↔A＊m1
ADC，A，r	Add with carry contents of register $r$ to ACC	$A \leftarrow A+r+C Y$	CP m1	Compare memory with ACC	A：m1   Z flag－1   if $A=r$   else   Z Flag↔0   $\mathrm{m} 1 \leftarrow \mathrm{~m} 1+1$   $\mathrm{m} 1 \leftarrow \mathrm{~m} 1-1$
SUBr	Subtract contents of register r from ACC	$A \leftarrow A-r-r$			
SBC A，r	Subtract contents of contents of register $r$ from ACC	AゅA－r－CY	INC m1 DEC m1	Increment memory Decrement memory	
AND r	Logically AND contents of register $r$ with ACC	$A \leftarrow A \wedge r$			
OR r	Logically AND contents of register $r$ with ACC	$A \leftarrow A \vee r$	16－BIT ARI	THMETIC	
XOR r	Exclusive OR contents	$A \leftarrow A \forall r$	REGISTER	ADDRESSED ARITHMETIC	
CP r	Compare contents of register $r$ to $A C C$		Mnemonic	Description	Operation
		Z flag－1			
		if $A=r$	ADD ss，pp	Add 16－bit register pp	ss $\leftarrow \mathrm{ss}+\mathrm{pp}$
		else		to 16－bit register ss	
		$\underset{\mathrm{r} \leftarrow \mathrm{r}+1}{\mathrm{Z} \text { Flagfi0 }}$	SBC HL, pp	Add with cary 16 －bit	$\stackrel{H L-H L}{+}$
INC r	Increment contents of register $r$			Subtract with carry	HL↔HL
DEC r	Decrement contents of register $r$	$\mathrm{r} \leftarrow \mathrm{r}-1$		16 －bit register pp from HL	－pp－CY
DAA	Decimal adjust ACC	（ACC adjust for BCD） AゅA	INC rr	Increment 16－bit	$\mathrm{rr} \sim \mathrm{rr}+1$
CPL				Decrement 16－bit	
CrL	（1＇s complement）		DEC rr	register rr	Hセrr－1

BIT SET, RESET, AND TEST
REGISTER
Mnemonic

## Description

SET b, $r \quad$ Set bit in register $r$ RES b, r Reset bit in register r BIT b, $r$ Test bit in register $r$

## MEMORY

## Mnemonic Description

Set $b, \mathrm{~m} 1 \quad$ Set bit in memory location m 1
RES b, m1 Reset bit b in memory location m1
BIT $b, m 1$ Test bit $b$ in memory location m1

## EXCHANGES

REGISTER/REGISTER

Mnemonic	Description		
EX DE, HL	$\begin{array}{l}\text { Exchange contents of } \\ \text { DE and HL register }\end{array}$		
EX AF, AF1	$\begin{array}{l}\text { Exchange contents of } A \\ \text { and F registers with A1 }\end{array}$		
and F1 registers		$\}$	Exchange contents of
:---			
BC, DE and HL registers			
with corresponding			
alternate registers			

## REGISTER/MEMORY

## Mnemonic Description

EX (SP), ss Exchange top of stack with 16-bit register ss

## Operation

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{b}} \leftarrow 1 \\
& \mathrm{r}_{\mathrm{b}} \leftarrow 0 \\
& \mathrm{Z} \leftarrow \mathrm{r}_{\mathrm{b}}
\end{aligned}
$$

## Operation

$\mathrm{m} 1 \mathrm{~b} \leftarrow 1$
$\mathrm{m} 1 \mathrm{~b} \leftarrow 0$
$\mathrm{Z} \leftarrow \mathrm{m} 1 \mathrm{~b}$

Operation
DE $\leftrightarrow \mathrm{HL}$
$A F \leftrightarrow A F^{\prime}$
$B C \leftrightarrow \mathrm{BC}^{\prime}$
DE↔DE
HL↔HL'

Operation
$(S P) \leftrightarrow S_{\llcorner }$
$(S P+1) \leftrightarrow S S_{H}$

## MEMORY BLOCK MOVES AND SEARCHES

Block move and search instructions (such as LDIR and INIR) Insert a dummy instruction fetch after each cycle to keep refresh going.

SINGLE OPERATIONS

Mnemonic	Description
LDI	Move data from memory
	location (HL) to memory
	location (DE), increment
	memory pointers, and
	decrement byte counter
BC.	

## Operation

$$
(\mathrm{DE}) \leftarrow(\mathrm{HL})
$$

$D E \leftarrow D E+1$
$\mathrm{HL} \leftarrow \mathrm{HL}+1$ $B C \leftarrow B C-1$

LDD	Move data from memory location (HL) to memory location (HL) to memory location (DE), and decrement memory pointer and byte counter BC.	$\begin{aligned} & \text { (DE) } \leftarrow(\mathrm{HL}) \\ & \text { (DE) } \leftarrow(\mathrm{HL}) \\ & \mathrm{DE} \leftarrow \mathrm{DE}-1 \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{HL}-1 \end{aligned}$
CPI	Compare data in memory location (HL) to ACC, increment memory pointer and decrement byte counter BC.	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL} \leftarrow \mathrm{HL}+1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$
CPD	Compare data in memory location (HL) to ACC and decrement memory pointer and byte counter $B C$.	$\begin{aligned} & \mathrm{A}-(\mathrm{HL}) \\ & \mathrm{HL}-\mathrm{HL}-1 \\ & \mathrm{BC} \leftarrow \mathrm{BC}-1 \end{aligned}$
REPEAT OPERATIONS		
Mnemonic	Description	Operation
LDIR	Move data from memory location (HL) to memory location (DE), increment memory pointers, decrement byte counter BC, until $B C=0$	(DE) $\leftarrow(H L)$   $D E \leftarrow D E+1$   $\mathrm{HL} \leftarrow \mathrm{HL}+1$   $\mathrm{BC} \leftarrow \mathrm{BC}-1$   Repeat until $B C=0$
LDDR	Move data from memory location (HL) to memory location (DE), decrement memory pointers and byte counter BC, repeat until $B C=0$	(DE) $\leftarrow(H L)$   DEヶDE-1   $\mathrm{HL} \leftarrow \mathrm{HL}-1$   $B C \leftarrow B C-1$   Repeat until $B C=0$
CPIR	Compare data in memory location (HL) to ACC, increment memory pointer, decrement byte counter BC, repeat until $B C=0$ or $(H L)=A$	A-(HL)   $\mathrm{HL} \leftarrow \mathrm{HL}+1$   $\mathrm{BC} \leftarrow \mathrm{BC}-1$   Repeat until   $B C=0$ or   ( HL ) $=\mathrm{A}$
CPDR	Compare data in memory location (HL) to ACC, decrement memory pointer and byte counter: $B C$, repeat until $B C=0$ or $(H L)=A$	A-(HL)   $\mathrm{HL} \leftarrow \mathrm{HL}-1$   $B C \leftarrow B C-1$   Repeat until   $B C=0$ or $(\mathrm{HL})=\mathrm{A}$

## INPUT/OUTPUT

Due to the multiplexed bus structure, the MPU800 handles the address bus differently than the Z80 during input and output instructions. The MPU800 duplicates the port address on the upper and lower halves of the address.

Mnemonic
Description
IN A, (n) Input from I/O device at address $n$ to ACC
OUT (n), A Output to I/O device at address n from ACC
IN r, (C) Input from I/O device at address (C) to register
OUT (C), r Output to I/O device at address (C) from register Input from I/O device at address (C) to memory location (HL), increment pointer, and decrement B counter

## Operation

$A \leftarrow(n)$
(n) $\leftarrow A$
$r \leftarrow(C)$
(C) $\leftarrow r$
(HL) $-(\mathrm{C})$
$\mathrm{HL} \leftarrow \mathrm{HL}+1$
$B \leftarrow B-1$



## ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Maximum $V_{c c} \ldots . .$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Lead Temperature (Soldering, 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{1+}$	Logical 1 Input Voltage		$0.7 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{1}$	Logical 0 Input Voltage		0		$0.2 \mathrm{~V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\mathrm{HY}}$	Hysteresis at RESET IN input	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	0.25	0.5		V
$\mathrm{V}_{\mathrm{OH} 1}$	Logical 1 Output Voltage	$\mathrm{I}_{\text {OUT }}=-1.0 \mathrm{~mA}$	2.4			V
$\mathrm{V}_{\mathrm{OH} 2}$	Logical 1 Output Voltage	$\mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{cc}}-.05$			V
$\mathrm{V}_{\text {OLI }}$	Logical 0 Output Voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	0		0.4	V
$\mathrm{V}_{\mathrm{OL} 2}$	Logical 0 Output Voltage	$\mathrm{l}_{\text {Out }}=10 \mu \mathrm{~A}$	0		0.1	V
III	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-10.0		10.0	$\mu \mathrm{A}$
IOL	Output Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-10.0		10.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cca }}$	Active Supply Current	$\mathrm{I}_{\text {Out }}=0, \mathrm{f}_{\text {(XIN }}=5 \mathrm{MHz}$		10	15	mA
ICCA	Active Supply Current	$\mathrm{l}_{\text {OUT }}=0, \mathrm{f}_{(\mathrm{XXIN})}=8 \mathrm{MHz}$		15	21	mA
Icco	Quiescent Current	$\mathrm{f}_{(\mathrm{XIN})}=0 \mathrm{MHz}$		2	4	mA
$\mathrm{I}_{\text {cps }}$	Power-Save Current	$\mathrm{f}_{(\mathrm{XIN})}=5.0 \mathrm{MHz}$		5		mA
$\mathrm{C}_{\text {IN }}$	Input Capacitance			6	10	pF
$\mathrm{C}_{\text {OUt }}$	Output Capacitance			8	12	pF
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage	Note 2	2.4	5	6	V

Note 1: Absolute Maximum Ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be limited to those conditions specified under DC Electrical Characteristics.

Note 2: CPU operation at lower voltages will reduce the maximum operating speed. DC and AC electrical characteristics at voltages other than $5 \mathrm{~V} \pm$ $10 \%$ are forthcoming.

## Preliminary (not tested)

Max CPU Speed*	MPU800-1	MPU800	MPU800-4	Units
@2.4V		500	500	kHz
$@ 3.0 \mathrm{~V}$		1	MHz	

*Speed of CPU is expressed in clock speed, not crystal speed.


AC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V} \pm 10 \%$, GND $=\mathrm{OV}$

	Parameter	MPU800-1		MPU800		MPU800-4		Units	
Symbol		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{x}}$	Period at XIN and XOUT Pins	500	31250	200	31250	125	31250	ns	
T	Period at Clock Output $\left(=2 t_{x}\right)$	1000	62500	400	62500	250	62500	ns	

AC ELECTRICAL CHARACTERISTICS (Continued) $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=\mathrm{OV}$

Symbol	Parameter	MPU800-1		MPU800		MPU800-4		Units	Notes
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{x}}$	Period at XIN and XOUT Pins	500	31250	200	31250	125	31250	ns	
T	Period at Clock Output $\left(=2 t_{x}\right)$	1000	62500	400	62500	250	62500	ns	
$\mathrm{t}_{\mathrm{R}}$	Clock Rise Time		110		110		75	ns	Measured from 10\%-90\% of signal
$\mathrm{t}_{\mathrm{F}}$	Clock Fall Time		60		60		40	ns	Measured from 10\%-90\% of signal
$\mathrm{t}_{\mathrm{L}}$	Clock Low Time	490		190		95		ns	$50 \%$ duty cycle, square wave input on XIN
$\mathrm{t}_{\mathrm{H}}$	Clock High Time	450		150		80		ns	50\% duty cycle, square wave input on XIN
$t_{\text {ACC (RD) }}$	ALE to Valid Data		1375		500		300	ns	Add $t$ for each WAIT STATE Add $t / 2$ for memory read cycles
$\mathrm{t}_{\text {AFR }}$	AD(0-7) Float after RD Falling		0		0		0	$\overline{\mathrm{ns}}$	
$t_{\text {BABE }}$	BACK Rising to Bus Enable		1000		400		250	ns	
$t_{\text {BABF }}$	$\overline{\text { BACK }}$ Falling to Bus Float		50		50		50	ns	
$t_{\text {BACL }}$	BACK Falling to CLK Falling	425		125		55		ns	
$\mathrm{t}_{\text {BRH }}$	BREQ Hold Time	0		0		0		ns	
$\mathrm{t}_{\mathrm{BRS}}$	$\overline{B R E Q}$ Set-Up Time	100		50		35		ns	
$\mathrm{t}_{\text {CAF }}$	Clock Falling to ALE Falling	0	30	0	30	0	35	ns	
$\mathrm{t}_{\text {cAR }}$	Clock Rising to ALE Rising	0	100	0	100	0	75	ns	
$t_{\text {DAI }}$	ALE Falling to $\overline{\mathrm{INTA}}$ Falling	530		230		100		ns	
$\mathrm{t}_{\text {DAR }}$	ALE Falling to $\overline{\text { RD }}$ Falling	525	575	225	250	125	160	ns	
$\mathrm{t}_{\text {DAW }}$	ALE Falling to $\overline{\text { WR }}$ Falling	990	1010	390	410	220	250	ns	
$t_{\text {d(BACK) }}$	ALE Falling to $\overline{\text { BACK }}$ Falling	2500		1000		600		ns	Add t for each WAIT state Add $t$ for opcode fetch cycles
$t_{\text {(BACK)2 }}$	$\overline{\mathrm{BREQ}}$ Rising to $\overline{\mathrm{BACK}}$ Rising	500	1600	200	700	125	475	ns	
$\mathrm{t}_{\mathrm{D}(1)}$	ALE Falling to $\overline{\text { NTR }}, \overline{\text { NMI }}$, RSTA-C, $\overline{\text { PS, }}$ BREQ Inputs Valid		1375		475		250	ns	Add $t$ for each WAIT state Add $t$ for opcode fetch cycles
$\mathrm{t}_{\text {DPA }}$	Rising $\overline{\overline{P S}}$ to Falling ALE	500	1550	200	650	125	475	ns	See Figure 12 also
$\mathrm{t}_{\text {(RFSH) }}$	Falling ALE to Falling RFSH	1500		600		325		ns	Add $t$ for each WAIT state
$\mathrm{t}_{\mathrm{D} \text { (WAIT) }}$	ALE Falling to WAIT input Valid		550		250		125	ns	
$\mathrm{t}_{\mathrm{H}(\mathrm{ADH}) 1}$	A(8-15) Holt Time During Opcode Fetch	0		0		0		ns	
$\mathrm{t}_{\mathrm{H}(\mathrm{ADH}) 2}$	A(8-15) Hold Time During Memory or IO, $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$	400		100		60		ns	
$t_{\text {H(ADL }}$	AD(0-7) Hold Time	400		100		50		ns	
$\mathrm{t}_{\mathrm{H}(\mathrm{WD})}$	Write Data Hold Time	400		100		50		ns	
inh	Interrupt Hold Time	0		0		0		ns	
$\mathrm{t}_{\text {INS }}$	Interrupt Set-Up Time	100		50		35		ns	
$\mathrm{t}_{\text {NMI }}$	Width of NMI Input	50		30		20		ns	
$\mathrm{t}_{\text {RDH }}$	Data Hold after Read	0		0		0		ns	
$\mathrm{t}_{\text {RFL }}$	$\overline{\text { RFSH Rising to ALE }}$ Rising		-100		-100		-70	ns	Negative number means ALE occurs first

AC ELECTRICAL CHARACTERISTICS (Continued) $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$, GND $=\mathrm{OV}$

Symbol	Parameter	MPU800-1		MPU800		MPU800-4		Units	Notes
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {RL(MR) }}$	$\overline{\mathrm{RD}}$ Rising to ALE Rising (Memory Read)	450		150		85		ns	
$\mathrm{t}_{\mathrm{RL} \text { (OP) }}$	$\overline{\text { RD }}$ Rising to ALE Rising Opcode		-75		-65		-55	ns	
$\mathrm{T}_{\text {S(AD) }}$	AD(0-7) Set-Up Time	300		80		40		ns	
$\mathrm{t}_{\text {S(ALE) }}$	A98-15), SO, SI, IO/M Set-Up Time	350		100		50		ns	
$\mathrm{t}_{\text {s(WD) }}$	Write Data Set-Up Time	385		85		50		ns	
$\mathrm{t}_{\text {W(ALE) }}$	ALE Width	430		130		75		ns	
$t_{\text {WH }}$	$\overline{\text { WAIT Hold Time }}$	0		0		0		ns	
$t_{\text {w(I) }}$	Width of $\overline{N T R}$, $\overline{R S T A}-\mathrm{C}$, $\overline{\text { PS, }} \overline{\mathrm{BREQ}}$	500		200		125		ns	
$\mathrm{t}_{\text {W(INTA) }}$	$\overline{\text { INTA }}$ Strobe Width	1000		400		200		ns	Add two t states for first INTA of each interrupt response string Add $t$ for each WAIT state
$t_{\text {wL }}$	$\overline{\text { WR Rising to ALE Rising }}$	450		150		90		ns	
$t_{\text {W(RD) }}$	Read Strobe Width During Opcode Fetch	1000		400		225		ns	Add tor each WAIT State Add t/2 for Memory Read Cycles
$\mathrm{t}_{\text {W(RFSH) }}$	Refresh Strobe Width	1925		725		400		ns	
$t_{\text {ws }}$	WAIT Set-Up Time	100		50		35		ns	
$t_{\text {W(WAIT) }}$   $t_{\text {w(WR) }}$	WAIT Input Width Write Strobe Width	$\begin{array}{r} 550 \\ 1000 \end{array}$		$\begin{aligned} & 250 \\ & 400 \end{aligned}$		$\begin{aligned} & 175 \\ & 220 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	Add t for each WAIT state
$t_{\text {xCF }}$	XIN to Clock Falling	25	55	25	55	25	55	ns	
$\mathrm{t}_{\mathrm{XCR}}$	XIN to Clock Rising	45	75	45	75	45	75	ns	

Note 1: Test conditions: $\mathrm{t}=1000 \mathrm{~ns}$ for MPU800-1, 400 ns for MPU800, 250 ns for MPU800-4.
Note 2: Output timings are measured with a purely capacitive load of 150 pF . The following correction factor can be used for other loads:
$150 \mathrm{pF}<\mathrm{C}_{\mathrm{L}} \leqslant 300 \mathrm{pF}:+0.25 \mathrm{~ns} / \mathrm{pF}$
$50 \mathrm{pF}<\mathrm{C}_{\mathrm{L}} \leqslant 150 \mathrm{pF}:-0.15 \mathrm{~ns} / \mathrm{pF}$

TABLE 1. BUS TIMING AS T DEPENDENT

Symbol	1/T <2.5 MHz	2.5 MHz $<1 / \mathrm{T}<4.0 \mathrm{MHz}$		Symbol	$1 / \mathrm{T}<2.5 \mathrm{MHz}$	2.5 MHz $<1 / \mathrm{T}<4.0 \mathrm{MHz}$	
$\mathrm{t}_{\mathrm{L}}$	(1/2)T-10	(1/2) T-30	min	$\mathrm{T}_{\mathrm{D} \text { (RFSH) }}$	$(3 / 2+N) T$	$(3 / 2+N) T-50$	Min
$\mathrm{t}_{\mathrm{H}}$	(1/2)T-50	(1/2)T-45	Min	$\mathrm{t}_{\text {d(WAIT) }}$	(1/2) T + 50	(1/2)T	Max
$\mathrm{t}_{\text {ACC(RD) }}$	$(1+N) T+100$	$(1+N) T+50$	Max	$t_{(A D H) 2}$	(1/2)T-100	(1/2)T-65	Min
$\mathrm{t}_{\text {BABE }}$	T	T	Max	$t_{\text {H(ADH)2 }}$	(1/2)T-100	(1/2)T-6	Min
$\mathrm{t}_{\text {BACL }}$	(1/2)T-75	(1/2)T-70	Min	$t_{H(A D L)}$	(1/2)T-100	(1/2)T-50	Min
$t_{\text {DAI }}$	(1/2) T + 30	(1/2)T-25	Min	$\mathrm{t}_{\text {RL(MR) }}$	(1/2)T-50	(1/2) T-40	Min
$\mathrm{t}_{\text {DAR }}$	(1/2) T + 25	(1/2) T	Min	$\mathrm{t}_{\mathrm{S}(\mathrm{AD})}$	(1/2)T-120	(1/2)T-85	Min
$\mathrm{t}_{\text {DAR }}$	(1/2)T +50	(1/2)T+35	Max	$\mathrm{t}_{\text {S(ALE) }}$	(1/2)T-100	(1/2)T-75	Min
$\mathrm{t}_{\text {DAW }}$	T-10	T-30	Min	$\mathrm{t}_{\mathrm{s}(\mathrm{wD})}$	(1/2)T-115	(1/2)T-75	Min
$\mathrm{t}_{\text {DAW }}$	T+10	T	Max	$\mathrm{t}_{\text {W(ALE) }}$	(1/2) T-70	(1/2)T-50	Min
$t_{\text {d(BACK)1 }}$	$(5 / 2+N) T$	$(5 / 2+N) T-25$	Min	$t_{\text {W(INTA) }}$	$(1+N) T$	$(1+\mathrm{N}) \mathrm{T}-50$	Min
$\mathrm{t}_{\mathrm{D}(\mathrm{BACK}) 2}$	(1/2)T	(1/2) T	Min	$t_{\text {wL }}$	(1/2) T-50	(1/2)T-35	Min
$\mathrm{t}_{\mathrm{D} \text { (BACK)2 }}$	(3/2) T + 100	(3/2) $T+100$	Max	$t_{\text {W(RD) }}$	$(1+N) T$	(1+N)T-25	Min
$\mathrm{t}_{\mathrm{D}(1)}$	$(3 / 2+N) T-125$	$(3 / 2+N) T-125$	Max	$\mathrm{t}_{\text {W(RFSH) }}$	2T-75	2T-100	Min
$t_{\text {DPA }}$	(1/2)T	(1/2)T	Min	$t_{\text {w(Wh) }}$	$(1+N) T$	$(1+N) T-30$	Min
$t_{\text {DPA }}$	(3/2) T + 50	(3/2) $T+100$	Max				

[^23]
## TIMING REFERENCE

## Interrupt-Power-Save Cycle



Note 1: This $t$ state is the last $t$ state of the last $M$ cycle of any instruction.
Note 2: Response to INTR input.
Note 3: Response to PS input.

Bus Acknowledge Cycle

*Waveform not drawn to proportion. Use only for specifying test points.

AC Testing Input/Output Waveform


AC Testing Load Circuit


## TIMING WAVEFORMS

## Opcode Fetch Cycle



Memory Read and Write Cycle



## RAM-I/O-Timer

## FEATURES

Variable Power Supply: $2.4 \mathrm{~V}-6.0 \mathrm{~V}$Pin-Compatible With NSC810Three Programmable I/O PortsTwo 16 Bit Programmable Counter TimersVery Low Power ConsumptionFully Static OperationSingle Instruction I/O Bit OperationsTimer Operation: DC to 5 MHzBus Compatible with MPU800 FamilyThree Speed Versions For FullCompatibility with the MPU800:
MPU810-4-4 MHz
MPU810 -2.5 MHz
MPU810-1-1 MHz

PIN CONFIGURATION


## BLOCK DIAGRAM



FIGURE 1

DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
40	+ 5 Volt	$\mathrm{V}_{\mathrm{cc}}$	+ 5 volt supply
20	Ground	GND	Ground
Input Signals			
4	Reset	RESET	RESET is an active-high input that resets all registers to 0 (low). The RAM contents remain unaltered.
7	Input/Output Timer/ RAM Select	IOT/M	Input/Output Timer or RAM Select (IOT/ $\bar{M}$ ): IOT/ $\bar{M}$ is an I/O memory select input line. A logic 1 (high) input selects the I/O-timer portion of the chip; a logic 0 (low) input selects the RAM portion of the chip. IOT/ $\bar{M}$ is latched at the falling edge of ALE.
8	Chip Enable	CE	CE is an active-high input that allows access to the MPU810A. CE is latched at the falling edge of ALE.
9	Read	$\overline{\mathrm{RD}}$	The $\overline{\mathrm{RD}}$ is an active-low input that enables a read operation of the RAM or I/O-timer location.
10	Write	$\overline{\mathrm{WR}}$	The $\overline{W R}$ is an active-low input that enables a write operation to RAM or I/O-timer locations.
11	Address Latch Enable	ALE	The falling edge of the ALE input latches AD0-AD7, CE and IOT/M inputs to form the address for RAM, I/O or timer.
3	Timer 0 Input	TOIN	TOIN is the clock input for timer 0 .
Output Signals			
6	Timer 0 Output	T00UT	TOOUT is the programmable output of timer 0 . After reset, TOOUT is set high.
Input/Output Signals			
12-19	Address/Data Bus	AD0-AD7	The multiplexed bidirectional address/data bus, ADO-AD7 pins, are in the high impedance state when the MPU810A is not selected. AD0-AD7 will latch address inputs at the falling edge of ALE. The address will designate a location in RAM, I/O or timer. WR input enables 8 -bit data to be written into the addressed location. $\overline{\mathrm{RD}}$ input enables 8 -bit data to be read from the addressed location. The $\overline{R D}$ or $\overline{W R}$ inputs occur while ALE is low.
21-28	Port A, Bits 0-7	PAO-PA7	Port A is an 8-bit basic mode input/output port, also capable of strobed mode I/O utilizing three control signals from port C. Strobed mode of operation on port A has three different modes: strobed input, strobed output with active bus, strobed output with TRI-STATE bus.
29-36	Port B, Bits 0-7	PB0-PB7	Port B is an 8-bit basic mode input/output port.
37-39,1,2,5	Port C, Bits 0-5	PC0-PC5	Port C is a 6-bit basic mode I/O port. Each pin has a programmable second function, as follows:   PCO/INTR: INTR is an active-low strobed mode interrupt request to the Central Processor Unit (CPU).   $\mathrm{PC} 1 / \mathrm{BF}: \mathrm{BF}$ is an active-high buffer full output to peripheral devices. PC2/STB: $\overline{\text { STB }}$ is an active-low strobe input from peripheral devices. PC3/TG: TG is the timer gating signal.   PC4/T1IN: T1IN is the clock input for timer 1.   PC5/T1OUT: T1OUT is the programmable output of timer 1.

## FUNCTIONAL DESCRIPTION

Refer to Figure 1 for a detailed block diagram of the MPU810A.

## RANDOM ACCESS MEMORY (RAM)

The memory portion of the RAM-I/O-timer is accessed by a 7-bit address input to pins AD0 through AD6. The IOT/ $\bar{M}$ input must be low (RAM select) and the CE input must be high at the falling edge of ALE to address the RAM. Address bit AD7 is a "don't care" for RAM addressing. Timing for RAM read and write operations is shown in the timing diagrams.

## INPUT/OUTPUT (I/O)

THE I/O portion of the MPU810A contains three sets of

I/O called ports. There are two ports ( A and B ) which contain eight bits each and one port (port $C$ ) which has six bits. Any bit or combination of bits in a port may be addressed with Set or Clear commands. A port can also be addressed as an 8 -bit word ( 6 bits for port C). All ports share common function of Read, Write, Bit-Set and Bit-Clear. Additionally, port $A$ is programmable for strobed (handshake) mode input or output. Port C has programmable second functions for each bit associated with strobed modes and timer functions. Table I defines the address location of the ports, timers and control registers.

## MODE DEFINITION REGISTER (MDR)

The mode definition register (MDR) defines the operating
mode for port A . While ports B and C are always in the basic I/O mode, there are four operating modes for port A :

Mode 0-Basic I/O (Input or Output)
Mode 1-Strobed Mode Input
Mode 2-Strobed Mode Output-Active Peripheral Bus
Mode 3-Strobed Mode Output-TRI-STATE*
Peripheral Bus
The MDR has the address assignment $x x x 00111$ and is illustrated for the four modes in Table II.

## DATA DIRECTION REGISTERS (DDR)

Each port bit has a data direction register (DDR) that defines the I/O state of the bit. The bit is configured as an input if a " 0 " is written into its DDR, or as an output if a " 1 " is written. The DDR bits cannot be individually written to; the entire DDR byte is affected by a write to the DDR address. Thus, all data must be consistent with the direction desired for each port.
Any write or read operations on a port contradicting the DDR will not affect the port output or input. However, a read of a port bit, defined as an output, will cause a read from the output latch, and a write to a port bit, defined as an input, will modify the output latch. Refer to Figure 2.


## BIT OPERATIONS

The I/O features of the RAM-I/O-timer allow modification of a single bit or several bits of a port with Bit-Set and BitClear command. The address is set up to indicate that a Bit-Set (or Clear) is taking place. The incoming data on the address/data bus is latched at the trailing edge of the $\overline{\text { WR strobe and is treated as a mask. All bits containing is }}$ will cause the indicated operation to be performed on the corresponding port bit. All bits of the data mask with Os cause the corresponding port bits to remain unchanged. Three sample operations are shown in Table III using port B as an example.
*TRI-STATE ${ }^{\circledR}$ is a registered trademark of National Semiconductor Corporation.

TABLE I. I/O AND TIMER ADDRESS DESIGNATIONS

8-Bit Address Field Bits $76543210$	Designation I/O Port, Timer, etc.	R (Read)   W (Write)
$\times \times \times 00000$	Port A (byte)	R/W
$\times \times \times 00001$	Port B (byte)	R/W
$x \times \times 00010$	Port C (byte)	R/W
$\times \times \times 00011$	Not Used	**
$\times \times \times 00100$	DDR-Port A	W
$\times \times \times 00101$	DDR-Port B	W
$\mathrm{x} \times \times 000110$	DDR-Port C	W
$\times \times \times 00111$	Mode Definition Reg.	W
x $\times \times 01000$	Port A-Bit-Clear	W
$\times \times \times 01001$	Port B-Bit-Clear	W
x $\times \times 01010$	Port C-Bit-Clear	W
$\times \times \times 01011$	Not Used	**
x $\times \times 01100$	Port A-Bit-Set	W
x $\times \times 001101$	Port B-Bit-Set	W
$\mathrm{x} \times \times \times 011110$	Port C-Bit-Set	W
$\mathrm{x} \times \times 0011111$	Not Used	**
$\times \times \times 10000$	Timer 0 (LB)	*
x $\times \times 100001$	Timer 0 (HB)	*
x $\times \times 10000$	Timer 1 (LB)	*
x $\times \times 100011$	Timer 1 (HB)	*
$\mathrm{x} \times \times 10100$	STOP Timer 0	W
$\times \times \times 1010101$	START Timer 0	W
x $\times \times 100110$	STOP Timer 1	W
$\begin{gathered}x\end{gathered} \times \times 1001111$	START Timer 1	W
x $\times \times 11000$	Timer 0 Mode	R/W
$x$	Timer 1 Mode	R/W
x $\times \times 111010$	Not Used	**
$\begin{gathered}x\end{gathered} \mathrm{x} \times 1.110011$	Not Used	**
x $\times \times \times 111100$	Not Used	**
$\begin{array}{llllllll}x \\ x & x & 1 & 1 & 1 & 0 & 1\end{array}$	Not Used	**
$\mathrm{x} \times \times \times 1111110$	Not Used	**
x $\times \times \mathrm{x} 11111111$	Not Used	**

$$
\begin{array}{ll}
\mathrm{x} & =\text { don't care. } \\
\text { LB } & =\text { low-order byte } \\
\text { HB } & =\text { high-order byte }
\end{array}
$$

*A write accesses the modulus register, a read the read buffer.
**A read from an unused location reads invalid data, a write does not affect any operation of MPU810A.

TABLE II. MODE DEFINITION REGISTER BIT ASSIGNMENTS

Mode	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$							
$\mathbf{0}$	x	x	x	x	x	x	x	0
$\mathbf{1}$	x	x	x	x	x	x	0	1
2	x	x	x	x	x	0	1	1
3	x	x	x	x	x	1	1	1

$x=$ don't care

TABLE III. BIT-SET AND CLEAR EXAMPLES

Operation	Set B7	Clear B2   and B0	Set B4, B3   and B1
Address	$x \times x 01101$	$x \times x 01001$	$x \times x 01101$
Data	10000000	00000101	00011010
Port Pins   Prior State   Next State	00001111	10001111	10001010

## PORT FUNCTIONS-BASIC I/O

Basic I/O is the mode of operation of ports $B$ and $C$ and mode 0 of port A (defined by the MDR). Read and write byte operations, and bit operations can be executed in the basic I/O mode. The timing for basic input and basic output modes is shown in the AC Characteristics tables.
When a read occurs, the information is latched from the peripheral (port) bus during the leading (falling) edge of the RD strobe. When a write occurs, the port bus is modified after the trailing (rising) edge of the WR strobe with data from the AD bus. Port output data remains valid at the output pin from one trailing edge of WR strobe to the trailing edge of the next WR strobe which then modifies that port.

## PORT A-STROBED (HANDSHAKE) MODE

Port A can be programmed (via the MDR) into one of 3 types of strobed mode for handshake communication with intelligent peripherals. When port $A$ is in mode 1,2 or 3 (see description of MDR), port C pins 0,1 and 2 are used as handshake signals between the peripheral and the CPU. These handshake signals are designated STB, BF, and INTR. Timing parameters and timing diagrams are detailed under AC Characteristics.

INTR (Strobe Mode Interrupt) is an active-low interrupt from the I/O to the CPU. In strobed input mode, the CPU reads the valid data at port A to clear the interrupt. In strobed output mode, the CPU clears the interrupt by writing to port A.
The INTR output can be enabled or disabled, thus giving the ability to control strobed data transfer under software control. It is enabled or disabled respectively, by setting ( $=1$ ) or clearing $(=0)$ the output data latch of bit 2 , port C. Port bit PC2 is used as the STB input. Since PC2 is always an input during strobed mode of operation, its output data latch is not needed. Therefore, during strobed mode of operation it is internally gated with the interrupt signals to generate the INTR output. Reset clears this bit to zero, so it must be set to one to enable the INTR pin for strobed operation. Once the strobed mode of operation is programmed, the only way to change the output data latch of PC2 is by using the Bit-Set and Clear instructions. The port C byte write command will not alter the output data latch of PC2 during the strobed mode of operation.
$\overline{\text { STB }} \quad$ (Strobe) is an active-low input from the peripheral device, signaling that data-transfer is about to begin. This strobe is interpreted as an "output request" if port A is in a strobed output mode, or as a "data-valid" signal if port A is in strobed input mode.

BF (Buffer Full) is an output from the I/O to the peripheral signaling that data transfer is complete. In strobed input mode, this strobe indicates that data is received into port A and that no further data should be transmitted by the peripheral device until the port has been read (emptied). In strobed output mode, BF indicates that the request from the peripheral has been processed by the CPU and the valid data now appears in port A.
Note: In either input or output mode BF may be cleared by rewriting mode definition register.
The bits of port C that are used for handshake control of port A (bits $\mathrm{C} 0, \mathrm{C} 1$ and C 2 ) must be direction-defined appropriately in the DDR. Also, the DDR of port A must be consistent with the mode specified in the MDR. Register set-up configurations for the three handshake modes are illustrated in Table IV.

## TABLE IV. MODE DEFINITION REGISTER CONFIGURATIONS

Mode	MDR	DDR   Port A	DDR   Port C	Port C   Output   Latch
Strobed   Input	$x x x x \times x 01$	00000000	$x x \times 011$	$x x \times 1 x x$
Strobed   Output   (Active)	$x x x x \times 011$	11111111	$x x \times 011$	$x x \times 1 x x$
Strobed   Output   (TRI-STATE)	$x \times x \times x 111$	1111111	$x \times x 011$	$x x \times 1 x x$

## Strobed Input (Mode 1)

During strobed input operations, an external device can load data into port A with the STB signal. Data is input to the PAO7 input latches on the leading (negative) edge of STB, causing BF to go high (true): On the trailing (positive) edge of STB the data is latched and the interrupt signal, INTR, becomes valid indicating to the CPU that data is available for reading. INTR will become valid only if the interrupt is enabled, that is the output data latch for PC2 is true.
When the CPU reads port $A$, address $X$ ' 00 , the trailing edge of the RD strobe causes BF and INTR to become inactive, indicating that the strobed input cycle has been completed.

## Strobed Output (Mode 2)

During strobed output operations, an external device can read data from port A with the STB signal. Data is initially loaded into port A by the CPU writing to I/O address X'00. On the trailing edge of WR, INTR is set inactive and BF becomes valid indicating data is available for the external device. When the external device is ready to accept the data in port $A$ it pulses the STB signal. STB will reset BF with its rising edge and also activates the INTR signal.
$\overline{\mathrm{NTR}}$ in this mode indicates a condition that requires CPU intervention, which is the output of the next byte of data.

## Strobed Output-TRI-STATE Mode (Mode 3)

The strobed output TRI-STATE mode and the strobed output active (peripheral) bus mode function in a similar manner with one exception. The exception is that the data signals on PAO-7 assume the high impedance state at all times except when accessed by the STB signal. Thus, in addition
to its timing function, $\overline{\text { STB }}$ activates port A outputs to active logic levels. This mode 3 operation allows other data sources, in addition to the NSC810, to feed a common external device.

## TIMERS

The two timers in the RAM-I/O-timer are 16-bit binary downcounters, each timer having six modes of operation. Full count is reached at " $n+1$ ", where " $n$ " is the value loaded into the modulus register. Read and write commands can occur at any time, asynchronous to timer operation by addressing the timer read buffer or modulus register, respectively. Each timer has a mode register and a writeonly start/stop register. Each timer also has a prescaler which divides the incoming clock signal by a programmable value, extending the effective ranges of the timers while maintaining 16-bit precision. Selected timer outputs are $\div 1$ or $\div 2$ for timer 1 , and $\div 1, \div 2$, or $\div 64$ for timer 0 . A diagram representing one timer and associated registers is shown in Figure 3.


FIGURE 3. Timer Internal Block Diagram (One of Two)

## TIN, TOUT, AND TG

Timer 0 has dedicated pins for its clock, TOIN, and its output, TOOUT. Timer 1 must borrow its input and output pins from port C. This is accomplished by writing to the TMR for timer 1. If mode 1,2,3,4,5, or 6 is specified in TMR 1, the pins from port C (PC3, PC4, and PC5) are automatically made available to the timer(s) for gating (TG), T1IN, and T1OUT, respectively. These pins are also taken from port C
any time timer 0 is in mode 2,3 , or 4 . This is also automatically accomplished by writing TMR 0 . In order to reconfigure pins PC3, PC4, PC5 to their original configuration as standard I/O, the timer mode registers must be reset by selecting mode 0 or 7.
TG (PC3), the timer gate, is used to hardware control the starting/stopping (or triggering) of the timers. The timer gate may be used individually by either timer or simultaneously by both timers.
For modes 2 and 3, the timer starts on the gate-active transition assuming the start address was previously written. If the timer gate makes an active transition prior to a write to the start address, the trailing edge of the WR strobe starts the timer. However, for mode 4 the timer always waits for an active gate edge following a write to the start address.
The DDR for port C must be programmed with the correct I/O direction for TG and the input and output of timer 1. See Table V for programming examples.

## TIMER MODES

The low-order three bits (bits $0,1,2$ ) of the timer mode registers (TMR) define the mode of operation for the timers. Each TMR may be written to, or read from, at any time. However, to ensure accurate timing, it is important to modify the mode of the timer only when the timer is stopped. Inputs of 000 or 111 will define a NOP (no operation) mode, the timer is stopped and the output is inactive. Inputs of 001 through 110 will select one of six distinct timer functions.
In the explanations that follow, assume that the modulus for the timer is loaded with the appropriate value by writing to the low and high bytes of each timer (I/O addresses X'10 and X'11 for timer T0 and X'12 and X'13 for timer T1). Assume also that the timer is started by writing the I/O address $\mathrm{X}^{\prime} 15$ (T0) or $\mathrm{X}^{\prime} 17$ (T1) and the prescaler is not selected.

## Event Counter (Mode 1, TMR Bits = 001)

In the non-gated mode, the count is decremented for each clock period at the input of the timer (see Figure 4a). When the count reaches zero, the output goes valid and remains valid until the timer count is read by the CPU, or the timer is halted.
The timer is reloaded at the terminal count $(=0)$ with the modulus and continues to decrement even when the output is valid.

## TABLE V. TIMER PROGRAMMMING SECTION EXAMPLE


$x=$ don't care

## TABLE VI. MODE SELECTION

BIT	2	1	0		Timer Function
	0	0	0	-	Timer Stopped and Reset
	0	0	1	-	Event Counter
	0	1	0	-	Event Timer (Stopwatch)
	0	1	1	-	Event Timer (Resetting)
	1	0	0	-	One Shot
	1	0	1	-	Square Wave
	1	1	0	-	Pulse Generator
	1	1	1	-	Timer Stopped and Reset

## Accumulative Timer (Mode 2, TMR Bits $=010$ )

In this gated mode, the counter will decrement only when the gate input is active (see Figure 4b). If the gate becomes inactive, the counter will hold at its present value and continue to decrement when the gate again becomes active. When the counter decrement is zero, the output becomes valid and remains valid until the count is read by the CPU or the timer is halted.
At the terminal count the timer is reloaded and the count continues as long as the gate is active.

## Restartable Timer (Mode 3, TMR Bits = 011)

In this gated mode, the counter will decrement only when the gate input is active. If the gate becomes inactive, the counter will reload the modulus and hold this value until the gate again becomes active (see Figure 4c). If the timer is read when the gate is inactive, you will always read the value the timer has counted down to, not the value the timer has been reloaded with. The timer restarts at its modulus value. The prescaler is not reset at this time.
At terminal count the output becomes valid and the timer is reloaded. The timer will continue to run as normal, the only difference is the output is valid. Once the output is valid it remains valid until the count is read by the CPU or the timer is halted.
Note: The gate inactive time must be longer than the high time of the internal clock on the chip. Therefore, with $\div 64$ prescale selected the gate inactive time must be 33 input clocks or greater.

## One Shot (Mode 4, TMR Bits = 100)

In this gated mode, the timer holds the modulus count until the active gate edge (see Figure 4d). The output immediately becomes valid and remains valid as the counter decrements. The gating signal may go inactive without affecting the count. If TG (the gate) becomes inactive and returns active prior to the terminal count, the modulus will be reloaded, retriggering the one shot period. When the timer reaches the terminal count, the output becomes inactive. The gate, in this mode, is edge sensitive; the active edge is defined in TMR.
Note: The one shot cannot be retriggered during its last internal count regardless of prescaler selected. Therefore, in divide by 1 prescaler, it cannot be retriggered during the last clock, in divide by 2 prescaler, during the last two clocks and divide by 64 prescaler, during the last 64 clocks.

## Square Wave (Mode 5, TMR Bits = 101)

In this non-gated mode, the output will go active as soon as the timer is started. The counter decrements for each clock period and complements its output when zero is reached (see Figure 4e). The modulus is then reloaded and counting continues. Assuming a regular clock input, the output will then be a square wave with a period equal to twice the value loaded into the modulus. Therefore, varying the mod-
ulus will vary the duty cycle of the square wave.
Stopping then restarting the timer does not reset the timer. In order to reload the modulus and start from the beginning of the cycle, the timer mode register must be reset by selecting mode 0 and then reprogramming the timer.

## Pulse Generator (Mode 6, TMR Bits = 110)

In this non-gated mode, the counter decrements for each clock period (see Figure 4f). When the timer decrements to zero, the output becomes valid for one clock width.
With a prescale of divide by 2 the output will be valid for one full clock and with divide by 64 prescale the output will be valid for 32 clocks. The modulus is then reloaded and the sequence is repeated. Varying the modulus value will vary the frequency of the pulse.
Stopping then restarting the timer does not reset the timer. In order to reload the modulus and start from the beginning of the cycle, the timer mode register must be reset by selecting mode 0 and then reprogramming the timer.

## TIMER MODE REGISTER

The timer mode register (TMR) may be written or read at any time; however, to assure accurate timing it is important to modify the mode when the timer is stopped. The timer mode is selected from one of six modes with TMR bits 0,1 , and 2. Bits 3 and 4 select the prescale value if the prescaler is to be used. Bits 5,6 and 7 select the read/write mode, gate input polarity, and output sense (active-high or low). The bit functions of the TMR are further illustrated in Figure 6.


FIGURE 6. Timer Mode Register

## Timer Prescaler

There is a prescale function associated with each timer. It serves as an additional divisor to lengthen the counts for each timer circuit. The value of the divisor is fixed and selectable in each TMR.

The timer output is affected by the prescale selection. The output responds to the timer clock, not the incoming clock (TIN); so, TOUT will be prescaled by the same value as the timer. Although the 16 -bit prescaled count of the timer may be read, the internal value of the prescaler cannot be read by the user. A " 00 " for either timer represents $\div 1$ (no prescale). Timer 0 has the two possibilities of $\div 2$ or $\div 64$ :

Timer Bit	$\mathbf{4}$	$\mathbf{3}$	Prescale
	0	0	$\div 1$
	0	1	$\div 2$
	1	1	$\div 64$

Timer 1 has only the $\div 2$ prescale available; TMR bit 4 is a "don't care".

Timer Bit

43	Prescale
$\times 0$	$\div 1$
$\times 1$	$\div 2$

## Single/Double Precision

A two-byte word (or a single byte when one byte is a "don't care") may be read from or written to the timers. To program

Timer Mode Examples (Modulus register is loaded with 0004 for these examples)


FIGURE 4a. Event Counter Mode (Mode 1)


FIGURE 4b. Accumulative Timer (Mode 2)


FIGURE 4c. Restartable Timer (Mode 3)


FIGURE 4d. One Shot (Mode 4)


FIGURE 4e. Square Wave (Mode 5)


FIGURE 4f. Pulse Generator (Mode 6)


FIGURE 5. Start/Stop Timing
the timer buffers, TMR bit 5 must be set as follows:
0 -Double byte read or write low byte first, then high byte. The order of low byte first, high byte second must be maintained for proper Read/Write communications
1-Single byte read or write low byte only-high byte "don't care" or high byte only with low byte "don't care."
The difference between these modes is that the double byte mode freezes the read buffer or the modulus register until you have had an opportunity to read or write both bytes. The following example clearly illustrates this point. If the timer had a value of 200 when the low byte was read and then decremented to 1FF before the high byte was read then the double byte mode would have read 00 and 02 , respectively. The single precision mode would have read 00 and 01.

Note: In the double precision mode, the high byte should be read immediately after the low byte. Do not access any other registers or unused address location between the reads.

## Gate Input Polarity

The TG input is the hardware control for starting and stopping the timers. For modes 2 and 3 , the timer starts on the gate-active transition assuming the start address was previously written. If the timer gate makes an active transition prior to a write to the start address, the trailing edge of the WR strobe starts the timer. However, for mode 4 the timer always waits for an active gate edge following a write to the start address.
The polarity of the gate input may be selected by the contents of bit 6 of the TMR. If bit 6 equals 0 , the gate signal will be active-high or positive edge for mode 4 ; if bit 6 equals 1 , the gate polarity will be active-low or negative edge for mode 4.

## Timer Output Polarity

Like the gating function, the polarity of the output signal is also programmable via bit 7 of the TMR. A zero will cause an active-low output; a one will generate an active-high output.
The output for T 1 is multiplexed with port C, bit 5 . (Similarly T 1 N is multiplexed with port C , bit 4 .) When any timer mode other than 0 or 7 is specified for T 1 , or when mode 2 , mode 3 , or mode 4 is specified to TO, the three port C pins, bit 3 , bit 4 , and bit 5 , become TG, T1IN, and T1OUT, respectively.

## TIMER PROGRAMMING

The proper sequence to program the timer is as follows:

1. Write timer mode register with mode 0 or 7 selected. This stops the timer, resets the prescaler, and sets internal clock high.
2. Write timer mode register again, this time setting it up to your requirements.
3. Write the modulus values, low byte first, high byte second.
4. Start the timers.

The timer output latches are only updated when the internal timer clock gets an active transition. The internal timer clock is defined as the output of the prescaler. Therefore, it is impossible to read back the value just written to the timer unless you have an active transition on the internal clock.
To guarantee the integrity of the data during a read operation, updates to the timer output latches are blocked out. If an update is blocked out due to a read, the output latches will not be updated until the next active transition. If continuous reads were made to the timers and an update was blocked out it would appear as if a count was skipped. For example, if the output latches were FF when a block out occurred, the next update would occur at FD, thereby giving an appearance of the count FE being skipped. In actuality the correct number of clocks has occurred for the timer to read FD.
Writing the modulus value when the timer is running does not update the timer immediately. The new value written will get into the timer when the timer hits its terminal count and reloads its value. If the timer is stopped and a modulus is written the new modulus value will get into the timer only if the internal clock is high for some period before the start command. If it does not go high then the next time the timer hits its terminal count it will load the new modulus. One way to guarantee the data will get into the timer immediately is to follow steps 1-4. Although this procedure guarantees that the data will get into the timer you will not be able to read it back until you get an active transition on the internal clock.
Rewriting modulus does not reset the prescaler. The only way to reset the prescaler is to write the mode register and have internal clock signal be high for some period between the write of the mode register and the start of the timer. Once again steps 1 through 4 will reset the prescaler.

## ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Range ......................................................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$V_{c c}$

Lead Temperature (Soldering, 10 seconds)
OPERATING CONDITIONS $V_{C c}=5 \mathrm{~V} \pm 10 \%$


Symbol	Parameter	Conditions	Min.	Typ.	Max.	$\mathrm{change.}^{\text {chen }}$
$\mathrm{V}_{\text {IH }}$	Logical 1 Input Voltage		$0.7 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {LI }}$	Logical 0 Input Voltage		0		$0.2 \mathrm{~V}_{c c}$	V
$\mathrm{V}_{\mathrm{OH}}$	Logical 1 Output Voltage	$\begin{aligned} & \mathrm{I}_{\text {OH }}=-1.0 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.4 \\ v_{c c}-0.5 \end{gathered}$			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Logical 0 Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{oL}}=2 \mathrm{~mA} \\ & \mathrm{l}_{\text {out }}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{I}_{1}$	Input Leakage Current	$0 \leq V_{1 N} \leq V_{\text {cc }}$	-10.0		10.0	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{OL}}$	Output Leakage Current	$0 \leq \mathrm{V}_{1 N} \leq \mathrm{V}_{\mathrm{cc}}$	-10.0		10.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{cc}}$	Active Supply Current	$\begin{aligned} & \mathrm{I}_{\text {out }}=0, \text { Timer }=\text { Mode } 1, \mathrm{TOIN}= \\ & {\mathrm{T} 1 \mathrm{IN}^{\prime}}=2.5 \mathrm{MHz}, \mathrm{t}_{\mathrm{wCr}}=750 \mathrm{~ns} \end{aligned}$		8	10	mA
$\mathrm{I}_{0}$	Quiescent Current	No Input Switching, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4	7	pF
$\mathrm{C}_{\text {out }}$	Output Capacitance			6	10	pF
$V_{c c}$	Power Supply Voltage		2.4	5	6	V
$\mathrm{V}_{\text {DRV }}$	Data Retention Voltage		1.2			V

LOW VOLTAGE OPERATION Preliminary

Voltage	MPU810A-1	MPU810A	MPU810A-4	Units
2.4	-	500	500	kHz
3.0	-	1	1	MHz

Note 1: Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. Continuous operation at these limits is not intended; operation should be limited to those conditions specified under DC Electrical Characteristics.
$I_{\text {cc }}$ vs Speed


MPU800 CLOCK SPEED* (MHz)
*When MPU801A is used with NSC800

## TIMER AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{F}_{\mathrm{C}}$	Clock Frequency		DC		2.5	MHz
$\mathrm{F}_{\mathrm{CP}}$	Clock Frequency	Prescale Selected	DC		5.0	MHz
$\mathrm{t}_{\mathrm{cw}}$	Clock Pulse Width		150			ns
$\mathrm{t}_{\mathrm{CWP}}$	Clock Pulse Width	Prescale Selected	75			ns
$\mathrm{t}_{\mathrm{GS}}$	Gate Set-Up Time	With Respect to Negative Clock Edge	100			ns
$\mathrm{t}_{\mathrm{GH}}$	Gate Hold Time	With Respect to Negative Clock Edge	250			ns
$\mathrm{t}_{\mathrm{co}}$	Clock to Output Delay	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			350	ns

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	MPU810A-1		MPU810A		MPU810A-4		Units
			Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {ACC }}$	Access Time from ALE	$\mathrm{CL}=150 \mathrm{pF}$		1000		400		300	ns
$t_{\text {AH }}$	AD0-7, CE, IOT/M Hold Time		100		60		30		ns
$\mathrm{t}_{\text {ALE }}$	ALE Strobe Width (High)		200		125		75		ns
$\mathrm{taRw}^{\text {a }}$	ALE to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Strobe		150		120		75		ns
$\mathrm{t}_{\text {AS }}$	AD0-7, CE, IOT/M Set-Up Time		100		75		40		ns
$\mathrm{t}_{\mathrm{DH}}$	Data Hold Time		150		90		40		ns
$t_{\text {Do }}$	Port Data Output Valid			350		310		300	ns
$\mathrm{t}_{\text {DS }}$	Data Set-Up Time		100		80		50		ns
$\mathrm{t}_{\text {PE }}$	Peripheral Bus Enable			320		200		200	ns
$\mathrm{t}_{\mathrm{PH}}$	Peripheral Data Hold Time		150		125		100		ns
$t_{\text {ps }}$	Peripheral Data Set-Up Time		100		75		50		ns
$\mathrm{t}_{\text {Pz }}$	Peripheral Bus Disable (TRI-STATE ${ }^{\circledR}$ )			150		150		150	ns
$\mathrm{t}_{\text {RB }}$	$\overline{\mathrm{RD}}$ to BF Output			300		300		300	ns
$\mathrm{t}_{\text {RD }}$	Read Strobe Width		400		320		220		ns
$\mathrm{t}_{\text {RDD }}$	Data Bus Disable		0	100	0	100	0	75	ns
$\mathrm{t}_{\text {RI }}$	$\overline{\mathrm{RD}}$ to INTR Output			320		320		300	ns
$\mathrm{t}_{\text {twa }}$	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to Next Ale		125		100		75		ns
$\mathrm{t}_{\text {SB }}$	STB to BF Valid			300		300		300	ns
$\mathrm{t}_{\mathrm{SH}}$	Peripheral Data Hold with Respect to STB		150		125		100		ns
$\mathrm{t}_{\text {s }}$	$\overline{\text { STB }}$ to INTR Output			300		300		300	ns
$\mathrm{t}_{\text {ss }}$	Peripheral Data Set-Up With Respect to STB		100		75		50		ns
$\mathrm{t}_{\text {sw }}$	STB Width		400		320		220		ns
$\mathrm{t}_{\text {we }}$	$\overline{\text { WR }}$ to BF Output			340		340		300	ns
$\mathrm{t}_{\mathrm{w}}$	$\overline{\text { WR }}$ to INTR Output			320		320		300	ns
$t_{\text {we }}$	WR Strobe Width		400		320		220		ns
$\mathrm{t}_{\text {wCr }}$	Width of Machine Cycle		3000		1200		750		ns.



AC TESTING INPUT/OUTPUT WAVEFORM


## AC TESTING LOAD CIRCUIT



TIMER WAVEFORMS


GENERAL TIMING WAVEFORMS
Read Cycle (Read from RAM, Port or Timer)


Note: Diagonal lines indicate interval of invalid data.
Write Cycle (Write to RAM, Port or Timer)


Note: Diagonal lines indicate interval of invalid data.

HANDSHAKE TIMING


Note: Diagonal lines indicate interval of invalid data.
Strobed Mode Output


AD (0-7)


Note: Diagonal lines indicate interval of invalid data.

STANDARD MICROSYSTEMS CORPORATION 2 5 macrus sud mama

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

PRELIMINARY

## MPU 830 ROM I/O Device MPU 831 I/O Device

## FEATURES

Variable Power Supply: 2.4V-6.0VPin-Compatible With NSC830/NSC831Three Programmable I/O Ports$2 \mathrm{~K} \times 8$ Read Only Memory (MPU830)Very Low Power ConsumptionFully Static OperationSingle Instruction I/O Bit OperationsBus Compatible With MPU800 FamilyStrobed Mode Available on Port APIN CONFIGURATION


## GENERAL DESCRIPTION

The MPU830 is a combination ROM and I/O peripheral device contained in a standard 40 pin package.
The ROM is comprised of 16,384 bits of Read Only Memory organized as 2048 by 8.
The I/O portion consists of 20 programmable input/output bits arranged as three separate ports, with each bit individually definable as an input or output. The port bits can be set or cleared individually and can be written or read in bytes. Several types of strobed mode operations are available through port A.
The MPU831 is similar to the MPU830 except that is contains no ROM. The MPU831 is useful for prototyping work prior to ordering the MPU830, and when on chip ROM is not required.


DESCRIPTION OF PIN FUNCTIONS

PIN NO.	NAME	SYMBOL	FUNCTION
40	+5 Volt	$\mathrm{V}_{\text {cc }}$	+ 5 volt supply
20	Ground	GND	Ground
Input Signals			
5	Master Reset	RESET	An active-high input on the RESET pin initializes the chip causing the three I/O ports ( $\mathrm{A}, \mathrm{B}$ and C ) to revert to the input mode. The three ports, the three data direction registers and the mode definition register are reset to low (0).
7	Input/Output/Memory Select	$10 / \bar{M}$	The $I O / \bar{M}$ pin is a latched, select input line. A high (1) input selects the I/O portion of the chip; a low (0) input selects the ROM portion of the chip. The select input is latched by the trailing edge (high to low transition) of the ALE signal.
$\begin{aligned} & 6 \\ & 8 \end{aligned}$	Chip Enable 0 Chip Enable 1	$\begin{aligned} & \text { CE0/CE0 } \\ & \hline \text { IOR/CE1/CE1 } \end{aligned}$	The chip enable inputs are mask programmable at the factory. The CE inputs permit the use of multiple MPU830s in a system without using a chip select decoder. The CE inputs must be active at the falling edge of ALE. At ALE time, the CE inputs are latched to provide access to the MPU830. The $\overline{\mathrm{IOR}}$ input performs the same function as the combination of $1 O / \bar{M}$ input high and the $\overline{R D}$ input low.
9	Read	$\overline{\mathrm{RD}}$	When the $\overline{\mathrm{RD}}$ (or the $\overline{\mathrm{IOR}}$, when mask programmed) input is an active low, data is read from the ADO-AD7 bus. When both $\overline{\mathrm{RD}}$ and $\overline{\text { IOR }}$ are high, the ADO-AD7 bus is in the high impedance state.
10	Write	$\overline{W R}$	When the CE inputs are active, and the $I O / \bar{M}$ input is high, an active low $\overline{W R}$ input causes the selected output port to be written with the data from the AD0-AD7 bus.
11	Address Latch Enable	ALE	The trailing edge (high to low transition) of the ALE input signal latches the address/data present on the AD0-AD7 bus, A8-A10 bus, plus the input control signals on $10 / \bar{M}, \mathrm{CE}_{0} / \overline{C E}_{0}$, and $\mathrm{CE}_{1} / \mathrm{CE}_{1}$.
2-4	Address Bus A8-A10	A8, A9-A10	The high-order bits of the ROM address are input on this 3-bit bus and are latched by the high-to-low transition of the ALE input. These bits do not affect the I/O operations.
Input/Output Signals			
12-19	Bidirectional Address/ Data Bus	AD0-AD7	The lower 8 bits of the ROM or I/O address are applied to these pins, and latched by the trailing edge of ALE. During read operations, 8 bits are present on these pins, and are read when $\overline{\mathrm{RD}}$ or $\overline{\mathrm{IOR}}$ is low. During an I/O write cycle, Port $\mathrm{A}, \mathrm{B}$, or C is written with the data present on this bus at the trailing edge of the $\overline{W R}$ strobe.
$\begin{gathered} 1,39-33 \\ 28-21 \\ 32-29 \end{gathered}$	Port A, Bits 0-7   Port B, Bits 0-7   Port C, Bits 0-3	$\begin{aligned} & \text { PAO-PA7 } \\ & \text { PB0-PB7 } \\ & \text { PC0-PC3 } \end{aligned}$	These are general purpose I/O pins. Their input/output direction is determined by the contents of the Data Direction Register (DDRs).

## FUNCTIONAL DESCRIPTION

Refer to Figure 1 for a detailed block diagram of the MPU830.
Read Only Memory (ROM): The memory portion of the ROM-I/O is accessed by an 11 -bit address input to pins ADOAD7 and A8-A10. The IO/Minput must be low (ROM select) and the chip enable pins in the active programmed state at the falling edge of ALE to address the ROM. Timing for ROM read and write operations is shown in the timing diagrams. Input/Output (I/O): The I/O portion of the MPU830 contains three sets of I/O called Ports. There are two ports (A and B) which contain 8 bits each and one port (Port C) which has 4 bits. Any bit or combination of bits in a port may be addressed with Set or Clear commands. A port can also be addressed as an 8 -bit word ( 4 bits for Port C). When reading Port C, bits $4-7$ will be read as ones. All ports share common functions of Read, Write, Bit-Set and Bit-Clear. Additionally, Port A is programmable for strobed (handshake) mode input or output. Port C has a programmable second function for each bit associated with strobed modes. Table 1 defines the address location of the ports and control registers.
*TRI-STATE ${ }^{\left({ }^{6}\right)}$ is a registered trademark of National Semiconductor Corporation.

## MODE DEFINITION REGISTER (MDR)

The Mode Definition Register (MDR) defines the operating mode for Port A. While Ports B and C are always in the basic 1/O mode, there are four operating modes for Port A:

Mode 0-Basic I/O (Input or Output)
Mode 1-Strobed Mode Input
Mode 2-Strobed Mode Output

- Active Peripheral Bus

Mode 3-Strobed Mode Output

- TRI-STATE ${ }^{\circledR}$ (high impedance) Peripheral Bus
The MDR has the I/O address assignment XXX00111. The bit configuration for the mode selection is illustrated below:

Mode	Bit								
	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
0	X	X	X	X	X	X	X	0	
1	X	X	X	X	X	X	0	1	
2	X	X	X	X	X	0	1	1	
3	X	X	X	X	X	1	1	1	

NOTE: $\mathrm{X}=$ don't care

Table 1. I/O and Address Designations

	$\begin{array}{c}\text { 8-Bit Address Field } \\ \text { Bits }\end{array}$						$\begin{array}{c}\text { Designation } \\ \text { I/O Port, etc. }\end{array}$
R (Read)							
W (Write)							

NOTE: $X=$ don't care

## DATA DIRECTION REGISTERS (DDR)

Each port bit has a data direction register (DDR) which defines the I/O state of the bit. The bit is configured as an input if a " 0 " is written into its DDR, or as an output if a " 1 " is written. The DDR bits cannot be individually written to: the entire DDR byte is affected by a write to the DDR address. Thus all data must be consistent with the direction desired for each port.
Any write or read operations on a port contradicting the DDR will not affect the port output or input. However, a read of a port bit defined as an output will cause a read from the output latch, and a write to a port bit defined as an input will modify the output latch.

## PORT FUNCTIONS—BASIC I/O

Basic I/O is the mode of operation of Ports B and C and mode 0 of Port A (defined by the MDR). Read, write, and bit operations can be executed in the basic I/O mode. The timing for basic input and basic output modes is shown in the AC Characteristics tables.
When a read occurs the information is latched from the peripheral bus on the leading (falling) edge of the $\overline{\mathrm{RD}}$ strobe. When a write occurs the port bus is modified after the trailing (rising) edge of the WR strobe with data from the AD bus. Port output data remains valid on the output pin from one trailing edge of WR strobe to the trailing edge of the next WR strobe.

## BIT OPERATIONS

The I/O features of the ROM-I/O allow modification of a single bit or several bits of a port with Bit-Set and Bit-Clear (see Figure 2). The address is set up to indicate that a bit set (or clear) is taking place. The incoming data on the address/ data bus is latched at the trailing edge of the WR strobe and is treated as a mask. All bits containing " $1 s$ " will cause the indicated operation to be performed on the corresponding port bit. All bits of the data mask with "0s" cause the corresponding port bits to remain unchanged. Three sample operations are given, using Port B as an example:

Operation	Set B7	Bit B2   and B0	Set B4, B3   and B1
Address	$\times \times \times 01101$	$\times \times \times 01001$	$\times \times \times 01101$
Data	10000000	00000101	00011010
Port Pins			
Prior State   Next State	00001111	10001111	10001010



FIGURE 2. Block Diagram for Port Bit (i)

## PORT A-STROBED (HANDSHAKE) MODE

Port A can be programmed (via the MDR) into one of 3 types of strobed mode for handshake communication with intelligent peripherals. When Port A is in mode 1, 2, or 3 (see description of MDR), Port C pins 0,1, and 2 are used as signals to and from the peripheral and to the CPU, controlling handshake operations. These control signals are designated STB, BF, and INTR. Timing parameters and timing diagrams are detailed under AC Characteristics.
(Strobe Mode Interrupt) is an active-low interrupt from the I/O to the CPU. In strobed input mode, the CPU reads the valid data at Port A to clear the interrupt. In strobed output mode, the CPU clears the interrupt by writing to Port A.
The INTR output can be enabled or disabled, thus giving the ability to control strobed data transfer under software control. It is enabled or disabled respectively, by setting ( $=1$ ) or clearing ( $=0$ ) the output data latch of bit 2 , Port C. Port bit PC2 is used as the STB input. Since PC2 is always an input during strobed mode of operation, its output data latch is not needed. Therefore, during strobed mode of operation it is internally gated with the interrupt signal to generate the INTR output. Reset clears this bit to zero, so it must be set to one to enable the INTR pin for strobed operation. Once the strobed mode of operation is programmed, the only way to change the output data latch of PC2 is by using the Bit-Set and Clear instructions. The Port C byte write command will not alter the output data latch of the PC2 during the strobed mode of operation.
(Strobe) is an active-low input from the peripheral device, signaling that data transfer is about to begin. This strobe is interpreted as an "output request" if Port A is in a strobed output mode, or as a "data valid" signal if Port A is in strobed input mode.

BF
(Buffer Full) is an output from the I/O to the peripheral signaling that data transfer is complete. In strobed input mode this strobe indicates that data is received into Port A and that no further data should be transmitted by the peripheral device until the port has been read (emptied). In strobed output mode the BF indicates that the request from the peripheral has been processed by the CPU and the valid data now appears in Port A.
The bits of Port C that are used for handshake control of Port A (bits $\mathrm{C} 0, \mathrm{C} 1$, and C 2 ) must be direction-defined appropriately in the DDR. Also, the DDR of Port A must be consistent with the mode specified in the MDR. Register setup configurations for the three handshake modes are illustrated in Table 2.

Table 2. Mode Definition Register Configurations

Mode	MDR	DDR   Port A	DDR   Port C	Port C   Output   Latch
Strobed   Input	$X X X X X X 01$	00000000	$X X X 011$	$\mathrm{XXX1XX}$
Strobed   Output   (Active)	$X X X X X 011$	11111111	$X X X 011$	$X X X 1 X X$
Strobed   Output   (TRI-   STATE)	$X X X X X 111$	11111111	$X X X 011$	$X X X 1 X X$

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature Range .......................................................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$


Lead Temperature (Soldering, 10 seconds) ........................................................................... $300^{\circ} \mathrm{C}$
Power Dissipation .1W

Note: Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. Continuous operation at these limits is not intended; operation should be limited to those conditions specified under DC Elf

DC ELECTRICAL CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=$

Symbol	Parameter	Test Conditions	Min	Typ	morn	chtiction
$\mathrm{V}_{\mathrm{IH}}$	Logical 1 Input Voltage		$0.7 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\mathrm{cc}}$	$\stackrel{\text { acharge }}{\text { a }}$
$\mathrm{V}_{\text {iL }}$	Logical 0 Input Voltage		0		$0.2 \mathrm{~V}_{\text {cc }}$	V
$\mathrm{V}_{\mathrm{OH}}$	Logical 1 Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			V
		$\mathrm{I}_{\text {Out }}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{cc}}-0.5$			V
$V_{0}$	Logical 0 Output Voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	0		0.4	V
		$\mathrm{I}_{\text {OUt }}=10 \mu \mathrm{~A}$	0		0.1	V
$1 /$	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-10.0		10.0	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{OL}}$	Output Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-10.0		10.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{cc}}$	Active Supply Current	$\mathrm{I}_{\text {OUT }}=0, \mathrm{t}_{\text {WCY }}=750 \mathrm{~ns}$		8	10	mA
$\mathrm{I}_{0}$	Quiescent Current	No Input Switching, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4	7	pF
$\mathrm{C}_{\text {OUt }}$	Output Capacitance			6	10	pF
$\mathrm{V}_{\text {cc }}$	Power Supply Voltage		2.4	5	6	V

LOW VOLTAGE OPERATION Preliminary

Voltage	MPU831-1	MPU831	MPU831-4	Units
2.4	-	500	500	kHz
3.0	-	1	1	MHz

AC TESTING INPUT/OUTPUT WAVEFORM


AC TESTING LOAD CIRCUIT


## AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & \text { MPU830-1 } \\ & \text { MPU831-1 } \end{aligned}$		MPU830 MPU831				
			Min	Max	Min	Max	Min		
$\mathrm{t}_{\mathrm{ACC}}$	Access Time from ALE	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		1000		400		300	
$\mathrm{t}_{\text {AH }}$	AD0-AD7, CE, IOT/M Hold Time		100		60		30		ns
$\mathrm{t}_{\text {ALE }}$	ALE Strobe Width (High)		200		125		75		ns
$t_{\text {ARW }}$	ALE to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Strobe		150		120		75		ns
$\mathrm{t}_{\text {AS }}$	ADO-AD7, CE, IOT/M Set-Up Time		100		75		40		ns
$\mathrm{t}_{\mathrm{DH}}$	Data Hold Time		150		90		40		ns
$\mathrm{t}_{\mathrm{DO}}$	Port Data Output Valid			350		310		300	ns
$\mathrm{t}_{\text {os }}$	Data Set-Up Time		100		80		50		ns
$\mathrm{t}_{\text {PE }}$	Peripheral Bus Enable			320		200		200	ns
$\mathrm{t}_{\text {PH }}$	Peripheral Data Hold Time		150		125		100		ns
$\mathrm{t}_{\text {ps }}$	Peripheral Data Set-Up Time		100		75		50		ns
$\mathrm{t}_{\text {pz }}$	Peripheral Bus Disable (TRI-STATE®)			150		150		150	ns
$\mathrm{t}_{\text {RB }}$	$\overline{\mathrm{RD}}$ to BF Output			300		300		300	ns
$\mathrm{t}_{\text {RD }}$	Read Strobe Width		400		320		220		ns
$\mathrm{t}_{\text {RDD }}$	Data Bus Disable		0	100	0	100	0	75	ns
$\mathrm{t}_{\mathrm{fI}}$	$\overline{\mathrm{RD}}$ to INTR Output			320		320		300	ns
$\mathrm{t}_{\text {RwA }}$	$\overline{\mathrm{RD}}$ to $\overline{\mathrm{WR}}$ to Next ALE		125		100		75		ns
$\mathrm{t}_{\text {SB }}$	STB to BF Valid			300		300		300	ns
$\mathrm{t}_{\text {sH }}$	Peripheral Data Hold With Respect to STB		150		125		100		ns
$\mathrm{t}_{\mathrm{s} \text { I }}$	$\overline{\text { STB }}$ to INTR Output			300		300		300	ns
$\mathrm{t}_{\mathrm{ss}}$	Peripheral Data Set-Up With Respect to STB		100		75		50		ns
$\mathrm{t}_{\text {sw }}$	$\overline{\text { STB }}$ Width		400		320		220		ns
$\mathrm{t}_{\text {we }}$	WR to BF Output			340		340		300	ns
$\mathrm{t}_{\mathrm{w}}$	$\overline{\text { WR }}$ to INTR Output			320		320		300	ns
$\mathrm{t}_{\text {wr }}$	$\overline{\text { WR }}$ Strobe Width		400		320		220		ns
$\mathrm{t}_{\mathrm{wcr}}$	Width of Machine Cycle		3000		1200		750		ns



Note: Diagonal lines indicate interval of invalid data.


Note: Diagonal lines indicate interval of invalid data.

## MICROCOMPUTER FAMILY BLOCK DIAGRAM




APPROVED FORMATS FOR CUSTOM PROGRAMMED PARTS

Input Medium:
2716 EPROM 2708 EPROM

## IMPORTANT-EPROM LABELING

Only one customer program may be included in a single order. The following method must be used to identify the EPROMs comprising a program.
a. The EPROMs used for storing a custom program are designated as shown:

2716:	Block A	$0-2047$
2708:	Block A	$0-1023$
	Block B	$1024-2047$

b. All EPROMs must be labeled (stickers, paint, etc.) with this block designation plus a customer assigned print or identification number.
Example:

1. Customer Data

- Custom Program Length-2K
- Medium-Two 2708s
- Customer Print or I.D. No. C123-45

2. EPROM Labels

## Verification

You will receive a listing of the options ordered and the input data. If you also wish to receive EPROMs for verification, please send additional blank EPROMs as necessary for this purpose. You can use software (the listing) or hardware (EPROMs) to verify the program.
You will be asked for GO/NO GO response within one week after you receive the listing.

## VERIFICATION LISTING

The verification listing has six sections:

1. A cover sheet with provision for "STOP, DO NOT PROCEED" or "VERIFICATION CERTIFIED" signatures.
2. Description of the options you have chosen.
3. A description of the log designations and assumptions used to process the data.
4. A listing of the data you have submitted.
5. An error summary.
6. A definition of the standard logic definitions for the ROM and the reduced form of the data. This list shows the output word corresponding to each address coded in binary.

## ORDERING INFORMATION FOR CUSTOM PROGRAMMED PARTS

The following information must be submitted with each custom ROM program. An order will not be processed unless it is accompanied by this information.

Person (Customer, Sales Representative, etc. )to whom Verification Package be sent:	SMC PART NUMBER AND PACKAGE
Name	ROM Letter Code (SMC Use Only)
Company	Customer Name and Location
Address	Customer Print or I.D. Number for this ROM Program
City, State, and Zip Code	Purchase Order Number
Person (Customer) SMC Can Contact for Technical Questions	Device Marking Instruction (Unless otherwise instructed. SMC will always mark devices with Date Code, SMC Part No., and ROM Code. Any additional marking should be shown below.)
Sales Representative	Customer Service Representative
INPUT MEDIUM	OPTIONS FOR MPU830 ROM-I/O
See following page for approved formats. Please check the medium you are using. 2716 EPROM 2708 EPROM $\qquad$ Total number of EPROMs	```Option 1 = } CE Select, enter: 0 for CE  1 for CEE Option 2 = \(\square\)None```

## Plastic Package Outlines



DIM	8 LEAD	14 LEAD	16 LEAD	18 LEAD	20 LEAD	24 LEAD	28 LEAD	40 LEAD
A	$.380-.400$	$.750-.770$	$.750-.770$	$.900-.920$	$1.025-1.050$	$1.245-1.265$	$1.450-1.470$	$2.050-2.070$
B	$.240-.250$	$.240-.250$	$.240-.250$	$.240-.250$	$.240-.260$	$.530-.545$	$.535-.550$	$.535-.550$
C	$.125-.135$	$.125-.135$	$.130-.140$	$.125-.140$	$.125-.140$	$.145-.155$	$.145-.155$	$.145-.155$
D	$.016-.021$	$.016-.021$	$.016-.021$	$.016-.021$	$.016-.021$	$.016-.021$	$.016-.021$	$.016-.021$
E	$.290-.330$	$.290-.330$	$.290-.330$	$.290-.330$	$.290-.330$	$.590-.630$	$.590-.630$	$.590-.630$
F	$.055-.065$	$.060-.070$	$.060-.070^{*}$	$.060-.070$	$.060-.070$	$.060-.070$	$.060-.070$	$.050-.060$
G	$.090-.110$	$.090-.110$	$.090-.110$	$.090-.110$	$.090-.110$	$.090-.110$	$.090-.110$	$.090-.110$
H	$.040-.050$	$.075-.085$	$.025-.035$	$.040-.060$	$.065-.075$	$.065-.085$	$.070-.090$	$.070-.090$
J	$.010-.014$	$.010-.014$	$.010-.014$	$.010-.014$	$.010-.014$	$.010-.014$	$.010-.014$	$.010-.014$
K	$.120-.140$	$.120-.140$	$.120-.140$	$.120-.140$	$.120-.140$	$.120-.140$	$.120-.140$	$.120-.140$
L	$.315-.370$	$.315-.365$	$.315-.365$	$.315-.365$	$.315-.365$	$.610-.670$	$.610-.670$	$.610-.670$
M	$.210-.250$	$.210-.250$	$.210-.250$	$.210-.250$	$.210-.250$	$.210-.250$	$.210-.250$	$.210-.250$

*. 045 TYP FOR END LEADS

## Ceramic Package Outlines

14, 16, 18, 20 PIN HERMETIC PACKAGE


DIM	14 LEAD		16 LEAD		18 LEAD		20 LEAD	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
	.670	.760	.790	.810	.885	.915	.965	.995
C		.175		.175		.175		.175
D	.015	.021	.015	.021	.015	.021	.015	.021
F	.048	.060	.048	.060	.048	.060	.048	.060
G	.090	.110	.090	.110	.090	.110	.090	.110
J	.008	.012	.008	.012	.008	.012	.008	.012
K	.130	.170	.130	.170	.130	.170	.130	.170
L	.295	.325	.295	.325	.295	.325	.295	.325
M		$10^{\circ}$		$10^{\circ}$		$10^{\circ}$		$10^{\circ}$
N	.025	.060	.025	.060	.025	.060	.025	.060



## Cerdip Package Outlines

8 LEAD CERDIP PACKAGES


14, 16, 18, 20 LEAD CERDIP PACKAGES


## 24, 28, 40 LEAD CERDIP PACKAGES



DIM	8 LEAD	14 LEAD	16 LEAD	18 LEAD	20 LEAD	24 LEAD	28 LEAD	40 LEAD
A	.400 MAX	.785 MAX	.810 MAX	.915 MAX	.970 MAX	1.280 MAX	1.460 MAX	2.070 MAX
B	$.245-.295$	$.244-.295$	$.244-.295$	$.265-.295$	$.265-.295$	$.510-.595$	$.510-.595$	$.510-.595$
C	.160 MAX	.160 MAX	.180 MAX					
D	$.016-.020$	$.016-.020$	$.016-.020$	$.016-.020$	$.016-.020$	$.016-.020$	$.016-.020$	$.016-.020$
E	$.290-.320$	$.290-.320$	$.290-.320$	$.310-.330$	$.310-.330$	$.590-.620$	$.590-.620$	$.590-.620$
F	$.050-.070$	$.050-.070$	$.050-.070$	$.050-.070$	$.050-.070$	$.050-.070$	$.050-.070$	$.050-.070$
G	$.100 \pm .010$	$.100-.010$						
H	-	.065 TYP	.020 TYP	.040 TYP	.020 TYP	.045 TYP	.045 TYP	.045 TYP
J	$.008-.012$	$.008-.012$	$.008-.012$	$.008-.012$	$.008-.012$	$.008-.012$	$.008-.012$	$.008-.012$
L	.400 MAX	.700 MAX	.700 MAX	.700 MAX				
M	$.240-.300$	$.240-.300$	$.240-.300$	$.240-.300$	$.240-.300$	$.240-.300$	$.240-.300$	$.240-.300$
K	.125 MIN							

## Plastic Surface Mount Package Outlines 28, 44, 68 J-Lead Carrier

## NOTE:

1. All dimensions are in inches.
2. Circle indicating pin 1 can appear on a top surface as shown on the drawing or right above it on a beveled edge.


DIM	28 L	44 L	68 L
A	$.160-.188$	$.160-.188$	$.160-.190$
A1	$.090-.120$	$.090-.120$	$.090-.130$
D	$.482-.495$	$.682-.695$	$.982-.995$
D1	$.450-.456$	$.650-.656$	$.950-.956$
D2	$.390-.430$	$.590-.630$	$.890-.930$
F	$.042-.056$	$.042-.060$	$.042-.062$
G	$.042-.048$	$.042-.048$	$.042-.048$
J	$.000-.020$	$.000-.028$	$.00-.028$
E	$.047-.053$	$.047-.053$	$.047-.053$
R	$.025-.045$	$.025-.045$	$.025-.045$
B	$.013-.021$	$.013-.021$	$.013-.021$
B1	$.026-.032$	$.026-.032$	$.026-.032$
C	$.020-.045$	$.020-.045$	$.020-.045$

## Ceramic Leadless <br> Chip Carrier Outlines



DIM	44 LEAD	68 LEAD
A	$.062-.078$	$.072-.088$
A1	$.071-.089$	$.081-.099$
B	.025 TYP	.025 TYP
D	$.640-.660$	$.940-.965$
D1	.500	.800
D2	$.355-.598$	$.455-.820$
D3	$.350-.590$	$.450-.820$
e	.050 TYP	.050 TYP
G	$.020 \times 45^{\circ}$	$.020 \times 45^{\circ}$
J	$.040 \times 45^{\circ}$	$.040 \times 45^{\circ}$
L	$.045-.055$	$.045-.055$
L1	$.075-.095$	$.075-.095$

# SALES REPRESENTATIVES 



## CALIFORNIA

5230 Carroll Canyon Rd.
Ste. 214
San Diego, CA 92121 (619) 450-1755 TLX: (910) 335-1220

Costar, Inc.
19220 Stevens Creek Blvd.
Cupertino, CA 95014
(408) 446-9339

TLX: (910) 338-0206
Varigon Associates
137 Eucalyptus Drive Segundo, CA 90245 (213) 634-2116

Varigon Associates 22932 El Toro Rd. Ste. 5 El Toro, CA 92630 (714) 855-0233 TLX: (910) 997-0225

## COLORADO

2015 South Dayton St. Suite 100
Denver, CO 80231
(303) 337-2300

Easylink No.: 62927893

## CONNECTICUT

Orion Group
27 Meriden Avenue Southington, CT 06489 (203) 621-8371 TLX: (510) 601-1381

## DELAWARE

Tritek Sales, Inc.
21 E. Euclid Avenue Haddonfield, NJ 08033 (609) 429-1551 TLX: (710) 896-0881

## FLORIDA

Semtronic Associates, Inc. 657 Maitland Avenue Altamonte Springs, FL 32701 (305) 831-8233

TLX: (810) 854-0321
Semtronic Associates, Inc. 1467 S. Missouri Avenue Clearwater, FL 33516 (813) 461-4675

Semtronic Associates, Inc. 3471 N.W. 55th Street Fort Lauderdale, FL 33309 (305) 731-2484 TLX: (810) 848-0074

## GEORGIA

Electronic Marketing
Associates
6695 Peachtree Industrial
Blvd.
Suite 109
Atlanta, GA 30360
(404) 448-1215

## IDAHO

Quest Marketing, Inc. 15921 N.E. 8th St., Ste. 207 Bellevue, WA 98008 (206) 747-9424

TLX: (206) 747-9426 (FAX)

ILLINOIS
Sumer, Inc.
1675 Hicks Road
Rolling Meadows, IL 60008 (312) 991-8500

TLX: (910) 693-1477

## INDIANA

Wilson Technical Sales, Inc. 4622 W. 72nd Street
Post Office Box 40699
Indianapolis, IN 46268 (317) 298-3345

TLX: (910) 997-8120

## IOWA

Standard Microsystems Corporation
Post Office Box 292497 3411 Office Park Drive Suite 106
Kettering, OH 45429
(513) 293-5393

TLX: (810) 459-1617

## KANSAS

S. W. Wollard Co.

Rural Route 1
Post Office Box 66A
Parker, KS 66072
(913) 898-6552

KENTUCKY Wilson Technical Sales, Inc. 4622 W. 72nd Street Post Office Box 40699 Indianapolis, IN 46268 (317) 298-3345 TLX: (910) 997-8120

## LOUISIANA

Standard Microsystems Corporation
Post Office Box 292497 3411 Office Park Drive Suite 106
Kettering, OH 45429
(513) 293-5393

TLX: (810) 459-1617

## MAINE

Alpha-Omega Sales Corporation 10-G Roessler Road Woburn, MA 01801 (617) 933-0237 TLX: (910) 997-1119
MARYLAND Robert Electronic Sales 5525 Twin Knolls Rd. Ste. 325
Columbia, MD 21045
(301) 995-1900

MASSACHUSETTS
Alpha-Omega Sales Corporation 10-G Roessler Road Woburn, MA 01801 (617) 933-0237

TLX: (910) 997-1119
MICHIGAN
A. P. Associates

9903 Weber
Post Office Box 777
Brighton, M14811 TLX: 287310 APAIUR

MINNESOTA
Comstrand, Inc.
2852 Anthony Lane So.

twx. $910-576-09$

MISSISSIPPI
Electronic Marketing Assoc.
1200 Jordan Lane, Ste. 4
Jordan Center
Huntsville, AL 35805-0306
(205) 536-3044

MISSOURI
Abrams \& Associates
67 Ladue Estates
St. Louis, MO 63141
(314) 569-0447

## MONTANA

15921 N.E. 8th St., Ste. 207
Bellevue, WA 98008
(206) 747-9424

TLX: (206) 747-9426 (FAX)
NEBRASKA
S. W. Wollard Co.

Rural Route 1
Post Office Box 66A
Parker, KS 66072
(913) 898-6552

## NEVADA

RELCOM, Inc.
4314 E . Tonto St.
Phoenix, AZ 85044
(602) 893-1209

TLX: (910) 950-0195
NEW JERSEY
Tritak Sales, Inc.
21 E. Euclid Avenue
Haddonfield, NJ 08033
(609) 429-1551

TLX: (710) 896-0881
NEW HAMPSHIRE
Alpha-Omega Sales Corporation
10-G Roessler Road
Woburn, MA 01801
(617) 933-0237

TLX: (910) 997-1119
NEW MEXICO
RELCOM, Inc.
4314 E . Tonto St.
Phoenix, AZ 85044 (602) 893-1209 TLX: (910) 950-0195

NEW YORK
Standard Microsystems
Corporation
35 Marcus Blvd.
Hauppauge, NY 11788 (516) 273-3100 TLX: (510) 227-8898

T-Squared Elec. Co. Inc. 7353 Victor-Pittsford Rd. Victor, NY 14564
(718) 924-9101

TWX: (910) 997-8005
Faxs Line 62522970
T-Squared Elec. Co., Inc.
6443 Ridings Road
Syracuse, NY 13206
(315) 463-8592

NORTH CAROLINA
Electronic Marketing
Associates
9225 Honeycutt Creek Road Raleigh, NC 27609
(919) 847-8800

TLX: (510) 928-0594

## DISTRIBUTORS

ALABAMA
Hall-Mark Electronics Corp. 4900 Bradford Drive Huntsville, AL 35807 (205) 837-8700

ARIZONA
Cetec Electronics
3617 N. 35th Avenue
(602) 272-7951

Hall-Mark Electronics Corp. 4040 East Raymond Phoenix, AZ 85040 (602) 437-1200

Western Microtechnology, Inc. 7848 East Redfield Drive Suite 17
Scottsdale, AZ 85260
(602) 948-4240

CALIFORNIA
Cetec Electronics 5610 E. Imperial Highway South Gate, CA 90280
(213) 773-6521

Cetec Electronics
1692 Browning
(714) 250-4141

Cetec Electronics 3940 Ruffin Road San Diego, CA 92123
(619) 278-5020 (619) 278-5020

Cetec Electronics
2300 Owen Stree Santa Clara, CA 95051 (408) 748-8550

Diplomat Electronics, Inc. 20151 Bahama Street Chatsworth, CA 91311 (818) 341-4411

Diplomat Electronics, Inc.
9787 Aero Drive
San Diego, CA 92123
(619) 292-5693

Diplomat Electronics, Inc.
1310 Kifer Road
Sunnyvale, CA 94086
(408) $737-0204$
(408) 737-0204

Hall-Mark Electronics Corp.
6341 Auburn Blvd.
Suite D
Citrus Heights, CA 95610
(916) 722-8600

NORTH DAKOTA
2852 Anthony Lane So Minneapolis, MN 55418 (612) 788-9234 TWX: 910-576-0924

OHIO
Thompson \& Associates 23715 Mercantile Road Beachwood, OH 44122 (216) 831-6277 TLX: (810) 427-9453

Thompson \& Associates
309 Regency Ridge
Dayton, OH 45459
(513) 435-7733

TLX: (810) 459-1767
OKLAHOMA
Standard Microsystems
Corporation
Post Office Box 292497 3411 Office Park Drive Suite 106
Kettering, OH 45429
513) 293-5393

TLX: (810) 459-1617

## OREGON

Quest Marketing, Inc.
6700 S. W. 105 th, Ste. 311D Beaverton, OR 97005 (503) 641-7377

PENNSYLVANIA Thompson \& Associates 309 Regency Ridge Dayton, OH 45459 (513) 435-7733

TLX: (810) 459-1767
Tritek Sales, Inc.
21 E. Euclid Avenue Haddonfield, NJ 08033 609) 429-1551 TLX: (710) 896-0881
PUERTO RICO
Semtronic Associates, Inc.
3471 N W 55 th Street
3471 N.W. 55th Street
Fort Lauderdale, FL 33309
305) 731-2484

RHODE ISLAND
Alpha-Omega Sales
Corporation
10-G Roessler Road Woburn, MA 01801
617) 933-0237

TLX: (910) 997-1119
SOUTH CAROLINA
Electronic Marketing Associates
210 West Stone Avenue Greenville, SC 29609-5499
(803) 233-4637/4638 (803) 233-4637/4638 TLX: (810) 281-2225
SOUTH DAKOTA
Comstrand, Inc.
2852 Anthony Lane So Minneapolis, MN 55418 (612) 788-9234

WX: 910-576-0924
TENNESSEE
Electronic Marketing Assoc 1200 Jordan Lane, Ste. 4 Jordan Center (205) 536-3044 (205) 536-3044

TEXAS
Standard Microsystems
Corporation
Post Office Box 292497
3411 Office Park Drive
Suite 106
Kettering, OH 45429
(513) 293-5393

TLX: (810) 459-1617
UTAH
Elcom, Inc.
2520 South State St.
Suite 116
Salt Lake City, UT 84115
(801) 486-4233

Easylink No.: 62893625

## VERMONT

Alpha-Omega Sales
Corporation
10-G Roessler Road
Woburn, MA 01801
(617) 933-0237

## DISTRIBUTORS (con’t)

CONNECTICUT
Diplomat Electronics, Inc. 52 Federal Road Danbury, CT 06810 (203) 797-9674

Hall-Mark Electronics Corp. Barnes Industrial Park W. 33 Village Lane,
P.O. Box 5024

Wallingford, CT 06492
(203) 269-0100

Milgray Electronics, Inc. 378 Boston Post Road Orange, CT 06477 (203) 795-0711

## FLORIDA

Diplomat Electronics, Inc
2120 Calumet Street. Clearwater, FL 33515
(813) 443-4514

Diplomat Electronics, Inc
1300 N.W. 65th Place Fort Lauderdale, FL 33309 (305) 974-8700

Hall-Mark Electronics Corp. 15301 Roosevelt Blvd. Suite 303
Clearwater, FL 33520
(813) 530-4543

Hall-Mark Electronics Corp. 7648 Southland Blvd.
Suite 100
Orlando, FL 32809
(305) 855-4020

Hall-Mark Electronics Corp.
3161 S.W. 15th St
Pompano Beach, FL 33069
(305) 971-9280

Milgray Electronics, Inc. 1850 Lee Road, Suite 104 Winter Park, FL 32789 305) 647-5747 (800) 327-5262

GEORGIA
Hall-Mark Electronics Corp 6410 Atlantic Blvd.
Suite 115
Norcross, GA 30071
(404) 447-8000

Milgray Electronics, Inc
17 Dunwoody Park, Suite 102
Atlanta, GA 3033
404) 393-9666
800) 241-5523

IOWA
Advent Electronics 68258 th Avenue S.W. (319) 363-0221

ILLINOIS
Hall-Mark Electronics Corp
210 Mittel Drive
Wood Dale, IL. 6019
(312) 860-3800

Mar-Con
4836 Main Street
Skokie, IL 60076
(312) 675-6450

## INDIANA

Advent Electronics
8446 Moller Road
indianapolis IN 46268
(317) 872-4910

Hall-Mark Electronics Corp.
4275 W. 96th Stree
Indianapolis, IN 46268
(317) 872-8875

## KANSAS

Hall-Mark Electronics Corp. 10815 Lakeview Drive Lenexa, KS 66215 (913) 888-4747

Milgray Electronics, Inc. 6901 West 63rd Street Overland Park, KS 66202 (913) 236-8800

## MARYLAND

Diplomat Electronics, Inc. 9150 Rumsey Road Suite A6
Columbia, MD 21045 (301) 995-1226

Hall-Mark Electronics Corp. 10240 Old Columbia Road Columbia, MD 21046 (301) 988-9800

Milgray Electronics, Inc. 9801 Broken Land Pkwy 103 Columbia, MD 21046-1145 (301) 621-6169

MASSACHUSETTS Diplomat Electronics, Inc. 28 Cummings Park Woburn, MA 0180 (617) 935-6611

Hall-Mark Electronics Corp 6 Cook Street
Pinehurst Park Billerica, MA 01801 (617) 935-9777

Milgray Electronics, Inc. 79 Terrace Hall Ave. Burlington, MA 01803 (617) 272-6800

RC Components 222 Andover Street Wilmington, MA 01887 (617) 273-1860

## MICHIGAN

Advent Electronics
24713 Crestview Court Farmington Hills, MI 48018 (313) 477-1650

## MINNESOTA

Hall-Mark Electronics Corp. 10300 Valley View Rd.
Suite 10
Eden Prairie, MN 55344
(612) 941-2600

## MISSOURI

Hall-Mark Electronics Corp. 13750 Shoreline Drive Earth City, MO 63045 (314) 291-5350

NEW JERSEY Diplomat Electronics 2091 Springdale Road Suite 2
Cherry Hill, NJ 08003 (609) 751-0440

Diplomat Electronics, Inc. 490 South Riverview Drive Totowa, NJ 07512 (201) 785-1830

Hall-Mark Electronics Corp. 107 Fairfield Road
Suite 18
Fairfield, NJ 07006
(201) 575-4415

Hall-Mark Electronics Corp. 1000 Midlantic Drive Mt. Laurel, NJ 08034 (609) 235-1900

Milgray Electronics, Inc. 3002 Greentree
Executive Campus Mariton, NJ 08053 (609) 983-5010 (800) 257-7808/7111

## NEW YORK

ADD Electronics 7 Adler Drive East Syracuse, New York (315) 437-0300

Current Components 215 Marcus Boulevard Hauppauge, NY 11788 (516) 273-2600

Diplomat Electronics, Inc. 4610 Wetzel Road Liverpool, NY 13088 (315) 652-5000

Diplomat Electronics, Inc. 110 Marcus Drive
Melville, NY 11747
(516) 454-6334
(516) 454-6334

Hall-Mark Electronics Corp.
101 Comac Street
Ronkonkoma, NY 11779
(516) 737-0600

Milgray Electronics, Inc.
77 Schmitt Blvd.
Farmingdale, NY 11735
(516) 420-9800

Milgray Electronics, Inc.
57 Monroe Avenue
Pittsford, NY 14534
(716) 385-9330

NORTH CAROLINA Hall-Mark Electronics Corp. 5237 North Blvd. Suite D Raleigh, NC 27604 (919) 872-0712

OHIO
Hall-Mark Electronics Corp. 400 E. Wilson Bridge Road Suite S
(614) 888 3313
) $880-3313$
Hall-Mark Electronics Corp. 5821 Harper Road
Solon, OH 44139
(216) 349-4632

Milgray Electronics, Inc.
6155 Rockside Road Cleveland, OH 44131 (800) $321-0006$

OKLAHOMA
Quality Components Inc. 9934 E. 21st Street (918) 664-8812 (918) 664-8812

PENNSYLVANIA QED Electronics, Inc. 805 N. Bethlehem Pike Box 487
Spring House, PA 19477 (215) 643-9200 Easylink No. 6293-1798


INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS

EUROPEAN SALES	BELGIUM
OFFICE	Auriema Belgium S.A./N
Standard Microsystems	Rue Brognezstraat 172-A
Gmbh	B-1070 Brussels
Arabellastrasse 5-Buero 131	32-2-523-6295
D-8000 Muenchen 81	TLX: 84621646
West Germany	
49-89-919594	BRAZIL
TLX: 5214433 SMCG	Filcres
	Rua Aurora, 165
APPLICATIONS CENTER	CEP .01209,
FAR EAST	Caixa Postal 18767
Standard Microsystems	Sao Paulo
Corporation	011-223-7388
(Asia) Tawan Branch	TLX: 1131298
7F-1, 665	
Tun Hiua S. Road	Haltr
Taipei, Taiwan R.O.C.	2059 th Ave. S.E.
02-700-5457	Suite 300
TLX: 21654 SMCTW	Calgary, Alberta T2G OP
ARGENTINA	TLX: 038-21519
Electroquimica Delta Ind.	
Comp. Timoteo Gordillo 72	Haltronics, L
COD Postal 1408	1085 North Service Rd. E.
Buenos Aires-R	Oakville, Ontario L6H 1A6
641-3193	416-844-2121
TLX: 21212 AR EDELTA	TLX: 610-495-2664
AUSTRIA	DENMARK
Othmar Lackner	Tage Olsen AS
Elektron Bauelement und	Ballerup Byvej 222
Gerate	DK2750 Ballerup
Landstr Hauptstr 37	45-2-658111
A-1031 Vienna	TLX: 85535293
	FINLAND
AUSTRALIA	Instrumentarium Elek
Total Electronics	P.O. Box 64
9 Harker Street	SF-02631 Espoo 63
Burwood, Victoria 3125	35805284320
03-288-4044	TLX: 57124426
TLX: AA31261	

## FRANCE

Tekelec Airtronic
Cite Des Bruyeres
Rue Carle Vernet
BP2 92310 Sevres
33-14-5347535
TLX: 204552F
HONG KONG
Protech Components Ltd. Flat 3 ,
10/F Wing Shing Ind Bldg.
26 Ng Fong St.
San Po Kong Kowloon
3-255106
TLX: 38396 PTLD HX
INDIA
Shivam Computers PVT Ltd 9 National Chambers, near Dipall Cinema Ashram Road
Ahmedabad
409161(0) 443488(R)
TLX: 121539 TRCE-IN

## ISRAEL

RDT Electronics Engr. Ltd. ATDIM Advanced
Technologies Pk.
Tel Aviv
972-3492187, 188, 191
TLX: 371452 or 92233551
ITALY
Dott. Ing. Guiseppe De Mico
Via
Viale Vittorio Veneto 8
20060 Cassina De Pecchi Milano
02-95-20-551
TLX:330869

## JAPAN

Internix, Inc
Shinjuku Hamada Bldg. 7-4-7
Nishi-shinjuku, Shinjuku Ku
Tokyo 160
02-537-5091
TLX: 13579MSCG P
Tomen Electronics Corp.
1-1 Uchisaiwai-Cho
2 Chome, Chiyoda-Ku
Tokyo 100
TLX: 330869
NEDERLAND
Auriema Nederland BV
Doornakkersweg 26
5642MP Eindhoven
TLX:84451992
NORWAY
NORWAY
Henaco A/S
Henaco A/ Kaldbakken
Box 126, Kal
Trondheimsveien 436
Trondh
47-2-16210
TLX: 76716 Hanac N
SINGAPORE
Logic Devices PTE Ltd. 68 Orchard Road \#04-32 Plaza Singapura
Singapore 0923 Singapore 0923
3390022
TLX: RS3481 INHOME

SOUTH AFRICA
Eagle Electric $31-41$ Hout Street Capetown 8000
Republic of South Africa
51421
TLX: 5-21713
SOUTH KOREA
Kortronics Enterprise
Room 307, B-9
\#604-1, Guro-Dong, Guro-gu Seoul,
634-5497
TLX: MICROS K28484
SPAIN
Amitron S.A.
Avenida de Valladolid, 47A
28008 Madrid
247-93-13/248-58-63
SWEDEN
NAXAB
Box 4115
17104 Solna
TLX: 17912
SWITZERLAND
Datacomp AG
Zuercherstrasse 20
CH-8952 Zurich Schileren

TLX: 854553533

TAIWAN
Sertek Internationa 3 FI. No. 135
Chien Kuo N. Road, Sec. 2
Taipei
02-501-0055
TLX: 23756 SERTEK
UNITED KINGDOM
Golden Gate
Manhattan House
Bridge Road
Maidenhead, Berkshire SL6
808
44-628-75851
TLX: 851-847898
Manhattan Skyline
Manhattan Hous
Bridge Road
Maidenhead, Berkshire SL6
808
44-628-75851
TLX: 851-847898
WEST GERMANY
Atlantik Elektronik Gmbh
Atlantik Elektronik
Fraunhoferstr. 11 A
D-8033 Martinsried
49-89-8572086
TLX: 5215111 ALEC D
Beka Electronics Gmbh
Bahnhofstrasse 42
D-2000 Wedel
TLX: 49-410384061
TLX: 2789582
Tekelec Airtronic Gmbh
Kapauzinerstrasse 9
Kapauzinerstra
8000 Munich 2
8000 Munich 2
$49-89-51640$
TLX:522241

TLX:AA31261

## APPLICATION AND TECHNICAL NOTE DIRECTORY

## DATA COMMUNICATIONS

NUMBER:	TITLE:	USE WITH PART NUMBERS
TN5-1	Using the COM8004 for High Data Integrity in Bit Oriented Protocols	$\begin{aligned} & \text { COM8004 } \\ & \text { COM5025 } \end{aligned}$
TN5-2	Using the COM9026 Local Area Controller and the COM9032 Local Area Network Transceiver	$\begin{aligned} & \text { COM9026 } \\ & \text { COM9032 } \end{aligned}$
TN5-3	MIL-STD-1533A and MIL-STD-1553B Overview	COM1553A COM1553B
TN5-5	VLSI Circuit Provides Complete Controller for Token-Pass Systems	$\begin{aligned} & \text { COM9026 } \\ & \text { COM9032 } \end{aligned}$
TN5-6	Low Cost High Performance Token Pass LAN	COM9026 COM9032
TN5-7	COM7210 GPIB-488 Talker/ Listener Controller	COM7210
DISPLAY PRODUCTS		
AN1-7	Horizontal Scrolling with the CRT5037 VTAC ${ }^{\circledR}$	CRT5037
AN4-1	CRT9006 Single Row Buffer Enhances Processor Through-put	CRT9006
AN4-3	Programming and Interfacing to the CRT9007	CRT9006 CRT9007 CRT9021 CRT9212
AN4-4	Next Generation CRT Systems	CRT9006 CRT9007 CRT9021 CRT9212
TN4-2	CRT9007 VPAC® A Next Generation CRT Controller	CRT8002   CRT9006 CRT9007   CRT9021   CRT9212
TN4-5	CRT9028 VTLC ${ }^{\text {TM }}$ A New   Video Terminal Logic Controller	CRT9028
TN4-6	A Flexible Approach to Video Graphic Systems using the CRT9007 VPAC ${ }^{\text {® }}$	CRT9007
TN4-7	Variable Character Size with the CRT9041	CRT9007   CRT9041

## FLOPPY DISK/HARD DISK

## NUMBER: TITLE:

TN6-1 Principles of Digital Floppy
Disk Data Separation Using FDC9216, FDC9229 or FDC9266
TN6-2

TN6-3
TN6-4
TN6-5
TN6-6

TN6-7
Improved Functionally
Simplifies Disk Controller Design
FDC765A Circuit
Recommendation
Using the HDC9226 Hard Disk Data Separator
Programming the HDC9224 Universal Disk Controller
Programming the FDC765A, FDC9266 and FDC9267

HDC9224 Programmers

FDC765A
FDC9229
HDC9224
HDC9226

FDC765A
FDC9266 FDC9267

HDC9224
Reference Card
HDC9225
HDC9226

# GET OUR 1987 CATALOG HOT OFF THE PRESS! 

To make sure you receive Standard Microsystems' 1987 Catalog as soon as it's published, please fill out and return the coupon below.

## STANDARD MICROSYSTEMS CORPORATION

35 Marcus Blvd., Hauppauge, NY 11788 (516) 273-3100
ATTENTION: Communications Department
Please put me on your mailing list for the 1987 Catalog.

Name $\qquad$ Title $\qquad$

Company $\qquad$

Address $\qquad$ State $\qquad$ Zip $\qquad$

Telephone (Area Code)

Ext. $\qquad$

My application is $\qquad$


[^0]:    ＊Functional equivalent．
    ＊＊Most UART＇S are interchangeable；consult the factory for detailed information on interchangeability．

[^1]:    *SMC part will replace cited device with no changes required.
    **Functional Equivalent.

[^2]:    * packages having gold plating thicknesses of 200 microinches or less are not required to pass subgroups 3 and 5 .

[^3]:    (2)For future release

[^4]:    *Unused bits are set high.

[^5]:    *reads command control code bits CB2-CB0
    ** response time
    X $=$ don't care

[^6]:    *If pin 2 is taken to a logic 1 the COM 8018 will operate in a high accuracy mode. If pin 2 is connected to $-12 \mathrm{~V}, \mathrm{GND}$, a valid logic zero, or left unconnected, the high accuracy feature is disabled, and the UART will operate in a 16X clock mode. Pin 2 is not connected on the COM 1863.

[^7]:    **Not more than one output should be shorted at a time.

[^8]:    (1) May be custom mask programmed (2)For future release

[^9]:    *At Selected Row Decode **At Cursor Blink Rate
    Note: If Character is Blinking at Character Rate, Cursor will change it to Cursor Blink Rate.

[^10]:    1 - if the programmed scan line(s) for cursor and underline coincide, the cursor takes precedence; otherwise both are displayed.
    2 - at programmed scan line(s) for underline
    3 - at cursor blink rate
    Note-cursor blink rate overrides character blink rate.

[^11]:    1 - Assumes $\overline{\text { VSYNC }}$ input frequency of 60 Hz .
    2 - Valid only if the cursor is formatted to blink.
    3 - Valid only if the cursor is formatted for underline.
    4 - Valid for the parallel scan line mode only.

[^12]:    The height of D4 and D5, the length of D6 AND D7, and the position of D4-D11 are mask programmable. The values shown are for the CRT 9041-004.
    -These values are fixed

[^13]:    *: These Values are doubled when CLK $=1 \mathrm{MHz}$.

[^14]:    *The FDC9239/B, as all other NMOS integrated circuits, presents a high impedance on all inputs.

    To avoid soft errors caused by transmission line effects and noise where there is long cabling between the floppy disk drive and the controller board, the use of a (non-inverting) TTL schmidt-trigger input gate or bus transceiver is recommended at the DSKD input to the FDC9239/B.

[^15]:    The DIO and RQM bits in the Status Register indicate when Data is ready and in which direction data will be transferred on the Data Bus. The max time between the last RD or WR during command or result phase and DIO and RQM getting set or reset is $12 \mu \mathrm{~s}$. For this reason every time Main Status Register is read the CPU should wait $12 \mu \mathrm{~s}$. The max time from the trailing edge of the last RD in the result phase to when $\mathrm{DB}_{4}$ (FDC Busy) goes low is $12 \mu \mathrm{~s}$.

[^16]:    "Time refers to $8^{\prime \prime}$ mode (MINI = low). When using 5.25 " mode, these times are doubled.

[^17]:    NOTES: (1) Typical values for $\mathrm{T}_{\mathrm{a}}-25^{\circ} \mathrm{C}$ and nominal supply voltage
    (2) The former value of 2 and 1 are applied to Standard Floppy, and the latter value of 4 and 2 are applied to Mini-floppy

[^18]:    *DR=F5 WRITE 3 TIMES MFM ONLY

[^19]:    * These Values are doubled when CLK $=1 \mathrm{MHz}$.

[^20]:    STANDARD MICROSYSTEMS CORPORATION

    Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applications; consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.

[^21]:    ${ }^{(1)}$ May be custom mask programmed (2) For future release

[^22]:    *This is the only machine cycle that does not have an $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, or $\overline{\mathrm{NTA}}$ strobe but will accept a wait strobe.

[^23]:    Note: N is equal to number of WAIT states.

