LOAD-COMPENSATED DTL INTEGRATED CIRCUIT

TYPES ZAO1A AND ZAO2A SINGLE AND DUAL NAND/NOR GATES

ONE OR TWO DIODE-TRANSISTOR LOGIC CIRCUITS IN A SINGLE CHIP OF SILICON

- Low Power-Speed Product 60 pico-watt-sec
- Operates From Single Power Supply
- Typical Propagation Delay Time 12 nsec
- Typical Power Dissipation 5mw
- High Fan-Out-5 at -55 to 70°C

CIRCUIT DIAGRAMS

The logic operation of this circuit is identical with conventional DTL. The unique emitter-follower diode-clamp arrangement provides high-speed switching, high gain and low-power operation.

MECHANICAL DATA

Single gate in modified 8-lead TO-5 package Dual gate in modified 12-lead TO-5 package (both available in flat package by July 1963)

Pin 8 (single) and pin 12 (dual) are in electrical contact with the case.

PRODUCT CONDITIONING

Long life and mechanical reliability are ensured by subjecting <u>each unit</u> to the following tests:

- High Temperature Storage: 72 hours at 200°C
- Thermal Shock: +200°C to -65°C for 5 Cycles
- 30,000G Centrifuge in the Y₁ Plane
- Helium and Gross Leak Tests for Hermeticity
- Post-Bake Clean-Up to Assure Solderability

1140 West Evelyn Avenue Sunnyvale, California (408) 245-1000

OPERATIONAL CHARACTERISTICS AT VCC=4v

Characteristic	Min	Тур	Max	Unit
Fan-in at -55 to +70°C			4 [†]	
Fan-out at $T_A = 70^{\circ}C$, $\Delta V = 0.1 \text{ v (see Note 1)}$			5	
Worst-Case DC Stability, ΔV, at 70°C Fan-out = 5	100			mv
Power Dissipation per Gate at 25°C (see Note 2)		5		mw
Average Propagation Delay per Gate (see pp. 3,4), When Fan-in = 1 and Fan-out = 1, at $T_A = +25^{\circ}C$ $T_A = -55^{\circ}C$ $T_A = 70^{\circ}C$		12 14 14	15	nsec nsec nsec

[†] Diode array available for single gate to improve fan-in.

ABSOLUTE MAXIMUM RATINGS AT 25° C

Power Supply Voltage, V _{CC}										6 v
Gate Input Voltage										6 v
Gate Output Voltage (Input Grounded)										
Operating Temperature Range									-55	to +70°C
Storage Temperature Range	-								-55	to +200°C

STATIC CHARACTERISTICS (WORST-CASE) VCC=4v

(See opposite page for test conditions)

	Characteristic	Т	Unit			
	Characteristic	-55°C	+25°C	+70°C	Onic	
I _{OFF}	Maximum Output Current with Gate OFF	5*	10*	20*	μа	
I _{R(max)}	Maximum Reverse Current per Input Diode	0.05*	0.10*	0.30*	μа	
I i(max)	Maximum Input Current with Gate OFF (Max Load Presented to Driving Stage), with $V_i = V_F$ -100 mv	1.15*	1.30*	1.35*	ma	
V _F	Maximum Voltage at any Input that will Ensure Turn-OFF (Max False Voltage)	1.38*	1.14*	0.95*	v	
V _{o(max)}	Maximum Output Voltage When Fully Loaded at: Fan-out = 5 Fan-out = 25	1.02 1.30*	0.94*	0.85*	v v	
V_T	Minimum Input Voltage that will Ensure Turn-ON (Minimum True Voltage) Fan-out = 5	2.00	1.78	1.62	v	
ΔV	DC Stability Margin (V _F - V _o) Fan-out = 5	0.36*	0.20*	0.10*	v	

^{*}Characteristics so designated are tested on every unit

Notes:

- 1. This is the maximum fan-out permissible for worst-case logic design with a 4 v power supply when the d-c stability ΔV margin is 0.1 v.
- Power dissipation is defined as power supply voltage times average current drawn per gate. (See test circuit, p. 3).

MEASUREMENT OF STATIC CHARACTERISTICS

Power Dissipation Test Circuit

Power dissipation per gate = $\frac{V_{CC} \times I_{CC}}{2}$ As measured above, the power dissipation is the average between the OFF stage and typically loaded ON stage and is equivalent to a 50% duty cycle for a single gate.

TEST CONDITIONS

Characteristic to be	Set or Measure e.g., to Detern V _o at 4 v, Mea	Other			
Determined	I _i Input Current	V _i Input Voltage	I。 Output Current	V _o Output Voltage	Conditions
$ m V_{F}$		Measure	I *	4 v	Free inputs connected to V_{CC}
I _{i(max)}	Measure	V _F * -100 mv	×	4 v	Free inputs connected to V _{CC}
I _{R(max)}	Measure	4 v			Open circuit output One input grounded
Vo(max)	F.I. $\left[I_{OFF}^* + {}_*\right]$ (F.O 1) $I_{R(max)}$		F.O. x I * i(max)	Measure	
\mathbf{V}_{T}	I _{OFF} + (F.O1) I _{R(max)} *	Measure	F.O. x I* i(max)		Free inputs open

$$F.I. = fan-in$$

MEASUREMENT OF DYNAMIC CHARACTERISTICS

Test Circuit for Propagation Delay/Fan-out Measurements

Waveform propagated through two stages. Average propagation delay per stage

$$t_{d(avg)} = \frac{t_{d1} + t_{d2}}{4}$$

Waveforms and Time Delays

^{*} Definitions and values for temperatures from -55 to + 70° C obtained from table on opposite page.

DYNAMIC CHARACTERISTICS

	FAN-OUT								
TIME	i	(FREE INPUTS)	(FREE INPUTS) HELD FALSE	UNIT					
tr (O-I (TRANSIENT)	10	18	30	nsec					
(TRANSIENT)	5	20	20	nsec					

Typical Rise and Fall Times $V_{CC} = 4 \text{ volts, } + 25^{\circ}C$

Typical Propagation Delay vs. Voltage and Temp

Effect of Loading on Propagation Delay

LOGIC DIAGRAMS

Printed in USA May 1, 1963