Signetics Military Products Handbook, Volume 2

Signetics
Philips Components

Signetics

Military Products

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, ormaskwork right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

Signetics

Preface

Milltary Products

Signetics, since 1961, has been dedicated to manufacturing integrated circuits to the stringent requirements of the Defense and Aerospace Industries. Today, the commitment to this charter is evidenced by our continuing efforts to offer state-of-the-art processes and product technologies which result in unequalled overall product reliability.
As further evidence of the Signetics commitment to serve the specific needs of the Military and Aerospace marketplaces, all of the Signetics fabrication facilities are JAN certified. We also maintain a separate marketing and manufacturing organization dedicated to servicing the special needs of the De fense and Aerospace community.
Our mission is one of total customer satisfaction by providing industry leading products and uncompromised quality and responsiveness.

Signetics

Military Products
Product Status

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Signetics Table of Contents
Military Products
Preface iii
Product Status iv
Section 1 - Introduction
Alphanumeric List 3
Quality and Reliability 9
Product Description 10
Statement of Work 12
Ordering Information 13
Coding Explanations 14
Packaging Information 15
Test Guidelines 20
Section 2 - EPROM Data Sheets
27C64A $\quad 64 \mathrm{~K}$ CMOS UV Erasable PROM $(8 \mathrm{~K} \times 8)$ 23
$27 \mathrm{C} 256 \quad 256 \mathrm{~K}$ CMOS UV Erasable PROM $(32 \mathrm{~K} \times 8)$ 31
$27 \mathrm{C} 512 \quad 512 \mathrm{~K}$ CMOS UV Erasable PROM $(64 \mathrm{~K} \times 8)$ 39
$27 \mathrm{HC} 641 \quad 64 \mathrm{~K}$-Bit CMOS PROM ($8 \mathrm{~K} \times 8$) 43
Section 3 - FAST Data Sheets
54F00 Quad Two-Input NAND Gate 49
54 F02 Quad Two-Input NOR Gate 52
54F04 Hex Inverter 55
54F08 Quad Two-Input AND Gate 58
54F10 Triple Three-Input NAND Gate 61
54 F11 Triple Three-Input AND Gate 61
54F14 Hex Inverter Schmitt Trigger 64
54F20 Dual Four-Input NAND Gate 67
54F32 Quad Two-Input OR Gate 70
54F37 Quad Two-Input NAND Buffer 73
54F38 Quad Two-Input NAND Buffer (Open Collector) 76
$54 F 51$ Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate 79
54F64 Four-Two-Three-Two-Input AND-OR-Invert Gate 82
54F74 Dual D-Type Flip-Flop 85
54F109 Dual J-K Positive Edge-Triggered Flip-Flop 90
54 F112 Dual J-K Negative Edge-Triggered Flip-Flop 95
54 F113 Dual J-K Negative Edge-Triggered Flip-Flop without Reset 101
54F125 Quad Buffer (3-State) 106
54F126 Quad Buffer (3-State) 109
54F138 1-cf-8 Decoder/Demultiplexer 112
54F139 Dual 1-of-4 Decoder/Demultiplexer 117
54F148 8-Input Priority Encoder 121
54F154 1-of-16 Decoder/Demultiplexer 126
54F157A Quad 2-Input Data Selector/Multiplexer (Non-Inverted) 130
54F158A Quad 2-Input Data Selector/Multiplexer (Inverted) 130
54F161A 4-Bit Binary Counter 135
54F163A 4-Bit Binary Counter 135
54F164 8-Bit Serial-In Parallel-Out Shift Register 143
54F169 4-Bit Up/Down Binary Synchronous Counter 148
54F173 Quad D-Type Flip-Flop (3-State) 157

Contents

54F174 Hex D Flip-Flop 163
54F175 Quad D Flip-Flop 167
54F181 4-Bit Arithmetic Logic Unit 172
54F190 Asynchronous Presettable BCD/Decade Up/Down Counters 182
54F191 Asynchronous Presettable 4-Bit BinaryUp/Down Counters 182
54F193 Synchronous Presettable 4-Bit Binary Down Counter 192
54F194 4-Bit Bidirectional Universal Shift Register 200
54F198 8-Bit Bidirectional Universal Shift Register 206
54F240 Octal Inverting Buffer, 3-State 213
54F241 Octal Buffer, 3-State 213
54F244 Octal Buffer, 3-State 218
54F245 Octal Transceiver, 3-State 222
54F253 Dual 4-Input Multiplexer, 3-State 227
54F257A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 232
54F258A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 237
54F259 8 -Bit Addressable Latch 241
54F269 8-Bit Bidirectional Binary Counter 247
54F273 Octal D Flip-Flop 255
54F280A 9-Bit Odd/Even Parity Generator/Checker 259
54F280B 9-Bit Odd/Even Parity Generator/Checker 259
54F299 8-Input Universal ShifuStorage Register, 3-State 263
54F350 4-Bit Shifter, 3-State 269
54F367 Hex Buffer/Driver, 3-State 275
54F373 Octal Transparent Latch, 3-State 279
54F374 Octal D Flip-Flop, 3-State 279
54F398 Quad 2-Port Register with True \& Complementary Outputs 286
54F399 Quad 2-Port Register 286
$54 F 432$ Multi-Mode Buffered Latch, INV, 3-State 291
54F455 Octal Buffer/Line Driver with Parity, Inverting, 3-State 298
54 F456 Octal Buffer/Line Driver with Parity, Non-Inverting, 3-State 298
54F521 8 -Bit Identity Comparator 304
54F534 Octal D Flip-Flop, 3-State 309
545538 1-of-8 Decoder, 3-State 314
54F543 Octal Registered Non-Inverting Transceiver, 3-State 319
54F544 Octal Registered Inverting Transceiver, 3-State 319
54F573 Octal Transparent Latch, 3-State 328
54F574 Octal D Flip-Flop, 3-State 328
54F579 8-Bit Bidirectional Binary Counter, 3-State 335
54F620 Octal Bus Inverting Transceiver 3-State 342
54F623 Octal Bus Non-Inverting Transceiver, 3-State 342
54F640 Octal Bus Inverting Transceiver, 3-State 347
54F646A Octal Transceiver/Register, Non-Inverting, 3-State 351
54F655A Octal Buffer/Line Driver with Parity, Inverting, 3-State 356
54F656A Octal Buffer/Line Driver with Parity, Non-Inverting, 3-State 356
54F657 Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker, 3-State 362
54F676 16-Bit Shift Register 368
$54 F 776$ Octal Bidirectional Latched Transceiver 373
54F777 Triple Bidirectional Latched 3-State + Open Collector Bus Transceiver 382
54F779 8-Bit Bidirectional Binary Counter, 3-State 389
54 F1240 Octal Inverter Buffer, 3-State 396
54 F3037 Quad 2-Input NAND 30Ω Line Driver 400
54F5074 Synchronizing Dual D-Type Flip-Flop with Metastable Immune Characteristics 403
54F30244 Octal High Current Buffer/Line \& Backplane Driver, NINV (30Ω O.C.) 410
54F30245 Octal Transmission Line/Backplane Transceiver, NINV (30Ω O.C. w/ Enable + 3-State) 414

Contents

Sectlon 4 - TTL Data Sheets
$5400 \quad$ Quad Two-Input NAND Gate 421
54LS00 Quad Two-Input NAND Gate 421
54S00 Quad Two-Input NAND Gate 421
54LS02 Quad Two-Input NOR Gate 425
54 S 02 Quad Two-Input NOR Gate 425
5404 Hex Inverter 428
54LS04 Hex Inverter 428
54504 Hex Inverter 428
54LS08 Quad Two-Input AND Gate 432
54S08 Quad Two-Input AND Gate 432
54LS10 Triple Three-Input NAND Gate 435
54S10 Triple Three-Input NAND Gate 435
$54 S 11$ Triple Three-Input AND Gate 435
54LS14 Hex Inverter Schmitt Trigger 439
54LS20 Dual Four-Input NAND Gate 443
54520 Dual Four-Input NAND Gate 443
5432 Quad Two-Input OR Gate 446
54 S 40 Dual Four-Input NAND Buffer 449
$54 S 51$ Dual 2-Wide 2-Input AND-OR-Invert Gate 452
54LS74A Dual D-Type Flip-Flop 455
54574 Dual D-Type Flip-Flop 455
54LS75 Quad Bistable Latch 461
5485 4-Bit Magnitude Comparator 46554LS85
465$54 S 85$4-Bit Magnitude Comparator
4-Bit Magnitude Comparator 465
54LS86 Quad Two-Input Exclusive-OR Gates 473
$54 S 86$ Quad Two-Input Exclusive-OR Gates 473
5493 4-Bit Binary Ripple Counter 476
54LS109 Dual J-R Positive Edge-Triggered Flip-Flop 481
54S112 Dual J-K Edge-Triggered Flip-Flop 486
54123 Dual Retriggerable Monostable Multivibrator 491
54LS125 Quad 3-State Buffer 497
54S133 13-Input NAND Gate 501
54LS138 1-of-8 Decoder/Demultiplexer 504
54S138 1-ot-8 Decoder/Demultiplexer 504
54S140 Dual Four-Input NAND 50Ω Line Driver 509
54 S151 8-Input Multiplexer 512
$54 S 153$ Dual 4-Line to 1-Line Multiplexer 517
54LS154 1-of-16 Decoder/Demultiplexer 522
54 S157 Quad 2-Input Non-Inverted Data Selector/Multiplexer 526
54S158 Quad 2-Input Inverted Data Selector/Multiplexer 526
54161 4-Bit Binary Counter 532
54163 4-Bit Binary Counter 532
54LS161A 4-Bit Binary Counter 532
54LS163A 4-Bit Binary Counter 532
54164 8-Bit Serial-In Parallel-Out Shift Register 54254LS16
8 -Bit Seri 542
54 LS173 Quad D-Type Flip-Flop with 3-State Outputs 547
54174 Hex D Flip-Flop 554
54LS174 Hex D Flip-Flop 554
54 S174 Hex D Flip-Flop 554
54175 Quad D Flip-Flop 560
54LS175 Quad D Flip-Flop 560
54 S 181 4-Bit Arithmetic Logic Unit 566
54LS191 Presettable 4-Bit Binary Up-Down Counter 576
54193 Presettable 4-Bit Binary Up/Down Counter 585

Contents

54LS193 Presettable 4-Bit Binary Up/Down Counter 585
54194 4-Bit Bidirectional Universal Shift Register 593
54LS195A 4-Bit Parallel Access Shift Register 599
54LS197 Presettable 4-Bit Binary Ripple Counter 604
54LS240 Octal Inverter Buffer, 3-State 611
54LS241 Octal Buffer, 3-State 611
$54 S 240$ Octal Inverter Buffer, 3-State 611
545241 Octal Buffer, 3-State 611
54LS244 Octal Buffer, 3-State 617
$54 S 244$ Octal Buffer, 3-State 617
54LS245 Octal Transceiver, 3-State 622
54 S251 8 -Input Multiplexer, 3-State 627
$54 S 253$ Dual 4 -Input Multiplexer, 3-State 632
54LS257A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 638
54LS258A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 643
54LS273 Octal D Flip-Flop 648
$54 S 273$ Octal D Flip-Flop 648
54LS295B 4-Bit Shift Register with 3-State Outputs 654
54365A Hex Buffer/Driver, 3-State 660
54367A Hex Buffer/Driver, 3-State 660
54368A Hex Inverter Buffer, 3-State 660
54LS365A Hex Buffer/Driver, 3-State 660
54LS367A Hex Buffer/Driver, 3-State 660
54LS373 Octal Transparent Latch with 3-State Outputs 665
54LS374 Octal D Flip-Flop with 3-State Outputs 665
54 S373 Octal Transparent Latch with 3-State Outputs 665
54 S374 Octal D Flip-Flop with 3-State Outputs 665
54 LS377 Quad D Flip-Flop with Clock Enable 673
54LS393 Dual 4-Bit Binary Ripple Counter 678
54LS395A 4-Bit Cascadable Shift Register with 3-State Outputs 682
8 T09 3-State Quad Bus Driver 689
8T26A 3-State Quad Bus Transceiver 693
8 X 60 FIFO RAM Controller (FRC) 699
Section 5 - RAM Data Sheets
82S09 576-Bit TTL Bipolar RAM (64×9) 711
82 S 16 256-Bit TTL Bipolar RAM (256×1) 715
825212 2304-Bit TTL Bipolar RAM (256×9) 719
82S212-40 2304-Bit TTL Bipolar RAM (256×9) 719
54F189A 64-Bit TTL Bipolar RAM, Inverting, 3-State (16×4) 723
545189 64-Bit TTL Bipolar RAM (16×4) 729
8×350 $2 K$-Bit TTL Bipolar RAM (256×8) 733
8×350-40 2K-Bit TTL Bipolar RAM (256×8) 738
Section 6 - PROM Data Sheets
82S115 4K-Bit TTL Bipolar PROM (512×8) 745
82S23 256 -Bit TTL Bipolar PROM (32×8) 749
82S123 256-Bit TTL Bipolar PROM (32×8) 749
82S23A 256-Bit TTL Bipolar PROM (32×8) 752
82S123A 256-Bit TTL Bipolar PROM (32×8) 752
82S23B 256-Bit TTL Bipolar PROM (32×8) 755
82S123B 256-Bit TTL Bipolar PROM (32×8) 755
82S126 1K-Bit TTL Bipolar PROM (256×4) 758
82S129 1 K-Bit TTL Bipolar PROM (256×4) 758
82S126A 1K-Bit TTL Bipolar PROM (256×4) 761

Contents

82S129A 1K-Bit TTL Bipolar PROM (256×4) 761
82S130 2 K-Bit TTL Bipolar PROM (512×4) 764
825131 2 K-Bit TTL Bipolar PROM (512×4) 764
82S130A 2K-Bit TTL Bipolar PROM (512×4) 767
82S131A 2K-Bit TTL Bipolar PROM (512×4) 767
82S137 4K-Bit TTL Bipolar PROM (1024 $\times 4$) 770
82S137A 4K-Bit TTL Bipolar PROM (1024 $\times 4$) 773
82S141 4 K-Bit TTL Bipolar PROM (512×8) 776
$82 S 147$ 4 K-Bit TTL Bipolar PROM (512×8) 779
82S147A 4 K -Bit TTL Bipolar PROM (512×8) 779
82S147B 4 K-Bit TTL Bipolar PROM (512×8) 782
82S181 8 K-Bit TTL Bipolar PROM (1024×8) 785
82S181A 8 K -Bit TTL Bipolar PROM (1024×8) 788
82LS181 8K-Bit TTL Bipolar PROM (1024×8) 791
82S185 8 K-Bit TTL Bipolar PROM (2048×4) 794
82S185A $8 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (2048×4) 794
82S185B 8 K-Bit TTL Bipolar PROM (2048 $\times 4$) 794
82S191 16K-Bit TTL Bipolar PROM (2048×8) 797
82S191A 16K-Bit TTL Bipolar PROM (2048×8) 797
82HS195A 16K-Bit TTL Bipolar PROM (4096 $\times 4$) 801
82S291A 16K-Bit TTL Bipolar PROM (2048×8) 804
82HS321A $32 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (4096×8) 807
82HS321B 32K-Bit TTL Bipolar PROM (4096×8) 807
82HS641A 64 K -Bit TTL Bipolar PROM (8192×8) 810
82HS641B 64 K-Bit TTL Bipolar PROM (8192×8) 810
Section 7 - PLD Data Sheets
82 S100 Field Programmable Logic Array ($16 \times 48 \times 8$) 815
825101 Field Programmable Logic Array $(16 \times 48 \times 8)$ 815
82 S 105 (PLS105) Field Programmable Logic Sequencer ($16 \times 48 \times 8$) 821
82S153A (PLS153A) Field Programmable Logic Array $(18 \times 42 \times 10)$ 832
PLC18V8Z Zero Standby Power Universal PAL®-type Device 839
PLHS18P8A Programmable AND Array Logic ($18 \times 72 \times 8$) 852
PLC415 CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$ 857
PLHS473 Field Programmable Logic Array ($20 \times 24 \times 11$) 875
PLHS501 Programmable Macro Logic Random Logic Unit ($32 \times 72 \times 24$) 881
PLS159A Field Programmable Logic Sequencer ($16 \times 45 \times 12$) 886
PLS167 Field Programmable Logic Sequencer ($14 \times 48 \times 6$) 896
PLS168 Field Programmable Logic Sequencer ($12 \times 48 \times 8$) 906
PLS173 Field Programmable Logic Array $(22 \times 42 \times 10)$ 917
PLS179 Field Programmable Logic Sequencer $(20 \times 45 \times 12)$ 925
PLUS405 Field Programmable Logic Sequencer ($16 \times 64 \times 8$) 935
Section 8 - Package Outlines
Package Outlines 951
Section 9 - Sales Offices, Representatives \& Distributors
Sales Offices, Representatives \& Distributors 953

Signetics

Military Products

Section 1

 IntroductionINDEX
Alphanumeric List 3
Quality and Reliability 9
Product Description 10
Statement of Work 12
Ordering Information 13
Coding Explanation 14
Packaging Information 15
Test Guidelines 20

Alphanumeric Index

Military Products

		Vol. 1	Vol. 2
LM119	Dual Voltage Comparator	17	
LM124	Low Power Quad Op Amp	22	
LM139	Qual Voltage Comparator	26	
LM139A	Qual Voltage Comparator	26	
PLC18V8Z	Zero Standby Power Universal PAL*-Type Device		839
PLC415	CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$)		857
PLHS18P8A	Programmable AND Array Logic ($18 \times 72 \times 8$)	641	852
PLHS473	Field-Programmable Logic Array ($20 \times 24 \times 11$)	646	875
PLHS501	Programmable Macro Logic Random Logic Unit ($32 \times 72 \times 24$)	652	881
PLS105	Field Programmable Logic Sequencer ($16 \times 48 \times 8$)	749	821
PLS153A	Field Programmable Logic Array ($18 \times 42 \times 10$)	759	832
PLS159A	Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)	658	886
PLS167	Field-Programmable Logic Sequencer ($14 \times 48 \times 6$)	668	896
PLS168	Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)	679	906
PLS173	Field-Programmable Logic Array ($22 \times 42 \times 10$)	689	917
PLS179	Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)	697	925
PLUS16L8	PAL ${ }^{\text {- }}$-Type Devices	708	
PLUS16R8	PAL ${ }^{\text {- }}$-Type Devices	708	
PLUS20L8	PAL*-Type Devices	718	
PLUS20R8	PAL ${ }^{\text {- }}$-Type Devices	718	
PLUS405	Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)	728	935
$\mu \mathrm{A} 33$	Differential Video Amplifier	160	
521	High-Speed Dual Differential Comparator/Sense Amp	32	
522	High-Speed Dual Diffential Comparator/Sense Amp	36	
527	Voltage Comparator	38	
529	Voltage Comparator	43	
555	Timer	48	
556-1	Dual Timer	54	
567	Tone Decoder/Phase-Locked Loop	59	
592	Video Amplifier	70	
602	Double-Balanced Mixer and Oscillator	76	
604A	High-Performance Low-Power FM IF System	82	
605	High-Performance Low-Power FM IF System	93	
2661	Enhanced Programmable Communications Interface (EPCI)	300	
2681	Dual Asynchronous Receiver/Transmitter (DUART)	167	
2691	Universal Asynchronous Receiver/Transmitter (UART)	187	
2692	Dual Asynchronous Receiver/Transmitter (DUART)	205	
2698-B	Enhanced Octal Universal Asynchronous Receiver/Transmitter	228	
26LS31	Quad High Speed Differential Line Driver	30	
27C64A	64 K CMOS UV Erasable PROM ($8 \mathrm{~K} \times 8$)	613	23
27 C 256	256 K CMOS UV Erasable PROM ($32 \mathrm{~K} \times 8$)	621	31
27 C 512	512 K CMOS UV Erasable PROM ($64 \mathrm{~K} \times 8$)	630	39
27HC641	64 K -Bit CMOS PROM ($8 \mathrm{~K} \times 8$)	634	43
5018	8 -Bit $\mu \mathrm{P}$-Compatible D/A Converter	99	
5205	Wideband High Frequency Amplifier	105	
5212	Transimpedance Amplifier	111	

Alphanumeric Index

		Vol. $1 \quad$ Vol. 2
54F00	Quad Two-Input NAND Gate	49
54LS00	Quad Two-Input NAND Gate	421
54500	Quad Two-Input NAND Gate	421
5400	Quad Two-Input NAND Gate	421
54F02	Quad Two-Input NOR Gate	52
54LS02	Quad Two-Input NOR Gate	425
54S02	Quad Two-Input NOR Gate	425
54F04	Hex Inverter	55
54LS04	Hex Inverter	428
54S04	Hex Inverter	428
54F08	Quad Two-Input AND Gate	58
5404	Hex Inverter	428
54LS08	Quad Two-Input AND Gate	432
54508	Quad Two-input AND Gate	432
54F10	Triple Three-Input NAND Gate	61
54LS10	Triple Three-Input NAND Gate	435
54510	Triple Three-Input NAND Gate	435
54F11	Triple Three-Input AND Gate	61
54511	Triple Three-Input AND Gate	435
54F14	Hex Inverter Schmitt Trigger	64
54LS14	Hex Inverter Schmitt Trigger	439
54F20	Dual Four-Input NAND Gate	67
54LS20	Dual Four-Input NAND Gate	443
54520	Dual Four-Input NAND Gate	443
54F32	Quad Two-Input OR Gate	70
5432	Quad Two-Input OR Gate	446
54 F 37	Quad Two-Input NAND Buffer	73
54F38	Quad Two-Input NAND Buffer (Open Collector)	76
$54 \mathrm{S40}$	Dual Four-Input NAND Buffer	449
54F51	Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate	79
54551	Dual 2-Wide 2-Input AND-OR-Invert Gate	452
54F64	Four-Two-Three-Two-Input AND-OR-Invert Gate	82
54F74	Dual D-Type Flip-Flop	85
54LS74A	Dual D-Type Flip-Flop	455
54574	Dual D-Type Flip-Flop	455
54LS75	Quad Bistable Latch	461
54LS85	4-Bit Magnitude Comparator	465
54585	4-Bit Magnitude Comparator	465
5485	4-Bit Magnitude Comparator	465
54LS86	Quad Two-Input Exclusive-OR Gates	473
54586	Quad Two-Input Exclusive-OR Gates	473
5493	4-Bit Binary Ripple Counter	476
54F109	Dual J-R Positive Edge-Triggered Flip-Flop	90
54LS109	Dual J-R Positive Edge-Triggered Flip-Flop	481
54F112	Dual J-K Negative Edge-Triggered Flip-Flop	95
$54 \mathrm{S112}$	Dual J-K Edge-Triggered Flip-Flop	486
$54 F 113$	Dual J-K Negative Edge-Triggered Flip-Flop without Reset	101
54123	Dual Retriggerable Monostable Multivibrator	491
54F125	Quad Buffer (3-State)	106
54LS125	Quad 3-State Buffer	497
54F126	Quad Buffer (3-State)	109
$54 \mathrm{S133}$	13-Input NAND Gate	501
54F138	1-of-8 Decoder/Demultiplexer	112
54LS138	1-of-8 Decoder/Demultiplexer	504
54S138	1-of-8 Decoder/Demultiplexer	504
54F139	Dual 1-of-4 Decoder/Demultiplexer	117

Alphanumeric Index

		Vol. $1 \quad$ Vol. 2
$54 S 140$	Dual Four-Input NAND 50Ω Line Driver	509
$54 F 148$	8-Input Priority Encoder	121
$54 \mathrm{S151}$	8-Input Multiplexer	512
545153	Dual 4-Line to 1-Line Multiplexer	517
54F154	1-of-16 Decoder/Demultiplexer	126
54LS154	1-of-16 Decoder/Demultiplexer	522
54F157A	Quad 2-Input Data Selector/Multiplexer (Non-Inverted)	130
545157	Quad 2-Input Non-Inverted Data Selector/Multiplexer	526
54F158A	Quad 2-Input Data Selector/Multiplexer (Inverted)	130
$54 \mathrm{S158}$	Quad 2-Input Inverted Data Selector/Multiplexer	526
54F161A	4-Bit Binary Counter	135
54LS161A	4-Bit Binary Counter	532
54161	4-Bit Binary Counter	532
54F163A	4-Bit Binary Counter	135
54LS163A	4-Bit Binary Counter	532
54163	4-Bit Binary Counter	532
54F164	8-Bit Serial-In Parallel-Out Shift Register	143
54LS164	8-Bit Serial-In Parallel-Out Shift Register	542
54164	8-Bit Serial-In Parallel-Out Shift Register	542
54F169	4-Bit Up/Down Binary Synchronous Counter	148
54F173	Quad D-Type Flip-Flop (3-State)	157
54LS173	Quad D-Type Flip-Flop with 3-State Outputs	547
54F174	Hex D Flip-Flop	163
54LS174	Hex D Flip-Flop	554
545174	Hex D Flip-Flop	554
54174	Hex D Flip-Flop	554
54F175	Quad D Flip-Flop	167
54LS175	Quad D Flip-Flop	560
54175	Quad D Flip-Flop	560
54F181	4-Bit Arithmetic Logic Unit	172
54S181	4-Bit Arithmetic Logic Unit	566
54F189A	64-Bit TTL Bipolar RAM, Inverting, 3-State (16×4)	723
54S189	64-Bit TTL Bipolar RAM (16×4)	729
54F190	Asynchronous Presettable BCD/Decade Up/Down Counters	182
54F191	Asynchronous Presettable 4-Bit BinaryUp/Down Counters	182
54LS191	Presettable 4-Bit Binary Up-Down Counter	576
54F193	Synchronous Presettable 4-Bit Binary Down Counter	192
54LS193	Presettable 4-Bit Binary Up/Down Counter	585
54193	Presettable 4-Bit Binary Up/Down Counter	585
54F194	4-Bit Bidirectional Universal Shift Register	200
54194	4-Bit Bidirectional Universal Shift Register	593
54LS195A	4-Bit Parallel Access Shift Register	599
54LS197	Presettable 4-Bit Binary Ripple Counter	604
54F198	8 -Bit Bidirectional Universal Shift Register	206
54F240	Octal lnverting Buffer, 3-State	213
54LS240	Octal Inverter Buffer, 3-State	611
54S240	Octal Inverter Buffer, 3-State	611
54F241	Octal Buffer, 3-State	213
54LS241	Octal Buffer, 3-State	611
$54 \mathrm{S241}$	Octal Buffer, 3-State	611
54F244	Octal Buffer, 3-State	218
54LS244	Octal Buffer, 3-State	617
54S244	Octal Buffer, 3-State	617
54F245	Octal Transceiver, 3-State	222
54LS245	Octal Transceiver, 3-State	622
545251	8 -Input Multiplexer, 3-State	627

Alphanumeric Index

Alphanumeric Index

		Vol. 1	Vol. 2
$54 F 3037$	Quad 2-Input NAND 30Ω Line Driver		400
54F5074	Synchronizing Dual D-Type Flip-Flop with Metastable Immune Characteristics		403
54F30244	Octal High Current Buffer/Line \& Backplane Driver, NINV (30Ω O.C.)		410
54F30245	Octal Transmission Line/Backplane Transceiver, NINV (30』 O.C. w/ Enable + 3-State)		414
5512	Dual High-Performance Operational Amplifier	116	
5521	LVDT Signal Conditioner	118	
5532	Internally Compensated Dual Low Noise Op Amp	122	
5532A	Internally Compensated Dual Low Noise Op Amp	122	
5534	Low-Noise Op Amps	127	
5534A	Low-Noise Op Amps	127	
5537	Sample-and-Hold Amplifier	133	
5539	Ultra High-Frequency Operational Amplifier	141	
5560	Switched-Mode Power Supply Control Circuit	146	
68000	16-/32-Bit Microprocessor	363	
68154	Interrupt Generator	427	
68155	Interrupt Handler	437	
68172	VMEbus Controller (BUSCON)	453	
68562	Dual Universal Serial Communications Controller (DUSCC)	249	
68661	Enhanced Programmable Communications Interface (EPCI)	300	
68681	Dual Asynchronous Receiver/Transmitter (DUART)	319	
68692	Dual Asynchronous Receiver/Transmitter (DUART)	339	
8 ¢09	3-State Quad Bus Driver		689
8T26A	3-State Quad Bus Transceiver		693
8×60	FIFO RAM Controller (FRC)	562	699
8×305	Microcontroller	571	
8×310	Interrupt Control Coprocessor	574	
8×320	Bus Interface Register Array	587	
8×350	2K-Bit TTL Bipolar RAM (256×8)		733
$8 \times 350-40$	2 K -Bit TTL Bipolar RAM (256×8)		738
8×371	8 -Bit Latched Bidirectional I/O Port	595	
8×372	Addressable/Bidirectional I/O Ports	601	
8×376	Addressable/Bidirectional //O Ports	601	
80C31BH	CMOS Single-Chip 8-Bit Microcontroller	479	
80C51BH	CMOS Single-Chip 8-Bit Microcontroller	479	
80C451	I/O Expanded CMOS Microcontroller	493	
$80 \mathrm{C552}$	Single-Chip 8-Bit Microcontroller	510	
82509	576-Bit TTL Bipolar RAM ($64 \times 9)$		711
82516	256-Bit TTL Bipolar RAM (256×1)		715
82523	256-Bit TTL Bipolar PROM (32×8)		749
82S23A	256-Bit TTL Bipolar PROM (32×8)		752
82S23B	256-Bit TTL Bipolar PROM (32×8)		755
82S100	Field-Programmable Logic Array ($16 \times 48 \times 8$)	743	815
82S101	Field-Programmable Logic Array ($16 \times 48 \times 8$)	743	815
82S105	Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)	749	821
$82 S 115$	4 K -Bit TTL. Bipolar PROM (512×8)		745
82S123	256-Bit TTL Bipolar PROM (32×8)		749
82S123A	256-Bit TTL Bipolar PROM (32×8)		752
82S123B	256 -Bit TTL Bipolar PROM (32×8)		755
82S126	1 K -Bit TTL Bipolar PROM (256×4)		758
82S126A	1K-Bit TTL Bipolar PROM (256×4)		761
82S129	1K-Bit TTL Bipolar PROM (256×4)		758
82S129A	1K-Bit TTL Bipolar PROM (256×4)		761

Alphanumeric Index

Quality and Reliability

Military Products

SIGNETICS MILITARY PRODUCT QUALITY

Signetics Quality leadership begins with the Industry's firstzero defect warranty. If a single defect is foundin any lot that we ship, the entire lot may be sent back to the factory.

Since 1984, Signetics has adopted zero accept sampling plans in electrical, mechanical, and hermetic acceptance testing. Zero accept lot acceptance rates are typically 99.5% with any lot in which a defect is found being rescreened or scrapped.

The Department of Defense has issued contractor/vendor correlated quality objectives of lessthan 100 ppm in 1990. Signetics Estimated Process Quality (EPQ) has been well under 100 ppm since 1987

SIGNETICS PPM PROGRAM

Signetics offers a unique PPM Program to all customers who are willing to commit resources to defect reduction. The program contains five basic steps:

1) The customer assigns an engineering contact to work defect analysis with a Signetics Quality Assurance Engineer (QAE).
2) Measurements are established at the customer's facility summarizing inspection data by product, test quantity and reported defects.
3) Each month this data is analyzed, compared to Signetics data, and a Parieto Analysis is generated to identify the top 10 suspect device types measured in ppm by Signetics QAE.
4) The customer agrees to send all defects found of these device types to the Signetics Assigned QAE regardless of lot dispositioning. (If the entire lot is returned, the defects remain segregated with the lot.)
5) Signetics will retest each and every reported defect and, if invalid, will return the devices to the customer's contact with complete variables data to substantiate the invalidation. If valid, Signetics will implement corrective action.

This process iteration continues until corrective action is complete. The next 10 suspect devices are then determined and the process is repeated until the overall customer ppm measurement agrees with Signetics data.

SIGNETICS SHIP-TO-STOCK (STS) PROGRAM

Customers who have demonstrated the effectiveness of the PPM program may choose to reduce incoming inspection sampling, implement skip-lot sampling, or discontinue inspection completely. Signetics offers a proven STS program which provides for mutually agreeable device types to be shipped and received directly to the customer's stock with reduced or no receiving inspection. Signetics ppm database, as validated through the PPM Program, is monitored by Signetics QAE to assure continued de-fect-free performance. Acceptable candidates for STS are selected from the customer and Signetics ppm databases, where performance by device is agreed to be below 100 ppm (this is an arbitrary limitwhich can be negotiated with each customer).
Signetics QAE will again perform a Parieto Analysis based on device type, quantity shipped/received, and the reported defect levels. Those devices with a history of over 1000 devices shipped (again, arbitrary) and under 100 ppm are candidates for STS. Written agreement from the customer initiates the system. Shipments ofSTS certified material are uniqueIy labeled by Signetics for easy recognition by the customer's receiving group. Signetics QAE will continue to monitor the performance of these device types to assure less than 100 ppm defective on an ongoing basis. Should the Signetics performance exceed 100 ppm in a rolling 3 month period, Signetics will formally notify the customer that the device has been removed from STS and the customer's receiving inspection should be resumed. Similarly, the customer may abandon the system at any time, for any reason, simply by notifying the Signetics QAE.

Signetics Commercial Divisions have successfully implemented STS programs at over 112 customer locations, involving over 6200 device types. These customers enjoy the benefit of lower cost-of-ownership, reduced competition, and increased profits. STS is our customers reward for their investment in the PPM Program.

SIGNETICS JUST-IN-TIME (JIT) PROGRAM

A further customer benefit of the PPM and STS Programs is the Just-in-Time Program. The Signetics JIT program sup plements STS to assure defect-free, on-time delivery, while minimizing the customer's inventory. JIT is available to any participating STS customer,
but only on those STS device types which are also on the customer's Volume Purchase Agreement (VPA) with Signetics. A firm VPA release of 6 months minimum will assure monthly, bi-weekly, or weekly defect-free shipments to the customer's stock. Contact Military Marketing for more information.

SIGNETICS MILITARY PRODUCTS RELIABILITY

Signetics Reliability Assurance is involved throughout the initial design and process definition, characterization, product release, and production phases. Reliability organizations exist in each product group of Signetics, as well as in a Central Reliability group which establishes reliability standards and ongoing stress evaluation programs. A well-defined reliability program not only assures quality and quality-over-time, but provides dependability, lower cost of ownership, and technical responsiveness to our customers.
Each Military product, new process, or revised product released to production must first pass the rigid commercial reliability standards, and then be qualified to Military Standards. Each Military die family and package type are subjected to MIL-STD-883, Method 5005 Group C and D (die and packages, respectively) to demonstrate its suitability for Military usage. Thereafter, Quality Conformance Inspections conducted on each microcircuit group and package type on an annual basis, per paragraph 1.2.1 of MIL-STD-883.

The Corporate SURE Program also continuously monitors Commercial products with respect to processes and packages. The Military and SURE data bases together assure the Industry's highest reliable products. Further detail on the Signetics SURE Program may be found in any Signetics Commercial Data Manual, or contact your local sales representative to obtain a SURE Reliability Report.

SIGNETICS MILITARY QUALITY IMPROVEMENT PROCESS

In 1980, Signetics recognized the need to improve product quality from the $10,000 \mathrm{ppm}$ level to below 100 ppm . As evidenced by the preceding sections, the Quality Improvement Process has more than achieved that initial ppm quality goal. Today, Signetics strives to demonstrate continuous improvement in all business measures, including quality and service.

Signetics

Military Products

MILITARY STANDARD PRODUCTS

The Signetics standard product line offering includes JAN qualified Class S and Class B products, Standard Military and DESC Drawings, and Class B and C vendor standard products.

All Signetics standard products are 100% screened to the requirements of the most current issue of MIL-STD-883, Method 5004, and periodically sampled to Quality Conformance Inspection (QCI), Method 5005. Signetics utilizes alternate Group A and alternate Group B for all product lines. The details of these test methods, as well as additional related requirements of MIL-M-38510 and MIL-STD-883, are not repeated herein so as to not mislead our customers by errors or omission of requirements included in those specifications.

This product description supersedes all prior dated Military Productliterature, including commercial data books containing Military Product electricalcharacteristics, flow descriptions, and package physical dimensions.

JAN Qualified Products

Signetics JAN Class S and Class B products are produced on government certified production lines and are qualified by the Defense Electronics Supply Center (DESC) in Dayton, Ohio.
JAN Class S products represent the highest level of quality and reliability as prescribed by MIL-STD-454, Requirement 64 and by MIL-HDBK-217, and are recommended for use in the most critical of applications such as manned space and satellite use.
JAN Class B products are the procurement preference for all general Military applications such as avionics, missiles, computers, launch control, fire control, and critical ground support electronics.
JAN qualified products are fabricated, assembled, tested, andinspected in U.S. Governmentcertified facilities in Sunnyvale, California, Orem, Utah, and Albuquerque, New Mexico.
DESC prohibits any customer imposed deviations or waivers on procurement of JAN products. Products must conform completely to government specifications and are verified by Signetics Quality Control.

Product Description

JAN qualified products are listed on the Qualified Products List, QPL-38510, issued periodically by DESC. For current QPL information, customers may contact their local sales representative, Military Marketing or directly with DESC-EQM at (513) $296-6355$. The JAN products listed herein should be considered valid only on its date of publication.

These categories of product conform to quality Levels S and B of MIL-HDBK-217 ($\pi_{Q}=0.25$ for Class S, 1.0 for Class B).

Standard Military Drawing (SMD)

DESC selected item drawings (mini-specs) were produced by DESC-ECS during the period of 1976-1986 to serve as an interim standard foruse prior to the publication of a JAN detailed slash sheet.

Standard Military Drawings (SMD), introduced in 1986, fulfill the same needs as DESC Drawings, but are streamlined about the general requirements of compliant non-JAN device types as defined by MLL-STD-883, Paragraph 1.2.1.
Until a qualified JAN device is available, the SMD serves as the Class B standard procurement preference as defined by MIL-STD-454, Requirement 64.
All Signetics products offered as SMD's fully conform with MIL-STD-883, Paragraph 1.2.1 and to the detailed drawing. Final electrical, Group A, and end-point electrical tests are defined by the SMD.
Many SMD products are dual-marked with the Signetics Class B standard product part number.

This category of product conforms to Quality Level B-1 of MIL-HDBK-217 ($\pi_{\mathrm{Q}}=2.0$)

Signetics Class B Standard Products

Signetics Class B Vendor Standard products are offered for use when JAN products are not qualified on the QPL, when SMD products are not available, or when program requirements allow the use of vendor standard products.

All Class B standard products are compliant to MIL-STD-883, general provisions Paragraph 1.2.1 for non-JAN devices. No claims by Signetics are otherwise made of equivalence to

JAN products or to MIL-M-38510. Signetics standard products also conform with JEDEC Publication 101.
Electrical specifications are as included in the most current Signetics Military Data Manual.

- 100% final electrical tests include all data manual parameter limits, test conditions, and temperatures applicable to Subgroups $1,2,3,7,8$, and 9 of MIL-STD-883, Method 5004 for digital products, or to Subgroups $1,2,3,4$, and 9 for Linear products.
- Alternate Group A sample electrical inspection tests include applicable final electrical subgroups as well as all other Data Manual parameters with specified minimum or maximum limits.
- End-point electrical tests used for QCI inspection sampling (Groups C and D) are those Data Manual parameter limits, test conditions, and temperatures applicable to the Group A Subgroups specified in the most similar associated detail specification (slashsheet).
Electrical parameters which have no specified minimum or maximum limits (typical performance only) are not tested. Parameters which have limits specified at $25^{\circ} \mathrm{C}$ only, are tested only at that temperature. Detailed parameter assignment to Group A subgroups and other test details are contained in documented Signetics internal Product Electrical specifications, and are available upon request. Actual test program symbolics are available for customer review at the factory, but are considered proprietary and will not be copied or otherwise distributed outside of Signetics.

Waivers or deviations deemed necessary in contracts must be processed in accordance with MIL-STD-480.
Package types which do not have case outline letters assigned in MIL-M-38510, Appendix C, are assigned case outine letters per JEDEC Publication 101.
The Signetics standard Product Assurance Plan documentation is available for customer review at the factory.

This category of product conforms to quality level B-1 of MIL-HDBK-217 ($\pi_{0}=2.0$).

Product Description

General Information

- All Signetics products are considered sensitive to electrostatic discharge (ESD), regardless of ESD category. In-process factory ESD controls are maintained from die attach through shipping. Devices are packed in protective tubes or magazines, enclosed in a Faraday shield container, and labeled in accordance with MIL-STD-129.

WARNING: Devices may be degraded or destroyed if proper ESD handling techniques are not used when opening the shipping contalner. The Signetics warranty is void If product is not properly protected.

ESD Information

- Signetics products which have been classified for electrostatic discharge sensitivity (ESDS) according to MIL-STD-883, T/M3015, are described in the product listings of the current Military Product Reference Guide. Class 1 devices are further described by the highest level that samples were found acceptable at $1 \mathrm{kV}, 500 \mathrm{~V}$, and 250 V . For information regarding products not yet classified, please contact Military Marketing.
- All Signetics production areas, critical support areas, subcontract test labs, and authorized distributor stocking locations are certified and periodically self-audited by Signetics Quality Assurance.
- Government Source Inspection (GSI) is provided on JAN qualified products by the Defense Contract Administration Services (DCAS). GSI services for all other non-JAN products must be delegated by the customer's Contracting Officer.
- Customer Source Inspection (CSI) which is contractually required on standard products is restricted to final documentation review only (Signetics does not identify work-inprocess by customer). For custom or semi-custom products, CSI is permissible at any in-process operation.
- Source or Spec Control Drawings (SCD), Altered Item Drawings, and Selected Item Drawings (SID) are acceptable for review. The Signetics review guidelines reflect the standard requirements of MIL-STD-883, Paragraph 1.2.1.
- Signetics is agreeable to customer imposed qualification, First Article, or MIL-M-38510 QCI requirements on non-JAN products. Contact the factory for price and delivery information.
- Purchase order directed standard data pack requirements are acceptable for screening or QCl attribute data for all products. Contact the factory for price and delivery information.
- Signetics offers a one year limited warranty from the time of delivery to the customer on standard products for performance, workmanship, and conformance to the applicable product specifications. Products procured through Signetics authorized distributors are similarly under warranty for one year from the time of delivery to the customer. This warranty is not transferable through multiple distributor transactions, and is invalid for any product which is delivered by or transferred through a non-authorized distributor, broker or test laboratory.
- The Signetics warranty is invalid if the customer or his subcontractor subject the product to alteration (e.g., marking, lead cutting) or stresses beyond the capability of the product. Where environmental stress screening is contractually required, it is strongly recommended that Signetics be consulted as to the ability of the devices to survive the stresses, and that the test laboratory be certified by the customer's QA organization.
- Signetics recognizes that many government contracts require current lead finish solderability acceptance testing on every lot, and/or 100% solder coat rework.

Because all Signetics products are solder coated after burn-in and prior to shipment, we recommend that the rework of solder coat not be attempted by our customers or their subcontractors.

WARNING: Device seal Integrity may be downgraded or destroyed if proper controls to avoid extreme thermal shock are not employed during solder coat. The Signetics warranty is void if product is damaged in solder coat rework.

Solderability acceptance testing per MIL-STD-2000 and/or WS6536 can be performed by Signetics as a line-item lot test charge, if required. See the SOW-2000 Testing Statement included in this section.

- All products are marked with a unique country of origin code identifying the assembly plant location. The code "USA" signifies assembly in our Orem, Utah facility, and the code "THAl" signifies assembly in our Bangkok, Thailand facility.
- The Signetics plant address information is as follows:

Company Headquarters

Signetics Company
811 E. Arques Avenue
P.O. Box 3409

Sunnyvale, Ca 94088-3409
Telephone: (408) 991-2000
Telex: 172-243

Stateside Manufacturing
Signetics Company
1275 S. 800 East Street
Orem, Utah 84058
Telephone: (801) 225-6600

Offshore Manufacturing
Signetics Thailand Co. LTD.
303 Chaeng Wattana Road Bangkhen
Bangkok, Thailand
Telephone: 66-2-521-0653

Military Products Reference Guide

FEATURES

- Complies with MIL-STD-2000 solderability requirements
- Complles with WS6536E/I solderability requirements
- Maximizes component "Shelf Llfe"

DESCRIPTION

MIL-STD-2000 (dated January 1989) and/ or the Weapons Specification WS6536E/I (dated March 1986) is often imposed on

SOW-2000

Statement of Work

ORDERING INFORMATION

LINE ITEM	SOW-2000
When the line item stated above is entered in conjunction with a valid part number, Signetics will apply the requirement of this statement of work to that item per ship date requested.	

semiconductor products with respect to solderability of lead finish. Signetics Military Products has generated a standard flow to generate an economic solution to
meet these solderability requirements. Since the testing is performed just prior to shipment component shelf life is maximized.

STATEMENT OF WORK

DESCRIPTION	
1)	All components will be shipped with a hot solder dip lead finish that conforms with MIL-M-38510/P3.5.6.3.4 and MIL- STD-2000/P5.4.4..2, method 4A. This lead finish is applied over bare base metal and after the burn-in operation. Seal date codes will be no older than 3 years.
2)	Each lot and sublot required to meet the customer scheduled deliveries (each line item), will be submitted to solderabil- ity testing within 30 calendar days of the line item shipment. A lot test charge will be entered with each line item to en- sure the factory is aware of the special test requirement, this line item will reference SOW-2000.
3)	The solderability test will be performed in accordance with MIL-STD-883/M2003, except aging will be 8-12 hours in- stead of the 4-8 hours prescribed by 883. The sample size shall be based on an AQL of 1.0\% per MIL-STD-105, level S-2, which is a sample of 13 devices, test all leads, C=0. The test sample will be selected from shippable units, pack- aged separately, and delivered with the line item.
4)	A separate C of C will be prepared that certifies solderability acceptance; the test attributes and date of testing; the date of the soldercoat application; and stating compliance to MIL-M-38510/P3.5.6.3.4b and MIL-STD-2000/P5.4.4.1, $5.4 .4 .3(4 a), ~ a n d ~ 5.4 .13 ~ a n d ~ W S 6536 / P 4.3 .7 ~$
5)	A separate packing label will be placed on each intermediate container (the box that contains a single lot of tubes/ma- gazines), with the date of soldercoat application and the date of solderability acceptance.

Signetics

Military Products

For standard products, customers shall specify the complete part number as listed in the product description herein or in the Signetics published price book. Use of the lead finish designator " X " is highly recommended for procurement, as it simplifies multisource procurements from manufacturers who may process devices with different lead finishes. The actual lead finish designator is marked on the product andon the shipping documents. Use of the Signetics factory number (i.e., JB54LS161AF or RB54LS161AF) is not recommended due to possible errors in order entry transposition.

For non-standard products, customers shall specify the SCD number and drawing revision.

For all products, purchase order options include:

- Source Inspection; Government (GSI) and/ or Customer (CSI). A letter of delegation (DCAS) and source point description must accompany the purchase order prior to order entry.
- Data packs; For Class B and C product, two options may be specified: Screening and Group A attribute data (supplied as a single data set), and/or Quality Conformance Inspection (QCl) attribute data (includes QCI groups B, C and D). For JAN Class S products, data packs include screening attributes, QCl attributes, and all variables data (SEM photographs or X-ray film are not included).

Signetics

Military Products

All products, whether JAN or standard product, are marked with the following information: per MIL-M-38510:

- ESD identifying triangle(s).
- Signetics manufacturer's identification logo:

- Compliant product identifier, " C ", per MIL-STD-883, 1.2.1. Not applicable to JAN or Class C products. This identifier is included on date codes after 8749.
- Inspection lot identification seal date code.
- Signetics manufacturer's designing symbol per NAVSHIPS 0967-190-4010. The Signetics manufacturer's designating symbol are the characters "DKB".
- Country of origin, "USA" or "THAI".
- Part number.
- The Pin 1 index point for most packages is found as a part of the package construction (i.e., the dual-in-line notch, the flat pack Pin 1 enlargement, or the leadless chip carrier elongated Pin 1 base terminal or chamfered package corner). The ESD identifying symbol is located in the Pin 1 quadrant, but not necessarily adjacent to Pin 1 . For leadless chip carriers, the ESD identifier is located on the top surface at Pin 1.

Coding

Explanation

The following examples illustrate the part marking system for 54LS161A standard product.

- For JAN products, the part number is per MIL-M-38510 and detailed device specification.

- For Standard Military Drawing products, the part number is per the drawing.

Lead finish designator
Case outline designator
Device type
Drawing number
Federal supply code for microcircuits (FSC)

- For Signetics Vendor Standard Products, the part number is as listed in this product description or in published price lists.

Signetics

Military Products

SIGNETICS STANDARD

 PACKAGE DESCRIPTIONSAll Military package case outlines and physical dimensions conform with the current revision MIL-M-38510, Appendix C, except for package types which are not included in that specification.
The physical dimensions for standard package types which are not included in Appendix C are included herein in Appendix C format. Case outline letters are assigned to these packages according to JEDEC Publication 101 as follows:

U : Leadless chip carriers
X : Dual-in-line packages
Y: Flat packages
Z: All other configurations

Packaging Information

A case outline suffix number is assigned herein for identification purposes only, and is not marked on the product.

Signetics Military products are offered in a wide range of package configurations to optimally fit our customer needs.

- Dual-in-line Packages; Frit glass sealed CERDIP (F package family) with 8-40 leads, and side-brazed ceramic (I package family) with 48-64 leads.
- Flat Packages; Frit glass sealed alumina CERPAC (W package family) with 14-28 leads, and brazed leaded ceramic (Q package family) with 52 leads.
- Ceramic Chip Carriers; triple laminated, metal-lidded LCC (G package family) with 20-68 terminals.
- Pin Grid Array; metal-lidded ceramic pin grid (P package family) with 68-100 leads.
- Shown in Table 1 are the case outline letters assigned according to Appendix C of MIL-M-38510 and JEDEC publication 101. Unless otherwise noted, all package types are Configuration 1 and all lead finishes are hot solder dip Finish " A ".

Table 1.

Package Description	Type Designation	Case Outline	Theta-JC ${ }^{\circ} \mathrm{C} / \mathrm{Watt}^{4}$
8DIP3	D-4	P	28
14DIP3	D-1	C	28
$16 \mathrm{DIP3}$	D-2	E	28
18DIP3	D-6	V	28
20DIP3	D-8	R	28
22DIP4	D-7	W	28
24 DIP 3	D-9	$L^{\text {L }}$	28
24DIP4	D-11	x^{2}	28
24DIP6	D-3	${ }^{\text {J }}$	28
28DIP6	D-10	χ^{2}	28
$40 \mathrm{DIP6}$	D-5	Q	28
$48 \mathrm{DIP6}$ $50 \mathrm{DIP9}$	D-14 ${ }^{\text {D-12 }}$	${ }^{\mathrm{x}^{2}}{ }^{2}$	28
64DIP9	D-13 ${ }^{1}$	X^{2}	28
14FLAT	F-2	D	22
16FLAT	F-5	F	22
18FLAT	F-10	Y^{2}	22
20FLAT	F-9	S	22
24FLAT	F-6	K	22
28FLAT	F-11	Y^{2}	22
52FLAT	Y-1	Y^{2}	22
18LLCC	C-9	U^{2}	20
20LLCC	C-2 ${ }^{3}$	2	20
28LLCC	C-4 ${ }^{3}$	3	20
32LLCC	C-12	U^{2}	20
44LLCC	C-5	u^{2}	20
68LLCC	C-7	U^{2}	20
68PGA 84PGA	P-AB P-AB	$\mathrm{Z}^{2}{ }^{2}$	20 20

NOTES:

1. Configuration 2.
2. Per JEDEC publication 101.
3. Dimension A (LLCC thickness) is 75 mils maximum.
4. See RADC test report RADC-TR-86-97 for thermal resistance confidence and derating.

Packaging Information

CASE OUTLINES Y (FLAT PACKAGES)

NOTES:

1. A lead tab (enlargement) or index dot is located within the shaded area shown at Pin 1. Other pin numbers proceed sequentially from Pin 1 counterclockwise (as viewed from the top of the device.
2. This dimension allows for off-center lid, meniscus and glass overriun.
3. The reference pin spacing is 0.050 between centerlines. Each pin centerline is located within ± 0.005 of its logitudinal position relative to the first and last pin numbers.
4. This dimension is measured at the point of exit of the lead body.
5. This dimension applied to all four comer pins.
6. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish

OUTLINE	Y $_{1}$		NOTES
CONFIGURATION	2		
NO. LEADS	52		
SIG. PKG.	QP		
SYMBOL	INCHES		
	Min	Max	
A	0.045	0.100	
b	0.015	0.026	6
c	0.008	0.015	6
D	-	1.330	2
E	0.620	0.660	
e	$0.0508 S C$	3	
L	0.250	0.370	
Q	0.054	0.0666	4
S	-	0.045	5
S1	0.005	-	5

Packaging Information

CASE OUTLINES X (DUAL IN-LINE PACKAGES)

1. An index notch is located within the shaded area shown. Pin 1 is adjacent to the notch to the immediate left (as viewed from the top of the device) and other pin numbers proceed sequentially from Pin 1 counterclockwise.
2. The minimum limit for Dimension b1 is 0.023 inches for all four corner pins.
3. This dimension allows for off-center lid, meniscus, and glass overrun.
4. This dimension is measured at the centerline of the leads for Configuration 2.
5. The reference pin spacing is 0.100 between centerlines. Each pin centerline is located within ± 0.010 of its longitudinal position relative to the first and last pin numbers.
6. This dimension is measured from the seating plane to the base plane.
7. This dimension applies to all four corner pins.
8. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish.

Packaging Information

LEADLESS CHIP CARRIER (LLCC) PINOUTS

Packaging Information

LEADLESS CHIP CARRIER (LLCC) PINOUTS

14-Pin Logic Pinout for 20 Terminal Chip Carrier

16-Pin Logic Pinout for 20 Terminal Chip Carrier

Signetics

Military Products

TEST GUIDELINES

This data book has been prepared by the Signetics Military Products Group with the intention of describing both the requirements or limits of the devices contained within and the specific conditions which will be employed to meet the requirements. To ensure the accuracy of both the test program and the data sheets, the Quality and Reliability Group for the Military Group has performed at 100% audit of all such material and continues to monitor the process through approval of all test programs and data sheet ECNs (Engineering Change Notices).
There are some test condition details which can be best described in an overview section such as this. They are:

Logic Products

1. Functional Test
A) Consists of applying specific Logic patterns to the device inputs while verifying the correct output states.
B) Uses Logic levels where $V_{I}=V_{O L}$ or V_{OH}.

Test Guidelines

C) Is generally performed with no output load.
2. $F_{\text {MAX }}$ Measurement
A) Is performed at the specified clock frequency and consists of ensuring that the device does function. There are no constraints on Pulse Rise Time, Fall Time or Setup and Hold conditions. This test can be best described as a "Toggle" test run at the maximum device specified frequency.
3. $A C$ Parametric Measurements
A) Signetics has upgraded the AC specifications of the gold-doped (TTL), Low Power Schottky (LS) and Schottiky (S) devices by adding in 50 pF limit tables that apply over temperature. The data sheet indicates that these new limits are presently guaranteed, but Signetics Military Group is generating and implementing test capabilities and will be actually performing these new limit conditions within the next year. During
the interim, Signetics will be performing testing to either the 15 pF or 50 pF output load and limits specified. Currently the ATE (Automatic Test equipment) being employed actually have test head/load board capacitances that exceed 50 pF .
B) While performing any specific AC test (e.g., tpLH), test conditions not intended to be measured at this point, but which could affect the result due to the testing environment will be set at a non-critical condition (e.g., setup and hold). In other words, critical (spec) test conditions will be generally restricted to only the parameter under test.
4. Icc Measurements
A) The input voltage conditions while performing this test is either greater than or equal to 4.0 V (High State) or equal to Ground (Low State). Any Icc measurement which requires clocking will be so noted in the data sheet.

Signetics

Military Products

Section 2 EPROM Data Sheets

INDEX

27C64A $\quad 64 \mathrm{~K}$ CMOS UV Erasable PROM ($8 \mathrm{~K} \times 8$) 23
$27 \mathrm{C} 256 \quad 256 \mathrm{~K}$ CMOS UV Erasable PROM ($32 \mathrm{~K} \times 8$) 31
$27 C 512 \quad 512 \mathrm{~K}$ CMOS UV Erasable PROM $(64 \mathrm{~K} \times 8)$ 39
$27 \mathrm{HC641} \quad 64 \mathrm{~K}$-Bit CMOS PROM $(8 \mathrm{~K} \times 8)$ 43

Signetics

Milltary Application Speciflc Products

DESCRIPTION

The Signetics 27C64A CMOS EPROM is 64 K -Bit 5 V only memory organized as 8192 words of 8 bits, employing advanced CMOS circuitry for systems requiring high-power, high performance speeds and immunity to noise
The 27C64A has a non-multiplexed addressing interface and is pin compatible with the standard 2764.
The 27C64A achieves both high performance (200ns access time) and low power consumption (10 mA active current maximum, CMOS inputs) making it ideal for high performance portable equipment.
The highest degree of protection against latch-up is achieved through EPI (Epitaxial) processing. Prevention of latch-up is provided for stresses up to 100 mA on address and data pins for -1 V to $\mathrm{V}_{\mathrm{Cc}}+1 \mathrm{~V}$.
The 27C64A is programmed with standard EPROM programmers and the intelligent programming algorithm may be utilized.

FEATURES

- CMOS microcontroller and microprocessor compatible
- Universal 28- and 32-Pin memory site, 2-line control
- Low power consumption
- 10mA maximum active current
- $100 \mu \mathrm{~A}$ maximum standby current
- Noise Immunity features
- $\pm 10 \%$ supply voltage
- Maximum latch-up immunity through epltaxial processing
- Fast, reliable Intelligent programming
- Programs in under one minute
- $12.5 \mathrm{~V}_{\mathrm{PP}}$

27C64A
64K CMOS UV Erasable PROM ($8 \mathrm{~K} \times 8$)

Product Specification

CERDIP PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{12}$	Addresses
$O_{0}-O_{7}$	Outputs
$O E$	Output Enable
$C E$	Chip Enable
PGM	Program Strobe
NC	No connect
$G N D$	Ground
$V_{\text {PP }}$	Program Voltage
$V_{C C}$	Power Supply

LLCC PIN CONFIGURATION

BIN/FUNCTION

1	$N C$	12	$N C$	23	$C E$
2	$V_{P P}$	13	O_{0}	24	A_{10}
3	A_{12}	14	O_{1}	25	$O E$
4	A_{7}	15	O_{2}	26	$N C$
5	A_{6}	16	$V_{S S}$	27	A_{11}
6	A_{5}	17	N_{C}	28	A_{9}
7	A_{4}	18	O_{3}	29	A_{8}
8	A_{3}	19	O_{4}	30	$N C$
9	A_{2}	20	O_{5}	31	PGM
10	A_{1}	21	O_{6}	32	$V_{C C}$
11	A_{0}	22	O_{7}		

BLOCK DIAGRAM

ORDERING INFORMATION

PACKAGES	ORDER CODE			
	150ns	200ns	250 ns	350ns
28-Pin Ceramic DIP w/Quartz Window	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-15$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-20$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-25$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-35$
28-Pin Ceramic DIP w/o Quartz Window	27 C64A/BXA-15 OT	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-20$ OT	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-25$ OT	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BXA}-35$ OT
32-Pin Rectangular LLCC W/Quartz Window	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BUA}-15$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BUA}-20$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BUA}-25$	$27 \mathrm{C} 64 \mathrm{~A} / \mathrm{BUA}-35$

ABSOLUTE MAXIMUM RATINGS ${ }^{2}$

SYMBOL	PARAMETER	RATING	UNIT
$T_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage on any pin with respect to ground	-2.0 to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$	V
$\mathrm{~V}_{1}$	Voltage on CE pin with respect to ground	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Supply voltage with respect to ground during programming	-2.0 to 14.0	V
$\mathrm{~T}_{\mathrm{C}}$	Operating temperature during read	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}{ }^{3}$	High-level input voltage		2.0		$V_{C C}+0.5^{9}$	V
$\mathrm{V}_{1 \mathrm{H}^{3}}$	High-level input voltage CMOS	$V_{\text {PP }}=V_{C C}$	$\mathrm{V}_{\text {cc }}-0.2$		$V_{\text {cc }}+0.2{ }^{9}$	V
$\mathrm{V}_{\text {LL }}{ }^{\text {3 }}$	Low-level input voltage	$V_{P P}=V_{C C}$	-0.5 ${ }^{9}$		0.8	V
$\mathrm{V}_{1 \mathrm{~L}}{ }^{3}$	Low-level input voltage CMOS	$V_{P P}=V_{C C}$	-0.2^{9}		0.2	V
IOH	High-level output current				-400	$\mu \mathrm{A}$
$\mathrm{l} \mathrm{OL}^{\text {l }}$	Low-level output current				2.1	mA
$V_{P P}$	$V_{P P}$ read voltage ${ }^{8}$		$\mathrm{V}_{\text {cc }}-0.7$		V_{CC}	V
$\mathrm{T}_{\text {A }}$	Operating temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{ \pm} 10 \%$

SYMBOL	PARAMETER		27C64A-15, -20, -25			27C64A-35			UNIT
			Min	Typ ${ }^{4}$	Max	Min	Typ ${ }^{4}$	Max	
LiLH	Input leakage current	$V_{1}=V_{C C}=$ Max		0.01	+1.0		0.01	+1.0	$\mu \mathrm{A}$
LILI		$\mathrm{V}_{1}=0.0 \mathrm{~V}$			-1.0			-1.0	
$\mathrm{I}_{\text {Oin }}$	Output leakage current	$V_{1}=V_{C C}=\mathrm{Max}$		0.01	+1.0		0.01	+1.0	$\mu \mathrm{A}$
loil		$V_{1}=0.0 \mathrm{~V}$			-1.0			-1.0	
$\begin{aligned} & \mathrm{I}_{\mathrm{cc}}{ }^{5,7} \\ & \mathrm{TTL} \end{aligned}$	Operating supply current TTL inputs	$\begin{gathered} \overline{C E}=\overline{O E}-V_{I L} \\ V_{P P}=V_{C C} \\ O_{0.7}=0 \mathrm{~mA} \end{gathered}$			30.0			25.0	mA
$\begin{aligned} & l_{1 c^{5,7}} \\ & \text { CMOS } \end{aligned}$	Operating supply current	$\begin{gathered} C E=O E-V_{L L} \\ V_{P P}=V_{C C}=M a x \\ O_{0.7}=0 \mathrm{~mA} \end{gathered}$			10.0			10.0	mA
$\begin{aligned} & \operatorname{lSB}^{5} \\ & T T L L \end{aligned}$	Standby supply current TTL inputs	$\begin{aligned} C E & =V_{I H} \\ V_{C C} & =M a x \end{aligned}$			1.0			1.0	mA
$\begin{aligned} & I_{\mathrm{SB}}{ }^{5,6} \\ & \text { CMOS } \end{aligned}$	Standby supply current CMOS inputs	$\overline{C E}=V_{C C}=M a x$			100.0			140.0	$\mu \mathrm{A}$
lpp^{7}	$V_{\text {PP }}$ read current	$V_{\text {PP }}=V_{\text {cc }}=M a x$			100.0			100.0	$\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{LI}} \\ \mathrm{v}_{\mathrm{L}} \end{array}$	Input Low voltage (TTL) Input Low voltage (CMOS)	$\begin{aligned} & V_{P P}=V_{C C}=M a x \\ & V_{P P}=V_{C C}=M a x \end{aligned}$	$\begin{aligned} & -0.5^{10} \\ & -0.2^{10} \end{aligned}$		$\begin{aligned} & +0.8 \\ & +0.2 \end{aligned}$	$\begin{aligned} & -0.5^{10} \\ & -0.2^{10} \\ & \hline \end{aligned}$		$\begin{aligned} & +0.8 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
V_{iH}	Input High voltage	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	2.0		$V_{\text {cc }}+0.5^{10}$	2.0		$V_{C C}+0.5^{10}$	V
$\mathrm{V}_{1 \mathrm{H}}$	Input High voltage (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}=$ Min	$\mathrm{V}_{\mathrm{cc}}-0.2$		$V_{C C}+0.2^{10}$	$\mathrm{V}_{\text {cc }}-0.2$		$V_{C C}+0.2^{10}$	V
V_{OL}	Output Low voltage	$\mathrm{I}_{\text {OL }}=\operatorname{Max}, \mathrm{V}_{\text {CC }}=\mathrm{Min}$			0.45			0.45	V
V_{OH}	Output High voltage	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\text {cC }}=\mathrm{Min}$	2.4			2.4			V
$10{ }^{8}$	Output short-circuit current	$\mathrm{V}_{\mathrm{CC}}=$ Max			-100.0			-100.0	mA

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}^{10}$

SYMBOL	PARAMETER	TEST CONDITIONS	MAX	UNIT
C_{1}	Address/control capacitance	$V_{1}=O V$	6	pF
C_{0}	Output capacitance	$V_{0}=0 \mathrm{~V}$	12	pF

READ MODES

MODE		PINS				
		OE (20)	PGM (27)	$\mathbf{V}_{\text {PP }}$	(1)	

READ MODE

The 27C64A has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($O E$) is the output control and should be used to gate data from the
output pins. Assuming that addresses are stable, the address access time ($t_{A C C}$) is equal to the delay from CE to output (CEE). Data is available at the outputs atter a delay of $t_{C E}$ from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least tacc - ${ }^{-10 E}$.

STANDBY MODE

The 27C64A has a Standby mode which reduces the maximum V_{CC} current to $100 \mu \mathrm{~A}$. The device is placed in the Standby mode when $\overline{C E}$ pin is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $O E$ input.

READ OPERATION - AC CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

	VERSIONS	27C64A-15		27C64A-20		27C64A-25		27C64A-35		UNIT
SYMBOL	CHARACTERISTIC ${ }^{11}$	Min	Max	Min	Max	Min	Max	Min	Max	
$t_{\text {Acc }}$	Address to output delay		150		200		250		350	ns
$\mathrm{t}_{\text {CE }}$	CE to output delay		150		200		250		350	ns
Loe	OE to output delay		65		75		100		120	ns
top ${ }^{10}$	OE or CE High to output Hi-Z		40		55		55		75	ns
tOH^{10}	Output hold from addresses, CE or $\overline{O E}$ change - whichever is first	0		0		0		0		ns

ERASURE CHARACTERISTICS

The recommended erasure procedure for the 27C64A is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 min utes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} /$ cm^{2} power rating. The 27C64A should be placed within one inch of the lamp tubes during

AC TESTING LOAD CIRCUIT

NOTE:
$\mathrm{C}_{\mathrm{C}}=100 \mathrm{pF}$ AND INCLUDES JIG CAPACITANCE

Figure 1. Test Configuration
erasure. The maximum integrated dose a 27C64A can be exposed to without damage is $7258 \mu \mathrm{~W} / \mathrm{cm}^{2}$ (1 week @ $12,000 \mathrm{~W}$ sec $/ \mathrm{cm}^{2}$). Exposure of these CMOS EPROMs to high intensity UV light for longer periods may cause permanent damage.
The erasure characteristics of the 27C64A are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluores-
cent lamps have wavelengths in the $3000-4000 \AA$ range. Data shows that constant exposure to room level fluorescent lighting could erase the typical 27 C64A in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 27C64A is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

AC WAVEFORMS

PROGRAMMING MODES

MODES	PINS							
	$\begin{gathered} \overline{C E} \\ (20) \end{gathered}$	$\begin{aligned} & \hline \overline{O E} \\ & \text { (22) } \end{aligned}$	PGM (27)	$\begin{gathered} \mathbf{A}_{9} \\ \text { (24) } \end{gathered}$	$\begin{gathered} \hline A_{0} \\ (10) \end{gathered}$	$V_{\text {PP }}$ (1)	$\begin{aligned} & \hline V_{c c} \\ & (28) \end{aligned}$	$\begin{gathered} \text { OUTPUTS } \\ (11-13,15-19) \end{gathered}$
Intelligent programming	V_{L}	V_{H}	V_{H}	X^{12}	X^{12}	$V_{P P}$	$6.0 \mathrm{~V}^{15}$	D_{1}
Program verify	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{H}	X^{12}	X^{12}	V_{PP}	$6.0 \mathrm{~V}^{15}$	D_{0}
Program inhibit	$V_{1 H}$	V_{H}	X	X^{12}	X^{12}	$V_{P P}$	$6.0 \mathrm{~V}^{15}$	Hi -Z
Intelligent identifier-manufacturer ${ }^{14}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{H}^{13}}$	$\mathrm{V}_{\text {IL }}$	V_{cc}	V_{Cc}	15H
Intelligent identifier ${ }^{14}$	$\mathrm{V}_{\text {LI }}$	V_{IL}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{H}^{13}}$	V_{IH}	$\mathrm{V}_{C C}$	V_{CC}	OBH

CMOS
 NOISE CHARACTERISTICS

Special epitaxial processing techniques have enabled Signetics to build CMOS with features adding to system reliability. These include \ln put/Output protection to latch-up. Each of the data and address pins will not latch-up with currents up to 100 mA and voltages from-1V to V_{CC} +1 V .
Additionally, the V_{PP} (Programming) pin is designed to resist latch-up to the 14 V maximum device limit.

PROGRAMMING

Caution: Exceeding 14.0V on V_{PP} pin may permanently damage the 27C64A. Initially, and after each erasure, all bits of the 27C64A are in the "1" state. Data is introduced by selectively programming " 0 " into the desired bit locations. Although only " 0 " will be programmed, both " 1 " and " 0 " can be present in the data word. The only way to change an " 0 " to a " 1 " is by ultraviolet light erasure.
The 27C64A is in the programming mode when the $V_{P P}$ input is at 12.5 V and CE is at TTL-low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

INTELLIGENT

PROGRAMMING ALGORITHM

The 27C64A intelligent programming algorithms rapidly program Signetics CMOS

EPROMs using anefficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of five minutes. Actual programming times may vary due to differences in programming equipment.
Programming reliability is also ensured as the incremental program margin of each byte is continually monitored to determine when it has been successfully programmed. A flow-chart of the 27C64A intelligent program algorithm is shown in Figure 2.
The intelligent programming algorithm utilizes two different pulse types: initial and overprogram. The duration of the initial PGM pulse(s) is 1 ms , which will then be followed by a longer overprogram pulse of length $3 X \mathrm{~ms}$. X is a duration counter and is equal to the number of the initial 1 ms pulses applied to a particular 27C64A location, before a correct verify occurs. Up to 251 ms pulses per byte are provided for before the overprogram is applied.
The entire sequence of program pulses and byte verifications is performed at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ and $V_{P P}=12.5 \mathrm{~V}$.
When the intelligent programming cycle has been completed, all bytes should be compared to the original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

PROGRAM INHIBIT

Programming of multiple 27C64A EPROMs in parallel with different data is easily accomplished by using the Program Inhibit mode. A
high-level CE input inhibits other 27C64A EPROMs from being programmed.

Except for $\overline{C E}$, all inputs of the parallel 27C64A's may be common. A TTL low-level pulse applied to the PGM and CE input with $V_{P P}$ at 12.5 V will program the selected 27 C 64 A .

VERIFY

A verify (read) should be performed on the programmed bits to determine that they have been correctly programmed. The verify is performed with $O E$ and $C E$ at $V_{I L}$ and PGM at $V_{I H}$. Data should be verified a minimum of Toev after the falling edge of $\overline{O E}$.

INTELLIGENT

IDENTIFIER MODE

The intelligent identifier mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the 27 C 64 A .

To activate this mode the programming equipment must force 11.5 V to 12.5 V on address line A_{g} of the 27C64A. Two bytes may then be sequenced from the device outputs by toggling address line A_{0} from V_{IL} to V_{IH}. All other address lines must beheld at $V_{\text {IL }}$ during intelligent identifier mode.

INTELLIGENT PROGRAMMING ALGORITHM DC PROGRAMMING CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}_{ \pm} 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
1	Input current (ail inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input low level (all inputs		-0.1	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High level		2.0	$\mathrm{V}_{\text {cc }}+0.5$	V
V_{OL}	Output Low voltage during verify	$\mathrm{l}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		0.45	V
V_{OH}	Output High voltage during verify	$\mathrm{IOH}=-2.5 \mathrm{~mA}$	3.5		V
${ }^{\text {cce2 }}$	$\mathrm{V}_{\text {cc }}$ supply current	$\mathrm{O}_{0}-\mathrm{O}_{7}=0 \mathrm{~mA}$		30	mA
$\mathrm{I}_{\text {PP2 }}$	$\mathrm{V}_{\text {PP }}$ supply current (program)	$\overline{C E}=V_{\text {IL }}$		30	mA

AC PROGRAMMING CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{16}$	LIMITS			UNIT
			Min	Typ	Max	
$t_{\text {ces }}$	CE setup time		2			$\mu \mathrm{s}$
t_{AS}	Address setup time		2			$\mu \mathrm{s}$
toes	OE setup time		2			$\mu \mathrm{s}$
tos	Data setup time		2			$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {AH }}$	Address hold time		0			$\mu \mathrm{s}$
${ }_{\text {t }}{ }_{\text {LH }}$	Data hold time		2			$\mu \mathrm{s}$
${ }_{\text {t }{ }_{\text {DFP }}{ }^{19} \text { 9 }}$	OE High to output float delay		0		130	$\mu \mathrm{s}$
$t_{\text {vPS }}$	V_{PP} setup time		2			$\mu \mathrm{s}$
tves	$V_{\text {CC }}$ setup time		2			$\mu \mathrm{s}$
tow	PGM initial program pulse width	(See note 17)	0.95	1.0	1.05	ms
topw	PGM overprogram pulse width	(See note 18)	2.85		78.75	ms
LOE	Data valid from OE				150	ns

NOTES:

1. Erase characteristics do not apply for one time programming (OT).
2. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3. Minimum DC input voltage is -0.5 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. TTL inputs: spec $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ levels;
$C M O S$ inputs: $G N D \pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
6. $C E$ is $V_{C C} \pm 0.2 \mathrm{~V}$. All other inputs can have any value within spec.
7. Maximum active power usage is the sum Ipp + lcc.
8. Output shorted for no more than one second. No more than one output shorted at a time.
9. V_{PP} may be one diode voltage drop below V_{CC}. It may be connected directly to V_{Cc}.
10. Guaranteed, but not tested.
11. AC characteristics tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
12. X can be $V_{\text {IL }}$ or $V_{I H}$.
13. $\mathrm{V}_{\mathrm{H}}=12.0 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$.
14. $A_{1}-A_{8}, A_{10}-A_{12}=V_{\text {IL }}$.
15. $V_{c c}=6.0 \mathrm{~V}_{ \pm} 0.25 \mathrm{~V}$.
16. AC Conditions of Test: Input Rise and Fall Times (100% to 90%): 20ns
Input Pulse Levels: 0.45 V to 2.4 V
Input Timing Reference Level: 0.8 V to 2.0 V
Output Timing Reference Level: 0.8 V to 2.0 V
17. Initial Program Pulse width tolerance is $1 \mathrm{msec} \pm 5 \%$.
18. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.
19. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven (see Timing Diagram).

Figure 2. Intelligent Programming Flowchart

NOTES:

The Input Timing Regerence Level is 0.8 V for V_{IL} and 2 V for a V_{IH}.
TOE and IDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming 27C64A, a 0.1 uF capacior is required across V_{P} and ground to suppress spurious voltage transients which can damage the device.

Figure 3. Intelligent Programming Waveform

Signetics

Military Application Specific

 Products
DESCRIPTION

The Signetics 27C256 CMOS EPROMs are 256 K -Bit 5 V only memories organized as 32,768 words of 8 bits. They employ advanced CMOS circuitry for systems requiring low-power, high-performance speeds and immunity to noise. The 27C256 has a non-multiplexed addressing interface and is plug compatible with the industry standard 27256.

The 27C256 achieves both high-performance and low power consumption (10 mA active current maximum, CMOS inputs), making them ideal for high-performance, portable equipment.
It is programmed with standard EPROM programmers and the intelligent programming algorithm may be utilized.

FEATURES

- CMOS/NMOS microcontroller and microprocessor compatible
- Universal 28- or 32-Pin memory site, 2-line control
- Low power consumption
- Noise Immunity features
- $\pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up Immunity through epitaxial processing
- Fast, rellable intelligent programming
- 12.5V Vpp, HCMOS 11-E compatible

27C256

256K CMOS UV Erasable PROM $(32 \mathrm{~K} \times 8)$

Product Specification

LLCC PIN CONFIGURATION

CERDIP PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{14}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E}$	Output Enable
$\overline{C E}$	Chip Enable
$G N D$	Ground
$V_{P P}$	Program Voltage
$V_{C C}$	Power Supply

ORDERING INFORMATION

PACKAGES	ORDER CODE		
	150ns	200ns	250ns
28-Pin Ceramic DIP w/Quartz Window	$27 \mathrm{C} 256 / \mathrm{BXA}-15$	$27 \mathrm{C} 256 / \mathrm{BXA}-20$	$27 \mathrm{C} 256 / \mathrm{BXA}-25$
28-Pin Ceramic DIP w/o Quartz Window ${ }^{1}$	$27 \mathrm{C} 256 / \mathrm{BXA}-15$ OT	$27 \mathrm{C} 256 / \mathrm{BXA}-20$ OT	$27 \mathrm{C} 256 / \mathrm{BXA}-25$ OT
32-Pin Rectangular LLCC w/Quartz Window	$27 \mathrm{C} 256 / \mathrm{BUA}-15$	$27 \mathrm{C} 256 / \mathrm{BUA}-20$	$27 \mathrm{C} 256 / \mathrm{BUA}-25$

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{2}$

SYMBOL	PARAMETER	RATING	UNIT
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{0}$	Voltage on any pin with respect to ground	-2.0 to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$	V
$\mathrm{~V}_{1}$	Voltage on CE Pin with respect to ground	-2.0 to +13.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Supply voltage with respect to ground during programming	-2.0 to 14.0	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}{ }^{3}$	High-level input voltage		2.0		$V_{C C}+0.5^{12}$	V
$\mathrm{V}_{\mathrm{IH}}{ }^{3}$	High-level input voltage CMOS	$V_{P P}=V_{C C}$	$\mathrm{V}_{\text {cc }}-0.2$		$V_{c c}+0.2^{12}$	V
$\mathrm{V}_{\mathrm{LL}}{ }^{3}$	Low-level input voltage	$V_{P P}=V_{C C}$	-0.512		0.8	V
$\mathrm{V}_{\mathrm{L}}{ }^{3}$	Low-level input voltage CMOS	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$	-0.2^{12}		0.2	V
l_{OH}	High-level output current				-400	$\mu \mathrm{A}$
l L	Low-level output current				2.1	mA
V_{PP}	$\mathrm{V}_{\text {PP }}$ read voltage ${ }^{8}$		$\mathrm{V}_{\mathrm{cc}}-0.7$		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{T}_{\text {A }}$	Operating temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

256K CMOS UV Erasable PROM (32K x 8)

READ OPERATION DC CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{ \pm} 10 \%$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
LILH	Input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}=$ Max		0.01	+1.0	$\mu \mathrm{A}$
$\mathrm{LLIL}^{\text {Lil }}$		$\mathrm{V}_{1}=0.0 \mathrm{~V}$			-1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OIH }}$	Output leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}=$ Max		0.01	+1.0	$\mu \mathrm{A}$
loil		$V_{1}=0.0 \mathrm{~V}$			-1.0	$\mu \mathrm{A}$
${ }^{\text {cc }}$ TtL ${ }^{6.8}$	Operating current TTL inputs	$\begin{gathered} \overline{C E}=O E-V_{1 L}, V_{P P}=V_{C C}=M a x \\ O_{0}-O_{7}=0 m A \end{gathered}$			30	mA
$l_{\mathrm{cc}} \mathrm{CMOS}^{6,8}$	Operating current CMOS inputs	$\begin{gathered} \overline{C E}=\overline{O E}-V_{I L}, V_{P P}=V_{C C}=M a x \\ O_{0}-O_{7}=0 m A \end{gathered}$			10	mA
$\mathrm{I}_{\text {SB }} \mathrm{TLL}^{8}$	Standby current TTL inputs	$\overline{C E}=\mathrm{V}_{\mathbb{H}}$			2	mA
$\mathrm{I}_{\text {SB }} \mathrm{CMOS}^{5}$	Standby current CMOS inputs	$\overline{C E}=\mathrm{V}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
IPP^{8}	$\mathrm{V}_{\text {PP }}$ read current	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			200	$\mu \mathrm{A}$
$V_{\text {IL }}{ }^{9}$	Input Low voltage (TTL) Input Low voltage (CMOS)	$V_{P P}=V_{C C}$	$\begin{aligned} & -0.5^{10} \\ & -0.2^{10} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
$V_{1 H}{ }^{9}$	Input High voltage (TTL) Input High voltage (CMOS)	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {CC }}$	$v_{c c}^{2.0}-0.2$		$\begin{aligned} & V_{c c}+0.5^{10} \\ & V_{c c}+0.2^{10} \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
V_{OL}	Output Low voltage	$\mathrm{IOL}_{\text {= }} \mathrm{Max}$			0.45	V
V_{OH}	Output High voltage	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4			V
los ${ }^{7}$	Output short-circuit current				-100	mA

CAPACITANCE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SYMBOL	PARAMETER	TEST CONDITIONS	MAX	UNIT
$\mathrm{C}_{1}{ }^{10}$	Address/control capacitance	$\mathrm{V}_{1}=\mathrm{OV}$	6	pF
$\mathrm{C}_{0}{ }^{10}$	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	12	pF

READ MODES

MODE	PINS			
	$\begin{gathered} \overline{C E} \\ \text { (20) } \end{gathered}$	$\begin{gathered} \overline{O E} \\ \text { (22) } \end{gathered}$	$V_{P P}$ (1)	$\begin{aligned} & \text { OUTPUTS } \\ & (11-13,15-19) \end{aligned}$
Read	$\mathrm{V}_{\text {IL }}$	V_{IL}	$V_{\text {cc }}$	Do
Output disable	V_{IL}	$V_{1 H}$	$V_{\text {cc }}$	$\mathrm{Hi}-\mathrm{Z}$
Standby	$V_{1 H}$	X	$V_{C C}$	Hi-Z

READ MODE

The 27C256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data from the output pins, independent of device selection. Assuming that addresses are stable, the ad-
dress access time ($t_{A C C}$) is equal to the delay from $\overline{C E}$ to output (t_{CE}). Data is available at the outputs after a delay of t $\overline{O E}$ from the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.
$100 \mu \mathrm{~A}$. The device is placed in the Standby mode when Pin 20 is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

STANDBY MODE

The 27C256 has a Standby mode which reduces the maximum CMOS V current to

READ OPERATION - AC CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}^{12}$

SYMBOL	PARAMETER	27C256-15		27C256-20		27C256-25		UNIT
		Min	Max	Min	Max	Min	Max	
$t_{\text {ACC }}$	Address to output delay		150		200		250	ns
$\mathrm{t}_{\text {CE }}$	CE to output delay		150		200		250	ns
toe	OE to output delay		65		75		100	ns
top ${ }^{10}$	OE or CE High to output Hi-Z		45		55		60	ns
toH^{10}	Output hold from addresses, CE or $O E$ change - whichever is first	0		0		0		ns

AC TESTING LOAD CIRCUIT

SYSTEM CONSIDERATIONS

The power switching characteristics of CMOS EPROMs require careful decoupling of the devices. The supply current, Icc, has three segments that are of interest to the system designer - the standby current level, the active current level, and the transient current peaks that are produced by the falling and rising
edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitive and inductive loading of the devices. The associated transient voltage peaks can be suppressed by complying with Two-Line Control and by properly selected decoupling capacitors.

It is recommended thata $0.1 \mu \mathrm{~F}$ ceramic capacitor be used on every device between V_{cc} and GND. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between $V_{C C}$ and $G N D$ for every eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PC board traces.

ERASURE CHARACTERISTICS

The erasure characteristics of the 27 C 256 are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluores-
centlamps have wavelengths in the 3000-4000 \AA Range. Data shows that constant exposure to room level fluorescent lighting could erase the typical 27 C 256 in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 27 C 256 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for the 27C256 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\mathcal{A}). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 min utes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} /$ cm^{2} power rating. The 27 C 256 should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a 27 C 256 can be exposed to without damage is $7258 \mathrm{~W} / \mathrm{cm}^{2}$ (1 week @ $1200 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPROMs to high intensity UV light for longer periods may cause permanent damage.

AC WAVEFORMS

Input Pulse Characteristics: $\mathrm{t}_{\mathrm{r}}, \mathrm{T}_{\mathbf{f}} \leq 5 \mathrm{~ns}, \mathrm{P}_{\mathrm{RR}}=\mathbf{1 M H z}$

PROGRAMMING MODES

MODES	PINS						
	$\begin{aligned} & \hline \overline{C E} \\ & (20) \end{aligned}$	$\begin{aligned} & \hline \mathrm{OE} \\ & \text { (22) } \end{aligned}$	$\begin{gathered} \mathrm{Ag}_{\mathrm{g}} \\ (24) \end{gathered}$	$\begin{gathered} A_{0} \\ (10) \end{gathered}$	$V_{P P}$ (1)	$V_{c c}$ (28)	$\begin{gathered} \text { OUTPUTS } \\ (11-13,15-19) \end{gathered}$
Intelligent programming	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathbb{H}}$	X^{13}	X^{13}	$V_{P P}$	$6.0 \mathrm{~V}^{16}$	D_{1}
Program verify	V_{IH}	V_{LL}	X^{13}	X^{13}	$V_{P P}$	$6.0 \mathrm{~V}^{16}$	D_{2}
Program inhibit	$V_{\text {IH }}$	V_{HH}	X^{13}	X^{13}	$V_{\text {PP }}$	$6.0 \mathrm{~V}^{16}$	Hi-Z
Intelligent identifier-manufacturer ${ }^{15}$	$\mathrm{V}_{\text {IL }}$	V_{IL}	$\mathrm{V}_{\mathrm{H}^{14}}$	$\mathrm{V}_{\text {IL }}$	$V_{C C}$	V_{CC}	15H
Intelligent identifier ${ }^{15}$	$\mathrm{V}_{\text {LI }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{H}}{ }^{14}$	$\mathrm{V}_{\text {th }}$	$V_{C C}$	$V_{C C}$	8 CH

CMOS NOISE CHARACTERISTICS

Special epitaphial processing techniques have enabled Signetics to build CMOS with features adding to system reliability. These include input/Output protection to latch-up. Each of the data and address pins will not latch-up with currents up to 100 mA and voltages from -1 V to V_{CC} +1 V .
Additionally, the V_{PP} (Programming) pin is designed to resist latch-up to the 14 V maximum device limit.

PROGRAMMING

Caution: Exceeding 14.0V on Vpp Pin may permanently damage the 27C256.
Initially, and after each erasure, all bits of the 27 C 256 are in the " 1 " state. Data is introduced by selectively programming " 0 " into the desired bit location. Although only " 0 " will be programmed, both " 1 " and " 0 " can be presentin the data word. The only way to change an " 0 " to a " 1 " is by ultraviolet light erasure.
The 27C256 is in the programming mode when the $V_{\text {PP }}$ input is at 12.5 V and CE is at TTL-Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

INTELLIGENT PROGRAMMING ${ }^{\text {TM }}$ ALGORITHM

The 27C256 intelligent programming algorithms rapidly program Signetics CMOS EPROMs using an efficient and reliable method particularly suited to the production programming environment. Typical programming times for individual devices are on the order of five minutes. Actual programming times may vary due to differences in programming equipment.
Programming reliability is also ensured as the incremental program margin of each byte is continually monitored to determine when it has been successfully programmed. A flow-chart of the 27 C 256 intelligent program algorithm is shown in Figure 1.
The intelligent programming algorithm utilizes two different pulse types: initial and overprogram. The duration of the initial CE pulse(s) is 1 ms , which will then be followed by a longer overprogram pulse of length $3 X \mathrm{~ms}$. X is a duration counter and is equal to the number of the initial 2 ms pulses applied to a particular 27C256 location, before a correct verify occurs. Up to 251 ms pulses per byte are provided for before the overprogram is applied.

The entire sequence of program pulses and byte verifications is performed at $V_{C C}=6.0 \mathrm{~V}$ and $V_{P P}=12.5 \mathrm{~V}$.
When the intelligent programming cycle has been completed, all bytes should be compared to the original data with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

PROGRAM INHIBIT

Programming of multiple 27C256 EPROMs in parallel with different data is easily accomplished by using the Program Inhibit mode. A high-level CE input inhibits other 27C256 EPROMs from being programmed.
Except for $\overline{O E}$ or $C E$, all inputs of the parallel 27C256s may be common. A TTL low-level pulse applied to the CE or ALE/CE input with V_{pp} at 12.5 V will program the selected 27 C 256 .

VERIFY

A verify (read) should be performed on the programmed bits to determine that they have been correctly programmed. The verify is performed with $O E$ at $V_{I L}$ and CE at $V_{I H}$ and $V_{P P}$ at 12.5 V . Data should be verified a minimum of Toev after the falling edge of $\overline{O E}$.

INTELLIGENT IDENTIFIER MODE

The intelligent identifier mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically
matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the 27 C 256 .

To activate this mode the programming equipment must force 11.5 V to 12.5 V on address line A_{9} of the 27 C 256 . Two bytes may then be sequenced from the device outputs by toggling address line A_{0} from $V_{I L}$ to $V_{\mathbb{I}}$. All other address lines must be held at $\mathrm{V}_{\text {IL }}$ during intelligent identifier mode.

INTELLIGENT PROGRAMMING ALGORITHM DC PROGRAMMING CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{C C}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{P P}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
I_{IH}	Input current (all inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$		1.0	$\mu \mathrm{A}$
V_{IL}	Input Low level (all inputs)		-0.1	0.8	V
$\mathrm{V}_{\text {IH }}$	Input High level		2.0	$\mathrm{V}_{C C}+0.5$	V
V_{OL}	Output Low voltage during verify	$\mathrm{IOL}^{\text {a }}=2.1 \mathrm{~mA}$		0.45	V
V_{OH}	Output High voltage during verify	$\mathrm{l}_{\mathrm{OH}}=-2.5 \mathrm{~mA}$	3.5		V
$\mathrm{I}_{\mathrm{CC2}}$	$V_{\text {cC }}$ supply current	$\mathrm{O}_{0}-\mathrm{O}_{7}=0 \mathrm{~mA}$		30	mA
IPP 2	V_{PP} supply current (program)	CE $=\mathrm{V}_{\text {IL }}$		50	mA

AC PROGRAMMING CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{17}$	LIMITS			UNIT
			Min	Typ	Max	
$\mathrm{t}_{\text {ces }}$	CE setup time		2			$\mu \mathrm{s}$
$t_{\text {AS }}$	Address setup time		2			$\mu \mathrm{s}$
toes	OE setup time		2			$\mu \mathrm{s}$
$t_{\text {DS }}$	Data setup time		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {AH }}$	Address hold time		0			$\mu \mathrm{s}$
$t_{\text {dH }}$	Data hold time		2			$\mu \mathrm{s}$
$\mathrm{t}_{\text {DFP }}{ }^{20}$	OE High to output float delay		0		130	$\mu \mathrm{s}$
tvps	$V_{\text {Pp }}$ setup time		2			$\mu \mathrm{s}$
tves	$V_{\text {CC }}$ setup time		2			$\mu \mathrm{s}$
tpw	$\overline{C E}$ initial program pulse width	(See note 18)	0.95	1.0	1.05	ms
topw	CE overprogram pulse width	(See note 19)	2.85		78.75	ms
toe	Data valid from OE				150	ns

NOTES:

1. Erase characteristics do not apply for one time programming (OT).
2. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3. Minimum DC input voltage is -0.5 V . during transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
4. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Other inputs can have any value within spec.
6. Maximum active power usage is the sum Ipp $+I_{\mathrm{CC}}$ and is measured at 5 MHz .
7. Output shorted for no more than one second. No more than one output shorted at a time. $l_{0 s}$ is sampled but not 100% tested.
8. V_{PP} may be one diode voltage drop below V_{CC}. It may be connected directly to V_{CC}. Also, V_{CC} must be applied simultaneously or before $V_{P p}$ and removed simultaneously or after $V_{P P}$.
9. TTL inpuis: spec TTL at $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ levels. $C M O S$ inputs: $G N D \pm 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}$.
10. Guaranteed, but not tested.
11. X can be $\mathrm{V}_{I H}$ or $\mathrm{V}_{I L}$.
12. AC characteristics tested at $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.
13. X can be $V_{\text {IL }}$ or $V_{\text {IH }}$.
14. $V_{H}=12.0 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$.
15. $A_{1}-A_{9}, A_{10}-A_{12}=V_{\text {IL }}$.
16. $\mathrm{V}_{c \mathrm{cc}}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$.
17. AC Conditions of Test:

Input Rise and Fall Times (100\% to 90\%): 20ns
Input Pulse Levels: 0.45 V to 2.4 V
Input Timing Reference Level: 0.8 V to 2.0 V
Output Timing Reference Level: 0.8 V to 2.0 V
18. Initial Program Pulse width tolerance is $1 \mathrm{msec} \pm 5 \%$.
19. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.
20. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven (see Timing Diagram).

Figure 1. Intelligent Programming Flowchart

256K CMOS UV Erasable PROM (32K x 8)

NOTES:

1. The Input Tirming Reference Level is 0.8 V for V_{IL} and 2 V for a V_{H}, input pulse levels are 0.45 V and 2.4 V .
2. TOE and IDFP are characteristics of the device but must be accommodated by the programmer.
3. When programming 27 C 256 , a 0.1 uF capacitor is required across $\mathrm{V}_{P P}$ and ground to suppress spurious voltage transients which can damage the device.

Figure 2. Intelligent Programming Waveforms

Signetics

Military Standard Products

DESCRIPTION

The Signetics 27C512 CMOS EPROM is a 512 K -bit, 5 V -only memory organized as 65,536 words of 8 bits each. It employs advanced CMOS circuitry for systems requiring low power, high-performance speeds and immunity to noise. The 27 C 512 has a non-multiplexed addressing interface and is plug-compatible with the industry standard 27512.

The 27C512, available in a ceramic DIP package, achieves both high performance and low power consumption, making it ideal for high-performance, portable equipment. This device can be programmed with standard EPROM programmers.

Product Specification

FEATURES

- CMOS/NMOS microcontroller and microprocessor compatible
- Universal 28-pin memory site, 2-line control
- Low power consumption
- Noise Immunity features
- $\pm 10 \% V_{\text {cc }}$ tolerance
- Maximum latch-up immunity through epitaxial processing
- Fast, reliable intelligent programming
- 12.5V Vpp, HCMOS 11-E compatible

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		
	170ns	200 ns	250 ns
28-Pin Ceramic DIP W/Quartz Window	27 C512/BXA-17	27C512/BXA-20	27C512/BXA-25

BLOCK DIAGRAM

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{15}$	Addresses
$O_{0}-O_{7}$	Outputs
$\overline{O E / V_{C C}}$	Output Enable/ Programming Voltage
$C E$	Chip Enable
$G N D$	Ground
$V_{C C}$	Power Supply

ABSOLUTE MAXIMUM RATINGS ${ }^{2}$

SYMBOL	PARAMETER	RATING	UNIT
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}$	Voltage on any pin with respect to ground	-2.0 to $\mathrm{V}_{\mathrm{CC}}+1.0$	V
$\mathrm{~V}_{1}$	Voitage on CE Pin with respect to ground	-2.0 to +13.5	V
$\mathrm{~V}_{\text {PP }}$	Supply voltage with respect to ground during programming	-2.0 to 14.0	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{c c}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}^{3,9}}$	High-level input voltage	2.0		$V_{C C}+0.5^{12,10}$	V
$\mathrm{V}_{1 \mathrm{H}^{3,9}}$	High-level input voltage CMOS	$V_{\text {cc }}-0.2$		$V_{C C}+0.2^{12,10}$	V
$\mathrm{V}_{\text {LL }}{ }^{3,9}$	Low-level input voltage	-0.5 ${ }^{12.10}$		0.8	V
$\mathrm{V}_{\text {LL }}{ }^{3,9}$	Low-level input voltage CMOS	$-0.2^{12.10}$		0.2	V
$\mathrm{IOH}^{\text {r }}$	High-level output current			-400	$\mu \mathrm{A}$
lol	Low-level output current			2.1	mA
$\mathrm{T}_{\text {A }}$	Operating temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

READ OPERATION DC CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{ \pm} 10 \%$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{4}$	Max	
LLIH	Input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}=\mathrm{Max}$		0.01	10	$\mu \mathrm{A}$
Llu		$V_{1}=0.0 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}$			-10	$\mu \mathrm{A}$
IOH^{1}	Output leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}=\mathrm{Max}$		0.01	+1.0	$\mu \mathrm{A}$
loil		$V_{1}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$			-1.0	$\mu \mathrm{A}$
lcc TTL6,8	Operating current TTL inputs	$\begin{gathered} C E=O E-V_{I L}, V_{P P}=V_{C C}=\operatorname{Max} \\ O_{0}-O_{7}=0 \mathrm{MA}, f=1 / T_{\text {ACC }} \operatorname{Max} \end{gathered}$			30	mA
$\mathrm{ISB}^{\text {TTL }}{ }^{8}$	Standby current TTL inputs	$\overline{C E}=\mathrm{V}_{\text {H }}, \mathrm{V}_{\text {CC }}=$ Max			2	mA
$\mathrm{ISBCMOS}^{5}$	Standby current CMOS inputs	$\mathrm{CE}=\mathrm{V}_{\mathbb{H}}, \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low voltage	$\mathrm{IOL}=$ Max, $\mathrm{V}_{\text {CC }}=\mathrm{Min}$			0.45	V
V_{OH}	Output High voltage	$\mathrm{IOH}=\mathrm{Max}, \mathrm{V}_{\text {CC }}=\mathrm{Min}$	2.4			V
los ${ }^{7}$	Output short-circuit current	$V_{C C}=$ Max, $I_{0}=0 \mathrm{~V}$			-100	mA

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SYMBOL	PARAMETER	CONDITIONS	MAX	UNIT
$\mathrm{C}_{1}{ }^{10}$	Address/control capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$	6	PF
$\mathrm{C}_{0}{ }^{10}$	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	12	pF
$\mathrm{C}_{\mathrm{IN}^{10}}$	$\mathrm{OE} \mathrm{N}_{\mathrm{PP}}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	25	pF

READ OPERATION - AC CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}^{12}$

SYMBOL	PARAMETER	27C512-17		27C512-20		27C512-25		UNITS
		Min	Max	Min	Max	Min	Max	
$t_{\text {ACC }}$	Address to output delay		170		200		250	ns
$\mathrm{t}_{\text {CE }}$	CE to output delay		170		200		250	ns
Lee	$\overline{O E}$ to output delay		60		75		100	ns
top ${ }^{10}$	OE or CE High to output Hi-Z		50		55		60	ns
tOH^{10}	Output hold from addresses, CE or $\overline{O E}$ change whichever is first	0		0		0		ns

NOTES:

1. Erase characteristics do not apply for one time programming (OT).
2. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3. Minimum DC input voltage is -0.5 V . during transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
4. Typical limits are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. Other inputs can have any value within spec.
6. Maximum active power usage is the sum lpp $+l_{\mathrm{cc}}$ and is measured at 5 MHz .
7. Output shorted for no more than one second. No more than one output shorted at a time. los is sampled but not 100% tested.
8. $V_{C C}$ must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{Pp}.
9. TTL inputs: spec TTL at $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}$ levels. CMOS inputs: $\mathrm{GND}_{ \pm} 0.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}} \pm 0.2 \mathrm{~V}$.
10. Guaranteed, but not tested.
11. X can be V_{IH} or V_{IL}.
12. AC characteristics tested at $\mathrm{V}_{\mid \mathrm{H}}=2.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$. Timing measurements made at $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$.

DEVICE OPERATION - START

MODE	CE	OE $_{\text {PP }}$	OUTPUT
Read	V_{IL}	V_{IL}	$\mathrm{D}_{\text {OUT }}$
Output disable	V_{IL}	V_{IH}	$\mathrm{Hi}-\mathrm{Z}$
Standby	V_{HH}	X^{11}	$\mathrm{HI}-\mathrm{Z}$

READ MODE

The 27C512 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable $\mathrm{OE} N_{\text {PP }}$ is the output control and should be used to gate data from the output pins. Data is available at the outputs atter a delay of toE from the falling edge of $C E / V_{P P}$, assuming that $C E$ has been Low and addresses have been stable for at least tacc-toe.

STANDBY MODE

The 27C512 has a standby mode which reduces the maximum $V_{C C}$ current to $100 \mu \mathrm{~A}$. It is placed in the Standby mode whenCE is in the High state. When in the Standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E} N_{P P}$ pin.

AC TESTING LOAD CIRCUIT

AC VOLTAGE WAVEFORMS

PROGRAMMING INFORMATION

Complete programming system specifications for the quick-pulse programming program method are available upon request from Signetics Military Marketing

Signetics encourages the purchase of programming equipment from a manufacturerwho has a full line of programming products to offer. Signetics also encourages the manufacturers of PROM programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from Signetics Military Memory Marketing.

PROGRAMMING THE 27C512

Caution: Exceeding 14.0V on $\overline{O E} N_{\text {PP }}$ Pin may permanently damage the 27C512.

The 27 C512 Quick Pulse programming algorithms rapidly program CMOS EPROMs using an efficient and reliable method particularly suited to the production programming environment. Actual programming times may vary due to differences in programming equipment.
Initially, all bits of the 27C512 are in the "1" state. Data is introduced by selectively programming " 0 "s into the desired bit locations. Although only " 0 "s will be programmed, both " 1 "s and " 0 "s can be present in the data word.

The 27C512 is in the programming mode when the $O E N_{P P}$ input is at 12.75 V and CE is at TTL Logic Low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

INTELLIGENT IDENTIFIER

The intelligent identifier provides the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is functional in the $25^{\circ} \pm 5^{\circ} \mathrm{C}$ ambienttemperature range. To activate this mode, the equipment must force 11.5 V to 12.5 V on address A_{9} of the 27C512. Two bytes may then be read from the device outputs by toggling address line A_{0} from $V_{I L}$ to $V_{I H}$. The $C E, D E / V_{P P}$ and all other address lines must be at $\mathrm{V}_{\mathbb{1}}$ during interrogation.

The identifier information for Signetics 27C512 is as follows:

When $A_{0}=V_{\text {IL }}$
data is "Manufacturer" $\quad 15_{(\text {HEX })}$
When $A_{0}=V_{I H}$
data is "Product"

$$
1 \mathrm{D}_{(\text {HEX })}
$$

ERASURE CHARACTERISTICS

The erasure characteristics of the 27 C 512 are such that erasure begins to occur upon exposure to light with wavelengths shorter than
aproximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescentlamps have wavelengths in the 3000-4000 A range. Data shows that constantexposure to room level fluorescent lighting could erase the typical 27C512 in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 27C512 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure or the windowless OTP device can be used.

The recommended erasure procedure for the 27C512 is exposure to shortwave ultraviolet light which has a wave length of 2537 Angstroms (\dot{A}). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 min utes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} /$ cm^{2} power rating. The 27C512 should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a 27C512 can be exposed to without damage is $7258 \mathrm{~W} / \mathrm{cm}^{2}$ (1 week @ $1200 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPROMs to high intensity UV light for longer periods may cause permanent damage.

Signetics

Military CMOS Memory Products

DESCRIPTION

The 27HC641 is a CMOS, high-speed UV erasable, electronically programmed Read Only Memory. It is organized as 8192 words of 8 bits and operates from a single 5 volts $+/-10 \%$ power supply. All outputs offer 3-State operation and are fully TTL compatible.

The 27HC641 uses advanced CMOS circuitry which allows operation at bipolar PROM speeds while consuming lower power. The highest degree of protection against latch-up is achieved through epitaxial processing, simplifying the design of electronic equipment which is subject to a high noise environment.

27HC641
 64K-Bit CMOS PROM ($8 \mathrm{~K} \times 8$)

Product Specification

The 27 HC 641 is available in the industry standard 24-pin Dual-In-Line (DIP) package with the same pin out as most 64 K bipolar PROMs, thereby making it easier to upgrade systems currently using higher power bipolar PROMs, and allowing the designer to provide a lower power memory system solution. Also available in a standard 32-Pin LLCC.

FEATURES

- Address access times 55ns and 70ns
- Max operating ICC of 110 mA
- 3-State outputs
- Direct replacement of Bipolar PROMs
- Programmed on industry standard EPROM programmers
- Fully TTL compatible

APPLICATIONS

- Prototyping and volume production
- High performance memory systems
- Sequential controllers
- Microprogramming
- Random Loglc Replacement

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	
	55 nsec	70 nsec
24-Pin 600mil wide Cerdip w/Quartz Window	27HC641/BJA-55	27HC641/BJA-70
24-Pin Cerdip w/o Window 1	27HC641/BXA-55 OT	27HC641/BXA-70 OT
28-Pin LLCC w/Quartz Window	27HC641/B3A-55	27HC641/B3A-70

PIN CONFIGURATION

For LLCC Pin Assignments, see JEDEC Std. 21

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS²

SYMBOL	PARAMETER	RATING	UNIT
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{1}{ }^{3}$	Voltage on CE pin with respect to GND	-0.5 to +13.5	V
$\mathrm{~V}_{1}{ }^{3}$	Voltage on any other pin with respect to GND	-0.5 to +7	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
V_{H}	Input voltage High	2.0		$\mathrm{V}_{\mathrm{cc}}+1$	V
$\mathrm{V}_{\text {IL }}$	Input voltage Low	-0.1		0.8	V

DC CHARACTERISTICS $-55^{\circ} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{C C} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
I_{L}	Input leakage current Low	$\mathrm{V}_{1}=+0.45 \mathrm{~V}, \mathrm{~V}_{C C}=\mathrm{Max}$		± 10	$\mu \mathrm{A}$
I_{H}	Input leakage current High	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		± 10	$\mu \mathrm{A}$
loz	Output current Hi-Z State	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=\mathrm{Max}$		-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}, \mathrm{V}_{\text {CC }}=\mathrm{Max}$		10	$\mu \mathrm{A}$
Vol	Output voltage Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.45	V
V_{OH}	Output voltage High	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4		V
ICC	Supply current	$V_{\text {cc }}=$ Max		110	mA
$\mathrm{V}_{\text {IK }}$	Input clamp voltage (All input pins except CE)	$V_{1}=-18 \mathrm{~mA}, V_{C C}=$ Min		-1.2	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage (CE)	$V_{1}=-12 \mathrm{~mA}, V_{C C}=\mathrm{Min}$		-1.2	V
los	Short circuit output current ${ }^{6}$	$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Max	-10	-85	mA
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{4}$	$\mathrm{V}_{\mathbb{N}}=O \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Nom		10	pF
Cout	Output capacitance ${ }^{4}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ Nom		15	pF

AC ELECTRICAL CHARACTERISTICS ${ }^{5}-55^{\circ} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER		-55 LIMITS		-70 LIMITS	
		Min	Max	Min	Max	
t_{AA}	Address access time		55		70	ns
t_{CE}	Chip enable access time		35		40	ns
I_{CD}	Output disable time from chip enable		35		40	ns

AC ELECTRICALS DURING PROGRAMMING $T_{A}=25^{\circ} \mathrm{C}_{ \pm} 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{ \pm} 5 \%, \mathrm{~V}_{P P}=12.5 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$

SYMBOL	PARAMETER	LIMITS		UNIT
		Min	Max	
tw	Write pulse width	10		ms
t_{B}	Rise time	10		$\mu \mathrm{s}$
t_{F}	Fall time	10		$\mu \mathrm{s}$
$t_{\text {AS }}$	Address setup time	10		$\mu \mathrm{s}$
$t_{\text {DS }}$	Data setup time	10		$\mu \mathrm{s}$
t_{cs}	Chip enable setup time	10		$\mu \mathrm{s}$
$t_{\text {AH }}$	Address hold time	10		$\mu \mathrm{s}$
$t_{\text {DH }}$	Data hold time	10		$\mu \mathrm{s}$
${ }_{\text {t }}$	Chip enable hold time	10		$\mu \mathrm{s}$

NOTES:

1. Erase characteristics do not apply for one time programming (OT).
2. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operation section of this specification is not implied.
3. Minimum $D C$ input voltage is -0.5 V during transitions. The inputs may undershoot to -2.0 V for periods less than 20 ns .
4. $\mathrm{C}_{\mathbb{I}}$ and $\mathrm{C}_{\text {OUt }}$ are measured initially and after any design changes which may affect capacitance.
5. Test conditions ($C_{L}=30 \mathrm{pF}, \mathrm{R}_{1}=300 \Omega$, and $\mathrm{R}_{2}=600 \Omega$.).
6. Duration of short circuit should not exceed 1 second and short only one output at a time.

EQUIVALENT AC TEST LOAD CIRCUIT

ERASURE CHARACTERISTICS

The 27HC641 is erased by exposure to ultraviolet light. The recommended erasure procedure is exposure to short-wave ultraviolet light which has a wavelength of 2537 Angstroms (A). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating.
The 27HC641 should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a 27 HC 641 can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week @ $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of this CMOS EPROM to high-intensity UV light for longer periods may cause permanent damage. Some erasure may occur with exposure to light
sources having wavelengths shorter than 4000 (\AA) such as sunlight or fluorescent light. For maximum system reliability, precautions should be taken by placing opaque labels over the quartz window when used in these environments.

PROGRAMMING THE 27HC641

Initially, and after each erasure, all bits of the 27 HC 641 are in an undefined state. Data is introduced by programming " 1 "s and " 0 "s into the desired bit locations. Both "1"s and "0"s must be present in the data word to define each bit. The only way to change a bit to the opposite state is by ultravioletlighterasure and programming it to the desired state.
The 27HC641 is in the programming mode when the Output Enable (\bar{G}) pin is at 12.5 V . The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are standard TTL logic levels.

INTELLIGENT IDENTIFIER

The intelligent identifier mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the 27 HC 641 .

To activate this mode, the programming equipment must force 11.5 V to 12.5 V on address line Ag_{9} (Pin 22) of the 27 HC 641 . Two bytes may then be read from the device outputs by toggling address line A_{0} (Pin 8) from $V_{I L}$ to $V_{I H}$. The G and all other address lines must be held at V_{IL} during interrogation.

The identifier information for Signetics 27 HC 641 is as follows:

When $A_{0}=V_{\text {IL }}$
data is "Manufacturer" $1_{\text {[HEX] }}$
When $\mathrm{A}_{0}=\mathrm{V}_{\mathrm{IH}}$
data is "Product" $21_{[\text {[HEX] }}$

PROGRAMMING INFORMATION

Complete programming system specifications for the Programming Algorithm are available upon request form Signetics Memory Marketing.
Signetics encourages the purchase of programming equipment from a manufacturer who has a fuil line of programming products to offer. Signetics also encourages the manufacturers of PROM programming equipment to submit their equipment for verification of electrical parameters and programming procedures. Information on manufacturers offering equipment certified by Signetics is available upon request from Signetics Memory Marketing.

64K-Bit CMOS PROM (8K $\times 8$)

SIGNETICS DISCOURAGES THE CONSTRUCTION AND USE OF "HOMEMADE" PROGRAMMING EQUIPMENT
In order to consistently achieve excellent programmingyields, periodic calibration of the pro-
gramming equipment is required. Consult the equipmentmanufacturer for the recommended calibration interval. Signetics warranty for programmability extends only to product that has been programmed on certified equipment that has been serviced to the manufacturer's recommendations.

AC VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS

Section 3 FAST Data Sheets

Military Products

INDEX

54F191

54 F193

54F194
54F198
54F240
54F241
54F244
54F245
54F253
54F257A
54F258A
54F259
54F269

Quad Two-Input NAND Gate . 49
Quad Two-Input NOR Gate . 52
Hex Inverter . 55
Quad Two-Input AND Gate . 58
Triple Three-Input NAND Gate . 61
Triple Three-Input AND Gate . 61
Hex Inverter Schmitt Trigger . 64
Dual Four-Input NAND Gate . 67
Quad Two-Input OR Gate . 70
Quad Two-Input NAND Buffer . 73
Quad Two-Input NAND Buffer (Open Collector) . 76
Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate 79
Four-Two-Three-Two-Input AND-OR-Invert Gate 82
Dual D-Type Flip-Flop . 85
Dual J-K Positive Edge-Triggered Flip-Flop . 90
Dual J-K Negative Edge-Triggered Flip-Flop . 95
Dual J-K Negative Edge-Triggered Flip-Flop without Reset 101
Quad Buffer (3-State) . 106
Quad Buffer (3-State) . 109
1-of-8 Decoder/Demultiplexer . 112
Dual 1-of-4 Decoder/Demultiplexer . 117
8-Input Priority Encoder . 121
1-of-16 Decoder/Demultiplexer . 126
Quad 2-Input Data Selector/Multiplexer (Non-Inverted) 130
Quad 2-Input Data Selector/Multiplexer (Inverted) 130
4-Bit Binary Counter . 135
4-Bit Binary Counter . 135
8-Bit Serial-In Parallel-Out Shift Register . 143
4-Bit Up/Down Binary Synchronous Counter 148
Quad D-Type Flip-Flop (3-State) . 157
Hex D Flip-Flop . 163
Quad D Flip-Flop . 167
4-Bit Arithmetic Logic Unit . 172
Asynchronous Presettable BCD/Decade Up/Down Counters 182
Asynchronous Presettable 4-Bit BinaryUp/Down Counters 182
Synchronous Presettable 4-Bit Binary Down Counter 192
4-Bit Bidirectional Universal Shift Register . 200
8-Bit Bidirectional Universal Shift Register . 206
Octal Inverting Buffer, 3-State . 213
Octal Buffer, 3-State . 213
Octal Buffer, 3-State . 218
Octal Transceiver, 3-State . 222
Dual 4-Input Multiplexer, 3-State . 227
Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 232
Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 237
8-Bit Addressable Latch . 241
8-Bit Bidirectional Binary Counter . 247
54 F273 Octal D Flip-Flop 255
54F280A \quad-Bit Odd/Even Parity Generator/Checker 259
54F280B \quad-Bit Odd/Even Parity Generator/Checker 259
54F299 8-Input Universal Shit/Storage Register, 3-State 263
54F350 4-Bit Shifter, 3-State 269
54F367 Hex Buffer/Driver, 3-State 275
54F373 Octal Transparent Latch, 3-State 279
54F374 Octal D Flip-Flop, 3-State 279
54F398 Quad 2-Port Register with True \& Complementary Outputs 286
54F399 Quad 2-Port Register 286
54 F432 Multi-Mode Buffered Latch, INV, 3-State 291
$54 F 455 \quad$ Octal Buffer/Line Driver with Parity, Inverting, 3-State 298
54 F456 Octal Buffer/Line Driver with Parity, Non-Inverting, 3-State 298
54F521 8-Bit Identity Comparator 304
54 F534 Octal D Flip-Flop, 3-State 309
54 F538 1-of-8 Decoder, 3-State 314
54F543 Octal Registered Non-Inverting Transceiver, 3-State 319
54F544 Octal Registered Inverting Transceiver, 3-State 319
$54 F 573$ Octal Transparent Latch, 3-State 328
54F574 Octal D Flip-Flop, 3-State 328
54F579 8-Bit Bidirectional Binary Counter, 3-State 335
54F620 Octal Bus Inverting Transceiver 3-State 342
54 Octal Bus Non-Inverting Transceiver, 3-State 342
54F640 Octal Bus Inverting Transceiver, 3-State 347
54F646A Octal Transceiver/Register, Non-Inverting, 3-State 351
54F655A Octal Buffer/Line Driver with Parity, Inverting, 3-State 356
54F656A Octal Buffer/Line Driver with Parity, Non-Inverting, 3-State 356
54F657 Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker, 3-State 362
54F676 16-Bit Shift Register 368
54 F776 Octal Bidirectional Latched Transceiver 373
54 F777 Triple Bidirectional Latched 3-State + Open Collector Bus Transceiver 382
54F779 8-Bit Bidirectional Binary Counter, 3-State 389
54F1240 Octal Inverter Buffer, 3-State 396
54F3037 Quad 2-Input NAND 30 2 Line Driver 400
54 F5074 Synchronizing Dual D-Type Flip-Flop with Metastable Immune Characteristics 403
54F30244 Octal High Current Buffer/Line \& Backplane Driver, NINV (30Ω O.C.) 410
54F30245 Octal Transmission Line/Backplane Transceiver, NINV (30ת O.C. w/ Enable + 3-State) 414

Military Logic Products

54F00

Gate

Quad Two-Input NAND Gate

Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H

$H=$ High voltage level
$L=$ Low voltage level

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	$54 F 00 / B C A$
14-Pin Ceramic Flat Pack	$54 F 00 / B D A$
$20-$ Pin Ceramic LLCC	$54 F 00 / B 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
P	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55	.	+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{LK}}$			-0.73	-1.2	V		
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{0}=0.0 \mathrm{~V}$		-60	-80	-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {cc }}=$ Max	$V_{1}=$ GND		1.9	2.8	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$V_{1} \geq 4.0 \mathrm{~V}$		6.8	10.2	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B to P	Waveform 1	2.4 2.0	3.7 3.2	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	2.0 1.2	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVE FORMS

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{m}}=\mathbf{1 . 5 V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54F02

Gate

Quad Two-Input NOR Gate
 Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54F02/BCA
14-Pin Ceramic Flat Pack	54F02/BDA
20-Pin Ceramic LLCC	$54 F 02 / B 2 A$

$H=$ high voltage level
$L=$ Low voltage level

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
P	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

\square

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS		
		UNIT			
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{IOL}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$		5	100	$\mu \mathrm{A}$	
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
ILIL	Low-level input current		$V_{C c}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max, $V_{0}=0.0 \mathrm{~V}$	-60	-80	-150	mA	
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$		3.0	5.6	mA	
		$\mathrm{I}_{\mathrm{CLL}}$			7.0	13	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B to $\overline{7}$	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs open.

AC WAVEFORM

NOTE: For all wavelorms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Military Logic Products

54F04

Inverter

Hex Inverter
Product Specification

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
L	H
H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F04/BCA
14-Pin Ceramic Flat Pack	54 F04/BDA
20-Pin Ceramic LLCC	54 F04/B2A

$H=$ High voltage level
$L=$ Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
A	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
P	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of tho dovice. Unloss otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

For LLCC Pin assignmentas aee JEDEC Standard No. 2

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {rem }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{IOL}=$ Max, $\mathrm{V}_{\mathrm{IH}}=$ Min			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage		$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$. 100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H}_{1}}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
1 l	Low-level input current		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60	-85	-150	mA		
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{cc}}=$ Max	$\mathrm{V}_{1}=$ GND		2.8	4.2	mA		
		l CCL		$V_{1} \geq 4.0 \mathrm{~V}$		10.2	15.3	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A to F	Waveform 1	$\begin{aligned} & 2.4 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{m}}=\mathbf{1 . 5 \mathrm { V }}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capaci-
tance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

Quad Two-Input AND Gate

Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	L
H	L	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	$54 F 08 / B C A$
14-Pin Ceramic Flat Pack	$54 F 08 / B D A$
20-Pin Ceramic LLCC	$54 F 08 / B 2 A$

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
Y	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{L}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
IOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=$ Min		2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{I}_{\text {OL }}=\mathrm{Max}, \mathrm{V}_{\text {H }}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=$ Min, $\mathrm{I}_{\mathrm{l}}=I_{\text {IK }}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$			5	100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60	-90	-150	mA		
I_{Cc}	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$\mathrm{V}_{1} \geq 4.0 \mathrm{~V}$		5.5	8.3	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{1}=$ GND		8.6	12.9	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation delay A, B to Y	Waveform 1	3.0 2.5	$\begin{aligned} & 4.2 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Non-Inverting Outputs

Gate

TEST CIRCUIT AND WAVEFORM

Test Clrcuit for Totem-Pole Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Z_{OUT} of pulse generators.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

Triple Three-Input NAND ('F10) AND ('F11) Gates
Product Specification

FUNCTION TABLE

INPUTS			OUTPUTS	
A	B	C	Y('F10)	Y('F11)
L	L	L	H	L
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	L	H

$H=$ High voltage level
$L=$ Low voltage level

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F10/BCA, 54F11/BCA
14-Pin Ceramic Flat Pack	$54 F 10 / B D A, 54 F 11 / B D A$
20-Pin Ceramic LLCC	$54 F 10 / \mathrm{B} 2 \mathrm{~A}, 54 \mathrm{~F} 11 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A-C	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y, Y	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{c c}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {ll }}$	Low-level input voltage			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS		UNIT		
				Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{cc}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.5			V
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{\mathrm{Cc}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{I}_{\mathrm{LL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{cc}}=$, $\mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{cc}}=$	$V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$		
$\mathrm{I}_{1 \mathrm{H}_{1}}$	High-level input current			$\mathrm{V}_{\text {cc }}=$	$V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$		
I_{1}	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=$	$V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$			$V_{C C}=\mathrm{N}$	$V_{0}=0.0 \mathrm{~V}$	-60	-75	-150	mA		
Icc	Supply current (total)	${ }^{\text {F }} 10$	ICCH	$V_{c c}=\operatorname{Max}$	$V_{1}=$ GND		1.8	2.1	mA		
			l CLL		$V_{1} \geq 4.0 \mathrm{~V}$		6.0	7.7	mA		
		'F11	${ }^{1} \mathrm{CCH}$		$\mathrm{V}_{1} \geq 4.0 \mathrm{~V}$		4.7	6.2	mA		
			1 CCL		$\mathrm{V}_{1}=\mathrm{GND}$		7.2	9.7	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic".)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B, C to Y	Waveform 1 'F10	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B, C to Y	Waveform 2 'F11	3.0 2.5	4.2 4.1	5.6 5.5	2.5 2.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

'F10
Waveform 1. For Inverting Outputs

'F11
Waveform 2. For Non-Inverting Outputs

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{m}}=\mathbf{1 . 5 \mathrm { V }}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load Resistor; see $A C$ Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

54F14
 Schmitt Trigger

Military Logic Products

Hex Inverter Schmitt Trigger

Product Specification

DESCRIPTION

The 54F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole
output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

FUNCTION TABLE

INPUTS	OUTPUT
\mathbf{A}	\mathbf{Y}
0	1
1	0

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 F14/BCA
Ceramic Flat Pack	54 F14/BDA
Ceramic LLCC	54 F14/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A	Inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION
LOGIC SYMBOL
For LLCC pin aseignmente, see JEDEC Standard No. 2
For LLCC Pin essignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
IOL	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$							
			Min	Typ ${ }^{2}$	Max					
$\mathrm{V}_{\text {T+ }}$	Positive-going threshold				$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		1.4	1.7	2.0	V
V_{T}	Negative-going threshold		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		0.7	0.9	1.1	V		
$\Delta \mathrm{V}_{\mathrm{T}}$	Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\mathrm{T}} \text {) }}$		$V_{C C}=5.0 \mathrm{~V}$		0.4	0.8		V		
V_{OH}	High-level output voltage		$V_{C C}=\operatorname{Min}, V_{1}=V_{\text {T-MIN }}, I_{\text {OH }}=\operatorname{Max}$		2.5			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{C C}=$ Min, $\mathrm{V}_{1}=\mathrm{T}_{\text {T }+ \text { MAX }}, \mathrm{IOL}=$ Max			. 35	. 50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=$ Min, $\mathrm{I}_{\mathrm{i}}=\mathrm{I}_{4 \mathrm{~K}}$			-0.73	-1.2	V		
${ }_{T_{+}}$	Input current at positive-going threshold		$V_{C C}=5.0 \mathrm{~V}$			0.0		$\mu \mathrm{A}$		
I_{T}.	Input current at negative-going threshold		$V_{C C}=5.0$			175		$\mu \mathrm{A}$		
I_{1+2}	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=$ Max			5	100	$\mu \mathrm{A}$		
l_{1+1}	High-level input current		$V_{C C}=$ Max			1	20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=$ Max			-0.2	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {c }}=$		-60	-135	-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M a x$	$\mathrm{V}_{1 \times}=\mathrm{GND}$		13	22	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		23	32	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A to Y	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all wavetorms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Dual Four-Input NAND Gate

Product Specification

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14 -Pin Ceramic DIP	$54 F 20 / B C A$
14 -Pin Ceramic SO	$54 F 20 / B D A$
Ceramic LLCC	$54 F 20 / B 2 A$

$H=$ High voltage level
L = Low voltage level
X = Don't care

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
l_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS		UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output volt				$V_{C C}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{M}$	ax, $\mathrm{V}_{\text {IH }}=\mathrm{Min}$	2.5			V
VOL	Low-level output volta		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {LL }}=\mathrm{M}$	Max, $\mathrm{V}_{\mathrm{HH}}=$ Min		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maxim voltage		$V_{C C}=M$			5	100	$\mu \mathrm{A}$		
$\mathbf{l}_{1 H 1}$	High-level input curre		$V_{C C}=M$			1	20	$\mu \mathrm{A}$		
I_{11}	Low-level input curren		$V_{C C}=M$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max, $V_{0}=0.0 \mathrm{~V}$		-60	-85	-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ Max	$V_{1}=$ GND		0.9	1.4	mA		
		ICCL		$V_{1} \geq 4.0 \mathrm{~V}$		3.4	5.1	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
${ }^{\text {tPLH }}$ tpHL	Propagation delay A, B, C, D to F	Waveform 1	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

Gate

TEST CIRCUIT AND WAVEFORM

Test Clrcuit for Totem-Pole Outputs

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {Out }}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

54F32

Gate

Quad Two-Input OR Gate

Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	H

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	$54 F 32 / B C A$
14-Pin Ceramic Flat Pack	$54 F 32 / B D A$
20-Pin Ceramic LLCC	$54 F 32 / B 2 A$

$\mathrm{H}=$ High voltage level
L = Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
Y	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbf{I}}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}$		2.5			V
$V_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{l}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=I_{\text {IK }}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input clamp current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60	-90	-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ Max	$\mathrm{V}_{1} \geq 4.0 \mathrm{~V}$		6.1	9.2	mA		
		IccL		$\mathrm{V}_{1}=\mathrm{GND}$		10.3	15.5	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay A, B to Y	Waveform 1	3.0 3.0	4.2 4.0	$\begin{aligned} & 5.6 \\ & 5.3 \\ & \hline \end{aligned}$	3.0 3.0	$\begin{aligned} & 6.6 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all wavetorms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Signetics

Milltary Logic Products

54F37

Buffer

Quad Two-Input NAND Buffer
Product Specification

FUNCTION TABLE

INPUTS		OUTPUTS
A	B	F
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F37/BCA
14-Pin Ceramic FlatPack	54 F37/BDA
20-Pin Ceramic LLCC	54 F37/B2A

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
F	Data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | LIMITS | | UNIT | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | Min | Typ | Max | |
| V_{CC} | Supply voltage | 4.5 | 5.0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{IH}}$ | High-level input voltage | 2.0 | | | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage | | | 0.8 | V |
| I_{IK} | Input clamp current | | | -18 | mA |
| $\mathrm{I}_{\mathrm{OH} 1}$ | High-level output current | | | -1 | mA |
| $\mathrm{I}_{\mathrm{OH} 2}$ | High-level output current | | | -12 | mA |
| I_{OL} | Low-level output current | | | 48 | mA |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature range | -55 | | +125 | ${ }^{\circ} \mathrm{C}$ |

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{Cc}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max,	$\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OH} 2}=-12 \mathrm{~mA}$	2.0			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\underset{\mathrm{Min},}{\mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max},} \\ \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{loL}=48 \mathrm{~mA}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{1 \mathrm{H}_{1}}$	High-level input current		$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$			5	20	$\mu \mathrm{A}$		
ILI	Low-level input current		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-1.2	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=$ Max		-100		-225	mA		
lcc	Supply current (total)	ICCH	$V_{c c}=\operatorname{Max}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$		3	6	mA		
		lcCL		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		23	33	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Propagation delay A, B to 7	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Buffer

AC WAVEFORM

Waveform 1. For Inverting Outputs
NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Clrcuit for Totem-Pole Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Quad Two-Input NAND Buffer (Open Collector)
Product Speciflcation

FUNCTION TABLE

INPUTS		OUTPUTS
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 F38/BCA
Ceramic Flat Pack	$54 F 38 / B D A$
Ceramic LLCC	$54 F 38 / B 2 A$

$H=H i g h$ voltage level
$\mathrm{L}=$ Low voltage level
$\mathrm{X}=$ Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 2.0$	$20 \mu A / 1.2 \mathrm{~mA}$
P	Outputs	OC $\% 80$	OC $^{*} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.
*OC = Open Collector
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathbb{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{~V}_{\mathrm{OH}}$	High-level output voltage			4.5	V
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
IOH	High-level output current		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\mathrm{OH}}=$ Max				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{IOL}=48 \mathrm{~mA}$			0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=\mathrm{l}_{\mathrm{IK}}$			-0.73	-1.2	V
$\mathrm{I}_{1} \mathrm{H} 2$	Input current at others maximum input voltage		$V_{c c}=$ Max, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			5	20	$\mu \mathrm{A}$
$1{ }_{\text {IL }}$	Low-level input current		$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.6	-1.2	mA
Icc	Supply current (total)	ICCH	$V_{c c}=$ Max	$V_{1}=$ GND		4	7	mA
		$\mathrm{l}_{\text {ccL }}$		$\mathrm{V}_{1} \geq 4.0 \mathrm{~V}$		22	30	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay A, B to $\overline{ }$	Waveform 1	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 5.0 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 6.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. When using open collector parts, the value of the pull-up resistor greatly affects the value of the TPLH. For example, changing the specified pull-up resistor value from 500Ω to 100Ω will improve the TPLH up to 50% with only a slight increase in the TPHL. However, if the value of the pull-up resistor is changed, the user must make certain that the total IOL current through the resistor, plus the total IIL's of the receivers does not exceed the IOL maximum specification.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{m}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Open Collecor Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

54F51
 Gate

Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate
Product Specification

FUNCTION TABLE
For 3-Input Gates

INPUTS					OUTPUT	
A	B	C	D	E	F	1Y
H	H	H	X	X	X	L
X	X	X	H	H	H	L
All other combinations					H	

$\mathrm{H}=$ High voltage level
L = Low voltage level
$X=$ Don't care

FUNCTION TABLE
For 2-Input Gates

INPUTS				OUTPUT
A	B	C	D	1Y
H	H	X	X	L
X	X	H	H	L
All other combinations				H

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F51/BCA
14-Pin Ceramic FlatPack	54 F51/BDA
20-Pin Ceramic LLCC	54 F51/B2A

$\mathrm{H}=$ High voltage level
L = Low voltage level
$X=$ Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D, E, F	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$17,2 \mathrm{Y}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION
For LUCC pin assignments, see JEDEC standard No. 2

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High-level input voltage	2.0			V
V_{ll}	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		2.5	.		V
V_{OL}	Low-level output voltage		$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage		$V_{c c}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
Ifl	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{ICCH}^{\text {cher }}$	$V_{c c}=$ Max	$V_{1}=$ GND		1.8	3.0	mA		
		ICCL		$V_{1} \geq 4.0 \mathrm{~V}$		5.5	7.5	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay A, B, C, D, E, F to n Y	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{m}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test CIrcult for Totem-Pole Outputs

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capaci-
tance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

54F64
 Gate

Four-Two-Three-Two-Input AND-OR-Invert Gate
Product Specification

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F64/BCA
14-Pin Ceramic Flat Pack	54 F64/BDA
20-Pin Ceramic LLCC	$54 F 64 / B 2 A$

FUNCTION TABLE

INPUTS															OUTPUT
A	B	C	D	E	F	G	H	J	K	L	F				
H	H	X	X	X	X	X	X	X	X	X	L				
X	X	H	H	H	H	X	X	X	X	X	L				
X	X	X	X	X	X	H	H	H	X	X	L				
X	X	X	X	X	X	X	X	X	H	H	L				

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
X $=$ Don't care

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

| PINS | DESCRIPTION | 54F(U.L)
 HIGH/LOW | LOAD VALUE
 HIGH/LOW |
| :--- | :--- | :---: | :---: | :---: |
| A -L | Inputs | $1.0 / 1.0$ | $20 \mu A / 0.6 \mathrm{~mA}$ |
| P | Outputs | $50 / 33$ | $1.0 \mathrm{~mA} / 20 \mathrm{~mA}$ |

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL		RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
l_{0}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=$ Min		2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{l}_{\text {OL }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60	-80	-150	mA		
Icc	Supply current (total)	${ }^{\mathrm{I}} \mathrm{CCH}$	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=$ GND		1.9	2.8	mA		
		l CCL		$V_{1} \geq 4.0 \mathrm{~V}$		3.1	4.7	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A-L to F	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	4.6 3.2	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	1.0 1.0	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54F74

Flip-Flop

Dual D-Type Flip-Flop

Product Specification

DESCRIPTION

The 54F74 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs, and complementary Q and Qoutputs.

Set (\bar{S}_{D}) and Reset (R_{D}) are asynchronous active-Low inputs and operate independently of the Clock input. Information on the Data (D) input is transferred to the Q output on the Low-to-High transition of the
clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. The D inputs must be stable one setup time prior to the Low-to-High clock transition for predictable operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F74/BCA
14-Pin Ceramic FlatPack	54 F74/BDA
20-Pin Ceramic LLCC	54 F74/B2A

See 54F5074 for metastable immune version.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F($ U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock pulse inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{D} 1}, \mathrm{R}_{\mathrm{D} 2}$	Reset inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~S}_{\mathrm{D} 1}, \mathrm{~S}_{\mathrm{D} 2}$	Set inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{2}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
		$\mathbf{S}_{\mathbf{D}}$	$\mathbf{R}_{\mathbf{D}}$	$\mathbf{C P}$	D	Q

$\mathrm{H}=$ High voltage level steady state
$h=H i g h$ voltage level one setup time prior to the Low-to-High clock transition
$L=$ Low voltage level steady state
= Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

NOTE:

1. Both outputs will be High if both S_{D} and R_{D} go Low simultaneously.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless

 otherwise noted, these limits are over the free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $V_{C C}$ | Supply voltage range | -0.5 to +7.0 | V |
| $\mathrm{~V}_{1}$ | Input voltage range | -0.5 to +7.0 | V |
| I_{I} | Input current range | -30 to +5 | mA |
| $\mathrm{~V}_{0}$ | Voltage applied to output in High output state range | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| I_{0} | Current applied to output in Low output state | 40 | mA |
| $\mathrm{~T}_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{HH}}=\mathrm{Min}$		2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{LL}}=\mathrm{Max}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\operatorname{Min}, \mathrm{I}_{1}=l_{\text {IK }}$			-0.73	-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$			5	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {i }}$	High-level input current	$\mathrm{V}_{\mathrm{Cc}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$	All inputs		1	20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {il }}$	Low-level input current	$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$	D. CP inputs		-0.4	-0.6	mA
			$\mathrm{F}_{\mathrm{D}}, \mathrm{S}_{\mathrm{D}}$ inputs		-1.3	-1.8	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max, $V_{0}=0.0 \mathrm{~V}$		-60	-85	-150	mA
ICC	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			11.5	16	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outtined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{TO}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	125		80^{5}		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $C P$ to Q_{n}, \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{array}{r} 8.5 \\ 10.5 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PL} L} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $S D_{n} \text { or } R D_{n} \text { to } Q_{n}, Q_{n}$	Waveform 2	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure $I_{c c}$ with the Clock inputs grounded and all outputs open, with the Q and \bar{Q} outputs High in turn.
5. These parameters are guaranteed, but not tested.

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{TO}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{s}(H) \\ & \mathrm{t}_{s}(\mathrm{~L}) \end{aligned}$	Setup time High or Low D_{n} to CP	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{4}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{H}}(\mathrm{L}) \\ & \hline \end{aligned}$	Hold time High or Low D_{n} to CP	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			2.0 2.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {w }}(\mathrm{L})$	R_{D} or S_{D} pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{t}_{\text {ec }}$	Recovery time, R_{D} or S_{D} to CP	Waveform 3	2.0			3.0		ns

AC WAVEFORMS

Flip-Flop

TEST CIRCUIT AND WAVEFORMS

Signetics

Milltary Logic Products

DESCRIPTION

The 54F109 is a dual positive edge-triggered JR-type flip-flop featuring individual J, K, Clock, Set and Reset inputs, and complementary Q outputs.

Set (S_{D}) and Reset (R_{D}) are asynchronous active-Low inputs and operate independently of the Clock Input.

The J and K are edge-triggered inputs which control the state changes of the flip-flops as described in the Function Table. Clock triggering occurs at a voltage

54F109

Flip-Flop

Dual J-K Positive Edge-Triggered Flip-Flop
 Product Specification

level of the clock pulse and is not directly related to the transition of the positivegoing pulse.
The J and K inputs must be stable just one setup time prior to the Low-to-High transition of the Clock for predictable operation. The JR design allows operation as a D flip-flop by tying the J and R inputs together.

Although the Clock input is level sensitive, the positive transition of the Clock pulse
between the 0.8 V and 2.0 V levels should be equal to or less than the Clock to output delay time for reliable operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 109 / B E A$
Ceramic Flat Pack	$54 F 109 / B F A$
20-Pin Ceramic LLCC	$54 F 109 / B 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. $H I G H / L O W$	LOAD VALUE HIGH/LOW
$J_{1}-J_{2}, \mathrm{~K}_{1}, \mathrm{R}_{2}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock pulse inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{~F}_{\mathrm{D} 1}, \mathrm{R}_{\mathrm{D} 2}$	Reset inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} 1.8 \mathrm{~mA}$
$\mathrm{~S}_{\mathrm{D} 1}, \mathrm{~S}_{\mathrm{D} 2}$	Set inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} 1.8 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \sigma_{1}, \mathrm{Q}_{2}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\mathbf{S}_{\mathbf{D}}$	$\mathbf{F}_{\mathbf{D}}$	$\mathbf{C P}$	J	K	\mathbf{Q}	\mathbf{Q}
Asynchronous Set	L	H	X	X	X	H	L
Asynchronous Reset (Clear)	H	L	X	X	X	L	H
Undetermined (Note)	L	L	X	X	X	H	H
Toggle	H	H	\uparrow	h	I	$\overline{\mathrm{q}}$	q
Load "0" (Reset)	H	H	\uparrow	I	I	L	H
Load "1" (Set)	H	H	\uparrow	h	h	H	L
Hold "no change"	H	H	\uparrow	l	h	q	$\overline{\mathbf{q}}$

$H=$ High voltage level steady state
$L=$ Low voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition
1 = Low voltage level one setup time prior to the Low-to-High Clock transition
$X=$ Don't care
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High Clock transition
$\uparrow=$ Low-to-High Clock transition
NOTE:
Both outputs will be High if both \mathcal{S}_{D} and R_{D} go Low simultaneously.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1.0	mA
I_{OL}	Low-level output current			20.0	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{VL}}=\operatorname{Max} \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.5			V
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{HH}}=\mathrm{Min} \end{aligned}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
I_{1+1}	High-level input current	J, K, CP inputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
		S_{D}, R_{D} inputs			1	20	$\mu \mathrm{A}$	
ILI	Low-level input current	J, R, CP inputs	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
		$\mathrm{S}_{\mathrm{D}}, \mathrm{B}_{\mathrm{D}}$ inputs			-1.3	-1.8	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max, $V_{0}=0.0 \mathrm{~V}$	-60	-85	-150	mA	
lcc	Supply current ${ }^{4}$ (total)		$V_{\text {cc }}=$ Max		12.3	17	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing \& Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	90	125		80^{5}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{n}, Q_{n}	Waveform 1	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $S_{D n}$ or $\bar{R}_{D n}$ to Q_{n}, Q_{n}	Waveform 2	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open, Icc is measured with the Q and \bar{Q} outputs High in turn.
5. These parameters are guaranteed, but not tested.

Flip-Flop

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time High or Low, Jork to CP	Waveform 1	3.0 3.0			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low, Jork to CP	Waveform 1	1.0 1.0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tw }}$ (L)	Set or Reset pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, Set or Reset to clock	Waveform 3	2.0			2.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

DESCRIPTION

The 54F112 is a dual J-K negative edge-triggered flip-flop featuring individual J, K, Clock, Set and Reset inputs. The Set (S_{D}) and Reset (R_{D}) inputs, when Low, set or reset the outputs as shown in the Function Table regardless of the levels at the other inputs.

A High level on the Clock (CP) input enables the J and K inputs, and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CP is High and the flip-flop will perform according to Function Table as long as minimum setup and hold times are observed.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 112 / \mathrm{BEA}$
Ceramic Flat Pack	54 F 112 BFA
Ceramic LLCC	$54 \mathrm{~F} 112 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$J_{1}, J_{2}, K_{1}, K_{2}$	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock pulse inputs (active falling edge)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\overline{\mathrm{R}}_{\mathrm{D} 1}, \bar{R}_{\mathrm{D} 2}$	Reset input (active Low)	$1.0 / 5$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{~S}_{\mathrm{D} 1}, \mathrm{~S}_{\mathrm{D} 2}$	Set input (active Low)	$1.0 / 5$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{a}}_{1}, \mathrm{Q}_{2}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as; $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC pin assignments see Jedec Std. No. 2

Flip-Flop

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$5_{\text {D }}$	K_{D}	CP	J	K	Q	Q
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset (clear)	H.	L	X	X	X	L	H
Undetermined	L	L	X	X	X	H	H
Toggle	H	H	\downarrow	H	H	$\overline{\mathrm{q}}$	9
Load "0" (reset)	H	H	\downarrow	1	h	L	H
Load "1" (set)	H	H	\downarrow	h	1	H	L
Hold "no change"	H	H	\downarrow	1	1	9	$\overline{\mathrm{q}}$

NOTE:

Both outputs will be High while both S_{D} and R_{D} are Low, but the output states are unpredictable if S_{D} and R_{D} go High simultaneously.
$H=$ High voltage level steady state
h = High voltage level one setup time prior to the High-to-Low Clock transition
$\mathrm{L}=$ Low voltage level steady state
I = Low voltage level one setup time prior to the High-to-Low Clock transition
$q=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low transition.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS		UNIT	
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1.0	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55	.	+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}$	2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.50	V	
$\mathrm{V}_{\text {K }}$	Low-level output voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{K}}$		-0.73	-1.2	V	
$\mathrm{I}_{1 \mathrm{H}_{2}}$	Input current at maximum input voltage	J_{n}, K_{n}	$V_{c c}=$ Max, $V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
		$\mathrm{F}_{\mathrm{Dn}}, \mathrm{S}_{\mathrm{Dn}}$				100	$\mu \mathrm{A}$	
		CP_{n}				100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	J_{n}, K_{n}	$V_{c c}=M a x, V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
		$\mathrm{F}_{\mathrm{Dn}}, \mathrm{S}_{\mathrm{Dn}}$				20	$\mu \mathrm{A}$	
		CP_{n}				20	$\mu \mathrm{A}$	
ILIL	Low-level input current	$J_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.6	mA	
		$\mathrm{R}_{\mathrm{Dn}}, \mathrm{S}_{\mathrm{Dn}}$				-3.0	mA	
		CP_{n}				-2.4	mA	
los	Short-circuit output current ${ }^{3}$		$V_{\text {cc }}=$ Max	-60		-150	mA	
lce	Supply current ${ }^{4}$ (total)		$V_{\text {CC }}=\mathrm{Max}$		12	19	mA	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathbf{t}_{5}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low J_{n} or K_{n} to $C P_{n}$	Waveform 1	4.0 3.5			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low J_{n} or K_{n} to CP_{n}	Waveform 1	0.0 0.0			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathbf{w}}(H) \\ & t_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	CP_{n} pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{w}(L)$	RD_{n} or $S D_{n}$ pulse width	Waveform 2	4.5			5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time S_{Dn} or R_{D} to CP_{n}	Waveform 3 \& 4	4.0			5.0		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock frequency	Waveform 1	90	130		90^{5}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to $\mathrm{Qn}, \overline{\mathrm{O}} \mathrm{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay $S_{D n}$ or $R_{D n}$ to Q_{n}, Q_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open Icc is measured with the Q and \bar{Q} outputs High in turn.
5. Parameter guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

DESCRIPTION

The 54F113 is a dual J-K negative edge-triggered flip-flop featuring individual J, K, Set and Clock inputs. The asynchronous Set (S_{D}) input, when Low, forces the outputs to the steady state levels as shown in the Funcion Table regardless of the levels at the other inputs.

A High level on the Clock (CP) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CP is High and the flip-flop will perform according to Function Table as long as minimum setup and hold times are observed. Output state changes are initiated by the High-to-Low transition of CP.

54F113

Flip-Flop

Dual J-K Negative Edge-Triggered Flip-Flop Without Reset
 Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$.) HIGH/LOW	LOAD VALUE HIGH/LOW
$J_{1}, J_{2}, K_{1}, K_{2}$	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \overline{C P}_{2}$	Clock pulse inputs (active falling edge)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{~S}_{\mathrm{D} 1}, \mathrm{~S}_{\mathrm{D} 2}$	Direct set inputs (active Low)	$1.0 / 5$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\mathbf{S}_{\mathbf{D}}$	$\mathbf{C P}$	J	\mathbf{K}	\mathbf{Q}	\mathbf{Q}
Asynchronous Set	L	X	X	X	H	L
Toggle	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
Load "0" (Reset)	H	\downarrow	I	h	L	H
Load "1" (Set)	H	\downarrow	h	I	H	L
Hold "no change"	H	\downarrow	l	I	q	$\overline{\mathrm{q}}$

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the High-to-Low Clock transition.
$L=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the High-to-Low Clock transition.
$q=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low Clock transition.
$X=$ Don't Care.
$\downarrow=$ High-to-Low Clock transition.
Asynchronous input:
Low input to S_{D} set Q to High level
Set is independent of clock.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5.0	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-18	mA
${ }^{\mathrm{OH}}$	High-level output current			-1.0	mA
lol	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended opeatating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{HH}}=\mathrm{Min}$	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	J_{n}, K_{n}	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
		$S_{D_{n}}$				100	$\mu \mathrm{A}$	
		CP_{n}				100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current	J_{n}, K_{n}	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
		S_{Dn}				20	$\mu \mathrm{A}$	
		CP_{n}				20	$\mu \mathrm{A}$	
IIL	Low-level input current	J_{n}, K_{n}	$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$			-0.6	mA	
		S_{Dn}				-3.0	mA	
		CP_{n}				-2.4	mA	
los	Short-circuit output current ${ }^{3}$		$V_{\text {cC }}=$ Max	-60		-150	mA	
ICC	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		15	21	mA	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{5}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low J_{n} or K_{n} to ${C P_{n}}_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low J_{n} or K_{n} to CP_{n}	Waveform 1	0 0			0 0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathbf{W}}(\mathrm{H}) \\ & \mathrm{t}_{\boldsymbol{w}}(\mathrm{L}) \end{aligned}$	CP_{n} pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {w }}(L)$	SD_{n} pulse width	Waveform 2	4.5			5.0		ns
$t_{\text {rec }}$	Recovery time S_{Dn} to CP_{n}	Waveform 2	4.5			6.0		ns

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\dagger_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	85	100		80^{5}		MHz
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{H}} \end{aligned}$	Propagation delay CP to $\mathrm{Qn}_{\mathrm{n}}, \overline{\mathrm{Q}} \mathrm{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PH} H} \end{aligned}$	Propagation delay \bar{S}_{D} to $\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{n}}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open, Icc is measured with the Q and \bar{Q} outputs High in turn.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of puise generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

54F125

Buffer

Quad Buffer (3-State)

Product Specification

FEATURES

- High impedance NPN base Inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{C}	\mathbf{A}	\mathbf{Y}
L	L	L
L	H	H
H	X	(Z)

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care
$Z=$ High Impedance

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 125 / B C A$
Ceramic Flat Pack	$54 F 125 / B D A$
Ceramic LLCC	$54 F 125 / B 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$1 \mathrm{~A}-4 \mathrm{~A}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{T C-4 C}$	3-State output enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$1 \mathrm{Y}-4 \mathrm{Y}$	Data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $V_{C C}$	V
I_{O}	Current applied to output in Low output state	96	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC SYMBOL

Buffer

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS		UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{LL}}=$ Max,	$\mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4			V
			$V_{1 H}=\mathrm{Min}$	$\mathrm{IOH}^{\text {a }}$ Max	2.0			V		
VoL	Low-level output voltage		$\begin{gathered} V_{C C}=\operatorname{Min}, \\ V_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{gathered}$	$\mathrm{lOL}=48 \mathrm{~mA}$. 35	. 50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{iK}}$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage		$V_{C C}=0.0 \mathrm{~V}, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H} \mathbf{1}}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
I_{1}	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
lozı	Off-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{I H}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max		-100	-150	-225	mA		
lcc	Supply Current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\operatorname{Max}$	$\overline{\mathrm{nC}}=\mathrm{GND}, \mathrm{nA}=4.5 \mathrm{~V}$		17	24	mA		
		ICCL		$\overline{\mathrm{nC}}=\mathrm{nA}=\mathrm{GND}$		28	40	mA		
		Iccz		$\overline{\mathrm{nC}}=\mathrm{nA}=4.5 \mathrm{~V}$		25	35	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $n A$ to $n Y$	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {pZH }} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time to High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpHz}^{\mathrm{tpLZ}} \\ & \hline \end{aligned}$	Output disable time From High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.
4. I_{CC} is measured with outputs open.

Buffer

AC WAVEFORMS

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Military Logic Products

54F126

Buffer

Quad Buffer (3-State)

Objective Specification

FEATURES

- High Impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)

FUNCTION TABLE

INPUTS		OUTPUT
C	A	Y
H	L	L
H	H	H
L	X	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
Z = High Impedance

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 126 / B C A$
Ceramic Flat Pack	$54 F 126 / B D A$
Ceramic LLCC	$54 F 126 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$1 \mathrm{~A}-4 \mathrm{~A}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{C}-4 \mathrm{C}}$	3-State output enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$1 \mathrm{Y}-4 \mathrm{Y}$	Data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
I_{0}	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom		
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} V_{C C}=\operatorname{Min}, V_{I L}=\operatorname{Max}, \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{IOH}^{\text {a }}$ Max	2.0				V		
$V_{\text {OL }}$	Low-level output voltage		$\begin{gathered} V_{C C}=\operatorname{Min}_{1} \\ V_{I L}=\text { Max, } V_{I H}=\text { Min } \end{gathered}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$. 35	. 50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 1}$	High-level input current		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
If.	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
lozu	Off-state output current, Low-level voitage applied		$V_{C C}=$ Max, $V_{I H}=$ Min, $V_{O}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max		-100	-150	-225	mA		
Icc	Supply Current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{c c}=M a x$	$\mathrm{C}_{\mathrm{N}}=\mathrm{D}_{\mathrm{N}}=4.5 \mathrm{~V}$		20	30	mA		
		$\mathrm{l}_{\text {ccl }}$		$\mathrm{C}_{\mathrm{N}}=4.5 \mathrm{~V}, \mathrm{D}_{\mathrm{N}}=\mathrm{GND}$		32	48	mA		
		Iccz		$\mathrm{C}_{\mathrm{N}}=\mathrm{GND}, \mathrm{D}_{\mathrm{N}}=4.5 \mathrm{~V}$		26	39	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{tplH}_{\mathrm{PLH}} \end{aligned}$	Propagation delay $n A$ to $n Y$	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output disable time From High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	2.0 2.5	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.
4. I_{Cc} is measured with outputs open.

Buffer

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for 3-State Outputs and Open Collector Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ, tpZL All other	closed closed open

DEFINITIONS:

$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OuT}}$ of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

54F138
 Decoder/Demultiplexer

1-of-8 Decoder/Demultiplexer

Product Specification

FEATURES

- Demultiplexing capability
- Multiple Input enable for easy expansion
- Ideal for memory chlp select decoding
- High-speed replacement for Intel 3205

DESCRIPTION

The 54F138 decoder accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and when enabled, provides eight mutually exclusive, active Low outputs $\left(\bar{Q}_{0}-\bar{Q}_{7}\right)$. The device
features three Enable inputs; two active Low (E_{1}, E_{2}) and one active $\operatorname{High}\left(E_{3}\right)$. Every output will be High unless E_{1} and E_{2} are Low and E_{3} is High. This multiple enable function allows easy parallel expansion of the device to a 1 -of-32 (5 lines to 32 lines) decoder with just four 54F138's and

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 F138/BEA
16-Pin Ceramic FlatPack	54 F138/BFA
$20-$ Pin Ceramic LLCC	$54 \mathrm{~F} 138 / \mathrm{B} 2 \mathrm{~A}$

The device can be used as an eight output demultiplexer by using one of the active Low Enable inputs as the Data input and the remaining Enable inputs as strobes. Enable inputs not used must be permanently tied to their appropriate active High or active Low state.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$ L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{2}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$E_{1}-E_{2}$	Enable inputs (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{3}	Enable input (active High)	$1.0 / 1,0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Outputs (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTION TABLE

INPUTS						OUTPUTS							
E_{1}	E_{2}	E_{3}	A_{0}	A_{1}	A_{2}	$\overline{\mathrm{a}}_{0}$	$\overline{Q_{1}}$	$\overline{\mathrm{O}_{2}}$	\bar{Q}_{3}	$\overline{\mathrm{O}_{4}}$	\bar{Q}_{5}	$\overline{O_{6}}$	Q_{7}
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{H}=$ High voltage level
$L_{X}=$ Low voltage level
$\mathrm{X}=$ Don't care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
l_{OL}	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=$ Min	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=$ Min, $I_{I}=l_{1 K}$		-0.73	-1.2	V
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
I_{HI}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
ILIL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M a x, V_{O}=0.0 \mathrm{~V}$	-60	-90	-150	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max, $V_{1}=\geq 4.0 \mathrm{~V}$		13	20	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Address to output A_{n} to σ_{n}	Waveform 1 and 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation delay E_{1} or E_{2} to Q_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay E_{3} to \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.2 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. To measure I_{cc}, outputs must be open.

APPLICATION

Decoder/Demultiplexer

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- Demultiplexing capability
- Two independent 1-of-4 decoders
- Multifunction capability

DESCRIPTION

The 54F139 is a high-speed, dual 1-of-4 decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs $\left(A_{0}, A_{1}\right)$ and providing four mutually exclusive active Low outputs ($\bar{Q}_{0 n}-\bar{Q}_{3 n}$). Each decoder has an active Low Enable (E). When E is High, every output is forced High. The Enable can be used as the Data input for a 1-of-4 demultiplexer application.

54F139

Decoder/Demultiplexer

Dual 1-of-4 Decoder/Demultiplexer

Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{\text {na }}-A_{n b}$	Address inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}}$	Enable inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{Q}_{0 a}-\bar{Q}_{3 a}, \bar{Q}_{0 b}-\bar{Q}_{3 b}$	Outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu A$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{\text {OH }}$	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {LL }}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {K }}$		-0.73	-1.2	V
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage	$V_{C c}=$ Max, $V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
ILI	Low-level input current	$V_{C C}=M a x ; V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	-60	-90	-150	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max		13	20	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{0} to A_{1} to $Q_{n a}, Q_{n b}$	Waveform 1 and 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{pHHL}} \end{aligned}$	Propagation delay E_{n} to $Q_{n a} Q_{n b}$	Waveform 2	3.5 3.0	$\begin{aligned} & 5.4 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. To measure I_{cc}, outputs must be open, $\mathrm{V}_{\mathbb{I}}$ on all inputs $=4.5 \mathrm{~V}$.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

Product Specification

FEATURES

- Code conversions
- Multi-channel D/A converter
- Decimal-to-BCD converter
- Cascading for priority encoding of "N" bits
- Input enable capability
- Priority encoding -automatic selection of highest priority-input line
- Output enable - active Low when all inputs High
- Group signal output - active when any input is Low

DESCRIPTION

The 54F148 8-input priority encoder accepts data from eight active-Low inputs and provides a binary representation on the three active-Low outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line T_{7} having the highest priority.

AHigh on the Enable Input (EI) will force all outputs to the inactive (High) state and allow new data to settle without producing erroneous information at the outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54 F 148 / \mathrm{BEA}$
16-Pin Ceramic FlatPack	$54 \mathrm{~F} 148 / \mathrm{BFA}$
20-Pin Ceramic LLCC	54 F148/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F($ U.L. $)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Priority inputs (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
I_{0}	Priority input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
EI	Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} 1.2 \mathrm{~mA}$
EO	Enable output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
GS	Group select output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{I}_{0}-\overline{\mathrm{A}}_{2}$	Address outputs (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

A Group Signal (GS) output and an Enable Output (ED) are provided with the three data outputs. The GS is active-Low when any input is Low; this indicates when any input is active. The EO is active-Low when all inputs are High. Using the Enable Output along with the Enable Input allows priority encoding of N input signals. Both EO and GS are active-High when the Enable Input is High.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS									OUTPUTS				
El	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	GS	\bar{A}_{0}	\bar{A}_{1}	\bar{A}_{2}	EO
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	x	x	X	X	X	X	L	L	L	L	L	H
L	X	X	x	X	x	X	L	H	L	H	L	L	H
L	X	x	x	x	X	L	H	H	L	L	H	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	x	X	L	H	H	H	H	L	L	L	H	H
L	X	X	L	H	H	H	H	H	L	H	L	H	H
L	X	L	H	H	H	H	H	H	L	L	H	H	H
L	L	H	H	H	H	H	H	H	L	H	H	H	H

$H=$ High voltage level
L = Low voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voitage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

Encoder

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS			UNIT	
		Min	Nom		
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS				
			Min	Typ ${ }^{2}$	Max			
VOH	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\text {OL }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.50	V	
V_{IK}	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
I_{1+2}	Input current at maximum input voltage		$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$		5	100	$\mu \mathrm{A}$	
I_{1+1}	High-level input current		$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
ILI	Low-level input current	T_{0}, EI	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
		$\mathrm{T}_{1}-\mathrm{T}_{7}$			-0.8	-1.2	mA	
los	Short-circuit output current ${ }^{3}$		$V_{\text {cC }}=$ Max	-60	-80	-150	mA	
1 CC	Supply current (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		23	35	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} input to \bar{A}_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} input to EO	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay I_{n} input to GS	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay El input to \bar{A}_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay El input to GS	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpLH $t_{\text {PHL }}$	Propagation delay El input to EO	Waveform 2	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 13.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

APPLICATION

AC WAVEFORMS

Encoder

54F148

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- 16-Iline demultiplexing capability
- Mutually exclusive outputs
- 2-Input enable gate for strobing or expansion

DESCRIPTION

The 54F154 decoder accepts four active High binary address inputs and provides 16 mutually exclusive active Low outputs. The 2-input Enable ($E_{0}-E_{1}$) gate can be
used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or it can be used for expansion of the decoder. The Enable gate has two ANDed inputs which must be Low to enable the outputs.
The 54F154 can be used as a 1 -of-16 demultiplexer by using one of the Enable inputs as the multiplexed data input. When the other Enable is Low, the addressed output will follow the state of the applied data.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 154 / \mathrm{BLA}$
Ceramic Flat Pack	$54 \mathrm{~F} 154 / \mathrm{BKA}$
Ceramic LLCC	$54 F 154 / \mathrm{B} 3 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$ L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}_{0}, \mathrm{E}_{1}$	Enable Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{a}_{0}-\mathrm{Q}_{15}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						OUTPUTS															
E_{0}	E_{1}	A_{3}	A_{2}	A_{1}	A_{0}	$\overline{\mathbf{Q}_{0}}$	$\overline{\mathbf{Q}}_{\boldsymbol{i}}$	$\overline{\mathbf{a}}_{2}$	$\overline{\mathbf{Q}}_{3}$	$\overline{\mathbf{Q}}_{4}$	$\overline{\mathbf{Q}_{5}}$	$\overline{\mathbf{Q}}_{6}$	$\overline{\mathbf{Q}}_{7}$	$\overline{\mathbf{Q}}_{8}$	$\overline{\mathbf{Q}}_{9}$	$\overline{\mathbf{Q}}_{10}$	$\overline{\mathbf{Q}}_{11}$	$\overline{\mathbf{Q}}_{12}$	$\overline{\mathbf{O}}_{13}$	$\overline{\mathrm{a}}_{14}$	$\overline{\mathbf{O}}_{15}$
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	V
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	mA
I_{0}	Current applied to output in Low output state	V	
$T_{\text {STG }}$	Storage temperature range	-65 to +150	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{IOH}_{\text {a }}=$ Max	2.5			V
V_{OL}	Low-level output voltage ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$V_{C C}=$ Min, $I_{1}=I_{1 K}$		-0.73	-1.2	V
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILI	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.6	mA
los	Shor-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-60		-150	mA
I_{CC}	Supply current (total)	$V_{C C}=$ Max, Inputs = GND, Outputs open		26	40	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F, R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $A_{n} \text { to } \mathrm{Q}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay E_{n} to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	1.5 3.5	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable condition and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Due to test equipment limitations, actual test conditions for $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$. However, the specified test limits and conditions are guaranteed.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military FAST Products

DESCRIPTION

The 54F157A is a high-speed quad 2 -input multiplexer which selects 4 bits of data from two sources under the control of a common Select input (S). The Enable input (E) is active Low. When E is High all of the outputs (Y) are forced Low regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of the 54F157A. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator. The device is usefulfor implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.

54F157A, 54F158A
 Data Selectors/Multiplexers

54F157A Quad 2-Input Data Selector/Multiplexer (Non-Inverted)

 54F158A Quad 2-Input Data Selector/Multiplexer (Inverted)
Product Specification

The device is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. Logic equations for the outputs are shown below:

$$
\begin{aligned}
& Y_{a}=E \cdot\left(l_{1 a} \cdot S+I_{0 \mathrm{a}} \cdot S\right) \\
& Y_{b}=E \cdot\left(l_{1 b} \cdot S+I_{0 b} \cdot S\right) \\
& Y_{c}=E \cdot\left(l_{1 c} \cdot S+l_{0 c} \cdot S\right) \\
& Y_{d}=E \cdot\left(l_{1 d} \cdot S+I_{0 d} \cdot S\right)
\end{aligned}
$$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54 F 157 A / B E A$ $54 F 158 A B E A$
16-Pin Ceramic FlatPack	$54 F 157 A / B F A$, $54 F 158 A / B F A$
20-Pin Ceramic LLCC	$54 F 157 A / B 2 A$, $54 F 158 A / B 2 A$

The 54F158A is similar but has inverting outputs:

$$
\begin{aligned}
& P_{\mathrm{a}}=E \cdot\left(l_{1 \mathrm{a}} \cdot S+\mathrm{l}_{\mathrm{oa}} \cdot \mathrm{~S}\right) \\
& P_{b}=E \cdot\left(l_{1 b} \cdot S+l_{o b} \cdot S\right) \\
& P_{c}=E \cdot\left(I_{1 c} \cdot S+l_{o c} \cdot S\right) \\
& P_{d}=E \cdot\left(I_{1 d} \cdot S+l_{o d} \cdot S\right)
\end{aligned}
$$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
AII	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}, \mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

	54F158A

LOGIC DIAGRAM 54F157A

FUNCTION TABLE, 54F157A

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
E	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Y
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

[^0]LOGIC SYMBOL

LOGIC DIAGRAM, 54F158A

FUNCTION TABLE, 54F158A

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
E	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Y
H	X	X	X	H
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
H	X	H	L	

[^1]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
I_{0}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom		
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{LL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{l}_{\text {OL }}=$ Max		0.35	0.50	V	
$\mathrm{V}_{\text {iK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=I_{\mathbb{K}}$		-0.73	-1.2	V	
I_{1+2}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$		5	100	$\mu \mathrm{A}$	
I_{1+1}	High-level input current		$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
IIL	Low-level input current		$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max, $V_{0}=0.0 \mathrm{~V}$	-60	-80	-150	mA	
Icc	Supply current ${ }^{4}$ (total)	'F157A	$V_{\text {CC }}=\mathrm{Max}$		15.0	23.0	mA	
		'F158A			10.0	15.0	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{c \mathrm{c}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	'F157A		Waveform 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay Enable to output			Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output		Waveform 2	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{gathered} \mathbf{t}_{\mathrm{PLH}} \\ \mathbf{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay Data to output	'F158A	Waveform 3	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay Enable to output		Waveform 4	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output		Waveform 3	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military FAST Products

4-Bit Binary Counters

FEATURES

- Synchronous counting and loading
- Two Count Enable inputs for n-bit cascading
- Positive edge-triggered clock
- Asynchronous reset (54F161A)
- Synchronous reset (54F163A)
- High-speed synchronous expansion
- Typical count rate of 120 MHz

54F161A, 54F163A Counters

Product Specification

DESCRIPTION

Synchronous 4-bit (54F161A, 54F163A) counters feature an internal carry look-ahead and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the posi-tive-going edge of the clock. The Clock input is buffered.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 161 \mathrm{~A} / \mathrm{BEA}$ $54 F 163 A / B E A$
Ceramic Flat Pack	$54 F 161 \mathrm{~A} / \mathrm{BFA}$ $54 \mathrm{~F} 163 \mathrm{~A} / \mathrm{BFA}$
20-Pin Ceramic LLCC	$54 \mathrm{~F} 161 \mathrm{~A} / \mathrm{B} 2 \mathrm{~A}$ 54 F 163 A 2 B 2 A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
CEP	Count enable parallel input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count enable trickle input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Asynchronous master reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SR	Synchronous reset input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PE	Parallel enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
tC	Terminal count output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC SYMBOL

(54F163A

STATE DIAGRAM

The outputs of the counters may be preset to High or Low level. A Low level at the Parallel Enable (PE) input disables the counting action and
causes the data at the $D_{0}-D_{3}$ inputs to be loaded into the counter on the positive-going edge of the clock (providing that the setup and hold requirements forPE are met). Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.
A Low level at the Master Reset (MR) input sets all four outputs of the flip-flops ($Q_{0}-Q_{3}$) in 54F161A to Low levels, regardless of the levels at CP, PE, CET and CEP inputs (thus providing an asynchronous clear function).
For the 54 F 163 A , the clear function is synchronous. A Low level at the Reset (SR) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ to Low levels after the next positive-going transition on the Clock (CP) input (providing that the setup and hold requirements for MR are met). This action occurs regardless of the levels at PE, CET, and CEP inputs. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate (see Figure A).
The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be High to count. The

CET input is fed forward to enable the TC output. The TC output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of Q_{0}. This pulse can be used to enable the next cascaded stage (see Figure B).
For conventional operation of 54 F 161 A and 54F163A, the following transitions should be avoided:

1. High-to-Low transition on the CEP or CET input if Clock is Low.
2. Low-to-High transition on the Parallel Enable input when CP is Low, if the count enables and MR are High at or before the transition.

For 54F163A there is an additional transition to be avoided:
3. Low-to-high transition on the MR input when Clock is Low, if the Enable and PE inputs are High at or before the transition. The TC output is subject to decoding spikes due to internal race conditions. Therefore, it is not recommended for use as clock or asynchronous reset for flip-flops, registers, or counters.

Counters

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE, 54F161A

OPERATING MODE	INPUTS						OUTPUTS	
	MR	CP	CEP	CET	PE	D_{n}	Q_{n}	TC
Reset (clear)	L	X	X	X	X	X	L	L
Parallel load	H	\uparrow	X	X	1	1	L	L
	H	\uparrow	X	X	1	h	H	(1)
Count	H	\uparrow	h	h	h	X	count	(1)
Hold (do nothing)	H	X	1	X	h	x	q_{n}	(1)
	H	X	X	${ }^{(2)}$	h	X	q_{n}	L

MODE SELECT - FUNCTION TABLE, 54F163A

OPERATING MODE	INPUTS							
	SR	$\mathbf{C P}$	CEP	CET	PE	$\mathrm{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	TC
Reset (clear)	I	\uparrow	X	X	X	X	L	L
Parallel load	h	\uparrow	X	X	I	I	L	L
	h	\uparrow	X	X	I	h	H	(2)
Count	h	\uparrow	h	h	h	X	count	(2)
Hold (do nothing)	h	X	I	X	h	X	a_{n}	(2)
	h	X	X	I	h	X	q_{n}	L

$H=$ High voltage level steady state
$L=$ Low voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$x=$ Low voltage level one setup time prior to Low-to-High clock transition
$X=$ Don't care
$q=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$\uparrow=$ Low-to-High clock transition
NOTES:
(1) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 54F161A)
(2) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 54F163A)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
${ }^{\mathrm{OH}}$	High-level output current			-1.0	mA
lol	Low-level output current			20.0	ma
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS		UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{V L}=M a x, \\ & I_{O H}=M a x, V_{I H}=M i n \end{aligned}$	2.5			V
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{V L}=\operatorname{Max}, \\ & \mathrm{IOL}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V
I_{1+2}	Input current at maximum input voltage		$V_{\text {CC }}=$ Max, $V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H 1}}$	High-level input current	CET, SR, PE	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
		Other inputs				20	$\mu \mathrm{A}$
ILL	Low-level input current	CET, SR, PE	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-1.2	mA
		Other inputs				-0.6	mA
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max	-60		-150	mA
ICC	Supply current ${ }^{4}$	ICCH	$V_{C C}=$ Max			55	mA
						55	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	120		75^{5}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{n}	Waveform 1 $\text { PE }=\text { High }$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpLH $t_{\text {PHL }}$	Propagation delay CP to Q_{n}	Waveform 1 $P E=L O W$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CET to TC	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay $M R \text { to } Q_{n}(54 F 161 A)$	Waveform 3	5.5	9.0	12.0	5.5	14.0	ns
$t_{\text {PHL }}$	Propagation delay MR to TC (54F161A)	Waveform 3	4.5		11.5	4.5	14.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 5	2.0 2.0			2.5 2.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low PE or SR to CP	Waveform 5 or 6	11.0 8.5			$\begin{array}{r} 13.5 \\ 10.5 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low PE or SR to CP	Waveform 5 or 6	2.0 0			2.0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CEP or CET to CP	Waveform 4	$\begin{gathered} 11.0 \\ 5.0 \end{gathered}$			$\begin{gathered} 13.0 \\ 6.5 \end{gathered}$		ns ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CEP or CET to CP	Waveform 4	2.0 0			2.0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	Clock pulse width (load), High or Low	Waveform 1	6.5 3.5			9.0 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Clock pulse width (count), High or Low	Waveform 1	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$			9.0 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {w }}(\mathrm{L})$	MR pulse width Low (54F161A)	Waveform 3	5.0			9.5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP (54F161A)	- Waveform 3	6.0			6.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. $\mathrm{I}_{\mathrm{CCH}}$ is measured with PE input High, again with PE input Low, all other inputs High and outputs open. I I_{CL} is measured with Clock input High, again with Clock input Low all other inputs Low, and outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Maximum Clock Frequency, and Clock Pulse Width

Waveform 2. Propagation Delays CET Input to TC Output Waveform 2. Propagation Delays CET Input to TC Output
(

Waveform 3. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time (54F161A)

Waveform 5. Parallel Data and Parallel Enable Setup and Hold Times

Waveform 6. Synchronous Reset Setup, Pulse Width and Hold Times (54F163A)

APPLICATION DIAGRAM

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- Gated serial data inputs
- Typical shift frequency of 90 MHz
- Asynchronous master reset
- Fully buffered Clock and Data inputs
- Fully synchronous data transfers

DESCRIPTION

The54F164 is an 8-bit edge-triggered shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (Dsa • Dsb); either input can be used as an

54F164 Shift Register

8-Bit Serial-In Parallel-Out Shift Register

Product Specification
active High enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied High.
Data shifts one place to the right on each Low-to-High transition of the Clock (CP) input, and enters into Q_{0} the logical AND of the two data inputs (Dsa - Dsb) that existed one set-up time before the rising clock edge. A Low level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs Low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 164 / \mathrm{BCA}$
Ceramic Flat Pack	54 F164/BDA
Ceramic LLCC	$54 \mathrm{~F} 164 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{\text {sa }}, \mathrm{D}_{\text {sb }}$	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master reset input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$Q_{0}-Q_{7}$	Outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

\square

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

LOGIC DIAGRAM

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS			
	MR	CP	$\mathrm{D}_{\text {sa }}$	$\mathrm{D}_{\text {sb }}$	Q_{0}	a_{1}	-	Q_{7}
Reset	L	X	X	X	L	L	-	L
Shift	H	\uparrow	1	1	L	90	-	96
	H	\uparrow	1	h	L	q_{0}	-	9_{6}
	H	\uparrow	h	1	L	90	-	96
	H	\uparrow	h	h	H	90	-	96

$\mathrm{H}=$ High voltage level
$\mathrm{h}=$ High voltage level one set-up time prior to the Low-to-High Clock transition
$\mathrm{L}=$ Low voltage level
1 = Low voltage level one set-up time prior to the Low-to-High Clock transition
$q=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the Low-to-High Clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High Clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$		-0.73	-1.2	V
$\mathrm{I}_{1+\mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$		5	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}_{1}}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
I/L	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-60	-80	-150	mA
Icc	Supply current (total)	$\mathrm{V}_{\text {CC }}=$ Max		33	50	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum shitt frequency	Waveform 1	80	90		80^{5}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 2	5.5	10.5	13	5.5	14	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Set-up time High or Low A or B to $C P$	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A or B to CP		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{w}(L)$	MR pulse width Low	Waveform 2	7.0			7.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CP	Waveform 2	7.0			9.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type per the functional table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{Os}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{cc} with the serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V applied to Master Reset, and all outputs open.
5. Parameter guaranteed, but not tested.

APPLICATION DIAGRAM

note:
The 54F164 can be cascaded to form synchronous shift registers of longer length.
Here, two devices are combined to form a 16 -bit shift regisier.

AC WAVEFORMS

Waveform 3. Data Setup and Hold Times

TEST CIRCUIT AND WAVEFORMS

Signetics

Military Logic Products

FEATURES

- Synchronous counting and loading
- Up/Down counting
- Modulo 16 binary counter
- Two Count Enable inputs for n-bit cascading
- Positive edge-triggered clock
- Built-in lookahead carry capability
- Presettable for programmable operation

DESCRIPTION

The 54F169 is a synchronous, presettable Modulo 16 up/down counter featuring an internal carry look-ahead for applications in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the Count Enable inputs and internal gating. This mode of operation eliminates the output spikes which are normally associated with asynchronous (ripple clock) counters. A buffered Clock input triggers the flip-flops on the Low-to-High transition of the clock.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 169 / B E A$
Ceramic Flat Pack	$54 F 169 / \mathrm{BFA}$
Ceramic LLCC	$54 F 169 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . \mathrm{L})$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{C E P}$	Count enable parallel input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count enable trickle input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PE	Parallel enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
U / D	Up/down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$T \mathrm{~T}$	Terminal count output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

The counter is fully programmable; that is, the outputs may be preset to either level.
Presetting is synchronous with the clock and takes place regardless of the levels of the Count Enable inputs. A Low level on the Parallel Enable (PE) input disables the counter and causes the data at the D_{n} input to be loaded into the counter on the next Low-to-High transition of the clock.
The direction of counting is controlled by the Up/ Down (U/D) inpur; a High will cause the count to increase, a Low will cause the count to decrease.

The carry lookahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two Count Enable inputs (CET.CEP) and a Terminal Count (TC) output. Both Count Enable inputs must be Low to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a Low output pulse with a duration approximately equal to the Highlevel portion of the Q_{0} output. This Low level TC pulse is used to enable successive cascaded stages.

See Figure 1 for the fast synchronous multistage counting connections.

FUNCTIONAL DESCRIPTION

The 54F169 uses edge-triggered J-K-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the Clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When PE is Low, the data on the $D_{0}-D_{3}$ inputs enter the flip-flops on the next rising edge of the Clock. In order for counting to occur, both CEP and CET must be Low and PE must be High; the U/D input then determines the direction of counting. The Terminal Count (TC) output is normally High and goes Low, provided that CET is Low, when a counter reaches zero in the Count Down mode or reaches 15 in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. Since the TC signalis derived by decoding the flip-flop states, there exists the possibility of decoding spikes

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	CP	U/D	CEP	CET	PE	D_{n}	O_{n}	TC
Parallel load	\uparrow	X	X	X	1	1	L	(1)
	\uparrow	X	X	X	1	h	H	(1)
Count Up	\uparrow	h	1	1	h	X	Count Up	(1)
Count Down	\uparrow	1	1	1	h	X	Count Down	(1)
Hold (do nothing)	\uparrow	X	h	X	h	x	q_{n}	(1)
	\uparrow	X	X	h	h	X	q_{n}	H

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level steady state
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$\uparrow=$ Low-to-High clock transition
NOTE:

1. The TC is Low when CET is Low and the counter is at Terminal Count. Terminal Count Up is (HHHH) and Terminal Count Down is (LLLL).
on TC. For this reason the use of TC as a clock signal is notrecommended (see logicequations below).
1) Count Enable $=$ CEP.CET•PE
2) $\mathrm{Up}: T C=Q_{0} \cdot Q_{3} \cdot(U / D) \cdot C E T$
3) Down:TC $=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot(U / D) \cdot C E T$

MODE SELECT TABLE

PE	CEP	CET	U/D	ACTION ON RISING CLOCK EDGE
L	X	X	X	Load($D_{n} \rightarrow Q_{n}$) Count Up (Increment) H
L	L	L	L	Count Down (Decrement) No Change (Hold) Ho Change (Hold)
H	X	X	H	X

$H=$ High Voltage
L = Low Voltage Level
$X=$ Don't care

STATE DIAGRAM

LOGIC DIAGRAM

$V_{C C}=P$ in 16
GND - Pin 8
() Pin Numbers

Counters

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \end{aligned}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{LK}}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathrm{H} 1}$	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{I}_{1 \mathrm{H} 2}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
I_{1}	Low-level intput current	CET input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-1.2	mA	
		Other inputs				-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\operatorname{Max}$	-60		-150	mA	
I_{CC}	Supply current ${ }^{4}$ (total)		$V_{C C}=\operatorname{Max}$		35	52	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	90	115		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n} (PE, High or Low)	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation delay CET to TC	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay U/D to TC	Waveform 3	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F, R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(L) \end{aligned}$	Set-up time, High or Low CEP or CET to CP	Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.5 5.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CEP or CET to CP	Waveform 5	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up time, High or Low PE to CP	Waveform 4	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low PE to CP	Waveform 4	0 0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 11.0 \\ & 7.0 \end{aligned}$			$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{n}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low U/D to CP	Waveform 6	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low	Waveform 1	5.0 5.0			5.5 5.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C \mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured after applying a momentary $\geq 4.0 \mathrm{~V}$, then ground to the clock input with all other inputs grounded and outputs open.

WAVEFORM (Typical Load, Count, and Inhibit Sequences)
illustrated below is the following sequence for the 54F168. The operation of the 54 F 169 is similar.

1. Load (preset) to BCD seven
2. Count up to eight, nine (maximum), zero, one, and two
3. Inhibit
4. Count down to one, zero (minimum), nine, eight, and seven

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Flip-Flop

Military Logic Products

Quad D-Type Flip-Flop (3-State)
Product Specification

DESCRIPTION

The 54F173 is a high-speed 4-bit parallel load register with clock enable control, 3-State buffered outputs and Master Reset (MR). When the two clock Enable (E_{0} and E_{1}) inputs are Low, the data on the D inputs is loaded into the register simultaneously with Low-to-High Clock (CP) transition. When one or both E inputs are High one setup time before the Low-to-High clock transition, the register retains the previous data. Clock (CP) is a fully triggered input.
The Master Reset (MR) is an active High asynchronous input. When the MR is High, all four flip-flops are reset (outputs

Low) independently of any other input condition. The 3-State output buffers are controlled by a 2 -input NOR gate. When both Output Enable ($O E_{0}$ and $O E_{1}$) inputs are Low, the data in the register is presented at the Qoutputs. When one or both OE inputs are High, the outputs are forced to a High impedance "off" state. The 3-State output buffers are completely independent of the register operation; the $\overline{O E}$ transition does not affect the clock and reset operations.

FEATURES

- Edge-triggered D-type register
- Gated clock enable for held "do nothing" mode
- 3-State output buffers
- Gated output enable control
- Speed upgrade of N8T10 and current sink upgrade
- Controlled output edges to minimize ground bounce
- 48 mA sinking capability

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54 F 173 / B E A$
16-Pin Ceramic FlatPack	$54 F 173 / \mathrm{BFA}$
20-Pin Ceramic LLCC	$54 \mathrm{~F} 173 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{0}, E_{1}	Clock Enable input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE, EE_{1}	Output Enable input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

For LLCC Pin Assignments see JEDEC Standard No. 2

LOGIC SYMBOL

For LLCC Pin Assignments see JEDEC Standard No. 2

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS
	MR	CP	E_{0}	E_{f}	D_{R}	Q $_{\mathrm{R}}$ (Register)
Reset (clear)	H	X	X	X	X	L
Parallel load	L	\uparrow	I	I	I	L
	L	\uparrow	I	I	h	H
Hold (do nothing)	L	X	h	X	X	X
	L	X	X	h	X	a_{n}

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	Q_{R} (Register)	$\overline{\mathrm{O}} \mathrm{E}_{0}$	OE_{1}	\mathbf{Q}_{R}
Read	L	L	L	L
	H	L	L	H
Disabled	X	H	X	(Z)
	X	X	H	(Z)

$\mathrm{H}=$ High voltage level
$h=H i g h$ voltage level one setup time prior to the Low-to-High clock transition
L = Low voltage level
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$q_{n}=$ Lower case letters indicate the state of the referenced input (or output) on setup time prior to the Low-to-High clock transition
$X=$ Don't care
$(Z)=$ High impedance "off" state
$\uparrow=$ Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	96	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-15	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=\operatorname{Min}, \\ & V_{I L}=M a x, \\ & V_{I H}=M i n \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.0			V
			$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5				V		
			$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4		3.3		V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{l}_{\mathrm{LL}}=\mathrm{Max}$			0.38	0.55	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$V_{C C}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
l OZH	Off-state output current, High-level voltage applied		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				50	μA		
lozl	Off-state output current, Low-level voltage applied		$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{c c}=\operatorname{Max}$			19	26	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				27	37	mA		
		ICCz				23	32	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F, R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	105	125		80^{4}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 11.5 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 2	6.5	8.5	11.5	6.0	12.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpHz } \\ & t_{\text {tPLZ }} \end{aligned}$	Output Disable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {TLH }} \\ & \mathbf{t}_{\text {THL }} \\ & \hline \end{aligned}$	Output Transition Time 10% to $90 \%, 90 \%$ to 10%	Waveform 4 Waveform 5	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 7.5 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 10.0^{4} \\ & 8.0^{4} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0^{4} \\ 8.5^{4} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to CP	Waveform 3	2.5 2.5			3.0 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{h_{1}}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $D_{n} \text { to } C P$	Waveform 3	0			2.0 0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time E_{n} to CP	Waveform 3	4.5 7.5			$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{n}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time E_{n} to CP	Waveform 3	0			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR pulse width High	Waveform 2	3.5			3.5		ns
$\mathrm{t}_{\text {rec }}{ }^{\text {c }}$	Recovery time MR to CP	Waveform 2	4.5			5.5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable conditions and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.
4. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock and Enable Inputs to Outputs, Clock and Enable Widths and Maximum Clock Frequency

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 3. Data and Select Setup and Hold Times

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

$$
V_{M}=1.5 \mathrm{~V}
$$

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- Six edge-triggered D-type flip-flops
- Buffered common Clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The 54F174 has six edge-triggered flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

Flip-Flop

Hex D Flip-Flops

Product Specification

The register is fully edge-triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independent of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where true outputs only are required, and the Clock and Master Reset are common to all storage elements.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 174 / \mathrm{BEA}$
Ceramic Flat Pack	$54 \mathrm{~F} 174 / \mathrm{BFA}$
Ceramic LLCC	$54 \mathrm{~F} 174 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$. $)$ $H / G H / L O W ~$	LOAD VALUE HIGH/LOW
$D_{0}-D_{5}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock pulse inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input (active Low)	$1.0 / 5$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$Q_{0}-Q_{5}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Flip-Flop

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	MR	CP	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L
Load" 1 "	H	\uparrow	h	H
Load " 0 "	H	\uparrow	I	L

$H=H i g h$ voltage level steady state.
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition.
$L=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the Low-to-High Clock transition.
$X=$ Don't Care.
$\uparrow=$ Low-to-High Clock transition.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{0}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
V_{LL}	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-18	mA
1 OH	High-level output current			-1.0	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOL}=$ Max		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
$1 / 1$	Low-level input current	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M a x$	-60	-80	-150	mA .
Icc	Supply current (total)	$\mathrm{V}_{C C}=$ Max, $\mathrm{D}_{\mathrm{n}}=\mathrm{MR}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$		35	45	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock frequency	Waveform 1	80	100		80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{HL}} \end{aligned}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tPHL	Propagation delay MR to Q_{n}	Waveform 3	5.0	8.5	14.0	4.5	15.5	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ } \mathrm { C }} \\ \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{h}(H) \\ & \mathrm{t}_{\mathrm{h}}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(L)$	MR pulse width Low	Waveform 3	5.0			5.0		ns
$\mathrm{t}_{\text {fec }}$	Recovery time MR to $C P$	Waveform 3	5.0			6.0		ns

Flip-Flop

AC WAVEFORMS

Waveform 3. Master Reset Pulse Width,
Master Reset to Output Delay and Master Reset to Clock Recovery Time

NOTE: For all waveforms $V_{M}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- Four edge-triggered D flip-flops

- Buffered common Clock

- Buffered, asynchronous Master Reset

- True and complementary output

DESCRIPTION

The 54F175 is a quad, edge-triggered D-type flip-flop with individual D inputs and both Q and \bar{Q} outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flipflops simultaneously.

54F175

Flip-Flop

Quad D Flip-Flop

Product Specification

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

All Q outputs will be forced LOW independently of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where both true and complement outputs are required, and the Clock and Master Reset are common to all storage elements.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 175 / \mathrm{BEA}$
Ceramic Flat Pack	$54 \mathrm{~F} 175 / \mathrm{BFA}$
Ceramic LLCC	$54 F 175 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$C P$	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	True outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\bar{Q}_{0}-\bar{Q}_{3}$	Complementary outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	MR	CP	D_{n}	\mathbf{Q}_{n}	$\overline{\mathrm{Q}}_{\mathrm{n}}$
Reset (clear)	L	X	X	L	H
Load " 1 "	H	\uparrow	h	H	L
Load " 0 "	H	\uparrow	I	L	H

$H=H i g h ~ v o l t a g e ~ l e v e l ~ s t e a d y ~ s t a t e . ~ . ~$
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition.
$L=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the Low-to-High Clock transition.
$X=$ Don't Care.
$\uparrow=$ Low-to-High Clock transition.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,4}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOH}_{\text {O }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOL}_{\text {O }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{iK}}$		-0.73	-1.2	V
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HH} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
112	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-60		-150	mA
ICC	Supply current (total)	$V_{C C}=$ Max, $D_{n}=M R \geq 4.0 \mathrm{~V}, \mathrm{CP}=\uparrow$		25	34	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	100	140		80^{5}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P$ to Q_{n} or \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 3	4.5	9.0	11.5	4.5	15	ns
$\mathrm{t}_{\text {PLH }}$	Propagation delay MR to Q_{n}	Waveform 3	4.0	6.5	8.0	4.0	10	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. When testing devices to the functional table specified refer to the "Recommended Operating Conditions Section" of Application Note 202, "Testing and Specifying FAST Logic".
5. These parameters are guaranteed, but not tested.

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {w }}(L)$	MR pulse width Low	Waveform 3	5.0			5.0		ns
$t_{\text {rec }}$	Recovery time MR to CP	Waveform 3	5.0 .			5.0		ns

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 3. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

TEST CIRCUIT AND WAVEFORM

Military Logic Products

4-Bit Arithmetic Logic Unit

Product Specification

FEATURES

- Provides 16 arithmetic operations: ADD, SUBTRACT, COMPARE, DOUBLE, plus 12 other arithmetic operations
- Provides all 16 logic operations of two variables: Exclusive-OR, Compare, AND, NAND, NOR, OR, plus 10 other logic operations
- Full lookahead carry for high-speed arithmetic operation on long words
- 40\% faster than 54 S 181 with only 30% 54S181 power consumption

DESCRIPTION

The 54F181 is a 4-bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active High or active Low operands. The Function Table lists these operations.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP (300 mil)	54 F181/BLA
24-Pin Ceramic DIP (600mil)	$54 \mathrm{~F} 181 / \mathrm{BJA}$
24-Pin Ceramic FlatPack	$54 \mathrm{~F} 181 / \mathrm{BSA}$
24-Pin Ceramic LLCC	$54 \mathrm{~F} 181 / \mathrm{B} 3 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
M	Mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}$	Operand inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Function select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{n}	Carry input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{n+4}	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}=\mathrm{B}$	Compare output	${ }^{\circ} \mathrm{OC} / 33$	${ }^{\circ} \mathrm{OC} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
G	Carry generate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~m} / \mathrm{A}$
F	Carry propagate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
*OC = Open collector

PIN CONFIGURATION

LOGIC SYMBOL

Arithmetic Logic Unit

When the Mode Control input (M) is High, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is Low, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the C_{n+4} output, or for carry lookahead between packages using the signals P (Carry Propagate) and \bar{G} (Carry Generate). P and G are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output ($\mathrm{C}_{\mathrm{n}+4}$) signal to the Carry input $\left(\mathrm{C}_{n}\right)$ of the next unit. For high-speed
operation the device is used in conjunction with the 54F182 carry lookahead circuit. One carry lookahead package is required for each group of four 54F181 devices. Carry lookahead can be provided at various levels and offers high-speed capability over extremely long word lengths.
The $\mathrm{A}=\mathrm{B}$ output from the device goes High when all four F outputs are High and can be used to indicate logic equivalence over 4 bits when the unit is in the subtractmode. The $A=B$ output is open collector and can be wired - AND with other $A=B$ outputs to give a comparison for more than 4 bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.

The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1 s complement), a carry out means borrow; thus, a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, this device can be used with either active Low inputs producing active Low outputs or with active High inputs producing active High outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

MODE SELECT — FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE HIGH INPUTS \& OUTPUTS	
S_{3}	S_{2}	S_{1}	S_{0}	Logic $(M=H)$	Arithmetic** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	A	A
L	L	L	H	$\overline{A+B}$	A + B
L	L	H	L	АВ	$A+B$
L	L	H	H	Logical 0	minus 1
L	H	L	L	$\overline{A B}$	A plus $A B$
L	H	L	H	B	$(A+B)$ plus $A B$
L	H	H	L	$A \oplus B$	A minus B minus 1
L	H	H	H	$A B$	$A B$ minus 1
H	L	L	L	$\bar{A}+B$	A plus $A B$
H	L	L	H	$\overline{A \oplus B}$	A plus B
H	L	H	L	B	$(A+B)$ plus $A B$
H	L	H	H	$A B$	AB minus 1
H	H	L	L	Logical 1	A plus A^{*}
H	H	L	H	$A+B$	$(A+B)$ plus A
H	H	H	L	$A+B$	($A+B$) plus A
H	H	H	H	A	A minus 1

[^2]
MODE SELECT — FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUTS	
S_{3}	$\mathbf{S}_{\mathbf{2}}$	S_{1}	S_{0}	Logic ($\mathrm{M}=\mathrm{H}$)	Arithmetic ** $(M=L)\left(C_{n}=H\right)$
L	L	L	L	$\overline{\text { A }}$	A minus 1
L	L	L	H	$\overline{\text { AB }}$	$A B$ minus 1
L	L	H	L	$\bar{A}+B$	$A B$ minus 1
L	L	H	H	Logical 1	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($\mathrm{A}+\mathrm{B}$)
L	H	L	H	B	$A B$ plus ($A+B$)
L	H	H	L	$\bar{A} \oplus B$	A minus B minus 1
L	H	H	H	A + B	A $+\bar{B}$
H	L	L	L	$\overline{\text { AB }}$	A plus ($A+B$)
H	L	L	H	$A \oplus B$	A plus B
H	L	H	L	B	$A B$ plus ($A+B$)
H	L	H	H	A + B	$A+B$
H	H	L	L	Logical 0	A plus A^{*}
H	H	L	H	AB	$A B$ plus A
${ }_{H}$	H	H	L	AB	$A B$ plus A
H	H	H	H	A	A

$L=$ Low voltage level
$H=$ High voltage level

* Each bit is shifted to the next more significant position.
** Arithmetic operations expressed in 2 s complement notation.

LOGIC DIAGRAM

[^3]Pin 14 is O.C.

SUM MODE TEST TABLEI
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

SYMEOL	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	B_{1}	None	Remaining \bar{A} and B	C_{N}	F_{1}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	B_{1}	\bar{A}_{1}	None	$\frac{\text { Remaining }}{\bar{A} \text { and }} \bar{B}$ A and B	C_{n}	F_{1}
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{A}_{1}	B_{1}	None	None	Remaining \bar{A} and B, C_{n}	P
$t_{\text {PLH }}$ $t_{\text {PHL }}$	B_{1}	\bar{A}_{1}	None	None	Remaining \bar{A} and B, C_{n}	P
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	None	\bar{B}_{1}	$\begin{gathered} \text { Remaining } \\ B \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	G
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	B_{1}	None	\bar{A}_{1}	$\underset{B}{\text { Remaining }}$	$\begin{gathered} \text { Remaining } \bar{A}, \\ C_{n} \end{gathered}$	G
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	χ_{1}	None	B_{1}	$\underset{B}{\text { Remaining }}$	$\begin{gathered} \text { Remaining } \\ \bar{A}, C_{n} \end{gathered}$	C_{n+4}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	B_{1}	None	\bar{A}_{1}	$\begin{gathered} \text { Remaining } \\ B \end{gathered}$	$\begin{gathered} \text { Remaining } \\ \bar{A}, C_{n} \end{gathered}$	C_{n+4}
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	$\mathrm{C}_{\text {n }}$	None	None	$\frac{A l l}{\bar{A}}$	$\frac{\mathrm{All}}{\mathrm{~B}}$	Any F or $\mathrm{C}_{\mathrm{n}+4}$

SUM MODE TEST TABLE II

SYMBOL	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	\bar{A}_{1}	None	B_{1}	$\underset{\bar{A}}{\text { Remaining }}$	Remaining B, C_{n}	F_{1}
$\begin{gathered} \mathrm{t}_{\mathrm{PLLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \\ \hline \end{gathered}$	B_{1}	\bar{A}_{1}	None	$\underset{A}{\text { Remaining }}$	Remaining \bar{B}, C_{n}	F_{1}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	\bar{A}_{1}	None	B_{1}	None	Remaining \bar{A} and $\bar{B}, \mathrm{C}_{\mathrm{n}}$	P
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	B_{1}	π_{1}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	P
$t_{P L H}$ $t_{\text {PHL }}$	\bar{A}_{1}	B_{1}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	G
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	B_{1}	None	\bar{I}_{1}	None	Remaining \bar{A} and \bar{B}, C_{n}	G
$t_{P L H}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{1}	$\underset{\bar{A}}{\text { Remaining }}$	Remaining \bar{B}, C_{n}	$A=B$
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	B_{1}	$\bar{\chi}_{1}$	None	$\underset{\bar{A}}{\text { Remaining }}$	Remaining $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	$A=B$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	C_{n+4}
$t_{P L H}$ t_{PHL}	B_{1}	None	\bar{A}_{1}	None	Remaining $\overline{\mathrm{A}}$ and $\bar{B}_{1}, \mathrm{C}_{\mathrm{n}}$	C_{n+4}
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	C_{n}	None	None	All A and B	None	Any F or $\mathrm{C}_{\mathrm{n}+4}$

SUM MODE TEST TABLE III

SYMBOL	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	FUNCTION INPUTS
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	B_{1}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	F_{1}	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	E_{1}	\bar{A}_{1}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	F_{1}	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 V \end{gathered}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.50	5.0	5.50	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
V_{OH}	High-level output current	$A=B$			4.5	V
IOH	High-level output current	Any output except $\mathrm{A}=\mathrm{B}$			-1	mA
laL	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage	Any output except $A=B$					$\begin{aligned} & c=\mathrm{Mir} \\ & \mathrm{H}=\mathrm{Min} \end{aligned}$	$=\text { Max }$ $=\operatorname{Max}$	2.5			V
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ & V_{\mathrm{IH}}=\operatorname{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \end{aligned}$				0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V			
$\mathrm{I}_{\mathrm{H} 1}$	Input current at maximum input voltage		$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{1+2}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				1	20	$\mu \mathrm{A}$			
ILL	Low-level intput current		$\begin{aligned} V_{c C} & =M a x, \\ V_{1} & =0.5 \mathrm{~V} \end{aligned}$		Mode input			-0.6	mA			
			A or B inputs			-1.8	mA					
			S inputs			-2.4	mA					
			Carry input			-3.0	mA					
IOH	High-level output current	$\mathrm{A}=\mathrm{B}$ only			$\begin{aligned} & V_{C C}=M a x, V_{I H}=M i n, \\ & V_{\text {IL }}=M a x, V_{O H}=4.5 \mathrm{~V} \end{aligned}$					250	$\mu \mathrm{A}$	
los	Short-circuit output current ${ }^{3}$	Any output except A = B			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-60	-80	-150	mA	
Icc	Supply current ${ }^{4}$ (total)	ICCH			$V_{c c}=\operatorname{Max}$	$\begin{aligned} & S_{0}-S_{3}=M=A_{0}-A_{3} \geq 4.0 \mathrm{~V} \\ & B_{0}-B_{3}=C_{n}=G N D \end{aligned}$			43	65	mA	
		Iccl	$\begin{aligned} & S_{0} \cdot S_{3}=M=\geq 4.0 \mathrm{~V} \\ & B_{0} \cdot \bar{B}_{3}=C_{n}=\bar{A}_{0} \cdot \bar{A}_{3}=G N D \end{aligned}$				43	65	mA			

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure Icc with all outputs open.

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS				LIMITS					UNIT
		Mode	Table	Waveform	Conditions	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
						Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay C_{n} to C_{n+4}	Sum	$\begin{aligned} & \hline \text { II } \\ & \text { II } \end{aligned}$	2	$\mathrm{M}=0 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $A_{n} \text { or } B_{n} \text { to } C_{n+4}$	Sum	1	1	$\begin{gathered} M=S_{1}=S_{2}=O V, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.4 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to C_{n+4}	Diff	11	4	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C_{n} to F_{n}	Diff Sum	॥	2	$\mathrm{M}=0 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{G}	Sum	1	2	$\begin{gathered} \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} \\ \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathbf{t}_{\mathrm{PLLH}} \\ \mathbf{t}_{\mathrm{PHLL}} \\ \hline \end{gathered}$	Propagation delay \bar{A}_{n} or B_{n} to G	Diff	11	3	$\begin{gathered} \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=\mathrm{OV}, \\ \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to P	Sum	1	2	$\begin{gathered} \mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \\ \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to P	Diff	11	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} to F_{i}	Sum	1	2	$\begin{gathered} M=S_{1}=S_{2}=O V, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.2 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} to F_{i}	Diff	II	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V} \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to F_{n}	Sum		1.2		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to F_{n}	Diff		1,2		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 9.4 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PL} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} to F_{i}	Logic	III	3	$\mathrm{M}=4.5 \mathrm{~V}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to $A=B$	Diff	II	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V} \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 18.5 \\ 9.8 \end{gathered}$	$\begin{aligned} & 27.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORM

Signetics

Military FAST Products

FEATURES

- Synchronous, reversible counting
- BCD/decade - 54F190

4-bit binary - 54F191

- Asynchronous parallel load capability
- Count enable control for synchronous expansion
- Single up/down control Input

DESCRIPTION

The 54F190 is an asynchronous presettable up/down BCD decade counter. It

54F190, 54F191

Counters

54F190 Asynchronous Presettable BCD/Decade Up/Down Counter 54F191 Asynchronous Presettable 4-Bit Binary Up/Down Counter
 Product Specification

contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. The 54F191 is similar, but is a 4-bit binary counter.
Asynchronous parallel load capability permits the counter to be preset to any desired number. Information present on the

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 190 / B E A$ $54 F 191 / B E A$
Ceramic Flat Pack	$54 F 190 / \mathrm{BFA}$
54F191/BFA	
Ceramic LLCC	$54 F 190 / \mathrm{B} 2 \mathrm{~A}$ $\mathrm{54F191/B2A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$.) HIGH/LOW	LOAAD VALUE HIGH/LOW
CE	Count enable input (active low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} 1.8 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PL	Asynchronous parallel load input (active low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~J} / \mathrm{D}$	Up/down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
RC	Ripple clock output (active low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
TC	Terminal count output (active high)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

$\mathrm{D}_{1} 1$	$16 \mathrm{~V}_{\mathrm{cc}}$
$a_{1} 2$	$15 \mathrm{D}_{0}$
∞	14. CP
CE 4	13.7
U/D 5	12. TC
$0_{2} 6$	11 PL
$0_{3} 7$	$10 \mathrm{D}_{2}$
GND 8	$9 \mathrm{D}_{3}$
	For LLCC Pin Assignments see JEDEC Standard No. 2

LOGIC SYMBOL

Counting is inhibited by a High level on the Count Enable (CE) input. When CE is Low, internal state changes are initiated.
Overflow/underflowindications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock (RC). The TC output is normally Low and goes High when a circuitreaches zero in the count-down mode or reaches " 9 " in the count-up mode for 54F190 and reaches " 15 " in the count-up mode for 54F191. The TC output will remain High until a state change occurs, either by counting or presetting, or until U/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes.

The TC signal is used internally to enable the RC output. When TC is High and CE is Low, the RC follows the Clock Pulse (CP) delayed by two gate delays. The RC output essentially duplicates the Low clock pulse width, although
delayed in time by two gate delays. This feature simplifies the design of multi-stage counters, as indicated in Figures 1a and 1b. In Figure 1a, each RC output is used as the Clock input for the next higher stage. When the clock source has a limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a High signal on CEinhibits the RC output pulse as indicated in the Mode Select Table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This is a disadvantage of the configuration in some applications.
Figure 1 b shows a method of causing state changes to occur simultaneously in all stages.

The RC outputs propagate the carry/borrow signals in ripple fashion and all Clock inputs are driven in parallel. The Low state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/ borrow signal to ripple through to the last stage before the clock goes High. Since the RC output of any package goes High shortly after its CP input goes High, there is no such restriction on the High state duration of the clock.
In Figure 1c, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own CE, therefore, the simple inhibit scheme of Figure 1 a and 1 b does not apply.

Figure 1

LOGIC DIAGRAM

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE, 54F190, 54F191

OPERATING MODE	INPUTS					OUTPUTS
	PL	U / \mathbf{D}	CE	CP	$\mathrm{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Parallel load	L	X	X	X	L	L
	L	X	X	X	H	H
Count down	H	L	I	\uparrow	X	count up
Hold "do nothing"	H	H	I	\uparrow	X	count down

TC AND RC FUNCTION TABLE, 54F190

INPUTS			TERMINAL COUNT STATE				OUTPUTS	
U/D	CE	CP	\mathbf{Q}_{0}	Q_{1}	Q_{2}	Q_{3}	TC	RC
H	H	X	H	X	X	H	L	H
L	H	X	H	X	X	H	H	H
L	L	บ	H	X	X	H	\downarrow	บ
L	H	x	L	L	L	L	L	H
H	H	X	L	L	L	L	H	H
H	L	บ	L	L	1	L	\downarrow	บ

TC AND RC FUNCTION TABLE, 54F191

INPUTS			TERMINAL COUNT STATE				OUTPUTS	
J/D	CE	CP	\mathbf{Q}_{0}	Q_{1}	Q_{2}	Q_{3}	TC	RC
H	H	X	H	H	H	H	L	H
L	H	x	H	H	H	H	H	H
L	L	บ	H	H	H	H	\downarrow	บ
L	H	X	L	L	L	L	L	H
H	H	X	L	L	L	L	H	H
H	L	u	L	L	L	L	\downarrow	บ

$H=$ High voltage level steady state
$L=$ Low voltage level steady state
$1=$ Low voltage level one set-up time prior to Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
$\Psi=$ Low pulse
$\downarrow=$ High-to-Low clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{0}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lOL^{2}	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{\mathrm{VL}}=\operatorname{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \mathrm{V}_{\mathrm{VH}}=\mathrm{Min} \end{aligned}$	2.5			V
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
I_{1+2}	Input current at maximum input voltage	CE input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			0.3	mA	
		Other inputs				0.1	mA	
I_{1+1}	High-level input current	CE input	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			60	$\mu \mathrm{A}$	
		Other inputs				20	$\mu \mathrm{A}$	
112	Low-level input current	CE input	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-1.8	mA	
		Other inputs				-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max	-60		-150	mA	
I_{cc}	Supply current ${ }^{4}$ (total)		$V_{C C}=$ Max		38	55	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency (Q_{n})	Waveform 1	100	125		80^{5}		MHz
$f_{\text {max }}$	Maximum clock frequency (RC)	Waveform 2	85	95		75^{5}		MHz
$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { tPLH } \\ t_{\text {PHL }} \\ \hline \end{array} \\ \hline \end{array}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPL. tphi	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { tpLH } \\ t_{\text {PHLL }} \\ \hline \end{array}$	Propagation delay CP to RC	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CE to RC	Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & t_{\text {l }} \end{aligned}\right.$	Propagation delay U/D to RC	Waveferm 2	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{P} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay U/D to TC	Waveform 4	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{array}{\|l\|l} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation delay PL to Q_{n}	Waveform 5	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay D_{n} to RC	Waveform 3 Waveform 4	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D_{n} to TC	Waveform 3 Waveform 4	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{array}{\|l} \text { tPLH } \\ \text { tpHL } \\ \hline \end{array}$	Propagation delay PL to TC	Waveform 5	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay PL to RC	Waveform 5	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.0 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low D_{n} to PL	Waveform 6	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \operatorname{th}_{n}(H) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to $P L$	Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{5}(L)$	Setup time, High or Low CE to CP	Waveform 6	10.0			10.0		ns
$\mathrm{th}^{(L)}$	Hold time, High or Low CE to CP	Waveform 6	0			0.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {w }}(L)$	PL Pulse width	Waveform 5	6.0			6.0		ns
$\begin{aligned} & \operatorname{tiv}_{(}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse width	Waveform 1	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {rec }}$	Recovery time, PL to CP	Waveform 5	6.0			8.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure $I_{c c}$ with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency.

Waveform 3. Non-Inverting Propagation Delays

Waveform 5. Parallel Load Pulse Width, Parallel Load to Output Delay and Parallel Load to Clock Recovery Time

Waveform 2. Propagation Delay, Clock or Clock Enable to Ripple Clock Output and Maximum Clock Frequency

Waveform 4. Inverting Propagation Delay

Waveform 6. Set-Up Time and Hold Time for D_{n} to PL, O/D to CP and CE to CP

TEST CIRCUIT AND WAVEFORM

Military FAST Products

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset (clear)
- Expandable without external logic

DESCRIPTION

The 54F193 is a 4-bit synchronous up/ down counter in the binary mode. Separate up/down clocks, $C P_{U}$ and $C P_{D}$ respectively, simplify operation. The

54F193

Counter

Synchronous Presettable 4-Bit Binary Down Counter
Product Specification
outputs change state synchronously with the Low-to-High transition of either Clock input. If the CP_{u} clock is pulsed while CP_{D} is held High, the device will count up ... if $C P_{D}$ is pulsed while $C P_{U}$ is held High, the device will count down. Only one Clock input can be held High at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous reset pin - it may also be loaded in parallel by activating the asynchronous parallel load pin.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 F 193 / B E A$
Ceramic Flat Pack	$54 F 193 / B F A$
20-Pin Ceramic LLCC	$54 F 193 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 \mathrm{~F}(\mathrm{U} . \mathrm{L})$. $\mathrm{HIGH} / \mathrm{LOW}$	LOAD VALUE HIGH/LOW
CP_{U}	Count up clock input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CPD	Count down clock input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
MR	Asynchronous master reset input (active High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
TL	Asynchronous parallel load input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
T_{D}	Terminal count down (borrow) output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$T C_{U}$	Terminal count up (carry) output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

| | |
| :--- | :--- | :--- | :--- |

LOGIC SYMBOL

Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.
Each flip-flop contains JK feedback from slave to master, such that a Low-to-High transition on the $C P_{D}$ input will decrease the count by one, while a similar transition on the $C P_{\mathrm{U}}$ input will advance the count by one.

One clock should be held High while counting with the other, because the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is Low. Applications requiring reversible operation must make the reversing decision while the activating clock is High to avoid erroneous counts.
The Terminal Count Up (TC_{U}) and Terminal Count Down (TCD) outputs are normally High. When the circuit has reached the maximum count state of 15, the next High-to-Low transition of $C P_{U}$ will cause $T C_{U}$ to go Low. $T C_{U}$ will stay Low until CPu goes High again, duplicating
the count up clock, although delayed by two gate delays. Likewise, the $T C_{D}$ output will go Low when the circuit is in the zero state and the CP ${ }_{\text {D }}$ goes Low. The TC outputs can be used as the Clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a two-gate delay time difference added for each stage that is added.
The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel Data inputs D_{0-} D_{3}) is loaded into the counter and appears on the outputs regardless of the conditions of the Clock inputs when the Parallel Load (PL) input is Low. A High level on the Master Reset (MR) in put will disable the parallel load gates, override both Clock inputs, and set all Q outputs Low. If one of the Clock inputs is Low during and after a reset or load operation, the next Low-to-High transition of that clock will be interpreted as a legitimate signal and will be counted.

STATE DIAGRAM

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS								OUTPUTS					
	MR	PL	CP_{u}	$\mathrm{CP}_{\text {D }}$	D_{0}	D_{1}	D_{2}	D_{3}	Q_{0}	Q	Q_{2}	Q_{3}	$T C_{u}$	TCD
Reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X X		$\begin{aligned} & L \\ & L \end{aligned}$	L L	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Parallel load	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Count up	L	H	\uparrow	H	X	X	X	X	Count up				$\mathrm{H}^{(1)}$	H
Count down	L	H	H	\uparrow	X	X	X	X	Count down				H	$H^{(2)}$

H = High voltage level
$L=$ Low voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition
NOTES:

1. $T C_{u}=C P_{u}$ at terminal count up (HHHH).
2. $T C_{D}=C P_{D}$ at terminal count down (LLLLL).

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom		
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathbb{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathbb{I L}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{l}_{\text {OL }}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}$. 35	. 5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$			-0.73	-1.2	V
$\mathrm{I}_{\mathbf{H} \mathbf{H}}$	Input current at maximum input voltage	$V_{c c}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$
I_{ll}	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$	$\mathrm{CP}_{\mathrm{u}}, \mathrm{CP}_{\text {D }}$			-1.8	mA
			Other inputs		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-60		-150	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$			32	50	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	125		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{u} or CP_{D} to TC_{u} or TC_{D}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CP_{u} or CP_{D} to Q_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 9.0 \\ 13.0 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	Waveform 4	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 9.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 13.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 15.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay PL to Q_{n}	Waveform 3	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tPHL }}$	Propagation delay MR to Q_{n}	Waveform 5	5.0	7.5	11.0	5.5	12.5	ns
${ }^{\text {tplH }}$	Propagation delay MR to TC_{U}	Waveform 5	6.0	8.5	12.0	5.5	12.5	ns
$\mathrm{tphL}^{\text {c }}$	Propagation delay MR to T_{D}	Waveform 5	5.0	7.5	11.0	5.0	11.0	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay PL to TC_{U} or TC	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Propagation delay D_{n} to TC_{U} or TC_{D}	Waveform 4	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{c \mathrm{C}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low D_{n} to PL	Waveform 6	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to $P L$	Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	PL Pulse width Low	Waveform 1	6.0			6.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CPu or CPD Pulse width High or Low	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{w}(\mathrm{~L})$	CPu or CPD Pulse width Low (Change of direction)	Waveform 1	10.0			10.0		ns
$t_{w}(\mathrm{H})$	MR Pulse width High	Waveform 5	6.0			6.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, FL to CP_{u} or CP_{D}	Waveform 3	6.0			8.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CP_{U} or CP_{D}	Waveform 5	4.0			4.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{cc} with parallel load and Master Reset inputs grounded, all other inputs at 4.5 V and all outputs open.

Counter

FUNCTIONAL WAVEFORM (Typical clear, load, and count sequences)

NOTES:

1. Clear overrides load, data, and count inputs
2. When counting up, count-down input must be High; when counting down, count-up input must be High.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

Military FAST Products

54F194 Shift Register

4-Bit Bidirectional Universal Shift Register

Product Specification

FEATURES

- Shift left and shift right capability
- Synchronous parallel and serial data transfers
- Easily expanded for both serial and parallel operation
- Asynchronous Master Reset
- Hold (do nothing) mode

DESCRIPTION

The functional characteristics of the 54F194 4-Bit Bidirectional Shift Register are indicated in the Logic Diagram and Function Table. The register is fully synchronous, with all operations taking place in less than $9 n s$ (typical), making the device especially useful for implementing very high speed CPUs, or for memory buffer registers.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -PIn Ceramic DIP	54 F194/BEA
16 -Pin Ceramic FlatPack	54 F194/BFA
20 -Pin Ceramic LLCC	54 F194/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode control inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SR}	Serial data input (shift right)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SL}	Serial data input (shift left)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{P}	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Asynchronous master reset (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC SYMBOL

The 54F194 design has special logic features which increase the range of application. The synchronous operation of the device is determined by two Mode Selectinputs, S_{0} and S_{1}. As shown in the Mode Select Table, data can be entered and shifted from left to right (shift right $Q_{0} \rightarrow Q_{1}$, etc.), or right to left (shitt left, $Q_{3} \rightarrow$ Q_{2}, etc.), or parallel data can be entered, loading all 4 bits of the register simultaneously. When both S_{0} and S_{1} are Low, existing data is retained in a hold (do nothing) mode. The first and last stages provide D-type Serial Data in-
puts ($\mathrm{D}_{\text {SR }}, \mathrm{D}_{\text {SL }}$) to allow multistage shift right or shift left data transfers without interfering with parallel load operation.
Mode Select and Datainputs on the 54F194 are edge-triggered, responding only to the Low-to-High transition of the Clock (CP). therefore, the only timing restriction is that the Mode Control and selected Data inputs must be stable one setup time prior to the positive transition of the clock pulse. Signals on the Select, Parallel Data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) and Serial Data (D_{SR}, $D_{S L}$) inputs can change when the clock is in ei-
ther state, provided only the recommended setup and hold times, with respect to the clock rising edge, are observed.
The four Parallel Data inputs ($D_{0}-D_{3}$) are D-type inputs. Data appearing on $D_{0}-D_{3}$ inputs when S_{0} and S_{1} are High is transferred to the Q_{0} - Q_{3} outputs respectively, following the next Low-to-High transition of the clock. When Low, the asynchronous Master Reset(MR) overrides all other input conditions and forces the Q outputs Low.

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	CP	MR	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	D_{n}	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Reset (clear)	X	L	X	X	X	X	X	1	L	L	L
Hold (do nothing)	X	H	1	1	X	X	X	q_{0}	q_{1}	q_{2}	q_{3}
Shift left	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$
Shift right	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	h h	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel load	\uparrow	H	h	h	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}

$H=$ High voltage level
h = High voltage level one setup time prior to the Low-to-High clock transition
$L=$ Low voltage level
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{d}_{\mathrm{n}}\left(\mathrm{q}_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

Shift Register

TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT AND CLEAR SEQUENCES

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom		
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage ${ }^{3}$	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OH }}=\mathrm{Max}$	2.5			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max		0.35	0.50	V
$\mathrm{V}_{1 K}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{1}=I_{\text {IK }}$		-0.73	-1.2	V
$\mathrm{I}_{1} \mathrm{H}_{2}$	Input current at maximum input voltage	$V_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1}=+7.0 \mathrm{~V}$		5	100	$\mu \mathrm{A}$
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
ILI	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA
los	Short-circuit output current ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	-60	-90	-150	mA
I_{CC}	Supply current ${ }^{5}$ (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		33	46	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	105	150		90^{6}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CP to Qn	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 2	4.5	8.6	12	4.5	14.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(L) \end{aligned}$	Setup time, $D_{0}-D_{3}$ to $C P$ $\mathrm{D}_{\mathrm{SK}}, \mathrm{D}_{\mathrm{SL}}$ to CP	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\mathrm{D}_{0}-\mathrm{D}_{3}$ to $C P, \mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$ to CP		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP	Waveform 4	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low S_{n} to CP		0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 2	7.0			9.0		ns
$\mathrm{t}_{\mathbf{w}}(\mathrm{H})$	CP pulse width, High	Waveform 1	5.0			5.5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR pulse width, Low	Waveform 2	5.0			5.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Output High state will change to Low state if an external voltage of less than 0.0 V is applied.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
5. With all outputs open, D inputs grounded and $\geq 4.0 \mathrm{~V}$ applied to $\mathrm{S}_{0}, \mathrm{~S}_{1} \mathrm{MR}$ and the serial inputs, I_{Cc} is tested with a momentary ground, then $\geq 4.0 \mathrm{~V}$ applied to CP .
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

Signetics

Military FAST Products

54F198

Shift Register

8-Bit Bidirectional Universal Shift Register

Product Specification

FEATURES

- Buffered clock and control inputs
- Shift right, shift left, and parallel load capability
- Asynchronous Master Reset

DESCRIPTION

The 54F198, Bidirectional Universal Shift Register is designed to incorporate virtually all of the features a system designer may want in a shift register. This circuit features parallel inputs and outputs, shift
right and shift left serial inputs, operating mode select inputs, and a direct overriding master reset input. The register has four distinct modes of operation:
Parallel (broadside) load
Shift right (in the direction Q_{0} toward Q_{7}) Shift left (in the direction Q_{7} toward Q_{0}) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_{0} and S_{1},

High. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	$54 F 198 / \mathrm{BLA}$
24-Pin Ceramic FlatPack	$54 \mathrm{~F} 198 / \mathrm{BKA}$
28-Pin Ceramic LLCC	$54 \mathrm{~F} 198 / \mathrm{B} 3 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{7}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SR}	Serial data input (Shift Right)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SL}	Serial data input (Shift Left)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0} \mathrm{~S}_{1}$	Mode Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{P}	Clock pulse input (Active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master reset input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

$\mathrm{s}_{0} 1$	24 vcc
DSR 2	23 s 1
$\mathrm{D}_{0} \sqrt{3}$	22 DSL
$\infty_{0} 4$	$2 \mathrm{D}_{7}$
$\mathrm{D}_{1} 5$	${ }^{20} \mathrm{O}_{7}$
$a_{1} 6$	19) D_{6}
$\mathrm{D}_{2} 7$	$18 \mathrm{O}_{6}$
$0_{2}[8$	$17 \mathrm{D}_{5}$
$\mathrm{D}_{3} 9$	$16 \mathrm{O}_{5}$
0_{3} [10	15. D_{4}
CP 11	(14) O_{4}
GND 12	13 mR

LOGIC SYMBOL

Shift right is accomplished synchronously, with the rising edge of the clock pulse when S_{0} is High and S_{1} is Low. Serial data for this mode is entered at the right data input (D_{SR}). When S_{0} is Low and S_{1} is High, data shifts left synchronously and new data is entered at the shift-left serial input (D_{SL}).

Clocking of the flip-flops is inhibited when both mode control inputs are Low.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS							OUTPUTS				
MR	Mode		CP	Serial		Parallel	Q_{0}	Q_{1}	\ldots	Q_{6}	Q_{7}
	S_{0}	S_{1}		Left	Right	$0 . .7$					
L	X	X	X	X	X	X	L	L		L	L
H	X	X	L	X	X	X	Q_{0}	Q_{10}		Q_{60}	Q_{70}
H	H	H	\uparrow	X	X	$0 . . .7$	0	1		6	7
H	H	L	\uparrow	X	H	x	H	$Q_{0 n}$		$Q_{5 n}$	$\mathrm{Q}_{6 n}$
H	H	L	\uparrow	X	L	X	L	$Q_{0 n}$		$Q_{5 n}$	$Q_{6 n}$
H	L	H	\uparrow	H	x	X	$\mathrm{Q}_{1 \mathrm{n}}$	$\mathrm{Q}_{2 n}$		$Q_{7 n}$	H
H	L	H	\uparrow	L	x	x	$\mathrm{Q}_{1 \text { 1 }}$	$Q_{2 n}$		$Q_{7 n}$	L
H	L	L	\times	X	X	X	Q_{∞}	Q_{10}		Q_{60}	Q_{70}

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High transition of designated input
$0 \ldots 7=$ The level of steady input at inputs 0 through 7 , respectively
$Q_{00}, Q_{10}, Q_{60}, Q_{70}=$ The level of $Q_{0}, Q_{1}, Q_{6}, Q_{7}$, respectively, before the indicated steady state input conditions were established.
$Q_{0 n}, Q_{1 n}, Q_{6 n}, Q_{7 n}=$ The level of $Q_{0}, Q_{1}, Q_{6}, Q_{7}$, respectively, before the most recent Low-to-High clock transition.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless

 otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $V_{C C}$ | Supply voltage range | -0.5 to +7.0 | V |
| $\mathrm{~V}_{1}$ | Input voltage range | -0.5 to +7.0 | V |
| I_{1} | Input current range | -30 to +5 | mA |
| $\mathrm{~V}_{0}$ | Voltage applied to output in High output state range | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| I_{O} | Current applied to output in Low output state | 40 | mA |
| $\mathrm{~T}_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS			UNIT	
		Min	Nom		
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
$\mathrm{I}_{\text {OH }}$	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=$ Min		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
$\mathrm{I}_{1 /}$	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max	-60		-150	mA	
Icc	Supply current (total)	ICCH	$V_{\text {cc }}=\mathrm{Max}$		70	100	mA	
		$\mathrm{I}_{\mathrm{CCL}}$			75	110	mA	

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	80	95		70^{4}		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP input to Q_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay	Waveform 3	5.0	7.5	10.0	4.5	13.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 0.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $D_{n} \text { to } C P$	Waveform 2	$\begin{aligned} & 0.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $D_{S R}, D_{S L}$ to $C P$	Waveform 2	$\begin{aligned} & 0.0 \\ & 3.0 \end{aligned}$.	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(H) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$ to CP	Waveform 2	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low S_{n} to CP	Waveform 2	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$			$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \tan _{n}(H) \\ & \operatorname{tr}_{n}(L) \end{aligned}$	Hold time, High or Low S_{n} to CP	Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{w}(H) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	CP Pulse width High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(L)$	MR Pulse width, Low	Waveform 3	5.0			6.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CP	Waveform 3	5.0			6.5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C \mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. These parameters are guaranteed, but not tested.

TYPICAL TIMING DIAGRAM

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths, and Maximum Clock Frequency

Waveform 2. Setup and Hold Times

Waveform 3. Master Reset Pulse WIdth, Master Reset to Output Delay and Master Reset to Clock Recovery Time

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

Test Circult for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

INPUT PULSE CHARACTERISTICS					
Family	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

Signetics

Military Logic Products

DESCRIPTION

The 54F240 and 54F241 are octal buffers that are ideal for driving bus lines or buffer memory address registers. The outputs are all capable of sinking 48 mA and sourcing up to 12 mA , producing very good capacitive drive characteristics. The device features two output enables, ($\overline{\mathrm{OE}}$), each controlling four of the 3 -state outputs.

54F240/54F241

Buffers

54F240 Octal Inverting Buffer, 3-State
54F241 Octal Buffer, 3-State
Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. $H I G H / L O W$	LOAD VALUE $H I G H / L O W$
$I_{a N}-I_{b N}$	Data inputs (54F240)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{aN}}-\mathrm{I}_{\mathrm{bN}}$	Data inputs (54F241)	$1.0 / 2.67$	$20 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$\mathrm{OE}_{\mathrm{a}}, \mathrm{OE}_{\mathrm{b}}$	Output Enable inputs (Active High)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
OE_{b}	3-State Output Enable input (Active Low)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{P}_{\mathrm{an}}, \mathrm{P}_{\mathrm{bn}}$	Data outputs (54F240)	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{an},}, \mathrm{Y}_{\mathrm{bn}}$	Data outputs (54F241)	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

FUNCTION TABLE, 54F240

INPUTS				OUTPUTS	
$\overline{O E}_{\mathbf{a}}$	$\mathbf{I}_{\mathbf{a}}$	$\overline{O E}_{\mathbf{b}}$	$\mathrm{I}_{\mathbf{b}}$	$\mathrm{Y}_{\mathbf{a}}$	$\mathrm{P}_{\mathbf{b}}$
L	L	L	L	H	H
L	H	L	H	L	L
H	X	H	X	Z	Z

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High impedance "OFF" state

LOGIC SYMBOL
(

FUNCTION TABLE, 54F241

INPUTS				OUTPUTS	
$\mathbf{O E}_{\mathbf{a}}$	$\mathbf{I}_{\mathbf{a}}$	$\mathbf{O E}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\mathbf{Y}_{\mathbf{a}}$	$\mathbf{Y}_{\mathbf{b}}$
L	L	H	L	L	L
L	H	H	H	H	H
H	X	L	X	Z	\mathbf{Z}

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$\mathbf{Z}=$ High impedance "OFF" state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $\mathrm{V}_{\text {CC }}$	V
I_{O}	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

Buffers

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current			-3	mA
$\mathrm{I}_{\mathrm{OH} 3}$	High-level output current			-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS					
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$V_{\text {cc }}=\mathrm{Min}$,	$\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{V}_{\text {IL }}=$ Max,	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	$\mathrm{l}_{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0			V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=M$, $I_{1}=I_{\text {IK }}$		-0.73	-1.2	V		
$\mathrm{I}_{1 \mathrm{H}_{2}}$	Input current at maximum input voltage		$V_{\text {cc }}=\mathrm{Max}$	$V_{1}=7.0 \mathrm{~V}$			0.1	mA		
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current		$V_{C C}=M a$	$V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$		
ILL	Low-level input current 	$\mathrm{E}_{\mathrm{a}}, \mathrm{DE}_{b}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.6	-1.0	mA		
						-0.6	-1.6	mA		
Iozh	Off-state output current		$\mathrm{V}_{\mathrm{CC}}=$ Max, V_{IH}	$\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		2	50	$\mu \mathrm{A}$		
IozL	Off-state output current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}$	$\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M a x$	$V_{0}=0.0 \mathrm{~V}$	-100	-150	-225	mA		
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\operatorname{Max} 54 \mathrm{~F} 240$			12	29	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				50	75	mA		
		Iccz				35	63	mA		
		$\mathrm{I}^{\mathrm{CCH}}$	$V_{C C}=$ Max 54F241			40	60	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				60	90	mA		
		$\mathrm{I}_{\mathrm{Ccz}}$				60	90	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{c c}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to output (54F240)	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time (54F240)	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable time (54F240)	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output (54F241)	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	2.5 2.5	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable time (54F241)	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.0 \\ & \hline \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time (54F241)	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and the functional table for the applicable operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time.
4. ICC is measured with outputs open.

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Buffers

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }}$	closed t pZL $^{\text {closed }}$ All other

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{T}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

54F244

Buffer

Octal Buffer (3-State)
Product Specification

FEATURES

- Octal bus interface
- 3-State buffer outputs sink 48 mA
- 12mA source current

DESCRIPTION

The 54F244 is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The outputs are all capable of sinking 48 mA and sourcing up to 12 mA , producing very good capacitive drive characteristics. The device features two Output Enables, $\overline{O E}$, each controlling four of the 3-State outputs.

FUNCTION TABLE

INPUTS				OUTPUTS	
$\overline{\partial E_{a}}$	I_{a}	OE_{b}	I_{b}	Y_{a}	Y_{b}
L	L	L	L	L	L
L	H	L	H	H	H
H	X	H	X	(Z)	(Z)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	$54 F 244 /$ BRA
20-Pin Ceramic FlatPack	54 F244/BSA
20-Pin Ceramic LLCC	54 F244/B2A

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
σE_{a}	3-State output enable input (active Low)	1.0/1.67	$20 \mu \mathrm{~A} 1.0 \mathrm{~mA}$
$\bar{O} \mathrm{E}_{\mathrm{b}}$	3-State output enable input (active Low)	1.0/1.67	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$I_{20}-I_{a 3}, I_{\text {b0 }}-I_{b 3}$	Data inputs	1.0/2.67	$20 \mu \mathrm{~A} 1.6 \mathrm{~mA}$
$Y_{a 0}-Y_{a 3}, Y_{b 0}-Y_{b 3}$	Data outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

PIN CONFIGURATION

LOGIC SYMBOL
(2)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $\mathrm{V}_{\text {CC }}$	V
I_{O}	Current applied to output in Low output state	96	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Typ	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1	mA
$\mathrm{I}_{\text {OH2 }}$	High-level output current			-3	mA
$\mathrm{I}_{\text {OH3 }}$	High-level output current			-12	mA
$\mathrm{I}_{\text {OL }}$	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$V_{C C}=$ Min,	$\mathrm{l}_{\mathrm{OHI}}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$,	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V		
			$\mathrm{V}_{1 H}=\mathrm{Min}$	$\mathrm{l}_{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{gathered} V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ V_{\mathrm{IH}}=\operatorname{Min} \end{gathered}$	$\mathrm{loL}=\mathrm{Max}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V		
$\mathrm{I}_{H_{H}}$	Input current at maximum input voltage		$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H 1}}$	High-level input current		$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
I/L	Low-level input current	$\bar{\sigma} E_{a}, \sigma E_{b}$	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$			-0.7	-1.0	mA		
		$\begin{aligned} & 1_{2} 0-1_{a} 3, \\ & 1_{0} 0-1_{5} 3 \end{aligned}$				-0.6	-1.6	mA		
$\mathrm{l}_{\mathrm{OzH}}$	Off-state output current, High-level voltage applied		$V_{C C}=M a x, V_{I H}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
Iozl	Off-state output current, Low-level voltage applied		$V_{C C}=M a x, V_{1 H}=M i n, V_{O}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M a x, V_{0}=0.0 \mathrm{~V}$		-100	-150	-225	mA		
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=\operatorname{Max}$			40	60	mA		
		$\mathrm{I}_{\text {CCL }}$				60	90	mA		
		lccz				60	90	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
tpLH	Propagation delay	Waveform 1	2.5	4.0	5.2	2.5	6.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay	Waveform 1	2.5	4.0	5.2	2.5	7.0	ns
$t_{\text {PzH }}$	Enable to High	Waveform 2	2.0	4.3	6.0	2.0	7.5	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 3	2.0	5.0	7.0	2.0	8.5	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 2	2.0	3.5	6.0	2.0	7.0	ns
$\mathrm{t}_{\text {PLZ }}$	Disable from Low	Waveform 3	2.0	4.0	6.0	2.0	7.5	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and functional table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs open.

AC WAVEFORMS

Waveform 1. For Non-Inverting Outputs

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

Buffer

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
tplz. $^{\text {tpZL }}$	closed
All other	closed

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:

$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to Zout of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

FEATURES

- Octal bidirectional bus interface
- 3-State buffer outputs sink 48 mA
- 12 mA source current
- Outputs are placed in $\mathrm{HI}-\mathrm{Z}$ state during power-off conditions

DESCRIPTION

The 54F245 is an octal transceiver featuring noninverting 3 -State bus compatible outputs in both send and receive directions. The B side outputs are all capable of sinking 48 mA and sourcing up to 12 mA , producing very good capacitive drive characteristics. The device features an Output Enable ($\overline{\mathrm{OE}}$) input for easy cascading and a Send/Receive (T/R) input for directional control. The 3-State outputs, $\mathrm{B}_{0}-\mathrm{B}_{7}$, have been designed to prevent output bus loading if the power is removed from the device.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20 -Pin Ceramic DIP	$54 F 245 / \mathrm{BRA}$
20-Pin Ceramic FlatPack	54 F245/BSA
20 -Pin Ceramic LLCC	54 F245/B2A

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
$\overline{O E}$	T / R	$A_{\boldsymbol{n}}$	$B_{\boldsymbol{n}}$
L	L	$A=B$	INPUTS
L	H	INPUT	$B=A$
H	X	(Z)	(Z)

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance "off" state

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAAD VALUE HIGH/LOW
$\overline{O E}$	Output enable input (active Low)	$2.0 / 2.0$	$40 \mu A / 1.2 \mathrm{~mA}$
T/R	Send receive input	$2.0 / 2.0$	$40 \mu A / 1.2 \mathrm{~mA}$
$A_{0}-A_{7}$	3-State A data inputs	$3.5 / 1.67$	$70 \mu A / 1.0 \mathrm{~mA}$
$B_{0}-B_{7}$	3-State B data inputs	$3.5 / 1.67$	$70 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	3-State A data outputs	$150 / 33$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	3-State B data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{0}	Current applied to output in Low output state	40	mA
		$\mathrm{~A}_{0}-\mathrm{A}_{7}$	96
$\mathrm{~B}_{\text {STG }}$	Storage temperature range	$-\mathrm{B}_{7}$	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
IOH_{1}	High-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$			-1	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current	$A_{0}-A_{7}, B_{0}-B_{7}$			-3	mA
$\mathrm{I}_{\mathrm{OH} 3}$	High-level output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$			-12	mA
IOL	Low-level output current	$A_{0}-A_{7}$			20	mA
		$B_{0}-B_{7}$			48	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} V_{C C}=\text { Min, } V_{I L}=\text { Max, }, \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4	3.4		V
		$B_{0}-B_{7}$	$\mathrm{I}_{\mathrm{OHI}}=-1 \mathrm{~mA}$	2.5				V		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.0		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{IOL}=20 \mathrm{~mA}$			0.35	0.50	V		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.35	0.55	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
${ }_{1 / H 1}$	Input current at maximum input voltage	OE, T/R	$V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
			$V_{C C}=0 \mathrm{~V}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\left\lvert\, \begin{aligned} & A_{0}-A_{7}, \\ & B_{0}-B_{7} \end{aligned}\right.$	$V_{C C}=5.5 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}, \overline{O E}=\leq 0.8 \mathrm{~V}$				1.0	mA		
$\mathrm{I}_{\mathbf{H} 2}$	High-level input current OE and T/R only	OE	$V_{C C}=$ Max, $V_{l}=2.7 \mathrm{~V}$	$\mathrm{T} / \mathrm{R} \leq 0.8 \mathrm{~V}$			40	$\mu \mathrm{A}$		
		T/R		$\mathrm{OE} \leq 0.8 \mathrm{~V}$.	40	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 1}$	Low-level input current	$A_{0}-A_{7}$,	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=5.5 \mathrm{~V}, \delta E=G N D$				-600	$\mu \mathrm{A}$		
		$B_{0}-B_{7}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~T} / \mathrm{R}=\mathrm{GND}, \overline{\mathrm{C}}=\mathrm{GND}$				-600	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 2}$	Low-level input current OE and T / R only	OE	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\mathrm{l}}=0.5 \mathrm{~V}$	$\mathrm{T} / \mathrm{R} \leq 0.8 \mathrm{~V}$		-0.75	-1.2	mA		
		T/R		$\overline{\mathrm{E}} \leq 0.8 \mathrm{~V}$		-0.75	-1.2	mA		
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \\ & \hline \end{aligned}$	Off-state output current High-level voltage applied		$V_{c c}=M a x, O E=2.0 \mathrm{~V}, V_{1}=2.7 \mathrm{~V}$			0	70	$\mu \mathrm{A}$		
$\begin{aligned} & \text { lozL } \\ & +1 / 2 \end{aligned}$	Off-state output current Low-level voltage applied		$V_{C C}=$ Max, $\mathrm{OE}^{\text {a }}=2.0 \mathrm{~V}, \mathrm{~V}_{1}=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$	$A_{0}-A_{7}$	$V_{C C}=\operatorname{Max}$		-60		-150	mA		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$			-100		-225	mA		
Icc	Supply current (total)	${ }^{\mathrm{I} C \mathrm{CH}}$	$V_{C C}=M a x$	$\mathrm{V}_{\mathrm{H}} \geq 4.0 \mathrm{~V}$		85	114	mA		
		${ }^{1} \mathrm{CCL}$		$\mathrm{V}_{1 H}=\mathrm{GND}$		100	125	mA		
		ICcz		$\mathrm{V}_{1 \mathrm{H}} \geq 4.0 \mathrm{~V}$		110	140	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tzH}} \\ & \mathrm{t}_{\mathrm{pZZ}} \end{aligned}$	Output enable time to High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PHZ }} \\ & t_{\text {PLI }} \end{aligned}$	Output disable time from High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all wavetorms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- 3-State outputs for bus interface and multiplex expansion
- Common Select inputs
- Separate Output Enable Inputs

DESCRIPTION

-The 54F253 has two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). When the individual Output Enable ($\mathrm{E}_{0 \mathrm{a}}$, $\mathrm{E}_{0 b}$) inputs of the 4 -input multiplexers are High, the
outputs are forced to a High impedance (Hi-Z) state.
The 54F253 is the logic implementation of a 2-pole, 4-position switch; the position of the switch being determined by the logic levels supplied to the two Select inputs.
All but one device must be in the High impedance state to avoid high currents exceeding the maximum ratings. If the outputs of the 3-State devices are tied together Design of the Output Enable signals must ensure that there is no overlap.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 F253/BEA
16-Pin Ceramic FlatPack	54 F253/BFA
16-Pin Ceramic LLCC	54 F253/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$I_{0 a}-I_{3 a}$	Port A data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{~b}}-\mathrm{I}_{3 \mathrm{~b}}$	Port B data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$S_{0}-S_{1}$	Common select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE_{a}	Port A output enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{O} \mathrm{E}_{\mathrm{b}}$	Port B output enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y_{a}, Y_{b}	3-State outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

\square

LOGIC SYMBOL

LOGIC DIAGRAM

For LLCC Pin Assignment, See JEDEC Standard No. 2

FUNCTION TABLE

INPUTS						OUTPUT	
S_{0}	S_{1}	I_{0}	l_{1}	I_{2}	I_{3}	$\overline{\mathrm{O}}$	Y
X L L H H L L H H H	X L L L L L H H H H	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & X \\ & L \\ & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & L \\ & H \end{aligned}$	H L L L L L L L L	$\begin{aligned} & \text { (Z) } \\ & L \\ & H \end{aligned}$

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom		
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{HH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current			-3	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{gathered} V_{C C}=\text { Min, } V_{\mathrm{IL}}=\text { Max }, \\ V_{\mathbb{I H}}=\text { Min } \end{gathered}$		$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5					V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$				0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage		$V_{C c}=M a x, V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				1	20	$\mu \mathrm{A}$			
IIL	Low-level input current		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.4	-0.6	mA			
lozh	Off-state output current High-level voltage applied		$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				2	50	$\mu \mathrm{A}$			
lozl	Off-state output current Low-level voltage applied		$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{I H}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-2	-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=$ Max			-60	-80	-150	mA			
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=$ Max	OE ${ }_{\mathrm{n}}=\mathrm{GND} ; \mathrm{S}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}} \geq 4.0 \mathrm{~V}$			10	16	mA			
		$\mathrm{I}_{\mathrm{CCL}}$		$\bar{\sigma} E_{n}=$	$h_{h}=$ GND		12	23	mA			
		lcCz		OE ${ }^{1}$	$h_{n}=S_{n}=$ GND		14	23	mA			

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ } \mathrm { C }} \\ \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
t_{PLH} $t_{\text {PHL }}$	Propagation delay Data to output	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{PL} t_{PHL}	Propagation delay Select to output	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpzH }}$	Output enable time to High level	Waveform 2	3.0	6.5	9.0	2.5	10.5	ns
$\mathrm{t}_{\text {PLL }}$	Output enable time to Low level	Waveform 3	3.0	6.5	9.5	2.5	11.0	ns
${ }^{\text {t }} \mathrm{HZ}$	Output disable time from High level	Waveform 2 Waveform 3	2.0	3.5	5.0	2.0	6.5	ns
tplz	Output disable time from Low level	Waveform 3 Waveform 4	2.0	3.0	6.0	2.0	9.0	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs opened.

AC WAVEFORMS

Waveform 1. Propagation Delay Data and Select to Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Data Selector/Multiplexer

Quad 2-LIne to 1-Line Data Selector/Multiplexer (3-State)
Product Specification

FEATURES

- Multifunction capability
- Non-inverting data path
- 3-State outputs
- See 54F258A for Inverting version

DESCRIPTION

The 54F257A has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is Low and the I_{1} inputs are selected when the Select input is High.

Data appears at the outputs in true (noninverted) form from the selected outputs.
The 54F257A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.
Outputs are forced to a High impedance "off" state when the Output Enable input (OE) is High. All but one device must be in the High impedance state to avoid currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3-State devices are tied together.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 F257ABEA
16-Pin Ceramic FlatPack	54 F257ABFA
16-Pin Ceramic LLCC	54F257AB2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
S	Common select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
OE	Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y_{a}, Y_{d}	Data outputs	150/33	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUT
OE	S	10	I_{1}	Y
H	X	X	X	(Z)
L	H	X	L	1
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5.0	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	$\mathrm{O}^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {LI }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
$\mathrm{l}_{\mathrm{OH} 2}$	High-level output current			-3.0	mA
$\mathrm{l}^{\mathrm{OH} 1}$	High-level output current			-1.0	mA
lol	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} V_{C C}=\text { Min, } V_{I L}=\text { Max }, \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5				V		
$V_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.35	0.50	V		
V_{IK}	Input clamp voltage		$V_{\text {cc }}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=I_{\mathrm{IK}}$			-0.73	-1.2	V		
lozh	Off-state output current High-level voltage applied		$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
lozu	Off-state output current Low-level voltage applied		$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H}_{1}}$	High-level input current		$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
1 l	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M a x, V_{0}$	0.0V	-60	-80	-150	mA		
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=\operatorname{Max}$			9.0	15.0	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				14.5	22.0	mA		
		Iccz				15.0	23.0	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $I_{n a}, I_{n b}$ to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay S to Y_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLLZ}} \end{aligned}$	Output disable time from High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. At typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{cc} with all outputs open and inputs grounded.

APPLICATIONS

AC WAVEFORMS

Waveform 1. Propagatlon Delay Data and Select to Output
${ }^{\prime} E$

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per Function Table.

Military Logic Products

54F258A

 Data Selector/MultiplexerQuad 2-Line to 1-Line Data Selector/Multiplexer (3-State)

Product Specification

FEATURES

- Multifunction capability
- Non-Inverting data path
- 3-State outputs
- See 54F257A for non-inverting version

DESCRIPTION

The 54F258A has four identical 2 -input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Select input (S). The $I_{\text {on }}$ inputs are selected when the Select input is Low and the $I_{1 n}$ inputs are selected when the Select input is High.

Data appears at the outputs in true (non-inverted) form from the selected outputs.
The 54F258A is the logical implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic level supplied to the Select input. Outputs are forced to a High impedance "off" state when the Output Enable input ($\overline{O E}$) is high. All but one device must be in the High impedance state to avoid currents exceeding the maximum ratings if outputs are tied together. Design of the output signals must ensure that there is no overlap when outputs of 3-State devices are tied together.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 F258A/BEA
Ceramic Flat Pack	54 F258A/BFA
Ceramic LLCC	54 F258A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{On}} \cdot \mathrm{I}_{\mathrm{In}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Common select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{P}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu A$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

For LLCC pin aselgnments, see JEDEC Standard No. 2

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUT
OE	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Y
H	X	X	X	(Z)
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
V_{L}	Low-level input voltage			0.8	V
$\mathrm{J}_{\text {IK }}$	Input clamp current			-18	mA
$\mathrm{l}_{\mathrm{OH} 2}$	High-level output current			-3.0	mA
IOH_{1}	High-level output current			-1.0	mA
l OL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max, }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5				V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=$ Min, $I_{\text {I }}=I_{\text {IK }}$			-0.73	-1.2	V		
${ }^{\text {OZH }}$	Off-state output current High-level voltage applied		$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozu	Off-state output current Low-level voltage applied		$\mathrm{V}_{\text {cc }}=\operatorname{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
I_{1+2}	Input current at maximum input voltage		$V_{C C}=$ Max, V^{\prime}	7.0V			100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=$ Max, V^{\prime}	2.7V		1	20	$\mu \mathrm{A}$		
112	Low-level input current		$V_{C C}=$ Max, V^{\prime}	0.5V		-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M$		-60	-80	-150	mA		
I_{cc}	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=\operatorname{Max}$			8.5	11.5	mA		
		ICCL				17.0	23.0	mA		
		Iccz				16.0	22.0	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation delay S to γ_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. At typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. I_{Cc} is measured with all outputs open.

AC WAVEFORMS

Waveform 1. Propagation Delay Data and Select to Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=\mathbf{1 . 5}$.

TEST CIRCUIT AND WAVEFORM

Test Circult for 3-State Outputs

SWITCH POSITION

TEST	SWITCH
tPLZ. tpZL All other	closed closed open

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to ZOUT of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per Function Table.

8-Bit Addressable Latch
 Product Specification

FEATURES

- Combines demultiplexer and 8-bit latch
- Serlal-to-parallel capabillty
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common Clear input
- Useful as a 1-of-8 active High decoder

DESCRIPTION

The 54F259 addressable latch has four distinct modes of operation that are selectable by controlling the Master Reset and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states. In the store mode, all latches remain in their previous states and are unaffected by the Data or Address inputs.
To eliminate the possibility of entering erroneous data in the latches, the enable
should be held High (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode ($\mathrm{MR}=\mathrm{E}$ = Low), addressed outputs will follow the level of the D inputs, with all other outputs Low. In the MasterReset mode, alloutputs are Low and unaffected by the Address and Data inputs.
ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -Pin Ceramic DIP	54 F259/BEA
16 -Pin Ceramic Flat Pack	54 F259/BFA
$20-$ Pin Ceramic LLCC	$54 F 259 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
$M R, E$	Master reset, enable inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}, A_{2}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D	Data input	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS							
	MR	E	D	A_{0}	A_{1}	A_{2}	\mathbf{Q}_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	O_{7}
Master Reset	L	H	X	X	X	X	L	L	L	L	L	L	L	L
Demultiplexer (active High decoder when $D=H$	$\begin{aligned} & L \\ & \mathbf{L} \\ & \mathbf{L} \\ & i \\ & i \end{aligned}$	$\begin{gathered} L \\ L \\ L \\ \dot{L} \\ i \end{gathered}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \dot{d} \\ & \dot{d} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \cdot \\ \dot{~} \\ \dot{H} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ H	$\begin{gathered} L \\ L \\ \cdot \\ \cdot \\ \dot{L} \end{gathered}$	$\begin{gathered} Q_{Q}=d \\ L \\ L \\ \vdots \\ \dot{L} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{Q}=\mathrm{d} \\ \dot{L} \\ \dot{L} \end{gathered}$	$\begin{gathered} L \\ Q=d \\ \dot{L} \\ \dot{L} \end{gathered}$	L L L i i	L L L i	L L L L	L L L L	$\begin{gathered} L \\ L \\ L \\ \vdots \\ Q=d \end{gathered}$
Store (do nothing)	H	H	X	X	X	X	90	q_{1}	9_{2}	9_{3}	q_{4}	95	q_{6}	q_{7}
Ac. aressable latch	H H H \dot{H}	L L L .	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & . \\ & \dot{d} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathbf{H} \\ \mathbf{L} \\ \cdot \\ \dot{H} \end{gathered}$	$\begin{gathered} \hline \mathrm{L} \\ \mathrm{~L} \\ \dot{H} \\ \dot{H} \\ \dot{H} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \cdot \\ \dot{H} \\ \dot{H} \end{gathered}$	$\begin{gathered} Q=d \\ q_{0} \\ 9_{0} \\ \cdot \\ \cdot \\ q_{0} \\ \hline \end{gathered}$	$\begin{gathered} Q=\mathrm{q} \mathbf{q}_{1} \\ \mathrm{q}_{1} \\ \vdots \\ q_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{q}_{2} \\ Q_{Q_{2}}^{=} \\ \dot{d} \\ \dot{q_{2}} \end{gathered}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \\ & \dot{~} \\ & \dot{c} \\ & \mathrm{q}_{3} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{q}_{4} \\ \mathrm{q}_{4} \\ \mathrm{q}_{4} \\ \dot{\cdot} \\ \dot{\mathrm{q}_{4}} \end{gathered}$	$\begin{aligned} & q_{5} \\ & q_{5} \\ & q_{5} \\ & \therefore \\ & \vdots \\ & q_{5} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \vdots \\ \cdot \\ \cdot \\ \mathrm{q}_{6} \end{gathered}$	$\begin{gathered} 9_{7} \\ 9_{7} \\ 9_{7} \\ \vdots \\ 0 \\ 0=d \end{gathered}$

[^4]$L=$ Low voltage level steady state.
$X=$ Don't care .
d $=$ High or Low data one set-up time prior to the Low-to-High Enable transition.
$q=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	UMITS			UNIT	
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\text {OH }}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V	
1_{1+1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
IHH_{1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
ILI	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	-60		-150	mA	
Icc	Supply current (total)	ICCH	$V_{C C}=$ Max		24	46	mA	
		$\mathrm{I}_{\mathrm{CCL}}$			37	75	mA	

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D to Q_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay A_{n} to Q_{n}	Waveform 3	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns ns
$\mathrm{tphl}^{\text {l }}$	Propagation delay MR to Q_{n}	Waveform 4	5.0	7.0°	9.0	5.0	14.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{c C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D to E	Waveform 5	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \operatorname{th}_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D to E	Waveform 5	0 0			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{5}	Setup time, High or Low A_{n} to E^{4}	Waveform 6	2.0			2.0		ns
t_{g}	Hold time, High or Low A_{n} to E^{5}	Waveform 6	0			1.0		ns
t_{w}	E pulse width	Waveform 1	7.5			8.0		ns
t_{w}	MR pulse width	Waveform 4	3.0			4.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. The Address to Enable setup time is the time before the High-to-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
5. The Address to Enable hold time is the time after the Low-to-High Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

AC WAVEFORMS

Waveform 1. Propagation Delay Enable to Output and Enable Pulse Width
D

Waveform 2. Propagation Delay Data to Output

Waveform 4. Master Reset to Output Delay and Master Reset Pulse Width

Waveform 6. Address Setup and Hold Times

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54F269

8-Bit Bidirectional Binary Counter

Product Specification

FEATURES

- Synchronous counting and loading
- Built-In lookahead carry capablity
- Count frequency 115 MHz typ
- Supply current 95mA typ

DESCRIPTION

The 54F269 is a fully synchronous 8-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	54 F269/BLA
24-Pin CeramicFlatPack	54 F269/BKA
28 -Pin Ceramic LLCC	54 F269/B3A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	HIGH/LOW load value
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel data inputs	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
PE	Parallel enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
U/D	Up-Down count control input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CEP	Count enable parallel input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CET	Count enable trickle input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CP	Clock input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
TC	Terminal count output (active Low)	50/33	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Flip-flop outputs	50/33	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LLCC PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	CP	U/D	CEP	CET	PE	P_{n}	Q_{n}	TC
Parallel load	\uparrow	X	X	X	1	1	L	(a)
	\uparrow	X	X	X	1	h	H	(a)
Count Up	\uparrow	h	1	1	h	X	Count Up	(a)
Count Down	\uparrow	1	1	1	h	X	Count Down	(a)
Hold	\uparrow	X	h	X	h	X	q_{n}	(a)
do nothing	\uparrow	X	X	h	h	X	q_{n}	H

$H=$ High voltage level steady state.
$h=$ High voltage level one set-up time prior to the Low-to-High clock transition.
$L=$ Low voltage level steady state.
$1=$ Low voltage level one set-up time prior to the Low-to-High clock transition.
$X=$ Don't care.
$\mathbf{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition.
$\uparrow=$ Low-to-High clock transition
$(a)=$ The TC is Low when CET is Low and the counter is at Terminal Count. Terminal Count Up is with all Q_{n} outputs High and Terminal Count Down is with all Qn outputs Low.

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
$\mathrm{~h}_{1}$	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{0}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.50	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage ${ }^{4}$	2.0			V
$\mathrm{V}_{\text {li }}$	Low-level input voltage ${ }^{4}$			0.8	V
fik	Input clamp current			-18	mA
l_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=-\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}^{2}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.5			V
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I L}=\operatorname{Max}, \\ & I_{O L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$			0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {cC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} \text { 2 }}$	Input current at maximum input voltage		$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
$1 / 2$	Low-level intput current		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$			$V_{C C}=$ Max	-60	-115	-150	mA		
lcc	Supply current (total)	${ }^{1} \mathrm{CCH}$	$V_{c c}=$ Max	$\begin{gathered} P E=C E T=C E P= \\ U / \bar{D}=G N D, P_{n}=4.5 \mathrm{~V}, \\ C P=\uparrow \text {, Outputs Open } \end{gathered}$		93	120	mA		
		${ }^{\text {ICCL}}$		$\begin{gathered} P E=C E T=C E P= \\ U / D=G N D, C P=\uparrow \\ \text { Outputs Open } \end{gathered}$		98	125	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F, R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	115		85		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{pP} \mathrm{HL}} \end{aligned}$	Propagation delay CP to Q_{n} (Load)	$\begin{aligned} & \text { Waveform } 1 \\ & \text { PE }=\text { Low } \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to a_{n} (Count)	Waveform 1 PE $=$ High	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CET to TC	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay U/D to TC	Waveform 3	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{c c}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{8}(H) \\ & \mathbf{t}_{8}(L) \end{aligned}$	Setup time, High or Low P_{n} to CP	Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{h}(H) \\ & \mathbf{t}_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low P_{n} to CP	Waveform 4	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{6}(H) \\ & \mathbf{t}_{6}(L) \end{aligned}$	Set-up time, High or Low PE to CP	Waveform 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			8.5 9.5		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{h}(H) \\ & \mathbf{t}_{h}(L) \end{aligned}$	Hold time, High or Low $P E$ to $C P$	Waveform 4	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, High or Low CET, CEP to CP	Waveform 5	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$			$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{n}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CET, CEP to CP	Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{5}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low U/D to CP	Waveform 6	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width High or Low	Waveform 1	3.5 3.5			3.5 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. When testing devices to the functional table specified refer to the 'Recommended Operating Conditions' section of Application Note 202, "Testing and Specifying FAST Logic".

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

54F273

Flip-Flop

Octal D Flip-Flop
Product Specification

DESCRIPTION

The 54F273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP)) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.
The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.
All outputs will be forced Low independently of Clock or Data inputs by a Low voltage level on the MR input. The device
is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

FEATURES

- High-Impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D-type filp-flops
- Buffered common Clock
- Buffered, asynchronous Master Reset
- See 54F377 for Clock Enable version
- See 54F373 for transparent latch version
- See 54F374 for 3-State version

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$20-$ Pin Ceramic DIP	54 F273/BRA
$20-$ Pin Ceramic FlatPack	54 F273/BSA
$20-$ Pin Ceramic LLCC	$54 \mathrm{~F} 273 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$ L) HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0 .}-D_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
MR	Master Reset (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$C P$	Clock Pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

\square

LOGIC SYMBOL

Flip-Flop

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS		OUTPUTS	
	$\mathbf{M R}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{N}}$	$\mathbf{Q}_{\mathbf{N}}$
Reset (clear)	L	X	X	L
Load "1"	H	\uparrow	h	H
Load " 0 "	H	\uparrow	I	L

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the High-to-Low Clock transition
$L=$ Low voltage level steady state
$1=$ Low voltage level one setup time prior to the High-to-Low Clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High Clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
$V_{\text {H }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {L }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{1 K}$	Input clamp current			-18	mA
$\mathrm{IOH}^{\mathrm{O}}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	MR \& CP inputs ${ }^{3}$			$\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	2.5			v
		Other inputs	$\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$						
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{Min}$			-0.73	-1.2	V		
$\mathrm{l}_{\mathrm{H} 2}$	Input current at maximum input voltage		$V_{C C}=$ Max,	$7.0 \mathrm{~V}^{7}$			100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=$ Max,	$2.7 \mathrm{~V}^{7}$			20	$\mu \mathrm{A}$		
IIL	Low-level intput current		$V_{C C}=$ Max,	$0.5 \mathrm{~V}^{7}$			-20	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {OS }}$	Short-circuit output current ${ }^{4}$		$\mathrm{V}_{\mathrm{cc}}=$		-60		-150	mA		
lcc	Supply current ${ }^{5}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\begin{aligned} & V_{C C}=M a x, V_{1}=4.5 \mathrm{~V} \\ & V_{C C}=M a x, V_{1}=0.0 \mathrm{~V} \end{aligned}$			65	85	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				68	88	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	130	145		110^{6}		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $C P$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 2	4.5	7.0	9.5	3.0	12.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 3	3.0 3.0			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 3	0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CP	Waveform 2	8.0			9.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {w }}(\mathrm{L})$	Master Reset pulse width	Waveform 2	3.5			4.5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under Recommended Operating Conditions for the applicable type, and Function Table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. To reduce the effect of external noise during test.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests los tests should be performed last.
5. Measure I_{cc} after a momentary ground, then 4.5 V applied to clock with all outputs open and 4.5 V applied to the Master Reset input.
6. This parameter is guaranteed, but not tested.
7. All input 24.5 V except as noted.

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 3. Data Setup and Hold Times
NOTE: For all waveforms $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUITS AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {Out }}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Milltary Loglc Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Buffered inputs - one normalized load
- Word length easily expanded by cascading

DESCRIPTION

The 54F280A, 54F280B are 9-bit parity generators or checkers commonly used to detect errors in high-speed data transmission or data retrieval systems. Both Even and Odd parity outputs are available for generating or checking even or odd parity on up to 9 bits.

54F280A, 54F280B Parity Generator Checker

9-Bit Odd/Even Parity Generator/Checker
 Product Specificatlon

The Even parity output $\left(\Sigma_{\mathrm{E}}\right)$ is High when an even number of Data inputs $\left(\mathrm{I}_{0}-\mathrm{I}_{8}\right)$ are High. The odd parity output $\left(\Sigma_{0}\right)$ is High when an odd number of Data inputs are High.
Expansion to larger word sizes is accomplished by tying the Even outputs $\left(\Sigma_{E}\right)$ of up to nine parallel devices to the Data inputs of the final stage. This expansion scheme allows an 81-bit data word to be checked in less than 25 ns with the 54F280A, 54F280B.

The 54F280B is a speed enhanced version with better $t_{\text {PLH }}$ to tPHL matching.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 F280A/BCA $54 F 280 B / B C A$
14-Pin Ceramic FlatPack	54 F280A/BDA
54F280B/BDA	

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$I_{0}-I_{8}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\Sigma_{\mathrm{E}}, \Sigma_{0}$	Parity outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS	OUTPUTS	
Number of High Data Inputs $\left(I_{0}-I_{8}\right)$	Σ_{E}	Σ_{0}
Even $-0,2,4,6,8$	H	L
Odd $-1,3,5,7,9$	L	H

$H=$ High voltage level
$L=$ Low voltage level

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

Parity Generator Checker

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
VOH	High-level output voltage	$\begin{aligned} V_{C C} & =\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ V_{I H} & =\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$	2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{gathered} V_{C C}=\operatorname{Min}, V_{\text {IL }}=M a x, \\ V_{\text {Ih }}=M i n, l_{\text {OL }}=M a x \end{gathered}$. 35	. 50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {cC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$		-0.73	-1.2	V
$\mathrm{IHH}^{\text {H }}$	Input current at maximum input voltage	$V_{C C}=0.0 \mathrm{~V}, V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{IHH}^{\text {l }}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		4.0	20	$\mu \mathrm{A}$
Ill	Low-level input current	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$		-0.1	-20	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max, $V_{O}=0.0 \mathrm{~V}$	-60	-114	-150	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{\text {cc }}=$ Max		26	35	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS - 54F280A					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $I_{0}-I_{8} \text { to } \Sigma_{E}$	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.1 \end{gathered}$	$\begin{gathered} 9.0 \\ 13.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $I_{0}-I_{8} \text { to } \Sigma_{0}$	Waveform 1, 2	5.0 5.0	$\begin{aligned} & 8.6 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	4.0 4.0	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS - 54F280B					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $I_{0}-I_{8} \text { to } \Sigma_{E}$	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $I_{0}-I_{8} \text { to } \Sigma_{0}$	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with all outputs open.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circult for Totem-Pole Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUt }}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

FEATURES

- Common parallel l/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes; Shift left, shift right, load and store
- 3-State outputs for bus-oriented applications

54F299

Register

8-Input Universal Shift/Storage RegIster (3-State)

Product Specification

DESCRIPTION

The 54F299 is an 8-bit universal shift/storage register with 3-State outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy serial cascading. A separate active-Low Master Reset is used to reset the register.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 F299/BRA
20-Pin Flat Pack	54 F299/BSA
20-Pin Ceramic LLCC	54 F299/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
CP	Clock pulse input (Active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$D S_{0}$	Serial data input for right shift	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$D S_{7}$	Serial data input for left shift	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
S_{0}, S_{1}	Mode select inputs	1.0/2.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
MR	Asynchronous Master Reset input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\overline{\mathrm{O}} \mathrm{o}_{0} \mathbf{\nabla} \mathrm{E}_{1}$	Output Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$1 / \mathrm{O}_{\mathrm{n}}$	Parallel data inputs or 3-State parallel outputs	$\begin{aligned} & 3.5 / 1.0 \\ & 150 / 33 \end{aligned}$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$ $3.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu A$ in the High State and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Register

The 54F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. the type of operation is determined by S_{0} and S_{1}, as shown in the Function Table. All flip-flop outputs arebrought out through 3-State buffers to separate l/O pins that also serve as data inputs in the
parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A Low signal on MR overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recom-
mended set-up and hold times, relative to the rising edge of $C P$, are observed.

A High signal on either OE_{0} or OE1 disables the 3-State buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-State buffers are also disabled by High signals on both S_{0} and S_{1} in preparation for a parallel load operation.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					OPERATING MODE
MR	$\mathbf{O E}_{\mathrm{n}}$	\mathbf{S}_{1}	\mathbf{S}_{0}	$\mathbf{C P}$	
L	L	X	X	X	Asynchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ Low
H	L	H	H	\uparrow	Parallel load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	L	H	\uparrow	Shift right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	L	H	L	\uparrow	Shift left; $\mathrm{DS}_{7} \rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \rightarrow \mathrm{Q}_{6}$, etc.
H	L	L	L	X	Hold
X	H	X	X	X	Outputs Disabled

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage range		-0.5 to +7.0	V
V_{1}	Input voltage range		-0.5 to +7.0	V
I_{1}	Input current range		-30 to +5	mA
V_{0}	Voltage applied to output in High output state range		-0.5 to $+V_{\text {cc }}$	V
lo	Current applied to output in Low output state	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	40	mA
		$1 / O_{n}$	40	mA
TSTG	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
V_{LL}	Low-level input voltage				0.8	V
$\mathrm{I}_{1 K}$	Input clamp current				-18	mA
${ }_{\mathrm{OH}}$	High-level output current	Q_{0}, Q_{7}			-1	mA
		$1 / O_{n}$			-3	mA
loL	Low-level output current	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			28	mA
		$1 / O_{n}$			20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			$\begin{gathered} V_{C C}=\operatorname{Min}, V_{I L}=\operatorname{Max} \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.5			V
		$1 / \mathrm{O}_{\mathrm{n}}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4				V		
			$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5		3.4		V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{IOL}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$. 35	. 50	V		
V_{KK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	others	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$1 / \mathrm{O}_{\mathrm{n}}$	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA		
I_{1+1}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		others				-0.4	-0.6	mA		
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{HH}} \end{aligned}$	Off-state output current High-level voltage applied	I / O_{n} only	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \mathrm{I}_{\mathrm{OZL}} \\ & +I_{\text {IL }} \end{aligned}$	Off-state output current Law-level voltage applied	$1 / O_{n}$ only	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{\text {CC }}=$ Max, V_{0}		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{c c}=\mathrm{Max}$			50	85	mA		
		ICCL				64	85	mA		
		Iccz				60	85	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note

 202, "Testing and Specifying FAST Logic.")| SYMBOL | PARAMETER | TEST CONDITIONS | LIMITS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$ | | | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$ | | |
| | | | Min | Typ | Max | Min | Max | |
| $f_{\text {MAX }}$ | Maximum clock frequency | Waveform 1 | 85 | 115 | | 85^{4} | | MHz |
| $t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation delay CP to Q_{0} or Q_{7} | Waveform 1 | $\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHLL }} \end{aligned}$ | Propagation delay CP to $1 / O_{n}$ | Waveform 1 | $\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 11.0 \\ & 11.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{t}_{\text {PHL }}$ | Propagation delay
 MR to Q_{0} or Q_{7} | Waveform 2 | 5.5 | 7.5 | 9.5 | 5.5 | 11.5 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation delay MR to $1 / O_{n}$ | Waveform 2 | 5.5 | 7.5 | 10.0 | 5.5 | 11.5 | ns |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathbf{t}_{\mathrm{pZL}} \end{aligned}$ | Output Enable time S_{n}, OE to $/ / O_{n}$ | Waveform 4 Waveform 5 | $\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$ | $\begin{gathered} 8.0 \\ 10.0 \end{gathered}$ | $\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{array}{r} 10.0 \\ 12.0 \\ \hline \end{array}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$ | Output Disable time S_{n}, $O E$ to I / O_{n} | Waveform 4 Waveform 5 | $\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ |

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{s}(L) \end{aligned}$	Setup time, High or Low S_{0} or S_{1} to CP	Waveform 3	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 8.5 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S_{0} or S_{1} to $C P$	Waveform 3	0			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & \mathbf{t}_{\delta}(L) \end{aligned}$	Set-up time, High or Low $I / O_{n}, D S_{0}$ or $D S_{1}$ to $C P$	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{h}(H) \\ & \mathbf{t}_{h}(L) \end{aligned}$	Hold time, High or Low $1 / O_{n}, D S_{0}$, or DS_{1} to CP	Waveform 3	0 0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{w}	CP Pulse width	Waveform 1	4.0			4.0		ns
$t_{w}(\mathrm{~L})$	MR Pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{t}_{\text {tec }}$	Recovery time, MR to CP	Waveform 2	4.0			4.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Guaranteed and not tested parameter.

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 3. Data and Select Setup and Hold Times
σ_{n}

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

54F350

Shifter

Milltary Logic Products

4-Bit Shifter (3-State)

Product Specification

FEATURES

- Shifts 4 bits of data to 0,1,2,3 places under control of two select lines
- 3-State outputs for bus organized systems

DESCRIPTION

The 54F350 is a combination logic circuit that shifts a 4-bit word from 0 to 3 places. No clocking is required as with shift registers.
The 54F350 can be used to shift any number of bits any number of places up or
down by suitable interconnection. Shifting can be:

1. Logical - with logic zeros filled in at either end of the shifting field.
2. Arithmetic - where the sign bit is extended during a shift down.
3. End around - where the data word forms a continuous loop.

The 3-State outputs are useful for bus interface applications or expansion to a larger number of shift positions in end around
shifting. The active Low Output Enable (OE) input controls the state of the outputs. The outputs are in the High impedance "off" state when OE is High, and they are active when $\overline{O E}$ is Low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-PIn Ceramic DIP	$54 F 350 / B E A$
16-Pin Ceramic FlatPack	$54 \mathrm{~F} 350 / \mathrm{BFA}$
20-Pin Ceramic LLCC	$54 \mathrm{~F} 350 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 \mathrm{~F}(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{S}_{0} \mathrm{~S}_{1}$	Select inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{I}_{3}-I_{3}$	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} 1.2 \mathrm{~mA}$
OE	Output enable input (Active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} 1.2 \mathrm{~mA}$
$\mathrm{Y}_{0}-Y_{3}$	3-State outputs	$150 / 33.3$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

סE	\mathbf{S}_{1}	\mathbf{S}_{0}	I_{3}	I_{2}	I_{1}	I_{0}	I_{-1}	I_{-2}	I_{-3}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
H	X	X	X	X	X	X	X	X	X	Z	Z	Z	Z
L	L	L	D_{3}	D_{2}	D_{1}	D_{0}	X	X	X	D_{3}	D_{2}	D_{1}	D_{0}
L	L	H	X	D_{2}	D_{1}	D_{0}	D_{-1}	X	X	D_{2}	D_{1}	D_{0}	D_{-1}
L	H	L	X	X	D_{1}	D_{0}	D_{-1}	D_{-2}	X	D_{1}	D_{0}	D_{-1}	D_{-2}
L	H	H	X	X	X	D_{0}	D_{-1}	D_{-2}	D_{-3}	D_{0}	D_{-1}	D_{-2}	D_{-3}

H = High voltage level
L = Low voltage level
X = Don't care
Z = High-impedance (OFF) state
$D_{n}=$ High or Low state of referenced I_{n} input

LOGIC EQUATIONS

$$
\begin{aligned}
& Y_{0}=S_{0} \cdot S_{1} \cdot I_{0}+S_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot S_{1} \cdot I_{2}+S_{0} \cdot S_{1} \cdot I_{3} \\
& Y_{1}=S_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot S_{1} \cdot I_{0}+S_{0} \cdot S_{1} L_{1}+S_{0} \cdot S_{1} \cdot I_{2} \\
& Y_{2}=S_{0} \cdot S_{1} \cdot I_{2}+S_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot S_{1} \cdot I_{0}+S_{0} \cdot S_{1} \cdot L_{1} \\
& Y_{3}=S_{0} \cdot S_{1} \cdot I_{3}+S_{0} \cdot S_{1} \cdot I_{2}+S_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot S_{1} \cdot b_{6}
\end{aligned}
$$

Shifter

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
V_{CC}	Supply valtage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{KL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current			-3	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{V}_{\mathrm{OH} 2}$	High-level output voltage				$\begin{gathered} V_{C C}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{l}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
$\mathrm{V}_{\mathrm{OH} 1}$	High-level output voltage		$\mathrm{IOH}^{\mathrm{H}} 1=-1 \mathrm{~mA}$	2.5				V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\text {cC }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOL}^{\text {l }}$	Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=$ Min, I_{1}	$=I_{1 K}$		-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$V_{C C}=$ Max, V	7.0V			100	$\mu \mathrm{A}$		
$\mathrm{l}_{\mathrm{H} 1}$	High-level input current		$V_{\text {cC }}=M a x, V_{1}$	2.7 V		1	20	$\mu \mathrm{A}$		
ILI	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.9	-1.2	mA		
lozh	Off-state output current, High-level voltage applied		$V_{C C}=$ Max, $V_{I H}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
lozı	Off-state output current, Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60	-90	-150	mA		
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\operatorname{Max}$			22	35	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				26	41	mA		
		Iccz				26	42	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathbf{t}_{\mathbf{t}_{\text {PLHL }}}$	Propagation delay S_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathbf{t}_{\text {tphz }}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

APPLICATIONS

8-Bit End Around Shift 0, 1, 2, 3, 4, 5, 6, 7 Places

APPLICATIONS (Continued)

APPLICATIONS (Continued)

AC WAVEFORMS

Waveform 1. Propagatlon Delay Data and Select to Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all wavetorms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
tPLZ trZ All other	closed closed open

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to ZOUT of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Buffer/Driver

Hex Buffer/Driver (3-State)
Product Specification

FEATURES

- High-Impedance NPN base inputs for reduced loading $(20 \mu \mathrm{~A}$ in Low and High states)
- 3-State buffer outputs sink 48 mA
- High-speed
- Bus oriented

FUNCTION TABLE

INPUTS		OUTPUTS
$\mathrm{OE}_{\mathbf{n}}$	I	$\mathrm{Y}_{\boldsymbol{n}}$
L	L	L
L	H	H
H	X	$\mathrm{Z})$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 F367/BEA
16-Pin Ceramic Flat Pack	54 F367/BFA
20-Pin Ceramic LLCC	$54 F 367 / \mathrm{B} 2 A$

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
$O E_{1, ~}^{\text {OE }}{ }_{2}$	3-State output enable input (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I}_{0}-I_{5}$	Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$Y_{0}-Y_{5}$	Outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC SYMBOL

Buffer/Driver

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to 5.5	V
I_{0}	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High-level input voltage	2.0			V
V_{L}	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
IOH_{2}	High-level output current			-3	mA
$\mathrm{I}_{\mathrm{OH} 3}$	High-level output current			-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS					
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	$\mathrm{l}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{V}_{\mathrm{IL}}=$ Max,	$\mathrm{IOH}_{2}=-3 \mathrm{~mA}$	2.4			V		
			$\mathrm{V}_{\mathbb{H}}=\mathrm{Min}$	$\mathrm{l}^{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0			V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=\mathrm{Max}$			0.35	0.50	V		
V_{K}	Input clamp voltage		$V_{C C}=\operatorname{Min}, 1_{1}=I_{1 K}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage		$\mathrm{V}_{\text {cc }}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C c}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
IIL	Low-level input current		$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$			-1	-20	$\mu \mathrm{A}$		
$\mathrm{IOZH}^{\text {O}}$	Off-state output current, High-level voltage applied		$V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, V_{O}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$		
Iozl	Off-state output current, Low-level voltage applied		$V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, V_{O}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M a x$		-100		-225	mA		
Icc	Supply current (total)	ICCH	$V_{c C}=$ Max			25	35	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				47	62	mA		
		lccz				35	48	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathbf{t}_{\mathbf{t}_{\text {pZL }}}$	Output enable time to High or Low level	Waveform 2 \& 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\mathrm{tpHz}} \mathrm{t}_{\mathrm{PLZ}}$	Output disable time from High to Low level	Waveform 2 \& 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 1. For Non-Inverting Outputs

Waveform 2. 3-State Output Enable time to High level and Output Disable time from High leve!

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:
$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes iig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $Z_{\text {out }}$ of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

54F373, 54F374
 Latches/Flip-Flops

54F373 Octal Transparent Latch (3-State) 54F374 Octal D Flip-Flop (3-State)
 Product Specification

Military FAST Products

FEATURES

- 8-blt transparent latch - 54F373
- 8-bit positive, edge-triggered register - 54F374
- 3-State output buffers
- Common 3-State output enable
- Independent register and 3-State buffer operation
- See 54F573 for broadside pinout version of the 54F373
- See 54F574 for broadside pinout version of the 54F374

DESCRIPTION

The 54F373 is an octal transparent latch coupled to eight 3-State output buffers.

The two sections of the device are controlled independently by Enable (E) and Output Enable (OE) control gates.
The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active Low Output Enable (DE) controls all eight 3 -State buffers independent of the latch operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 F373/BRA
	$54 F 374 / \mathrm{BRA}$
20-Pin Ceramic FlatPack	$54 \mathrm{~F} 373 / \mathrm{BSA}$,
	$54 F 374 / \mathrm{BSA}$
20-Pin Ceramic LLCC	$54 \mathrm{~F} 373 / \mathrm{B} 2 \mathrm{~A}$,
	$54 \mathrm{F374/B2A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}(54 \mathrm{~F} 373)$	Latch enable input (active High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Output enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{CP}(54 \mathrm{~F} 374)$	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-Q_{7}$	3-State outputs	$150 / 33$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC DIAGRAM, 54F373

LOGIC DIAGRAM, 54F374

When $O E$ is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.

The 54F374 is an 8-bit, edge-triggered register coupled to eight 3 -State output buffers. The two sections of the device are controlled indepen-
dently by the Clock (CP) and Output Enable (OE) control gates. The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories,
or MOS microprocessors. The active Low Output Enable (OE) controls all eight 3-State buffers independent of the register operation. When $O E$ is Low, the data in the register appears at the outputs. When OE is High, the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.

MODE SELECT — FUNCTION TABLE, 54F373

OPERATING MODES	INPUTS			INTERNAL REGISTER	$\begin{gathered} \text { OUTPUTS } \\ Q_{0} \cdot Q_{7} \end{gathered}$
	OE	E	D_{n}		
Enable and read register	\bar{L}	H H	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	L H
Latch and read register	L	L	I h	L	L
Latch register and disable outputs	H H	X	X X	X	(Z)

MODE SELECT — FUNCTION TABLE, 54F374

OPERATING MODES	INPUTS			INTERNAL REGISTER	$\begin{gathered} \text { OUTPUTS } \\ Q_{0} \cdot Q_{7} \end{gathered}$
	OE	CP	D_{n}		
Load and read register	L	\uparrow	$\begin{aligned} & \text { I } \end{aligned}$	L	L H
Load register and disable outputs	H H	X \times	X \times	$\begin{aligned} & x \\ & x \end{aligned}$	(Z)

$H=$ High voltage level
$h=$ High voltage level one setup time prior to the Low-to-High clock transition or High-to-Low E transition
$L=$ Low voltage level
$X=$ Don't care
I = Low voltage level one setup time prior to Low-to-High clock transition or High-to-Low E transition
$(Z)=$ High impedance "off" state
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {H }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
IOH^{1}	High-level output current			-1	mA
$\mathrm{l}_{\mathrm{OH} 2}$	High-level output current			-3	mA
l_{O}	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{gathered}$		$\mathrm{IOHt}^{\text {a }}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{l}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4					V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=M a x, I_{L L}=M a x \end{aligned}$				0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cC }}=$ Min, $I_{1}=I_{1 K}$				-0.73	-1.2	V			
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{HH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Off-state output current, Low-level voltage applied		$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage		$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathrm{HI}_{1}}$	High-level input current		$\mathrm{V}_{\mathrm{cc}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
In	Low-level input current		$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$			-60		-150	mA			
Icc	Supply current (total)	54F373	$V_{c c}=\operatorname{Max}$	$\mathrm{I}_{\mathrm{cc}} z^{\circ}$	$\begin{aligned} & 24.0 \mathrm{~V} \\ & \text { inputs }=E=G N D \end{aligned}$		35	55	mA			
		54F374		$\mathrm{I}_{\text {czz }}$	$\begin{aligned} & \geq 4.0 \mathrm{~V} \\ & \text { inputs }=\text { GND } \end{aligned}$		57	86	mA			

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} t 0+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
				Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	54F374	Waveform 6	100			60		MHz
$\begin{array}{\|l\|l\|} \hline \text { PLLH } \\ t_{\text {PHL }} \\ \hline \end{array}$	Propagation delay E to Q_{n}	54F373	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 15.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{array}{\|l\|l} \hline \text { tpLH } \\ \text { tPHLL } \end{array}$	Propagation delay $D_{n} \text { to } Q_{n}$	54F373	Waveform 4	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tpLH tphi	Propagation delay CP to Q_{n}	54F374	Waveform 6	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpZH	Output enable time to High level	$\begin{aligned} & 54 \mathrm{~F} 373 \\ & 54 \mathrm{~F} 374 \end{aligned}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 13.5 \\ 14.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PzL }}$	Output enable time to Low level	$\begin{aligned} & 54 \mathrm{~F} 373 \\ & 54 \mathrm{~F} 374 \end{aligned}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPHZ	Output disable time from High level	$\begin{aligned} & 54 \mathrm{~F} 373 \\ & 54 \mathrm{~F} 374 \end{aligned}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tplz	Output disable time from Low level	$\begin{aligned} & 54 \mathrm{~F} 373 \\ & 54 \mathrm{~F} 374 \end{aligned}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to E	54F373		Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{n}(\mathrm{H}) \\ & \mathrm{t}_{n}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to E	54F373		Waveform 5	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\boldsymbol{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock pulse width	54F374	Waveform 6	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$			7.0 6.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{s}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	54F374	Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.5 2.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP	54F374	Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & t_{N}(H) \\ & t_{W}(L) \end{aligned}$	Latch enable pulse width	54F373	Waveform 1	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			6.0 6.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 7. Data Setup and Hold Times

TEST CIRCUIT AND WAVEFORM

Signetics

Military FAST Products

FEATURES

- Select inputs from two data sources
- Fully positive edge-triggered operation
- Both True and Complementary outputs - 54F398

54F398, 54F399

Registers

54F398 - Quad 2-Port Register w/ True \& Complementary Outputs 54F399 - Quad 2-Port Register

Product Specification

DESCRIPTION

The 54F398 and 54F399 are the logical equivalent of a quad 2 -input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flops on the rising edge of the clock. The 54F399 is the 16 -pin version of the 54 F398, with only the Q outputs of the flip-flops available.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 F398/BRA
	54 F399/BEA
	Ceramic Flat Pack
Ceramic LLCC	54 F398/BSA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\text {Oa }}-\mathrm{I}_{\text {d }}$	Data inputs from source 0	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{1 \mathrm{a}-\mathrm{I}_{1 \mathrm{~d}}}$	Data inputs from source 1	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
S	Common select input	1.0/1.0	$20 \mu A / 0.6 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$Q_{a}-Q_{d}$	Register true outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\bar{Q}_{a}-\bar{Q}_{d}$	Register complementary outputs (54F398)	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

s 1	20 vcc
$\mathrm{O}_{\mathrm{a}} \underline{2}$	$19 \mathrm{O}_{\mathrm{d}}$
$0_{a} \sqrt{3}$	18. a_{d}
10.4	17 IOd
1 la 5	$16 \mathrm{I}_{1 \mathrm{~d}}$
$1 \mathrm{lb} \sqrt{6}$	15 I Ic
lob 7	$14 \mathrm{l}_{0 \mathrm{c}}$
$\sigma_{b} 8$	$13 \sigma_{c}$
$0_{b} \quad 9$	12. Q_{c}
GND 10	11 CP
For LLCC Pin assignments, see JEDEC Standard No. 2	

LOGIC SYMBOL

PIN CONFIGURATION

LOGIC SYMBOL

The 54F398 and 54F399 are high-speed quad 2 -port registers. They select 4 bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the Low-to-High transition of the Clockinput (CP). The 4 -bit D-type outputregister is fully edge-triggered. The Data inputs (lox, $I_{1 x}$) and Select input (S) must be stable only a set-up time prior to and hold time after the Low-to-High transition of the Clock input for predictable operation. The 54 F 398 has both Q and Q outputs.

FUNCTION TABLE

INPUTS			OUTPUTS	
\mathbf{S}	I_{0}	I_{1}	Q	\mathbf{Q}^{*}
I	I	X	L	H
I	h	X	H	L
h	X	I	L	H
h	X	h	H	L

*54F398 only
I = Low voltage level one setup time prior to Low-to-High clock transition
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
H = High voltage level
$X=$ Don't care

LOGIC DIAGRAM (54F398 only)

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$V_{1 H}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
$\mathrm{laL}^{\text {l }}$	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
$\mathrm{V}_{\text {OH }}$	High-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.5			V
V_{O}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{IOL}=\mathrm{Max}_{\mathrm{V}} \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
IVL	Low-level infut current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max	-60		-150	mA	
Icc	Supply current ${ }^{4}$ (total)	54F398	$\mathrm{V}_{\mathrm{cc}}=$ Max		25	38	mA	
		54F399			22	34	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specitying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	120		80^{5}		MHz
$t_{\text {PLH }}$ to	Propagation delay $C P$ to Q or \bar{Q}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, High or Low I_{n} to CP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low I_{n} to CP	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.5 1.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{s}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time, High or Low Sto CP	Waveform 2	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$			10.5 10.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low S to CP	Waveform 2	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests los tests should be performed last.
4. $\mathrm{V}_{\mathbb{I}}=$ High; apply $3 \mathrm{~V}, \mathrm{OV}, 3 \mathrm{~V}$ to CP then make measurement.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 2. Data Setup and Hold Times

Registers

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54F432

Latch

Multi-Mode Buffered Latch, INV (3-State)
Product Specification

FEATURES

- Status flip-flop for interrupt commands
- Asynchronous or latched recelver mode
- Inverting
- 3-State outputs
- 300mil-wide Slim DIP package
- Functional equivalent to Intel 8212 except that 54F432 has inverting outputs

DESCRIPTION

The 54F432 has 8 data latches with 3-State output buffers. Also included is a status flip-flop for providing service-busy or request-interrupt commands. Separate Mode (M) and Select ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) inputs allow data to be stored with the outputs enabled or disabled. The device can also be operated in a fully transparent mode.
This device is functionally equivalent to the Intel 8212 except that the 54F432 has inverting outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	54 F432/BLA
24-Pin Ceramic FlatPack	54 F432/BKA
28-Pin Ceramic LLCC	54 F432/B3A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
STB	Strobe input	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
M	Mode Control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
INT	Interrupt output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data latched outputs	$150 / 33$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

This high-performance eight-bit parallel expandable buffer register incorporates mode selection inputs and an edge-trigger status flip-flop designed specifically for implementing bus organized input/output ports. The 3-State data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data. An integral status flip-flop provides busy or request interrupt commands.
The eight data latches are fully transparent when the internal gate enable input, G , is High and the outputs are enabled. Latch transparency is selected by the mode control (M), select (S_{0} and S_{1}), and the strobe (STB) inputs and during transparency each data output (Q_{n})
follows its respective data input $\left(\mathrm{D}_{n}\right)$. This mode of operation can be terminated by clearing, deselecting, or holding the data latches.
An input mode or an output mode is selectable from the M input. In the input mode, $M=L$, the eight data latch inputs are enabled when the strobe is High regardless of device selection. If selected during an input mode, the outputs will follow the data inputs. When the strobe input is taken Low, the latches will store the most recently set up data.
In the output mode, $\mathrm{M}=\mathrm{H}$, the output buffers are enabled regardless of any other control input. During the output mode the content of the register is under control of the select (S_{0} and S_{1}) inputs. See the Data Latches Function Table.

STATUS FLIP-FLOP FUNCTION TABLE

INPUTS				OUTPUT
MR	$\mathbf{S}_{\mathbf{0}}$	S $_{\mathbf{1}}$	STB	INT
L	H	X	X	H
L	X	L	X	H
H	X	X	\downarrow	L
H	L	H	X	L

$\mathrm{H}=$ High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
$\downarrow=$ High-to-Low clock transition

DATA LATCHES FUNCTION TABLE

INPUTS					DATA IN	DATA OUT	OPERATING MODE
MR	M	S_{0}	S_{1}	STB			
L	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Clear
$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	L	X H	L	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	De-select
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	H L	$\begin{aligned} & \hline X \\ & H \end{aligned}$	\bar{X}	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{a}}_{0} \\ & \overline{\mathrm{a}}_{0} \end{aligned}$	Hold
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	H L	Data Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Data Bus

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High impedance
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	40	mA
			40
$T_{\text {STG }}$	Storage temperature range	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	ma

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {ll }}$	Low-level input voltage		*		0.8	V
$\mathbf{I M K}_{1}$	Input clamp current				-18	mA
IOH	High-level output current	INT			-1.0	mA
		$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			-3.0	mA
loL	Low-level output current	INT			20	mA
		$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LMMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5			V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4				V		
Vol	Low-level output voltage		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max} \end{gathered}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$. 35	. 50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V		
H_{1}	Input current at maximum input voltage		$V_{C c}=$ Max, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IH_{H}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
$\mathrm{l}_{\text {OzH }}$	Off-state output current High-level voltage applied		$V_{c c}=$ Max, $V_{0}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozz	Off-state output current Low-level voltage applied		$V_{C C}=M a x, V_{0}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {cC }}=$ Max, V_{0}		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{c c}=\operatorname{Max}$			40	55	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				50	70	mA		
		ICCZ				50	65	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathfrak{t}_{\text {PHL }} \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	Waveform 2	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ or STB to Q_{n}	Waveform 1, 2	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{0} or S_{1} to INT 2	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{array}{r} 9.5 \\ 10.0 \end{array}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tpli	Propagation delay MP to Q_{n}	Waveform 2	8.0	12.0	16.0	7.5	18.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay STB to INT	Waveform 2	7.0	10.0	13.5	6.5	14.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{pzH}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level S_{0} or S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time from High or Low level S_{0} or S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{tzH}} \\ \mathrm{t}_{\mathrm{pZL}} \end{gathered}$	Output Enable time to High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{t_{\text {PHL }}}$	Output Disable time from High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 9.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low D_{n} to $\mathrm{S}_{0}, \mathrm{~S}_{1}$, STB or M	Waveform 3	0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to S_{0}, S_{1}, STB or M	Waveform 3	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(H) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	$\mathrm{S}_{0}, \mathrm{~S}_{1}$ or STB Pulse width High or Low	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(L)$	MR Pulse width	Waveform 4	8.0			9.0		ns
$\mathrm{t}_{\text {toc }}$	Recovery time	Waveform 4	0			0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 1. Propagatlon Delay for Non-Inverting Outputs

Waveform 3. Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for Inverting Outputs

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

54F455, 54F456

Buffers/Drivers

FEATURES

- High Impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 54F455 combines 54F240 and 54F280A functions in one package
- 54F456 combines 54F241 and 54F280A functions in one package
- 54F455A and 54F456A are center pin versions of the 54F655A and 54F656A respectively

54F455 Octal Buffer/Line Driver with Parity, Inverting (3-State) 54F456 Octal Buffer/Line Driver with Parity, Non-Inverting (3-State)

Product Specification

- 54F455 Inverting 54F456 Non-Inverting
- 3-State outputs sink 48 mA and source 12mA
- 24-pin slim DIP (300 mil) package
- Inputs on one side and outputs on the other side simplify PC board layout
- Center power and ground to reduce ground bounce and system nolse

DESCRIPTION

The 54F455 and 54F456 are octal buffers and line drivers with parity generation/ checking designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers. These parts include parity generator/ checker to improve PC board density.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54F455/BLA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
In_{n}	Data inputs	1.010.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
PI	Parity input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{O}} \mathrm{E}_{1} \mathrm{OE}_{2}$	3-State output enable inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
P_{n}	Data outputs (54 F 455)	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
Y_{n}	Data outputs (54F456)	600/80	12 mA 488 mA
Σ_{E}, Σ_{0}	Parity outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM FOR 54 F456 (*outputs are inverted for 54F455)

PIN CONFIGURATION

LOGIC SYMBOL

INPUTS	PARITY OUTPUTS	
Number of inputs, High $\left(\mathrm{PI}, \mathrm{I}_{0}-\mathrm{I}_{7}\right)$	Σ_{E}	Σ_{0}
Even $-0,2,4,6,8$	H	L
Odd $-1,3,5,7,9$	L	H
Any $\overline{\mathrm{OE}}=$ High	Z	Z

FUNCTION TABLES

INPUTS $^{\prime}$			DATA OUTPUTS	
$\overline{O E_{1}}$	$\overline{O E}_{\mathbf{2}}$	I_{N}	54F455	54F456
L	L	L	H	L
L	L	H	L	H
H	X	X	(Z)	(Z)
X	H	X	(Z)	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance level
ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{0}	Current applied to output in Low output state	96	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS			UNIT	
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current			-3	mA
$\mathrm{I}_{\mathrm{OH} 3}$	High-level output current			-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathbb{H}}=\operatorname{Min}$	$\mathrm{IOH2}^{2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{IOH}_{1}=-1 \mathrm{~mA}$	2.5				V		
			$\mathrm{l}_{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0				V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{\text {IK }}$			-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{Cc}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
I_{1}	Low-level input current		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
$\mathrm{l}_{\mathrm{OzH}}$	Off-state current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozz	Off-state current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\operatorname{Max}$		-100		-225	mA		
Icc	Supply current (total)	$\mathrm{l}_{\mathrm{CCH}}$	$V_{C C}=\operatorname{Max}$			50	80	mA		
		$l_{\text {cel }}$				78	110	mA		
		Iccz				63	90	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
	Propagation delay I_{n} to Y_{n} (54F455)	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay I_{n} to Y_{n} (54F456)	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{pLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation delay $I_{n} \text { to } \Sigma_{E}, \Sigma_{0}$	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 15.0 \\ 18.0 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Enable time to High level Enable time to Low level	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Disable time from High level Disable time from Low level	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 1. Propagation Delay for I_{n} to $\Sigma_{E}, \Sigma_{O}, Y_{n}$

Waveform 3. 3-State Output Enable time to High level and Output Disable time from High level

Waveform 2. Propagation Delay for I_{n} to $\Sigma_{E}, \Sigma_{0}, Y_{n}$

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Military FAST Products

54F521
 Comparator

8-Bit Identity Comparator
 Product Specificatlon

FEATURES

- Compares two 8-blt words in 6.5ns typlcal
- Expandable to any word length

DESCRIPTION

The 54F521 is an expandable 8-bit comparator. It compares two words of up to 8 bits each and provides a Low output when the two words match bit forbit. The expansion input T_{A-B} also serves as an activeLow enable input.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$20-$-Pin Ceramic DIP	$54 F 521 / \mathrm{BRA}$
$20-$-Pin Ceramic FlatPack	54 F521/BSA
20 -Pin Ceramic LLCC	54 F521/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0} \cdot A_{7}$	Word A inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$B_{0}-B_{7}$	Word B inputs	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{T}_{\text {A }}$ - $\mathrm{B}^{\text {a }}$	Expansion or enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
\bar{Q}_{A-B}	Identity output (active Low)	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Comparator

TRUTH TABLE

INPUTS		OUTPUT
$\mathrm{I}_{\mathrm{A}=\mathrm{B}}$	A, B	$\overline{\mathrm{Q}}_{\mathrm{A}=\mathrm{B}}$
L	$\mathrm{A}=\mathrm{B}^{*}$	L
L	$\mathrm{~A} \neq \mathrm{B}$	H
H	$\mathrm{A}=\mathrm{B}^{*}$	H
H	$\mathrm{~A} \neq \mathrm{B}$	H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
${ }^{*} A_{0}=B_{0}, A_{1}=B_{1}, A_{2}=B_{2}$, etc.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voitage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, I_{1}=I_{1 K}$		-0.73	-1.2	V	
I_{1+2}	input current at maximum input voltage		$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current		$V_{C C}=\mathrm{Max}_{1} \mathrm{~V}_{1}=2.7 \mathrm{~V}$		1	20	$\mu \mathrm{A}$	
I_{12}	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$		-0.4	-0.6	mA	
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$	-60	-90	-150	mA	
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{\text {cc }}=$ Max		24	36	mA	
		$\mathrm{I}_{\mathrm{CCL}}$			15.5	23	mA	

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} or B_{n} to \bar{C}_{A-B}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tphi $^{\text {P }}$	Propagation delay $T_{A-B} \text { to } Q_{A=B}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests los tests should be performed last.
4. For $\mathrm{I}_{\mathrm{CcH}}$ all inputs are grounded except B_{0} can be any one input, which is at $\geq 4.0 \mathrm{~V}$. For $\mathrm{I}_{\mathrm{CCL}}$ all inputs are grounded.

APPLICATION DIAGRAMS

Ripple Expansion

Parallel Expansion

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- 8-bit positive edge-triggered register
- 3-State Inverting output buffers
- Common 3-State Output Enable
- Independent register and 3-State buffer operation

DESCRIPTION

The 54F534 is an 8-bit edge-triggered register coupled to eight 3 -State inverting output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable (OE) control gates.

54F534 Latch/Flip-Flop

 54F534 Octal D Flip-Flop (3-State)Product Specification

The register is fully edge-triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output. The clock buffer has about 400 mV of hysteresis built in to help minimize problems that signal and ground noise can cause the clocking operation.

The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable (OE) controls all eight 3-State buffers
independent of the register operation. When CE is Low, data in the register appears at the outputs. When OE is High, the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20 -Pin Ceramic DIP	54 F534/BRA
20 -Pin Ceramic FlatPack	54 F534/BSA
20 -Pin Ceramic LLCC	54 F534/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\overline{O E}$	Output enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$C P$	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{O}_{0}-\bar{C}_{7}$	3-State outputs	$150 / 33$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

	20 VCC (19) σ_{7} 18. D_{7} $17 \mathrm{D}_{6}$ 16) σ_{6} (15) σ_{5} (14) D_{5} 13 D_{4} (12) σ_{4} (11) CP
For LLCC Pin Assignments see JEDEC Standard No. 2	

LOGIC SYMBOL

Latch/Flip-Flop

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS
	$\mathbf{O E}$	$\mathbf{C P}$	$\mathrm{D}_{\mathbf{n}}$		L
Load and read register	L	\uparrow	I	G	
	L	\uparrow	h	H	H
Disable outputs	H	X	X	X	L

$H=$ High voltage level
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition or High-to-Low OE transition
$L=$ Low voltage level
$X=$ Don't Care.
$I=$ Low voltage level one setup time prior to the Low-to-High Clock transition or High-to-Low CP transition
$(Z)=$ High impedance "off" state
$\uparrow=$ Low-to-High Clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Uniess otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
l_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$

Latch/Flip-Flop

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage 5	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage 5			+0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current			-3.0	mA
$\mathrm{I}_{\mathrm{OH} 1}$	High-level output current			-1.0	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IH}}=\text { Max } \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{IOH} 2=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{IOH}=-1 \mathrm{~mA}$	2.5			V
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{IOL}^{2}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, l_{1}=l_{1 K}$			-0.73	-1.2	V
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$
	Low-level input current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA
lozh	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			2	50	$\mu \mathrm{A}$
lozl	Off-state output current, Low-level voltage applied	$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-2	-50	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{0}=0.0 \mathrm{~V}$		-60	-90	-150	mA
$l_{\text {cc }}$	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$			55	86	mA

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 3	100			60		MHz
$\begin{aligned} & \mathrm{t} \mathrm{~L} \mathrm{H} \\ & \mathrm{t} \mathrm{HL} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{n}	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{tzL}} \end{aligned}$	Output enable time to High or Low level	Waveform 1 Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{HzZ}} \\ & \mathrm{t}_{\mathrm{tz}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 1 Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure $I_{c c z}$ with $O E$ inputs $\geq 4.0 \mathrm{~V}$ and D_{n} inputs at ground and all outputs open.
5. When testing devices to the Functional Table specified, refer to the "Recommended Operating Conditions" section of the Application Note 202, "Testing and Specifying FAST Logic."

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{5}(\mathrm{H}) \\ & \mathrm{t}_{5}(\mathrm{~L}) \end{aligned}$	Setup time, D_{n} to $C P$	Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, D_{n} to CP	Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{W}(H) \\ & t_{W}(L) \end{aligned}$	CP pulse width, High or Low	Waveform 3	7.0 6.0			$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to ZOut of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Product

54F538

Decoder

1-of-8 Decoder (3-State)

Product Specification

DESCRIPTION

The 54F538 decoder/demultiplexer accepts three address ($A_{0}-A_{3}$) input signals and decodes them to select one of eight mutually exclusive outputs. A polarity control (P) input determines whether the outputs are active Low or active High. The 54F538 has 3-State outputs and a High
signal on the Output Enables (OEn) will force all outputs to the high impedance state. Two active High and two active Low Enable inputs are available for easy expansion to 1-of-32 decoding with four packages, or for data demultiplexing to 1-of-8 or 1-of-16 destinations.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 F538/BRA
20-Pin Ceramic FlatPack	54 F538/BSA
20-Pin Ceramic LLCC	54 F538/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{2}$	Address inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{0}, E_{1}	Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{2}, E_{3}	Enable input (Active High)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
P	Polarity control input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE, OE_{1}	Output enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0} \cdot \mathrm{Q}_{7}$	Data outputs	150/33	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

$V_{C C}=$ Pin 20
GND $=$ Pin 10

For LLCC pin asaignments, see JEDEC Standard No. 2

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS									OUTPUTS								OPERATING MODE
$\overline{O E} E_{0}$	$\bar{O} E_{1}$	E_{0}	E_{1}	E_{2}	E_{3}	A_{2}	A_{1}	A_{0}	Q_{0}	Q_{1}	Q2	Q3	Q4	Q5	Q6	07	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	\bar{z}	$\begin{aligned} & z \\ & Z \end{aligned}$	\bar{z}	$\begin{aligned} & z \\ & z \end{aligned}$	High Impedance				
	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & H \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & H \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & \text { L } \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Outputs equal P input								Disable
L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L H L L	L L H L	L L L	L L L L	L L L L	L L L L	L L L L	Active High output$(P=L)$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	$\begin{aligned} & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \\ & L \end{aligned}$	L L H L	L L L H	
L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L H H	L H L H	L H H H H	H L H H	H H L H	H H H L	H H H H	H H H H	H H H H	H H H H H	Active Low output$(\mathrm{P}=\mathrm{H})$
L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L H H	L H L H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H H	H H H H H	H H H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H H	H H L H	H H H H L	

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High impedance

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{0}	Current applied to output in Low output state	48	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {LI }}$	Low-level input voltage			0.8	V
lik	Input clamp current			-18	ma
IOH_{1}	High-level output current			-1.0	mA
$\mathrm{IOH2}^{2}$	High-level output current			-3.0	mA
lol	Low-level output current			20.0	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS		UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min},^{\mathrm{V}_{\mathrm{IL}}=\operatorname{Max},} \\ \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{gathered}$	$\mathrm{l}_{\mathrm{OH} 1}=-1.0 \mathrm{~mA}$	2.5			V
			$\mathrm{IOH} 2=-3.0 \mathrm{~mA}$	2.4		3.4		V		
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M i n, V_{1 L}=M a x \\ & V_{\text {IL }}=M a x, V_{I H}=M i n \\ & \hline \end{aligned}$			0.35	0.50	V		
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$			-0.73	-1.2	V		
I_{1}	Input current at maximum		$V_{C C}=$ Max, V_{1}	. 0 V			100	$\mu \mathrm{A}$		
I_{H}	High-level input current		$V_{\text {cc }}=M a x, V_{1}$.7V			20	$\mu \mathrm{A}$		
IL	Low-level input current		$V_{\text {cC }}=$ Max, V_{1}	. 5 V			-0.6	mA		
$\mathrm{I}_{\text {OZH }}$	Off-state current High-level voltage applied		$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{0}$	2.7 V			50	$\mu \mathrm{A}$		
lozl	Off-state current Low-level voltage applied		$V_{c c}=M a x, V_{0}$	0.5V			-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Ma}$		-60		-150	mA		
I_{cc}	Supply current	ICCH	$V_{C c}=\operatorname{Max}$			30	40	mA		
		Iccl				35	50	mA		
		lccz				35	50	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay E_{0} or E_{1} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E_{2} or E_{3} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay P to Q_{n}	Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpzL } \\ & \text { tpzL }^{2} \\ & \hline \end{aligned}$	Output Enable time ∂E_{0} or $O E_{1}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 15.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tpHz}} \\ & \mathrm{t}_{\mathrm{pLLZ}} \\ & \hline \end{aligned}$	Output Disable time σE_{0} or $D E_{1}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.
AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs

Waveform 3. 3-State Output Enable Tlme to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level
$V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circult for 3-State Outputs and Open Collector Outputs
SWITCH POSITION

TEST	SWITCH
tPLZ. tpZL All other	closed closed open

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{x}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

54F543, 54F544
 Transceiver

54F543 Non-Inverting Octal Registered Transceiver (3-State)

 54F544 Inverting Octal Registered Transceiver (3-State)
Product Specification

FEATURES

- Combines 54F245 and 54F373 type functions in one chip
- 8-bit octal transceiver with D-type latch
- 54F543 Non-inverting 54F455 Inverting
- Back-to-back Registers for storage
- Separate controls for data flow in each direction
- A outputs sink 20 mA and source 3mA
- B outptus sink 48 mA and source 12 mA
- 300 mil wide 24-pin Slim DIP
- 3-State outputs for bus-oriented applications

DESCRIPTION

The 54F543 and 54F544 Octal Registered Transceivers contains two sets of D-type latches for temporary storage of dataflowing in either direction. Separate Latch Enables (LEAB, LEBA) and Output Enables ($\mathrm{OEAB}, \mathrm{OEBA}$) are provided for each register to permit independent control of inputting and outputting in either direction. While the 54F543 has non-inverting data path, the 54F544 inverts data in both directions. The A outputs are guaranteed to sink 20 mA , while the B outputs are rated for 48 mA .

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 F543/BLA
	$54 F 544 / \mathrm{BLA}$
Ceramic Flat Pack	$545543 / \mathrm{BKA}$
	$54 \mathrm{~F} 544 / \mathrm{BKA}$
Ceramic LLCC	$54 \mathrm{~F} 543 / \mathrm{B3A}$
	$54 \mathrm{~F} 544 / \mathrm{B3A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{7}$ (54F543)	Port A, 3-State inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ (54F543)	Port B, 3-State inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{\Pi}_{0}-\bar{A}_{7}$ (54F544)	Port $\bar{A}, 3$-State inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ (54F544)	Port B, 3-State inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OEAB	A-to-B Output Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
OEBA	A-to-B Output Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
EAB	A-to-B Enable input (Active Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
EBA	A-to-B Enable input (Active Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
LEAB	A-to-B Latch Enable input (Active Low)	1.011.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
LEBA	A-to-B Latch Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$ (54F543)	Port A, 3-State outpus	150/33	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ (54F543)	Port B, 3-State outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
$\bar{A}_{0}-\bar{A}_{7}$ (54F544)	Port A, 3-State outputs	150/33	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ (54F544)	Port B, 3-State outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

[^5]
PIN CONFIGURATION

LEBA 1	$24{ }^{2} \mathrm{cc}$
OEBE 2	23 EBA
$A_{0}{ }^{3}$	22 B
$A_{1} 4$	21 B_{1}
$A_{2} 5$	20) B_{2}
$A_{3} 6$	(19 B_{3}
$A_{4} 7$	18 B_{4}
$A_{5} 8$	(17) B_{5}
$A_{6} 9$	16) B_{6}
$A_{7} 10$	15 B_{7}
EAB 11	14 ceas
GND 12	13 OEAB
54F544	
LEBA 1	$24.2{ }^{\text {cc }}$
UEBA 2	23 EBA
$x_{0} \sqrt{3}$	(22 B_{0}
$\pi_{1} 4$	21 E_{1}
$\pi_{2} 5$	$20 \mathrm{~B}_{2}$
$\pi_{3} 5$	(19] E_{3}
	(19) E_{4}
$x_{5}[8$	$17 \mathrm{~B}_{5}$
$\chi_{6} 9$	126 B_{6}
${ }_{4} 10$	(15) E_{7}
$\begin{aligned} & \text { EAB } 11 \\ & \text { GND } 12 \end{aligned}$	14 Leab
	13 OEAB

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=$ Pin 12

54F544

$V_{C C}=\operatorname{Pin} 24$ GND $=\operatorname{Pin} 12$

FUNCTIONAL DESCRIPTION

The 54F543 and 54F544 contain two sets of eight D-type latches, with separate input and controls for each set. For data flow from A to B, for example, the A-to-B Enable (EAB) input must be Low in order to enter data from A_{0} A_{7} or take data from $B_{0}-B_{7,}$, as indicated in the Function Table. With EAB Low, a Low signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent Low-to-High transition for the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With EAB and DEAB both Low, the 3-State B output buffers are active and reflect the data present at the outputs of the A latches. Control of data flow from B to A is similar, but using the EBA, LEBA, and OEBA inputs.

FUNCTION TABLE

INPUTS				OUTPUTS		STATUS
OEXX	EXX	LEXX	DATA	54F543	54F544	
H	X	X	X	Z	Z	Disabled
X	H	X	X	Z	Z	Disabled
L	\uparrow	L	h	Z	Z	Disable + Latch
L	\uparrow	L	I	Z	Z	Disable + Latch
L	L	\uparrow	h	H	L	Latch + Display
	L	\uparrow	l	L	H	Disable + Latch
L	L	H	X	NC	NC	Hold

$H=$ High voltage level
$L=$ Low voltage level
$h=$ High state must be present one setup time before the Low-to-High transition of LEXX or EXX (XX=AB or BA)
$!=$ Low state must be present one setup time before the Low-to-High transition of LEXX or EXX (XX=AB or $B A$)
$\uparrow=$ Low-to-High transition of LEXX or EXX
$X=$ Don't care
$\mathrm{NC}=$ No change
$\mathbf{Z}=$ High impedance state

LOGIC DIAGRAM FOR 54F543

LOGIC DIAGRAM FOR 54 F544

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT	
$V_{C C}$	Supply voltage	-0.5 to +7.0	V	
V_{1}	Input voltage	-0.5 to +7.0	V	
I_{1}	Input current	-30 to +5	mA	
V_{0}	Voltage applied to output in High output state range	-0.5 to +5.5	V	
I_{0}	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}, \bar{A}_{0}-\overline{\mathrm{A}}_{7}$	40	mA
		$\mathrm{~B}_{0}-\mathrm{B}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$V_{\text {IH }}$	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
1 IK	Input clamp current				-18	mA
IOH	High-level output current				-1	mA
lOH_{2}	High-level output current				-3	mA
IOH_{3}	High-level output current	$\mathrm{B}_{0}-\mathrm{B}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$			-12	mA
lot	Low-level output current	$A_{0}-A_{7}, \bar{A}_{0}-\bar{A}_{7}$			20	V
		$\mathrm{B}_{0}-\mathrm{B}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$			48	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output to voltage					$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
				$\mathrm{l}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5				V		
				$\begin{aligned} & \mathrm{B}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{~B}_{0}-\mathrm{B}_{7} \text { and } \\ & \mathrm{B}_{0}-\mathrm{B}_{7} \text { only } \end{aligned}$	2.0				V		
V_{OL}	Low-level output voltage	$\frac{A_{0}-A_{7}, \bar{A}_{0}-\bar{A}_{7}}{B_{0}-B_{7}, B_{0}-B_{7}}$		$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{\mathbb{I L}}=\operatorname{Max}, V_{\mathbb{H}}=\operatorname{Min} \end{gathered}$	$10 \mathrm{~L}=20 \mathrm{~mA}$. 35	50	V		
				$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$. 35	50	V			
V_{IK}	Input clamp voltage				$V_{C C}=$ Min, $I_{1}-I_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input	OEAB, OEBA, EAB EBA, LEAB, LEBA		$V_{C C}=0.0 \mathrm{~V}, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		Others		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$				1.0	mA		
I_{H}	High-level input current			$V_{c c}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$\mathrm{I}_{1 / 2}$	Low-level input current	others		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		EAB, EBA						-1.2	mA		
$\mathrm{I}_{\mathrm{H}}+\mathrm{l}_{\text {OZH }}$	Off-state current High-level voltage applied			$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{1 \mathrm{H}}=\mathrm{Min}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$I_{1 L}+l_{\text {OzL }}$	Off-state current Low level voltage applied			$V_{C C}=$ Max, $V_{\text {IH }}=$ Min, $V_{1}=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$	$\begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{7}, \bar{A}_{0}-\bar{A}_{7} \\ & \mathrm{~B}_{0}-\mathrm{B}_{7}, \bar{B}_{0}-\bar{B}_{7} \end{aligned}$		$V_{C C}=$ Max		-60		-150	mA		
				-100		-225	mA				
Icc	Supply current (total)	54F543	ICCH			$V_{C C}=\operatorname{Max}$			67	100	mA
			$\mathrm{I}_{\mathrm{CCL}}$		83			125	mA		
			$\mathrm{I}_{\mathrm{ccz}}$		83			125	mA		
		54 F 544	ICCH		80			110	mA		
			$\mathrm{I}_{\mathrm{CCL}}$		105			140	mA		
			$\mathrm{I}_{\mathrm{CCZ}}$		100			135	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	54F543 LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ t_{PHL}	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	1.5 2.5	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \end{gathered}$	Propagation delay LEBA to A_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay LEAB to B_{n}	Waveform 1, 2	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output Enable time OEBA or OEAB to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time OEBA or DEAB to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	1.0 1.0	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\underset{t_{\text {PRZ }}}{\substack{\text { PrzH }}}$	Output Enable time EBA or EAB to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output Disable time EBA or EAB to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.0 \\ \hline \end{gathered}$	2.0 1.5	$\begin{aligned} & 10.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	54F543 LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(\mathrm{H}) \\ & \mathbf{t}_{\delta}(\mathrm{L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to LEAB or LEBA A_{n} or B_{n} to EAB or EBA	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathbf{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to LEAB or LEBA A_{n} or B_{n} to EAB or EBA	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(L)$	Latch enable pulse width	Waveform 3	4.0			4.5		ns

Transceivers

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	54F544 LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation dealy A_{n} to B_{n} or B_{n} to \AA_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Propagation dealy LEBA to A_{n}	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation dealy LEAB to B_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{tpZH}^{\mathrm{t}_{\mathrm{pZL}}} \end{aligned}$	Ouput Enable time OEBA or DEAB to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time OEBA or $\overline{O E A B}$ to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time EBA or EAB to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time EBA or EAB to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	54F544 LMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{T}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to LEAB or LEBA A_{n} or B_{n} to EAB or EBA	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \operatorname{t}_{n}(H) \\ & \operatorname{t}_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to LEAB or LEBA A_{n} or B_{n} to EAB or EBA	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {w }}(\mathrm{L})$	Pulse width Latch enable	Waveform 3	4.0			4.5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Transceivers

AC WAVEFORMS

ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH_{1}	High-level output current			-3	mA
IOH 2	High-level output current			-1	mA
l_{OL}	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage					$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max, } \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{O}_{\mathrm{OH} 1}$	2.4			V
				IOH_{2}	2.5		3.4		V		
V_{OL}	Low-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage			$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current			$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=$				20	$\mu \mathrm{A}$		
ILI	Low-level input current			$V_{C C}=M a x, V_{1}=$				-0.6	mA		
${ }^{\text {OZH }}$	Off-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=$				50	$\mu \mathrm{A}$		
lozl	Off-state output current, High-level voltage applied			$V_{C C}=M a x, V_{0}=$				-50	$\mu \mathrm{A}$		
10 S	Short-circuit output current ${ }^{3}$			$V_{C C}=$ Max		-60		-150	mA		
Icc	Supply current (total)	ICCH	'F573	$V_{c c}=\mathrm{Max}$			30	40	mA		
		1 CCL					35	50	mA		
		$\mathrm{I}_{\mathrm{ccz}}$					40	60	mA		
		$\mathrm{I}_{\mathrm{CCH}}$	'F574	$V_{C C}=\operatorname{Max}$			45	65	mA		
		$\mathrm{l}_{\mathrm{CCL}}$					50	70	mA		
		Iccz					55	90	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathbf{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	'F573		Waveform 2	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E to Q_{n}			Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	'F574	Waveform 1	110	125		100^{4}		ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{p} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{pH}} \end{aligned}$	Propagation delay $C P$ to Q_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathbf{t}_{\mathrm{tzH}} \\ & \mathbf{t}_{\mathrm{pZZ}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time D_{n} to E	'F573		Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time D_{n} to E			Waveform 3	2.5 4.0			$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	E Pulse width, High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(H) \\ & \mathbf{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time D_{n} to $C P$	'F574	Waveform 3	2.0 2.0			2.5 2.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time D_{n} to CP		Waveform 3	1.5 1.5			2.0 2.0		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	3.0 4.5			$\begin{aligned} & 3.0 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. This parameter is guaranteed, but not tested.

AC WAVEFORMS

Waveform 3. Data Setup and Hold Times

Waveform 4. 3-State Output Enable Time to High Level and Output Dlsable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

Military Logic Products

54F579

Counter

8-Bit Bidirectional Binary Counter (3-State)

Product Specification

DESCRIPTION

The 54F579 is afully synchronous 8-stage Up/Down Counter with multiplexed 3-State l/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, except for the case of asynchronous reset, are initiated by the rising edge of the clock. TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

FEATURES

- Fully synchronous operation
- Multiplexed 3-state I/O ports for bus orlented applications
- Built in cascading carry capablility
- U/D pin to control direction of counting
- Separate pins for Master roset and Synchronous operation
- Center power pins to reduce effects of package Inductance
- Count frequency 115MHZ typ
- Supply current 100mA typ
- See 54F269 for 24-pin separate I/O port version
- See 54F779 for 16-pin version

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	$54 F 579 / B R A$
20 -Pin Flat Pack	$54 F 579 / B S A$
$20-P i n$ LLCC	$54 F 579 / B 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ $H I G H / L O W$	LOAD VALUE HIGH/LOW
$/ \mathrm{O}_{\mathrm{n}}$		$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data Inputs	$150 / 40$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$
	Data Outputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
U/D	Parallel Enable Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Up/Down Count Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SR	Master Reset Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CEP	Synchronous Reset Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count Enable Paralel Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CS	Count Enable Trickle Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Chip Select Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Output Enable Input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
TC	Clock Pulse Input (Active Rising Edge)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

CERDIP PIN CONFIGURATION

LLCC PIN CONFIGURATION

For pinouts refer to Package Pin Configurations

FUNCTION TABLE

INPUTS									OPERATING MODE
MR	SR	CS	PE	CEP	CET	U/D	OE	CP	
X	X	H	X	X	X	X	X	X	$1 / \mathrm{O}_{0}$ to $1 / \mathrm{O}_{7}$ in high impedance (PE disabled)
X	X	L	H	x	x	X	H	X	$1 / \mathrm{O}_{0}$ to $1 / \mathrm{O}_{7}$ in high impedance
X	X	L	H	X	X	X	L	X	Flip-flop output appears on I/O lines
L	X	X	X	X	X	X	X	X	Asynchronous reset for all flip-flops
H	L	X	X	X	X	X	X	\uparrow	Synchronous reset for all fip-flops
H	H	L	L	X	X	X	X	\uparrow	Parallel load all flip-flops
H	H	(not LL)		H	X	X	X	\uparrow	Hold
H	H	(not LL)		X	H	X	X	\uparrow	Hold (TC held High)
H	H	(n ot LL)		L	L	H	X	\uparrow	Count up
H	H	(not LL)		L	L	L	X	\uparrow	Count down
$\begin{aligned} & H \\ & L \\ & \mathbf{X} \end{aligned}$	High voltage level Low voltage level Don't care								
$\begin{aligned} & \uparrow \\ & (\text { not LL) } \end{aligned}$	Low-to-High clock transition CS and PE should never be Low voltage level at the same time								

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
I_{O}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UMITS			UNIT
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage ${ }^{4}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage ${ }^{4}$				0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current				-18	mA
		TC			-1	mA
IOH^{\prime}	High-level output current	$1 / O_{n}$			-3	mA
					-1	mA
l_{OL}	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1,4}$		LMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	TC			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5			V
		$1 / \mathrm{O}_{n}$	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4		3.3		V		
			$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5				V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=M$			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$1 / \mathrm{O}_{n}$	$V_{C C}=M$				1	mA		
		Others	$\mathrm{V}_{\text {CC }}=\mathrm{N}$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current	except$1 / O_{n}$	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				0.6	mA		
$\begin{array}{\|l} \hline \mathrm{lozr}^{2} \\ +\mathrm{l}_{\mathrm{IH}} \\ \hline \end{array}$	Off-state current High-level voltage applied	$1 / O_{n}$	$V_{c C}=\operatorname{Max}, V_{\text {IH }}=\operatorname{Min}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \mathrm{lozI}_{1} \\ & +\mathrm{I}_{11} \end{aligned}$	Off-state current Low-level voltage applied		$V_{C C}=\operatorname{Max}, V_{\mathbb{H}}=\operatorname{Min}, V_{I}=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$				-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{\text {cc }}=\mathrm{Max}$			95	135	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				105	145	mA		
		$\mathrm{I}_{\mathrm{ccz}}$				105	150	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F, R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		80^{5}		MHz
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay CP to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay U/D to TC	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CET to TC	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay MR to $1 / O_{n}$	Waveform 2	5.0	7.0	9.0	5.0	11.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time from High or Low level CS, PE, I/On	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PZH }} \\ & t_{\text {PZL }} \end{aligned}$	Output Enable time to High or Low level CS, PE, I/O ${ }_{n}$	Waveform 6 Waveform 7	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable time from High or Low level OE, to I/O O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns ns
$\begin{aligned} & \mathbf{t}_{\text {PZH }} \\ & \mathbf{t}_{\text {PZL }} \end{aligned}$	Output Enable time to High or Low level $O E$ to $/ / O_{n}$	Waveform 6 Waveform 7	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / \mathrm{O}_{\mathrm{n}}$ to CP	Waveform 5	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			4.0 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{n}(H) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $1 / O_{n}$ to CP	Waveform 5	0			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low PE, SR or CS to CP	Waveform 5	9.5 9.5			11.0 13.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low PE, SR or CS to CP	Waveform 5	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(L) \\ & \hline \end{aligned}$	Setup time, High or Low CEP or CET to CP	Waveform 5	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$			$\begin{gathered} 7.5 \\ 11.5 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low CEP or CET to CP	Waveform 5	0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \\ & \hline \end{aligned}$	Clock Pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(L)$	MR Pulse width	Waveform 2	3.0			3.0		ns
$t_{\text {tec }}$	Recovery time	Waveform 2	4.0			5.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under Recommended Operating Conditions for the applicable type and the Function Table for operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter test, los tests should be performed last.
4. When testing devices to the Functional Table specified, refer to the 'Recommended Operating Conditions' section of Application Note 202, "Testing and Specifying FAST Logic".
5. This parameter is guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

Waveform 3. Propagation Delay CET Input to Terminal Count Output

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Tlme

Waveform 4. Propagation Delay, U/D Input to Terminal Count Output

Waveform 5. Data Setup and Hold Times

Waveform 6. 3-State Output Enable Tlme to High Level and Output Disable Time from High Level

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

54F620, 54F623
 Transceivers

54F620 - Inverting 3-State Octal Bus Transceiver 54F623 - Non-Inverting 3-State Octal Bus Transceiver
 Product Speciflcation

FEATURES

- High-Impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in HIgh and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Octal bldirectional bus interface
- 3-State buffer outputs sink 48 mA and source 12 mA
- 54F620, Inverting
- 54F623, non-Inverting

DESCRIPTION

The 54F623 is an octal transceiver featuring non-inverting 3 -State bus-compatible outputs in both send and receive directions. The outputs are capable of sinking 48 mA and sourcing up to 12 mA , providing very good capacitive drive characteristics. The 54F620 is an inverting version of the 54F623.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$20-$ Pin Ceramic DIP	$54 F 620 /$ BRA
	$54 F 623 / B R A$
20-Pin Ceramic FlatPack	54 F620/BSA
	54 F623/BSA
20-Pin Ceramic LLCC	$54 F 620 / B 2 A$
	$54 F 623 / B 2 A$

These octal bus transceivers are designed for asynchronous two-way communication between databuses. The controlfunction implementation allows for maximum flexibility in timing.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8,} \mathrm{~B}_{1}-\mathrm{B}_{8}$	Data inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
GBA, GAB	3-State output enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

LOGIC SYMBOL

These devices allow datatransmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the Enable inputs (GBA and GAB). The Enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives the 54F620 and 54F623 the capability to store data by the simultaneous enabling of GBA and GAB. Each outputreinforces its input in this transceiverconfiguration. Thus, when both control inputs
are enabled and all other data sources to the two sets of the bus lines are at high impedance, both sets of bus lines (16 in all) will remain in their last states.

FUNCTION TABLE

ENABLE	INPUTS	OPERATION	
GBA	GAB	$54 F 620$	54F623
L	L	B data to A bus	B data to A bus
H	H	A data to B bus	A data to B bus
H	Z	Z	
L	H	B data to A bus,	B data to A bus,
A data to B bus	data to B bus		

$H=$ High voltage level
$L=$ Low voltage level
Z = High impedance
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	40	mA
		$\mathrm{~A}_{1}-\mathrm{A}_{8}$	$\mathrm{~B}_{1}-\mathrm{B}_{8}$
TSTG	Storage temperature range	96	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voitage		4.5	5.0	5.5	V
V_{H}	High-level input voltage ${ }^{5}$		2.0			V
$\mathrm{V}_{\text {L }}$	Low-level input voltage ${ }^{5}$				0.7	V
I_{K}	Input clamp current				-18	mA
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{OH} 2} \\ & \mathrm{I}_{\mathrm{OH} 1} \\ & \hline \end{aligned}$	High-level output current	$A_{1}-A_{B}$			-3.0	mA
		$B_{1}-B_{8}$			-1.0	mA
$\mathrm{I}_{\mathrm{OH} 3}$	High-level output current	$\mathrm{B}_{1}-\mathrm{B}_{8}$			-12.0	mA
$\mathrm{l}_{\mathrm{O}} \mathrm{L}$	Low-level output current	$A_{1}-A_{B}$			20.0	mA
		$\mathrm{B}_{1}-\mathrm{B}_{8}$			48.0	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage		$A_{1}-A_{8}$				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		$\mathrm{l}_{0} \mathrm{H}_{2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\mathrm{IOHI}=-1 \mathrm{~mA}$	2.5	3.4				V			
			$B_{1}-B_{8}$	$\mathrm{IOHB}^{\text {a }}=-12 \mathrm{~mA}$	2.0					V			
V_{OL}	Low-level output voltage		$\mathrm{A}_{1}-\mathrm{A}_{8}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max, } \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$		$\mathrm{l}_{0 \mathrm{~L}}=20 \mathrm{~mA}$		0.35	0.50	V			
			$\mathrm{B}_{1}-\mathrm{B}_{8}$			$\mathrm{l}_{\mathrm{LL}}=48 \mathrm{~mA}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=$ Min, $l_{1}=l_{1 K}$				-0.73	-1.2	V			
$\mathrm{I}_{1 / \mathrm{H} 2}$	Input current at maximum input voltage		GBA, GAB	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
			Others	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
I_{1+1}	High-level input current		GBA, GAB	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILIL	Low-level input current		only	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	Off-state current Highlevel voltage applied		$\begin{aligned} & A_{1}-A_{8} \\ & B_{1}-B_{8} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \text { loLz } \\ & +I_{\text {IL }} \\ & \hline \end{aligned}$	Off-state current Low-level voltage applied			$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$A_{1}-A_{8}$	$V_{\text {cc }}=\operatorname{Max}$			-60		-150	mA			
			B1-B8				-100		-225	mA			
Icc	Supply current (total)	F620	ICCH	$V_{C C}=$ Max	GBA $=\mathrm{GAB}=$; $A_{1}-A_{8}=$ GND		70	92	mA			
			$\mathrm{I}_{\text {CCL }}$		$\mathrm{GBA}=\mathrm{GAB}=$; $A_{1}-A_{8}=4.5 \mathrm{~V}$		84	110	mA			
			ICCz		GAB $=\mathrm{GND}$;	$=A_{1}-A_{8}=4.5 \mathrm{~V}$		70	92	mA			
		F623	ICCH		$\mathrm{GBA}=\mathrm{GAB}=$; $A_{1}-A_{8}=4.5 \mathrm{~V}$		110	140	mA			
			${ }^{\text {cCL }}$		$\mathrm{GBA}=\mathrm{GAB}=$; $A_{1}-A_{8}=G N D$		110	140	mA			
			Iccz		$\mathrm{GAB}=\mathrm{GND} ;$	$=A_{1}-A_{8}=4.5 \mathrm{~V}$		99	130	mA			

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	54F620 LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable to High or Low level GBA to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\substack{\mathrm{t}_{\mathrm{PH}} \mathrm{Z}}}$	Output disable from High or Low level GBA to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	2.0 1.5	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} . \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZLL }} \end{aligned}$	Output enable to High or Low level GAB To B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output disable from High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	2.5 3.5	$\begin{aligned} & 12.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	54F623 LMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation delay } \\ & B_{n} \text { to } A_{n} \end{aligned}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable to High or Low level GBA to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PHZ }} \\ & \mathbf{t}_{\text {PLZ }} \end{aligned}$	Output disable from High or Low level GBA to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable to High or Low level GAB To B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHz}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output disable from High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{cc} with outputs open.
5. When testing devices to the functional table specified, refer to the 'Recommended Operating Conditions' section of Application Note 202,
"Testing and Specifying FAST Logic".

AC WAVEFORMS

Waveform 1. For Inverting Outputs

A or B

Waveform 2. For non-Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level Output Disable Time from Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test CIrcult for 3-State Outputs and Open Collector Outputs
SWITCH POSITION

TEST	SWITCH
tPLZ. teZ All other	closed closed open

DEFINITIONS:

$\mathrm{R}_{\mathrm{L}}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

54F640 Transceiver

Octal Bus Transcelver, Inverting (3-State)

Product Specification

FEATURES

- High Impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Inverting version of 54F245
- Octal bidirectional bus interface
- 3-State buffer outputs sink 48mA and source 12 mA

DESCRIPTION

The 54F640 is an octal transceiver featuring inverting 3 -State bus-compatible outputs in both send and receive directions.
The $\mathrm{B}_{1}-\mathrm{B}_{8}$ outputs are capable of sinking 48 mA and sourcing 12 mA , providing very good capacitive drive characteristics.
The octal bus transceivers are designed for asynchronous two-way communication between data busses.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8}, \mathrm{~B}_{1}-\mathrm{B}_{8}$	Data inputs	$3.5 / 0.115$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~T} / \mathrm{R}$	Transmitreceive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable inputs (active Low)	$2.0 / 0.67$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}$	Data outputs	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Data outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

| T/R |
| :--- | :--- | :--- | :--- |

LOGIC SYMBOL

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	40	mA
		$\mathrm{~A}_{1}-\mathrm{A}_{8}$	$\mathrm{~B}_{1}-\mathrm{B}_{8}$
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	96	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{\text {ce }}$	Supply voltage		4.50	5.0	5.50	V
V_{HH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current				-18	mA
$\mathrm{l}_{\mathrm{OH} 1}$	High-level output current				-1	mA
$\mathrm{IOH2}^{2}$	High-level output current				-3	mA
IOH	High-level output current	$B_{1}-B_{8}$			-12	mA
lat	Low-level output current	$\mathrm{A}_{1}-\mathrm{A}_{8}$			20	mA
		$B_{1}-B_{8}$			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

Transceiver

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		$\mathrm{l}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5			V
		$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4					V			
		$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\mathrm{l}_{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0					V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{A}_{1}-\mathrm{A}_{8}$	$\begin{gathered} V_{C C}=\operatorname{Min}, \\ V_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\mathrm{Min} \end{gathered}$		$1 \mathrm{OL}=20 \mathrm{~mA}$		0.35	0.50	V			
		$\mathrm{B}_{1}-\mathrm{B}_{8}$			$\mathrm{l}_{\mathrm{OL}}=40 \mathrm{~mA}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{1}=I_{1 K}$				-0.73	-1.2	V			
$\mathrm{I}_{1 \mathrm{H}_{2}}$	Input current at maximum input voltage	$\begin{aligned} & A_{1}-A_{8} \\ & B_{1}-B_{8} \end{aligned}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
		OE, T/R	$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{1+1}	High-level input current	OE, T/R only	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
ILL	Low-level input current	OE, T/R only	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
$\mathrm{I}_{1 \mathrm{H}}+\mathrm{l}_{\text {OZH }}$	Off-state current High-levelvoltage applied		$V_{C C}=$ Max, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{1}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{I}_{12}+\mathrm{l}_{\text {OZL }}$	Off-state currentLow-level voltage applied		$V_{C C}=$ Max, $V_{\mathbb{H}}=\operatorname{Min}, V_{1}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$\mathrm{A}_{1}-\mathrm{A}_{8}$	$V_{\text {cc }}=$ Max			-60		-150	mA			
		$\mathrm{B}_{1}-\mathrm{B}_{8}$				-100		-225	mA			
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{cc}}=$ Max	T/R=A	=4.5V; $\mathrm{OE}=\mathrm{GND}$		66	85	mA			
		$\mathrm{l}_{\mathrm{CCL}}$		$\overline{O E}=T$	$=\mathrm{B}_{1}-\mathrm{B}_{8}=$ GND		91	120	mA			
		Iccz		రE $=4.5$	$\mathrm{T} / \mathrm{A}=\mathrm{B}_{1}-\mathrm{B}_{8}=\mathrm{GND}$		78	102	mA			

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 p F_{,} R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}, B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathbf{t}_{\text {PZH }} \\ \mathbf{t}_{\text {PZL }} \end{gathered}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	2.5 2.0	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests los tests should be performed last.

AC WAVEFORMS

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

54F646A Transceiver/Register

Octal Transceiver/Register, Non-Inverting (3-State)

Objective Specification

FEATURES

- Combines 54F245 and 54F374 type functions in one chip
- High Impedance base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses

DESCRIPTION

The 54F646A Transceiver/Register consists of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output Enable (OE) and DIR pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or B register or both.

- Multiplexed real-time and stored data
- Non-Inverting data paths
- Controlled ramp outputs
- 3-state outputs
- 300 mil wide 24-pin Silm Dip package

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24 -Pin Ceramic DIP	54 F646ABLA

TYPE	TYPICAL $\boldsymbol{f}_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$54 F 646 \mathrm{~A}$	185 MHz	105 mA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	A and B inputs	$3.5 / 0.166$	$70 \mu \mathrm{~A} 70 \mu \mathrm{~A}$
CPAB	A-to-B clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
DIR	Data flow directional control enable input	$1.0 / 0.066$	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{O E}$	Output Enable input	$1.0 / 0.066$	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Outputs	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

CPAB 1	${ }^{24} \mathrm{~V}_{\text {cc }}$
SAB 2	23 CPBA
DIR 3	22 SBA
$A_{0} 4$	21 OE
$A_{1} 5$	$20 B_{0}$
$A_{2} 5$	$19 \mathrm{~B}_{1}$
$A_{3} 7$	$18 \mathrm{~B}_{2}$
$A_{4} 8$	$17 \mathrm{~B}_{3}$
$A_{5} 9$	166 B_{4}
$A_{6} 10$	$15 \mathrm{~B}_{5}$
$A_{7} 11$	(14) B_{6}
GND 12	[13 B_{7}
For HCC pin aselgnments, see Jedec Standard No. 2	

LOGIC SYMBOL

The select (SAB, SBA) pins determine whether data is stored or transfered through the device in real-time. The DIR determines which bus will receive data when the $O E$ is Low. In the isolation mode ($\overline{\mathrm{EE}=\mathrm{High} \text {), data from Bus A may be }}$
stored in the B register and/or data from Bus B may be stored in the A register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B may be
driven at a time. The following examples demonstrate the four fundamental bus-management functions that can be performed with the 54F646A.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE
OE	DIR	CPAB	CPBA	SAB	SBA	$A_{0}-A_{7}$	$\mathrm{B}_{0}-\mathrm{B}_{7}$	
X	X	\uparrow	X	X	X	Input	Unspecified*	Store A, B unspecified*
X	X	X	\uparrow	X	X	Unspecified*	Input	Store B, A unspecified*
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \uparrow \\ H \text { or } L \end{gathered}$	$\begin{gathered} \uparrow \\ H \text { or } L \end{gathered}$	$\begin{aligned} & x \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Input	Store A and B data Isolation, hold storage
L	L	X	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\underset{x}{x}$	$\stackrel{L}{\mathrm{~L}}$	Output	Input	Real time B data to A bus Stored B data to A bus
$\stackrel{L}{L}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} X \\ H \text { or } L \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output	Real time A data to B bus Stored A data to B bus

H = High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

* = The data output function may be enabled or disabled by various signals at the $\overline{O E}$ and DIR inputs. Data input functions are always enable, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{O}	Current applied to output in Low output state	36	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{LL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-15	mA
$\mathrm{IOL}^{\text {che }}$	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} V_{C C}=M i n, V_{I L}=\text { Max }, \\ V_{I H}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.0				V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.38	0.50	V		
$V_{\text {IK }}$	Input clamp voltage		$V_{C C}=M i n, l_{1}$			-0.73	-1.2	V		
II	Input current at maximum input voltage	others	$V_{C C}=0.0, V_{1}$	7.0V			100	$\mu \mathrm{A}$		
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	$V_{\text {cc }}=$ Max, V_{1}	5.5 V			1	mA		
$\mathrm{I}_{\mathbf{H}}$	High-level input current	OE DIR CBAB, CPBA SAB, SBA	$V_{\text {cc }}=$ Max, V_{1}	2.7 V			20	$\mu \mathrm{A}$		
IIL	Low-level input current	OE DIR	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}$	0.5V			-40	$\mu \mathrm{A}$		
		CBAB, CPBA SAB, SBA	$V_{\text {cc }}=$ Max, V_{1}	0.5V			-20	μA		
$\mathrm{IOZH}^{+} \mathrm{I}_{\mathrm{IH}}$	Off-state output current, High-level voltage applied	$A_{0}-A_{7}, B_{0}-B_{7}$	$V_{C C}=M a x, V_{0}$	2.7 V			70	$\mu \mathrm{A}$		
$\mathrm{lozH}^{+} \mathrm{l}$ IL	Off-state output current, Low-level voltage applied	$A_{0}-A_{7}, B_{0}-B_{7}$	$V_{\text {cc }}=M a x, V_{0}$	0.5 V			-70	$\mu \mathrm{A}$		
l_{0}	Output current ${ }^{4}$		$\mathrm{V}_{\mathrm{CC}}=$ Max, V_{O}	2.25 V	-60		-150	mA		
Icc	Supply current (total)	${ }^{\text {cech }}$	$V_{c c}=\operatorname{Max}$			100	155	mA		
		lcCL				110	165	mA		
		$\mathrm{I}_{\text {ccz }}$				105	160	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	165	185		125		MHz
$\begin{aligned} & \mathbf{t P L H}^{t_{\text {PHL }}} \end{aligned}$	Propagation delay CPAB or CPBA tp A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation dealy SAB or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11 . .0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable time OE to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { PZL }} \end{aligned}$	Output Enable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time OE to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 80 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{x}(H) \\ & \mathbf{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$			4.5 5.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{h}(\mathrm{H}) \\ & \mathrm{t}_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{w}(H) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			5.0 4.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. The output condition has been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

Signetics

Military Logic Products

54F655A, 54F656A
 Buffers/Drivers

54F655A Octal Buffer/LIne Driver with Parity, Inverting (3-State) 54F656A Octal Buffer/LIne Driver with Parity, Non-Inverting (3-State)

Product Specification

FEATURES

- Significantly Improved AC performance over 54F655 and 54F656
- High impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal in applications where high output drive and light bus loading are required (l_{L} is $20 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 54F655A combines 54F240 and 54F280 functions in one package
- 54F656A combines 54F244 and 54F280A functions in one package
- 54F655A Inverting 54F656A Non-Inverting
- 3-State outputs sink 48mA
- Inputs source 12mA
- Inputs on one side and outputs on the other side simplify PC board layout
- Combined functions reduce part count and enhance system performance

DESCRIPTION

The 54F655A and 54F65A are octal buffers and line drivers with parity generation/
checking designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers. These parts include parity generator/ checker to improve PC board density.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54F655A/BLA
	54F656ABLA
Ceramic Flat Pack	54 F655A/BKA
	54 F656A/BKA
28-Pin Ceramic LLCC	54 F655A/B3A
	$54 F 656 A / B 3 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
I_{n}	Data inputs	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
PI	Parity input	1.010.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\bar{O} E_{1}, \mathrm{OE}_{2}, \mathrm{OE}_{3}$	3-State output enable inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
P_{n}	Data outputs ($(54 \mathrm{~F} 655 \mathrm{~A}$)	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
Y_{n}	Data outputs (54F656A)	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
Σ_{E}, Σ_{0}	Parity outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

FUNCTION TABLES

INPUTS				DATA OUTPUTS	
δE_{1}	δE_{2}	$O E_{3}$	I_{N}	54F655A	54F656A
L	L	L	L	H	L
L	L	L	H	L	H
H	X	X	X	Z	Z
X	H	X	X	Z	Z
X	X	H	X	Z	Z

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance state

LOGIC SYMBOL

INPUTS	PARITY OUTPUTS	
Number of inputs, High $\left(\mathrm{PI}, \mathrm{I}_{0}-\mathrm{I}_{7}\right)$	Σ_{E}	Σ_{0}
Even $-0,2,4,6,8$	H	L
Odd $-1,3,5,7,9$	L	H
Any $\mathrm{OE}=$ High	(Z)	(Z)

LOGIC DIAGRAM FOR 54F655A (Non-inverting For 54F656A)

Buffers/Drivers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current	-3		-12	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\mathbb{H}}=$ Min	$\mathrm{IOH}^{\text {a }}$ Min	2.4			V
			$\mathrm{IOH}^{\text {O }}$ Max	2.0				V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=\mathrm{Max}$			0.35	0.50	V		
V_{IK}	Input clamp voltage		$V_{\text {cC }}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$V_{C C}=0.0 \mathrm{~V}, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{1+1}	High-level input current		$V_{C C}=M_{\text {ax }}, V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$			-1	-20	$\mu \mathrm{A}$		
lozh	Off-state current, High-level voltage applied		$V_{C c}=\operatorname{Max}, \mathrm{V}_{1 \mathrm{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	Off-state current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-100		-225	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C c}=\operatorname{Max}$			50	80	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				78	110	mA		
		Iccz				63	90	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Type	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to P_{n} (54F655A)	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\underset{t_{\mathrm{p} L \mathrm{H}}}{\mathrm{t}_{2}}$	Propagation delay i_{n} to Y_{n} (54F656A)	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $I_{n} \text { to } \Sigma_{E}, \Sigma_{0}$	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under the recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for 3-State Outputs

SWITCH POSITION

TEST	SWITCH
trLZ tpZL All other	closed closed open

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS				
Family	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
54 F	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

FEATURES

- High-Impedance NPN base input for reduced loading (20 in High and Low states)
- Ideal in applicatlons where high output drive and light bus loading are required ($l_{1 L}$ is $20 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 24-pin slim dip (300-mil) package
- 3-State outputs
- Outputs sink 48 mA
- 12mA source current
- Input diodes for termination effects

54F657

Transceiver

Octal Bidirectional Transcelver With 8-Bit Parity Generator/Checker (3-State Outputs)

Product Specificatlon

DESCRIPTION

The 54F657 contains eight non-inverting buffers with 3-State outputs and an 8-bit parity generator/checker, and is intended for bus-oriented applications. The buffers have a guaranteed current sinking capability of 20 mA at the A ports and 48 mA at the B ports. The Transmit/Receive (T/R) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active High) enables data from A ports to B ports; Receive (active Low) enables data from B ports to A ports.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	$54 F 657 / B L A$
24-Pin Ceramic FlatPack	$54 F 657 / B K A$
28-Pin Ceramic LLCC	$54 F 657 / B 3 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F($ U.L. $)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{7}$	A ports 3-State inputs	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B ports 3-State inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
PARITY	Parity input	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~T} / \mathrm{R}$	Transmitreceive input	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
ODD/EVEN	ODD/EVEN input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OE	Output enable input (active Low)	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A ports 3-State outputs	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B ports 3-State outputs	$600 / 80$	$12 \mathrm{~mA} / 48 \mathrm{~mA}$
PARITY	Parity output	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
ERROR	Error output	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

Transceiver

The Output Enable inputs disable both the A and B ports by placing them in a High-Z condition when either the OE input is High or the OE input is Low.

The parity generator detects whether an even or odd number of bits on the A ports are High, depending on the condition of the Parity Select input. If the Even input is active High and aneven number of A inputs are High, the Parity output is High. The parity of the data received on the B ports is compared with the Parity Select input and the Error output is Low if not equal.

FUNCTION TABLE

NUMBER OF INPUTS THAT ARE HIGH	INPUTS			INPUT/ OUTPUT	OUTPUTS	
	OE	T/R	ODD/EVEN	PARITY	ERROR	OUTPUTS MODE
0, 2, 4, 6, 8	$\begin{array}{\|l} L \\ L \\ L \\ L \\ L \end{array}$	H H L L L		H L H L H L	$\begin{aligned} & \text { (Z) } \\ & \text { (Z) } \\ & H \\ & \text { L } \\ & L \\ & H \end{aligned}$	Transmit Transmit Receive Receive Receive Receive
1, 3, 5, 7	$\begin{array}{\|l} L \\ L \\ L \\ L \\ L \\ L \end{array}$	H H L L L L		L H H L H L	$\begin{aligned} & \text { (Z) } \\ & \text { (Z) } \\ & \mathrm{L} \\ & H \\ & H \\ & \mathrm{H} \end{aligned}$	Transmit Transmit Receive Receive Receive Receive
Don't care	H	X	X	(Z)	(Z)	(Z)

H = High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance state

ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in Huigh output state range	-0.5 to V_{CC}	V
I_{0}	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	40
		$\mathrm{~B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR	mA
$\mathrm{T}_{\text {STG }}$	Storage temperature range	96	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage ${ }^{4}$		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage ${ }^{4}$				0.8	V
I_{1}	Input clamp current				-18	mA
$\mathrm{I}_{\mathrm{OH} 2}$	High-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7} \& \mathrm{~B}_{0}-\mathrm{B}_{7}$			-3	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			-12	mA
IOH_{1}	High-level output current	$A_{0}-A_{7} \& B_{0}-B_{7}$			-1	mA
lol	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			20	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			48	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	All outputs				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4			V
				$\mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5		3.4		V		
		$\begin{array}{\|l} \begin{array}{l} \mathrm{B}_{0}-\mathrm{B}_{7}, \text { PARITY } \\ \text { ERROR } \end{array} \\ \hline \end{array}$		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.0				V		
$V_{\text {OL }}$	Low-level output voltage	$\mathrm{A}_{0}-\mathrm{A}_{7}$		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{VL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{Min} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$. 35	. 50	V		
		$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7}, \text { PARITY } \\ & \text { ERROR } \end{aligned}$			$\mathrm{lOL}^{2}=48 \mathrm{~mA}$. 40	. 55	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage	T/R, סE,ODD/EVEN		$V_{C C}=0.0 \mathrm{~V}, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$A_{0}-A_{7}$		$V_{C C}=5.5 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$$V_{C C}=5.5 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$				2	mA		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$						1	mA		
$\mathbb{I}_{\mathbb{H} 1}$	High-level input current	ODD/EVEN		$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		T/R, OE						40	$\mu \mathrm{A}$		
I/L	Low-level input current	ODD/EVEN		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		T/R, DE						-40	$\mu \mathrm{A}$		
$\mathrm{IIH}^{+} \mathrm{l}_{\text {OZH }}$	Off-state current High level voltage applied		$A_{0}-A_{7}$	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1 H}=\mathrm{Min}, \mathrm{V}_{0}=2.7 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {H }}+\mathrm{l}_{\text {OZL }}$	Off-state current Low level voltage applied			$V_{C C}=\operatorname{Max}, \mathrm{V}_{1 H}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{IH}}+\mathrm{l}_{\text {OZH }}$	Off-state current High level voltage applied		$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7} \\ & \text { PARITY } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$I_{\text {IH }}+l_{\text {OZL }}$	Off-state current Low level voltage applied			$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
$\mathrm{l}_{\mathrm{OzH}}$	Off-state current High level voltage applied		ERRO	$V_{C C}=M a x, V_{l H}=M i n, V_{O}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
Iozu.	Off-state current Low level voltage applied			$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
Ios	Short-circuit output current ${ }^{3}$		$A_{0}-A_{7}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$		-60		-150	mA		
			$\mathrm{B}_{0}-\mathrm{B}_{7}$			-100		-225	mA		
Icc	Supply current (total		ICCH	$V_{C C}=\operatorname{Max}$			90	125	mA		
			$\mathrm{l}_{\mathrm{CCL}}$				106	150	mA		
			Iccz				98	145	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ ${ }^{2}$	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PL} L \mathrm{H} 1} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}, B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tplH2 $\mathrm{t}_{\mathrm{PH} 12}$	Propagation delay A_{n} to PARITY	Waveform 1, 2	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH3 }} \\ & \mathbf{t}_{\text {PHL3 }} \\ & \hline \end{aligned}$	Propagation delay ODD/EVEN to PARITY, ERROR	Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH4 }}$ $\mathrm{t}_{\mathrm{PHL}} 4$	Propagation delay B_{n} to ERROR	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 25.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t p l H 5}^{\mathbf{t}_{\text {PHL5 }}} \end{aligned}$	Propagation delay PARITY to ERROR	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 19.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t p Z H}^{\mathbf{t}_{\text {pZL }}} . \end{aligned}$	Output enable time ${ }^{5}$ to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. When testing devices to the functional table specified refer to the "Recommended Operating Conditions" section of the Applications Note 202, "Testing and Specifying FAST Logic".
5. These delay times reflect the 3 -state recovery time only and not the signal through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR. YALID data at the ERROR pin $\geq(B$ to $A)+(A$ to PARITY).

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

Military FAST Products

FEATURES

- 16-bit parallel-to-serial conversion
- 16-bit serial-In, serlal-out
- Chip Select control
- Power supply current 48mA typical
- Shift frequency 110 MHz typlcal

DESCRIPTION

The 54F676contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the Mode (M) input is High, information present on the parallel data ($D_{0}-D_{15}$) inputs is entered on the falling edge of the Clock

54F676

 Shift Register
16-Bit Shift Register

Product Specification

Pulse (CP) input signal. When M is Low, data is shifted out of the most significant bit position while information present on the Serial (S1) input shifts into the least significant bit position. A High signal on the Chip Select (CS) input prevents both parallel and serial operations.
The 16 -bit shift register operates in one of three modes, as indicated in the Shift Register Operations Table.

Hold - a High signal on the Chip Select (CS) input prevents clocking, and data is stored in the 16 registers.
Shift/Serial Load - data present on the S1 pin shits into the register on the falling edge of CP. Data enters the Q_{0} position and shifts toward
Q_{15} on successive clocks, finally appearing on the SO pin.

Paraliel Load-data present on $\mathrm{P}_{0}-\mathrm{P}_{15}$ are entered into the register on the falling edge of $C P$. The SO output represents the Q_{15} register output.
To prevent false clocking, CP must be Low during a Low-to-High transition of CS.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	54 F676/BLA
24-Pin Ceramic Flatpack	54 F676/BKA
28-Pin Ceramic LLCC	$54 F 676 /$ B3A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$ HIGH/LOW	LOAD VALUE HIGH/LOW
CS	Chip Select input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SI	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
M	Mode select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SO	Serial data output	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTION TABLE

CONTROL INPUT			OPERATING MODE
CS	M	CP	
H	X	X	Hold
L	L	\downarrow	Shittserial load
L	H	\downarrow	Parallel load

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$\downarrow=$ High-to-Low clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
l_{0}	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

Shift Register

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{IOH}^{\text {a }}$ = Max	2.5			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{IOL}^{\text {a }}$ Max		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage	$V_{C c}=\operatorname{Max}, V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
$l_{1 H 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-60		-150	mA
lcc	Supply current (total)	$V_{C C}=$ Max		48	72	mA

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{TO}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	MIn	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	110		90^{4}		MHz
$\begin{aligned} & \mathrm{T}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay CP to SO	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 11 \\ 12.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12 \\ 13.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =\mathbf{2 5 ^ { \circ }} \mathbf{C} \\ \mathrm{C}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \mathrm{TO}+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low Sl to CP	Waveform 2	4.0 4.0			4.0 4.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & 4+(\mathrm{H}) \\ & \mathrm{t}_{4}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low SI to CP	Waveform 2	4.0 4.0			4.0 4.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{D}_{\mathrm{N}} \mathrm{CP}$	Waveform 2	3.0 3.0			3.0 3.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & 4_{1}(\mathrm{H}) \\ & 4_{4}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low $D_{N} C P$	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.0 4.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low M to CP	Waveform 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			8.0 8.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{1}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low M to CP	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{ts}_{s}(\mathrm{~L})$	Setup time, Low CS to CP	Waveform 2	10.0			10.0		ns
4(H)	Setup time, High CS to CP	Waveform 2	10.0			10.0		ns
$\begin{aligned} & \operatorname{tw}_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.0 6.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. This test is guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

Waveform 2. Propagation Delay for Data to Output, Data and Select Setup, and Hold Times

AC WAVEFORMS

Signetics

Military Fast Products

DESCRIPTION

The 54F776 is an octal latched transceiver and is intended to provide the electrical interface to a high performance wired-OR bus. This bus has a loaded characteristic impedance range of 20 to 50Ω and is terminated on each end with a 30 to 40Ω resistor.
The 54F776 is an octal bidirectional transceiver with Open-Collector B and 3-State A port output drivers. A latch function is provided for the A port signals. The B port output driver is designed to sink 100 mA

54F776

Pi-Bus Transceiver

Octal Bidirectional Latched Transceiver

Product Specification

from 2V and features a controlled linear ramp to minimize crosstalk and ringing on the bus.

A separate high level control voltage (V_{x}) is provided to prevent the A side output high level from exceeding future high density processor supply voltage levels. For 5 V systems, V_{X} is simply tied to V_{cc}.

FEATURES

- Latching Transceiver
- Controlled output ramp
- High drive Open-Collector output current with minimum output swing
- PI-Bus specification compatible
- Multiple package optlons
- Controlled power on/off sequence

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DIP (600mil)	$54 \mathrm{F776/BXA}$
28-Pin Flatpack	54 F776/BYA
28 -Pin LLCC	$54 \mathrm{~F} 776 / \mathrm{B} 3 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 \mathrm{~F}(\mathrm{U} . \mathrm{L})$ $\mathrm{HIGH} / \mathrm{LOW}$	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	PNP latched input	$3.5 / 0.1167$	$70 \mu \mathrm{~A} 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data input with threshold circuitry	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
OEA	A output Enable input (active-High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{OEB}_{0}, \mathrm{OEB}_{1}$	B output Enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{E}}$	Latch Enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	3-State outputs	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Open-Collector outputs	$\mathrm{OC} * / 166.7$	$\mathrm{OC} * / 100 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. * $\mathrm{OC}=$ Open-Collector

PIN CONFIGURATION

LLCC PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

SYMBOL	PINS	TYPE	NAME AND FUNCTION
A_{0}	3	1/0	PNP latched input/3-State output (with V_{x} control option)
A_{1}	5	$1 / 0$	
A_{2}	6	$1 / \mathrm{O}$	
A_{3}	7	$1 / \mathrm{O}$	
A_{4}	9	I/O	
A_{5}	10	$1 / \mathrm{O}$	
A_{6}	12	$1 / \mathrm{O}$	
A_{7}	13	1/0	
B_{0}	27	I/O	Data input with special threshold circuitry to reject noise/Open-Collector output High current drive
B_{1}	26	$1 / 0$	
B_{2}	24	I/O	
B_{3}	23	I/O	
B_{4}	21	VO	
B_{5}	20	$1 / \mathrm{O}$	
B_{6}	19	$1 / \mathrm{O}$	
B_{7}	17	1/O	
OEB ${ }_{0}$	15	I	Enables the B outputs when both pins are Low
OEB ${ }_{1}$	16	1	
OEA	2	1	Enables the A outputs when High
[E	28	1	Latched when High (a special delay feature is built in for proper enabling times)
V_{X}	14	1	Clamping voltage keeping V_{OH} from rising above $\mathrm{V}_{\mathrm{X}}\left(\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}}\right.$ for normal use)

LOGIC DIAGRAM

Pi-Bus Transceiver

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage		-0.5 to +7.0	V
V_{X}	V_{OH} output level control voltage (A outputs)		-0.5 to +7.0	V
V_{1}	Input voltage	OEB ${ }^{\text {, }}$, OEA, LE	-0.5 to +7.0	V
		$A_{0}-A_{7}, B_{0}-B_{7}$	-0.5 to 5.5	V
1	Input current		-40 to +5	mA
V_{0}	Voltage applied to output in High output state		-0.5 to $+V_{c c}$	V
l_{0}	Current applied to output in Low output state	$B_{0}-B_{7}$	200	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}$	40	mA
TSTG	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage	Except $B_{0}-B_{7}$	2.0			V
		$\mathrm{B}_{0} \cdot \mathrm{~B}_{7}{ }^{4}$	1.60			
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{7}$			0.8	V
		$\mathrm{B}_{0}-\mathrm{B}_{7}{ }^{4}$			1.45	
$\mathrm{I}_{1 \times}$	Input clamp current	Except $A_{0}-A_{7}$			-18	mA
		$A_{0}-A_{7}$			-40	mA
l_{OH}	High-level output current	$A_{0}-A_{7}$			-3	mA
lot	Low-level output current	$A_{0}-A_{7}$			20	mA
		$B_{0}-B_{7}$			100	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

Pi-Bus Transceiver

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless othenwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{IOH}^{\text {l }}$	High-level output current	$B_{0}-B_{7}$			$\begin{aligned} & V_{c C}=M a x, \\ & V_{I H}=2.0 \mathrm{~V}, V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=2.1 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
V OH	High-level output voltage	$A_{0} \cdot A_{7}$	$\begin{gathered} V_{C C}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \\ V_{I H}=\operatorname{Min} \end{gathered}$	$\mathrm{b}_{\mathrm{H}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=V_{C C}$	2.5	2.9	V_{cc}	V		
				$\begin{aligned} & \mathrm{b}_{\mathrm{H}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{X}}=3.13 \mathrm{~V} \& 3.4 \mathrm{~V} \end{aligned}$	2.5		V_{x}	V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$A_{0}-A_{7}$	$\begin{gathered} V_{C C}=\operatorname{Min}, V_{I L}=\operatorname{Max} \\ V_{I H}=\operatorname{Min} \end{gathered}$	$b_{L L}=20 \mathrm{~mA}, V_{x}=V_{c c}$		0.3	0.5	V		
		$B_{0}-B_{7}$		$b_{L}=100 \mathrm{~mA}$			1.15	V		
				$\mathrm{C}_{\mathrm{L}}=4 \mathrm{~mA}$	0.40			V		
V_{IK}	Input clamp voltage	$A_{0}-A_{7}$	$V_{C C}=\operatorname{Min}, I_{1}=I_{I_{K}}$				-0.5	V		
		Except $A_{0} \cdot A_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, $I_{1}=I_{1 K}$			-1.2	V		
I_{1+2}	Input current at maximum input voltage	OEE ${ }_{\text {n }}$, OEA, LE	$V_{\text {cC }}=$ Max,	$V_{1}=7.0 \mathrm{~V}$		1	100	$\mu \mathrm{A}$		
		$A_{0}-A_{7}$	$V_{\text {cc }}=$ Max,	$V_{1}=5.5 \mathrm{~V}$		0.01	1	mA		
		$B_{0}-B_{7}$	$V_{\text {CC }}=$ Max,	$V_{1}=5.5 \mathrm{~V}$		0.01	1	mA		
I_{1+1}	High-level input current	OEB ${ }_{n}$, OEA, LE	$V_{\text {cc }}=$ Max,	$V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$V_{C C}=$ Max,	$V_{1}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$		
${ }_{11}$	Low-level input current	OEE ${ }_{n}$, OEA, LE	$V_{\text {cc }}=$ Max,	$V_{1}=0.5 \mathrm{~V}$			-20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$V_{\text {cc }}=$ Max,	$V_{1}=0.3 \mathrm{~V}$			-100	$\mu \mathrm{A}$		
$\mathrm{IOZH}^{+} \mathrm{I}_{\mathrm{IH}}$	Off-state output current, High-level voltage applied	$A_{0}-A_{7}$	$V_{\text {cc }}=$ Max,	$\mathrm{V}_{0}=2.7 \mathrm{~V}$			70	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {OZL }}+\mathrm{I}_{\text {IL }}$	Off-state output current, Low-level voltage applied	$A_{0}-A_{7}$	$V_{c c}=$ Max,	$V_{0}=0.5 \mathrm{~V}$			-70	$\mu \mathrm{A}$		
${ }^{1} \mathrm{x}$	High-level control current		$\begin{aligned} & V_{c C}=\operatorname{Max}, V_{X}=V_{c c}, \\ & =2.7 V, A_{0}-A_{7}=2.7 \end{aligned}$	$\begin{aligned} & L E=O E A=O E B_{n} \\ & 7 \mathrm{~V}, \mathrm{~B}_{0}-\mathrm{B}_{7}=2.0 \mathrm{~V} \end{aligned}$	-100		100	$\mu \mathrm{A}$		
			$\begin{array}{r} V_{C C}=\operatorname{Max}, V_{x}=3.1 \\ O E A=2.7 V, O E B_{n} \\ B_{0} \cdot B_{7}= \end{array}$	$\begin{aligned} & 13 \mathrm{~V} \text { \& } 3.47 \mathrm{~V},[E= \\ & =A_{0} \cdot A_{7}=2.7 \mathrm{~V}, \\ & =2.0 \mathrm{~V} \end{aligned}$	-10		10	mA		
los	Short-circuit output current ${ }^{3}$	$A_{0}-A_{7}$ only	$\begin{array}{r} \mathrm{V}_{\mathrm{cc}}=\text { Max, } \mathrm{B}_{\mathrm{n}}=1 . \\ \mathrm{OEB}_{n} \end{array}$	$\begin{aligned} & .6 \mathrm{~V}, \mathrm{OEA}=2.0 \mathrm{~V}, \\ & =2.7 \mathrm{~V} \end{aligned}$	-60	-75	-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=$	Max			100	mA		
		$\mathrm{I}_{\mathrm{CCL}}$	$V_{C C}=$ Max,	$\mathrm{V}_{\mathrm{LL}}=0.5 \mathrm{~V}$			145	mA		
		lccz	$V_{C C}=$ Max,	$\mathrm{V}_{\mathrm{LL}}=0.5 \mathrm{~V}$			100	mA		
loff	Power-off output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{B}_{\mathrm{n}}=2.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}$	$\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}$			100	$\mu \mathrm{A}$		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	A SIDE LMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { +PLH } \\ & \hline \text { He } \end{aligned}$	Propagation delay B to A	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\text {PZL }} \\ & \hline \end{aligned}$	Output Enable time from High or Low OEA to A	Waveform 3, 4	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PI}} \end{aligned}$	Output Disable time to High or Low OEA to A	Waveform 3, 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
SYMBOL	PARAMETER	TEST CONDITION	B SIDE LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V}_{ \pm} 10 \% \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{tPLH}^{t_{\mathrm{PHL}}} \end{aligned}$	Propagation delay A to B	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
\bar{t} t_{PHL}	Propagation delay LE to B	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathbf{L L H}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Enable/disable time $O E B_{n}$ to B	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathbf{t}_{\mathrm{TLH}}$ $t_{T H L}$	Transition time, B side 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test Circuit and Wavelorm	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \\ C_{D}=30 \mathrm{pF}, R_{U}=9 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{D}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline t(H) \\ & t s(L) \end{aligned}$	Set-up time A to LE	Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time A to [E	Waveform 5	0.0 0.0			0.0 0.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{W}(L)$	LE Pulse width Low	Waveform 5	10.0			10.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode. Unless otherwise specified, $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{cc}}$ for all test conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter test, los tests should be periormed last.
4. Due to test equipment limitations, actual test conditions are for $\mathrm{V}_{\mathbb{H}}=1.9 \mathrm{~V}$ and for $\mathrm{V}_{\mathrm{IL}}=1.2 \mathrm{~V}$, however, the specified test limits and conditions are guaranteed.

FUNCTION TABLE

INPUTS						$\begin{aligned} & \text { LATCH } \\ & \text { STATE } \end{aligned}$	OUTPUTS		MODE
A_{n}	$\mathrm{B}_{\mathrm{n}}{ }^{(3)}$	LE	OEA	$\overline{O E B}{ }_{0}$	OEB_{1}		A_{n}	B_{n}	
H	X	L	L	L	L	H	Z	H	A 3-State, Data from A to B
L	X	L	L	L	L	L	Z	L	
X	X	H	L	L	L	Q_{n}	Z	Q_{n}	A 3-State, Latched data to B
-	-	L	H	L	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	H	H	H	L	L	$H^{(2)}$	H	Off(${ }^{(2)}$	Preconditioned Latch enabling data transfer from B to A
-	L	H	H	L	L	$\mathrm{H}^{(2)}$	L	Off(${ }^{(2)}$	
-	-	H	H	L	L	Q_{n}	Q_{n}	Q_{n}	Latch state to A and B
H	X	L	L	H	X	H	Z	Off	B Off and A 3-State
L	X	L	L	H	X	L	Z	Off	
X	X	H	L	H	X	Q_{n}	Z	Off	
-	H	L	H	H	X	H	H	Off	B Off, Data from B to A
-	L	L	H	H	X	L	L	Off	
-	H	H	H	H	X	Q_{n}	H	Off	
-	L	H	H	H	X	Q_{n}	L	Off	
H	X	L	L	X	H	H	2	Off	B Off and A 3-State
L	X	L	L	X	H	L	Z	Off	
X	X	H	L	X	H	Q_{n}	2	Off	
-	H	L	H	X	H	H	H	Off	B Off, Data from B to A
-	L	L	H	X	H	L	L	Off	
-	H	H	H	X	H	Q_{n}	H	Off	
-	L	H	H	X	H	Q_{n}	L	Off	

NOTES:

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

- = Input not externally driven
$Z=$ High Impedance (off) state
$\mathrm{Q}_{\mathrm{n}}=$ High or Low voltage level one setup time prior to the Low-to-High LE transititon
(1) = Condition will cause a feedback loop path; A to B and B to A
(2) $=$ The latch must be preconditioned such that B inputs may assume a High or Low level while DEB_{0} and DEB_{1} are Low and LE is High
$(3)=$ Precaution should be taken to insure that the B inputs do not float. If they do, they are equal to a Low state
off $=$ Applies to " $\mathrm{B}^{\prime \prime}(\mathrm{OC})$ outputs only. Indicates that the outputs are turned off

CONTROLLED POWER
 SEQUENCING OPERATION

The F776 has a design feature which controls the output transitions during power up (or down). There are two possible conditions that occur.
6. When $L E=$ Low and $D E B_{n}=$ Low, the B outputs are disabled until the LE circuit can take control. This feature insures that the B outputs will follow the A inputs and allow only one transition during power up (or down).
7. If $\left[E=\right.$ High or $O E B_{n}=$ High, then the B outputs will remain disabled during power up (or down).

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output
Waveform 2. Propagation Delay for Data to Output

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Tlme from High Level

Waveform 4. 3-State Output Enable Tlme to Low Level and Output Disable Time from Low Level

Waveform 5. Data Setup and Hold Times

Pi-Bus Transceiver

TEST CIRCUITS AND WAVEFORM

 7.0V

FAMILY $\mathbf{5 4 F}$	INPUT PULSE REQUIREMENTS					
	Amplitude	Low V	Rep. Rate	$\mathbf{i}_{\mathbf{W}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
A Side	3.0 V	0.0 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$
B Side	2.0 V	1.0 V	1 MHz	500 ns	$\leq 4.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$

Test Circuit for 3-State Outputs on B Port

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.
$C_{D}=$ Load capicitance includes jig and probe capicitance; see AC Characteristics for value.
$R_{U}=$ Pull up resistor; see AC Characteristics for value.

Military FAST Products

FEATURES

- Latching Transcelver
- High drive open collector output current with minimum output swing
- Compatlble with Test Mode (TM) Bus specification
- Controlled output ramp
- Multiple package options

DESCRIPTION

The54F777 is a triple bidirectionallatched Bustransceiver and is intended to provide the electrical interface to a high performance wired-OR bus. This bus has a loaded

54F777

Triple Bidirectional Latched Bus Transceiver

(3-State + Open Collector)

Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	PNP latched inputs	3.5/0.117	$70 \mu \mathrm{~A} 70 \mu \mathrm{~A}$
$\mathrm{B}_{0}-\mathrm{B}_{2}$	Data inputs with threshold circuitry	5.0/0.167	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
$O E A_{0}-O E A_{2}$	A Output Enable inputs (active High)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
OEE ${ }_{0}-\mathrm{OEB}_{2}$	B Output Enable inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~N} 20 \mu \mathrm{~A}$
$\underline{E_{0}}-\underline{L E}_{2}$	Latch Enable inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$A_{0}-A_{2}$	3-State outputs	150/40	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{2}$	Open collector outputs	OC*/166.7	OC ${ }^{1} 100 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

* OC = Open Collector

PIN CONFIGURATION

PIN CONFIGURATION LLCC

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					LATCH STATE	OUTPUTS		MODE
A_{n}	$\mathrm{B}^{*}{ }^{*}$	$\underline{L E}$	OEA ${ }_{n}$	$\overline{O E B}{ }_{n}$		A_{n}	B_{n}	
H	X	L	L	L	H	Z	$\mathrm{H}^{* *}$	A 3-state, Data From A To B
L	X	L	L	L	L	Z	L	
X	X	H	L	L	Q_{n}	Z	Q_{n}	A 3-state, Latched data to B
-	-	L	H	L.	(1)	(1)	(1)	Feedback: A to B, B to A
-	H	H	H	L	$H^{(2)}$	H	$Z^{(2)}$	Preconditioned Latch enabling data transfer from B to A
-	L	H	H	L	$\mathrm{H}^{(2)}$	L	$\mathrm{Z}^{(2)}$	
-	-	H	H	L	Q_{n}	Q_{n}	Q_{n}	Latch state to A and B
H	X	L	L	H	H	z	Z	
L	X	L	L	H	L	Z	Z	B and A 3-state
X	X	H	L	H	Q_{n}	Z	Z	
-	H	L	H	H	H	H	Z	
-	L	L	H	H	L	L	Z	B 3-state, Data from B to A
-	H	H	H	H	Q_{n}	H	Z	
-	L	H	H	H	Q_{n}	L	Z	

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

- = Input not externally driven
$Z=$ High impedance (off) state
$Q_{n}=$ High or Low voltage level one setup time prior to the Low-to-High $[E$ transition
(1) = Condition will cause a feedback loop path; A to B and B to A
(2) $=$ The latch must be preconditioned such that B inputs may assume a High or Low level while OEB_{0} and DEB_{1} are Low and LE is High
$\mathrm{H}^{* *}=$ Goes to level of pullup voltage
$\mathrm{B}^{*}=$ Precaution should be taken to insure the B inputs do not float. If they do they are equal to Low state
NOTE: Each latch is independent. The latches may be run in any combination of modes.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$V_{\text {cc }}$	Supply voltage range		-0.5 to 7.0	V
V_{x}	Threshold control		-0.5 to +7.0	V
$\mathrm{V}_{\mathbb{N}}$	Input voltage range	OEE ${ }_{n}$, OEA $_{n}$, LEn	-0.5 to +7.0	V
		$A_{0}-A_{2}, B_{0}-B_{2}$	-0.5 to +5.5	V
In	Input current range		-30 to +5.0	mA
V OUT	Voltage applied to output in High output state range		-0.5 to $+V_{c c}$	V
lout	Current applied to output in Low output state	$A_{0}-A_{2}$	40	mA
		$B_{0}-B_{2}$	200	mA
TSTG	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{2}$	2.0			V
		$\mathrm{B}_{0}-\mathrm{B}_{2}$	1.60			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{2}$			0.8	V
		$\mathrm{B}_{0}-\mathrm{B}_{2}$			1.43	V
$\mathrm{I}_{1 \times}$	Input clamp current	Except $A_{0}-A_{2}$			-18	mA
		$A_{0}-A_{2}$			-40	mA
l_{OH}	High-lovel output current	$A_{0}-A_{2}$			-3	mA
la	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{2}$			20	mA
		$\mathrm{B}_{0}-\mathrm{B}_{2}$			90	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High level output current	$B_{0}-B_{2}$			$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$				100	$\mu \mathrm{A}$
loff	Power-off output current	$\mathrm{B}_{0}-\mathrm{B}_{2}$	$\mathrm{V}_{\text {CC }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$				100	$\mu \mathrm{A}$		
V_{OH}	High-level output voltage	$A_{0}-A_{2}{ }^{4}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{C C}$	2.4	2.5	V_{Cc}	V		
				$\begin{aligned} & I_{0 H}=-0.4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{x}}=3.13 \mathrm{~V} \& \\ & 3.47 \mathrm{~V} \end{aligned}$	2.5		V_{x}	V		
V OL	Low-level output voltage	$A_{0}-A_{2}{ }^{4}$	$\begin{aligned} & V_{C C}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, \\ & V_{I H}=\operatorname{Min} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}}$			0.50	V		
		$B_{0} \cdot B_{2}$		$\mathrm{l}_{0 \mathrm{~L}}=100 \mathrm{~mA}$			1.15	V		
				$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	0.40			V		
V_{IK}	Input clamp voltage	$\mathrm{A}_{0}-\mathrm{A}_{2}$	$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.5	V		
		Except $A_{0}-A_{2}$					-1.2	V		
1	Input current at maximum input voltage	OEB ${ }_{n}, O E A_{n} L_{n}$	$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$A_{0}-A_{2}, B_{0}-B 2$	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA		
I_{H}	High-level input current	OEB $B_{n}, O E A_{n} E_{1} E_{n}$	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}, B_{n}-A_{n}=0 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{2}$	$V_{C C}=$ Max, $V_{1}=2.1 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIL	Low-level input current	OEE ${ }_{n}$, OEA $_{n}, E_{n}$	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		$B_{0}-B_{2}$	$V_{C C}=M a x, V_{1}=0.3 \mathrm{~V}$				-100	$\mu \mathrm{A}$		
$\begin{aligned} & \mathrm{l}_{\mathrm{OZH}} \\ & +\mathrm{l}_{\mathrm{HH}} \\ & \hline \end{aligned}$	Off-state current, High-level voltage applied	$A_{0}-A_{2}$	$V_{C c}=$ Max, $V_{0}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \text { lozI } \\ & +I_{\text {II }} \end{aligned}$	Oft-state current, Low-level voltage applied	$A_{0}-A_{2}$	$V_{\text {cc }}=$ Max, $V_{0}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
${ }^{\text {I }}$	High-level control current		$\begin{gathered} V_{c c}=M a x, V_{x}=V_{c c},\left[E=O E A_{n}=\right. \\ O E B_{n}=2.7 V, A_{0}-A_{2}=2.7 V, B_{0}-B_{2}=2.0 \mathrm{~V} \end{gathered}$		-100		100	$\mu \mathrm{A}$		
			$V_{C C}=$ Max, $V_{x}=3.13 V \& 3.47 V\left[E=O E A_{n}=\right.$ $\mathrm{CEB}_{\mathrm{n}}=2.7 \mathrm{~V}, \mathrm{~A}_{0}-\mathrm{A}_{7}=2.7 \mathrm{~V}, \mathrm{~B}_{0}-\mathrm{B}_{2}=2.0 \mathrm{~V}$		-10		10	mA		
los	Short-circuitoutputcurrent ${ }^{3}$	$A_{0}-A_{2}$ only	$\mathrm{V}_{C C}=$ Max, $\mathrm{B}_{\mathrm{n}}=1.8 \mathrm{~V}, \mathrm{OEA} \mathrm{A}_{\mathrm{n}}=2.0 \mathrm{~V}, \mathrm{OEB}_{n}=2.7 \mathrm{~V}$		-60		-150	mA		
Icc	Supply current (total)	l CH	$V_{C C}=$ Max			40	60	mA		
		lCCL	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$			55	80	mA		
		lecz				45	67	mA		

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	A PORT LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 1	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PZH }} \\ & \mathbf{t}_{\text {PZL }} \end{aligned}$	Output Enable time to High or Low $O E A_{n}$ to A_{n}	Waveform 3, 4	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time from High or Low $O E A_{n}$ to A_{n}	Waveform 3, 4	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
SYMBOL	PARAMETER	TEST CONDITIONS	B PORT LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{D}=30 \mathrm{pF}, R_{U}=9 \Omega \end{gathered}$			$\begin{aligned} & \hline T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ & C_{D}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=9 \Omega \\ & \hline \end{aligned}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10 \\ 11.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{P}, \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay [E_{n} to B_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Enable/disable time $O E B_{n}$ to B_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\mathrm{P}, \mathrm{H}}$	Transition time, B Port 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test Circuit and Waveform	$\begin{aligned} & 0.5^{5} \\ & 0.5^{5} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5^{5} \\ & 4.5^{5} \end{aligned}$	$\begin{aligned} & 0.5^{5} \\ & 0.5^{5} \end{aligned}$	$\begin{aligned} & 7.0^{5} \\ & 4.5^{5} \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time A_{n} to $\left[E_{n}\right.$	Waveform 2	4.0 4.5			4.5		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time A_{n} to $\left[E_{n}\right.$	Waveform 2	0.0 0.0			0.0 0.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {w }}(L)$		Waveform 2	5.5			7.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type. Unless otherwise specified, $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{C}}$ for all test conditions.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Due to test equipment limitations, actual test conditions are for $\mathrm{V}_{\mathrm{IH}}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}$.
5. Guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Clrcuit for 3-State Outputs on A Port SWITCH POSITION

TEST	SWITCH
PLZZ teZL All other	closed closed open

FAMILY 54F	INPUT PULSE REQUIREMENTS					
	Amplitude	Low V	Rep. Rate	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
A Side	3.0 V	0.0 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$
B Side	2.0 V	1.0 V	1 MHz	500 ns	$\leq 4.0 \mathrm{~ns}$	$\leq 4.0 \mathrm{~ns}$

Test Circult for 3-State Outputs on B Port

DEFINITIONS:

$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.
$C_{D}=$ Load capicitance includes jig and probe capicitance; see AC Characteristics for value.
$R_{U}=$ Pull up resistor; see AC Characteristics for value.

Signetics

FEATURES

- Multiplexed 3-state I/O ports for bus orlented applications
- Built-in carry look-ahead capability
- Center power pins to reduce efforts of package inductance
- Count frequency: $\mathbf{1 4 5} \mathbf{~ M H z}$ typical
- Supply current: 90 mA typical
- See 54F269 for 24-pin separate l/O port version
- See 54F579 for $\mathbf{2 0}$-pin version

DESCRIPTION

The 54F779 is a fully synchronous 8-state up/down counter with multiplexed 3-state I/O ports for bus-oriented applications.
All functions (hold, count up, count down, synchronous load) are controlled by two Select pins (S_{0} and S_{1}). The device also features carry look-ahead for easy cascading. All state changes are initiated by the rising edge of the clock.

When CET is High the data outputs are held in their current state and TC is held High. The TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54 F 779 / B E A$
16-Pin Ceramic Flat Pack	54 F779/BFA
20-Pin Ceramic LLCC	$54 F 779 /$ B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$) $H I G H / L O W$	LOAD VALUE HIGH/LOW
$1 / \mathrm{O}_{0}$	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{\mathrm{i}}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Output Enable input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count Enable Trickle input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CP	Clock pulse input (Active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
TC	Terminal count output (Active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

PIN CONFIGURATION

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					OPERATING MODE
S_{1}	S_{0}	CET	$\overline{\text { OE }}$	CP	
X	X	X	H	X	$1 / \mathrm{O}_{0}$ to $\mathrm{l} / \mathrm{O}_{7}$ in $\mathrm{Hi}-\mathrm{Z}$
X	X	X	L	X	Flip-flop output appears on $1 / O_{n}$ lines
L	L	X	H	\uparrow	Parallel load all flip-flops
(not LL)		H	X	\uparrow	Hold (TC held High)
H	L	L	X	\uparrow	Count up
L	H	L	X	\uparrow	Count down

$H=$ High voltage level steady state
$L=$ Low voltage level steady state
$x=$ Don't care
$\uparrow=$ Low-to-High clock transition
(not $L L$) $=\mathrm{S}_{0}$ and S_{1} should never be Low voltage level at the same time in hold mode only
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {H }}$	High-level input voltage ${ }^{4}$		2.0			V
$\mathrm{V}_{\text {LI }}$	Low-level input voltage ${ }^{4}$				0.8	V
I_{IK}	Input clamp current				-18	mA
IOH	High-level output current	TC, $1 / O_{n}$			-1.0	mA
		$1 / O_{n}$			-3.0	mA
lOL^{2}	Low-level output current				20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	TC			$\begin{aligned} & V_{C C}=M i n, \\ & V_{\mathrm{IL}}=\operatorname{Max}, \\ & V_{I H}=M i n \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5			V
		$1 / \mathrm{O}_{n}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4				V		
			$\mathrm{IOH}=-1 \mathrm{~mA}$	2.5		3.4		V		
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{LL}}=$ Max, $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{HH}}=\mathrm{Min}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=M$			-0.73	-1.2	V		
I_{1+2}	Input current at maximum input voltage	$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$V_{C C}=M a$				1.0	mA		
		others	$V_{C C}=M a x$				100	$\mu \mathrm{A}$		
$1_{1 H 1}$	High-level input current	$\begin{gathered} \text { except } \\ 1 / \mathrm{O}_{\mathrm{n}} \\ \hline \end{gathered}$	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
Ill	Low-level input current		$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	Off-state current High-level voltage applied	$1 / O_{n}$	$V_{C C}=\operatorname{Max}, V_{\mathbb{H}}=\operatorname{Min}, V_{1}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \text { lozi } \\ & +I_{\text {IL }} \end{aligned}$	Off-state current Low-level voltage applied		$V_{C C}=\operatorname{Max}, \mathrm{V}_{1 H}=\mathrm{Min}, \mathrm{V}_{1}=0.5 \mathrm{~V}$.				-600	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M a x$			82	116	mA		
		$\mathrm{I}_{\text {CCL }}$				91	128	mA		
		l ccz				97	136	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	125	145		110		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay CP to $/ / O_{n}$	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns. } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay CET to TC	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tzH}} \\ & \mathrm{t}_{\mathrm{pZZ}} \\ & \hline \end{aligned}$	Enable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable time from High	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / \mathrm{O}_{\mathrm{n}}$ to CP	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.0 5.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	Waveform 3	1.0 1.0			1.0 1.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time, High or Low CET to CP	Waveform 3	5.0 7.0			$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{n}(H) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CET to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S_{n} to CP	Waveform 3	0			0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width	Waveform 1	4.0 4.0			4.0 5.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.
4. When testing devices to the functional table specified, refer to the 'Recommended Operating Conditions' section of Application Note 202, "Testing and Specifying FAST Logic".

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output Clock Widths and Maximum Clock Frequency

Waveform 2. Propagation Delay, CET Input to Terminal Count Output

Waveform 3. Set-up and Hold times

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

Military Logic Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Low power, light bus loading
- Functional pin for pin equivalent of 54F240
- 1/30th the bus loading of 54F240
- Provides Ideal Interface and increases fan-out of MOS microprocessors
- Octal bus interface
- 3-State buffer outputs sink 48mA
- 12mA source current

54F1240 Buffers

54F1240 Octal Inverter Buffer (3-State)
Product Specification

DESCRIPTION

The 54F1240 is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The outputs are capable of sinking 48 mA and sourcing up to 12 mA , producing very good capacitive drive characteristics. The device features two Output Enables, OE_{n}, each controlling four of the 3 -State outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 F1240/BRA
20-Pin Ceramic FlatPack	54 F1240/BSA
20-Pin Ceramic LLCC	54 F1240/B2A

FUNCTION TABLE

INPUTS				OUTPUTS	
OE $_{\mathrm{a}}$	I_{a}	OE $_{\mathrm{b}}$	I_{b}	Y_{an}	Y_{bn}
L	L	L	L	H	H
L	H	L	H	L	L
H	X	H	X	Z	Z

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
Z = High-impedance (OFF) state

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\sigma E_{a}, \bar{O} E_{b}$	3-State output enable input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OE_{6}	3-State output enable input (active-High)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$I_{a 0}-I_{a 3}, I_{D 0}-I_{\text {b }}$	Data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\nabla_{a 0}-\nabla_{a 3}, \nabla_{b 0}-\nabla_{b 3}$	Data outputs	600/80	$12 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Buffers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $\mathrm{V}_{\text {CC }}$	V
l_{0}	Current applied to output in Low output state	96	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMMITS			UNIT
		Min	Typ	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage ${ }^{4}$	2.0			V
$\mathrm{V}_{\text {ll }}$	Low-level input voltage ${ }^{4}$			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH_{1}	High-level output current			-1	mA
IOH 2	High-level output current			-3	mA
$\mathrm{l}_{\text {OH3 }}$	High-level output current			-12	mA
loL	Low-level output current			48	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$V_{\text {cc }}=\mathrm{Min}$,	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4			V
			$\mathrm{V}_{\mathrm{IL}}=$ Max,	$\mathrm{l}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5	3.4		V		
			$\mathrm{V}_{\mathrm{HH}}=\mathrm{Min}$	$\mathrm{l}_{\mathrm{OH} 3}=-12 \mathrm{~mA}$	2.0			V		
V_{OL}	Low-level output voltage		$\begin{gathered} V_{C C}=\operatorname{Min}_{1}, V_{\mathrm{IL}}=\operatorname{Max}, \\ V_{\mathrm{IH}}=\text { Min } \end{gathered}$	$1 \mathrm{OL}=48 \mathrm{~mA}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, I_{I}=I_{1 \mathrm{~K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{cc}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}$	$=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$		
$\mathrm{I}_{\underline{H} 1}$	High-level input current		$V_{\text {cc }}=$ Max, V_{1}	2.7V		1	20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{\text {cC }}=$ Max, V_{1}	0.5V		-1	-20	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {OZH }}$	Off-state output current High-level voltage applied		$V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, V_{O}=2.7 V$			2	50	$\mu \mathrm{A}$		
Iozl	Off-state output current Low-level voltage applied		$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-2	-50	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=$ Max		-100		-225	$\mu \mathrm{A}$		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {cc }}=$ Max			22	30	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				58	75	mA		
		Iccz				44	58	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to output	Waveform 1	3.0 1.5	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns
$\begin{gathered} \mathrm{t}_{\mathrm{tzH}} \\ \mathrm{t}_{\mathrm{pzL}} \\ \hline \end{gathered}$	Data to output Output enable time	Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 70 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time From High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. When testing devices to the functional table specified refer to the 'Recommended Operating Conditions' section of Applications Note 202, "Testing and Specifying FASTTN Logic".

AC WAVEFORMS

Waveform 1. Propagation Delay Data to Output

Waveform 2. 3-State Output Enable Tlme To High Level And Output Disable Time From High Level

Waveform 3. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

FEATURES

- 30Ω line driver
- 160 mA output drive capability in the Low-state
- 67 mA output drive capability in the High-state
- High speed
- Facillitates Incident wave switching
- 3nh lead Inductance each on V_{cc} and GND when both side pins are used

DESCRIPTION

The 54F3037 is a high current Line driver composed of four 2-input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.
The drive capability of the 54F3037 is 67 mA source and 160 mA sink with a V_{CC} as low as 4.5 volts. This guarantees incident wave switching with V_{OH} not less than 2.0 V and V_{OL} not more than 0.8 V while driving impedances as low as 30Ω. This is applicable with any combination of outputs using continuous duty.

The propagation delay of the part is minimally affected by reflections when terminated only by the TTL inputs of other devices. Performance may be improved by full or partial line termination.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 F3037/BEA
16-Pin Ceramic FlatPack	54 F3037/BFA
20-pin Ceramic LLCC	54 F3037/B2A

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L$ L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
Y	Data outputs	$3350 / 266$	$67 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High-state and 0.6 mA in the Low-state.

PIN CONFIGURATION

LLCC PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
I_{O}	Current applied to output in Low output state	320	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
V_{LL}	Low-level input voltage			0.8	V
$\mathrm{I}_{1 \times}$	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current			-67	mA
l_{OL}	Low-level output current			160	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\text { Max }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{l}_{\mathrm{OH}}=-45 \mathrm{~mA}$	2.5			V
			$\mathrm{I}_{\mathrm{OH} 1}=-67 \mathrm{~mA}^{3}$	2.0				V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$1 \mathrm{OL}=100 \mathrm{~mA}$. 40	. 55	V		
			$\mathrm{I}_{\mathrm{OL}}=160 \mathrm{~mA}^{4}$. 80	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{\text {cc }}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
I_{1+2}	Input current at maximum input voltage		$V_{\text {CC }}=$ Max, V	$=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current		$V_{\text {cc }}=$ Max, V^{\prime}	2.7V		1	20	$\mu \mathrm{A}$		
112	Low-level input current		$\mathrm{V}_{\text {cc }}=$ Max, V^{\prime}	=0.5V		-0.4	-0.6	mA		
10^{5}	Short-circuit output current		$V_{C C}=$ Max, V_{0}	2.25V	-60		-200	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=$ Max			3.5	9.0	mA		
		lCCL				27	40	mA		

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202 "Testing and Specifying FAST Logic."

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHH}} \end{aligned}$	Propagation delay A, B to Y	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{OH} 1}$ is the current necessary to guarantee the Low to High transition in a 30Ω transmission line on the incident wave.
4. I OL_{1} is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.
5. Io is tested under conditions that produce current approximately one half of the true short-circuit output current (los).

AC WAVEFORM

Waveform 1. For Non-Inverting Outputs
NOTE: $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circult for Totem-Pole Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.
$\mathrm{V}_{\mathrm{X}}=$ Undocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Metastable Immune Characteristics
- Propagation delay skew and output to output skew guaranteed less than 1.5 ns

DESCRIPTION

The 54F5074 is a dual positive edge-triggered D-type flip-flop teaturing individual Data, Clock, Set and Reset inputs; also true and complementary outputs.

Set ($S_{D_{n}}$) and Reset ($\mathrm{R}_{\mathrm{Dn}_{n}}$) are asynchronous active-Low inputs and operate independently of the Clock $\left(\mathrm{CP}_{\mathrm{n}}\right)$ input. Data

54F5074

Flip-Flop

Synchronizing Dual D-Type Flip-Flop with Metastable Immune Characteristics

Objective Specificatlon

must be stable just one setup time prior to the Low-to-High transition of the clock for guaranteed propagation delays.

Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D_{n} input may be changed without affecting the levels of the output.
The 54F5074 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup and hold times are violated the propagation delays may be extended beyond
the specifications but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 54F5074 are $\tau \cong 135$ ps and $T_{0} \cong 9.8 \times 10^{6}$ sec where τ represents a function of the rate at which a latch in a metastable state resolves that condition and T_{0} represents a function of the measurement of the propensity of a latch to enter a metastable state.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -Pin Ceramic DIP	54 F5074/BEA

TYPE	${\text { TYPICAL } \mathrm{f}_{\text {MAX }}}^{120 \mathrm{MHZ}}$	TYPICAL SUPPLY CURRENT (TOTAL)
54 F 5074	20 mA	

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F$ (U.L) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data inputs	1.0/0.417	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$\mathrm{CP}_{0}, \mathrm{CP}_{1}$	Clock inputs (active rising edge)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\bar{S}_{\text {D }}, \mathrm{S}_{\mathrm{D} 1}$	Set inputs (active Low)	1.010.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{DO}}, \mathrm{R}_{\mathrm{D} 1}$	Reset inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$Q_{0}, Q_{1}, \bar{Q}_{0}, \bar{Q}_{1}$	Data outputs	750/33	$15 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Metastable Immune Characteristics Signetics uses the term 'metastable immune' to describe characteristics of some of the products in its FAST family. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations. This claim is easily verified on the 54F5074. By running two independentsignal generators (see Figure 1) at nearly the same frequency (in this case 10 MHz clock and 10.02 MHz data) the device-undertest can often be driven into a metastable state. If the Q output is then used to trigger a digital
scope set to infinite persistance to the \bar{Q} output will build a waveform. An experiment was run by continuously operating the devices in the region where metastability will occur.

Figure 1. Test Setup

When the device-under-test is a 54F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Figure 2.
Figure 2 shows clearly that the \bar{Q} output can vary in time with respect to the Q trigger point. This also implies that the Q or \bar{Q} output waveshapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5 volt line in the upper right hand quadrant. These show that the \bar{Q} output

COMPARISON OF METASTABLE IMMUNE AND NON-IMMUNE CHARACTERISTICS

Time base $\boldsymbol{=} \mathbf{2 . 0 0} \mathrm{n}$ / $/$ div Trigger level $=\mathbf{1 . 5}$ Volts Trigger slope $=$ positive
Figure 2. 54F74 © Output Triggered by Q Output, Setup and Hold Times Violated

Time base $=\mathbf{2} .00 \mathrm{~ns} / \mathrm{dlv}$ Trigger level $=\mathbf{1 . 5}$ Volts Trigger slope $=$ positive
Figure 3. 54F74 \mathbf{Q} Output Triggered by \mathbf{Q} Output, Setup and Hold Times Violated
did not change state even though the Q output glitched to at least 1.5 volts, the trigger point of the scope.

When the device-under-testis a metastableimmune part, such as the 54F5074, the waveform will appear as in Figure 3. The 54F5074 D output will not vary with respect to the Q trigger point even when the partis driven into a metastable state. Any tendency towards internal metastability is resolved by Signetics patented circuitry. If a metastable event occurs within the flop the only outward manifestation of the event will be an increased Clock-to-Q/Q propagation delay. This propagation delay is, of course, a function of the metastability characteristics of the part defined by τ and T_{0}.

The metastability characteristics of the 54F5074 and related part types represent sta-te-of-the-art in TTL technology.

After determining the T_{0} and τ of the flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the 54F5074 for synchronizing asynchronous data thatis arriving at 10 MHz (as measured by a frequency counter), has a clock frequency of 50 MHz , and has decided that he would like to sample the output of the 54F5074 10 nanoseconds after the clock edge. He simply plugs his numbers into the equation following:

In this formula, f_{c} is the frequency of the clock, F_{1} is the average input event frequency, and t^{\prime} is the time after the clock pulse that the output is sampled (t ' $>h, h$ being the normal propagation delay). In this situation the f_{f} will be twice the data frequency or 20 mHz because input events consist of both low and high data transitions. Multiplying f_{l} by f_{c} gives an answer of $10^{15} \mathrm{~Hz}^{2}$. From Figure 4 it is clear that the MTBF is greater than 10^{10} seconds. Using the above formula the actual MTBF is 1.51×10^{10} seconds or about 480 years.

MEAN TIME BETWEEN FAILURES (MTBF) vs. t'

Figure 4. MTBF vs. t^{\prime} for 54 F5074 at $\tau=135 \mathrm{ps}$ and $\mathrm{T}_{0}=9.8 \times 10^{6} \mathrm{sec}$

TYPICAL VALUES FOR τ AND TO AT VARIOUS $V_{c c} S$ AND TEMPERATURES

	$-55^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$		$125^{\circ} \mathrm{C}$	
	τ	T_{0}	τ	$\mathrm{~T}_{0}$	τ	$\mathrm{~T}_{0}$	τ	$\mathrm{~T}_{0}$	τ	T_{0}
5.5 V	105 ps	$1.4 \times 10^{13} \mathrm{sec}$	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$	215 ps	18 sec
5.0 V	110 ps	$1.3 \times 10^{15} \mathrm{sec}$	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$	200 ps	$9.5 \times 10^{2} \mathrm{sec}$
4.5 V	110 ps	$2.0 \times 10^{18} \mathrm{sec}$	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	175 ps	$7.3 \times 10^{4} \mathrm{sec}$	220 ps	$3.0 \times 10^{2} \mathrm{sec}$

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS		OPERATING MODE
$\mathbf{S}_{\text {Dn }}$	F_{Dn}	CP_{n}	D_{n}	Q_{n}	\bar{a}_{n}	
L	H	X	X	H	L	Asynchronous Set
H	L	x	X	L	H	Asynchronous Reset
L	L	x	x	H	H	Undetermined*
H	H	\uparrow	h	H	L	Load "i"
H	H	\uparrow	1	L	H	Load "0"
H	H	1	X	NC	NC	Hold

$H=$ High voltage level
$h=$ High voltage level one setup time prior to Low-to-High clock transition
L = Low voltage level
1 = Low voltage level one setup time prior to Low-to-High clock transition
$N C=$ No change from the previous setup
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
$\uparrow=$ Not a Low-to-High clock transition
$=$ This setup is unstable and will change when either Set or Reset return to the level
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage range	-0.5 to +7.0	V
$\mathrm{I}_{\mathbb{N}}$	Input current range	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS		UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=$ Max	2.5			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\text {HH }}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max}$		0.30	0.50	V	
V_{IK}	Input clamp voltage		$V_{\text {CC }}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V	
4	Input current at maximum input voltage		$V_{C C}=M a x, V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
I_{IH}	High-level input current		$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
ILL	Low-level input current	D_{n}	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$			-250	$\mu \mathrm{A}$	
		$\mathrm{CP}_{\mathrm{n}}, \mathrm{S}_{\mathrm{D}}, \mathrm{F}_{\mathrm{Dn}}$				-20	$\mu \mathrm{A}$	
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ Max	-60		-150	mA	
ICC	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		20	33	mA	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be periormed last.
4. Measure Icc with the clock input grounded and all outputs open, then with Q and \bar{O} outputs High in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	105	120		65		MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P_{n}$ to Q_{n} or σ_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $S_{D n}, \bar{R}_{D n}$ to Q_{n} or σ_{n}	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tps	Propagation delay Skew ${ }^{1,3}$	Waveform 4			1.0		1.0	ns
tos	Output to output Skew ${ }^{\text {2,3 }}$	Waveform 4			1.5		1.5	ns

NOTE:

1. | tpLh actual - $t_{P H L}$ actual | for any output.
2. It $t_{P N}$ actual - $t_{P M}$ actual for any output compared to any other output where N and M are either LH or HL .
3. Skew times are valid only under same test conditions (temperature, V_{Cc}, loading, etc.,).

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{5}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to $C P_{n}$	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $D_{n} \text { to } C P_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			2.0 1.5		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			4.0 6.0		ns ns
$t_{\text {w }}(L)$	S_{Dn} or R_{Dn} Pulse width, Low	Waveform 2	3.0			4.0		ns
$t_{\text {fec }}$	Recovery time S_{Dn} or F_{Dn} to CP_{n}	Waveform 3	3.0			4.0		ns

AC WAVEFORMS

TEST CIRCUITS AND WAVEFORMS

$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

DESCRIPTION

This device is a high current Open-Collector Octal Buffer composed of eight non-inverting drivers.
This device has non-inverting paths with two Output Enables $\left(\mathrm{OE}_{0}, \mathrm{OE}_{1}\right)$ each controlling four outputs.
The driver is designed to deal with the low impedance transmission line effects found on printed circuit boards when fast edge rates are used.

The 130 mA IOL provides ample power to achieve TTL switching on the incident wave voltage.

FEATURES

- Ideal for driving transmission lines or backplanes. $130 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ Ideal for low-Impedance applications with impedance as low as 30Ω.
- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- "Flow through" pinout
- Open-Collector outputs sink 130 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	54 F30244/BLA
24-Pin Ceramic Flatpack	54 F30244/BKA
28-Pin Ceramic LLCC	$54 F 30244 /$ B3A

FUNCTION TABLE

INPUTS		OUTPUTS
OE_{R}	D_{R}	\mathbf{Q}_{R}
L	L	L
L	H	H
H	X	OFF

- Multiple side plns are used for V_{CC} and GND to reduce lead Inductance (improves speed and noise immunity)
- 24-pin SIIm DIP package

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{O} E_{0}, \mathrm{OE}_{1}$	Output Enable Inputs, (Active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data Outputs	$\mathrm{OC}^{*} / 216.7$	$\mathrm{OC}^{*} / 130 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. OC* $=$ Open Collector

PIN CONFIGURATION

| 24 | |
| :--- | :--- | :--- |

LLCC PIN CONFIGURATION
 pineuncton

1	NC	11	Q4	21	Vcc
2	Q0	12	Q5	22	NC
3	Q1	13	Q6	23	Vcc
4	Q2	14	Q7	24	OEO
5	Q3	15	NC	25	$D 3$
6	GND	16	D7	26	$D 2$
7	GND	17	D6	27	D1
8	NC	18	D5	28	DO
9	GND	19	D4		
10	GND	20	DET		

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless

 otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $V_{C C}$ | Supply voltage range | -0.5 to +7.0 | V |
| V_{1} | Input voltage range | -0.5 to +7.0 | V |
| I_{1} | Input current range | -30 to +5.0 | mA |
| V_{0} | Voltage applied to output in High output state | -0.5 to $+V_{C C}$ | V |
| I_{O} | Current applied to output in Low output state | 260 | mA |
| $T_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS			UNIT	
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
$\mathrm{~V}_{\mathrm{OH}}$	High-level output voltage			4.5	V
I_{OL}	Low-level output current			130	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		UMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
l_{OH}	High-level output current				$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{OH}}=\mathrm{Max}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max,	$\mathrm{loL}=100 \mathrm{~mA}$. 35	. 50	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	$\mathrm{l}_{\text {OL } 1}=130 \mathrm{~mA}^{3}$. 35	. 55	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage		$V_{c c}=0.0, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{H} 1}$	High-level input curre		$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
Icc	Supply current (total)	ICCH	$V_{C C}=\operatorname{Max}$			19	27	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				70	100	mA		

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{OL} 1}$ is the current necessary to guarantee the High and Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 5.5 \end{gathered}$	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{O E}$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC CHARACTERISTICS

AC WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Waveform 1. Propagation Delay, Data and Output Enable to Outputs

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs and Open Collector Outputs

DEFINITIONS:
$R_{L}=$ Load Resistor; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.
$V_{X}=$ Unclocked pins must be held at: $: \leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per Function Table.

Signetics

Military Logic Products

54F30245 Transceiver

Octal Transmission Line/Backplane

 Transceiver, NINV (30 Ω O.C. w/ Enable + 3-State)
Product Specification

DESCRIPTION

The 54F30245 is a high current Octal Transceiver and has non-inverting paths.

The B outputs are open collector with $130 \mathrm{~mA} \mathrm{l}_{\mathrm{OL}}$ while the A outputs are 3 -State with 20 mA loL. The transceiver is designed to deal with the low impedance transmission line effects found on printed circuit boards when fast edge rates are used.
The 130 mA la provides ample power to achieve TTL switching on the incident wave.

FEATURES

- High-impedance NPN base Inputs for reduced loading
- Ideal for applications which require high output drive and minimal bus loading
- Octal bidirectional bus interface
- Cholce of outputs

Open collector ($B_{0}-B_{7}$) and
3-States ($A_{0}-A_{7}$)

- Open collector outputs sink 130 mA
- 130 mA lol $_{\text {ol }}$ ideal for low impedance applications and transmission line effects with impedance as low as 30Ω
- 3-State outputs sink 20mA
- Multiple side pins are used for V_{CC} and GND to reduce lead inductance (improves speed and noise immunity)
- Flow through pinout structure faclitates PC board layout

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data Inputs	$3.5 / 0.12$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data Inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Output Enable Inputs (Active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{R}}$	Receive/Transmit Input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data Outputs (3-State)	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data Outputs (OC*)	$\mathrm{OC}^{*} / 216.6$	$\mathrm{OC}^{*} / 130 \mathrm{~mA}$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$24-$ Pin Ceramic Dip	54 F30245/BLA
$24-$ Pin Ceramic Flat Pack	54 F30245/BKA
28 -Pin Ceramic LLCC	54 F30245/B3A

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
OC* $=$ Open Collector

PIN CONFIGURATION

LLCC PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

NPUTS			
$\mathbf{C E}$	R / T	A_{n}	B_{n}
L	H	$A=B$	Inputs
L	L	Inputs	$B_{n} A$
H	X	Z	Z

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
Z = High impedance
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to +5.5	V
I_{O}	Current applied to output in Low output state	260	mA
		$\mathrm{~B}_{0}-\mathrm{B}_{7}$	40
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	$\mathrm{A}_{0}-\mathrm{A}_{7}$	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{ll}	Low-level input voltage				0.8	V
$l_{1 K}$	Input clamp current				-18	mA
V_{OH}	High-level output voltage	$B_{0}-B_{7}$			4.5	V
$\mathrm{IOH}^{\text {O }}$	High-level output current	$A_{0}-A_{7}$			-1	mA
IOH 2	High-level output current	$A_{0}-A_{7}$			-3	mA
$\mathrm{IOL}^{\text {l }}$	Low-level output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$			130	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}$			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS					
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{II}} \\ & V_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Max, Max			250	$\mu \mathrm{A}$
V_{OH}	High-level output voltage	$\begin{gathered} A_{0}-A_{7} \\ R / T, O E \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{V}_{\mathrm{IL}}=\text { Max }, \\ \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{gathered}$	$\mathrm{I}_{\mathrm{OH} 2}=-3 \mathrm{~mA}$	2.4	.		V		
				$\mathrm{I}_{\mathrm{OH} 1}=-1 \mathrm{~mA}$	2.5	3.4		V		
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & \overline{A_{0}-A_{7}} \\ & R T T, O E \end{aligned}$	$\begin{gathered} V_{C C}=\text { Min, } V_{I L}=\text { Max, } \\ V_{I H}=\operatorname{Min} \end{gathered}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$. 35	. 50	V		
V_{OL}	Low-level output voltage	$\mathrm{B}_{0}-\mathrm{B}_{7}$		$\mathrm{loL}=100 \mathrm{~mA}$. 40	. 50	V		
				$\mathrm{l}_{\mathrm{OL} 1}=130 \mathrm{~mA}^{4}$. 80	V		
V_{K}	Input clamp voltage		$V_{\text {cc }}=\mathrm{Min}, \mathrm{l}_{1}=1_{1 \mathrm{~K}}$			-0.73	-1.2	V		
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage	$\mathrm{R} / \mathrm{T}, \mathrm{OE}$	$\mathrm{V}_{\text {cc }}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}}$	$V_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA		
$\mathrm{I}_{\mathrm{H} 1}$		R / T, OE	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
I_{1+3}	High-level input current	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\mathrm{I}_{1 /}$	Low-level input current	$\begin{array}{\|l\|} \hline R /, ~ O E \\ \hline B_{0} \cdot B_{7} \\ \hline \end{array}$	$V_{C C}=$ Max, $V_{l}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
							-600	$\mu \mathrm{A}$		
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{JH}} \end{aligned}$	Off-state output current, High-level voltage applied	$A_{0}-A_{7}$	$V_{c c}=M a x, V_{0}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \text { lozL } \\ & +\mathrm{INLIL}^{2} \end{aligned}$	Off-state output current, Low-level voltage applied	$A_{0}-A_{7}$	$V_{c c}=$ Max, $V_{0}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
los	Short circuit output current ${ }^{3}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{V}_{\text {cc }}=$ Max		-60		-150	mA		
lcc	Supply current (total)	ICCH	$V_{c c}=$ Max			45	70	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				85	135	mA		
		$\mathrm{I}_{\text {ccz }}$				55	75	mA		

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable conditions and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.
4. l_{OL} is the current necessary to guarantee the High-to-Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS (When measured in accordance with the procedures outlined in Signetics LOGIC App Note 202, "Testing and Specifying FAST Logic.")

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {tpLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$			Waveform 1	$\begin{aligned} & 7.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$	Propagation delay B_{n} to A_{n}			Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay OE to B_{n}	$\begin{gathered} \mathrm{B}_{\mathrm{n}} \\ \text { outputs } \end{gathered}$	Waveform 1	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	ns	
$\underset{\mathbf{t}_{\text {PZL }}}{\mathbf{t}_{2 Z H}}$	Output Enable time from High-to-Low	$\begin{gathered} \mathrm{A}_{\mathrm{n}} \\ \text { outputs } \end{gathered}$	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{P}: \mathrm{Z}} \\ & \hline \end{aligned}$	Output Enable time from High-to-Low	A_{n} outputs	Waveform 2 Waveform 3	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns	

*See Figure A for Open Collector Output Information

AC WAVEFORMS

Waveform 1. Propagation Delay, Data and Output Enable to Outputs

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level
oE
A_{n}

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TYPICAL PROPAGATION DELAYS vs. LOAD RESISTOR FOR OPEN COLLECTOR OUTPUTS

NOTES:

When using open collector parts, the value of the pull-up resistor greatly affects the value of the $\mathrm{T}_{\text {PLH. }}$. For example, changing the specified pull-up resistor value from 500Ω to 100Ω will improve the $T_{\text {PLH }}$ up to 50% with only a slight increase in the $\mathrm{T}_{\text {PHL }}$. However, if the value of the pull-up resistor is changed, the user must make certain that the total IoL current through the resistor and, thus the total IL $_{\text {I }}$ of the receivers does not exceed the lol maximum specification.

Figure A

TEST CIRCUIT AND WAVEFORMS

5400 Quad Two-Input NAND Gate 421
54LS00 Quad Two-Input NAND Gate 421
$54 S 00$ Quad Two-input NAND Gate 421
54LS02 Quad Two-Input NOR Gate 425
54502 Quad Two-Input NOR Gate 425540454LS04Hex Inverter42854S04Hex Inverter428
54LS0854LS10$54 S 10$54S1154LS14Hex Inverter428
Quad Two-Input AND Gate 432
54508 Quad Two-Input AND Gate 432
Triple Three-Input NAND Gate 435Triple Three-Input NAND Gate435
Dual Four-Input NAND Gate 44354S205432545405455154LS74A
$54 S 74$54LS75
548554LS855458554LS8654 S 86
549354LS109$54 S 112$54123Triple Three-Input AND Gate435
Hex Inverter Schmitt Trigger 439
Dual Four-Input NAND Gate 443
Quad Two-Input OR Gate 446
Dual Four-Input NAND Buffer 449
Dual 2-Wide 2-Input AND-OR-Invert Gate 452
Dual D-Type Flip-Flop 455
Dual D-Type Flip-Flop 455
Quad Bistable Latch 461
4-Bit Magnitude Comparator 465
4-Bit Magnitude Comparator 465
4-Bit Magnitude Comparator 465
Quad Two-Input Exclusive-OR Gates 473
Quad Two-Input Exclusive-OR Gates 473
4-Bit Binary Ripple Counter 476
Dual J-K Positive Edge-Triggered Flip-Flop 481
Dual J-K Edge-Triggered Flip-Flop 486
Dual Retriggerable Monostable Multivibrator 491
54 LS125
5LS125 Quad 3-State Buffer 497
$54 S 133$ 13-Input NAND Gate 50154LS138
50454S1381-of-8 Decoder/Demultiplexer54S1401-of-8 Decoder/Demultiplexer504
Dual Four-Input NAND 50Ω Line Driver 509$54 S 151$
8 -Input Multiplexer. 51254S15354LS154Dual 4-Line to 1-Line Multiplexer517
54 S157 Quad 2-Input Non-Inverted Data Selector/Multiplexer 5261-of-16 Decoder/Demultiplexer522
54158 54S158 Quad 2-Input Inverted Data Selector/Multiplexer 52654161
54163
54LS161A54164
54LS164
8 -Bit Serial-In Parallel-Out Shift Register
8 -Bit Serial-In Parallel-Out Shift Register 542 542
4-Bit Binary Counter 532
4-Bit Binary Counter 532
4-Bit Binary Counter 532
54LS163A 4-Bit Binary Counter 532542
54 LS173 Quad D-Type Flip-Flop with 3-State Outputs 547
54174 Hex D Flip-Flop 554
54LS174 Hex D Flip-Flop 554
$54 S 174$ Hex D Flip-Flop 554
54175 Quad D Flip-Flop 560
54LS175 Quad D Flip-Flop 560
54 S181 4-Bit Arithmetic Logic Unit 566
54LS191 Presettable 4-Bit Binary Up-Down Counter 576
54193 Presettable 4-Bit Binary Up/Down Counter 585
54LS193 Presettable 4-Bit Binary Up/Down Counter 585
54194 4-Bit Bidirectional Universal Shift Register 593
54LS195A 4-Bit Parallel Access Shift Register 599
54LS197 Presettable 4-Bit Binary Ripple Counter 604
54LS240 Octal Inverter Buffer, 3-State 611
54LS241 Octal Buffer, 3-State 611
$54 S 240 \quad$ Octal Inverter Buffer, 3-State 611
$545241 \quad$ Octal Buffer, 3-State 611
54LS244 Octal Buffer, 3-State 617
54S244 Octal Buffer, 3-State 617
54LS245 Octal Transceiver, 3-State 622
54S251 8-Input Multiplexer, 3-State 627
54 S253 Dual 4-Input Multiplexer, 3-State 632
54LS257A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 638
54LS258A Quad 2-Line to 1-Line Data Selector/Multiplexer, 3-State 643
54LS273 Octal D Flip-Flop 648
$54 S 273$ Octal D Flip-Flop 648
54LS295B 4-Bit Shift Register with 3-State Outputs 654
54365A Hex Buffer/Driver, 3-State 660
54367A Hex Buffer/Driver, 3-State 660
54368A Hex Inverter Buffer, 3-State 660
54LS365A Hex Buffer/Driver, 3-State 660
54LS367A Hex Buffer/Driver, 3-State 660
54LS373 Octal Transparent Latch with 3-State Outputs 665
54LS374 Octal D Flip-Flop with 3-State Outputs 665
54 S373 Octal Transparent Latch with 3-State Outputs 665
54 S374 Octal D Flip-Flop with 3-State Outputs 665
54 LS377 Quad D Flip-Flop with Clock Enable 673
54 LS393 Dual 4-Bit Binary Ripple Counter 678
54LS395A 4-Bit Cascadable Shift Register with 3-State Outputs 682
8 T09 3-State Quad Bus Driver 689
8T26A 3-State Quad Bus Transceiver 693
8X60 FIFO RAM Controller (FRC) 699

Signetics

Military Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

5400, 54LS00, 54S00 Gates

Quad Two-Input NAND Gates
Product Specification

ORDERING INFORMATION

DESCRIPTION	PIN CONFIGURATION	ORDER CODE
Ceramic DIP	Figure A	$5400 / B C A, 54 L S 00 / B C A, 54 S 00 / B C A$
Ceramic Flat Pack	Figure A	$54 L$ S00/BDA, 54S00/BDA
	Figure B	$5400 / B D A$
Ceramic LLCC	See Note	$54 L S 00 / \mathrm{B} 2 \mathrm{~A}, 54 \mathrm{~S} 00 / \mathrm{B} 2 \mathrm{~A}$

$H=$ HIGH voltage level
$L=$ Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54 S	54LS
A, B	Inputs	1 UL	1 1SUL	1LSUL
Y	Output	10 UL	10 SUL	10LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu A I_{H}$ and $-1.6 \mathrm{~mA} I_{L L}$, a $54 S$ Unit Load ($S U L$) is $50 \mu A I_{H}$ and $-2.0 \mathrm{~mA} I_{L}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

Figure A

Figure B

For LLCC pin asaignmente, see JEDEC Standard No. 2

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature range unless otherwise noted

SYMBOL	PARAMETER	$\mathbf{5 4}$	$\mathbf{5 4 L S}$	$\mathbf{5 4 S}$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0		7.0
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			54 S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			2.0			2.0			V
V_{LL}	Low-level input voltage			+0.8			+0.7			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-12			-18			-18	mA
$\mathrm{IOH}^{\text {r }}$	High-level output current			-400			-400			-1000	$\mu \mathrm{A}$
l_{O}	Low-level output current			16			4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS Over recommended operating free-air temperature range unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			5400			54LS00			54 SOO			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}_{1} \\ & V_{\text {IL }}=\operatorname{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$			2.4	3.4		2.5	3.4		2.5	3.4		V
Vol	Low-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{HH}}=\mathrm{Min}, \\ \mathrm{l}_{\mathrm{OL}}=\text { Max } \end{gathered}$				0.2	0.4		0.25	0.4			0.5	V
V_{IK}	Input clamp voltage	$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=I_{\mathrm{IK}}$					-1.5			-1.5			-1.2	V
$\mathrm{I}_{\text {H2 }}$	Input current at maximum input voltage	$V_{C C}=$ Max	$V_{1}=5$.5V			1.0						1.0	mA
			$V_{1}=7$. 0 V						0.1				mA
$I_{H 1}$	High-fevel input current	$V_{C C}=$ Max	$V_{1}=$	2.4V			40							$\mu \mathrm{A}$
			$V_{1}=$	2.7V						20			50	$\mu \mathrm{A}$
ILI	Low-level input current	$V_{\text {cc }}=$ Max	$V_{1}=0$. 4 V			-1.6			-0.4				mA
			$V_{1}=0$. 5 V									-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max			-20		-55	-20		-100	-40		-110	mA
Icc	Supply current (total)	$V_{C C}=$ Max		Outputs High		4	8		0.8	1.6		10	16	mA
				Outputs LOW		12	22		2.4	4.4		20	36	mA

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54^{4}		54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
tpin tphi	Propagation delay	Waveform 1		$\begin{aligned} & 22 \\ & 15 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		$54 \mathrm{LS}^{4}$		545^{4}		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{tPHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		26 19		20 20		7.0 7.5	ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
tpLH tPHL	Propagation delay	Waveform 1		34 25		26 26		9 9	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

\square

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Z Zut of Pulse Generators.
$\mathrm{D}=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54LS02, 54S02

Gates

Quad Two-Input NOR Gate
Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	L
H	L	L

H = High voltage level
L = Low voltage level

ORDERING INFORMATION.

DESCRIPTION	ORDER CODE
Ceramic DIP	54LSO2/BCA, 54S02/BCA
Ceramic Flat Pack	54 LS02/BDA, 54S02/BDA
Ceramic LLCC	54 LS02/B2A, 54S02/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 S$	54 LS
A, B	Inputs	1 SUL	1 LSUL
Y	Output	10 SUL	10 LSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{I L}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-\left.0.4 \mathrm{~mA}\right|_{I L}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54 LS	$54 S$	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

\square

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			2.0			V
V_{IL}	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			+0.7	V
I_{IK}	Input clamp current				-18			-18	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current				-400			-1000	$\mu \mathrm{A}$
l OL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS02			54S02			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}$	Max, $\mathrm{IOH}_{\text {= }}$ Max	2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voitage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$			0.25	0.4			0.5	V
		$\mathrm{l}_{\text {OL }}=\mathrm{Max} \quad+125^{\circ} \mathrm{C}$				0.4			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {cC }}=\operatorname{Min}, I_{1}=I_{\text {IK }}$				-1.5			-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{c c}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						1.0	mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1				mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
$\mathrm{I}_{1 / 2}$	Low-level input current	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max		-20		-100	-40		-100	mA
Icc	Supply current (total)	$V_{c c}=\operatorname{Max}$	$\text { Icch } \begin{aligned} & \text { Outputs } \\ & \text { High } \end{aligned}$		1.6	3.2		17	29	mA
			IcCL Outputs Low		2.8	5.4		26	45	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
telt	Propagation delay	Waveform 1		15 15		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		20		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		26 26		9.0 9.0	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

Waveform 1. Waveform for Inverting Outputs

NOTE: $V_{M}=1.3 V$ for $54 L S, V_{M}=1.5 \mathrm{~V}$ for all other $T L$ families.

TEST CIRCUIT AND WAVEFORM

Signetics

Millitary Logic Products

5404, 54LS04, 54S04 Inverters

Hex Inverter

Product Specificatlon

ORDERING INFORMATION

DESCRIPTION	PIN CONFIGURATION	ORDER CODE
Ceramic DIP	Figure A	5404/BCA, 54LS04/BCA, 54SO4/BCA
Ceramic Flat Pack	Figure A	54LS04/BDA, 54S04/BDA
	Figure B	5404/BDA
Ceramic LLCC	See Jedec Standard No. 2	54LS04/B2A, 54S04/B2A

FUNCTION TABLE

INPUT	OUTPUT
A	\mathbf{Y}
L	H
H	L

$\mathrm{H}=$ High voltage level $\mathrm{L}=$ Low voltage level

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54 S	54LS
A	Input	1 1UL	1 SUL	1LSUL
Y	Output	10 UL	10 SUL	10LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} I_{I H}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

Figure A

Figure B

LOGIC SYMBOL
(9) 1

Inverters

ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature range unless otherwise noted

SYMBOL	PARAMETER	54	54LS	54 S	UNIT
$V_{C C}$	Supply voltage range	7.0	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +7.0	V
1	Input current range	-30 to +5	-30 to +1	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	-0.5 to $+V_{c c}$	-0.5 to $+V_{\text {cc }}$	V
TSTG	Storage temperature range	-65 to +150			${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			54S			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8			+0.8			+0.8	V
$\mathrm{I}_{1 K}$	Input clamp current			-12			-18			-18	mA
IOH	High-level output voltage			-400			-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current			16			4			20	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS Over recommended operating free-air temperature range unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		5400			54LS00			54S00			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Min}_{1},$	$\begin{aligned} & V_{\text {I }}=\text { Max, } \\ & =\text { Max } \end{aligned}$	2.4	3.4		2.5	3.4		2.5	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ \mathrm{IOL}= \end{array}$	$\begin{aligned} & V_{\mathrm{VH}}=\operatorname{Min}, \\ & \mathrm{Max} \end{aligned}$		0.2	0.4		0.25	0.4			0.5	V
$V_{\text {IK }}$	Input clamp voltage	$V_{C C}=M$	Min, $l_{1}=l_{1 K}$			-1.5			-1.5			-1.2	V
I_{1+2}	Input currentatmax-	$\mathrm{V}_{\mathrm{cc}}=\operatorname{Max}$	$V_{1}=5.5 \mathrm{~V}$			1.0						1.0	mA
	imum input voltage		$V_{1}=7.0 \mathrm{~V}$						0.1				mA
I_{1+1}	High-level	$V_{C C}=\operatorname{Max}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40							$\mu \mathrm{A}$
	input current		$\mathrm{V}_{1}=2.7 \mathrm{~V}$						20			50	$\mu \mathrm{A}$
IIL	Low-level	$V_{C C}=\operatorname{Max}$	$V_{1}=0.4 \mathrm{~V}$			-1.6			-0.4				mA
	input current		$\mathrm{V}_{1}=0.5 \mathrm{~V}$									-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{c c}$	- Max	-20		-55	-20		-100	-40		-110	mA
Icc	Supply current	$V_{C C}=\operatorname{Max}$	Icch Outputs High		6	12.		1.2	2.4		15	24	mA
			I CCL Outputs Low		18	33		3.6	6.6		30	54	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54^{4}		54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{tPLH}}$	Propagation delay	Waveform 1		$\begin{aligned} & 22 \\ & 15 \end{aligned}$		15 15		$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		$54 \mathrm{LS}^{4}$		$54 \mathrm{~S}^{4}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		26 19		20 20		7.0 7.5	ns ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t} \text { PLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		34 25		26 26		9.0 9.0	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

\square

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathbf{R}_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of Pulse Generators.
D = Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	L
L	H	L
H	L	L
H	H	H

54LS08, 54S08 Gates

Quad Two-Input AND Gates

Product Specification

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54LS08/BCA, 54S08/BCA
Ceramic Flat Pack	54LSO8/BDA, 54S08/BDA
Ceramic LLCC	54 LS08/B2A, 54S08/B2A

$H=$ High voltage level
L = Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54 S	54 LS
A, B	Inputs	1 SUL	LLSUL
Y	Output	10 SUL	10 LSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} I_{H}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54 LS	54 S	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	-0.5 to +6.5	V
I_{I}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
For LCC Pin assignments, see JeDEc Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54LS			54S			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.7			+0.8	V
$1_{\text {IK }}$	Input clamp current			-18			-18	mA
I_{OH}	High-level output current			-400			-1000	$\mu \mathrm{A}$
${ }^{\text {OL }}$	Low-level output current			4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS08			54S08			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{IOH}=\mathrm{Max}$		2.5	3.4		2.4	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {cC }}=$ Min, $\mathrm{V}_{\text {LL }}=$ Max, $\mathrm{I}_{\text {LL }}=$ Max			0.25	0.4			0.5	V
V_{IK}	Input clamp voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-1.5			-1.2	V
I_{1+2}	Input current at maximum	$V_{C C}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						1.0	mA
	input voltage		$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1				mA
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current	$V_{c c}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$V_{1}=0.4 \mathrm{~V}$			-0.4				mA
			$V_{1}=0.5 \mathrm{~V}$						-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-110	-40		-100	mA
Icc	Supply current (total)	$V_{C C}=\operatorname{Max}$	$\|$IcCH Outputs High		2.4	4.8		18	32	mA
					4.4	8.8		32	57	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$54 \mathrm{LS}^{4}$		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
	Propagation delay	Waveform 1		15 20		7.0 7.5	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		$54 \mathrm{~S}^{4}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay	Waveform 1		20 25		$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & t_{\text {tph }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay	Waveform 1		$\begin{aligned} & 26 \\ & 33 \end{aligned}$		$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

NOTE: $V_{M}=1.3 V$ for $54 L S, V_{M}=1.5 V$ for all other TTL families.
Waveform 1. Waveform for Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FUNCTION TABLE

INPUTS			OUTPUTS	
A	B	C	Y('10)	Y('11)
L	L	L	H	L
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	L	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	L	H

H $=$ High voltage level
L = Low voltage level

54LS10, 54S10, 54S11 Gates

Triple Three-Input NAND ('10), AND ('11) Gates
Product Specification

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 LS10/BCA,54S10/BCA,
	$54 S 11 / B C A$
Ceramic Flat Pack	54 LS10/BDA,54S10/BDA,
	$54 S 11 / B D A$
Ceramic LLCC	$54 \mathrm{~S} 10 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
A - C	Inputs	1SUL	1LSUL
Y	Output	10SUL	10LSUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$ and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\text {IH }}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$\mathbf{5 4 L S}$	$\mathbf{5 4 S}$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
(10

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54 S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			$+0.7$	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current				-18			-18	mA
IOH	High-level output current				-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54LS10			54S10, 54S11			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}= \\ & V_{H H}=1 \end{aligned}$	$\begin{aligned} V_{\mathrm{IL}} & =\text { Max, }, \\ \mathrm{OH} & =\text { Max } \end{aligned}$		2.5	3.4		2.5	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level	$\mathrm{I}_{\text {OL }}=$ Max, V	Min, $\mathrm{V}_{\mathrm{IH}}=$ Min,			0.25	0.4			0.5	V
	output voltage	$\mathrm{V}_{\text {IL }}=\mathrm{Max}$	$+125^{\circ} \mathrm{C}$				0.4			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	V_{cc}	, $I_{1}=1 I_{1}$				-1.5			-1.2	V
I_{1+2}	Input current at max-	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$							1.0	mA
	imum input voltage		$V_{1}=7.0 \mathrm{~V}$				0.1				mA
$\mathrm{I}_{1 / 1}$	High-level input current	$V_{c c}=M a x$	$V_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
IIL	Low-level	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4			.	mA
	input current		$\mathrm{V}_{1}=0.5 \mathrm{~V}$							-2.0	mA
los	Short-circuit	$V_{C c}$		'10	-20		-100	-40		-110	mA
	output current ${ }^{3}$			'11	-20		-100	-40		-100	mA
			$\mathrm{I}_{\mathrm{cch}}$ Outputs High	'10		0.6	1.2		7.5	12	mA
Icc	Supply current (total)	$V_{C C}=$ Max	$\begin{aligned} & \text { Iccl Outputs } \\ & \text { Low } \end{aligned}$			1.8	3.3		15	27	mA
			I_{CCH} Outputs High	'11					13.5	24	mA
			$\begin{gathered} \begin{array}{c} \text { ccl Outputs } \\ \text { Low } \end{array} \\ \hline \end{gathered}$						24	42	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 1 - '10		$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 2 - '11		15 20		7.0 7.5	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1 - '10		$\begin{aligned} & 15 \\ & 17 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{t} L \mathrm{H}} \\ & t_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 2 - '11		20 25		9 11	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 1 - '10		$\begin{aligned} & 20 \\ & 24 \end{aligned}$		$\begin{aligned} & 9 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{tLH}} \\ & \mathbf{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay	Waveform 2-'11		26 33		12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs '10

Waveform 2. Waveform for Non-Inverting Outputs '11 NOTE: $V_{M}=1.3 V$ for $54 \mathrm{LS}, V_{M}=1.5 \mathrm{~V}$ for all other $T T$ families

TEST CIRCUIT AND WAVEFORM

Test CIrcuit for 54 Totem-Pole Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS					
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\text {TH }}$	$\mathbf{T}_{\text {THL }}$
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathbf{R}_{\mathrm{T}}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

DESCRIPTION

The 54LS14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole

54LS14

Schmitt Trigger

Hex Inverter Schmitt Trigger
Product Specification
output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and nega-tive-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

FUNCTION TABLE

INPUTS	OUTPUT
\mathbf{A}	\mathbf{Y}
0	1
1	0

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 LS14/BCA
Ceramic Flat Pack	54 LS14/BDA
Ceramic LLCC	54 LS14/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
A	Inputs	1LSUL
Y	Outputs	10LSUL

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	+7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

\square

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
I_{OH}	High-level output current			-400	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			4	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{\mathrm{T}_{+}}$	Positive-going threshold	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		1.4	1.6	1.9	V
V_{T}.	Negative-going threshold	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		0.5	0.8	1.0	V
ΔV_{T}	Hysteresis ($\mathrm{V}_{\text {T }^{*}}-\mathrm{V}_{\mathrm{T}^{\text {. }} \text {) }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.4	0.8		V
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{1}=\mathrm{V}_{\text {T-MIN }}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{1}=\mathrm{T}_{\text {T }+ \text { MAX }}, \mathrm{I}_{\text {OL }}=$ Max			0.35	0.4	V
V_{IK}	Input clamp voltage	$V_{C C}=\operatorname{Min}, 1_{1}=1_{1 K}$				-1.5	V
${ }_{1} \mathrm{I}_{+}$	Input current at positive-going threshold	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}_{+}}$			-0.14		mA
I_{T}.	input current at negative-going threshold	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}}$.			-0.18		mA
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA
${ }_{1 / 41}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-100	mA
Icc	Supply current (total)	$\therefore V_{C C}=$ Max	ICCH	Outputs HIGH	8.6	16	mA
			ICCL	Outputs LOW	12	21	mA

Schmitt Triggers

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \text { tput } \\ & \mathbf{t P H L}^{2} \end{aligned}$	Propagation delay	Waveform 1		22	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 1		27 27	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
telu	Propagation delay	Waveform 1		35 35	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

Waveform 1. For Inverting Outputs
NOTE: $V_{M}=1.3 \mathrm{~V}$ ior $54 L S, V_{\text {tret }(H)}=1.6 V_{V}, V_{\text {tref }}(L)=0.8 V$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$T_{\text {TLH }}$	$T_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 X X X$	400Ω	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$	
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see $A C$ Characteristics for value.
$R_{T}=$ Termination resistance should be equal to ZOUT of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

TYPICAL PERFORMANCE CHARACTERISTICS

Signetics

Military Logic Products

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	\mathbf{Y}
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

H = High voltage level
L = Low voltage level
X = Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
$A-D$	Inputs	1SUL	1LSUL
Y	Output	10 SUL	10LSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu A I_{I H}$ and $-2.0 \mathrm{~mA} I_{I L}$, and a $54 L S$ Unit Load (LSUL) is $20 \mu A I_{I H}$ and $-0.4 m A I_{I L}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$\mathbf{5 4 L S}$	$\mathbf{5 4 S}$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			2.0			V
V_{IL}	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			$+0.7$			+0.7	V
I_{K}	Input clamp current				-18			-18	mA
lOH	High-level output current				-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS20			54S20			
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{LL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max,			0.25	0.4			0.5	V
		$\mathrm{IOL}^{\text {= }} \mathrm{Max}$	$+125^{\circ} \mathrm{C}$			0.4			0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voitage	$V_{C C}=\operatorname{Min}, \Lambda_{1}=I_{\text {IK }}$				-1.5			-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$V_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$.			.	1.0	mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1				mA
I_{HI}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
ILI	Low-level input current	$V_{C C}=$ Max	$V_{1}=0.4 \mathrm{~V}$			-0.4				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{c c}=$ Max		-20		-100	-40		-110	mA
Icc	Supply current (total)	$V_{C C}=\operatorname{Max}$	$\begin{aligned} & \mathrm{I}_{\mathrm{ccH}} \text { Outputs } \\ & \text { High } \end{aligned}$		0.4	0.8		5	8	mA
			ICcL Outputs		1.2	2.2		10	18	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\overline{t_{P L H}}$ $t_{\text {PHL }}$	Propagation delay	Waveform 1		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{gathered} \mathrm{t}_{\mathrm{PLLH}} \\ t_{\text {PHLL }} \\ \hline \end{gathered}$	Propagation delay	Waveform 1		20 20		$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		26 26		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs NOTE: $V_{M}=1.3 \mathrm{~V}$ for $54 \mathrm{LS}, \mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for all other TLL families.

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS					
	\mathbf{R}_{L}	\mathbf{V}_{M}	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\mathrm{TLH}}$	$T_{T H L}$
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$
$54 S X X X$	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Milliary Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	H

H = High voltage level
L = Low voltage level

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$14-$ Pin Ceramic DIP	$5432 / B C A$
$14-$ Pin Ceramic Flat Pack	$5432 / B D A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54
A, B	Inputs	1 UL
Y	Output	10 UL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS		UNIT	
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.8	V
I_{K}	Input clamp current			-12	mA
I_{OH}	High-level output current			-800	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	$=$ Min, $\mathrm{I}_{\mathrm{OH}}=$ Max	2.4	3.4		V
V_{OL}	Low-level output voltage	$V_{\text {cc }}=$ Min,	Max, $\mathrm{V}_{\mathrm{LL}}=$ Max		0.2	0.4	V
$\mathrm{V}_{1 K}$	Input clamp voltage		in, $l_{1}=l_{\text {IK }}$			-1.5	V
$\mathrm{I}_{1 \mathrm{H}_{2}}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$, $V_{1}=5.5 \mathrm{~V}$			1.0	mA
I_{1+1}	High-level input current	$V_{C C}=$, $V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{1 /}$	Low-level input current	$V_{C C}=$	$\mathrm{x}_{1} \mathrm{~V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
los	Short-circuit output current ${ }^{3}$		$=$ Max	-20		-55	mA
Icc	Supply current (total)	$V_{C C}=\operatorname{Max}$	1 CcH Outputs High		15	22	mA
			ICcL Outputs Low		23	38	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
tpLH t_{PHL}	Propagation delay	Waveform 1		15 22	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		19 26	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
${ }^{\text {PPLH }}$ $t_{\text {PHL }}$	Propagation delay	Waveform 1		25 34	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

\square

TEST CIRCUIT AND WAVEFORM

Test Clrcult for 54 Totem-Pole Outputs

FAMILY	INPUT PULSE CHARACTERISTICS					
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathrm{T}_{\mathbf{W}}$	$\mathrm{T}_{\mathrm{TLH}}$	$\mathrm{T}_{\text {THL }}$
54 XXX	400Ω	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to Zout of Pulse Generators.
D = Diodes are 1N916, 1 N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at: $\leq 0.8 \mathrm{~V} ; \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Millitary Logle Products

54S40

Buffer

Dual Four-Input NAND Buffer

Product Specification

FUNCTION TABLE

INPUTS				OUTPUT	
A	B	C	D	Y	
L	X	X	X	H	
X	L	X	X	H	
X	X	L	X	H	
X	X	X	L	H	
H	H	H	H	L	

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54 S40/BCA
Ceramic Flat Pack	54 S40/BDA
Ceramic LLCC	$54540 / B 2 A$

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 S$
A-D	Inputs	2 SUL
Y	Output	30 SUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

\square

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

Buffers

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
V_{L}	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$\mathrm{I}_{1 \times}$	Input clamp current				-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current				-3000	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {che }}$	Low-level output current				60	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{K}}=$ Max, $\mathrm{I}_{\text {OH }}=$ Max		2.5	3.4		V
V_{OL}	Low-level output voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=$ Min,				0.5	V
		$l_{\text {OL }}=$ Max	$+125^{\circ} \mathrm{C}$			0.45	V
V_{K}	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-1.2	V
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathbf{H 1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
If	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-4.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-50		-225	mA
$l_{\text {cc }}$	Supply current (total)	$V_{c c}=$ Max	ICCH Outputs High		10	18	mA
			ICCL Outputs Low		25	44	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay	Waveform 1		6.5 6.5	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
	Propagation delay	Waveform 1		8.5 8.5	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. The 54 S 40 test time for los should not exceed 100 ms .
4. These parameters are guaranteed, but not tested.

Buffers

AC WAVEFORM

NOTE: $V_{M}=1.5 \mathrm{~V}$

Waveform 1. Waveform for Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Milltary Logic Products

54S51
 Gate

Dual 2-WIde 2-Input AND-OR-Invert Gate
Product Specification

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
H	H	X	X	L
X	X	H	H	L
All other combinations				

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54551 / \mathrm{BCA}$
Ceramic Flat Pack	$54551 / \mathrm{BDA}$
Ceramic LLCC	$54551 / \mathrm{B} 2 \mathrm{~A}$

H = High voltage level
$L=$ Low voltage level
X = Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
Y	Output	10SUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$\mathbf{5 4 S}$	UNIT
$V_{C G}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +6.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
For LLCC Pin aseagnments, aee JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.8	V
I_{K}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1000	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min,	Max, $\mathrm{l}_{\mathrm{OH}}=$ Max	2.5	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	Min, $\mathrm{IOL}_{\text {O }}=\mathrm{Max}$			0.5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}$, $I_{1}=I_{1 K}$			-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{\text {cc }}=$	$V_{1}=5.5 \mathrm{~V}$			1.0	mA
I_{1+1}	High-level input current	$\mathrm{V}_{\mathrm{CC}}=$	$V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-2.0	mA
los	Short-circuit output current ${ }^{3}$		Max	-40		-100	mA
Icc	Supply current (total)	$V_{c c}=$ Max	$\mathrm{I}_{\mathrm{CCH}}$ Outputs High		8.2	17.8	mA
			ICCL Outputs Low		13.6	22	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$C_{L}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay	Waveform 1		5.5 5.5	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay	Waveform 1		7.0 8.0	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

NOTE: $V_{M}=1.5 \mathrm{~V}$

Waveform 1. Waveform for Inverting Outputs

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$D=$ Diodes are $1 \mathrm{~N} 916,1 \mathrm{~N} 3064$, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

DESCRIPTION

The 54LS74A, 54S74 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also complementary Q and \bar{Q} outputs.
Set (S_{D}) and Reset (R_{D}) are asynchronous active-Low inputs and operate independently of the clock input. Information on the

Data (D) input is transferred to the Q output on the Low-to-High transition of the clock pulse. The D inputs must be stable one setup time prior to the Low-to-High clock transition for predictable operation. Although the Clock input is level-sensitive, the positive transition of the clock pulse between the 0.8 V and 2.0 V levels should be equal to or less than the clock-to-output delay time for reliable operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54LS74ABCA 54S74/BCA
14-Pin Ceramic FlatPack	$\begin{aligned} & \text { 54LS74A/BDA } \\ & 54574 / \mathrm{BDA} \end{aligned}$
14-Pin Ceramic LLCC	$\begin{aligned} & \text { 54LS74A/B2A } \\ & 54 \mathrm{~S} 74 / \mathrm{B} 2 \mathrm{~A} \end{aligned}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
D	Input	1 SUL	1LSUL
\bar{R}_{D}	Input	$3 S U L$	2 LSUL
S_{D}	Input	$2 S U L$	2 LSUL
$C P$	Input	$2 S U L$	1 LSUL
Q, \bar{Q}	Outputs	10 SUL	10 LSUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{I}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\mathbf{S}_{\mathbf{D}}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	$\mathbf{C P}$	D	\mathbf{Q}	\mathbf{O}
Asynchronous Set	L	H	X	X	H	L
Asynchronous Reset (Clear)	H	L	X	X	L	H
Undetermined'(1)	L	L	X	X	H	H
Load "1" (Set)	H	H	\uparrow	h	H	L
Load "0" (Reset)	H	H	T	I	L	H

H = High voltage level steady state.
h = High voltage level one setup time prior to the Low-to-High clock transition.
$\mathrm{L}=$ Low voltage level steady state.
I Low voltage level one setup time prior to the Low-to-High clock transition.
$X=$ Don't care.
$\uparrow=$ Low-to-High clock transition.
NOTE:
(1) Both outputs will be High while both S_{D} and R_{D} are Low, but the output states are unpredictable if S_{D} and R_{D} go High simultaneously.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$54 L \mathbf{S}$	$\mathbf{5 4 S}$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
l_{1}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			+0.7	V
I_{IK}	Input clamp current				-18			-18	mA
IOH	High-level output current				-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54LS74A			54574			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{L}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$			2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}$,				0.25	0.4			0.5	V
		$\mathrm{l}_{\text {OL }}=\mathrm{Max} \quad+125^{\circ} \mathrm{C}$					0.4			0.45	V
V_{IK}	Input clamp voltage	$V_{\text {CC }}=\operatorname{Min}, l_{1}=I_{\text {IK }}$					-1.5			-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{c c}=\operatorname{Max}$	$V_{1}=5.5 \mathrm{~V}$							1.0	mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$	Dinput			0.1				mA
				F_{D} input			0.2				mA
				$5_{\text {D input }}$			0.2				mA
				CP input			0.1				mA
$\mathrm{I}_{1 / 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$		D input			20			50	$\mu \mathrm{A}$
				$\mathrm{R}_{\text {D input }}$			40			150	$\mu \mathrm{A}$
				S_{D} input			40			100	$\mu \mathrm{A}$
				CP input			20			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {L }}$	Low-level input current ${ }^{5}$	$V_{c c}=M a x$	$V_{1}=0.4 \mathrm{~V}$	Dinput			-0.4				mA
				K_{D} input			-0.8				mA
				S_{D} input			-0.8				mA
				CP input			-0.4				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$	Dinput						-2	mA
				F_{D} input		,				-6	mA
				5^{5} input						-4	mA
				CP input						-4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=\operatorname{Max}$			-20		-100	-40		-110	mA
lcc	Supply current ${ }^{4}$ (total)	$V_{\text {cc }}=$ Max				4	8		30	50	mA

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum clock frequency	Waveform 1	25		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{t} H \mathrm{~L}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 25 \\ & 40 \\ & \hline \end{aligned}$		9 9	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Set or Reset to output	Waveform 2		25		6	ns
		Waveform 2 $C P=$ High		40		13.5	ns
$\mathrm{t}_{\text {PHL }}$	Set or Reset to output	Waveform 2 $C P=\text { Low }$		40		8	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock pulse width (High)	Waveform 1	25		6		ns
$t_{w}(L)$	Clock pulse width (Low)	Waveform 1			7.3		ns
$t_{w}(L)$	Set or reset pulse width (Low)	Waveform 2	25		7		ns
$\mathrm{t}_{6}(\mathrm{H})$	Setup time (High) data to clock	Waveform 1	20		3		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time (Low) data to clock	Waveform 1	20		3		ns
t_{h}	Hold time data to clock	Waveform 1	5		2		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		75		MHz
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 30 \\ & 45 \end{aligned}$		$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PLH }}$	Propagation delay	Waveform 2		30		8.0	ns
$\mathrm{t}_{\text {PHL }}$	Set or Reset to output	Waveform 2 $\mathrm{CP}=\mathrm{High}$		45		16	ns
${ }^{\text {t }}$ HL	Set or Reset to output	Waveform 2 $C P=L o w$		45		10	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS					UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		55		MHz
${ }_{t_{P H L H}}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 39 \\ & 59 \end{aligned}$		$\begin{aligned} & 16 \\ & 13 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Set or Reset to output	Waveform 2		39		10	ns
		Waveform 2 $\mathrm{CP}=\mathrm{High}$		59		19	ns
$\mathrm{t}_{\text {PHL }}$	Set or Reset to output	Waveform 2 $\mathrm{CP}=\text { Low }$		59		13	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock pulse width (High)	Waveform 1	25		8		ns
$t_{w}(L)$	Clock pulse width (Low)	Waveform 1			10		ns
$t_{w}(L)$	Set or reset pulse width (Low)	Waveform 2	35		10		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time (High) data to clock	Waveform 1	20		4		ns
$\mathrm{t}_{s}(\mathrm{~L})$	Setup time (Low) data to clock	Waveform 1	20		4		ns
t_{h}	Hold time data to clock	Waveform 1	5		2		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I $I_{C C}$ with the Clock inputs grounded and all outputs open, with the Q and \bar{Q} outputs High in turn.
5. Set is tested with reset High and reset is tested with set High.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test CIrcult for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\text {TLH }}$	$\mathbf{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 S X X X$	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to ZOUT of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

54LS75

Latch

Quad Bistable Latch
Product Specification

FEATURES

- 4-bit bistable latch

DESCRIPTION

The 54LS75 has four bistable latches. Each 2-bit latch is controlled by an active High Enable input (E). When E is High the data enters the latch and appears at the Q output. The Q outputs follow the Data inputs as long as E is High. The data on the D inputs one setup time before the High-to-Low transition of the enable will be stored in the latch. The latched outputs remain stable as long as the enable is Low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -Pin Ceramic DIP	54 LS75/BEA
16 -Pin Ceramic FlatPack	54 LS75/BFA
16 -Pin Ceramic LLCC	54 LS75/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
D	Input	1LSUL
E	Input	4LSUL
All	Outputs	10LSUL

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

\square

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS		OUTPUT	
	E	D	\mathbf{Q}	$\overline{\mathbf{Q}}$
Data enabled	H	L	L	H
	H	H	H	L
Data latched	L	\mathbf{X}	\mathbf{q}	$\overline{\mathbf{q}}$

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$q=$ lower case letters indicate the state of referenced output one setup time prior to the High-to-Low Enable transition.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMMITS			UNIT
		Min	Nom	Max	
$V_{C c}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\mathrm{l} \text { L }}$	Low-level input voltage			+0.7	V
$\mathrm{I}_{1 \times}$	Input clamp current			-18	mA
IOH	High-level output current			-400	$\mu \mathrm{A}$
loL	Low-level output current			4	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{l}_{\mathrm{OH}}=\mathrm{Max}$		2.5	3.4		V
$V_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, l_{1}=I_{\text {IK }}$				-1.5	V
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$	D inputs			0.1	mA
			E inputs			0.4	mA
$\mathrm{I}_{\mathbf{H} \mathbf{1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$	D inputs			20	$\mu \mathrm{A}$
			Einputs			80	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$	D inputs			-0.4	mA
			Einputs			-1.6	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\text {cC }}=\mathrm{Max}$		-20		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{\text {cc }}=$ Max			6.3	12	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to Q output	Waveform 1		27 17	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to Qoutput	Waveform 2		20 15	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Enable to Q output	Waveform 3		27 25	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Enable to 0 output	Waveform 3		30 15	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{W}	Enable pulse width	Waveform 3	20		ns
t_{s}	Setup time, data to enable	Waveform 4	20		ns
t_{h}	Hold time, data to enable	Waveform 4	5.0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
${ }^{\text {PLLH }}$ $t_{\text {PHL }}$	Propagation delay Data to Q output	Waveform 1		$\begin{aligned} & 32 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{tPHL}} \\ & \hline \end{aligned}$	Propagation delay Data to \bar{Q} output	Waveform 2		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Enable to Q output	Waveform 3		$\begin{aligned} & 32 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Enable to ${ }^{2}$ output	Waveform 3		35 20	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to Q output	Waveform 1		$\begin{aligned} & 42 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPLH t_{PHL}	Propagation delay Data to \bar{Q} output	Waveform 2		$\begin{aligned} & 33 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Enable to Q output	Waveform 3		$\begin{aligned} & 42 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Enable to \bar{Q} output	Waveform 3		$\begin{aligned} & 45.5 \\ & 26.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
$t_{\text {W }}$	Enable pulse width	Waveform 3	20		ns
t_{s}	Setup time, data to enable	Waveform 4	20		ns
t_{h}	Hold time, data to enable	Waveform 4	5.0	ns	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure l_{cc} with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\text {TLH }}$	$\mathbf{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\mathrm{~S}_{1} 15 \mathrm{~ns}$	$\mathrm{~S}_{\mathbf{n n s}}$	

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.
D = Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be heid at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

5485, 54LS85, 54S85 Comparators

Military Logic Products

FEATURES

- Magnitude comparison of any binary words
- Serial or parallel expansion without extra gating
- Use 54S85 for very high-speed comparisons

DESCRIPTION

The ' 85 is a 4-bit magnitude comparator that can be expanded to almost any
length. It compares two 4-bit binary, BCD, or other monotonic codes and presents the three possible magnitude results at the outputs. The 4-bit inputs are weighted (A_{0} A_{3}) and $B_{0}-B_{3}$), where A_{3} and B_{3} are the most significant bits.

The operation of the '85 is described in the Function Table, showing all possible logic conditions. The upper part of the table describes the normal operation under all conditions that will occur in a single device or in a series expansion scheme.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS85/BEA 54S85/BEA $5485 / \mathrm{BEA}$
16 -Pin Ceramic FlatPack	$54 \mathrm{LS} 85 / \mathrm{BFA}$ $5485 / \mathrm{BFA}$
16 -Pin Ceramic LLCC	$54 \mathrm{LSS85/B2A}$ $54585 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54 S	54LS
$A_{0}-A_{3}, B_{0}-B_{3}, I_{A=B}$	Inputs	$3 U L$	$3 S U L$	$3 L S U L$
$I_{A<B}, I_{A>B}$	Inputs	$1 U L$	$1 S U L$	$1 L S U L$
$A=B, A<B, A>B$	Outputs	$10 U L$	$10 S U L$	$10 L S U L$

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu A I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{L}}$, a 54 S Unit Load (SUL) is $50 \mu A I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

In the upper part of the table the three outputs are mutually exclusive. In the lower part of the table, the outputs reflect the feed-forward conditions that exist in the parallel expansion scheme.
The expansion inputs $l_{A>B}, I_{A=B}$, and $l_{A<B}$ are the least significant bit positions. When used for series expansion, the $A>B, A=B$ and $A<B$ outputs of the least significant word are connected to the corresponding $\left.\right|_{A>B}, I_{A-B}$, and $\left.\right|_{A<B}$ inputs of the next higher stage. Stages can be added in
this manner to any length, but a propagation delay penalty of about 15 ns is added with each additional stage. For proper operation the expansion inputs of the least significant word should be tied as follows: $I_{A>B}=$ Low, $I_{A=B}=$ High, and $\mathrm{I}_{\mathrm{A}<\mathrm{B}}=$ Low.
The parallel expansion scheme shown in Figure 1 demonstrates the most efficient general use of these comparators. In the parallel expansion scheme, the expansion inputs can be used
as a fifth input bit position except on the least significant device which must be connected as in the serial scheme. The expansion inputs are used by labeling $I_{A>B}$ as an " A " input, $I_{A<B}$ as a " B " input and setting $\mathrm{I}_{\mathrm{A}=\mathrm{B}}$ Low. The " 85 can be used as a 5 -bit comparator only when the outputs are used to drive the $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ and ($\mathrm{B}_{0}-\mathrm{B}_{3}$) inputs of another ' 85 device. The parallel technique can be expanded to any number of bits as shown in Table 1.

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
$\mathrm{A}_{3}, \mathrm{~B}_{3}$	$\mathrm{A}_{2}, \mathrm{~B}_{2}$	$\mathrm{A}_{1}, \mathrm{~B}_{1}$	A_{0}, B_{0}	$I_{A>B}$	$\mathrm{I}_{\mathrm{A}<\mathrm{B}}$	$\mathrm{I}_{\mathrm{A}=\mathrm{B}}$	A $>\mathrm{B}$	A < B	A $=\mathrm{B}$
$A_{3}>B_{3}$	X	X	X	X	X	X	H	L	L
$\mathrm{A}_{3}<\mathrm{B}_{3}$	X	X	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}>\mathrm{B}_{2}$	X	X	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}<\mathrm{B}_{2}$	X	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}>B_{1}$	X	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}<\mathrm{B}_{1}$	X	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$A_{0}>B_{0}$	X	X	X	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}<\mathrm{B}_{0}$	X	X	X	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	L	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	H	L	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$A_{0}=B_{0}$	L	L	H	L	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	X	X	H	L	L	H
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$A_{0}=B_{0}$	H	H	L	L	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	L	L	H	H	L

[^6]

Figure 1. Comparison of Two 24-Blt Words

Table 1.

WORD	NUMBER OF			
LENGTH	PACKAGES	TYPICAL SPEEDS		
	1	54	$54 S$	54 nS
$1-4$ Bits	$2-6$	23 ns	12 ns	23 ns
$5-25$ Bits	$8-31$	40 ns	22 ns	46 ns
$25-120$ Bits	63 ns	34 ns	69 ns	

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54	54LS	545	UNIT
$V_{\text {cc }}$	Supply voltage	7.0	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +5.5	V
1	Input current range	-30 to +5	-30 to +1	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	-0.5 to $+V_{C C}$	-0.5 to $+V_{C C}$	V
TSTG	Storage temperature range	-65 to +150			${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			545			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			2.0			V
V_{LL}	Low-level input voltage			$+0.8$			+0.7			+0.8	V
	$+125^{\circ} \mathrm{C}$			+0.8			+0.7			+0.7	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-12			-18			-18	mA
1 OH	High-level output current			-400			-400			-1000	$\mu \mathrm{A}$
lol	Low-level output current			16			4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			5485			54LS85			54S85			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V OH	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$			2.4	3.4		2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{1 H}=$ Min,				0.2	0.4		0.25	0.4			0.5	V
		$\mathrm{V}_{\mathrm{LL}}=\mathrm{Max}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max} \quad+125^{\circ} \mathrm{C}$					0.4			0.4			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$					-1.5			-1.5			-1.2	V
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage	$V_{\text {cc }}=$ Max	$V_{1}=5.5 \mathrm{~V}$				1.0						1.0	mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$	$I_{A<B}, I_{A>B}$						0.1				mA
				Other inputs						0.3				mA
1_{1+1}	High-level input current	$V_{C C}=\operatorname{Max}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	$I_{A<B}, I_{A>B}$			40							$\mu \mathrm{A}$
				Other inputs			120							$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$	$\mathrm{I}_{\mathrm{A}<\mathrm{B}, \mathrm{I}_{\mathrm{A}}>\mathrm{B}}$						20			50	$\mu \mathrm{A}$
				Other inputs						60			150	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	$I_{A<B,} I_{A>B}$			-1.6			-0.4				mA
				Other inputs			-4.8			-1.2				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$	$l_{A<B,} I_{A}>B$									-2.0	mA
				Other inputs									-6.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{c c}=\operatorname{Max}$			-18		-55	-20		-100	-40		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$				55	88		10.4	20		73	115	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS ${ }^{5}$		54S ${ }^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$t_{\mathrm{PLLH}}{ }_{\mathrm{t}_{\mathrm{PHL}}}$	Propagation delay A or B input to $A<B, A>B$ output	Waveform 1 3 logic levels		$\begin{aligned} & 26 \\ & 30 \end{aligned}$		$\begin{aligned} & 36 \\ & 30 \end{aligned}$		$\begin{gathered} 16 \\ 16.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\mathrm{PLLH}} \mathrm{t}_{\mathrm{PHL}}$	Propagation delay A or B input to $A=B$ output	Waveform 2 4 logic levels		$\begin{aligned} & 35 \\ & 30 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{gathered} 18 \\ 16.5 \end{gathered}$	ns ns
$t_{\mathrm{PLH}} \mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{I}_{\mathrm{A}<\mathrm{B}}$ and $\mathrm{I}_{\mathrm{A}=\mathrm{B}}$ input to $A>B$ output	Waveform 1 1 logic level		$\begin{aligned} & 11 \\ & 17 \end{aligned}$		22 17		$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} H \mathrm{~L}} \\ & \mathrm{t}_{\mathrm{L}} \end{aligned}$	Propagation delay $I_{A=B}$ input to $A=B$ output	Waveform 2 2 logic levels		$\begin{aligned} & 20 \\ & 17 \end{aligned}$		$\begin{aligned} & 20 \\ & 26 \end{aligned}$		$\begin{gathered} 10.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay $I_{A>B}$ and $I_{A=B}$ input to $A<B$ output	Waveform 1 1 logic level		11 17		22 17		7.5 8.5	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	545		54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A or B input to $A<B, A>B$ output	Waveform 1 3 logic levels		$\begin{aligned} & 30 \\ & 34 \end{aligned}$		41 35		$\begin{aligned} & 19.0 \\ & 19.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathbf{t}_{\text {tPL }} \\ \mathbf{t}_{\text {PHLL }} \end{gathered}$	Propagation delay A or B input to $A=B$ output	Waveform 2 4 logic levels		39 34		50 50		$\begin{aligned} & 19.5 \\ & 19.5 \end{aligned}$	ns ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay $I_{A<B}$ and $I_{A=B}$ input to $A>B$ output	Waveform 1 1 logic level		$\begin{aligned} & 15 \\ & 21 \end{aligned}$		27 22		$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $I_{A=8}$ input to $\mathrm{A}=\mathrm{B}$ output	Waveform 2 2 logic levels		$\begin{aligned} & 24 \\ & 21 \end{aligned}$		25 31		$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay $I_{A>B}$ and $I_{A=B}$ input to $A<B$ output	Waveform 1 1 logic level		$\begin{aligned} & 15 \\ & 21 \end{aligned}$		27		$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$54{ }^{5}$		54LS ${ }^{5}$		$54 S^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	MIn	Max	Min	Max	
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\text {PHL }} \end{gathered}$	Propagation delay A or B input to $A<B, A>B$ output	Waveform 1 3 logic levels		$\begin{aligned} & 39 \\ & 44 \end{aligned}$		53 46		23 24	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A or B input to $A=B$ output	Waveform 2 4 logic levels		$\begin{aligned} & 51 \\ & 44 \end{aligned}$		65 65		25 24	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $I_{A<B}$ and $I_{A=B}$ input to A > B output	Waveform 1 1 logic level		$\begin{aligned} & 20 \\ & 27 \end{aligned}$		$\begin{aligned} & 35 \\ & 29 \end{aligned}$		$\begin{gathered} 11.5 \\ 13 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH}}$ $t_{\text {PHL }}$	Propagation delay $I_{A=B}$ input to $A=B$ output	Waveform 2 2 logic levels		$\begin{aligned} & 31 \\ & 27 \end{aligned}$		$\begin{aligned} & 33 \\ & 40 \end{aligned}$		16 12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $l_{A>B}$ and $l_{A=B}$ input to $A<B$ output	Waveform 1 1 logic level		$\begin{aligned} & 20 \\ & 27 \end{aligned}$		35 29		11.5 13	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. I I_{C} is measured with outputs open, $\mathrm{A}=\mathrm{B}$ grounded, and all other inputs at $\geq 4.0 \mathrm{~V}$.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	H	L

$H=$ High voltage level
L = Low voltage level

54LS86, 54S86

Gates

Quad Two-Input Exclusive-OR Gates

Product Specification

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 LS86/BCA, 54S86/BCA
14-Pin Ceramic Flat Pack	54 LS86/BDA, 54S86/BDA
Ceramic LLCC	54 LS86/B2A, 54S86/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
A, B	Inputs	1 SUL	1LSUL
Y	Output	10 SUL	10 LSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{L}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\text {LL }}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54LS	54S	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			2.0			V
$V_{\text {IL }}$	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			+0.7	V
$\mathrm{I}_{1 K}$	Input clamp current				-18			-18	mA
IOH	High-level output current				-400			-1000	$\mu \mathrm{A}$
laL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS86			$54 \mathrm{S86}$			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=M a x, I_{O H}=\operatorname{Max} \end{aligned}$		2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}$,			0.25	0.4			0.5	V
		$\mathrm{loL}=\mathrm{Max}$	$+125^{\circ} \mathrm{C}$			0.4			0.45	V
V_{K}	Input clamp voltage	$V_{\text {cc }}=$ Min, $l_{I}=I_{\text {IK }}$				-1.5			-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						1.0	mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.2				mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				40			50	$\mu \mathrm{A}$
IL	Low-level input current	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.8				mA
			$V_{1}=0.5 \mathrm{~V}$						-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C c}=\operatorname{Max}$		-20		-110	-40		-100	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			0.1	10		50	75	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		$54 S^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathbf{t p l L L}^{t_{\text {t }}} . \end{aligned}$	Propagation delay A or B to output	Other input Low Waveform 2		$\begin{aligned} & 23 \\ & 17 \end{aligned}$		$\begin{gathered} 10.5 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay A or B to output	Other input High Waveform 1		$\begin{aligned} & 30 \\ & 22 \end{aligned}$		$\begin{gathered} 10.5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { 54LS }{ }^{5} \\ \hline C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} 54 \mathrm{~S} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation delay A or B to output	Other input Low Waveform 2		$\begin{aligned} & 25 \\ & 22 \end{aligned}$		$\begin{gathered} 12.5 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ t_{PHL}	Propagation delay A or B to output	Other input High Waveform 1		$\begin{aligned} & 35 \\ & 27 \end{aligned}$		$\begin{gathered} 12.5 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {t }} \text { HL } \end{aligned}$	Propagation delay A or B to output	Other input Low Waveform 2		$\begin{aligned} & \hline 33 \\ & 29 \end{aligned}$		$\begin{aligned} & 16.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A or B to output	Other input High Waveform 1		$\begin{aligned} & 46 \\ & 35 \end{aligned}$		$\begin{aligned} & 16.5 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured with inputs grounded and outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs

NOTE: $V_{M}=1.3 V$ for $54 L S, V_{M}=1.5 V$ for all other TTL families.

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	T_{W}	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 S X X X$	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathbf{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathbf{Z}_{\text {OUT }}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Milltary Logic Products

DESCRIPTION

The 5493 is a 4 -bit, ripple-type Binary Counter. The device consists of four mas-ter-slave flip-flops internally connected to provide a divide-by-two section and a di-vide-by-eight section. Each section has a separate Clock input to initiate state changes of the counter on the High-to-Low clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

5493
Counter

4-Bit BInary Ripple Counter

Product Specification

A gated AND asynchronous Master Reset $\left(M R_{1} \bullet M R_{2}\right)$ is provided which overrides both clocks and resets (clears) all the flip-flops.

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_{0} must be connected externally to input $\mathbf{C P}_{1}$.

The input count pulses are applied to input CP_{0}. Simultaneous divisions of $2,4,8$ and 16 are performed at the Q_{0}, Q_{1}, Q_{2} and Q_{3} outputs as shown in the Function Table.

As a 3-bit ripple counter the input count pulses are applied to input CP_{1}. Simultaneous frequency divisions of 2,4 and 8 are available at the Q_{1}, Q_{2} and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	$5493 / B C A$
14-Pin Ceramic FlatPack	$5493 /$ BDA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54
MR	Master reset inputs	1UL
CP_{0}	Input	2UL
CP_{1}	Input	2UL
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Outputs	10UL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu A I_{I H}$ and $-1.6 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

COUNT	OUTPUTS			
	a_{0}	Q	Q_{2}	Q_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

MODE SELECTION

RESET INPUTS		OUTPUTS			
M_{1}	$M R_{2}$	Q_{0}	Q_{1}	Q_{2}	\mathbf{Q}_{3}
H	H	L	L	L	L
L	H		Count		
H	L		Count		
L	L		Count		

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$\mathrm{X}=$ Don't care

NOTE: Output Q_{0} connected to input CP_{1}.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathbb{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathbb{I}}$	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-12	mA
I_{OH}	High-level output current			-800	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\mathbb{H}}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\operatorname{Max}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathbb{H}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$			0.2	0.4	V
V_{IK}	Input clamp voltage	$V_{\text {cC }}=$ Min, $I_{1}=I_{1 K}$				-1.5	V
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathbf{H} 1}$	High-level input currrent	$V_{C C}=$ Max, $V_{1}=2.4 \mathrm{~V}$	MR inputs			40	$\mu \mathrm{A}$
			$\mathrm{CP}_{0}, \mathrm{CP}_{1}$ inputs			80	$\mu \mathrm{A}$
If	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$	MR inputs			-1.6	mA
			CP_{0} input			-3.2	mA
			CP_{1} input			-3.2	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-18		-55	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			28	46	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & f_{\text {MAX }} \\ & f_{\text {MAX }} \end{aligned}$	CP_{0} input count frequency CP_{1} input count frequency	Waveform 1	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{0} input to Q_{0} output	Waveform 1		$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{1} input to Q_{1} output	Waveform 1		$\begin{aligned} & 33 \\ & 33 \end{aligned}$	ns ns
$\begin{aligned} & \mathbf{t P L H}^{2} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay CP_{1} input to Q_{2} output	Waveform 1		$\begin{aligned} & 67 \\ & 67 \\ & \hline \end{aligned}$	ns ns
	Propagation delay CP_{1} input to Q_{3} output	Waveform 1		$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$\overline{t_{P L H}}$ t_{PHL}	Propagation delay ${ }^{C P} P_{0}$ input to Q_{3} output	Waveform 1		$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMIT		UNIT
			Min	Max	
tw	CP_{0} pulse width	Waveform 1	50		ns
i^{*}	CP_{1} pulse width	Waveform 1	50		ns
t_{w}	MR pulse width	Waveform 2	50		ns

Counter

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$ $f_{\text {MAX }}$	CP ${ }_{0}$ input count frequency CP_{1} input count frequency	Waveform 1	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{0} input to Q_{0} output	Waveform 1		$\begin{aligned} & \hline 37 \\ & 37 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{1} input to Q_{1} output	Waveform 1		$\begin{aligned} & 37 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{1} input to Q_{2} output	Waveform 1		$\begin{aligned} & 71 \\ & 71 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay CP_{1} input to Q_{3} output	Waveform 1		$\begin{aligned} & 106 \\ & 106 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{0} input to Q_{3} output	Waveform 1		$\begin{aligned} & 143 \\ & 143 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$ $f_{\text {max }}$	CP_{0} input count frequency CP_{1} input count frequency	Waveform 1	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHiL }} \end{aligned}$	Propagation delay CP_{0} input to Q_{0} output	Waveform 1		$\begin{array}{r} 48 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay CP_{1} input to Q_{1} output	Waveform 1		$\begin{array}{r} 48 \\ 48 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CP_{1} input to Q_{2} output	Waveform 1		$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{1} input to Q_{3} output	Waveform 1		$\begin{aligned} & 138 \\ & 138 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CP_{0} input to Q_{3} output	Waveform 1		$\begin{aligned} & 186 \\ & 186 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMIT		UNIT
			Min	Max	
tw	CP_{0} pulse width	Waveform 1	50		ns
t_{w}	CP_{1} pulse width	Waveform 1	50		ns
t_{w}	MR pulse width	Waveform 2	50		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured with all outputs open, both MR inputs grounded following momentary connection $\geq 4.0 \mathrm{~V}$, and all other inputs grounded.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1.

Waveform 2.

NOTE: $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
The number of Clock Pulses required between the tpLH and tpHL measurements can be determined from the appropriate Truth Table.

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to ZOUT of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

54LS109

Flip-Flop

Military Logic Products

DESCRIPTION

The 54LS109 is a dual positive edge-triggered JK-type flip-flop featuring individual J, K, Clock, Set and Reset inputs; also complementary Q and \bar{Q} outputs.

Set (S_{D}) and Reset (K_{D}) are asynchronous active Low inputs and operate independently of the Clock input.

The J and K are edge-triggered inputs which control the state changes of the flip-flops as described in the Mode Select-Truth Table.

The J and R inputs must be stable just one set-up time prior to the Low-to-High transition of the Clock for predictable operation. The JK design allows operation as a D flipflop by tying the J and K inputs together.

Although the Clock input is level sensitive, the positive transition of the Clock pulse between the 0.7 V and 2.0 V levels should be equal to or less than the Clock to output delay time for reliable operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS109/BEA
16-Pin Ceramic FlatPack	54 LS109/BFA
16-Pin Ceramic LLCC	54 LS109/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
$C P$	Clock input	1LSUL
R_{D}	Reset input	2LSUL
S_{D}	Set input	2LSUL
J, K	Data inputs	1LSUL
Q, Q	Outputs	10LSUL

NOTE: Where a 54 LS Unit Load (LSUL) is $20 \mu A I_{\mathbb{H}}$ and $-0.4 m A I_{l}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\mathbf{S}_{\text {D }}$	$\mathbf{R}_{\text {D }}$	CP	J	K	Q	Q
Asynchronous Set	L	H	X	X	X	H	L
Asynchronous Reset (Clear)	H	L	X	X	x	L	H
Undetermined (note)	L	L	X	X	X	H	H
Toggle	H	H	\uparrow	h	1	$\overline{\mathbf{q}}$	q
Load "0" (reset)	H	H	\uparrow	1	,	L	H
Load "1" (set)	H	H	\uparrow	h	h	H	L
Hold "no change"	H	H	\uparrow	1	h	q	$\bar{\square}$

H = High voltage level steady state.
$L=$ Low voltage level steady state.
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition.
1 = Low voltage one setup time prior to the Low-to-High Clock transition.
$X=$ Don't care.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High Clock transition.
$\uparrow=$ Low-to-High Clock transition.
NOTE: Both outputs will be High while both S_{D} and F_{D} are Low, but the output states are unpredictable if S_{D} and R_{D} go High simultaneously.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LMITS			UNIT	
		Min	Nom		
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.7	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-400	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			4	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}$			0.25	0.4	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{I}_{1}=I_{1 \mathrm{~K}}$				-1.5	V
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$	$J, \mathrm{~K}$ inputs			0.1	mA
			R_{D}, S_{D} inputs			0.2	mA
			CP inputs			0.1	mA
$\mathrm{I}_{\mathbf{H}_{1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$	J, K inputs			20	$\mu \mathrm{A}$
			$\mathrm{R}_{\mathrm{D}}, \mathrm{S}_{\mathrm{D}}$ inputs			40	$\mu \mathrm{A}$
			CP inputs			20	$\mu \mathrm{A}$
I_{11}	Low-level input current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	J, K inputs			-0.4	mA
			F_{D}, inputs			-0.8	mA
			$S_{\text {D }}$ inputs			-0.8	mA
			CP inputs			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max		-20		-100	mA
$l_{\text {cc }}$	Supply current ${ }^{4}$ (total)	$V_{\text {cC }}=\operatorname{Max}$			4	8	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Reset to output	Waveform 2		$\begin{aligned} & 25 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Set to output	Waveform 2		25 40	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMIT		UNIT
			Min	Max	
$t_{\text {w }}(\mathrm{H})$	Clock pulse width (High)	Waveform 1	25		ns
$t_{w}(L)$	Clock pulse width (Low)	Waveform 1	15		ns
$t_{w}(L)$	Set or reset pulse width (Low)	Waveform 2	25		ns
t_{s}	Set-up time J or K to clock	Waveform 1	20		ns
t_{n}	Hold time J or K to clock	Waveform 1	5.0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Reset to output	Waveform 2		$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PHHL}} \end{aligned}$	Propagation delay Set to output	Waveform 2		30 45	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {Max }}$	Maximum clock frequency	Waveform 1	25		MHz
$\underset{\text { tpLu }}{\text { tpLH }}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 39 \\ & 59 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay Reset to output	Waveform 2		$\begin{aligned} & 39 \\ & 59 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay Set to output	Waveform 2		39 59	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMIT		UNIT
			Min	Max	
$t_{w}(H)$	Clock pulse width (High)	Waveform 1	25		ns
$t_{W}(L)$	Clock pulse width (Low)	Waveform 1	25		ns
$t_{w}(L)$	Set or reset pulse width (Low)	Waveform 2	25		ns
t_{s}	Set-up time J or K to clock	Waveform 1	25		ns
t_{h}	Hold time J or K to clock	Waveform 1	5.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With the Clock input grounded and all outputs open, l_{cc} is measured with the Q and \bar{Q} outputs High in turn.
5. These parameters are guaranteed, but not tested.

Flip-Flop

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathrm{T}_{\mathbf{T H}}$	$\mathbf{T}_{\mathbf{T H L}}$	
$54 L S X X X$	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

DESCRIPTION

The 54S112 is a dual J-K negative edge-triggered flip-flop featuring individual J, K, Clock, Set and Reset inputs. The Set (S_{D}) and Reset (R_{D}) inputs, when Low, set or reset the outputs as shown in the Function Table regardless of the levels at the other inputs.

A High level on the Clock (CP) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CP is High and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are ob-

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 S112 BEA
16-Pin Ceramic FlatPack	54 S112 BFA
16 -Pin Ceramic LLCC	54 S112/B2A

54S112

Flip-Flop

Dual J-K Edge-Triggered Flip-Flop
Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
$C P$	Clock input	2SUL
F_{0}, S_{D}	Reset and Set inputs	$3.5 S U L$
J, K	Data inputs	1SUL
Q, \bar{Q}	Outputs	1OSUL

NOTE: A $54 S$ Unit Load (SUL) is $50 \mu A I_{I H}$ and $-2.0 \mathrm{~mA} I_{L L}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{1}	input current range	-30 to +5.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC Pin Assignment, see Jedec Standard No. 2

Flip-Flops

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$S_{\text {D }}$	F_{D}	CP	J	K	Q	Q
Asynchronous Set	L	H	X	X	X	H	L
Asynchronous reset (clear)	H	L	X	X	X	L	H
Undetermined	L	L	X	X	X	H	H
Toggle	H	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
Load "0" (Reset)	H	H	\downarrow	1	h	L	H
Load "1" (Set)	H	H	\downarrow	h	1	H	L
Hold "no change"	H	H	\downarrow	1	1	9	\bar{q}

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the High-to-Low Clock transition.
$L=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the High-to-Low Clock transition.
$q=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low Clock transition.
$X=$ Don't Care.
$\downarrow=$ High-to-Low Clock transition.
NOTE:
Both outpus will be High while both S_{D} and F_{D} are Low, but the output states are unpredictable if S_{D} and R_{D} go High simultaneously.
RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			UNIT
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$\mathrm{l}_{1 \mathrm{~K}}$	Input clamp current				-18	mA
IOH	High-level output current				-1000	$\mu \mathrm{A}$
lol	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

Flip-Flops

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		UMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}$	Max, $\mathrm{I}_{\text {OH }}=$ Max	2.5	3.4		V
$V_{\text {OL }}$	Low-level output voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{HH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$				0.5	V
			$+125^{\circ} \mathrm{C}$			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}, \mathrm{l}_{1}=I_{\mathrm{IK}}$				-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA
${ }_{1 / 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$	$J, \mathrm{~K}$ inputs			50	$\mu \mathrm{A}$
			$\mathrm{F}_{\mathrm{D} .} \mathrm{S}_{\mathrm{D}}$ inputs			100	$\mu \mathrm{A}$
			CP inputs			100	$\mu \mathrm{A}$
IL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$	J, K inputs			-1.6	mA
			$\mathrm{F}_{\mathrm{D},} \mathrm{S}_{\mathrm{D}}$ inputs			-7	mA
			CP inputs			-4	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max		-40		-110	mA
lec	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			15	50	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\mathrm{I}_{\text {max }}$	Maximum clock frequency	Waveform 1	80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tplH } \\ & t_{\text {tpht }} \\ & \hline \end{aligned}$	Propagation delay S_{D} or R_{D} to output	Waveform 2		7.0 7.0	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
$t_{\text {w }}(\mathrm{H})$	Clock pulse width (High)	Waveform 1	6.0		ns
$t_{\text {W }}(L)$	Clock pulse width (Low)	Waveform 1	6.5		ns
$t_{\text {c }}(L)$	Set or reset pulse width (Low)	Waveform 2	8.0		ns
t_{8}	Setup time J or K to clock	Waveform 1	4.0		ns
t_{n}	Hold time J or K to clock	Waveform 1	0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
${ }_{\text {f MAX }}$	Maximum clock frequency	Waveform 1	80		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{t} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
PPLH t_{PHL}	Propagation delay S_{D} or R_{D} to output	Waveform 2		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	60		MHz
tpLH $t_{\text {PHL }}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay S_{D} or R_{D} to output	Waveform 2		$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			Min	Max	
$t_{w}(H)$	Clock pulse width (High)	Waveform 1	10		ns
$t_{w}(L)$	Clock pulse width (Low)	Waveform 1	10		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Set or reset pulse width (Low)	Waveform 2	10		ns
t_{s}	Setup time J or K to clock	Waveform 1	9.0		ns
t_{h}	Hold time J or K to clock	Waveform 1	2		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With the Clock input grounded and all outputs open, $I_{c c}$ is measured with the Q and Q outputs High in turn.
5. These parameters are guaranteed, but not0 tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {Out }}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

54123

Multivibrator

Dual Retriggerable Monostable Multivibrator

Product Specification

FEATURES

- DC triggered from active High or active Low Inputs
- Retriggerable for very long pulses - up to 100% duty cycle
- Direct reset terminates output pulse
- Compensated for $V_{c c}$ and temperature variations

DESCRIPTION

The 54123 is a dual retriggerable monostable multivibrator with output pulse width control by three methods. The basic pulse time is programmed by selection of external resistance ($\mathrm{R}_{\text {ext }}$) and capacitance ($\mathrm{C}_{\text {ext }}$) values. Once triggered, the basic pulse width may be extended by retriggering the
gated active Low going edge input (\bar{A}) or the active High going edge input (B), or be reduced by use of the overriding acting Low reset.

The basic output pulse width is essentially determined by the values of external capacitance and timing resistance. For pulse widths when $\mathrm{C}_{\text {ext }} \leq 1000 \mathrm{pf}$, see Figure A .

When $C_{\text {ext }}>1000$ pi, the output pulse width is defined as:
$t_{W}=0.28 R_{e x t} \cdot C_{e x t}\left(1+\frac{0.7}{R_{e x t}}\right)$
The external resistance and capacitance are normally connected as shown in Figure B. If any electrolytic capacitor is to be
used with an inverse voltage rating of less than 1 V then Figure C should be used. (Inverse voltage rating of an electrolytic is normally specified at 5% of the forward voltage rating.) If the inverse voltage rating is 1 V or more (this includes a 100% safety margin), then Figure B can be used. Note that if Figure C is used, the timing equations change as follows:

$$
t_{w} \cong 0.25 R_{e x t} \cdot C_{e x t}\left(1+\frac{0.7}{R_{e x t}}\right)
$$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54123 / \mathrm{BEA}$

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
V	Voltage applied to output in High outpt state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTION TABLE

INPUTS			OUTPUTS	
R ${ }_{\text {d }}$	$\overline{\text { A }}$	B	Q	Q
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	บ
H	\downarrow	H	Ω	บ
\uparrow	L	H	Ω	v

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care
$\uparrow=$ Low-to-High transition
$\downarrow=$ High-to-Low transition
$\Omega=$ One High-level pulse
$\Psi=$ One Low-level pulse

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54(U.L)
$\bar{A}, \mathrm{~B}$	Inputs	1.0
R_{D}	Input	1.0
$\mathrm{Q}, \overline{\mathrm{Q}}$	Outputs	10

NOTE: A 54 Unit Load (UL) is understood to be $40 \mu A I_{I H}$ and $-1.6 \mathrm{~mA} I_{I L}$.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
V_{L}	Low-level input voltage			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-12	mA .
IOH	High-level output current			-800	$\mu \mathrm{A}$
la	Low-level output current			16	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.4	3.4		V
V_{OL}	Low-level output voltage ${ }^{5}$	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=\mathrm{Max}$			0.2	0.4	V
V_{K}	Input clamp voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-1.5	V
$\mathrm{IHK}^{\text {H }}$	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1.0	mA
I_{HI}	High-level input current	$V_{C C}=$ Max, $V_{l}=2.4 \mathrm{~V}$	\bar{A}, B inputs			40	$\mu \mathrm{A}$
			R_{D} inputs			80	$\mu \mathrm{A}$
I_{11}	High-level input current	$V_{c c}=$ Max, $V_{1}=0.4 V$	$\overline{\mathrm{A}, \mathrm{B} \text { inputs }}$			-1.6	mA
			R_{D} inputs			-3.2	mA
los	Short-circuit output current ${ }^{3,5}$	$V_{\text {cc }}=$ Max		-10		-40	mA
$l_{\text {cc }}$	Supply current ${ }^{4}$ (total)	$V_{c c}=$ Max	Quiescent		46	66	mA
			Triggered		46	66	mA

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 . \mathrm{V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{A}}$ input to Q \& $\overline{\mathrm{C}}$ output	Waveform 1 $\mathrm{C}_{e x \mathrm{t}}=0 \mathrm{pF}, \mathrm{R}_{e x t}=5 \mathrm{k} \Omega$		$\begin{aligned} & 33 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay B input to $Q \& \bar{Q}$ output	Waveform 2 $C_{e x t}=0 p F, R_{e x t}=5 \mathrm{k} \Omega$		$\begin{aligned} & 28 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay R_{D} input to $\mathrm{Q} \& \overline{\text { Q output }}$	Waveform 3 $\mathrm{C}_{e x t}=0 \mathrm{pF}, \mathrm{R}_{e x t}=5 \mathrm{k} \Omega$		$\begin{aligned} & 40 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
two	Minimum Q pulse width	Waveforms $1 \& 2$ $C_{e x t}=0 p F, R_{e x t}=5 k \Omega$		65	ns
iwo	Output pulse width	Waveforms 1 \& 2 $C_{e x t}=1000 \mathrm{pF}, \mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	2.76	3.37	$\mu \mathrm{S}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
tw	Minimum input pulse width	Waveforms 1, 2 \& 3	40	.	ns
$\mathrm{R}_{\text {ext }}$	External timing resistor range		5.0	25	k Ω
$\mathrm{C}_{\text {ext }}$	External timing capacitance range		No restriction		pF
$\mathrm{C}_{\mathrm{Rx} / \mathrm{C} X}$	Stray capacitance to GND at $\mathrm{R}_{\text {exi }} / \mathrm{C}_{\text {ext }}$ terminal			50	pF

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} input to Q \& \bar{Q} output	Waveform 1 $\mathrm{C}_{\mathrm{ext}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{ext}}=5 \mathrm{k} \Omega$		$\begin{array}{r} 37 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay B input to Q \& Coutput	Waveform 2 $\mathrm{C}_{e x t}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{ext}}=5 \mathrm{k} \Omega$		$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay R_{D} input to Q \& Q output	Waveform 3 $\mathrm{C}_{e x t}=0 \mathrm{pF}, \mathrm{R}_{e x \mathrm{t}}=5 \mathrm{k} \Omega$		$\begin{aligned} & 44 \\ & 31 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
twa	Minimum Q pulse width	$\begin{gathered} \text { Waveforms } 1 \& 2 \\ \mathrm{C}_{e x t}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{ext}}=5 \mathrm{k} \Omega \\ \hline \end{gathered}$		65	ns
Ifo	Output pulse width	Waveforms $1 \& 2$ $C_{e x t}=1000 p F, R_{e x t}=10 \mathrm{k} \Omega$	2.76	3.37	$\mu \mathrm{S}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tpht }^{2} \end{aligned}$	Propagation delay \bar{A} input to Q \& \bar{Q} output	Waveform 1 $C_{e x t}=0 p F, R_{e x t}=5 k \Omega$		$\begin{aligned} & 48 \\ & 57 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{tPLH}^{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation delay B input to Q \& \bar{C} output	Waveform 2 $\mathrm{C}_{\text {ext }}=0 \mathrm{pF}, \mathrm{R}_{\text {ext }}=5 \mathrm{k} \Omega$		$\begin{aligned} & 42 \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay K_{D} input to Q \& Q output	Waveform 3 $\mathrm{C}_{\text {ext }}=0 \mathrm{pF}, \mathrm{R}_{\text {ext }}=5 \mathrm{k} \Omega$		$\begin{aligned} & 57 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {w }} \mathrm{Q}$	Minimum Q pulse width	Waveforms 1\&2 $C_{\text {ext }}=0 p F, R_{\text {ext }}=5 k \Omega$		75	ns
$t_{\text {w }} \mathrm{O}$	Output pulse width	Waveforms 1 \& 2 $C_{e x t}=1000 \mathrm{pF}, \mathrm{R}_{\text {ext }}=10 \mathrm{k} \Omega$	2.5	3.62	$\mu \mathrm{s}$

Multivibrator

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMMITS		UNIT
			Min	Max	
t_{w}	Minimum input pulse width	Waveforms 1, 2 \& 3	60		ns
$\mathrm{R}_{\text {ext }}$	External timing resistor range		5.0	25	$\mathrm{k} \Omega$
				50	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {ext }}$	External timing capacitance range				pF
$\mathrm{C}_{\text {Rx/ }{ }^{\text {c }} \text { (}}$	Stray capacitance to GND at $\mathrm{R}_{\text {ext }} / \mathrm{C}_{\text {ext }}$ terminal			50	pF

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Quiescent $l_{c c}$ is measure (after being reset) with 2.4 V applied to both R_{D} and \mathbb{A} inputs, B inputs grounded and all outputs open. Triggered I_{CC} is measured with 2.4 V applied to all R_{D} and B inputs, \bar{A} inputs grounded and all outputs open. For both measurements, $\mathrm{C}_{e x t}=0.02 \mu \mathrm{~F}$ and $\mathrm{R}_{\text {ext }}=25 \mathrm{k} \Omega$. Autotester may measure Icc by alternative means. Icc triggered, ground $\mathrm{C}_{\text {ext }}$, R/C open or high. Icc quiescent open $\mathrm{C}_{\text {ext }}$ pin.
5. Ground $C_{e x t}$ to measure $V_{O H}$ at $Q, V_{O H}$ at Q, or $l_{O S}$ at Q. $C_{e x t}$ is open to measure $V_{O H}$ at $Q_{1} V_{O L}$ at Q, or $l_{O S}$ at \bar{Q}.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Propagation Delay \bar{A} input to Q and \bar{Q} Outputs, and Input and Output Pulse Widths

Waveform 3. Dlrect Reset Delays
NOTE: $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for 54

TEST CIRCUIT AND WAVEFORM

TYPICAL PERFORMANCE CHARACTERISTICS

Figure A

Figure B

Figure C

Signetics

Military Loglc Products

54LS125

Buffer

Quad 3-State Buffer
Product Specification

FUNCTION TABLE

INPUTS		OUTPUT
C	A	\mathbf{Y}
L	L	H
L	H	H
H	X	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off)

ORDERING INFORMATION.

DESCRIPTION	ORDER CODE
Ceramic DIP	54 LS125/BCA
Ceramic Flat Pack	54 LS125/BDA
Ceramic LLCC	$54 \mathrm{LS} 125 / \mathrm{B2A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54L.S
All	Inputs	1LSUL
All	Outputs	30LSUL

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{iH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
For LLCC pin assignments, see JEDEC Standard No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
V_{L}	Low-level input voltage			+0.7	V
$\mathrm{l}_{\text {iK }}$	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {r }}$	High-level output current			-1.0	mA
la	Low-level output current			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voitage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{iL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{IOL}^{\text {a }}=\mathrm{Max}$		0.25	0.4	V
V_{K}	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{I}=I_{\text {IK }}$			-1.5	V
lozh	Off-state output current, High-level voltage applied	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
lozl	Off-state output current, Low-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
$\mathrm{I}_{1 / \mathrm{H} 2}$	Input current at maximum input voltage	$V_{C c}=$ Max, $V_{1}=7.0 \mathrm{~V}$			0.1	mA
$I_{H 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
Ill	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-40		-130	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{CC}}=$ Max		11	20	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & \mathbf{t}_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 2		20	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 3		25	ns
$t_{\text {pHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	ns
$\mathrm{t}_{\text {PLZ }}$	Disable from Low	Waveform $3, C_{L}=5 \mathrm{pF}$		20	ns
$t_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		36	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform $3, C_{L}=50 \mathrm{pF}$		22	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{tPLH}^{2} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PZH }}$	Enable to High	Waveform 2		26	ns
tpzL	Enable to Low	Waveform 3		33	ns
$\mathrm{t}_{\text {P }}$	Disable from High	Waveform 2, $\mathrm{C}_{L}=5 \mathrm{pF}$		26	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{L}=5 \mathrm{pF}$		26	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		47	ns
tplZ	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		29	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table for operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathbf{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Test CIrcult for 54 3-State Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS								
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\mathbf{T L H}}$	$\mathbf{T}_{\text {THL }}$	
54 LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1 V	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	

Optional load for 54LSXXX only: $\mathrm{R}_{\mathrm{B}}=631^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$ for all tests except $\mathrm{T}_{\mathrm{PHZ}}: V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test.

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq^{2.7 V}$ or open per FunctionTable.

Signetics

Military Logic Products

54S133

Gate

13-Input NAND Gate

FUNCTION TABLE

INPUTS	OUTPUT
A..M	Y
$H . . H$	L
one input $=\mathrm{L}$	H

Product Specification

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 S 133 / B E A$
Ceramic Flat Pack	54 S 133 BFA
Ceramic LLCC	$54 \mathrm{~S} 133 / \mathrm{B} 2 \mathrm{~A}$

$H=$ High voltage level
$L=$ Low voltage level
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
P	Output	10SUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC pin asaignments, see JEDEC Standard No. 2
-

For LLCC pin assignments, see JEDEC Standerd No. 2

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
V_{ll}	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
IOH	High-level output current				-1000	$\mu \mathrm{A}$
loL	Low-level output current				20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS			
					Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{LL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max			2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$,					0.5	V
		$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$		$+125^{\circ} \mathrm{C}$			0.45	V
V_{IK}	Input clamp voltage	$V_{\text {cC }}=$ Min, $\mathrm{I}_{1}=l_{\text {IK }}$					-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$					1.0	mA
I_{1+1}	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
ILIL	Low-level input current	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$					-2.0	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\text {CC }}=$ Max			-40		-110	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{cc}}=$ Max	ICCH	Outputs High		3	5	mA
			ICCL	Outputs Low		5.5	10	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	UMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		6.0 7.0	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 1		8.5 9.5	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay	Waveform 1		$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. These parameters are guaranteed, but not tested.

AC WAVEFORM

\square

TEST CIRCUIT AND WAVEFORM

Test CIrcuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathrm{T}_{\mathrm{TLH}}$	$\mathbf{T}_{\mathbf{T H L}}$	
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Direct replacement for Intel S205

DESCRIPTION

The '138 decoder accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and when enabled, provides eight mutually exclusive, active Low outputs ($\overline{0}-7$). The device features three Enable inputs: two active Low

54LS138, 54S138 Decoders/Demultiplexers

1-of-8 Decoder/Demultiplexer

Product Specification
$\left(E_{1}, E_{2}\right)$ and one active High $\left(E_{3}\right)$. Every output will be High unless E_{1} and E_{2} are Low and E_{3} is High. This multiple enable function allows easy parallel expansion of the device to a 1 -of- 32 (5 lines to 32 lines) decoder with just four '138s and one inverter.

The device can be used as an eight output demultiplexer by using one of the active Low Enable inputs as the Data input and the remaining Enable inputs as strobes. Enable inputs not used must be permanently tied to their appropriate active High or active Low state.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16 -Pin Ceramic DIP	54 LS138/BEA, $54 S 138 / B E A$
16 -Pin Ceramic FlatPack	54 LS138/BFA. 54 S138/BFA
16 -Pin Ceramic LLCC	54 LS138/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54 S	54 LS
All	Inputs	1 SUL	1LSUL
All	Outputs	10 SUL	10LSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu A I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$, and 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

For LCC pin aesignments, eee JEDEC Stundard No. 2	

LOGIC SYMBOL

LOGIC DIAGRAM
(3) (1)

FUNCTION TABLE

INPUTS						OUTPUTS							
E_{1}	E_{2}	E_{3}	A_{0}	A_{1}	A_{2}	$\overline{0}$	T	2	3	4	5	6	7
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H.	H	L

H = High voltage level
$L=$ Low voltage level
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54LS	545	UNIT
$V_{C c}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	-0.5 to +7.0	V
1	Input current range	-30 to +1	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{c c}$	-0.5 to $+V_{c c}$	V
TSTG	Storage temperature range	-65 to +150		${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54LS			54S			UNIT
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.7			+0.8	V
$\mathrm{I}_{\text {K }}$	Input clamp current			-18			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current			4			20	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS138			54S138			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}^{\prime}$, $\mathrm{IOH}_{\text {= }}=$ Max	2.5	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}$,	, $\mathrm{IOL}_{\text {O }}=\mathrm{Max}$		0.25	0.4			0.5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Mi}$				-1.5			-1.2	V
$\mathrm{I}_{\mathbf{H} 2}$	Input current at maximum input voltage	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						1.0	mA
			$V_{1}=7.0 \mathrm{~V}$			0.1				mA
$\mathrm{I}_{\mathbf{H} \mathbf{1}}$	High-level input current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
I/L	Low-level input current	$V_{c c}=\operatorname{Max}$	$V_{1}=0.4 \mathrm{~V}$			-0.4				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-2	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-100	-40		-110	mA
ICC	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			6.3	10		49	74	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} 54 \mathrm{LS}^{5} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		$\begin{gathered} 54 \mathrm{~S} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}} \\ & \mathrm{t}_{\mathrm{PHH}} \\ & \hline \end{aligned}$	Propagation delay Address to output	Waveform 2 2 logic levels		$\begin{aligned} & 20 \\ & 41 \\ & \hline \end{aligned}$		$\begin{gathered} 7 \\ 10.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay Address to output	Waveform 1 3 logic levels		$\begin{aligned} & 27 \\ & 39 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
	Propagation delay Enable to output	Waveform 2 2 logic levels		$\begin{aligned} & 18 \\ & 32 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 8 \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay Enable to output	Waveform 1 3 logic levels		$\begin{aligned} & 26 \\ & 38 \end{aligned}$		$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		$54 S^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Address to output	Waveform 2 2 logic levels		$\begin{aligned} & 25 \\ & 46 \\ & \hline \end{aligned}$		$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Address to output	Waveform 1 3 logic levels		$\begin{aligned} & 32 \\ & 44 \end{aligned}$		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Enable to output	Waveform 2 2 logic levels		$\begin{aligned} & 23 \\ & 37 \end{aligned}$		$\begin{aligned} & 10.5 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$	Propagation delay Enable to output	Waveform 1 3 logic levels		$\begin{aligned} & 31 \\ & 43 \\ & \hline \end{aligned}$.	$\begin{aligned} & 13.5 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Address to output	Waveform 2 2 logic levels		$\begin{aligned} & 32 \\ & 59 \end{aligned}$		$\begin{gathered} 12.5 \\ 17 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t p L H}^{t_{\text {PHL }}} \end{aligned}$	Propagation delay Address to output	Waveform 1 3 logic levels		$\begin{aligned} & 41 \\ & 57 \end{aligned}$		$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Enable to output	Waveform 2 2 logic levels		$\begin{aligned} & 30 \\ & 48 \end{aligned}$		$\begin{aligned} & 13.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Enable to output	Waveform 1 3 logic levels		$\begin{aligned} & 40 \\ & 56 \\ & \hline \end{aligned}$		$\begin{aligned} & 17.5 \\ & 17.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{,} \mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. To measure l_{cc}, outputs must be enabled and open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

NOTE: $V_{M}=1.3 \mathrm{~V}$ for $54 \mathrm{LS}, V_{M}=1.5 \mathrm{~V}$ for all other TTL families.

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54S140

Line Driver

Dual Four-Input NAND 50 2 Line Driver

Product Specification

FUNCTION TABLE

InPUTS				OUTPUT
A	B	C	D	Y
X	X	X	L	H
X	X	L	X	H
X	L	X	X	H
L	X	X	X	H
H	H	H	H	L

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	54S140/BCA
Ceramic Flat Pack	54 S140/BDA
Ceramic LLCC	$54 S 140 / \mathrm{B2A}$

H = High voltage level
$L=$ Low voltage level
$X=$ Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 S$
$A-D$	Inputs	2 SUL
P	Output	30 SUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathrm{IL}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

Line Driver

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
V_{L}	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$\mathrm{I}_{1 K}$	Input clamp current				-18	mA
$\mathrm{IOH}^{\text {H }}$	High-level output current				-40	mA
IOL	Low-level output current				60	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	Max, $\mathrm{IOH}=-3 \mathrm{~mA}$	2.5	3.4		V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=0$. $\mathrm{R}_{\mathrm{O}}=50 \Omega$ to ground	2.0			V
V_{OL}	Low-level output voltage	$V_{C C}=$	$\mathrm{V}_{\text {IH }}=\mathrm{Min}$,			0.5	V
		$\mathrm{l}_{0}=$ Max	$+125^{\circ} \mathrm{C}$			0.45	V
V_{K}	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$				-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				100	$\mu \mathrm{A}$
$I_{1 L}$	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$				-4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-50		-225	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$\mathrm{I}_{\text {cch }}$ Outputs High		10	18	mA
			$\mathrm{I}_{\text {CLL }}$ Outputs Low		25	44	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay	Waveform 1		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{4}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \\ \hline \end{gathered}$	Propagation delay	Waveform 1		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed 100 milliseconds.
4. These parameters are guaranteed, but not tested.

Line Driver

AC WAVEFORM

Waveform 1. Waveform for Inverting Outputs
NOTE: $V_{M}=1.5 \mathrm{~V}$
TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	T_{W}	$\mathrm{T}_{\mathrm{TLH}}$	$\mathrm{T}_{\mathrm{THL}}$	
54 SXXX	93Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:

$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Multifunction capability
- Complementary outputs
- See '251 for 3-State version

DESCRIPTION

The 54S151 is a logical implementation of a single-pole, 8 -position switch with the switch position controlled by the state of three Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$). True (Y) and Complement (Y) outputs are both

54S151

Multiplexer

8-Input Multiplexer

Product Specification

provided. The Enable input (E) is active Low. When E is High, the Youtput is High and the Y output is Low, regardless of all other inputs. The logic function provide at the output is:
$Y=E \cdot\left(I_{0} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{1} \cdot S_{0} \cdot S_{1} \cdot S_{2}+\right.$ $I_{2} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{3} \cdot S_{0} \cdot S_{1} \cdot S_{2}+$ $I_{4} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{5} \cdot S_{0} \cdot S_{1} \cdot S_{2}+$ $\left.\mathrm{I}_{6} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{7} \cdot \mathrm{~S}_{0} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)$.
In one package the 54 S 151 provides the ability to select from eight sources of data
or control information. The device can provide any logic function of four variables and ita negation with correct manipulation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 S151/BEA
16-Pin Ceramic FlatPack	54 S151/BFA
20-Pin Ceramic LLCC	54 S151/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
All	Outputs	10SUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS												OUTPUTS	
E	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	14	l_{5}	I_{6}	17	F	Y
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	x	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	x	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	x	X	X	X	L	X	X	x	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	\mathbf{H}	L
L	H	H	H	X	X	X	X	X	X	X	H	L	$\overline{\mathrm{H}}$
$=$	olta												
$=$	lta												
	care												

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
$V_{\text {IH }}$	High-level input voltage		2.0			V
$V_{\text {ll }}$	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
I_{IK}	Input clamp current				-18	mA
IOH	High-level output current				-1000	$\mu \mathrm{A}$
loL	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOH}_{\text {I }}=$ Max	2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=\mathrm{Max}_{1}$			0.5	V
		loL $=$ Max $+125^{\circ} \mathrm{C}$			0.45	V
$V_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $I_{1}=I_{1 K}$			-1.2	V
$\mathrm{IH}_{\mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0	mA
$\mathrm{l}_{1 / \mathrm{H} 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-2.0	mA
los	Short-circuit output current ${ }^{\text {²}}$	$V_{\text {cc }}=$ Max	-40		-110	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max		45	70	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \text { TPLH } \\ & \text { t PHL }^{2} \end{aligned}$	Propagation delay Select to Y output	Waveform 2		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Select to F output	Waveform 1		$\begin{gathered} 15 \\ 13.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Enable to Y output	Waveform 1		$\begin{gathered} 16.5 \\ 18 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay Enable to Y output	Waveform 2		$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to Y output	Waveform 2		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{P} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to Y output	Waveform 1		7.0 7.0	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Select to Y output	Waveform 2		$\begin{aligned} & 20.5 \\ & 20.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{pLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay Select to Y output	Waveform 1		$\begin{aligned} & \hline 17.5 \\ & 16.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Enable to Y output	Waveform 1		$\begin{aligned} & 19.0 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay Enable to Y output	Waveform 2		$\begin{aligned} & 15.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}} \mathrm{thL} \end{aligned}$	Propagation delay Data to Y output	Waveform 2		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & t_{\mathrm{t} H \mathrm{~L}} \end{aligned}$	Propagation delay Data to Y output	Waveform 1		9.5 9.5	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
tpLH $t_{P H L}$	Propagation delay Select to Y output	Waveform 2		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpLH $t_{\text {PHL }}$	Propagation delay Select to Y output	Waveform 1		23 21	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{tpLH}^{t_{\mathrm{PHL}}} \end{aligned}$	Propagation delay Enable to Y output	Waveform 1		25 27	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Enable to P output	Waveform 2		20 19	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to Y output	Waveform 2		19 19	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to Y output	Waveform 1		12 12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure $I_{c c}$ with all inputs ≥ 4.0 and all inputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\boldsymbol{T}_{\mathbf{W}}$	$\mathrm{T}_{\text {rLH }}$	$\mathbf{T}_{\text {THL }}$	
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {Out }}$ of pulse generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

54S153
 Multiplexer

Dual 4-Line to 1-Line Multiplexer

Military Logic Products

Product Specification

FEATURES

- Non-Inverting outputs
- Separate enable for each section
- Common select Inputs
- See '253 for 3-State version

DESCRIPTION

The 54S153 is a dual 4-input multiplexer that can select 2 bits of data from up to eight (8) sources under control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active Low Enables ($\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$) which can be used to strobe the outputs independently. Outputs ($\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}$) are forced Low when the corresponding Enables (E_{a}, E_{b}) are High.
$Y_{a}=E_{a} \cdot\left(I_{0 a} \cdot S_{1} \cdot S_{0}+I_{1 a} \cdot S_{1} \cdot S_{0} \cdot+I_{2 a} \cdot S_{1}\right.$
$\left.\cdot S_{0}+I_{3 a} \cdot S_{1} \cdot S_{2}\right)$
$Y_{b}=E_{b} \cdot\left(l_{\infty b} \cdot S_{1} \cdot S_{0}+l_{1 b} \cdot S_{1} \cdot S_{0}+l_{2 b} \cdot S_{1} \cdot\right.$
$\left.\mathrm{S}_{0}+\mathrm{I}_{3 b} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}\right)$
The 54S153 can be used to move data to a common output bus from a group of regis-

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-PIn Ceramic DIP	54 S153/BEA
16-Pin Ceramic FlatPack	54 S153/BFA
16-Pin Ceramic LLCC	54 S153/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
All	Outputs	10 SUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{SELECTINPUTS} \& \multicolumn{5}{|c|}{INPUTS (a or b)} \& OUTPUT

\hline S_{0} \& S_{1} \& E \& l_{0} \& I_{1} \& I_{2} \& I_{3} \& Y

\hline $$
\begin{aligned}
& X \\
& L \\
& L \\
& L \\
& H \\
& H \\
& L \\
& L \\
& H \\
& H
\end{aligned}
$$ \& $$
\begin{aligned}
& X \\
& \text { X } \\
& L \\
& L \\
& L \\
& L \\
& H \\
& H \\
& H \\
& H
\end{aligned}
$$ \& H
L
L
L
L
L
L
L
L \& X
L
H
X
X
X
X
X
X
X
X \& $$
\begin{aligned}
& \mathrm{X} \\
& X \\
& X \\
& X \\
& L \\
& H \\
& X \\
& X \\
& X \\
& X
\end{aligned}
$$ \& X
X
X
X
X
L

H
X
X

X \& $$
\begin{aligned}
& X \\
& L \\
& H
\end{aligned}
$$ \& Y

L
H
H
H
L
H
L
H

\hline
\end{tabular}

H = High voltage level
$L=$ Low voltage level
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{ll}	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$I_{\text {IK }}$	Input clamp current				-18	mA
l_{OH}	High-level output current				-1000	$\mu \mathrm{A}$
l_{OL}	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, I_{O H}=\operatorname{Max} \end{aligned}$	2.4	3.4		V
VoL	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max,			0.5	V
		$\mathrm{IOL}^{\text {a }}=\mathrm{Max}$ $+125^{\circ} \mathrm{C}$			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$			-1.2	V
$\mathrm{I}_{1 \mathrm{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0	mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=M_{a x}, V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
1 l	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$			-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-40		-110	mA
${ }_{1} \mathrm{CC}$	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max		45	70	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\frac{\text { LMMITS }}{\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}}$		UNIT
			Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Select to output	Waveform 2		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation delay Enable to output	Waveform 1		$\begin{gathered} 15 \\ 13.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Data to output	Waveform 2		9 9	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Select to output	Waveform 2		$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tpHL	Propagation delay Enable to output	Waveform 1		$\begin{aligned} & 17.5 \\ & 16.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tphL	Propagation delay Data to output	Waveform 2		$\begin{array}{r} 11.5 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 2		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \end{aligned}$	Propagation delay Enable to output	Waveform 1		$\begin{aligned} & 23 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 2		15 15	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{cc} with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathrm{T}_{\text {rLH }}$	$\mathrm{T}_{\text {THL }}$	
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see $A C$ Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

FEATURES

- 16-line demultiplexing capability
- Mutually exclusive outputs
- 2-Input enable gate for strobing or expansion

DESCRIPTION

The 54LS154 decoder accepts four active High binary address inputs and provides 16 mutually exclusive active Low outputs. The 2 -input enable gate can be used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or it can be used for expansion of the decoder. The enable gate has two AND'ed inputs which must be Low to enable the outputs.

The 54LS154 can be used as a $1-\mathrm{of}-16 \mathrm{de}$ multiplexer by using one of the enable inputs as the multiplexed data input. When the other enable is Low, the addressed output will follow the state of the applied data.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP	54LS154/BJA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
All	Outputs	10LSUL

NOTE: Where a 54 LS Unit Load (LSUL) is $20 \mu A I_{I H}$ and $-0.4 \mathrm{~mA} I_{\text {IL }}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						OUTPUT															
E_{0}	E_{1}	A_{3}	A_{2}	A_{1}	A_{0}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\mathrm{l}}{ }^{\text {d }}$	Low-level input voltage			+0.7	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High-level output current			-400	$\mu \mathrm{A}$
loL	Low-level output current			4	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{l}_{\mathrm{OH}}=\mathrm{Max}$	2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$		0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=I_{\text {IK }}$			-1.5	V
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$V_{C C}=M a x, V_{l}=7.0 \mathrm{~V}$			0.1	mA
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{1 /}$	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-15		-100	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max		9	14	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\underset{t_{\mathrm{PLLH}}}{\mathrm{t}_{\mathrm{t}}}$	Propagation delay Address to output	Waveform 1		$\begin{aligned} & 36 \\ & 33 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ t_{PHL}	Propagation delay Enable to output	Waveform 2		30 27	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation delay Address to output	Waveform 1		41 38	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Enable to output	Waveform 2		35 32	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay Address to output	Waveform 1		$\begin{aligned} & 53 \\ & 49 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Enable to output	Waveform 2		46 42	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure Icc with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 2. Waveform for Non-Inverting Outputs
NOTE: $V_{M}=1.3 V$

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	V_{M}	Rep. Rate	$\mathrm{T}_{\boldsymbol{W}}$	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OuT}}$ of Pulse Generators.
$\mathrm{D}=$ Diodes are 1N916, 1 N 3064 , or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

DESCRIPTION

The 54S157 is a quad 2-input multiplexer which selects four bits of data from two sources under the control of a common Select input (S). The Enable input (E) is active Low. When E is High, all of the outputs (Y) are forced Low regardless of all other input conditions.

Moving data from two groups of registers to four common output buses is a common use of the 54S157. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator. The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.

54S157, 54S158

Data Selectors/Multiplexers
$54 S 157$ Quad 2-Input Data Selector/Multiplexer (Non-Inverted) 54 S158 Quad 2-Input Data Selector/Multiplexer (Inverted)

Product Specification

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
S, E	Inputs	2SUL
Data	Inputs	1SUL
All	Outputs	1OSUL

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

PIN CONFIGURATION

545158	
s 1	16. VCC
10a 2	15 E
$1 \mathrm{la} \sqrt{3}$	$14.10 d$
$Y_{\text {a }} 4$	$13 \mathrm{I} \mathrm{Id}^{\text {d }}$
lob 5	12. P_{d}
$l_{16} 6$	11 loc
$\mathrm{Pb}_{6} 7$	$10 \mathrm{I}_{1 \mathrm{c}}$
GND 8	9) P_{c}
For LLCC pin assi	DEC Stand

LOGIC DIAGRAM 54F157

FUNCTION TABLE, 54F157

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
E	S	I_{0}	I_{1}	Y
H L L L	$\begin{aligned} & X \\ & H \\ & H \\ & H \\ & L \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & X \\ & \text { L } \\ & H \\ & X \\ & X \\ & \hline \end{aligned}$	L L H L H

[^7]LOGIC SYMBOL

LOGIC DIAGRAM, 54F158

FUNCTION TABLE, 54F158

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
E	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{F}
H	X	X	X	H
L	L	L	X	H
L	L	H	X	X
L	H	X	L	H
L	H	X	H	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			UNIT
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
IK	Input clamp current				-18	mA
IOH	High-level output current				-1000	$\mu \mathrm{A}$
IOL	Low-level output current				20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$V_{C C}=$ Min, $\mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}^{\prime}$	$\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=$ Max	2.5	3.4		V
$V_{O L}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$,				0.5	V
		$V_{\text {LL }}=$ Max	$+125^{\circ} \mathrm{C}$			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-1.2	V
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathbf{H} \mathbf{1}}$	High-level input current	$V_{C C}=$ Max, $V_{l}=2.7 \mathrm{~V}$	S, E inputs			100	$\mu \mathrm{A}$
			Data inputs			50	$\mu \mathrm{A}$
ILIL	Low-level input current	$V_{C C}=$ Max, $V_{l}=0.5 \mathrm{~V}$	S, E inputs			-4	mA
			Data inputs			-2	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max		-40		-110	mA
Icc	Supply current ${ }^{4.5}$ (total)	$V_{C C}=\operatorname{Max}$	54 S157 All inputs $\geq 4.0 \mathrm{~V}$		50	78	mA
			$\begin{aligned} & 54 \mathrm{~S} 158 \\ & \text { All inputs } \geq 4.0 \mathrm{~V} \end{aligned}$		39	61	mA
			$\begin{aligned} & 54 S 158 \\ & \mathrm{log}_{\mathrm{oab}}, I_{o b}, I_{o d} \text { at } \\ & \geq 4.0 \mathrm{~V}-\mathrm{I}^{2} \\ & \text { other inputs at oV } \end{aligned}$		41	81	mA

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	UMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 2, 54S157		$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Propagation delay Enable to output	Waveform 1,54S157		$\begin{gathered} 12.5 \\ 12 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 2, 54S157		15 15	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 3, 54S158		6.0 6.0	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathbf{t}_{\text {PLH }} \\ \mathbf{t}_{\text {PHLL }} \end{gathered}$	Propagation delay Enable to output	Waveform 4, 54S158		$\begin{gathered} 11.5 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 3, 54S158		12 12	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 . \mathrm{V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to output	Waveform 2, 54S157		$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{t} \text { LH }}$	Propagation delay Enable to output	Waveform 1,54S157		$\begin{aligned} & 15.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Select to output	Waveform 2, 54S157		$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 3, 54S158		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Enable to output	Waveform 4, 54S158		$\begin{aligned} & 14.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{tplH}_{\mathrm{t}_{\mathrm{tu}}}$	Propagation delay Select to output	Waveform 3, 54S158		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay Data to output	Waveform 2,54S157		$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{tPLH}^{t_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay Enable to output	Waveform 1,54S157		$\begin{array}{r} 20.0 \\ 19.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation delay Select to output	Waveform 2, 54S157		$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \text { tpLH } \\ \text { tpHL } \\ \hline \end{gathered}$	Propagation delay Data to output	Waveform 3, 54S158		$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Enable to output	Waveform 4, 54S158		$\begin{aligned} & 18.0 \\ & 19.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
${ }_{\substack{\text { tpLH }}}$	Propagation delay Select to output	Waveform 3, 54S158		$\begin{aligned} & 19.0 \\ & 19.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured with $\geq 4.0 \mathrm{~V}$ applied to all inputs and all outputs open.
5. $I_{C C}$ is measured with all outputs open.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1

Waveform 3

1 or 5

Waveform 2

Waveform 4

TEST CIRCUIT AND WAVEFORM

Test CIrcuit for 54 Totem-Pole Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$	
54 SXXX	280Ω	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$D=$ Diodes are $1 \mathrm{~N} 916,1 \mathrm{~N} 3064$, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

FEATURES

- Synchronous counting and loading
- Two Count Enable Inputs for n-blt cascading
- Positive edge-triggered clock
- Asynchronous reset ('161)
- Synchronous reset ('163)
- Hysteresis on Clock input (LS only)

DESCRIPTION

Synchronous and 4-bit (54161, 54LS161A, 54163, 54LS163A) counters feature an internal carry look-ahead and

54161, 54163, 54LS161A, 54LS163A Counters

4-Bit Binary Counters

Product Specification
can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock. The Clock input is buffered.

The outputs of the counters may be preset to High or Low level. A Low level at the Parallel Enable (PE) input disables the counting action and causes the data at the D_{0} D_{3} inputs to be loaded into the counter on the positive-going edge of the clock (providing that the setup and hold requirements for PE are met). Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	54 LS161A/BEA
16-Pin Ceramic DIP	$54161 / \mathrm{BEA}$
	54 LS163A/BEA
	$54163 / \mathrm{BEA}$
	$54 \mathrm{SS161A/BFA}$
16-Pin Ceramic FlatPack	$54161 / \mathrm{BFA}$
	54 SS163A/BFA
	$54163 / \mathrm{BFA}$
20-Pin Ceramic LLCC	54 LS161A/B2A
	54 S163A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54LS
CP, CET	Inputs	2 UL	2LSUL
D, CEP	Inputs	1 UL	1LSUL
PE	input	$1 U L$	2LSUL
$A l l$			
MR	Outputs	$10 U L$	10LSUL
MR	Input('161)	1 UL	1LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{I L}$, and a $54 L S$ Unit Load (LSUL) is $20 \mu A I_{I H}$ and $-0.4 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$
GND $=P$ in 8

A Low level at the Master Reset (MR) input set all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ in 54161, and 54LS161A to Low levels regardless of the levels at CP, PE, CET and CEP inputs (thus providing an asynchronous clear function).

For the 54163, and 54LS163A, the clear function is synchronous. A Low level at the Master Reset (MR) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ to Low levels after the next positive-going transition on the Clock (CP) input (providing that the setup and hold requirements for MR are met). This action occurs regardless of the levels at PE, CET, and CEP inputs. The synchronous reset feature enables the design-
er to modify the maximum count with only one external NAND gate (see Figure 1).
The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be High to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of Q_{0}. This pulse can be used to enable the next cascaded stage (see Figure 2).
For conventional operation of 54161 and 54163, the following transitions should be avoided.

1. High-to-Low transition on the CEP or CET input if clock is Low.
2. Low-to-High transitions on the Parallel Enable input when CP is Low, if the count enables and MR are High at or before the transition.

For 54163 there is an additional transition to be avoided.
3. Low-to-High transition on the MR input when clock is Low, if the Enable and PE inputs are High at or before the transition.

These restrictions are not applicable to 54LS161A and 54LS163A.

TERMNAL COUNT $=6$

Figure 1

LOGIC DIAGRAMS

LOGIC DIAGRAMS

MODE SELECT - FUNCTION TABLE, '161

OPERATING MODE	INPUTS						OUTPUT	
	MR	CP	CEP	CET	PE	D_{n}	Q_{n}	TC
Reset (clear)	L	X	X	X	X	X	L	L
Parallel load	H	\uparrow	X	X	1	1	L	L
	H	\uparrow	X	X	1	h	H	(a)
Count	H	\uparrow	h	h	$h^{(c)}$	X	count	(a)
Hold (do nothing)	H	X	(b)	X	$h^{(c)}$	X	q_{n}	(a)
	H	X	X	(b)	$h^{(c)}$	X	q_{n}	L

MODE SELECT - FUNCTION TABLE, '163

OPERATING MODE	INPUTS						OUTPUT	
	MR	CP	CEP	CET	PE	D_{n}	Q_{n}	TC
Reset (clear)	1	\uparrow	X	X	X	X	L	L
Parallel load	$\begin{aligned} & h^{(1)} \\ & h^{(1)} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	L (d)
Count	$\mathrm{h}^{(6)}$	\uparrow	h	h	$\mathrm{h}^{(1)}$	X	count	(d)
Hold (do nothing)	$\begin{aligned} & h^{(1)} \\ & h^{(1)} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{gathered} I^{(\theta)} \\ X \end{gathered}$	$\begin{gathered} \hline X \\ I^{(\theta)} \end{gathered}$	$\begin{aligned} & h^{(1)} \\ & h^{(1)} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	(d) L

H = High voltage level steady state
$L=L o w$ voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
I = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$q=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$\uparrow=$ Low-to-High clock transition
NOTES:
(a) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 54161)
(b) The High-to-Low transition of CEP or CET on the 54161 should only occur while CP is High for conventional operation
(c) The Low-to-High transition of PE on the 54161 should only occur while CP is High for conventional operation
(d) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for '163)
(e) The High-to-Low transition of CEP or CET on the 54163 should only occur while CP is High for conventional operation
(f) The Low-to-High transition of PE or MR on the 54163 should only occur while CP is High for conventional operation

Figure 2. Synchronous Multistage Counting Scheme

Counters

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54	54 LS	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	
I_{1}	Input current range	-30 to +5	-30 to +1	V
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	-0.5 to $+V_{C C}$	VA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8			+0.7	V
$l_{1 K}$	Input clamp current			-12			-18	mA
IOH	High-level output current			-800			-400	$\mu \mathrm{A}$
loL	Low-level output current			16			4	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54161, '163			54LS161A, '163A			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OH }}=$ Max			2.4	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max				0.2	0.4		0.25	0.4	V
V_{IK}	Input clamp voltage	$V_{\text {CC }}=\operatorname{Min}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$					-1.5			-1.5	V
$\mathrm{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$V_{C C}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0				mA
			$V_{1}=7.0 \mathrm{~V}$	D, CEP						0.1	mA
				PE, CP, CET						0.2	mA
				MR, ('LS161A)						0.1	mA
				MR, ('LS163A)						0.2	mA
$\mathrm{I}_{\mathbf{H} \mathbf{1}}$	High-level input current	$V_{c c}=\operatorname{Max}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	CP, CET			80				$\mu \mathrm{A}$
				Other inputs			40				$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$	D, CEP						20	$\mu \mathrm{A}$
				PE, CP, CET						40	$\mu \mathrm{A}$
				MR, ('LS161A)						20	$\mu \mathrm{A}$
				MR, ('LS163A)						40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M a x$	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	CP, CET			-3.2				mA
				Other inputs			-1.6				mA
			$V_{1}=0.4 \mathrm{~V}$	D, CEP						-0.4	mA
				PE, CP, CET						-0.8	mA
				MR, ('LS161A)						-0.4	mA
				MR, ('LS163A)						-0.8	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-20		-57	-20		-100	mA
$l_{\text {cc }}$	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\text {cC }}=$ Max	1-CH	All outputs High		59	85		18	31	mA
			cCl	All outputs Low		63	91		19	32	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to terminal count	Waveform 1		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay Clock to Q outputs	Waveform 1, $\mathrm{PE}=\text { High }$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$		$\begin{aligned} & 24 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to Q outputs	Waveform 1, PE = Low		$\begin{aligned} & 25 \\ & 29 \end{aligned}$		$\begin{aligned} & 24 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CET input to TC output	Waveform 2		$\begin{aligned} & 16 \\ & 16 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation delay, MR to \mathbf{Q} outputs ('161)	Waveform 3		38		28	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
$t_{w}(\mathrm{~L})$	Clock pulse width (Low)	Waveform 1	25		25		ns
$t_{\text {w }}$	Master Reset pulse width ('161)	Waveform 3	20		20		ns
t_{w}	Master Reset pulse width ('163)	Waveform 6	20		20		ns
t_{5}	Setup time, data to clock	Waveform 5	20		20		ns
t_{n}	Hold time, data to clock ${ }^{5}$	Waveform 5	3		3		ns
t_{5}	Setup time, CEP or CET to clock	Waveform 4	20		20		ns
t_{n}	Hold time, CEP or CET to clock	Waveform 4	0		0		ns
t_{5}	Setup time, PE to clock	Waveform 5	25		20		ns
t_{n}	Hold time, PE to clock	Waveform 5	0		0		ns
$\mathrm{t}_{\text {s }}$	Setup time, MR to clock ('163)	Waveform 6	20		20		ns
t_{n}	Hold time, MR to clock ('163)	Waveform 6	0		0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 3	25		15		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	20		22		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to terminal count	Waveform 1		$\begin{aligned} & 39 \\ & 39 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to Q outputs	Waveform 1 , $P E=H i g h$		$\begin{aligned} & 24 \\ & 27 \end{aligned}$		$\begin{aligned} & 29 \\ & 32 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to Q outputs	Waveform 1, $P E=L O W$		$\begin{aligned} & 29 \\ & 33 \end{aligned}$		$\begin{aligned} & 29 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation delay CET input to TC output	Waveform 2		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}^{\text {PLL }}$	Propagation delay, MR to Q outputs ('161)	Waveform 3		42		33	ns

Counters

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 . \mathrm{OV}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS					UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		22		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay Clock to terminal count	Waveform 1		$\begin{aligned} & 51 \\ & 51 \end{aligned}$		$\begin{aligned} & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay Clock to Q outputs	Waveform 1, PE = High	-	$\begin{aligned} & 31 \\ & 35 \end{aligned}$		$\begin{aligned} & 38 \\ & 42 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \end{aligned}$	Propagation delay Clock to Q outputs	Waveform 1 . PE = Low		$\begin{aligned} & 38 \\ & 43 \end{aligned}$		$\begin{aligned} & 38 \\ & 42 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay CET input to TC output	Waveform 2		$\begin{aligned} & 26 \\ & 26 \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation delay, MR to Q outputs ('161)	Waveform 3		55		43	ns

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
$\mathrm{t}_{\text {w }}(\mathrm{L})$	Clock pulse width (Low)	Waveform 1	25		25		ns
iw	Master Reset pulse width ('161)	Waveform 3	20		25		ns
tw	Master Reset pulse width ('163)	Waveform 6	20		25		ns
t_{s}	Setup time, data to clock	Waveform 5	20		25		ns.
t_{n}	Hold time, data to clock 5	Waveform 5	5		5		ns
t_{5}	Setup time, CEP or CET to clock	Waveform 4	20		20		ns
t_{n}	Hold time, CEP or CET to clock	Waveform 4	0		0		ns
t_{5}	Setup time, PE to clock	Waveform 5	25		20		ns
$t_{\text {h }}$	Hold time, PE to clock	Waveform 5	0		0		ns
$\mathrm{t}_{\text {s }}$	Setup time, MR to clock ('163)	Waveform 6	20		20		ns
t_{n}	Hold time, MR to clock ('163)	Waveform 6	0		0		ns
$\mathrm{t}_{\text {tec }}$	Recovery time, MR to CP	Waveform 3	25		15		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. $\mathrm{I}_{\mathrm{Cch}}$ is measured with PE input High, again with PE input Low, all other inputs High and output open. IccL is measured with Clock input High, again with Clock input Low, all other inputs low and outputs open.
5. For 15 ns rise time only, Hold time must be increased by 0.3 ns for each nanosecond decrease in rise time.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Maximum Frequency, and Clock Pulse Width

Waveform 2. Propagation Delays CET Input to TC Output

Waveform 5. Parallel Data and Parallel Enable Setup and Hold Times

Waveform 6. Synchronous Reset Setup, Pulse Width and Hold Times ('163)

TEST CIRCUIT AND WAVEFORM

FAMILY	INPUT PULSE CHARACTERISTICS						
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\boldsymbol{T}_{\mathbf{W}}$	$\boldsymbol{T}_{\text {TLH }}$	$\mathbf{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 X X X$	400Ω	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Gated serial data Inputs
- Typical shift frequency of 36 MHz
- Asynchronous Master Reset
- Fully buffered clock and data inputs

DESCRIPTION

The 54164 and 54LS164 are 8-bit edgetriggered shift registers with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs ($D_{s a}$ or $D_{s b}$); either input

54164, 54LS164

Shift Registers

8-Bit Serial-In Parallel-Out Shift Registers

Product Specification

can be used as an Active-High enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied High.

Data shifts one place to the right on each Low-to-High transition of the Clock (CP) input, and enters into Q_{0} the logical AND of the two Data inputs $\left(D_{s a} \cdot D_{s b}\right)$ that existed one setup time before the rising clock edge. A Low-level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs Low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54 L$ S164/BCA, $54164 / B C A$
Ceramic Flat Pack	54 LS164/BDA
Ceramic LLCC	54 LS164/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54 LS
All	Inputs	1 LUL	1 LSUL
All	Outputs	5 UL	10 LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu A I_{I_{H}}$ and $-1.6 \mathrm{~mA} I_{I L}$, and a $54 L S$ Unit Load (LSUL) is $20 \mu A I_{I H}$ and $-0.4 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION

LOGIC SYMBOL

Shift Registers

LOGIC DIAGRAM

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS			
	MF	CP	D_{81}	$\mathrm{D}_{\text {sb }}$	a_{0}	Q_{1}	-	Q_{7}
Reset	L	X	X	X	L	L	-	L
	H	\uparrow	1	1	L	90	-	9_{6}
Shift	H	\uparrow	1	h	L.	90	-	96
	H	\uparrow	h	1	L	90	-	96
	H	\uparrow	h	h	H	90	-	96

H = High voltage level
$h=$ High voltage level one set-up time prior to the Low-to-High Clock transition
L = Low voltage level
$1=$ Low voltage level one set-up time prior to the Low-to-High Clock transition
q = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the Low-to-High Clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High Clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54164	54LS164	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5.0	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54164			54LS164			UNIT
		Min	Nom	Max	Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8			$+0.7$	V
I_{IK}	Input clamp current			-12			-18	mA
I_{OH}	High-level output current			-400			-400	$\mu \mathrm{A}$
lol	Low-level output current			8			4	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54164			54LS164			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{H H}=M i n, \\ & V_{I L}=M a x, I_{O H}=M a x \end{aligned}$		2.4	3.4		2.5	3.4		V
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{HH}}=\operatorname{Min}, \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \end{aligned}$			0.2	0.4		0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {cC }}=\mathrm{Min}, \mathrm{I}_{1}=I_{1 K}$				-1.5			-1.5	V
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0				mA
			$V_{1}=7.0 \mathrm{~V}$						0.1	mA
${ }_{1 / H 1}$	High-level input current	$V_{c c}=$ Max	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40				$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$
I/L	Low-level input current	$V_{c c}=\operatorname{Max}, V_{1}=0.4 V$				-1.6			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M a x$		-10		-27.5	-20		-100	mA
lce	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$			37	54		16	27	mA

APPLICATION DIAGRAM

The ' 164 can be cascaded to form synchronous shift registers of longer length.
Here, two devices are combined to form a 16 -bit shift register.

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54164		54LS164		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{I}_{\text {max }}$	Maximum shift frequency	Waveform 1	25		25		MHz
tplu tph	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 27 \\ & 32 \end{aligned}$		$\begin{aligned} & 27 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
LPHL	Propagation delay MR to output	Waveform 2		36		36	ns

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54164		54LS164		UNIT
			Min	Max	Min	Max	
IW	Clock pulse width	Waveform 1	20		20		ns
tw	MR pulse width	Waveform 2	20		20		ns
ts	Setup time data to clock	Waveform 3	15		15		ns
4	Hold time data to clock	Waveform 3	5.0		5.0		ns
$\mathrm{t}_{\text {REC }}$	MR clock recovery time	Waveform 2	30		30		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54164		54LS164		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum shift frequency	Waveform 1	22		22		MHz
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 34 \\ & 41 \end{aligned}$		$\begin{aligned} & 31 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{tPHL}^{\text {L }}$	Propagation delay MR to output	Waveform 2		46		40	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54164		54LS164		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Maximum shift frequency	Waveform 1	18		20		MHz
$\begin{gathered} \mathrm{t}_{\mathrm{PLLH}} \\ t_{\mathrm{PHHL}} \\ \hline \end{gathered}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 31 \\ & 48 \end{aligned}$		$\begin{aligned} & 40 \\ & 47 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{tPHL}^{\text {l }}$	Propagation delay MR to output	Waveform 2		55		52	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54164		54LS164		UNIT
			Min	Max	Min	Max	
tw	Clock pulse width	Waveform 1	30		20		ns
tw	MR pulse width	Waveform 2	50		25		ns
is	Setup time data to clock	Waveform 3	15		20		ns
4	Hold time data to clock	Waveform 3	10		10		ns
$t_{\text {fec }}$	MR clock recovery time	Waveform 2	30		30		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specifled under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure $I_{c c}$ with the Serial inputs grounded, the Clock input at 2.4 V , and a momentary ground, then $\geq 4.0 \mathrm{~V}$ applied to Master Reset, and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Flip-Flop

Quad D-Type Flip-Flop with 3-State Outputs
Product Specification

FEATURES

- Edge-triggered D-type register
- Gated input enable for hold "do nothing" mode
- 3-State output buffers
- Gated output enable control
- Pin compatible with the 8T10 and DM8551

DESCRIPTION

The 54LS 173 is a 4-bit parallel load register with clock enable control, 3-State buffered outputs and master reset. When the two Clock Enable (E_{1} and E_{2}) inputs are Low, the data on the D inputs is loaded into
the register synchronously with the Low-to-High Clock (CP) transition. When one or both E inputs are High one setup time before the Low-to-High clock transition, the register will retain the previous data. Data inputs and Clock Enable inputs are fully edge triggered and must be stable only one setup time before the Low-toHigh clock transition.

The Master Reset (MR) is an active High asynchronous input. When the MR is High, all four flip-flops are reset (cleared) independently of any other input condition.
The 3-State output buffers are controlled by a 2 -input NOR gate. When both Output

Enable ($O E_{1}$ and $O E_{2}$) inputs are Low, the data in the register is presented at the \mathbf{Q} outputs. When one or both $\overline{O E}$ inputs is High, the outputs are forced to a High impedance "off" state. The 3-State output buffers are completely independent of the register operation; the $\overline{O E}$ transition does not affect the clock and reset operations.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS $173 / B E A$
16-Pin Ceramic FlatPack	54 LS173/BFA
16-Pin Ceramic LLCC	54 LS173/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
All	Outputs	30LSUL

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{IIL}_{\text {I }}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

REGISTER OPERATING MODES	INPUTS					OUTPUTS
	MR	$\mathbf{C P}$	$\mathrm{E}_{\mathbf{1}}$	$\mathrm{E}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$ (Register)
Reset (clear)	H	X	X	X	X	L
Parallel load	L	\uparrow	I	I	I	L
	L	\uparrow	I	I	h	H
Hold (no change)	L	X	h	X	X	q_{n}
	L	X	X	h	X	q_{n}

3-STATE BUFFER OPERATING MODES	INPUTS			OUTPUTS
	\mathbf{Q}_{n} (Register)	OE_{1}	OE_{2}	$\mathbf{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathbf{Q}_{3}$
Read	L	L	L	L
	H	L	L	H
Disabled	X	H	X	$\mathrm{Z})$
	X	X	H	$\mathrm{Z})$

[^8]
Flip-Flops

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{H}}$	Low-level input voltage			+0.7	V
I_{K}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1.6	mA
I_{OL}	Low-level output current			12	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless othenwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4	3.1		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\mathbb{I H}}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {LL }}=$ Max		0.30	0.4	V
V_{K}	Input clamp voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$			-1.5	V
lozh	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
Iozl	Off-state output current, Low-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=7.0 \mathrm{~V}$			0.1	mA
I_{1+1}	High-level input current	$V_{C c}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max	-30		-130	mA
lcc	Supply current ${ }^{4}$ (total)	$V_{\text {cc }}=$ Max		20	30	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LMITS } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	30		MHz
tPLH tphl	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 4		35	ns
${ }_{4} \mathrm{P}$ ZH	Output enable to High level	Waveform 2		23	ns
$\mathrm{t}_{\text {PZ }}$	Output enable to Low level	Waveform 3		27	ns
$t_{\text {PHz }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		17	ns
tLz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$		17	ns
tphz	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		33	ns
tplz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		19	ns

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
${ }_{\text {w }}$ (CP)	Clock pulse width	Waveform 1	20		ns
${ }_{\text {tw }}$ (MR)	MR pulse width	Waveform 4	20		ns
$t_{5}(\mathrm{D})$	Setup time, data to clock	Waveform 5	17		ns
4(D)	Hold time, data to clock	Waveform 5	0		ns
$t_{5}(\mathrm{E})$	Setup time, enable to clock	Waveform 5	35		ns
$\mathrm{th}_{\text {(}}(\mathrm{E})$	Hold time, enable to clock	Waveform 5	0		ns
tec (MR)	Recovery time, Master Reset to clock	Waveform 4	17		ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 . \mathrm{OV}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
${ }_{\text {max }}$	Maximum clock frequency	Waveform 1	20		MHz
$\begin{aligned} & t_{\text {teL }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 32 \\ & 39 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 4		45	ns
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 2		30	ns
tezL	Output enable to Low level	Waveform 3		35	ns
$t_{\text {PHz }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		22	ns
tolz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$		22	ns
tPHZ	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		43	ns
tolz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		24	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			Min	Max	
$\mathrm{t}_{\mathrm{W}}(\mathrm{CP})$	Clock pulse width	Waveform 1	22		ns
t_{w} (MR)	MR pulse width	Waveform 4	20		ns
$\mathrm{t}_{5}(\mathrm{D})$	Setup time, data to clock	Waveform 5	24		ns
$t_{\text {L }}(\mathrm{D})$	Hold time, data to clock	Waveform 5	5		ns
$t_{s}(E)$	Setup time, enable to clock	Waveform 5	35		ns
$t_{\text {L }}(\mathrm{E})$	Hold time, enable to clock	Waveform 5	0		ns
$\mathrm{t}_{\text {rec }}$ (MR)	Recovery time, Master Reset to clock	Waveform 4	17		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{cc} with MR grounded following momentary connection $\geq 4.0 \mathrm{~V}, \mathrm{OE}_{2}, \mathrm{E}_{1}, \mathrm{E}_{2}$ and all Data inputs grounded, CP and $\mathrm{OE} 1 \geq 4.0 \mathrm{~V}$, and all outputs open.
5. Guaranteed by the 50 pF limit, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 4. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time
Out Delay and Mastr Reset 10 Clok Recovery

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

Waveform 5. Setup (t_{s}) and Hold (t_{h}) Times for Data (D) and Enable (E) Inputs
NOTE: The shaded areas indicate when the input is permitted to change for predictable output performances.

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V

Flip-Flops

TEST CIRCUIT AND WAVEFORM

FAMILY	INPUT PULSE CHARACTERISTICS								
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\mathbf{T L H}}$	$\mathbf{T}_{\mathbf{T H L}}$	
54 LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1 V	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	

[^9]
Signetics

54174, 54LS174, 54S174 Flip-Flops

Military Logic Products

FEATURES

- Six edge-triggered D-type flip-flops
- Three speed-power ranges avallable
- Buffered common clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The 54174, 54LS174 and 54S174 have six edge-triggered D-type flip-flops with individual D inputs and Qoutputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced Low independently of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS174/BEA,
	54 S174/BEA,
	$54174 / \mathrm{BEA}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54S	54LS
All	Inputs	$1 U L$	1 SUL	1LSUL
$Q_{0}-Q_{5}$	Outputs	10 LL	10SUL	10LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-1.6 \mathrm{~mA} I_{\mathrm{IL}}$, a $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{I L}$, and 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	MR	CP	D_{n}	a_{n}
Reset (clear)	L	X	X	L
Load "1"	H	\uparrow	h	H
Load "0"	H	\uparrow	1	L

$H=H i g h$ voltage level steady state
$h=H i g h$ voltage level one setup time prior to the Low-to-High clock transition
$L=$ Low voltage level steady state
$I_{x}=$ Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54	54LS	545	UNIT
$V_{C c}$	Supply voltage	7.0	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5	-30 to +1	-30 to +5	mA
V_{0}	Voltage applied to output in High output state range	-0.5 to $+V_{c c}$	-0.5 to $+V_{\text {cc }}$	-0.5 to $+V_{\text {cc }}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150			${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			545			UNIT
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8			+0.7			+0.8	V
$I_{\text {IK }}$	Input clamp current			-12			-18			-18	mA
IOH	High-level output current			-800			-400			-1000	$\mu \mathrm{A}$
lOL	Low-level output current			16			4			20	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54174			54LS174			54S174			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\text {cc }}=\operatorname{Min}, \\ & V_{\text {LL }}=M a x, I \end{aligned}$	$\begin{aligned} & V_{H}=M \mathrm{Min}, \\ & \mathrm{OH}=\mathrm{Max} \end{aligned}$	2.4	3.4		2.5	3.4		2.5	3.4		V
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{c C}=\operatorname{Min}, \\ & V_{H H}=\operatorname{Min}, \end{aligned}$	$\begin{aligned} & I_{\text {OL }}=\operatorname{Max} \\ & V_{\text {IL }}=\operatorname{Max} \end{aligned}$		0.2	0.4		0.25	0.4			0.5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$, $l_{1}=l_{1 K}$			-1.5			-1.5			-1.2	V
$\mathrm{I}_{\mathrm{H} 2}$	Input currentatmax-	$V_{\text {cC }}=$ Max	$V_{1}=5.5 \mathrm{~V}$			1.0						1.0	mA
	imum input voltage		$V_{1}=7.0 \mathrm{~V}$						0.1				mA
$l_{1 H 1}$	High-level	$V_{\text {cc }}=\operatorname{Max}$	$V_{1}=2.4 \mathrm{~V}$			40							$\mu \mathrm{A}$
	input current		$V_{1}=2.7 \mathrm{~V}$						20			50	$\mu \mathrm{A}$
ILI	Low-level	$V_{c C}=\operatorname{Max}$	$V_{1}=0.4 \mathrm{~V}$			-1.6			-0.4				mA
	input current		$V_{1}=0.5 \mathrm{~V}$									-2.0	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{cc}}=$	Max	-20		-57	-20		-100	-40		-110	mA
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{CC}}=$	Max		45	65		16	26		90	144	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54^{5}		54LS ${ }^{5}$		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		30		75		MHz
PLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 30 \\ & 35 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 13 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation MR delay to output	Waveform 3		35		35		22	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		54 S		UNIT
			Min	Max	Min	Max	Min	Max	
$t_{\text {w }}(\mathrm{L})$	Clock pulse width (Low)	Waveform 1	20		20		7.0		ns
t_{*}	Master Reset pulse width	Waveform 3	20		20		10		ns
t_{6}	Setup time, data to CP	Waveform 2	20		20		5.0		ns
t_{5}	Hold time, data to CP	Waveform 2	5		5		3.0		ns
$\mathrm{t}_{\text {ec }}$	Recovery time, MR to CP	Waveform 3	25		25		5.0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		$54 \mathrm{~S}^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		30		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 34 \\ & 39 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & 14.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpl $^{\text {L }}$	Propagation MR delay to output	Waveform 3		39		40		24.0	ns

Flip-Flops

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		30		55		MHz
$\begin{aligned} & t_{\text {PLH }} \\ & t_{P H L} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & \hline 44 \\ & 51 \end{aligned}$		$\begin{aligned} & 46 \\ & 46 \end{aligned}$		$\begin{aligned} & 17 \\ & 23 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tphL	Propagation MR delay to output	Waveform 3		51		52		29	ns

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		54S		UNIT
			Min	Max	Min	Max	Min	Max	
$t_{\text {w }}(L)$	Clock pulse width (Low)	Waveform 1	20		30		10		ns
t_{w}	Master Reset pulse width	Waveform 3	30		35		10		ns
$\mathrm{t}_{\text {b }}$	Setup time, data to CP	Waveform 2	25		20		7		ns
$t_{\text {h }}$	Hold time, data to CP	Waveform 2	5		5		5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 3	30		25		7		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. I_{CC} is measured after a momentary ground, then $\geq 4.0 \mathrm{~V}$ is applied to Clock, with $\geq 4.0 \mathrm{~V}$ applied to all Data and MR inputs and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 2. Data Setup and Hold Times

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 3. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54175, 54LS175

Flip-Flops

Quad D Flip-Flops

Product Specification

FEATURES

- Four edge-triggered D flip-flops
- Three speed-power ranges available
- Buffered common clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The 54175 and 54LS175 are quad, edge-triggered D-type flip-flop with individual D inputs and both Q and \bar{Q} outputs. The common buffered clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.
All Q outputs will be forced Low independently of Clock or Data inputs by a Low voltage level on the MR input. The device

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54175 / B E A$ $54 L S 175 / B E A$
16-Pin Ceramic FlatPack	$54175 / B F A$ $54 L S 175 / B F A$
16 -Pin Ceramic LLCC	54 LS175/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	$54 L S$
AIl	Inputs	1 UL	1 1LSUL
All	Outputs	10 UL	10 LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu A I_{I_{H}}$ and $-\left.1.6 \mathrm{~mA}\right|_{I L}$, and a $54 L S$ Unit Load (LSUL) is $20 \mu A I_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	MR	CP	D_{n}	Q_{n}	\bar{Q}_{n}
Reset (clear)	L	X	X	L	H
Load '"1"	H	\uparrow	h	H	L
Load '"0"	H	\uparrow	1	L	H

H = High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition
$L=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High Clock transition
X = Don't Care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54	$54 L S$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +5.0	-30 to +1.0	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
V_{HH}	High-level input voltage	2.0			2.0			V
V_{L}	Low-level input voltage			+0.8			+0.7	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-12			-18	mA
IOH	High-level output current			-800			-400	$\mu \mathrm{A}$
lol	Low-level output current			16			4	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54175			54LS175			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \\ & V_{\text {IL }}=M a x, \end{aligned}$	$\begin{aligned} & =\operatorname{Min}, \\ & =\operatorname{Max} \end{aligned}$	2.4	3.4		2.5	3.4		V
$V_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{c C}=\operatorname{Min} \\ & V_{\text {Li }}=\text { Max }, \end{aligned}$	$\begin{aligned} & =\operatorname{Min}, \\ & =\operatorname{Max} \end{aligned}$		0.2	0.4		0.25	0.4	V
$\mathrm{V}_{\mathbf{K}}$	Input clamp voltage	$V_{\text {cc }}=\mathrm{M}$	$=I_{1 /}$			-1.5			-1.5	V
$\mathbf{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum	$\mathrm{V}_{\text {cc }}=$ Max	$V_{1}=5.5 \mathrm{~V}$			1.0				mA
	input voltage		$V_{1}=7.0 \mathrm{~V}$						0.1	mA
$\mathbf{I}_{\mathbf{H 1} 1}$	High-level input current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	$V_{1}=2.4 \mathrm{~V}$			40				$\mu \mathrm{A}$
			$V_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$
$1 / 1$	Low-level input current	$\mathrm{V}_{C C}=$ Max	$=0.4 \mathrm{~V}$			-1.6			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=$		-20		-57	-20		-100	mA
$I_{C C}$	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{cc}}=$			30	45		11	18	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54^{5}		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to outputs	Waveform 1		$\begin{aligned} & 30 \\ & 35 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay MR to outputs	Waveform 3		$\begin{aligned} & 25 \\ & 35 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
t_{w}	Clock pulse width	Waveform 1	20		20		ns
t_{w}	Master Reset pulse width	Waveform 3	20		20		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time, High data to CP	Waveform 2	20		20		ns
$t_{n}(\mathrm{H})$	Hold time, High data to CP	Waveform 2	5		5		ns
$\mathrm{t}_{\mathrm{s}}(L)$	Setup time, Low data to CP	Waveform 2	20		20		ns
$t^{\prime}(L)$	Hold time, Low data to CP	Waveform 2	5		5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 3	25		25		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS ${ }^{5}$		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} . \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to outputs	Waveform 1		34 39		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay MR to outputs	Waveform 3		29 39	-	35 35	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {f MaX }}$	Maximum clock frequency	Waveform 1	25		30		MHz
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay Clock to outputs	Waveform 1		$\begin{aligned} & 44 \\ & 51 \end{aligned}$		$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay MR to outputs	Waveform 3		$\begin{aligned} & 33 \\ & 51 \\ & \hline \end{aligned}$		$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
t_{w}	Clock pulse width	Waveform 1	20		20		ns
t_{w}	Master Reset pulse width	Waveform 3	20		20		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time, High data to CP	Waveform 2	20		20		ns
$t_{n}(H)$	Hold time, High data to CP	Waveform 2	5		5		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time, Low data to CP	Waveform 2	20		20		ns
$\mathrm{th}^{(L)}$	Hold time, Low data to CP	Waveform 2	5		5		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 3	25		25		ns

NOTES

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With all outputs open and $\geq 4.0 \mathrm{~V}$ applied to all Data and Master Reset inputs, Icc is measured after a momentary ground, then 4.0 V is applied to clock.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

0

Waveform 2. Data Setup and Hold Tlmes

Waveform 3. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Tlme

Flip-Flops

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	\mathbf{R}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	\mathbf{T}_{W}	$\mathbf{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 X X X$	400Ω	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Z Zut of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Millitary Logic Products

54S181
 Arithmetic Logic Unit

4-Bit Arithmetic Logic Unit
 Product Specificatlon

FEATURES

- Provides 16 arithmetic operations: ADD, SUBTRACT, COMPARE, DOUBLE, plus 12 other arlthmetic operations
- Provides all 16 logic operations of two varlables: Exclusive-OR, Compare, AND, NAND, NOR, OR, plus 10 other logic operations
- Full lookahead carry for high-speed arithmetic operation on long words

DESCRIPTION

The 54S181 is a 4-bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and the Mode Control Input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24 -Pin Ceramic DIP	$54 \mathrm{~S} 181 / \mathrm{BJA}$
24 -Pin Ceramic FlatPack	$54 \mathrm{~S} 181 / \mathrm{BKA}$
28 -Pin Ceramic LLCC	$54 \mathrm{~S} 181 / \mathrm{B} 3 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
Mode	Input	1SUL
Aor \bar{B}	Inputs	3SUL
S	Inputs	4SUL
Carry	Input	5SUL
Fo $_{0}=B, C_{n}+4$	Outputs	10SUL
G	Output	10SUL
P	Output	10SUL

NOTE: Where a $54 S$ Unit Load (SUL) IS $50 \mu A I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

Arithmetic Logic Units

When the Mode Control Input (M) is High, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is Low, the carries are enabled and the device performs arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry lookahead between packages using the signals P (Carry Propagate) and \bar{G} (Carry Generate). P and G are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output ($\mathrm{C}_{\mathrm{n}}+4$) signal to the Carry input $\left(\mathrm{C}_{n}\right)$ of the next unit. For high-speed operation the device is used in conjunction with
the '182 carrylookahead circuit. One carry lookahead package is required for each group of four '181 devices. Carry lookahead can be provided at various levels and offers high-speed capability over extremely long word lengths.
The $A=B$ output from the device goes High when all four F outputs are High and can be used to indicate logic equivalence over 4 bits when the unitis in the subtract mode. The $A=B$ output is open collector and can be wired-AND with other $A=$ Boutputs to give a comparison for more than 4 bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.
The Function Table lists the arithmetic operations that are performed without a carry in. An
incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied.
Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow; thus, a carry is generated when there is notunderflow and no carry is generated when there is underflow.
As indicated, this device can be used with either active Low inputs producing active Low outputs or with active High inputs producing active High outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

LOGIC DIAGRAM
(

MODE SELECT — FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE HIGH INPUTS \& OUTPUTS			
S_{3}	S_{2}	$S_{\mathbf{1}}$	S_{0}	$\begin{array}{c}\text { Logic } \\ (M=H)\end{array}$			
L	L	L	L	A	A		
$(M=L)\left(C_{n}=H\right)$						$]$	Arithmetic **
:---:							
L							

MODE SELECT — FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUTS	
S_{3}	S_{2}	S_{1}	S_{0}	Logic $(M=H)$	$\begin{gathered} \text { Arithmetic ** } \\ (M=L)\left(C_{n}=H\right) \end{gathered}$
L	L	L	L	$\overline{\text { A }}$	A minus 1
L	L	L	H	$\overline{\text { AB }}$	AB minus 1
L	L	H	L	A +B	$A B$ minus 1
L	L	H	H	Logical 1	minus 1
L	H	L	L	$\overline{A+B}$	A plus ($\mathrm{A}+\mathrm{B}$)
L	H	L	H	B	$A B$ plus ($A+\bar{B}$)
L	H	H	L	$\bar{A} \oplus \bar{B}$	A minus B minus 1
L	H	H	H	$A+B$	$A+B$
H	L	L	L	AB	A plus ($A+B$)
H	L	L	H	$A \oplus B$	A plus B
H	L	H	L	B	$A B$ plus ($A+B$)
H	L	H	H	$A+B$	A +B
H	H	L	L	Logical 0	A plus A^{*}
H	H	L	H	$A B$	$A B$ plus A
H	H	H	L	AB	$A B$ plus A
H	H	H	H	A	A

$L=$ Low voltage
$\mathrm{H}=$ High voltage level

* = Each bit is shifted to the next more significant position.
** $=$ Arithmetic operations expressed in 2 s complement notation.

Arithmetic Logic Units

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.8	V
		+1250			+0.7	V
I_{IK}	Input clamp current				-18	mA
IOH	High-level output current except A = B				-1000	$\mu \mathrm{A}$
l_{OL}	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

SUM MODE TEST TABLE I
FUNCTION INPUTS: $S_{0}=S_{3}=1, S_{1}=S_{2}=M=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 1	Apply GND	Apply 1	Apply GND	
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	χ_{i}	Bi_{i}	None	Remaining \bar{A} and B	C_{n}	F_{i}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	B_{1}	χ_{i}	None	Remaining \bar{A} and \bar{B}	C_{n}	F_{i}
$\begin{gathered} \mathbf{t}_{\text {PLH }} \\ \mathbf{t}_{\mathrm{PH}} \\ \hline \end{gathered}$	\bar{A}_{1}	Bi_{i}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	P
$t_{\text {PLH }}$ $t_{\text {PHL }}$	B_{1}	\bar{A}_{1}	None	None	Remaining \bar{A} and $\bar{B}, \mathrm{C}_{\mathrm{n}}$	P
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	χ_{1}	None	Bi	Remaining B	Remaining \bar{A}, C_{n}	G
$\begin{gathered} \mathrm{t}_{\mathrm{tPLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	B_{i}	None	\bar{A}_{i}	${ }_{B}^{\text {Remaining }}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	G
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	None	Bi_{i}	$\text { Remaining }_{B}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	$\mathrm{C}_{\mathrm{N}+4}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	BI	None	\bar{A}_{i}	$\underset{B}{\text { Remaining }}$	$\begin{aligned} & \text { Remaining } \\ & \bar{A}, C_{n} \end{aligned}$	C_{n+4}
$t_{\text {PLH }}$ $t_{\text {PHL }}$	C_{N}	None	None	$\frac{\text { All }}{\bar{A}}$	$\begin{gathered} \mathrm{All} \\ \mathrm{~B} \end{gathered}$	Any F or C_{n+4}

NOTE:

1. $2.7 \mathrm{~V} \leq \mathrm{HI} \leq \mathrm{V}_{\mathrm{CC}}$

DIFF MODE TEST TABLE II
FUNCTION INPUTS: $S_{0}=S_{3}=1, S_{1}=S_{2}=M=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 1	Apply GND	Apply 1	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & t_{\text {PHLL }} \end{aligned}$	\bar{A}_{i}	None	B_{i}	$\operatorname{Remaining~}_{\bar{A}}$	Remaining B, C_{n}	F_{1}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	B_{1}	\bar{A}_{1}	None	$\operatorname{Remaining~}_{\bar{A}}$	Remaining B, C_{n}	F_{1}
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	\bar{A}_{i}	None	B_{i}	None	Remaining \bar{A} and B, C_{n}	P
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	B_{i}	χ_{i}	None	None	Remaining \bar{A} and $\bar{B}, \mathrm{C}_{\mathrm{n}}$	P
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	B_{i}	None	None	Remaining \bar{A} and B, C_{n}	G
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	B_{i}	None	\bar{A}_{i}	None	Remaining \bar{A} and B, C_{n}	G
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & t_{\mathrm{pHLL}} \end{aligned}$	χ_{1}	None	B_{i}	$\begin{gathered} \text { Remaining } \\ \bar{A} \end{gathered}$	$\begin{gathered} \text { Remaining } \\ B, C_{n} \end{gathered}$	$A=B$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	B_{1}	π_{1}	None	$\underset{A}{A}$	$\begin{gathered} \text { Remaining } \\ B, C_{n} \end{gathered}$	$A=B$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	A_{1}	B_{1}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	B	None	χ_{i}	None	Remaining \bar{A} and \bar{B}, C_{n}	C_{n+4}
$\begin{aligned} & \mathrm{t}_{\mathrm{PH}} \mathrm{~L} \end{aligned}$	C_{N}	None	None	$\begin{gathered} \text { All } \\ \bar{A} \text { and } B \end{gathered}$	None	Any F or C_{n+4}

LOGIC MODE TEST TABLE III

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	FUNCTION INPUTS
		Apply 1	Apply GND	Apply 1	Apply GND		
$\begin{aligned} & t_{\mathrm{P} P \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	Bi_{i}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	F_{1}	$\begin{gathered} S_{1}=S_{2}=M=1 \\ S_{0}=S_{3}=0 V \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	E_{1}	\bar{A}_{1}	None	None	Remaining \bar{A} and B, C_{n}	F_{i}	$\begin{gathered} S_{1}=S_{2}=M=1 \\ S_{0}=S_{3}=0 V \end{gathered}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		UMITS			
				Min	Typ ${ }^{2}$	Max	
V OH	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \\ & V_{\mathrm{VH}}=\mathrm{Min}, \\ & V_{\mathrm{HL}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$	Any output except $A=B$	2.5	3.4		V
v_{OL}	Low-level output voltage	$\mathrm{V}_{\text {cC }}=\operatorname{Min}, \mathrm{V}_{\text {IH }}=\operatorname{Min}, \mathrm{V}_{\text {IL }}=\operatorname{Max}$,				0.5	V
		$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	+1250			0.45	V
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{I}_{1}=I_{\text {IK }}$				-1.2	V
I_{1+2}	Input current at maximum input voltage	$\begin{gathered} V_{c c}=M a x, \\ V_{1}=5.5 \mathrm{~V} \end{gathered}$	Mode input			1.0	mA
			\bar{A} or B inputs			1.0	mA
			S inputs			1.0	mA
			Carry input			1.0	mA
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current	$\begin{aligned} V_{c c} & =M a x, \\ V_{1} & =2.7 \mathrm{~V} \end{aligned}$	Mode input			50	$\mu \mathrm{A}$
			\bar{A} or B inputs			150	$\mu \mathrm{A}$
			S inputs			200	$\mu \mathrm{A}$
			Carry input			250	$\mu \mathrm{A}$
ILI	Low-level input current	$\begin{aligned} V_{C C} & =M a x, \\ V_{1} & =0.5 \mathrm{~V} \end{aligned}$	Mode input			-2	mA
			$\overline{\text { A or } B \text { inputs }}$			-6	mA
			S inputs			-8	mA
			Carry input			-10	mA
IOH	High-level output current	$\mathrm{V}_{1 H}=$ Min, $\mathrm{V}_{1}=$ Max, $\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V} A=B$ only				250	$\mu \mathrm{A}$
los	Short-circuti output current ${ }^{4}$	$V_{C C}=$ Max Any output except $A=B$		-40		-100	mA
Icc	Supply current ${ }^{5}$ (total)	$V_{C C}=$ Max	Note 5a		120	220	mA
			Note 5b		120	220	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $C_{n} \text { to } C_{n+4}$	$M=0 V$, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay C_{n} to F outputs	M = OV, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\overline{\mathbf{t}_{P L H}}$ $t_{\text {PHL }}$	Propagation delay \bar{A} or \bar{B} inputs to G output	$\mathrm{M}=\mathrm{S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table I		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to \bar{G} output	$M=S_{0}=S_{3}-0 V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table ll		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to P output	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table 1		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to P output	$M=S_{0}=S_{3}=0 V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{i} outputs	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table I		$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{1} outputs	$M=S_{0}=S_{3}=O V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{i} outputs	$M=4.5 \mathrm{~V}$, Logic Mode see Waveform 2 and Table III		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A or B inputs to $\mathrm{C}_{\mathrm{n}+4}$ output	$M=O V, S_{0}=S_{3}=4.5 \mathrm{~V}, S_{1}=S_{2}=0 \mathrm{~V}$ Sum Mode, see Waveform 1 and Table I		$\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or B inputs to C_{n+4} outputs	$M=O V, S_{0}=S_{3}=O V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 4 and Table II		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{A} or B inputs to $\mathrm{A}=\mathrm{B}$ output	$M=S_{0}=S_{3}=0 V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 23 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Arithmetic Logic Units

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\frac{\text { LIMITS }}{\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}}$		UNIT
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay C_{n} to $\mathrm{C}_{\mathrm{n}+4}$	$\mathrm{M}=\mathrm{OV}$, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C_{n} to F outputs	M = OV, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to \bar{G} output	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table I		$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to \bar{G} output	$M=S_{0}=S_{3}-0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & t_{\mathrm{PHH}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or B inputs to P output	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table 1		$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{A}}$ or B inputs to P output	$M=S_{0}=S_{3}=0 V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{1} outputs	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table I		$\begin{aligned} & 20.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay \bar{A}_{i} or \bar{B}_{i} inputs to F_{i} outputs	$M=S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 23.0 \\ & 25.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{i} outputs	$M=4.5 \mathrm{~V}$, Logic Mode see Waveform 2 and Table III		$\begin{aligned} & 24.0 \\ & 26.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or B inputs to C_{n+4} output	$\mathrm{M}=0 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}$ Sum Mode, see Waveform 1 and Table 1		$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to C_{n+4} outputs	$M=O V, S_{0}=S_{3}=O V, S_{1}=S_{2}=4.5 \mathrm{~V}$ $\text { Diff Mode, see Waveform } 4 \text { and Table II }$		$\begin{aligned} & 27.0 \\ & 26.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to $A=B$ output	$\mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{gathered} 27.0 \\ 33 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
t_{PLLH} $t_{\text {PHL }}$	Propagation delay $C_{n} \text { to } C_{n+4}$	$\mathrm{M}=\mathrm{OV}$, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay C_{n} to F outputs	$\mathrm{M}=0 \mathrm{~V}$, Sum or Diff Mode see Waveform 2 and Tables I \& II		$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A or Binputs to G output	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table 1		$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to \mathbf{G} output	$M=S_{0}=S_{3}-0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 20.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A} or B inputs to P output	$M=S_{1}=S_{2}=0 \mathrm{~V}, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table 1		$\begin{aligned} & 16.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation delay \bar{A} or B inputs to P output	$M=S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 20.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{i} outputs	$M=S_{1}=S_{2}=0 V, S_{0}=S_{3}=4.5 \mathrm{~V}$ Sum Mode, see Waveform 2 and Table 1		$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathbf{t}_{\mathrm{pPLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \\ \hline \end{gathered}$	Propagation delay \bar{A}_{i} or \bar{B}_{i} inputs to F_{i} outputs	$M=S_{0}=S_{3}=O V, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 26.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{i} or B_{i} inputs to F_{i} outputs	$\mathrm{M}=4.5 \mathrm{~V}$, Logic Mode see Waveform 2 and Table III		$\begin{aligned} & 26.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A or B inputs to $\mathrm{C}_{\mathrm{n}+4}$ output	$M=O \mathrm{~V}, S_{0}=S_{3}=4.5 \mathrm{~V}, S_{1}=S_{2}=0 \mathrm{~V}$ Sum Mode, see Waveform 1 and Table I		$\begin{aligned} & 25.0 \\ & 25.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Propagation delay \bar{A} or \bar{B} inputs to C_{n+4} outputs	$M=0 V, S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 4 and Table II		$\begin{aligned} & 29.0 \\ & 29.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A} or B inputs to $A=B$ output	$M=S_{0}=S_{3}=0 \mathrm{~V}, S_{1}=S_{2}=4.5 \mathrm{~V}$ Diff Mode, see Waveform 3 and Table II		$\begin{aligned} & 29.0 \\ & 36.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:
2. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
3. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
5. ICC is measured with the following conditions:
a. S_{0} through S_{3}, M, and A inputs are $\geq 4.0 \mathrm{~V}$, other inputs grounded, all outputs open.
b. S_{0} through S_{3} and M inputs are $\geq 4.0 \mathrm{~V}$, other inputs grounded, all outputs open.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

NOTE: $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

54LS191 Counter

Presettable 4-Bit Binary Up/Down Counter

Product Speciflcation

FEATURES

- Synchronous, reversible counting
- 4-bit binary counter
- Asynchronous parallel load capability
- Count enable control for synchronous expansion
- Single Up/Down control Input

DESCRIPTION

The 54LS191 is an asynchronously presettable up/down 4-bit binary counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation.
Asynchronous parallel load capability permits the counter to be preset to any desired number. Information present on the parallel Data inputs ($\mathrm{D}_{0}-\mathrm{D}_{3}$) is loaded into the counter and appears on the outputs when the Parallel Load (PL) input is Low. As indicated in the Mode Select Table, this operation overrides the counting function.

Counting is inhibited by a High level on the Count Enable (CE) input. When CE is Low, internal state changes are initiated synchronously by the Low-to-High transition of the Clock input. The Up/Down (J/D) input signal determines the direction of counting as indicated in the Mode Select Table. The CE input may go Low when the clock is in either state, however, the Low-to-High CE transition must occur only when the clock is High. Also, the D/D input should be changed only when either CE or CP is High.
Overflow/underflow indications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock (RC). The TC output is normally Low and goes High when a circuitreaches zero in the count-down mode or reaches " 15 " in the count-up mode for 54LS191. The TC output will remain High until a state change occurs, either by counting or presetting, or until J / D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes.
The TC signal is used internally to enable the RC output. When TC is High and CE is Low, the RC follows the Clock Pulse (CP) delayed by two gate delays. The RC output essentially
duplicates the Low clock pulse width, although delayed in time by two gate delays. This feature simplifies the design of multi-stage counters, as indicated in Figures A and B. In Figure A, each RC output is used as the Clockinput for the next higher stage. When the clock source has a limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a High signal on CE inhibits the RC output pulse as indicated in the Mode Select Table. The time skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This is a disadvantage of the configuration in some applications.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS191/BEA
16-Pin Ceramic FlatPack	54 LS191/BFA
20-Pin Ceramic LLCC	54 LS191/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
CE	Input	3LSUL
Other	Inputs	1LSUL
All	Outputs	10LSUL

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC Pin Assignments see JEDEC Standard No. 2

Figure B shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all Clock inputs are driven in parallel. The Low state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/
borrow signal to ripple through to the last stage before the clock goes High, there is no such restriction on the High state duration of the clock.

In Figure C, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preced-
ing stages forms the CE input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own CE, therefore, the simple inhibit scheme of Figure A and B does not apply.

Figure 1. N-Stage Counter Using Ripple Clock

Figure 2. Synchronous N-Stage Counter Using Ripple Carry Borrow

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS
	PL	U/D	CE	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Parallel load	L	X	X	X	L	L
	L	X	X	X	H	H
Count down	H	L	I	\uparrow	X	count up
Hold "do nothing"	H	H	I	\uparrow	X	count down

TC AND RC FUNCTION TABLE

INPUTS			TERMINAL COUNT STATE				OUTPUTS	
U/D	CE	CP	Q_{0}	Q_{1}	a_{2}	Q_{3}	TC	RC
H	H	X	H	H	H	H	L	H
L	H	X	H	H	H	H	H	H
L	L	บ	H	H	H	H	5	บ
L	H	X	L	L	L	L	L	H
H	H	X	L	L	L	L	H	H
H	L	บ	L	L	L	L	5	บ

$H=$ High voltage level steady state
L = Low voltage level steady state
$x=$ Low voltage level one set-up time prior to Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
v = Low pulse
$\Sigma=$ TC goes Low on a Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathbb{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.7	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-400	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			4	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LMMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}$			0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=I_{1 \mathrm{~K}}$				-1.5	V
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$	CE input			0.3	mA
			Other inputs			0.1	mA
$\mathrm{I}_{\mathbf{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$	CE input			60	$\mu \mathrm{A}$
			Other inputs			20	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M a x, V_{1}=0.4 V$	CE input			-1.2	mA
			Other inputs			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			20	35	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum input count frequency	Waveform 1	20		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Propagation delay Clock to Q output	Waveform 1		$\begin{aligned} & 24 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to RC output	Waveform 2		$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation delay Clock to TC output	Waveform 1		$\begin{aligned} & 42 \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay U/D to RC output	Waveform 7		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D/D to TC output	Waveform 7		$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Data to Q outputs	Waveform 3		$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{P L H} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay PL to any output	Waveform 4		$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CE to RC output	Waveform 2		33 33	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
tw	CP pulse width	Waveform 1	25		ns
t_{w}	PLpulse width	Waveform 5	35		ns
$\mathrm{t}_{\text {s }}$	Setup time, data to PL	Waveform 6	20		ns
t_{n}	Hold time, data to PL	Waveform 6	5		ns
t_{90}	Recovery time, PL to CP	Waveform 5	40		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time, Low CE to clock	Waveform 8	40		ns
$t_{n}(L)$	Hold time, Low CE to clock	Waveform 8	0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum input count frequency	Waveform 1	20		MHz
$\begin{gathered} t_{\text {PLH }} \\ t_{\text {PHL }} \end{gathered}$	Propagation delay Clock to Q output	Waveform 1		$\begin{aligned} & 29 \\ & 41 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHH }} \end{aligned}$	Propagation delay Clock to RC output	Waveform 2		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to TC output	Waveform 1		$\begin{aligned} & 47 \\ & 57 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t p l t h}^{t_{p H}} \end{aligned}$	Propagation delay U/D to RC output	Waveform 7		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay D/D to TC output	Waveform 7		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
$\begin{gathered} t_{\text {PLH }} \\ t_{\text {tPHL }} \end{gathered}$	Propagation delay Data to Qoutputs	Waveform 3		$\begin{aligned} & 37 \\ & 45 \end{aligned}$	ns ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay PL to any output	Waveform 4		$\begin{aligned} & 38 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay CE to RC output	Waveform 2		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$	Maximum input count frequency	Waveform 1	20		MHz
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay Clock to Q output	Waveform 1		$\begin{aligned} & 38 \\ & 53 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to RC output	Waveform 2		$\begin{aligned} & 33 \\ & 38 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay Clock to TC output	Waveform 1		$\begin{aligned} & 61 \\ & 74 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay U/D to RC output	Waveform 7		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay D/D to TC output	Waveform 7		$\begin{aligned} & 49 \\ & 49 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay Data to Qoutputs	Waveform 3		$\begin{aligned} & 49 \\ & 59 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathbf{t}_{\text {PLH }} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay PL to any output	Waveform 4		$\begin{aligned} & 49 \\ & 72 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {tpLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CE to RC output	Waveform 2		49 49	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{w}	CP pulse width	Waveform 1	25		ns
$t_{\text {w }}$	PL pulse width	Waveform 5	30		ns
$\mathrm{t}_{\text {s }}$	Setup time, data to PL	Waveform 6	20		ns
t_{n}	Hold time, data to PL	Waveform 6	5		ns
$\mathrm{t}_{\text {Pec }}$	Recovery time, PL to CP	Waveform 5	40		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time, Low CE to clock	Waveform 8	40		ns
$t^{(L L)}$	Hold time, Low CE to clock	Waveform 8	0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{cc} with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to Zout of Pulse Generators.
$\mathrm{D}=$ Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset (clear)
- Expandable without external logic

DESCRIPTION

The 54193 and 54LS193 are 4-bit synchronousup/down counters-that count in

54193, 54LS193

Counters

Presettable 4-Bit Binary Up/Down Counters

Product Specification
the binary mode. Separate up/down clocks, $C P_{u}$ and $C P_{D}$ respectively, simplify operation. The outputs change state synchronously with the Low-to-High transition of either Clock input. If the CPuclock is pulsed while $C P_{D}$ is held High, the device will count up ... if $C P_{D}$ is pulsed while the CP_{u} is held High, the device will count down. Only one Clock input can be held High at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous reset pin -
it may also be loaded in parallel by activating the asynchronous parallel load pin.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	$54193 / \mathrm{BEA}$
Ceramic Flat Pack	54 LS193/BEA
54193/BFA	
Ceramic LLCC	54 LS193/BFA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54LS
All	Inputs	1 IUL	1LSUL
All	Outputs	10 UL	10LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-\left.1.6 \mathrm{~mA}\right|_{I L}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION

LOGIC SYMBOL

Counters

LOGIC DIAGRAM

Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count-up and count-down functions.
Each flip-flop contains JK feedback from slave to master, such that a Low-to-High transition on the $C P_{D}$ input will decrease the count by one, while a similar transition on the $C P_{u}$ input will advance the count by one.
One clock should be held High while counting with the other, because the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is Low. Applications requiring reversible operation must make the reversing decision while the activating clock is High to avoid erroneous counts.
The Terminal Count Up (TC_{U}) and Terminal Count down (TCD) outputs are normally High. When the circuit has reached the maximum count state of the next High-to-Low transition of CPu will cause TCutogo Low. TC ${ }_{u}$ will stay Low until CP_{u} goes High again, duplicating the
count up clock, although delayed by two gate delays. Likewise, the TC_{D} output will go Low when the circuit is in the zero state and the $C P_{D}$ goes Low. The TC outputs can be used as the Clock input signals to the next higher order circuitin a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a two-gate delay time difference added for each stage that is added.

The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel Data inputs (D_{0} $-D_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the Clock inputs when the Parallel Load (PL) input is Low. A High level on the Master Reset (MR) input will disable the parallel load gates, override both Clock inputs, and set all Q outputs Low. If one of the Clockinputs is Low during and after a reset or load operation, the next Low-to-High transition of that clock will be interpreted as a legitimate signal and will be counted.

STATE DIAGRAM

$T_{U}=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot C P_{U}$
$T C_{D}=Q_{0} \cdot Q_{1} \cdot \sigma_{2} \cdot \sigma_{3} \cdot C P_{D}$

Logic Equations for Terminal Count

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS								OUTPUTS					
	MR	PL	$\mathrm{CP}_{\mathbf{u}}$	$\mathrm{CP}_{\text {D }}$	D_{0}	D_{1}	D_{2}	D_{3}	Q_{0}	\mathbf{Q}_{1}	O_{2}	Q_{3}	TC_{U}	TC ${ }_{\text {d }}$
Reset (clear)	H	X	X	L	X	X	X	X	L	L	L	L	H	L
	H	X	X	H	X	X	X	X	L	L	L	L	H	H
Parallel load	L	L	X	L	L	L	L	L	L	L	L	L	H	L
	L	L	X	H	L	L	L	L	L	L	L	L	H	H
	L	L	L	X	H	H	H	H	H	H	H	H	L	H
	L	L	H	X	H	H	H	H	H	H	H	H	H	H
Count up	L	H	\uparrow	H	X	X	X	X	Count up				$H^{(c)}$	H
Count down	L	H	H	\uparrow	X	X	X	X	Count down				H	$H^{(d)}$

$H=$ High voltage level
L = Low voltage level
X = Don't care
$\uparrow=$ Low-to-High clock transition
NOTES:
c. $T C_{u}=C P_{u}$ at terminal count up (HHHH)
d. $T C_{D}=C P_{D}$ at terminal count down (LLLL)

FUNCTIONAL WAVEFORMS Typical clear, load, and count sequences

NOTES:

1. Clear overrides load, data, and count inputs.
2. When counting up, count-down input must be high; when counting down, count-up input must be high.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$\mathbf{5 4}$	$\mathbf{5 4 L S}$	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +5	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			2.0			V
V_{IL}	Low-level input voltage			+0.8			+0.7	V
I_{K}	Input clamp current			-12			-18	mA
IOH	High-level output current			-800			-400	$\mu \mathrm{A}$
IOL	Low-level output current			16			4	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54193			54LS193			
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}$, $\mathrm{IOH}^{\text {= }}$ Max	2.4	3.4		2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{I H}=\mathrm{Min}$,	, lol $=$ Max		0.2	0.4		0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Mi}$				-1.5			-1.5	V
$\mathbf{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$V_{C C}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0				mA
			$V_{1}=7.0 \mathrm{~V}$						0.1	mA
$\mathrm{IIH:}$	High-level input current	$V_{C C}=$ Max	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40				$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$
I_{11}	Low-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-65	-20		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{CC}}=$ Max			65	89		19	34	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\frac{54}{C_{L}=15 \mathrm{pF}}$		$\begin{gathered} 54 \mathrm{LS} \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$		UNIT
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum input count frequency	Waveform 1	25		25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP ${ }_{\text {u input }}$ to TC_{U} output	Waveform 2		$\begin{aligned} & 26 \\ & 24 \end{aligned}$		$\begin{aligned} & 26 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP P_{D} input to $T C_{D}$ output	Waveform 2		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $C P_{u}$ or $C P_{D}$ to Q_{n} outputs	Waveform 1		$\begin{aligned} & 38 \\ & 47 \end{aligned}$		$\begin{aligned} & 38 \\ & 47 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { TPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay FL input to Q_{n} output	Waveform 3		$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PHL }}$	Propagation delay MR to output	Waveform 4		35		35	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
tw	CPupulse width	Waveform 1	20		20		ns
tw	CPDpulse width	Waveform 1	20		20		ns
$t_{\text {w }}$	PL pulse width	Waveform 3	20		20		ns
tw	MR pulse width	Waveform 4	20		20		ns
$t_{\text {s }}$	Setup time, data to PL	Waveform 5	20		20		ns
t_{n}	Hold time, data to PL	Waveform 5	0		5		ns
t_{ec}	Recovery time, PL to CP	Waveform 3	40		40		ns
$t_{\text {rec }}$	Recovery time, MR to CP	Waveform 4	40		40		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Maximum input count frequency	Waveform 1	25		25		MHz
$\begin{aligned} & \mathrm{tpLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CPu input to TCu output	Waveform 2		$\begin{aligned} & 30 \\ & 28 \end{aligned}$		$\begin{aligned} & 31 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpur $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP $P_{\text {D }}$ input to TC_{D} output	Waveform 2		$\begin{aligned} & 28 \\ & 28 \end{aligned}$		$\begin{aligned} & 29 \\ & 29 \end{aligned}$	ns ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CPu or $C P_{D}$ to Q_{n} outputs	Waveform 1		$\begin{aligned} & 42 \\ & 51 \end{aligned}$		$\begin{aligned} & 43 \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t} \mathrm{t} \mathbf{H} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay PL input to Q_{n} output	Waveform 3		$\begin{aligned} & 44 \\ & 44 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tphl	Propagation delay MR to output	Waveform 4		39		40	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum input count frequency	Waveform 1	25		25		M Hz
$\begin{array}{\|l} \hline \text { PLH } \\ L_{\text {PHL }} \\ \hline \end{array}$	Propagation delay CPu input to TC_{u} output	Waveform 2		$\begin{aligned} & 39 \\ & 36 \end{aligned}$		$\begin{aligned} & 40 \\ & 38 \end{aligned}$	ns
$\begin{array}{\|l\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \end{array}$	Propagation delay CP P_{D} input to $T C_{D}$ output	Waveform 2		$\begin{aligned} & 36 \\ & 36 \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $C P u$ or $C P_{D}$ to Q_{n} outputs	Waveform 1		$\begin{aligned} & 55 \\ & 66 \end{aligned}$		$\begin{aligned} & 56 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{array}{\|l\|l\|} \hline \text { tPLH } \\ \text { tPHL } \\ \hline \end{array}$	Propagation delay PL input to Q_{n} output	Waveform 3		$\begin{aligned} & 57 \\ & 57 \end{aligned}$		$\begin{aligned} & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PhiL }}$	Propagation delay, MR to output	Waveform 4		51		52	ns

AC SETUP REQUIREQUENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54		54LS		UNIT
			Min	Max	Min	Max	
tw	CPupulse width	Waveform 1	26		20		ns
IW	$C P_{D}$ pulse width	Waveform 1	26		20		ns
$t_{\text {w }}$	PL pulse width	Waveform 3	20		20		ns
IW	MR pulse width	Waveform 4	20		20		ns
t_{5}	Setup time, data to FL	Waveform 5	20		30		ns
4	Hold time, data to PL	Waveform 5	0		10		ns
$4_{\text {ec }}$	Recovery time, PL to CP	Waveform 3	40		40		ns
4 Cac	Recovery time, MR to CP	Waveform 4	40		40		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short should not exceed one second.
4. Measure Icc with Parallel Load and Master Reset inputs grounded, all other outputs $\geq 4.0 \mathrm{~V}$ and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 5. Setup and Hold Tlmes Data to Parallel Load (PL)

TEST CIRCUIT AND WAVEFORM

FAMILY	INPUT PULSE CHARACTERISTICS					
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\boldsymbol{M}}$	Rep. Rate	$T_{\mathbf{W}}$	$\mathbf{T}_{\text {TLH }}$	$T_{\text {THL }}$
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$
$54 X X X$	400Ω	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$

DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to ZOUT of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

APPLICATION DIAGRAM

Signetics

Military Logic Products

FEATURES

- Buffered clock and control inputs
- Shift left and shift right capability
- Synchronous parallel and serial data transfers
- Easily expanded for both serial and parallel operation
- Asynchronous master reset
- Hold (do nothing) mode

54194

Shift Register

4-Bit Bidirectional Universal Shift Register

Product Specification

DESCRIPTION

The functional characteristics of the 54194 4-Bit Bidirectional Shift Register are indicated in the Logic Diagram and Function Table. The register is fully syn-

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-PIn Ceramic DIP	$54194 /$ BEA
Ceramic Flat Pack	$54194 / \mathrm{BFA}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54
All	Inputs	1 UL
$Q_{0}-Q_{3}$	Outputs	10 UL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-1.6 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

Shift Register

The 54194 design has special logic features which increase the range of application. The synchronous operation of the device is determined by two Mode Select inputs, S_{0} and S_{1}. As shown in the Mode Select Table, data can be entered and shifted from left to right (shift right, $Q_{0} \rightarrow Q_{1}$, etc.) or right to left (shift left, $Q_{3} \rightarrow Q_{2}$, etc.), or parallel data can be entered, loading all 4 bits of the register simultaneously. When both
S_{0} and S_{1} are Low, existing data is retained in a hold (do nothing) mode. The first and last stages provide D-type Serial Data inputs (D_{SR}, D_{SL}) to allow multistage shift right or shift left data transfers without interfering with parallel load operation.
The Mode Select inputs of the 54194 are gated with the clock and should be changed from High-to-Low only while the Clock input is High.

The four parallel data inputs $\left(D_{0}-D_{3}\right)$ are D-type inputs. Data appearing on $D_{0}-D_{3}$ inputs when S_{0} and S_{1} are High is transferred to the $Q_{0}-Q_{3}$ outputs, respectively, following the next Low-to-High transition of the clock. When Low, the asynchronous Master Reset (MR) overrides all other input conditions and forces the Q outputs Low.

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	CP	MR	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	D_{n}	Q_{0}	Q_{1}	Q_{2}	\mathbf{O}_{3}
Reset (clear)	X	L	X	X	X	X	X	L	L	L	L
Hold (do nothing)	X	H	${ }^{(1 a)}$	${ }^{\text {(a) }}$	X	X	X	90	q_{1}	q_{2}	9_{3}
Shift left	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	(a) $\text { (ª) }^{\text {a }}$	x	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$
Shift right	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & I^{(a)} \\ & f^{(a)} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & 9_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel load	\uparrow	H	h	h	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}

$\mathrm{H}=$ High voltage level
h = High voltage level one setup time prior to the Low-to-High clock transition
L = Low voltage level
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{d}_{n(}\left(q_{n)}=\right.$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition
$x^{\prime}=$ Don't care
$\uparrow=$ Low-to-High clock transition
NOTE:
a. The High-to-Low transition of the S_{0} and S_{1} inputs on the $\mathbf{5 4 1 9 4}$ should only take place while CP is High for conventional operation.

TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT AND CLEAR SEQUENCES

Shift Register

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8	V
I_{K}	Input clamp current			-12	mA
IOH	High-level output voltage			-800	$\mu \mathrm{A}$
$\mathrm{laL}^{\text {a }}$	Low-level output current			16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

Shift Register

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOL}_{\text {L }}=$ Max		0.2	0.4	V
$\mathrm{V}_{1 \mathrm{~K}}$	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, I_{1}=I_{\text {IK }}$			-1.5	V
I_{1+2}	Input current at maximum input voltage	$V_{C c}=M a x, V_{1}=5.5 \mathrm{~V}$			1.0	mA
$\mathrm{I}_{1 H 1}$	High-level input current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$			-1.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max	-20		-57	mA
lce	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$		39	63	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		UNIT
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		MHz
$\mathrm{t}_{\mathrm{tLH}}$ $t_{\text {phL }}$	Propagation delay Clock to output	Waveform 1		22 26	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		37	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
${ }_{\text {t }}(\mathrm{H})$	Clock pulse width High	Waveform 1	20		ns
${ }_{1}(\mathrm{~L}$)	MR pulse width, Low	Waveform 2	20		ns
t_{5}	Setup time, data to clock	Waveform 3	20		ns
t_{h}	Hold time, data to clock	Waveform 3	0		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time Low, S_{n} to $\mathrm{CP}{ }^{(a)}$	Waveform 4	30		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup time High, S_{N} to CP	Waveform 4	30		ns
t_{n}	Hold time, S_{n} to CP	Waveform 4	0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	25		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		UNIT
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	25		MHz
$\begin{array}{\|l\|l\|} \hline \text { PLL } \\ \text { tPHL } \\ \hline \end{array}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		41	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		UNIT
			Min	Max	
${ }^{\text {max }}$	Maximum clock frequency	Waveform 1	25		MHz
$\begin{array}{\|l\|} \hline t_{\text {PLH }} \\ t_{\text {PHLL }} \end{array}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 34 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t }}$ HHL	Propagation delay, MR to output	Waveform 2		53	ns

AC SETUP REQUIREQUENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
${ }_{\text {tw }}(\mathrm{H})$	Clock pulse width, High	Waveform 1	20		ns
${ }_{\text {t }}(\mathrm{L})$	MR pulse width, Low	Waveform 2	20		ns
t_{5}	Setup time, data to clock	Waveform 3	20		ns
t_{n}	Hold time, data to clock	Waveform 3	7		ns
$t_{s}(L)$	Setup time Low, S_{n} to $\mathrm{CP}{ }^{(a)}$	Waveform 4	30		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time High, S_{N} to CP	Waveform 4	30		ns
t_{h}	Hold time, S_{n} to CP	Waveform 4	7		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	25		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time, and duration of the short curcuit should not exceed one second.
4. With all outputs open, D_{i} inputs grounded and $\geq 4.0 \mathrm{~V}$ applied to $\mathrm{S}_{0}, \mathrm{~S}_{1}$, MR and the serial inputs, I_{CC} is tested with a momentary ground, then $\geq 4.0 \mathrm{~V}$ applied to CP .
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- Buffered clock and control inputs
- Shift right and parallel load capability
- J-K (D) inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset

DESCRIPTION

The functional characteristics of the 54LS 195A 4-bit Parallel Access Shift register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial,

54LS195A Shift Register

4-Bit Parallel Access Shift Register

Product Specification

parallel, serial-to-parallel, or paral-lel-to-serial data transfers at very high speeds.
The 54LS195A operates on two primary modes: shift right ($Q_{0} \rightarrow Q_{1}$) and parallel load, which are controlled by the state of the Parallel Enable (PE) input.
Serial data enters the first flip-flop $\left(Q_{0}\right)$ via the J and K inputs when the PE input is High, and is shifted 1 bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each Low-toHigh clock transition. The J and K inputs provide the flexibility of the JK type input for special applications and, by tying the two pins together, the simple D type input for general applications. The device
appears as four common clocked D flip-flops when the PE input is Low. After the Low-to-High clock transition, data on the parallel inputs $\left(D_{0}-D_{3}\right)$ is transferred to the respective $Q_{0}-Q_{3}$ outputs.

Shift left operation $\left(Q_{3} \rightarrow Q_{2}\right)$ can be achieved by tying the Q_{n} outputs to the D_{n}. ${ }_{1}$) inputs and holding the PE input low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-PIn Ceramic DIP	54 LS195A/BEA
Ceramic Flat Pack	54 LS195A/BFA
Ceramic LLCC	54 LS195A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
All	Outputs	10LSUL

NOTE: Where a 54LS Unit Load (LSUL) is understood to be $20 \mu \mathrm{~A} \mathrm{I}_{\text {IH }}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\text {IL }}$.

PIN CONFIGURATION

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 16$

GND -
Pin 8

For LLCC pin assignments, see JEDEC Standard No. 2

All parallel and serial data transfers are synchronous, occuring after each Low-to-High clock transition. The 54LS195 utilizes edge-triggering, therefore, there is no restriction on the activity of the J, K, D_{n}, and PE inputs
for logic operation, other than the setup and release time requirements.
A Low on the asynchronous Master Reset (MR) inputsets all Qoutputs Low, independent of any other input condition. The MR on the 54LS195
is gated with the clock. Therefore, the Low-to-High MR transition should only occur while the clock is Low to avoid false clocking on the 54LS195.

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

OPERATING MODES	INPUTS						OUTPUTS				
	MR	CP	PE	J	K	D_{n}	Q_{0}	Q 1	Q_{2}	Q_{3}	$\overline{\mathrm{Q}}_{3}$
Asynchronous reset	L	X	X	X	X	X	L	L	L	L	H
Shift, set first stage	H	\uparrow	h	h	h	X	H	90	9_{1}	9_{2}	$\overline{\mathrm{q}}_{2}$
Shift, reset first stage	H	\uparrow	h	1	1	x	L	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shit, toggle first stage	H	\uparrow	h	h	1	x	\bar{q}_{0}	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shit, retain first stage	H	\uparrow	h	1	h	x	90	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Parallel load	H	\uparrow	1	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}	d_{3}

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{d}_{\mathrm{n}}\left(\mathrm{q}_{\mathrm{n}}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition
$\uparrow=$ Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {c }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 H}$	High-level input voltage	2.0			V
V_{12}	Low-level input voltage			+0.7	V
$\mathrm{I}_{\text {K }}$	Input clamp current			-18	mA
IOH	High-level output current			-400	$\mu \mathrm{A}$
la	Low-level output current			4	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathrm{iH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.5	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\operatorname{Min}, \mathrm{V}_{\text {IH }}=\operatorname{Min}, \mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{I}_{\text {OL }}=\mathrm{Max}$		0.25	0.4	V
$\mathrm{V}_{1 K}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$			-1.5	V
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1	mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=\operatorname{Max}$	-20		-100	mA
$l_{\text {ce }}$	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		14	21	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 22 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		30	ns

Shift Register

AC SETUP REQUIREMENTS $T_{A} 25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{w}	Clock pulse width	Waveform 1	16		ns
tw	Master Reset pulse width	Waveform 2	12		ns
$t_{\text {s }}$	Setup time, J, K and data to clock	Waveform 3	15		ns
t_{n}	Hold time, J, K and data to clock	Waveform 3	0		ns
t_{s}	Setup time, PE to clock	Waveform 4	25		ns
t_{n}	Hold time, PE to clock	Waveform 4	0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to clock	Waveform 2	25		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {Max }}$	Maximum clock frequency	Waveform 1	30		MHz
$\left[\begin{array}{l} t_{\text {PLHL }} \\ t_{\text {PHL }} \end{array}\right.$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 27 \\ & 31 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PH},}$	Propagation delay, MR to output	Waveform 2		35	ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {P PHL }}$	Propagation delay, MR to output	Waveform 2		46	ns

AC SETUP REQUIREMENTS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{w}	Clock pulse width	Waveform 1	18		ns
t_{w}	Master Reset pulse width	Waveform 2	12		ns
t_{s}	Setup time, J, K and data to clock	Waveform 3	20		ns
t_{h}	Hold time, J, K and data to clock	Waveform 3	10		ns
$\mathrm{t}_{\mathbf{s}}$	Setup time, PE to clock	Waveform 4	25		ns
t_{h}	Hold time, PE to clock	Waveform 4	10		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to clock	Waveform 2	25		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With all outputs open, PE grounded, and $\geq 4.0 \mathrm{~V}$ applied to the J, K, and Data inputs, I_{Cc} is measured by applying a momentary ground, followed by $\geq 4.0 \mathrm{~V}$ to MR , and then a momentary ground, followed by $\geq 4.0 \mathrm{~V}$ to clock.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Military Logic Products

FEATURES

- High speed 4-bit binary counting
- Asynchronous parallel load for presetting counter
- Overriding Master Reset
- Buffered Q_{0} output drives $\mathbf{C P}_{1}$ input plus standard fan-out

DESCRIPTION

The 54LS197 is an asynchronously presettable binary ripple counter partitioned into divide-by-2 and divide-by-8 sections with each section having a separate Clock input. Stage changes are initiated in the

54LS197
 Counter

Presettable 4-Bit Binary Ripple Counter

Product Specification

counting modes by the High-to-Low transition of the Clock inputs, however, state changes of the Q outputs do not occur simultaneously because of the internal ripple delays. Designers should keep in mind when using external logic to decode the Q outputs, that the unequal delays can lead to decoding spikes, and thus a decoded signal should not be used as a strobe or clock.
The Q_{0} flip-flop is triggered by the CP_{0} input while the CP_{1} input triggers the divide-by-8 section.

The device has an asynchronous ac-tive-Low Master Reset (MR) input which
overrides all other inputs and forces all outputs Low. The counter is also asynchronously presettable. A Low on the Parallel Load (PL) input overrides the Clock inputs and loads the data from parallel Data ($\mathrm{D}_{0}-\mathrm{D}_{3}$) inputs into the flip-flops. The counter acts as a transparent latch while the PL is Low and any change in the D_{n} inputs will be reflected in the outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 LS197/BCA
14-Pin Ceramic FlatPack	54 LS197/BDA
20-Pin Ceramic LLCC	54 LS197/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
$C P_{0}$	Clock input	6 LSUL
$\overline{C P} ;$	Clock input	3.5 LSUL
$A l l$	Other inputs	1 LSUL
$Q_{0}-Q_{3}$	Outputs	10LSUL

NOTE: Where a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\text {IH }}$ and $-0.4 \mathrm{~mA} \mathrm{IIL}_{\text {I }}$.

PIN CONFIGURATION

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 14$
GND $=\operatorname{Pin} 7$

For LLCC pin assignments, see JEDEC Standard No. 2

LOGIC DIAGRAM

COUNT SEQUENCE

COUNT	4-BIT BINARY ${ }^{1}$			
	Q $_{3}$	Q $_{2}$	Q $_{1}$	Q $_{0}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUT
	MR	FL	CP	$D_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Reset (clear)	L	X	X	X	L
Parallel load	H	L	X	L	L
	H	L	X	H	H
Count	H	H	\downarrow	X	count

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$\downarrow=$ High-to-Low clock transition

NOTE: Q_{0} connected to input $\overline{\mathrm{CP}}_{1}$; input applied to CP_{0}

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +1	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.7	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-400	$\mu \mathrm{~A}$
I_{OL}	Low-level output current			4	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\mathbb{H}}=$ Min, $\mathrm{V}_{\mathrm{L}}=$ Max, $\mathrm{IOH}^{\text {a }}=\mathrm{Max}$		2.4	3.4		V
$V_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max			0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $I_{1}=I_{\text {IK }}$				-1.5	V
$\mathrm{I}_{1 \mathrm{H}_{2}}$	Input current at maximum input voltage	$\begin{gathered} V_{C C}=M a x \\ V_{1}=5.5 \mathrm{~V} \end{gathered}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{PL}$			0.1	mA
			MR, $\mathrm{CP}_{0}, \mathrm{CP}_{1}$			0.2	mA
$1_{1 / 4}$	High-level input current	$\begin{aligned} V_{C C} & =M a x, \\ V_{1} & =2.7 \mathrm{~V} \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{PL}$			20	$\mu \mathrm{A}$
			MR, $\mathrm{CP}_{0}, \mathrm{CP}_{1}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	$\begin{aligned} V_{c c} & =M a x, \\ V_{1} & =0.4 V \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{3}, \mathrm{PL}$			-0.4	mA
			MR input			-0.8	mA
			CP_{0} input			-2.4	mA
			CP_{1} input			-1.3	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-20		-100	mA
I_{CC}	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max			16	27	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} \hline \text { LIMITS } \\ \hline C_{L}=15 \mathrm{pF} \\ \hline \end{gathered}$		
				Min	Max	
$f_{\text {max }}$	Maximum count frequency	Waveform 1	CP_{0}	30		MHz
			CP_{1}	15		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{0} to Q_{0}	Waveform 1			$\begin{aligned} & 15 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{1} to Q_{1}	Waveform 1			$\begin{array}{r} 19 \\ 35 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{1} to Q_{2}	Waveform 1			$\begin{aligned} & 51 \\ & 63 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{1} to Q_{3}	Waveform 1			$\begin{aligned} & 78 \\ & 95 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 2			$\begin{aligned} & 27 \\ & 44 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay PL to output	Waveform 3			$\begin{aligned} & 39 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PHL }}$	Propagation delay MR to output	Waveform 4			51	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMIT		UNIT
				Min	Max	
tw	Clock pulse width	Waveform 1	CP_{0}	20		ns
			CP_{1}	30		ns
tw	MR pulse width	Waveform 4		15		ns
$t_{\text {w }}$	PL pulse width	Waveform 3		20		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time High data to PL	Waveform 5		10		ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{H})$	Hold time High data to PL	Waveform 5		20		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time Low data to PL	Waveform 5		15		ns
$t_{\text {h }}(L)$	Hold time Low data to PL	Waveform 5		20		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 4		30		ns
$\mathrm{t}_{\text {tec }}$	Recovery time, PL to CP	Waveform 3		30		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { LIMITS } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
				Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum count frequency	Waveform 1	CP_{0}	30		MHz
			CP_{1}	15		MHz
${ }^{t_{P L H}}$ $t_{\text {PHL }}$	Propagation delay $C P_{0}$ to Q_{0}	Waveform 1			$\begin{aligned} & 20 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P_{1}$ to Q_{1}	Waveform 1			$\begin{aligned} & 24 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{1} to Q_{2}	Waveform 1			$\begin{aligned} & 56 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{1} to Q_{3}	Waveform 1			$\begin{gathered} 83 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 2			$\begin{aligned} & 32 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay PL to output	Waveform 3			$\begin{aligned} & 44 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {tPHL }}$	Propagation delay MR to output	Waveform 4			56	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} \text { LIMITS } \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
				Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum count frequency	Waveform 1	CP_{0}	30		MHz
			CP_{1}	15		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP_{0} to Q_{0}	Waveform 1			$\begin{aligned} & 26 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PH}} \mathrm{L}$	Propagation delay $C P_{1}$ to Q_{1}	Waveform 1			$\begin{aligned} & 31 \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $C P_{1} \text { to } Q_{2}$	Waveform 1			$\begin{aligned} & 73 \\ & 88 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay CP_{1} to Q_{3}	Waveform 1			$\begin{aligned} & 108 \\ & 130 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathfrak{t}_{\text {PHL }} \end{aligned}$	Propagation delay Data to output	Waveform 2			$\begin{aligned} & 42 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay PL to output	Waveform 3			$\begin{aligned} & 57 \\ & 65 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}^{\text {PHL }}$	Propagation delay MR to output	Waveform 4			73	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMIT		UNIT
				Min	Max	
${ }^{\text {tw }}$	Clock pulse width	Waveform 1	CP_{0}	20		ns
			CP_{1}	30		ns
${ }^{\text {w }}$ w	MR pulse width	Waveform 4		20		ns
t_{w}	PL pulse width	Waveform 3		20		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time High data to PL	Waveform 5		10		ns
$\mathrm{t}_{\mathrm{n}}(\mathrm{H})$	Hold time High data to PL	Waveform 5		20		ns
$\mathrm{t}_{5}(L)$	Setup time Low data to PL	Waveform 5		15		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{L})$)	Hold time Low data to PL	Waveform 5		20		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 4		30		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, PL to CP	Waveform 3		30		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure $I_{C C}$ with all inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

AC WAVEFORMS (Continued)

Waveform 5. Data Setup and Hold Times

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$ for 54LS
The shaded areas indicate when the input is permitted to change for predictable output periormance.

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Z ZuT of Pulse Generators.
D $=$ Diodes are 1N916, 1 N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

54LS240, 54LS241, 54S240, 54S241
 Buffers
 '240 Octal Inverter Buffer (3-State)
 '241 Octal Buffer (3-State)
 Product Specification

FUNCTION TABLE '240

INPUTS				OUTPUTS	
OE_{a}	I_{a}	OE_{b}	I_{b}	Y_{a}	Y_{b}
L	L	L	L	H	H
L	H	L	H	L	L
H	X	H	X	(Z)	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

FUNCTION TABLE '241

INPUTS				OUTPUTS	
OE $_{\mathrm{a}}$	I_{a}	OE $_{\mathrm{b}}$	I_{b}	Y_{a}	Y_{b}
L	L	H	L	L	L
L	H	H	H	H	H
H	X	L	X	(Z)	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	54 LS2 $240 / \mathrm{BRA}$
$20-$ Pin Ceramic DIP	$54 \mathrm{~S} 240 / \mathrm{BRA}$
	$54 \mathrm{LS} 241 / \mathrm{BRA}$
	$54 \mathrm{~S} 241 / \mathrm{BRA}$
	54 LS240/BSA
20-Pin Ceramic FlatPack	$54 \mathrm{~S} 240 / \mathrm{BSA}$
	$54 \mathrm{LS} 241 / \mathrm{BSA}$
	$54 \mathrm{~S} 241 / \mathrm{BSA}$
20-Pin Ceramic LLCC	54 LS240/B2A
	$54 \mathrm{~S} 240 / \mathrm{B} 2 A$
	$54 \mathrm{LS} 241 / \mathrm{B} 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	545	54LS
$I_{\text {a }}-I_{\text {a }}, I_{\text {b0 }}-I_{\text {b3 }}$	Inputs	1SUL	1LSUL
$O E_{a}, O E_{b}, O E_{b}$	Inputs	1SUL	1LSUL
All	Outputs	24SUL	32LSUL

NOTE: A $54 S$ Unit Load (SUL) is $50 \mu A I_{I H}$, and $-2.0 \mathrm{~mA} I_{I L}$ and a $54 L S$ Unit Load (LSUL) is $20 \mu A I_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION
For LLCC pin assignments, see JEDEC Standard No.2

LOGIC SYMBOL

	For LLCC pin assignments, see JEDEC Standard No. 2

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	$54 L \mathrm{~S}$	54 S	UNIT
V_{CC}	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			54S			UNIT
			Min	Nom	Max	Min	Nom	Max	
$V_{c c}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			2.0			V
V_{L}	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			+0.7	V
$\mathrm{I}_{\text {K }}$	Input clamp current				-18			-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current				-12			-12	mA
I_{OL}	Low-level output current				12			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

Buffers

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54LS240, 241			54S240, 241			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
$\Delta \mathrm{V}_{\mathrm{T}}$			$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$		0.2	0.4		0.2	0.4		V
VOH	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, I_{O H}=\operatorname{Max} \end{aligned}$			2.0			2.0			V
		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$			2.4	3.4		2.4	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, I_{L L}=M a x \end{aligned}$					0.4			0.55	V
$\mathrm{V}_{\text {tK }}$	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{I}=I_{\text {IK }}$					-1.5			-1.2	V
lozh	Offstate output current, High-level voltage applied	$\begin{gathered} V_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{\mathrm{IH}}=\text { Min }, \\ \mathrm{V}_{\mathrm{IL}}=\text { Max } \\ \hline \end{gathered}$		$\mathrm{V}_{0}=2.4 \mathrm{~V}$						50	$\mu \mathrm{A}$
				$V_{0}=2.7 \mathrm{~V}$			20				$\mu \mathrm{A}$
lozl	Offstate output current, Low-level voltage applied	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\text { Min }, \\ \mathrm{V}_{\mathrm{IL}}=\text { Max } \\ \hline \end{gathered}$		$V_{0}=2.4 \mathrm{~V}$			-20				$\mu \mathrm{A}$
				$\mathrm{V}_{0}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$		$V_{1}=5.5 \mathrm{~V}$						1.0	mA
				$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1				mA
$\mathrm{I}_{1 H t}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$					20			50	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.2				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$	$\begin{array}{\|l} l_{a 0-}-l_{23,} \\ l_{b 0}-I_{b 3} \\ \text { inputs } \end{array}$						-400	$\mu \mathrm{A}$
				$\sigma \mathrm{E}_{\mathrm{a}}, \overline{\mathrm{E}} \mathrm{E}_{\mathrm{b}}$, $O E_{b}$ inputs						-2	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cC }}=$ Max			-40		-130	-80		-180	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{\text {cc }}=$ Max	I_{CH}	LS240		17	27				mA
			ICCL			26	44				mA
			Iccz			29	60				mA
			ICCH	'LS241		17	27				mA
			$\mathrm{I}_{\mathrm{CLL}}$			27	46				mA
			ICCz			32	54				mA
			${ }^{\text {ICCH }}$	'S240					80	123	mA
			$\mathrm{I}_{\mathrm{CCL}}$						100	145	mA
			lccz						100	145	mA
			ICCH	'S241					95	147	mA
			$\mathrm{l}_{\mathrm{CLL}}$						120	170	mA
			$\mathrm{I} C \mathrm{Cz}$						120	170	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		54LS		54S		UNIT
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\begin{aligned} & \mathfrak{t}_{\mathrm{PLLH}} \\ & \mathfrak{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay	Waveform 1, '240			$\begin{aligned} & 14 \\ & 18 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay	Waveform 2, '241			$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 3	LS		30			ns
			'S240				10	ns
			'S241				12	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 4			30		15	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$			18		9	ns
$\mathrm{t}_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$			25		15	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			34		14	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{L}=50 \mathrm{pF}$			27		16.5	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS		54LS		54S		UNIT
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} \mathrm{~L}} \end{aligned}$	Propagation delay	Waveform 1, '240			$\begin{aligned} & 18 \\ & 23 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 2, '241			23 23		$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 3	LS		39			ns
			'S240				13	ns
			'S241				20	ns
$t_{\text {PZL }}$	Enable to Low	Waveform 4			39		20	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$			23		12	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$			33		20	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			44		18	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			35		22	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. $I_{c c}$ is measured with outputs open.
5. Guaranteed by 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Buffers

TEST CIRCUIT AND WAVEFORM

Optional load for 54LSXXX only: $\mathrm{R}_{\mathrm{B}}=631 \Omega ; \mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$ for all tests except $\mathrm{T}_{\mathrm{PHZ}} ; \mathrm{V}_{\mathrm{B}}=-0.6 \mathrm{~V}$ for $\mathrm{T}_{\mathrm{PHZ}}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of Pulse Generators.
D = Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{x}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54LS244, 54S244 Buffers

Octal Buffers (3-State)
Product Specification

FUNCTION TABLE

INPUTS				OUTPUTS		
OE_{a}	I_{a}	OE_{b}	I_{b}	Y_{a}	Y_{b}	
L	L	L	L	L	L	
L	H	L	H	H	H	
H	X	H	X	(Z)	(Z)	

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54LS244/BRA, 54S244/BRA
20-Pin Ceramic Flat Pack	54 LS244/BSA, 54S244/BSA
20-Pin Ceramic LLCC	$54 L$ S244/B2A, 54S244/B2A

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$54 S$	54LS
All	Inputs	1 SUL	1LSUL
All	Output	24 SUL	30 LSUL

NOTE: A $54 S$ Unit Load (SUL) is a $50 \mu A I_{I_{H}}$, and $-2.0 \mathrm{~mA} I_{I L}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\text {LL }}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54LS	54S	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	-0.5 to +7.0	V
t_{1}	Input current range	-30 to +1	-30 to +5	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	-0.5 to $+V_{C C}$	V
$T_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL
(

Buffers

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54LS			54 S			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
V_{L}	Low-level input voltage			+0.7			+0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18			-18	mA
I_{OH}	High-level output current			-12			-12	mA
I_{OL}	Low-level output current			12			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54LS240, 241			54S240, 241			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
ΔV_{T}		$V_{C C}=M i n$			0.2	0.4		0.2	0.4		V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{i H}=\operatorname{Min}, \\ & V_{I L}=0.5 \mathrm{~V}, I_{O H}=\operatorname{Max} \end{aligned}$			2.0			2.0			V
		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, I_{O H}=-3 \mathrm{~mA} \end{aligned}$			2.4	3.4		2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M i n, V_{I H}=M i n, \\ & V_{I L}=M a x, I_{O L}=M a x \end{aligned}$					0.4			0.55	V
$\mathrm{V}_{1 K}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $I_{1}=I_{1 K}$					-1.5			-1.2	V
$\mathrm{I}_{\text {OZH }}$	Offstate output current,	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{\mathrm{IH}}=\text { Min, }, \\ \mathrm{V}_{\mathrm{IL}}=\text { Max } \end{gathered}$		$V_{0}=2.7 \mathrm{~V}$			20				$\mu \mathrm{A}$
	High-level voltage applied			$V_{0}=2.4 \mathrm{~V}$						50	$\mu \mathrm{A}$
Iozl	Offstate output current,	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \\ \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{gathered}$		$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20				$\mu \mathrm{A}$
	Low-level voltage applied			$V_{0}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$
$\mathbf{I}_{\mathbf{H} \mathbf{2}}$	Input current at maximum	$\mathrm{V}_{\text {cc }}=$ Max		$V_{1}=5.5 \mathrm{~V}$						1.0	mA
	input voltage			$V_{1}=7.0 \mathrm{~V}$			0.1				mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$					20			50	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=\operatorname{Max}$	$V_{1}=0.4 \mathrm{~V}$				-0.2				mA
			$V_{1}=0.5 \mathrm{~V}$	OE inputs						-2.0	mA
				Other inputs						-0.4	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{cc}}=$ Max			-40		-130	-80		-180	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max	$\mathrm{I}_{\text {CH }}$	tputs High		17	27		95	147	mA
			$\mathrm{I}_{\text {cal }} \mathrm{O}$	utputs Low		27	46		120	170	mA
			$\mathrm{I}_{\mathrm{ccz}} 0$	tputs Off		32	54		120	170	mA

Buffers

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} 54 \mathrm{LS} \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} 54 \mathrm{~S} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay	Waveform 1		18		9	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay	Waveform 1		18		9	ns
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 2		23		12	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 3		30		15	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{6}$		18		9	ns
$\mathrm{t}_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		25		15	ns
$\mathrm{t}_{\text {P } \mathrm{Hz}}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		34		14	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		27		16.5	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay	Waveform 1		23		16	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay	Waveform 1		23		12	ns
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 2		30		16	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 3		39		20	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		24		12	ns
tPLZ	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		33		20	ns
$t_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		44		18	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35		22	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. $I_{C C}$ is measured with outputs open.
5. These parameters are guaranteed, but not tested.
6. Guaranteed by 50 pF limits, but not tested.

Buffers

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V
54 SXXX	1.5 V	0.7 V	2.0 V	1.65 V

TEST CIRCUIT AND WAVEFORM

Optional load for 54LSXXX only: $R_{B}=631 \Omega ; V_{B}=5.5 \mathrm{~V}$ for all tests except $T_{P H Z} ; V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test. DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- Octal bidirectional bus interface
- 3-State buffer outputs
- PNP inputs for reduced loading
- Hysteresis on all Data inputs

DESCRIPTION

The 54LS245 is an octal transceiver featuring non-inverting 3 -State bus compatible outputs in both send and receive directions. The outputs are all capable of sinking 12 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features a Chip Enable (CE) input for easy cascading and a Send/Receive (S/R) input for direction control. All data inputs have hysteresis built in to minimize AC noise effects.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 LS245/BRA
20-Pin Ceramic FlatPack	54 LS245/BSA
20-Pin Ceramic LLCC	54 LS245/B2A

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
CE	S/R	$A_{\boldsymbol{n}}$	$B_{\boldsymbol{n}}$
L	L	$A=B$	INPUT
L	H	INPUT	$B=A$
H	X	(Z)	(Z)

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
(Z) $=$ High impedance (off) state

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
All	Outputs	30LSUL

NOTE: Where a $54 L S$ Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\text {IH }}$ and $-0.4 \mathrm{~mA} \mathrm{IL}_{\text {L }}$.

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC pin assignments, see JEDEC Standard No. 2

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	
V_{1}	Input voltage range	-0.5 to +7.0	
I_{1}	Input current range	-30 to +1	V
$\mathrm{~V}_{\mathbf{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	mA
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.7	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-12	mA
IOL	Low-level output current			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
$\Delta \mathrm{V}_{T}$	Hysteresis ($\mathrm{V}_{\left.\mathrm{T}_{+}-\mathrm{V}_{\mathrm{T} .}\right)^{5}}$	$V_{\text {cc }}=\operatorname{Min}$			0.2	0.4		V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$			2.0			V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.4	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$					0.4	V
V_{IK}	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=I_{\mathrm{IK}}$					-1.5	V
IOZH	Offstate output current, High-level voltage applied	$V_{C C}=M a x, V_{0}=2.7 \mathrm{~V}, C E=2.0 \mathrm{~V}$					20	$\mu \mathrm{A}$
Iozl	Offstate output current, Low-level voltage applied	$V_{C C}=$ Max, $V_{0}=0.4 \mathrm{~V}, \mathrm{CE}=2.0 \mathrm{~V}$					-20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 2}$	Input current at maximum	$V_{C C}=\operatorname{Max}$	$V_{1}=5.5 \mathrm{~V}$	A, B inputs			0.1	mA
	input voltage		$V_{1}=7.0 \mathrm{~V}$	S/R, CE inputs			0.1	mA
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$					-0.2	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M a x$			-40		-130	mA
$I_{\text {cc }}$	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$	$\mathrm{I}_{\mathrm{CCH}}$ Outputs High			48	70	mA
						62	90	mA
			$\mathrm{I}_{\mathrm{ccz}}$ Outputs Off			64	95	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITSS$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		UNIT
			Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay	Waveform 1		12	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay	Waveform 1		12	ns
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 2		40	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 3		40	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		25	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		25	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	ns
$\mathrm{t}_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		27	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITSS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation delay	Waveform 1		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay	Waveform 1		16	ns
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 2		52	ns
$\mathrm{t}_{\text {PzL }}$	Enable to Low	Waveform 3		52	ns
$\mathrm{t}_{\text {P }}$	Disable from High	Waveform 2, $\mathrm{C}_{L}=5 \mathrm{pF}^{6}$		33	ns
tpLZ	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{6}$		33	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		39	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure Icc with outputs open.
5. These parameters are guaranteed, but not tested.
6. Guaranteed by the 50 pF limits, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 3. 3-State Enable Time to Low
Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 3-State Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS							
	\mathbf{R}_{L}	R_{X}	V_{L}	V_{M}	Rep. Rate	T_{w}	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$
54LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1 V	1.3 V	1 MHz	500 ns	$\leq 15 n s$	$\leq 6 \mathrm{~ns}$

Optional load for 54LSXXX only: $R_{B}=631 \Omega ; V_{B}=5.5 \mathrm{~V}$ for all tests except $T_{P H Z} ; V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54S251

Multiplexer

8-Input Multiplexer (3-State)

Product Specification

FEATURES

- High-speed 8-to-1 multiplexing
- True and complement outputs
- Both outputs are 3-State for further multiplexer expansion
- 3-State outputs are buffer type

DESCRIPTION

The 54S251 is a logical implementation of a single-pole, 8-position switch with the state of three Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$) controlling the switch position. Assertion (Y) and Negation (P) outputs are both
provided. The Output Enable input (OE) is active Low. The logic function provided at the output, when activated, is:
$Y=O E \cdot\left(l_{0} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{1} \cdot S_{0} \cdot S_{1} \cdot S_{2}\right.$
$+I_{2} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{3} \cdot S_{0} \cdot S_{1} \cdot S_{2}$
$+I_{4} \cdot \bar{S}_{0} \cdot \bar{S}_{1} \cdot \mathrm{~S}_{2}+\mathrm{I}_{5} \cdot \mathrm{~S}_{0} \cdot \bar{S}_{1} \cdot \mathrm{~S}_{2}$
$\left.+I_{6} \cdot S_{0} \cdot S_{1} \cdot S_{2}+I_{7} \cdot S_{0} \cdot S_{1} \cdot S_{2}\right)$.
Both outputs are in the High impedance ($\mathrm{Hi}-\mathrm{Z}$) state when the output enable is High, allowing multiplexer expansion by tying the outputs of up to 128 devices together. All but one device must be in the High impedance state to avoid high
currents that would exceed the maximum ratings, when the outputs of the 3-State devices are tied together. Design of the output enable signals must ensure there is no overlap in the active Low portion of the enable voltages.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 S251/BEA
16-Pin Ceramic FlatPack	$54 \mathrm{~S} 251 / \mathrm{BFA}$
$20-$ Pin Ceramic LLCC	$54 \mathrm{~S} 251 / \mathrm{B} 2 \mathrm{~A}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
All	Outputs	10SUL

NOTE: A $54 S$ Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{L}}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{I}	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTION TABLE

INPUTS												OUTPUTS	
OE	S_{2}	S_{1}	S_{0}	I_{0}	1	I_{2}	I_{3}	14	15	I_{6}	17	7	Y
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	x	X	X	x	x	X	x	H	L
L	L	L	L	H	X	X	X	X	x	X	x	L	H
L	L	L	H	X	L	χ	X	X	X	X	X	H	L
L	L	L	H	x	H	X	X	x	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	x	X	L	X	X	X	X	H	L
L	L	H	H	X	x	X	H	X	X	x	X	L	H
L	H	L	L	x	x	X	X	L	X	X	X	H	L
L	H	L	L	-	X	X	X	H	X	X	X	L	H
L	H	L	H	x	x	x	X	x	L	X	X	H	L
L	H	$\stackrel{L}{L}$	H	-	-	X	X	X	H	X	X	L	H
L	H	H.	L	-	-	X	X	X	X	L	X	H	L
L	H	H	L	-	-	X	X	X	X	H	X	L	H
L	H	H	H	-	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H
=	volta												
=	volta												
X $=$	care												
($)=$	impe	(of											

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input valtage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
$\mathrm{I}_{\text {K }}$	Input clamp current				-18	mA
IOH	High-level output current				-2.0	mA
l_{OL}	Low-level output current				20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS'		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$	$\mathrm{V}_{\mathrm{iL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4	3.2		V
V_{OL}	Low-level output voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{V}^{\text {H }}$	Min, $\mathrm{V}_{\text {IL }}=$ Max,			0.5	V
		$\mathrm{l}_{\mathrm{OL}}=\mathrm{Max}$	$+125^{\circ} \mathrm{C}$			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\operatorname{Min}, I_{I}=I_{\text {IK }}$				-1.2	V
$\mathrm{l}_{\text {OZH }}$	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				50	$\mu \mathrm{A}$
lozl	Off-state output current, Low-level voltage applied	$V_{C C}=\operatorname{Max}, V_{I H}=M i n, V_{O}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
I_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathrm{H}_{1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=\text { Max, } V_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ Max		-40		-110	mA
Icc	Supply current (total)	$V_{C C}=\operatorname{Max}$	Outputs Low				mA
			Outputs High			85	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Select to Y output	Waveform 2		$\begin{gathered} 18 \\ 19.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation delay Select to $₹$ output	Waveform 1		$\begin{gathered} 15 \\ 13.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{tPLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Data to Y output	Waveform 2		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to Y output	Waveform 1		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPZH }}$	Output enable to High level	Waveform 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		19.5	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform $4-\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		21	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 3-CL ${ }^{\text {c }}$ 5 F^{5}		8.5	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 4-C $\mathrm{C}_{\text {L }}=5 \mathrm{pF}^{5}$		14	ns
$\mathrm{t}_{\text {PHz }}$	Output disable from High level	Waveform 3-CL ${ }^{\text {c }}$ 50pF		13.5	ns
tPLZ	Output disable from Low level	Waveform 4-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15.5	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 . \mathrm{OV}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Select to Y output	Waveform 2		$\begin{aligned} & 20.0 \\ & 21.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathbf{t}_{\text {PHL }} \end{aligned}$	Propagation delay Select to Y output	Waveform 1		$\begin{aligned} & 17.0 \\ & 15.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\underset{\mathbf{t}_{\mathrm{PHL}}}{\mathbf{t}_{\mathrm{tLH}}}$	Propagation delay Data to Y output	Waveform 2		$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to Y output	Waveform 1		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		19.5	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform 4-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		21.0	ns
$t_{\text {PHZ }}$	Output disable from High level			11.0	ns
tplz	Output disable from Low level			16.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 3-C $\mathrm{C}_{\text {L }}=50 \mathrm{pF}$		21.0	ns
tPLZ	Output disable from Low level	Waveform 4-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17.0	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Select to Y output	Waveform 2		$\begin{aligned} & 26 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Select to F output	Waveform 1		$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{gathered}$	Propagation delay Data to Y output	Waveform 2		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to Y output	Waveform 1		$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25.5	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform 4-C $\mathrm{C}_{L}=50 \mathrm{pF}$		27.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform $3-\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$		14	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 4-C $\mathrm{C}_{L}=5 \mathrm{p} \mathrm{F}^{5}$		22	ns
${ }^{\text {t }}$ HZ	Output disable from High level	Wavetorm 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		24	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 4-C $\mathrm{C}_{\text {L }}=50 \mathrm{pF}$		22	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure $\mathrm{lcc}_{\mathrm{cc}}$ with all inputs $\geq 4.0 \mathrm{~V}$ and all inputs open.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 3. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 2. Waveform for Non-Inverting Outputs

Waveform 4. 3-State Enable Time to Low Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 SXXX	1.5 V	0.7 V	2.0 V	1.65 V

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- 3-State outputs for bus Interface and multiplex expansion
- Common Select Inputs
- Separate Output Enable inputs

DESCRIPTION

The 54S253 has two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). When the individual Output Enable ($\mathrm{E}_{0 a}, \mathrm{E}_{0 b}$) inputs of the 4 -input multiplexers are High, the outputs are forced to a High impedance (Hi-Z) state.
The 54 S 253 is the logic implementation of a 2-pole, 4-position switch; the position of

54S253

Multiplexer

Dual 4-Input Mulltiplexer (3-State)

Product Specification
the switch being determined by the logic levels supplied to the two Select inputs. Logic equations for the outputs are shown below:

$$
\begin{aligned}
Y_{a}= & O E_{a} \cdot\left(l_{0 a} \cdot S_{1} \cdot S_{0}+I_{1 a} V S_{1} \cdot S_{0}\right. \\
& \left.+I_{2 a} \cdot S_{1} \cdot+I_{3 a} \cdot S_{1} S_{0}\right) \\
Y_{b}= & O E_{b} \cdot\left(l_{0 b} \cdot S_{1} \cdot S_{0}+I_{1 b} \cdot S_{1} \cdot S_{0}\right. \\
& \left.+I_{2 b} \cdot S_{1} \cdot S_{0}+I_{3 b} \cdot S_{1} S_{0}\right)
\end{aligned}
$$

All but one device must be in the High impedance state to avoid high currents exceeding the maximum ratings, if the outputs of the 3-State devices are tied together. Design of the Output Enable signals must ensure that there is no overlap.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 S253/BEA
16-Pin Ceramic FlatPack	54 S253/BFA
20-Pin Ceramic LLCC	54 S253/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S
All	Inputs	1SUL
All	Outputs	10SUL

NOTE: Where a 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-2.0 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

For LLCC Pin Assignment, See JEDEC Standard No. 2

FUNCTION TABLE

\left.| SELECT INPUTS | | DATA INPUTS | | | | | OUTPUT ENABLE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\right]$ OUTPUT

H = High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
(Z) = High impedance (off) state

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
I_{1}	Input current range	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voitage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
V_{LL}	Low-level input voltage				+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7	V
I_{1}	Input clamp current				-18	mA
${ }^{\text {OH }}$	High-level output current				-2.0	mA
l_{OL}	Low-level output current				20	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$V_{C C}=\operatorname{Min}, \mathrm{V}_{\mathrm{HH}}=$	$\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{IOH}_{\text {= }}$ Max	2.4	3.2		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$V_{C C}=\operatorname{Min}, V^{\text {che }}$	$\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max,			0.5	V
		$l_{\text {OL }}=$ Max	$+125^{\circ} \mathrm{C}$			0.45	V
V_{IK}	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$				-1.2	V
${ }^{\text {O }} \mathrm{OH}$	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				50	$\mu \mathrm{A}$
lozl	Off-state output current, Low-level voltage applied	$V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, V_{O}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}_{2}}$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1.0	mA
$\mathrm{I}_{\mathrm{H}_{1}}$	High-level input current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
I_{1}	Low-level input current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=$ Max		-40		-110	mA
ICCH	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$	Condition 1			70	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max	Condition 2			80	mA
Iccz	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max	Condition 3			100	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & t_{\text {pLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay Select to output	Waveform 1		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tPZH }}$	Output enable to High level	Waveform 2		13	ns
tpzL	Output enable to Low level	Waveform 3		14	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2-C $\mathrm{C}_{\text {L }}=5 \mathrm{pF}^{5}$		8.5	ns
tpLz	Output disable from Low level	Waveform 3-C $\mathrm{C}_{L}=5 \mathrm{pF}^{5}$		14	ns
$\dagger_{\text {P } \mathrm{Hz}}$	Output disable from High level	Waveform 2-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		13.5	ns
$t_{\text {plz }}$	Output disable from Low level	Waveform 3-CL ${ }^{\text {c }}$ 50pF		15.5	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Select to output	Waveform 1		$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 2		15.5	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform 3		16.5	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output disable from High level	Waveform $2-\mathrm{C}_{L}=5 \mathrm{p} \mathrm{F}^{5}$		8.5	ns
$t_{\text {PLZ }}$	Output disable from Low level			14	ns
$t_{\text {PHZ }}$	Output disable from High level	Waveform 2-C $\mathrm{C}_{L}=50 \mathrm{pF}$		13.5	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15.5	ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & \hline 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 1		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 2		20	ns
$t_{\text {PZL }}$	Output enable to Low level	Waveform 3		21	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2-C $\mathrm{C}_{L}=5 \mathrm{pF}{ }^{5}$		11	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform $3-\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$		18	ns
$t_{\text {PHZ }}$	Output disable from High level	Waveform $2-\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		18	ns
tplz	Output disable from Low level	Waveform 3-C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured under the following conditions with the outputs open: Condition 1 : All inputs grounded. Condition 2 : All inputs at $\geq 4.0 \mathrm{~V}$ except $O E$ which is grounded. Condition $3: ~ O E \geq 4.0 \mathrm{~V}$ all inputs grounded.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 SXXX	1.5 V	0.7 V	2.0 V	1.65 V

TEST CIRCUIT AND WAVEFORM

FAMILY	INPUT PULSE CHARACTERISTICS								
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\mathrm{TLH}}$	$\mathbf{T}_{\mathbf{T H L}}$	
54 SXXX	82Ω	560Ω	2.5 V	1.5 V	1 MHz	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$	

Optional load for 54LSXXX only: $R_{B}=631 \Omega ; V_{B}=5.5 \mathrm{~V}$ for all tests except $T_{P H Z} V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

Quad 2-Line to 1-Line Data Selector/Multiplexer (3-State)

Product Specification

FEATURES

- Multifunction capability
- Non-Inverting data path
- 3-State outputs

DESCRIPTION

The 54LS257 has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is Low and the I_{1} inputs are

54LS257A

Data Selector/Multiplexer
selected when the Select input is High. Data appears at the outputs in true (non-inverted) form from the selected outputs.
The 54L.S257A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.
Outputs are forced to a High impedance "off" state when the Output Enable input (OE) is High. All but one device must be in the High impedance state to avoid
currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3-State devices are tied together.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS257A/BEA
16-Pin Ceramic FlatPack	54 LS257A/BFA
20-Pin Ceramic LLCC	54LS257A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
S	Inputs	2LSUL
Other	Inputs	1LSUL
All	Outputs	3OLSUL

NOTE: A 54LS Unit Load (LSUL) is $20 \mu A I_{\mathbb{H}}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

ENABLE	SELECT INPUT	INPUTS		OUTPUT
$\mathbf{O E}$	\mathbf{S}	I_{0}	$\mathrm{I}_{\mathbf{1}}$	Y
H	X	X	X	(Z)
L	H	X	L	H
L	H	X	X	L
L	L	L	X	H

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {LI }}$	Low-level input voltage			+0.7	V
l_{iK}	Input clamp current			-18	mA
lOH	High-level output current			-1.0	mA
loL	Low-level output current			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 1		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHH}} \end{aligned}$	Propagation delay Select to output	Waveform 1		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 2		30	ns
$\mathrm{t}_{\mathrm{PLL}}$	Output enable to Low level	Waveform 3		30	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{L}=5 \mathrm{pF}{ }^{5}$		30	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		25	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		46	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		27	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 1		23 23	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 1		27 27	ns
$\mathrm{t}_{\mathrm{PzH}}$	Output enable to High level	Waveform 2		39	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform 3		39	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		39	ns
$t_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{L}=5 \mathrm{pF}{ }^{5}$		33	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		60	ns
tplz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure loc with all outputs open and all possible inputs grounded while achieving the stated output conditions.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 3-State Outputs

Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS									
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{X}}$	\mathbf{V}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathrm{T}_{\mathbf{W}}$	$\mathrm{T}_{\mathrm{TLH}}$	$\mathbf{T}_{\mathbf{T H L}}$		
54 LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1 V	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$		

Optional load for 54LSXXX only: $\mathrm{R}_{\mathrm{B}}=631 \Omega ; \mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$ for all tests except $\mathrm{T}_{\mathrm{PHZ}} ; \mathrm{V}_{\mathrm{B}}=-0.6 \mathrm{~V}$ for $\mathrm{T}_{\mathrm{PHZ}}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$V_{x}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

APPLICATION DIAGRAM

Signetics

Military Logic Products

FEATURES

- Multifunction capability
- Inverting data path
- 3-State outputs
- See 54LS257 for non-Inverting version

DESCRIPTION

The 54LS258A has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Data Select

54LS258A
Data Selector/Multiplexer

Quad 2-Line to 1-Line Data Selector/Multiplexer (3-State)
Product Specification
input (S). The I_{0} inputs are selected when the Select input is Low and the I_{1} inputs are selected when the Select input is High. Data appears at the outputs in inverted (complementary) form.
The 54LS258A is the logic implementation of a 4-pole, 2 position switch where the position of the switch is determined by the logic levels supplied to the Select input.
Outputs are forced to a High impedance "off" state when the Output Enable input (OE) is High. All but one device must be in the High impedance state to avoid
currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3-State devices are tied together.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS258A/BEA
16-Pin Ceramic FlatPack	54 LS258A/BFA
20-Pin Ceramic LLCC	54 LS258A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
S	Inputs	2LSUL
Other	Inputs	1LSUL
All	Outputs	30LSUL

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{IIL}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
GND $=$ Pin 8
For LLCC pin assignments, see JEDEC Standard No. 2

FUNCTION TABLE

OUTPUT ENABLE	SELECTINPUT	DATA INPUTS		OUTPUTS
$\mathbf{O E}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{I}}$	X
H	X	X	X	Z
L	H	H		
L	H	X	L	L
L	L	L	X	H
L	L	H	X	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$(Z)=$ High impedance (off) state
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL		PARAMETER	RATING
$V_{C C}$	Supply voltage	7.0	
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	V
V_{0}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	mA
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	V

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	UMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.7	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High-level output current			-1.0	mA
l_{OL}	Low-level output current			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\text { }}$			LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$			2.4	3.1		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{IOL}^{\text {a }}$ Max				0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=I_{\text {IK }}$					-1.5	V
$\mathrm{l}_{\mathrm{OzH}}$	Offstate output current, High-level voltage applied	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{0}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
lozl	Offstate output current, Low-level voltage applied	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\mathbb{H}}=\mathrm{Min}, \mathrm{V}_{0}=0.4 \mathrm{~V}$					-20	$\mu \mathrm{A}$
I_{1+2}	Input current at maximum input voltage	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7.0 \mathrm{~V}$		S input			0.2	mA
				Other inputs			0.1	mA
$1_{1 H 1}$	High-level input current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$		S input			40	$\mu \mathrm{A}$
				Other inputs			20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$		S input			-0.8	mA
				Other inputs			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=$ Max			-30		-130	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{c c}=\operatorname{Max}$	1 lcCh	Outputs High		4	7	mA
			$\mathrm{I}_{\mathrm{CCL}}$ Outputs Low			8.8	14	mA
			$\mathrm{I}_{\text {cez }}$ Outputs Off			12	19	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PL} \mathrm{H}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 4		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Select to output	Waveform 1 \& 4		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns
${ }_{\text {t }}$	Output enable to High level	Waveform 2		30	ns
$\mathrm{t}_{\text {PZL }}$	Output enable to Low level	Waveform 3		30	ns
$t_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{L}=5 \mathrm{pF}^{5}$		30	ns
$t_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		25	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		46	ns
$t_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		27	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\frac{\text { LIMITS }}{C_{L}=50 \mathrm{pF}}$		UNIT
			Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay Data to output	Waveform 4		$\begin{aligned} & 23 \\ & 23 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Select to output	Waveform 1 \& 4		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	ns
$\mathrm{t}_{\text {PZH }}$	Output enable to High level	Waveform 2		39	ns
$t_{\text {PZL }}$	Output enable to Low level	Waveform 3		39	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{L}=5 \mathrm{pF}{ }^{5}$		39	ns
$t_{\text {PLZ }}$	Output disable from Low level	Waveform 3, $\mathrm{C}_{L}=5 \mathrm{p} \mathrm{F}^{5}$		33	ns
$\mathrm{t}_{\text {PHZ }}$	Output disable from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		60	ns
tplz	Output disable from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{cc} with all outputs open and all possible inputs grounded while achieving the stated output conditions.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Non-Inverting Outputs

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 4. Waveform for Inverting Outputs

FAMILY	V_{M}	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	.0 .7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

54LS273, 54S273

Flip-Flops

Octal D Flip-Flops

Product Specification

DESCRIPTION

The '273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.
The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.
All outputs will be forced Low independently of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	$54 L S 273 / B R A$ $54 S 273 / B R A$
20-Pin Ceramic FlatPack	$54 L S 273 / B S A$ $54 S 273 / B S A$
20-Pin Ceramic LLCC	$54 L S 273 / B 2 A$ $54 S 273 / B 2 A$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
All	Inputs	1SUL	1LSUL
All	Outputs	10SUL	10LSUL

NOTE: A 54 S Unit Load (SUL) is $50 \mu \mathrm{~A} I_{I_{H}}$ and $-2.0 \mathrm{~mA} I_{I L}$ and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} I_{I H}$ and $-0.4 \mathrm{~mA} I_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

[^10]For LLCC Pin Assignments, see JEDEC Standard No. 2

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	MR	CP	$\mathrm{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Reset (clear)	L	X	X	L
Load "1"	H	\uparrow	h	H
Load "0"	H	\uparrow	I	L

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition.
L = Low voltage level steady state.
I = Low voltage level one setup time prior to the Low-to-High Clock transition.
$X=$ Don't Care.
$\uparrow=$ Low-to-High clock transition.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54LS	54S	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range	-0.5 to +7.0	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

Flip-Flops

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		54LS			545			UNIT
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			2.0			V
V_{IL}	Low-level input voltage				+0.7			+0.8	V
		$+125^{\circ} \mathrm{C}$			+0.7			+0.7	V
$I_{1 K}$	Input clamp current				-18			-18	mA
IOH	High-level output current				-400			-1000	$\mu \mathrm{A}$
loL	Low-level output current				4			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54LS273			54S273			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{Cc}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{l}}=\mathrm{Max}, \end{aligned}$	$\begin{aligned} & =\operatorname{Min}, \\ & =\operatorname{Max} \end{aligned}$	2.5	3.4		2.5			V
v_{0}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}$	$\mathrm{n}, \mathrm{V}_{\mathrm{lL}}=$ Max,		0.25	0.4			0.5	V
		$\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$	$+125^{\circ} \mathrm{C}$			0.4			0.45	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{1}=1_{1 \mathrm{~K}}$				-1.5			-1.2	V
I_{1+2}	Input current at maximum	$V_{C C}=M a x$	$V_{1}=5.5 \mathrm{~V}$						1.0	mA
	input voltage		$V_{1}=7.0 \mathrm{~V}$			0.1				mA
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			50	$\mu \mathrm{A}$
I_{1}	Low-level input current	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4				mA
			$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-2.0	mA
los	Short-circuit output current ${ }^{3}$	$V_{C c}=M a x$		-20		-100	-40		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$			17	27		109	150	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	30		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		27		15	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54L.S		54S		UNIT
			Min	Max	Min	Max	
$t_{w}(\mathrm{~L})$	Clock pulse width (Low)	Waveform 1	20		7.0		ns
${ }_{\text {tw }}$	Master Reset pulse width	Waveform 2	20		10		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup time, High data to CP	Waveform 3	20		5.0		ns
$t_{\text {h }}(\mathrm{H})$	Hold time, High data to CP	Waveform 3	5.0		3.0		ns
$\mathrm{t}_{\text {s }}(L)$	Setup time, Low data to CP	Waveform 3	20		5.0		ns
$t_{\text {h }}(L)$	Hold time, Low data to CP	Waveform 3	5.0		3.0		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 2	25		5.0		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		545		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	30		75		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{HHL}}$	Propagation delay Clock to output	Waveform 1		32 32		$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		32		17.5	ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {Max }}$	Maximum clock frequency	Waveform 1	30		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		42 42		23 23	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPLH	Propagation delay MR to output	Waveform 2		42		23	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54S		UNIT
			Min	Max	Min	Max	
$t_{w}(\mathrm{~L})$	Clock pulse width (Low)	Waveform 1	20		7.0		ns
t_{w}	Master Reset pulse width	Waveform 2	20		10		ns
$\mathrm{t}_{5}(\mathrm{H})$	Setup time, High data to CP	Waveform 3	20		5.0		ns
$\left.\mathrm{th}^{(} \mathrm{H}\right)$	Hold time, High data to CP	Waveform 3	5.0		3.0		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time, Low data to CP	Waveform 3	20		5.0		ns
$t_{\text {h }}(L)$	Hold time, Low data to CP	Waveform 3	5.0		3.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	25		5.0		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure Icc after a momentary ground, then $\geq 4.0 \mathrm{~V}$ is applied to clock with all outputs open and $\geq 4.0 \mathrm{~V}$ applied to all Data inputs and the Master Reset input.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 3. Data Setup and Hold Times
NOTE: $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ for 54 S ; $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$ for 54 LS
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54LS295B
 Shift Register

4-Bit Shift Register with 3-State Outputs

Product Specification

FEATURES

- 4-bit parallel load shift register
- Independent 3-State buffer outputs
- See '395 for serial expansion and Master Reset version

DESCRIPTION

The 54LS295B is a 4-bit Shift Register with serial and parallel synchronous operating modes and four 3-State buffer outputs. The shifting and loading operations are controlled by the state of the ParalleI Enable (PE) input. When PE is High, data is loaded from the Parallel Data
outputs $\left(D_{0}-D_{3}\right)$ into the register synchronous with the High-to-Low transition of the Clock input (CP). When PE is Low, the data at the Serial Data input (D_{S}) is loaded into the Q_{0} flip-flop, and the data in the register is shifted one bit to the right in the direction $\left(Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}\right)$ synchronous with the negative transition of the clock. The PE and Data inputs are fully edge-triggered and must be stable only one setup time prior to the High-to-Low transition of the clock.
The 3-State output buffers are designed to drive heavily loaded 3-State buses or large capacitive loads. The active High

Output Enable (OE) controls all four 3-Statebuffers independent of the register operation. When OE is High the data in the register appears at the outputs. When OE is Low the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 LS295B/BCA
14-Pin Ceramic FlatPack	54 LS295B/BDA
20-Pin Ceramic LLCC	54 LS295B/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
All	Outputs	3OLSUL

NOTE: A $54 L$ S Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{LL}}$.

PIN CONFIGURATION

For LLCC pin assignments, see JEDEC Standard No. 2.				

LOGIC SYMBOL

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

REGISTER OPERATING MODES	INPUTS				REGISTER OUTPUTS			
	CP	PE	$\mathrm{D}_{\text {S }}$	D_{n}	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Shift right	\downarrow	1	$\begin{aligned} & \text { l } \\ & \text { h } \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 9_{0} \\ & 9_{0} \end{aligned}$	q_{1} q_{1}	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallell load	\downarrow	h	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	L	L

3-STATE BUFFER OPERATING MODES	INPUTS		OUTPUTS
	OE	\mathbf{Q}_{n} (Register)	$\mathbf{Q}_{0}, \mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}$
Read	H	L	L
	H	H	H
Disabled	L	X	(Z)

$H=$ High voltage level
$h=$ High voltage level one setup time prior to the High-to-Low clock transition
$L=$ Low voltage level
1 = Low voltage level one setup time prior to the High-to-Low clock transition
$\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low clock transition
$X=$ Don't care
$(Z)=$ High impedance "off" state
$\downarrow=$ High-to-Low transition

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.7	V
I_{K}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1.0	mA
$\mathrm{I}_{0 \mathrm{~L}}$	Low-level output current			12	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{HH}}=\mathrm{M}$	Max, $\mathrm{I}_{\mathrm{OH}}=$ Max	2.4	3.1		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{H}}=\mathrm{Mi}$	Max, $\mathrm{IOL}^{\text {= Max }}$		0.25	0.4	V
V_{1}	Input clamp voltage	$V_{C C}=$				-1.5	V
$\mathrm{I}_{\text {OZH }}$	Offstate output current, High-level voltage applied	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{LI}}$	$V_{0}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
lozı	Offstate output current, Low-level voltage applied	$\mathrm{V}_{\mathrm{Cc}}=$ Max, $\mathrm{V}_{\text {I }}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20	$\mu \mathrm{A}$
$\mathbf{I H}_{\mathbf{H} \mathbf{2}}$	Input current at maximum input voltage	$V_{C C}=M$				0.1	mA
$\mathrm{I}_{\mathrm{H} 1}$	High-level input current	$V_{\text {cc }}=M$	2.7 V			20	$\mu \mathrm{A}$
I_{11}	Low-level input current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$	0.4V			-0.4	mA
Ios	Short-circuit output current ${ }^{3}$	V_{CC}		-30		-130	mA
$I_{C C}$	Supply current ${ }^{4}$ (total)	$V_{C C}=$ Max	Condition 1		16	29	mA
			Condition 2		17	33	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{tpHL}} \\ & \mathrm{t}^{2} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 23 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable time to High level	Waveform 2		26	ns
$\mathrm{t}_{\text {PZL }}$	Enable time to Low level	Waveform 3		30	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		20	ns
$\mathrm{t}_{\text {PLZ }}$	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		20	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{L}=50 \mathrm{pF}$		36	ns
tPLZ	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		22	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{W}	Clock pulse width	Waveform 1	16		ns
t_{S}	Setup time, data to clock	Waveform 4	20		ns
t_{h}	Hold time, data to clock	Waveform 4	20		ns
t_{s}	Setup time, PE to clock	Waveform 4	20		ns
t_{h}	Hold time, PE to clock	Waveform 4	10	ns	

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=110 \Omega$		
			Min	Max	
$\dagger_{\text {MAX }}$	Maximum Clock frequency	Waveform 1^{1}	30		MHz
$\begin{aligned} & \mathfrak{t}_{\text {PLH }} \\ & \mathfrak{t}_{\text {PHL }} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 30 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PZH }}$	Enable time to High level	Waveform 2		34	ns
tpzL	Enable time to Low level	Waveform 3		39	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		26	ns
tPLZ	Disable time from Low level	Waveform 3, $\mathrm{C}_{L}=5 \mathrm{pF}{ }^{5}$		26	ns
$t_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		47	ns
tplz	Disable time from Low leve!	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		29	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{W}	Clock pulse width	Waveform 1	25		ns
t_{S}	Setup time, data to clock	Waveform 4	20		ns
t_{h}	Hold time, data to clock	Waveform 4	20		ns
t_{S}	Setup time, PE to clock	Waveform 4	20		ns
t_{h}	Hold time, PE to clock	Waveform 4	20	ns	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{Cc} with outputs open, D_{S} and PE at $\geq 4.0 \mathrm{~V}$, and the Data inputs grounded under the following conditions: Condition $1: O E$ at $\geq 4.0 \mathrm{~V}$ and a momentary 3 V , then ground, applied to Clock input. Condition 2: OE and Clock input grounded.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Clock to Output Delays and Clock Pulse Width

Waveform 3. 3-State Enable Time to Low Level and Disable Time from Low Level

Waveform 2. 3-State Enable Time to High Level and Disable Time from High Level

Waveform 4. Parallel Enable and Data Setup and Hold Times

FAMILY	\mathbf{V}_{M}	$\mathbf{V}_{\text {MZL }}$	$\mathbf{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 3-State Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS							
	R1	R_{X}	V_{L}	V_{M}	Rep. Rate	Tw	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$
54LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1V	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$

Optional load for 54LSXXX only: $\mathrm{R}_{\mathrm{B}}=631 \Omega ; \mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$ for all tests except $\mathrm{T}_{\mathrm{PHZ}} ; \mathrm{V}_{\mathrm{B}}=-0.6 \mathrm{~V}$ for $\mathrm{T}_{\mathrm{PHZ}}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to Z ZUT of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FUNCTION TABLE '365A

INPUTS			OUTPUTS	
OE_{1}	OE_{2}	I	Y	Y
L	L	L	L	H
L	L	H	H	L
X	H	X	(Z)	(Z)
H	X	X	(Z)	(Z)

FUNCTION TABLE '367A, '368A

INPUTS		OUTPUTS	
O_{1}	I	Y	Y
L	L	L	H
L	H	H	L
H	X	(Z)	(Z)

L = Low voltage level
$H=$ High voltage level
X = Don't care
(Z) $=$ High impedance (off) state

54365A, 54367A, 54368A, 54LS365A, 54LS367A Buffers/Drivers

'365A, '367A Hex Buffer/Driver (3-State) '368A Hex Inverter Buffer (3-State)
Product Specification
ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54LS365A/BEA, 54365A/BEA
16-Pin Ceramic Flat Pack	5436A, 54367ABEA
16-Pin Ceramic LLCC	54LS365A/BFA, 54LS367A/BFA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54	54LS
All	Inputs	1 UL	1LSUL
All	Outputs	20 UL	30LSUL

NOTE: Where a 54 Unit Load (UL) is understood to be $40 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$, and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{H}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54	UNIT	
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	-0.5 to +7.0	
I_{1}	Input current range	-30 to +5	-30 to +1	V
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	mA	
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V

PIN CONFIGURATION

Buffers/Drivers

LOGIC SYMBOL

'365A	'367A	'368A
	For LLCC Pin Assignment, see JEDEC Standard No. 2	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54			54LS			UNIT
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2.0			2.0			V
V_{1}	Low-level input voltage			+0.8			+0.7	V
I_{ik}	Input clamp current			-12			-18	mA
IOH	High-level output current			-2.0			-1.0	mA
l_{OL}	Low-level output current			32			12	mA
T_{A}	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

Buffers/Drivers

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		54365A, '367A, '368A			54LS365A, '367A			
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$		2.4	3.1		2.4	3.1		V
$V_{\text {OL }}$	Low-level output voitage	$\begin{gathered} V_{C C}=\operatorname{Min}, \\ V_{\text {IH }}=\operatorname{Min}, V_{I L}=\operatorname{Max}, \\ \mathrm{COL}_{\mathrm{LL}}=\operatorname{Max} \end{gathered}$				0.4		0.25	0.4	V
$V_{\text {IK }}$	Input clamp voltage	$V_{\text {cC }}=\operatorname{Min}, I_{1}=I_{1 K}$				-1.5			-1.5	V
lozH	Off-state output current High-level voltage applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, V_{O}=2.4 V \end{aligned}$				40			20	$\mu \mathrm{A}$
lozz	Off-state output current Low-level voitage applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=\operatorname{Max}, V_{O}=0.4 V \end{aligned}$				-40			-20	$\mu \mathrm{A}$
I_{1+2}	Input current at maximum input voltage	$V_{\text {cc }}=$ Max	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1.0				mA
			$\mathrm{V}_{1}=7.0 \mathrm{~V}$						0.1	mA
$1_{1 / 4}$	High-level input current	$V_{c c}=$ Max	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40				$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2.7 \mathrm{~V}$						20	$\mu \mathrm{A}$
IL	Low-level input current	$V_{\text {cc }}=$ Max	linputs, $V_{1}=0.5 \mathrm{~V}$ Either OE input at 2.0 V (Does not aply to 'LS365A or 'LS367A)			-40				$\mu \mathrm{A}$
			$\begin{aligned} & \text { linputs, } V_{1}=0.4 \mathrm{~V} \\ & \text { Both } O E \text { inputs at } 0.4 \mathrm{~V} \end{aligned}$.		-1.6			-0.4	mA
			OE inputs $V_{1}=0.4 \mathrm{~V}$			-1.6			-0.4	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\text {cc }}=$ Max		-40		-130	-30		-130	mA
lcc	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{CC}}=$ Max	'365A, 367A		65	85		14	24	mA
			'368A		59	77		12	21	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} 54 \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} 54 \mathrm{LS} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
				Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathfrak{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 1, '368A			$\begin{aligned} & \hline 17 \\ & 16 \end{aligned}$		$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 2, '365A, '367A			$\begin{aligned} & 16 \\ & 22 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable to High	Waveform 3			35		35	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 4	'365A, '367A		37		40	ns
			'368A		37		45	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$	'365A, '367A		11		30	ns
			'368A		11		32	ns
tplz	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$			27		35	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	'365A, '367A		21		48	ns
			'368A		21		48	ns
tpLZ	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			28		37	ns

Buffers/Drivers

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS		$\begin{gathered} 54 \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} 54 \mathrm{LS} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
				Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 1, '368A			$\begin{aligned} & 22 \\ & 21 \end{aligned}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay	Waveform 2, '365A, '367A			$\begin{aligned} & 21 \\ & 27 \end{aligned}$		$\begin{aligned} & 21 \\ & 29 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PzH }}$	Enable to High	Waveform 3			40		40	ns
$\mathrm{t}_{\text {PZL }}$	Enable to Low	Waveform 4	'365A, '367A		42		52	ns
			'368A		42		59	ns
$\mathrm{t}_{\text {PHZ }}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{5}$	'365A, '367A		16		39	ns
			'368A		16		42	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$			30		40	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable from High	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	'365A, '367A		20		60	ns
			'368A		20		62	ns
$t_{\text {PLZ }}$	Disable from Low	Waveform 4, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			32		48	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure Icc with Data inputs grounded and Output Enable inputs $\geq 4.0 \mathrm{~V}$.
5. Guaranteed by 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 1. Waveform for Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Waveform for Non-Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

FAMILY	V_{M}	$\mathrm{V}_{\text {MZZ }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V
54 XXX	1.5 V	0.7 V	1.9 V	1.45 V

TEST CIRCUIT AND WAVEFORM

Test Circult for 54 3-State Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS								
	R1	$\mathbf{R}_{\mathbf{X}}$	\mathbf{V}_{L}	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	T_{W}	$\mathrm{T}_{\mathrm{TLH}}$	$\mathrm{T}_{\mathrm{THL}}$	
54 LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1 V	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	
$54 X X X$	31Ω	$1.2 \mathrm{k} \Omega$	2.1 V	1.5 V	1 MHz	500 ns	$\leq 7 \mathrm{~ns}$	$\leq 7 \mathrm{~ns}$	

Optional load for 54LSXXX only: $R_{B}=631 \Omega ; V_{B}=5.5 \mathrm{~V}$ for all tests except $T_{P H Z} V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathbf{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {Out }}$ of Pulse Generators.
D = Diodes are 1N916, 1N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

FEATURES

- 8-bit transparent latch - '373
- 8-bit positive, edge-triggered register - '374
- 3-State output buffers
- Common 3-State Output Enable
- Independent register and 3-State buffer operation

54LS373, 54LS374, 54S373, 54S374

Latches/Flip-Flops
'373 Octal Transparent Latch with 3-State Outputs
'374 Octal D Flip-Flop with 3-State Outputs
Product Specification

DESCRIPTION

The '373 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Latch Enable (E) and Output Enable (OE) control gates.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54LS373/BRA 54S373/BRA 54LS374/BRA 54S374/BRA
20-Pin Ceramic FlatPack	54LS373/BSA 54S373/BSA 54LS374/BSA 54S374/BSA
20-Pin Ceramic LLCC	54LS373/B2A 54S373/B2A 54LS374/B2A 54S374/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54S	54LS
All	Inputs	1 SUL	1LSUL
All	Outputs	$10 S U L$	$30 L S U L$

NOTE: Where a $54 S$ Unit Load (SUL) is $50 \mu A I_{I H}$ and $-2.0 \mathrm{~mA} I_{\mathbb{I}}$ and a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data present one setup time before the High-to-Low enable transition. The enable gate has hysteresis built in to help minimize problems that signal and ground noise can cause on the latching operation.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active Low Output Enable (OE) controls all eight 3 -State buffers independent of the latch operation. When
$O E$ is Low, the latched or transparent data appears at the outputs. When OE is High, the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.
The ' 374 is an 8 -bit, edge-triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable (OE) control gates.
The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output. The
clock buffer has hysteresis built in to help minimize problems that signal and groundnoise can cause on the clocking operation.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($O E$) controls all eight 3-State buffers independent of the register operation. When OE is Low, the data in the register appears at the outputs. When OE is High, the outputs are in the High impedance "off" state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM, '373

VCC $=\operatorname{Pin} 20$
GND = Pin 10
For LLLCC Pin Assignments see JEDEC Standard No. 2

LOGIC DIAGRAM, ' 374

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
For LLCC Pin Assignments see JEDEC Standard No. 2

MODE SELECT - FUNCTION TABLE '373

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS
	$\mathbf{O E}$	E	$\mathrm{D}_{\mathbf{n}}$		L
$\mathbf{Q}_{0}-\mathbf{Q}_{\mathbf{7}}$					
Enable and read register	L	H	L	H	L
	L	H	H	H	L
Latch register and disable outputs	L	L	I	H	H

MODE SELECT - FUNCTION TABLE '374

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS
	OE	CP	$\mathrm{D}_{\mathbf{n}}$		
Load and read register	L	\uparrow	I	L	$\mathbf{Q}_{0}-\mathrm{Q}_{\mathbf{7}}$
	L	\uparrow	h	H	L
	Load register and disable outputs	H	\uparrow	I	L
H	H				

$\mathrm{H}=$ High voltage level
$h=$ High voltage level one setup time prior to the Low-to-High clock transition or High-to-Low σE transition
L = Low voltage level
X = Don't care
I = Low voltage level one setup time prior to Low-to-High clock transition or High-to-Low OE transition
$(Z)=$ High impedance "off" state
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	54LS	$54 S$	UNIT
$V_{C C}$	Supply voltage	7.0	7.0	V
V_{I}	Input voltage range	-0.5 to +7.0	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	-30 to +5	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	54LS			54S			UNIT
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.7			+0.8	V
I_{K}	Input clamp current			-18			-18	mA
${ }_{\mathrm{OH}}$	High-level output current			-1.0			-2.0	mA
$\mathrm{IOL}^{\text {l }}$	Low-level output current			12			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			54LS373, 374			54S373, 374			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OH }}=$ Max			2.4	3.1		2.4	3.1		V
$V_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{V}_{\text {IH }}=$ Min, $\mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max				0.25	0.4			0.5	V
$V_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\operatorname{Min}, I_{1}=I_{\text {IK }}$					-1.5			-1.2	V
IzH	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1 H}=$ Min		$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20				$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$						50	$\mu \mathrm{A}$
$l_{\text {LL }}$	Off-state output current, Low-level voltage applied	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=\mathrm{Min}$		$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20				$\mu \mathrm{A}$
				$\mathrm{V}_{0}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$
\mathbf{I}_{1+2}	Input current at maximum input voltage	$V_{C C}=$ Max		$\mathrm{V}_{1}=7.0 \mathrm{~V}$			0.1				mA
				$V_{1}=5.5 \mathrm{~V}$						1.0	mA
I_{1+1}	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$					20			50	$\mu \mathrm{A}$
ILIL	Low level input current	$V_{\text {cc }}=$ Max		$V_{1}=0.4 \mathrm{~V}$			-400				$\mu \mathrm{A}$
				$V_{1}=0.5 \mathrm{~V}$						0.25	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-30		-130	-40		-100	mA
Icc	Supply current (total)	$V_{\text {cc }}=\mathrm{Max}$	$l_{\text {ccz }}$	24.0V 'LS373		24	40				mA
			lca	= $\mathrm{OV} \quad$ 'S373					105	160	mA
			$\mathrm{lccz}^{\text {O }}$	$\geq 4.0 \mathrm{~V} \quad \mathrm{LS} 374$		27	40				mA
			$\begin{array}{\|ll\|} \hline \mathrm{HCLL} & \mathrm{Al} \\ \mathrm{gr} \end{array}$	inputs 'S374					102	140	mA
			$\begin{array}{\|cc\|} \hline \operatorname{lCCZ} \mathrm{CF} \\ & \mathrm{D} \\ \hline \end{array}$	$\begin{aligned} & \bar{O} \geq \geq 4.0 \mathrm{~V} \text { 'S374 } \\ & \text { iputs }=\text { GND } \end{aligned}$					131	180	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} 54 \mathrm{~S} 373,374 \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$		UNIT
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 6, '374	75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Latch enable to output	Waveform 1, '373		$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Data to output	Waveform 4, '373		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 6, '374		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tpZH	Enable time to High level	Waveform 2		15	ns
$t_{\text {PZL }}$	Enable time to Low level	Waveform 3, $373,{ }^{\prime} 374$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{4}$		9	ns
tPLZ	Disable time from Low level	Waveform $3, C_{L}=5 p F^{4}$		12	ns
tPHZ	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	ns
tplz	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		13.5	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { 54LS373, } 374 \\ \hline C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} 54 S 373,374^{5} \\ C_{L}=50 p F \end{gathered}$		UNIT
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 6, '374	35		75		MHz
$t_{\text {PLH }}$ t_{PHL}	Propagation delay Latch enable to output	Waveform 1, '373		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 16.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 4, '373		$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to output	Waveform 6, '374		$\begin{aligned} & 28 \\ & 28 \end{aligned}$		$\begin{aligned} & 17.5 \\ & 19.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable time to High level	Waveform 2		28		17.5	ns
$\mathrm{t}_{\text {PLL }}$	Enable time to Low level	Waveform 3, '373, '374		$\begin{aligned} & 36 \\ & 28 \end{aligned}$		$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{4}$		20		9	ns
tpLZ	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{4}$		25		12	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Disable time from High leve!	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		36		14	ns
$t_{\text {PLZ }}$	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		27		13.5	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Latch enable pulse width	Waveform 1, '373	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{gathered} 6 \\ 7.3 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{5}	Setup time, data to latch enable	Waveform 5, '373	5		0		ns
t_{n}	Hold time, data to latch enable	Waveform 5, '373	20		10		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{x}) \end{aligned}$	Clock pulse width	Waveform 6, '374	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{gathered} 6 \\ 7.3 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Setup time, data to clock	Waveform 7, '374	20		5		ns
$t_{\text {h }}$	Hold time, data to clock	Waveform 7, '374	0		2		ns

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { 54LS373, 374 } \\ \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} 54 \mathrm{~S} 373,374^{5} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		UNIT
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 6, '374	26		75		MHz
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Latch enable to output	Waveform 1, '373		$\begin{aligned} & 39 \\ & 39 \end{aligned}$		$\begin{aligned} & 21 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	Propagation delay Data to output	Waveform 4, '373		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ t_{PHL}	Propagation delay Clock to output	Waveform 6, '374		$\begin{aligned} & 36 \\ & 36 \end{aligned}$		$\begin{aligned} & 23 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PZH }}$	Enable time to High level	Waveform 2		36		23	ns
$\mathrm{t}_{\text {PZL }}$	Enable time to Low level	Waveform 3, '373, '374		$\begin{aligned} & 47 \\ & 36 \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{4}$		25		12	ns
$\mathrm{t}_{\text {PLZ }}$	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{4}$		33		16	ns
$\mathrm{t}_{\mathrm{pHZ}}$	Disable time from High level	Waveform 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		47		18.5	ns
$\mathrm{t}_{\text {PLZ }}$	Disable time from Low level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35		18	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	54LS		54 S		UNIT
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{tw}_{\mathrm{w}}(H) \\ & \mathrm{tw}^{2}(\mathrm{~L}) \end{aligned}$	Latch enable pulse width	Waveform 1, '373	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{gathered} 6 \\ 7.3 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Setup time, data to latch enable	Waveform 5, '373	5		0		ns
t_{n}	Hold time, data to latch enable	Waveform 5, '373	20		15		ns
$\begin{aligned} & \hline \operatorname{tw}(H) \\ & \operatorname{tw}(L) \\ & \hline \end{aligned}$	Clock pulse width	Waveform 6, '374	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{gathered} 6 \\ 7.3 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Setup time, data to clock	Waveform 7, '374	20		5		ns
t_{h}	Hold time, data to clock	Waveform 7, '374	5		2		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type and function table operating mode.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Guaranteed by the 50 pF limits, but not tested.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

Waveform 7. Data Setup and Hold Times

FAMILY	$\mathrm{V}_{\mathbf{M}}$	$\mathrm{V}_{\text {MZL }}$	$\mathrm{V}_{\text {MZH }}$	V_{Z}
54 LSXXX	1.3 V	0.7 V	1.9 V	1.45 V
54 SXXX	1.5 V	0.7 V	2.0 V	1.65 V

TEST CIRCUIT AND WAVEFORM

FAMILY	INPUT PULSE CHARACTERISTICS							
	R_{L}	$\mathbf{R X}_{\mathbf{X}}$	V_{L}	$\mathrm{V}_{\text {M }}$	Rep. Rate	Tw	$\mathrm{T}_{\text {TLH }}$	$\mathrm{T}_{\text {THL }}$
54LSXXX	110Ω	$2.4 \mathrm{k} \Omega$	2.1V	1.3 V	1 MHz	500ns	$\leq 15 \mathrm{~ns}$	$\leq 6 n s$
54SXXX	82Ω	560Ω	2.5 V	1.5 V	1 MHz	500ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

Optional load for 54LSXXX only: $R_{B}=631 \Omega ; V_{B}=5.5 \mathrm{~V}$ for all tests except $T_{P H Z} ; V_{B}=-0.6 \mathrm{~V}$ for $T_{P H Z}$ test.
DEFINITIONS:
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OuT }}$ of Pulse Generators.
$D=$ Diodes are 1N916, 1 N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Signetics

Military Logic Products

54LS377

Flip-Flop

Octal D Flip-Flop With Clock Enable
Product Specification

FEATURES

- Ideal for addressable register applications
- Clock Enable for address and data synchronization applications
- Elght edge-triggered D flip-flops
- Buffered common clock
- Slim 20-pin plastic and ceramic DIP packages
- See '273 for Master Reset version
- See '373 for transparent latch version
- See '374 for 3-State version

DESCRIPTION

The 54LS377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable (CE) is Low.
The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Qoutput. The CE input must be stable only one setup time prior to the Low-to-High clock transition for predictable operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP	54 LS377/BRA
20-Pin Ceramic FlatPack	54 LS377/BSA
20-Pin Ceramic LLCC	54 LS377/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1 PSUL
All	Outputs	

NOTE: Where a 54LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IH}}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

[^11]For LLCC Pin Assignments see JEDEC Standard No. 2

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	$\mathbf{C P}$	$\mathbf{C E}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
Load "1"	\uparrow	l	h	H
Load " 0 "	\uparrow	l	\uparrow	L
Hold (do nothing)	\uparrow	h	X	no change
	X	H	X	no change

$H=H i g h$ voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$L=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{\mathrm{O}}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{tL}	Low-level input voltage			+0.7	V
$\mathrm{IIK}^{\text {IK }}$	Input clamp current			-18	mA
l_{OH}	High-level output current			-400	$\mu \mathrm{A}$
$\mathrm{loL}^{\text {d }}$	Low-level output current			4	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$		2.5	3.5		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\operatorname{Min}, \mathrm{V}_{\text {IH }}=\mathrm{Min}, \mathrm{V}_{\text {IL }}=$ Max, $\mathrm{I}_{\text {OL }}=$ Max			0.25	0.4	V
$V_{\text {IK }}$	Input clamp voltage	$V_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=I_{\text {IK }}$				-1.5	V
I_{1+2}	Input current at maximum input voltage	$V_{C c}=$ Max, $V_{1}=7.0 \mathrm{~V}$				0.1	mA
$\mathrm{I}_{1 \mathrm{H}_{1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{C C}=$ Max		-20		-100	mA
Icc	Supply current (total)	$V_{C C}=\operatorname{Max}$	$\mathrm{I}_{\mathrm{CCH}}$ Outputs High		18	28	mA
			1 ccl Outputs Low		22	35	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Propagation delay Clock to output	Waveform 1		27 27	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
$\mathrm{tw}_{\text {w }}(\mathrm{L})$	Clock pulse width (Low)	Waveform 1	20		ns
$\mathrm{t}_{\text {s }}$	Setup, data to CP	Waveform 2	20		ns
t_{n}	Hold time, data to CP	Waveform 2	5		ns
t_{s}	Setup time, CE to CP	Waveform 2	20		ns
t_{n}	Hold time, CE to CP	Waveform 2	5		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay Clock to output	Waveform 1		32 32	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to output	Waveform 1		$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
$t_{\text {w }}(\mathrm{L})$	Clock pulse width (Low)	Waveform 1	20		ns
$\mathrm{t}_{\text {s }}$	Setup, data to CP	Waveform 2	20		ns
t_{h}	Hold time, data to CP	Waveform 2	5		ns
t_{5}	Setup time, CE to CP	Waveform 2	20		ns
t_{1}	Hold time, CE to CP	Waveform 2	5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. With all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Military Logic Products

FEATURES

- Two 4-blt binary counters
- Divide-by any binary module up to 28 in one package
- Two Master Resets to clear each 4-blt counter Individually

DESCRIPTION

The 54LS393 is a Dual 4-bit Binary Ripple Counter with separate Clock and Master Reset inputs to each counter. The operation of each half of the '393 is the

54LS393
 Counter

Dual 4-Bit Binary Ripple Counter
Product Specification
same as the '93 except no external clock connections are required. The counters are triggered by a High-to-Low transition of the Clock (CP_{a} and CP_{b}) inputs. The counter outputs are internally connected to provide Clock inputs to succeeding stages. The outputs of the ripple counter do not change synchronously and should not be used for high-speed address decoding.
The Master Resets (MR_{a} and MR_{b}) are ac-tive-High asynchronous inputs to each

4-bit counter identified by the " a " and " b " suffixes in the Pin Configuration. A High level on the MR input overrides the clock and sets the outputs Low.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
14-Pin Ceramic DIP	54 LS393/BCA
14-Pin Ceramic Flat Pack	54 LS393/BDA
14-Pin Ceramic LLCC	54 LS393/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
MR	Master reset input	1LSUL
$\overline{C P}$	Clock input	4LSUL
Q	Output	10LSUL

NOTE: Where a 54 LS Unit Load (LSUL) is $20 \mu \mathrm{~A} \mathrm{I}_{\text {IH }}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\text {IL }}$.
ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +7.0	V
I_{1}	Input current range	-30 to +1	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: V_{1} limited to +5.5 V on CP input only.

PIN CONFIGURATION
\square

LOGIC SYMBOL

COUNT SEQUENCE
FOR 1/2 THE '393

COUNT	OUTPUTS			
	$\mathbf{Q}_{\mathbf{0}}$	\mathbf{Q}_{1}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			+0.7	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-400	$\mu \mathrm{A}$
l_{OL}	Low-level output current			4	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS Min Typ 2		Max	UNIT
$\mathrm{V}_{\text {OH }}$	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=$ Min, $\mathrm{V}_{\text {IL }}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=$ Max			2.4	3.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{LL}}=\operatorname{Max}$				0.25	0.4	V
V_{IK}	Input clamp voltage	$V_{C C}=\operatorname{Min}, I_{1}=I_{1 K}$					-1.5	V
l_{1+2}	Input current at maximum input voltage	$V_{c c}=\operatorname{Max}$	$\mathrm{V}_{1}=7.0 \mathrm{~V}$	MR input			0.1	mA
			$\mathrm{V}_{1}=5.5 \mathrm{~V}$	CP input			0.2	mA
$\mathrm{I}_{1 H 1}$	High-level input current	$V_{C C}=M a x, V_{l}=2.7 \mathrm{~V}$		MR inputs			20	$\mu \mathrm{A}$
				CP input			100	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		MR input			-0.4	mA
				CP input			-1.6	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			-20		-100	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{C C}=\operatorname{Max}$				15	26	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
			Min	Max	
$f_{\text {max }}$	CP input count frequency	Waveform 1	25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{0}	Waveform 1		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLLH}} \\ \mathrm{t}_{\mathrm{PHLL}} \\ \hline \end{gathered}$	Propagation delay CP to Q_{3}	Waveform 1		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to Q	Waveform 2		39	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMIT		UNIT
			Min	Max	
t_{W}	CP pulse width	Waveform 1	20		ns
t_{W}	MR pulse width	Waveform 2	20		ns
$t_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	25		ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	CP input count frequency	Waveform 1	25		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation delay $C P$ to Q_{0}	Waveform 1		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{3}	Waveform 1		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay, MR to Q	Waveform 2		44	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MAX }}$	CP input count frequency	Waveform 1	25		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP to Q_{0}	Waveform 1		33 33	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{tpLH}^{\mathrm{t}_{\mathrm{pHL}}} \end{aligned}$	Propagation delay CP to Q_{3}	Waveform 1		$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PHL }}$	Propagation delay, MR to Q	Waveform 2		57	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{5}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMIT		UNIT
			Min	Max	
t_{W}	CP pulse width	Waveform 1	20		ns
t_{W}	MR pulse width	Waveform 2	20		ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to CP	Waveform 2	25	ns	

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{cc} with both MR inputs grounded following momentary connection to $\geq 4.0 \mathrm{~V}$, all other inputs grounded and all outputs open.
5. These parameters are guaranteed, but not tested.

AC WAVEFORMS

NOTE: $V_{M}=1.3 \mathrm{~V}$ for 54LS
The number of Clock Pulses required between the tpLH and tPHL measurements can be determined from the appropriate Function Table.

TEST CIRCUIT AND WAVEFORM

Test Circuit for 54 Totem-Pole Outputs
Input Pulse Definition

FAMILY	INPUT PULSE CHARACTERISTICS						
	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	$\mathbf{T}_{\mathbf{W}}$	$\mathbf{T}_{\text {TLH }}$	$\mathbf{T}_{\text {THL }}$	
54 LSXXX	$2.0 \mathrm{k} \Omega$	1.3 V	1 MHz	500 ns	$\leq 15 \mathrm{~ns}$	$\leq 6 \mathrm{~ns}$	

DEFINITIONS:

$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to Zout of Pulse Generators.
$D=$ Diodes are 1N916, 1N3064, or equivalent.
$V_{X}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

Military Logic Products

54LS395A Shift Register

4-Bit Cascadable Shift Register With 3-State Outputs

Product Specification

FEATURES

- 4-bit parallel load shift register
- Independent 3-State buffer outputs
- Separate \mathbf{Q}_{3} output for serial expansion
- Asynchronous master reset

DESCRIPTION

The 54LS395 is a 4-bit Shift Register with serial and parallel synchronous operating modes and four 3-State buffer outputs. The shitting and loading operations are controlled by the state of the Parallel Enable (PE) input. When PE is High, data is loaded from the Parallel Data inputs $\left(D_{0}-D_{3}\right)$ into the register synchronous with the High-to-Low transition of the Clock input (CP). When PE is Low, the
data at the Serial Data input $\left(D_{s}\right)$ is loaded into the Q_{0} flip-flop, and the data in the register is shifted one bit to the right in the direction $\left(Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}\right)$ synchronous with the negative clock transition. The PE and Data inputs are fully edge-triggered and must be stable only one setup prior to the High-to-Low transition of the clock.
The Master Reset (MR) is an asynchronous active-Low input. When Low, the MR overrides the clock and all other inputs and clears the register.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, or large capacitive loads. The active-Low Output Enable (OE) controls all four 3-State buffers independent of the register
operation. The data in the register appears at the outputs when $\overline{O E}$ is Low. The outputs are in the High impedance "off" state, which means they will neither drive nor load the bus when $\overline{O E}$ is High. The output from the last stage is brought out separately. This output $\left(Q_{3}\right)$ is tied to the Serial Data input (D_{S}) of the next register for serial expansion applications. The Q_{3} output is not affected by the 3-State buffer operation.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	54 LS395A/BEA
16-Pin Ceramic FlatPack	54 LS395A/BFA
16-Pin Ceramic LLCC	54 LS395A/B2A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54LS
All	Inputs	1LSUL
$Q_{0}-Q_{3}$	Outputs	30LSUL
Q_{3}	Output	10LSUL

NOTE: Where a 54 LS Unit Load (LSUL) is $20 \mu A I_{I H}$ and $-0.4 \mathrm{~mA} \mathrm{I}_{\mathrm{IL}}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{RESISTER OPERATING MODES} \& \multicolumn{5}{|c|}{INPUTS} \& \multicolumn{4}{|c|}{OUTPUTS}

\hline \& MR \& CP \& PE \& $\mathrm{D}_{\text {S }}$ \& D_{n} \& Q_{0} \& Q_{1} \& Q_{2} \& Q_{3}

\hline Reset (clear) \& L \& X \& X \& X \& X \& L \& L \& L \& L

\hline Shift right \& $$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \\
& \downarrow
\end{aligned}
$$ \& $$
1
$$ \& | \& $$
\begin{gathered}
x \\
x
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$ \& $$
\begin{aligned}
& 90 \\
& 90
\end{aligned}
$$ \& $$
\begin{aligned}
& q_{1} \\
& q_{1}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{q}_{2} \\
& \mathrm{q}_{2}
\end{aligned}
$$

\hline Parallel load \& $$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \\
& \downarrow
\end{aligned}
$$ \& h
h \& X
X \& l

h \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$ \& L

H \& $$
\begin{gathered}
\mathrm{L} \\
\mathrm{H}
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
$$
\]

\hline
\end{tabular}

3-STATE BUFFER OPERATING MODES	INPUTS		\mathbf{Q}^{\prime}	
	OE	Q_{n} (Register)	$\mathbf{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	L
Read	L	L	H	H
Disable buffers	L	H	(Z)	L
	H	L	H	

H = High voltage level
$h=H i g h$ voltage level one setup time prior to the High-to-Low clock transition
L = Low voltage level
1 = Low voltage level one setup time prior to the High-to-Low clock transition
$\mathrm{g}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low clock transition
$X=$ Don'tcare
(Z) = High impedance "off" state
$\downarrow=$ High-to-Low transition

Shift Register

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +7.0	V
I_{I}	Input current range	-30 to +1	mA
V_{O}	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				+0.7	V
$\mathrm{I}_{1 \mathrm{~K}}$	input clamp current				-18	mA
IOH	High-level output current	Q_{3}			-400	$\mu \mathrm{A}$
		$\mathrm{Q}_{0}-\mathrm{Q}_{3}$			-1.0	mA
loL	Low-level output current	Q_{3}			4	mA
		$\mathrm{Q}_{0}-\mathrm{Q}_{3}$			12	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, \\ & V_{I L}=M a x, I_{O H}=M a x \end{aligned}$	Q_{3}	2.5	3.4		V
			$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	2.4	3.1		V
VOL	Low-level output voltage	$\begin{gathered} V_{C C}=\operatorname{Min}, V_{\mathbb{I H}}=\operatorname{Min}, V_{I L}=\operatorname{Max}, I_{O L}=\operatorname{Max} \\ Q_{0}, Q_{1}, Q_{2}, Q_{3} \end{gathered}$			0.25	0.4	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=I_{1 \mathrm{~K}}$				-1.5	V
$\mathrm{l}_{\mathrm{OZH}}$	Offstate output current, High-level voltage applied	$\begin{gathered} V_{C C}=\operatorname{Min}, V_{I H}=\operatorname{Min}, V_{0}=2.7 \mathrm{~V} \\ Q_{0}, Q_{1}, Q_{2}, Q_{3} \end{gathered}$				20	$\mu \mathrm{A}$
lozu	Offstate output current, Low-level voltage applied	$\begin{gathered} V_{\mathrm{Cc}}=\operatorname{Min}, V_{\mathrm{HH}}=\operatorname{Min}, V_{0}=0.4 \mathrm{~V} \\ Q_{0}, Q_{1}, Q_{2}, Q_{3} \end{gathered}$				-20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbb{H} 2}$	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA
$\mathrm{I}_{\mathbf{H 1}}$	High-level input current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{11}	Low-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short-circuit output current ${ }^{3}$	$V_{\text {cc }}=$ Max	Q^{\prime}	-20		-100	mA
			$Q_{0}, Q_{1}, Q_{2}, Q_{3}$	-30		-130	mA
Icc	Supply current ${ }^{4}$ (total)	$V_{c c}=\operatorname{Max}$	Condition 1		19	34	mA
			Condition 2		19	31	mA .

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$\mathrm{f}_{\text {Max }}$	Maximum Clock frequency	Waveform 1	30		MHz
$\begin{gathered} \mathbf{t}_{\text {PLH }} \\ t_{\text {PHL }} \\ \hline \end{gathered}$	Propagation delay Clock to buffer outputs	Waveform 1		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Clock to Q ${ }_{3}$ output	Waveform 1		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {tPHL }}$	Propagation delay, MR to output	Waveform 2		35	ns
$\mathrm{t}_{\text {PZH }}$	Enable time to High level	Waveform 3		25	ns
$\mathrm{t}_{\text {PZL }}$	Enable time to Low level	Waveform 4		25	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		17	ns
$\mathrm{t}_{\text {PLZ }}$	Disable time from Low level	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		20	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 3, $C_{L}=50 \mathrm{pF}$		33	ns
$t_{\text {PLZ }}$	Disable time from Low level	Waveform 4, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		22	ns

AC SETUP REQUIREMENTS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
t_{W}	Clock pulse width	Waveform 1	20		ns
t_{W}	Master reset pulse width	Waveform 2	25		ns
t_{S}	Setup time, data to clock	Waveform 5	20		ns
t_{h}	Hold time, data to clock	Waveform 5	10		ns
t_{S}	Setup time, PE to clock	Waveform 5	40		ns
t_{h}	Hold time, PE to clock	Waveform 5	10	ns	
$\mathrm{t}_{\text {rec }}$	Recovery time, MR to clock	Waveform 2	30	ns	

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{6}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	
$f_{\text {MaX }}$	Maximum Clock frequency	Waveform 1	30		MHz
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Clock to buffer outputs	Waveform 1		$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay Clock to Q_{3} output	Waveform 1		$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to output	Waveform 2		46	ns
$\mathrm{t}_{\text {PZH }}$	Enable time to High level	Waveform 3		33	ns
${ }_{\text {tPZL }}$	Enable time to Low level	Waveform 4		33	ns
$\mathrm{t}_{\text {PHZ }}$	Disable time from High level	Waveform 3, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		22	ns
tPLZ	Disable time from Low level	Waveform 4, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}{ }^{5}$		26	ns
$t_{\text {tPHZ }}$	Disable time from High level	Waveform $3, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		43	ns
tPLZ	Disable time from Low level	Waveform 4, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		29	ns

AC SETUP REQUIREMENTS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
tw	Clock pulse width	Waveform 1	20		ns
tw	Master reset pulse width	Waveform 2	25		ns
ts	Setup time, data to clock	Waveform 5	20		ns
t_{n}	Hold time, data to clock	Waveform 5	10		ns
ts	Setup time, PE to clock	Waveform 5	40		ns
$t_{\text {h }}$	Hold time, PE to clock	Waveform 5	10		ns
$t_{\text {rec }}$	Recovery time, MR to clock	Waveform 2	30		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Measure I_{C} with D_{S} and Master Reset at $\geq 4.0 \mathrm{~V}$. The Data inputs grounded and outputs open under the following conditions: Condition 1 : $\overline{O E}$ at $\geq 4.0 \mathrm{~V}$. A momentary 3 V , then ground, applied to CP . Condition 2 : Ground OE and CP inputs.
5. Guaranteed by the 50 pF limits, but not tested.
6. These parameters are guaranteed, but not tested.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

Military Logic Products

FEATURES

- High speed
- Quad bus driver
- 30mA Low-state drive
- 300pF load driving capability

DESCRIPTION

The 8T09 is a high-speed quad bus driver device for applications requiring up to 25 loads interconnected on a single bus.
The 3 -state outputs present high-impedance to the bus when disabled (control input " 1 "), and active drive when enabled (control input " 0 "). This eliminates the resistor pullup requirement while providing performance superior to open collector schemes. Each output can sink 30 mA and drive 300 pF loading with guaranteed propagation delay less than 30 nanoseconds.

PIN CONFIGURATION

LOGIC SYMBOL

Quad Bus Driver

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
V_{1}	Input voltage range	-0.5 to +5.5	V
V_{O}	Voltage applied to output in High output state range	-0.5 to $+V_{C C}$	V
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS		UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.7	V
I_{K}	Input clamp current			-12	mA
I_{OH}	High-level output current			-5.2	mA
I_{OL}	Low-level output current			30	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS		UNIT
			Min	Max	
$\mathrm{V}_{\text {IK }}$	Input clamp diode voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1 /}=-12 \mathrm{~mA}$		-1.5	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	2.4		V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=30 \mathrm{~mA}$		0.4	V
I_{H}	High-level input current	$V_{C C}=$ Max, $V_{1}=4.5 \mathrm{~V}$		40	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$		-2	mA
$\mathrm{lozH}^{\text {OR }}$	Offstate output current, High-level voltage applied	$V_{C C}=$ Max, $V_{1 H}=$ Min, $V_{0}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
lozl	Offstate output current, Low-level voltage applied	$V_{C C}=\operatorname{Max}, V_{1 H}=\operatorname{Min}, \mathrm{V}_{0}=0.4 \mathrm{~V}$		-40	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{2}$	$V_{\text {cC }}=$ Max	-40	-120	mA
ICC	Supply current (total)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		65	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS		UNIT
				Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Figure 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tpzh }}$	Enable to High	Figure 3	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & C_{L}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 14 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PzL }}$	Enable to Low	Figure 2	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & C_{L}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 14 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{P} H \mathrm{Z}}$	Disable from High	Figure 3	$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 14 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLZ }}$	Disable from Low	Figure 2	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & C_{L}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 14 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{3}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS		UNIT
				Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Data to output	Figure 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 13 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	Enable to High	Figure 3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
tpzL	Enable to Low	Figure ?	$\begin{aligned} & C_{L}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tphz	Disable from High	Figure 3	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLZ }}$	Disable from Low	Figure 2	$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. Not more than one output should be shorted at a time and duration of the short circuit should not exceed on second.
3. These parameters are guaranteed, but not tested.

AC TEST CIRCUITS AND WAVEFORMS

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}(0.3 \mathrm{~V}$ TO 2.7V)
FREQ. $=1 \mathrm{MHz}(50 \%$ DUTY CYCLE $)$
FREQ. $=1 \mathrm{MH}$
$\mathrm{AMP} .=2.6 \mathrm{~V}$

Figure 1. Propagation Delay (Data to Output)

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}} \leq 5 \mathrm{~ns}(0.3 \mathrm{~V}$ TO 2.7V)
FREQ. $=100 \mathrm{kHz}$
AMP. $=2.6 \mathrm{~V}$

1. Propal

AC TEST CIRCUITS AND WAVEFORMS (Continued)

INPUT PULSE:
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}} \leq 5 \mathrm{~ns}$ (0.3V TO 2.7V)
FREQ. $=200 \mathrm{kHz}$
FREQ. $=200$
AMP.
2.6 V

Figure 3. Propagation Delay (" 1 " to $\mathrm{Hi}-\mathrm{Z}, \mathrm{t}_{\mathrm{PHZ}}$; $\mathrm{Hi}-\mathrm{Z}$ to $1, \mathrm{t}_{\mathrm{PZH}}$)

The figure to right illustrates usage of the 8T09 in data processing logic. For example, FF, thru $F F_{n}$ may represent bit X in each of several functions in a minicomputer (accumulators, MQregister, index registers, indirect address registers, etc.). Transfer from any source to any load, including transfers from one register to another, can take place along the single path labeled "BUS".

TYPICAL APPLICATIONS

Signetics

Military Logic Products

FEATURES

- High-speed Schottky quad transceiver
- 32mA Low-state drive
- $200 \mu \mathrm{~A}$ bus loading
- Ideal for:
- Half-duplex data transmission
- Memory interface buffers
- Data routing in bus oriented systems
- High current drivers
- MOS/CMOS-to-TTL interface

8T26A

Bus Transceiver

3-State Quad Bus Transceiver

Product Specification

DESCRIPTION

The 8T26A consists of four pairs of 3-State logic elements configured as quad bus drivers/receivers, along with separate buffered receiverenable and driver enable lines. This single IC quad transceiver design distinguishes the 8 T26 from conventional multi-IC implementations. In addition, the $8 T 26$ As ultra high-speed while driving heavy bus capacitance (300 pF) makes these devices particularly suitable for memory systems and bidirectional data buses.

Both the driver and receiver gates have 3-State outputs and low-current PNP inputs. 3-State outputs provide the high switching speeds of totem-pole TTL circuits while offering the bus capability of open collector gates. PNP inputs reduce input loading to $200 \mu \mathrm{~A}$ maximum.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
Ceramic DIP	8T26A/BEA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$8 T$
$I_{\text {N }}$	Input	0.5 SUL
D/E, R/E	Inputs	0.5 SUL
$D_{\text {OUT }}$	Output	16 SUL
ROUT	Output	6 SUL

NOTE: A Unit Load (SUL) is $50 \mu \mathrm{~A} I_{\mathbb{H}}$ and $-2.0 \mathrm{~mA} I_{I L}$.

PIN CONFIGURATION

LOGIC SYMBOL

Bus Transceiver

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	7.0	V
$\mathrm{~V}_{1}$	Input voltage range	-0.5 to +5.5	V
I_{I}	Input current range	-30 to +5	mA
$\mathrm{I}_{0 \mathrm{~L}}$	Continuous range	100	mA
$\mathrm{~V}_{0}$	Voltage applied to output in High output state range	-0.5 to V_{CC}	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{C C}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{L}	Low-level input voltage				+0.8	V
I_{1}	Input clamp current				-18	mA
lOH	High-level output current	Driver			-2	$\mu \mathrm{A}$
IOL	Low-level output current	Driver			32	mA
		Receiver			12	mA
T_{A}	Operating free-air temperature range		-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS		UNIT
				Min	Max	
V_{H}	Input High voltage	Guaranteed input High threshold voltage		2.0		V
$\mathrm{V}_{\text {L }}$	Input Low voltage	Guaranteed input Low threshold voltage			0.8	V
V_{IK}	Input clamp diode voltage	$V_{C C}=$ Min, $I_{1 K}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{V}_{B D}$	Input breakdown voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{I}_{1}=1 \mathrm{~mA}$		5.5		V
V_{OH}	High-level output voltage, Driver outputs	$V_{C C}=\mathrm{Min}, \mathrm{IOH}=-2 \mathrm{~mA}$		2.4		V
V_{OH}	High-level output voltage, Receiver outputs	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		3.0		V
V_{OL}	Low-level output voltage, Driver outputs	$V_{C C}=\mathrm{Min}, 1 \mathrm{LL}=32 \mathrm{~mA}$			0.5	V
V_{OL}	Low-level output voltage, Receiver outputs	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	V
$\mathrm{I}_{\mathrm{OLH}}$	Off-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
lozL	Off-state output current, Low-level voltage applied	$V_{C C}=\operatorname{Max}, V_{0}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{IH}	High-level input current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=4.5 \mathrm{~V}$			25	$\mu \mathrm{A}$
$I_{1 L}$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$	Driver, receiver		-200	$\mu \mathrm{A}$
			Disabled		-25	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{2}$	$V_{C C}=\operatorname{Max}$	Driver	-50	-150	mA
			Receiver	-30	-100	mA
$l_{\text {cc }}$	Supply current	$V_{C C}=$ Max			87	mA

AC ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation delay, $\mathrm{D}_{\text {OUT }}$ to $\mathrm{R}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		14	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay, $\mathrm{D}_{\text {IN }}$ to $\mathrm{D}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		14	ns
tply	Propagation delay, $\mathrm{D}_{\text {OUt }}$ to $\mathrm{R}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		14	ns
$\mathrm{t}_{\text {PLH }}$	Propagation delay, $\mathrm{D}_{\text {IN }}$ to $\mathrm{D}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		14	ns
$\mathrm{t}_{\mathrm{PzL}}$	Data enable to data output, $\mathrm{Hi}-\mathrm{Z}$ to 0	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		25	ns
$\mathrm{t}_{\text {PLZ }}$	Data enable to data output, 0 to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		20	ns
$t_{\text {PzL }}$	Receive enable to receive output, $\mathrm{Hi}-\mathrm{Z}$ to 0	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	ns
$\mathrm{t}_{\text {PLZ }}$	Receive enable to receive output, 0 to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	ns

AC ELECTRICAL CHARACTERISTICS $T_{A}=-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}^{3}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT
			Min	Max	
tpht	Propagation delay, $\mathrm{D}_{\text {Out }}$ to $\mathrm{R}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay, $\mathrm{D}_{\text {in }}$ to $\mathrm{D}_{\text {Out }}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		18	ns
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay, Dout to Rout	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		18	ns
$\mathrm{t}_{\text {PLH }}$	Propagation delay, $\mathrm{D}_{\text {in }}$ to $\mathrm{D}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		18	ns
${ }_{\text {tPZL }}$	Data enable to data output, $\mathrm{Hi}-\mathrm{Z}$ to O	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		35	ns
tplz	Data enable to data output, 0 to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$		26	ns
$\mathrm{t}_{\text {PZL }}$	Receive enable to receive output, $\mathrm{Hi}-\mathrm{Z}$ to 0	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		38	ns
tplz	Receive enable to receive output, 0 to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		19	ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
3. These parameters are guaranteed, but not tested.

TEST CIRCUITS AND WAVEFORMS

Bus Transceiver

TEST CIRCUITS AND WAVEFORMS (Continued)

Disable and Enable Time Data Enable to Data Output

Propagation Delay $D_{\text {IN }}$ to $D_{\text {OUT }}$

Bus Transceiver

TYPICAL APPLICATION

Bidirectional MOS CMOS to TTL Interface

TYPICAL APPLICATION

Control lines may be tied together, such that logical "1" transmit, logical "0" receive.
Logical " 0 " = active
Logical "1" = active
Logical "11" $=\mathrm{Hi} \mathrm{Z}$
Logical " $\mathrm{O}^{\prime \prime}=\mathrm{Hi}-\mathrm{Z}$
Bidirectional Data Bus

Signetics

Military
Customer Specific Products

FEATURES

- 12-Bit FIFO address generator
- Data rate exceeding $8 \mathbf{M H z}$
- Asynchronous Read/Write operations
- 3-State address outputs
- User-defined word width
- Specifically designed for use with high-speed bipolar RAMs (adaptable for use with MOS RAMs)
- TTL input and output
- 16mA Address-drive capability

USE AND APPLICATION

- Interface between independent-ly-clocked systems
- Buffer memories for disk and/or tape
- Data communication concentrators
- CPU/terminal buffering
- DMA applications
- CRT terminals

FUNCTIONAL OPERATION

The FRC operates in either of two basic modes - write into the FiFO buffer memory or read from the FIFO buffer memory. These two operations are described in subsequent paragraphs and the complete sequence is summarized in Table 1. Typical Write/Read timing relationships, arbitration logic, and chip-enable control are shown in the Timing Diagrams.

8X60

FIFO RAM Controller (FRC)

Product Speciffcation

PRODUCT DESCRIPTION

The Signetics 8 X60 FIFO RAM Controller (FRC) is an address and status generator designed to implement a high-speed/ high-capacity First-In/First-Out (FIFO) stackutilizing standard off-the-shelf RAMs - see Applications on the last page of this data sheet. The FRC can control up to 4096 words of buffer memory; intermediate buffer sizes can be selected - refer to the memory length table on the next page. Built-in arbitration logic handles read/write operations on a first-comefirst-serve basis.

As shown in Figure 1, the FRC consists of:

- A 12-bit write address generation counter (counter \#1) and a 12-bit read address generation counter (counter \#2).
- A 12-bit up/down status counter (counter \#3).
- Twelve 3-State address drivers.
- Control logic.

The two address counters, \#1 and \#2, respectively, are used to generate write and read addresses; the outputs of these counters are multiplexed to the 3-State address drivers. Counter \#3 generates full, empty, and half full status.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$28-P i n ~ D I P ~$ 600 mil-wide	$8 \times 60 / \mathrm{BXA}$
28 -Pin LLCC	$8 \times 60 / \mathrm{B} 3 \mathrm{~A}$

PIN CONFIGURATION

Figure 1. Functional Block Dlagram of FIFO RAM Controller

FIFO BUFFER MEMORY -

WRITE CYCLE
To perform a write operation, SO must be High andSI must be Low. When these conditions exist and other control parameters (Table 1) are satisfied, the write address in Counter \#1 (Figure 1) is output to the address bus via the multiplexer and WRITE output goes Low. (Note. Normally, the WRITE output goes Low after the address output becomes state - refer to WRITE Cycle Timing Diagram. The WRITE output may then act as a write or chip enable for the RAMs that are used to implement the memory.

When the write cycle is ended (SI is forced High), the WRITE output goes High, the address output buffers return to a High- impedance state. Counter \#1 (Write Address Generation) and Counter \#3 (Status) are both incremented, and Counter \#2 (Read Address Generation) remains unchanged.

FIFO BUFFER MEMORY - READ CYCLE

To perform a read operation, SI must be High and SO must be Low. When these conditions exist and other control parameters (Table 1) are satisfied, the read address contained in Counter \#2 (Figure 1) is output to the address bus and the READ output goes Low. When the read cycle is ended (SO is forced High) the READ output goes High, the output buffers return to a

MEMORY LENGTH

LS1	LS2	HALF LENGTH	FULL LENGTH
L	L	2048	4096
H	L	32	64
L	H	512	1024
H	H	128	256

High-impedance state. Counter \#2 (Read Address Generation) is incremented. Counter \#3 (Status) is decremented, and Counter \#1 (Write Address Generation) remains unchanged.

CONTROL LOGIC

To prevent the possibility of operational conflicts, SI and SO are treated on a first-come/ first-served basis; these two input signals are controlled by internal arbitration logic - refer to the applicable Timing Diagrams and ACCharacteristics for functional and timing relationships. If one cycle is requested while the other cycle is in progress, the requested cycle will commenceas soon as the current-cycle is complete (provided other control parameters are satisfied).

As shown in the accompanying diagram, the buffer length of the FIFO memory can be hard-ware-selected via the Length Select (LS1, LS2) Inputs. When less than the maximum length is selected, the unused High-order bits of the ad-
dress outputs are held in the High-impedance state.
Generation of the status output signals (HALF FULL, FULL and EMPTY) is a function of the Length Select(LS1, LS2) inputs and the current state of Status Counter \#3. In general, the status outputs reflect the conditions that follow:

- HALF FULL - this status output signals goes High on the positive-going edge of ST if the MSB of the selected length of Counter \#3 becomes a "1". The HALF FULL signal will go from High-to-Low on the posi-tive-going edge of SO when, after the read cycle, the selected length of Counter \#3 changes from " 100 ... 00 " to " 011 ... 11". For example, if the selected memory length is 256 words (FULL $=256$), then HALF FULL $=128$ words; hence, on the posi-tive-going edge of SO when Counter \#3 reaches a count of 127, the HALF FULL output will go from High-to-Low.
- FULL - this signal serves both as a status output and as an override input. The FULL signal goes High on the negative-going edge of ST if all bits of Counter \#3 for selected length are equal to " 1 ". The FULL output goes from High-to-Low on the nega-tive-going edge of SO.
- EMPTY - this signal also serves as a status output and as an override input. On the negative-going edge of SO, the EMPTY output is driven High if Status Counter \#3 contains a value of " 1 "; on the positive-going edge of SO, the counter is decremented to " 0 ". The EMPTY output goes from High-to-Low on the negative-going edge of ST.

Once the FULL signal is High, further Write Cycle Requests (S = low) are ignored; similarly, once the EMPTY signal is High, further Read

Cycle requests ($\mathrm{SO}=\mathrm{low}$) are ignored. However, to accommodate diversified applications, the FULL and EMPTY outputs are open-collector with on-chip 4.7 K passive pull-up resistors. If either the FULL or EMPTY pins are forced Low via external control, the corresponding write or read cycle may resume (provided external FULL or EMPTY input is held Low until the corresponding WRITE or READ output goes Low) and the address/status counters will continue normal operation* - refer to Table 1.
The user must force the RESET input Low to initialize the chip. (Note. If the RESET signal is driven Low during a write or read cycle, the address output may have a short period of uncertainty before assuming a high-impedance state.) The following actions occur when RESET is active:

- All internal counters are set to " 0 ".
- All address output lines are forced to the high-impedance state.
- HALF FULL and FULL outputs are forced Low.
- WRITE, READ, and EMPTY outputs are forced high.

When CE is High, the address output lines are forced to the high-impedance state, further write or read cycle requests are ignored, and all counters remain unchanged. If CE switches from Low-to-High during a write or read cycle, the cycle in progress is always completed before the disabled state is entered. For details of these operations, refer to the timing information shown later in this data sheet.

* Refer to Note on inside back cover

Table 1. Summary of Operation

INPUTS				INITIAL CONDITIONS	RESULTING OUTPUTS			COMMENTS
RESET	CE	SI	S0		WRITE	READ	Address Bus	
L	X	X	X		H	H	$\mathrm{Hi-Z}$	Reset all counters to 0.
H	X	H	H		H	H	Hi-Z	No action
H	L	L	H	FULL $=1$	L	L	Write address from Ctr \#1	Shift into FIFO stack (Write Cycle)
H	L	L	H	FULL $=\mathrm{H}$	H	H	Hi-Z	Stack full (write inhibited)
H	L	H	L	EMPTY = L	H	L	Read address from Ctr \#2	Shift out of FIFO stack (Read Cycle)
H	L	H	L	EMPTY $=\mathrm{H}$	H	H	Hi-Z	Stack empty (read inhibited)
H	L	L	\downarrow	Write cycle in progress	L	H	Write address from Ctr \#1	Continue write cycle (until SI goes high)
H	L	\downarrow	L	Read cycle in progress	H	L	Read address from Ctr \#2	Continue read cycle (until SO goes high)
H	L	L	L	EMPTY $=\mathrm{H}$	L	H	Write address from Ctr \#1.	Shitt in (read inhibited)
H	L	L	L	FULL $=\mathrm{H}$	H	L	Read address from Ctr \#2	Shift out (write inhibited)
H	L	\uparrow	H	Write cycle in progress	\uparrow	H	Goes to Hi-Z	Increment write address counter \#1 and status counter \#3
H	L	H	\uparrow	Read cycle in progress	H	\uparrow	Goes to Hi-Z	Increment read address counter \#2; decrement status counter \#3
H	L	\uparrow	L	Write cycle in progress ${ }^{1}$	\uparrow	\downarrow	Changes to read address from Ctr \#2	Increment write address counter \#1 and status counter \#3
H	L	L	\uparrow	Read cycle in progress ${ }^{2}$	\downarrow	\uparrow	Changes to write address from Ctr \#1	Increment read address counter \#2; decrement status counter \#3
H	H	\downarrow	H		H	H	Hi-Z	Chip disabled
H	H	H	\downarrow		H	H	Hi-Z	Chip disabled
H	\uparrow	L	X	FULL $=\mathrm{L}$; write cycle begun ${ }^{1}$	L	H	Write address from Ctr \#1	Continue write cycle (until ST goes high)
H	\uparrow	L	X	EMPTY = L; read cycle begun ${ }^{2}$	H	L	Read address from Ctr \#2	Continue read cycle (until SO goes high)
H	\downarrow	L	L	$\begin{aligned} & \text { FULL = } \mathrm{L} ; \\ & \text { EMPTY }=\mathrm{L} \end{aligned}$	-	-	-	This set of conditions should be avoided

NOTES:

1. Write cycle will occur if either SI goes Low before SO goes Low or EMPTY $=\mathrm{H}$ when SO goes Low.
2. Read cycle will occur if either SO goes Low before ST goes Low or FULL = H when SI goes Low.

FIFO RAM Controller (FRC)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
$V_{B B}$	Supply voltage for internal circuits	+4	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Off-state output voitage	+5.5	$V_{D C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $4.5 \mathrm{~V}_{\leq} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{\text {IH }}$	High level input voltage ${ }^{3}$			2.0			V
V_{LL}	Low level input voltage					0.8	V
V_{OH}	High level output voltage: All outputs except FULL and EMPTY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{l}_{\mathrm{OH}}=$		2.5			V
$\mathrm{V}_{\text {OL }}$	Low level output voltage: Address Bus, WRITE, READ	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{l}_{\mathrm{OL}}$			0.38	0.5	V
V_{OL}	HALF FULL, FULL, and EMPTY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$; l_{OL}			0.35	0.5	V
$V_{\text {IK }}$	Diode clamp voltage: All inputs except FULL and EMPTY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{I}_{\mathrm{IK}}=$			-0.8	-1.5	V
I_{H}	High level input current: All inputs except FULL and EMPTY	$V_{\text {cc }}=$ Max; $V_{\text {IH }}$			0.1	20	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {r }}$	FULL and EMPTY	$\begin{array}{r} V_{C C}=\mathrm{Max} \mathrm{~V}_{1 H} \\ \text { stack FULL or stac } \end{array}$	$\begin{aligned} & \overline{V_{i}} \\ & P^{3}{ }^{3} \end{aligned}$		-470	-900	$\mu \mathrm{A}$
IIL	Low level input current: All inputs except FULL and EMPTY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ; \mathrm{V}_{\mathrm{iL}}$			-0.17	-0.4	mA
$1 / 2$	FULL and EMPTY	$V_{c c}=M a x ; V_{1 L}$ Stack FULL or Sta	$\begin{aligned} & \overline{V_{i}} \\ & \text { IPTY } \end{aligned}$		-1.12	-1.8	mA
${ }^{\mathrm{O}} \mathrm{OH}$	High level output current: FULL, EMPTY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ; \mathrm{V}_{\mathrm{OH}}=$	Min)		15	100	$\mu \mathrm{A}$
lozt	Hi-Z output current (HIGH); address bus (3-State)	$V_{\text {CC }}=M a x ; V_{\text {Ou }}$			0.9	20	$\mu \mathrm{A}$
lozu	Hi-Z output current (LOW); address bus (3-State)	$V_{C C}=M a x ; V_{\text {OU }}$			-0.6	-20	$\mu \mathrm{A}$
1	Input leakage current: All inputs except FULL and EMPTY	$V_{C C}=M a x ; V_{\mathbb{N}}$			0.03	0.1	mA
los	Short-circuit output current: address bus and HALF FULL	$V_{\text {cc }}=$ Max; V_{0}		-15	-68	-100	mA
los	WRITE, READ	$\mathrm{V}_{\text {cC }}=$ Max; V_{0}		-40	-73	-100	mA
Icc	Supply current from V_{cc}	$\begin{gathered} V_{C C}=\text { Max; Address } \\ \text { Bus }=\text { Hi-Z } \end{gathered}$	$\begin{aligned} &-55^{\circ} \mathrm{C} \rightarrow \\ &+25^{\circ} \mathrm{C} \rightarrow \\ &+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$.	$\begin{aligned} & 81 \\ & 81 \\ & 81 \end{aligned}$	$\begin{aligned} & 140 \\ & 122 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{BB}	Supply current from V_{BB}	$V_{B B}=M a x$	$\begin{array}{r} -55^{\circ} \mathrm{C} \rightarrow \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 63 \\ & 63 \\ & 63 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 95.5 \\ 90 \\ \hline \end{gathered}$	mA mA mA

AC ELECTRICAL CHARACTERISTICS $4.5 V_{\leq} V_{C C} \leq 5.5 V_{,}-55^{\circ} \mathrm{C} \leq T_{C \leq}+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETERS	REFERENCES		TEST CONDITIONS	LIMITS			UNIT
		From	To		Min	Typ	Max	
Pulse Widths								
$\mathrm{T}_{\text {LH }}$	SI high	\uparrow TSI	\downarrow SI	Stack approaching FULL ${ }^{4}$	30	13		ns
$\mathrm{T}_{\text {DH }}$	50 high	个SO	\downarrow ¢O	Stack approaching EMPTY ${ }^{4}$	30	16		ns
Write Cycle Timing								
$\mathrm{T}_{\text {LA }}$	Address stable delay	\downarrow ST	An	FULL＝Low； $50=$ High		40	60	ns
$\mathrm{T}_{\text {AW }}$	Address lead time	An	\downarrow WRITE		0			ns
T LAW	WRITE output active delay	\downarrow ST	\WRITE	FULL＝Low； $50=$ High	40	51	77	ns
Tw	WRITE output inactive delay	$\uparrow S T$	TWRTTE			3	10	ns
$T_{\text {WA }}$	Address lag time	TWRITE	An		20	34		ns
$\mathrm{T}_{\text {LT }}$	Address output disable	\uparrow ¢	An（Hi－Z）			37	65	ns
T_{LF}	FULL status active delay	\downarrow SI	$\uparrow F U L L$	Stack approaching FULL：$\overline{\text { SO }}=$ High		39	70	ns
$\mathrm{T}_{\text {LE }}$	EMPTY status inactive delay	151	\downarrow EMPTY	Stack＝EMPTY		40	70	ns
$\mathrm{T}_{\mathrm{HFH}}$	HALF－FULL status active delay	†\＄T	个HALF FULL	Stack approaching HALF－FULL		30	50	ns
$\mathrm{T}_{\text {DW }}$	WRITE output active after read	†కర	\downarrow WRITE	Both ST \＆READ＝Low		74	110	ns
Read Cycle Timing								
T_{DA}	Address stable delay	$\downarrow 50$	An	EMPTY＝Low；SI＝High		40	60	ns
$\mathrm{T}_{\text {AR }}$	Address lead time	An	\downarrow READ		－5			ns
$\mathrm{T}_{\text {dAR }}$	READ output active delay	\downarrow SO	\downarrow READ	EMPTY－Low；ST－High		48	75	ns
$\mathrm{T}_{\text {DR }}$	READ output inactive delay	TSO	TREAD			5	10	ns
$\mathrm{T}_{\text {RA }}$	Address lag time	TREAD	An		10	32		ns
$T_{\text {DT }}$	Address output disable	$\uparrow 50$	An（Hi－Z）			37	70	ns
$T_{\text {DE }}$	EMPTY status active delay	$\downarrow 50$	TEMPTY	Stack approaching EMPTY；SI＝High		38	50	ns
T_{DF}	FULL status inactive delay	$\downarrow 50$	\downarrow FULL	Stack＝FULL		38	65	ns
$\mathrm{T}_{\mathrm{HFL}}$	HALF－FULL status inactive delay	†ऽర	\downarrow HALF FULL	Stack exactly HALF－FULL		54	85	ns
TLR	READ output active after write	\uparrow 个	\downarrow READ	Both SO \＆WRITE＝Low		70	100	ns
Chip Enable Timing（Write）								
THEW	Chip enable hold time ${ }^{5}$	\downarrow \S	$\uparrow C E$	FULL＝Low；$\overline{S O}=$ High		1	10	ns
TSEW	Chip disable set－up time ${ }^{6}$	个CE	\downarrow ¢	FULL $=$ Low；$\overline{S O}=$ High	10	1		ns
TPEW	Chip enable delay time	\downarrow CE	\WRITE	FULL＝Low；SI＝Low；SO－High		69	110	ns
Chip Enable Timing（Read）								
$\mathrm{T}_{\text {HER }}$	Chip enable hold time ${ }^{5}$	150	TCE	EMPTY＝Low；ST＝High		1	12	ns
TSER	Chip disable set－up time ${ }^{6}$	TCE	\downarrow SO	EMPTY＝Low；ST＝High	10	1		ns
T PER	Chip enable delay time	$\downarrow C E$	\downarrow READ	EMPTY＝Low；SO＝Low；SI＝High		64	105	ns
Reset Timing								
$\mathrm{T}_{\text {RR }}$	RESET recovery	¢RESET	\WRITE	ST＝Low		57	85	ns
$\mathrm{T}_{\text {RL }}$	RESET pulse width（low）	\downarrow RESET	\uparrow RESET		25	8		ns
Full／Empty Override Timing								
$\mathrm{T}_{\text {FW }}$	Override recovery for FULL	\downarrow FULL	\downarrow WRITE	Stack＝Full；SI＝Low；SO＝High		70	110	ns
TER	Override recovery for EMPTY	\EMPTY	\downarrow READ	Stack＝EMPTY；$\overline{\text { OO }}=$ Low；SI＝High		65	105	ns

NOTES：

1．$V_{B B}$ should be obtained from a regulated 1.5 V supply．
2．Typical limits are： $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，
3．Because of the internal pull－up resistor on the FULL and EMPTY pins，a negative current is required to force the required voltage．
4．Such that write／read request is inhibited after stack becomes full／empty．
5．The earliest rising edge of CE such that the WRITE or READ output always occurs．
6．The latest rising edge of CE such that the WRITE or READ output never occurs．

AC TEST CIRCUITS

AC TEST WAVEFORMS

TIMING DIAGRAMS

FIFO RAM Controller (FRC)

TIMING DIAGRAMS (Continued)

Change of Cycle Timing

Empty Override Timing

Full Override Timing

Reset Timing

KEY:
High-impedance atate

Changing data

FIFO RAM Controller (FRC)

APPLICATIONS

[^12]
Signetics

Section 5 RAM Data Sheets

Military Products

INDEX

82S09	576-Bit TTL Bipolar RAM (64 $\times 9$)	711
82516	256-Bit TTL Bipolar RAM (256×1)	715
825212	2304-Bit TTL Bipolar RAM (256×9)	719
82S212-40	2304-Bit TTL Bipolar RAM (256×9)	719
54F189A	64-Bit TTL Bipolar RAM, Inverting, 3-State (16×4)	723
$54 \mathrm{S189}$	64 -Bit TTL Bipolar RAM (16×4)	729
8×350	2 K - Bit TTL Bipolar RAM (256×8)	733
8×350-40	2 K -Bit TTL Bipolar RAM (256×8)	738

Signetics

Military Blpolar Memory Products

DESCRIPTION

The organization of this device allows byte storage of data, including parity. Where parity is not monitored, the ninth bit can be used as a tag or status indicator for each word stored. Ideal for scratch pad, push down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S09 features Open collector outputs, chip enable input, and a very low current PNP input structure to enhance memory expansion.

82S09

576-Bit TTL Bipolar RAM (64×9)

Product Specification

FEATURES

- Address access time: 80ns max
- Write cycle time: 80ns max
- Input loading: $-150 \mu A \max$
- On-chip address decoding
- Schottky clamped
- Fully TTL compatible
- Output is Non-Blanked during Write
- One chip enable input
- Outputs: Open collector

APPLICATIONS

- Buffer memory
- Control register
- FIFO memory
- Push down stack
- Scratch pad

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-pin Ceramic Dual-In-Line 600mil-wide	82 S09/BXA
28-pin Ceramic Flat Pack	82 S09/BYA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High	+5.5	$V_{D C}$
T_{A}	Operating temperature range ${ }^{7}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}^{7}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ	Max	
Input voltage ${ }^{1}$						
V_{V}	Low				0.8	V
$V_{\text {IH }}$	High		2.2			V
$\mathrm{V}_{1 \mathrm{~K}}$	Clamp ${ }^{2}$	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
Output voltage ${ }^{1}$						
V_{OL}	Low ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.5	V
Input current						
		$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$				
I_{11}	Low	$V_{1}=0.45 \mathrm{~V}$			- 150	$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
ICLK	Leakage ${ }^{4}$	$\begin{aligned} \mathrm{V}_{\mathrm{cc}} & =5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}} & =5.5 \mathrm{~V} \end{aligned}$			60	$\mu \mathrm{A}$
Supply current ${ }^{5}$						
ICC		$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			200	mA
Capacitance ${ }^{\text {8 }}$						
		V cc $=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{Cout}^{\text {O }}$	Output			8	13	pF

TRUTH TABLE

MODE	CE	WE	$\mathrm{I}_{\mathbf{N}}$	$\mathbf{O}_{\mathbf{N}}$
Read	0	\mathbf{X}	Stored Data	
Write "0"	0	1	1	
Write"1"	0	0	1	0
Disabled	1	\mathbf{X}	X	1

X = Don't care
AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}^{7}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ	Max	
$\begin{aligned} & t_{\mathrm{tA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address access time Chip Enable access time					$\begin{aligned} & \hline 80 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { toD } \\ & \text { twa } \end{aligned}$	Disable time Valid disable time	Output Output	Chip Enable Write Enable			$\begin{aligned} & 50 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { twSA } \\ & \text { twh }_{\text {tWH }} \end{aligned}$	Setup time Hold time	Write Enable	Address	10 15			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { twsd } \\ & t_{\text {twH }} \end{aligned}$	Setup time Hold time	Write Enable	Data in	$\begin{gathered} 50 \\ 5 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
iwsc tWHC	Setup time Hold time	Write Enable	CE	10 10			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
'iwp	Write Enable pulse width ${ }^{6}$			50			ns

NOTES:

1. All voltage values are with respect to network ground.
2. Test each input one at a time.
3. Measured with the logic low stored. Output sink current is applied through a resistor to V_{cc}.
4. Measured with $\mathrm{V}_{1 H}$ applied to CE .
5. $I_{C C}$ is measured with the write enable and chip enable input grounded, all other inputs at 4.5 V , and the outputs open.
6. Minimum required to guarantee a Write into the slowest bit.
7. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.
8. Guaranteed, but not tested.

576-Bit TTL Bipolar RAM (64×9)

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Input Pulse Definition

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\mathrm{THL}}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

576-Bit TTL Bipolar RAM (64×9)

TIMING DIAGRAMS

MEMORY TIMING DEFINITIONS

SYMBOL	PARAMETER
tCE	Delay between beginning of Chip Enable low (with Address valid) and when Data Output becomes valid.
$t_{A A}$	Delay between beginning of valid Address (with Chip Enable low) and when Data Output becomes valid.
${ }^{\text {twsc }}$	Required delay between beginning of valid Chip Enable and beginning of Write Enable pulse.
${ }^{\text {twho }}$	Required delay between end of Write Enable pulse and end of valid input Data.
$t_{\text {WP }}$	Width of Write Enable pulse.
$t_{\text {WSA }}$	Required delay between beginning of valid Address and beginning of Write Enable pulse.
${ }^{\text {W }}$ WSD	Required delay between beginning of valid Data input and end of Write Enable pulse.
two	Delay between beginning of Write Enable pulse and when Data Output goes high (blanks).
${ }^{\text {twhc }}$	Required delay between end of Write Enable pulse and end of Chip Enable.
${ }^{\text {W WHA }}$	Required delay between end of Write Enable pulse and end of valid Address.
$t_{\text {WR }}$	Delay between end of Write Enable pulse and when Data Output becomes valid. (Assuming address still valid.)
$t_{\text {WA }}$	Delay between beginning of Write Enable pulse and when data output reflects complement of data input.

Signetics

82S16 256-Bit TTL Bipolar RAM

Product Specification

Military
Bipolar Memory Products

DESCRIPTION

The 82S16 is a Read/Write memory array which features 3-State outputs for optimization of word expansion in bused organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading.
During Write operation the logical state of the output follows the complement of the data input being written. This feature allows faster execution of Write/Read cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a Write cycle.

The 82S16 has fast Read access and Write cycle times, and thus is ideally suited
in high-speed memory applications such as cache, buffers, scratch pads, writable control stores, etc.

FEATURES

- Address access time: 70ns max
- Write cycle time: 70ns max
- Input loading: -250mA max
- Output follows complement of data input during Write
- Three chip enable inputs
- On-chip address decoding
- Output: 3-State
- Schottky clamped
- TTL compatible

APPLICATIONS

- Buffer memory
- Writable control store
- Memory mapping
- Push down stack
- Scratch pad

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic Dual-In-Line 300 mil-wide	$82 S 16 /$ BEA
Ceramic Flat Pack	$82 S 16 /$ BFA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	V
$\mathrm{~V}_{1}$	Input voltage	+5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage High	+5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

TRUTH TABLE

MODE	CE *	WE	$\mathbf{D}_{\text {IN }}$	D $_{\text {OUT }}$
Read	0	1	X	Stored Data
Write " 0 "	0	0	0	1
Write 1 "	0	0	1	0
Disabled	1	X	X	Hi-Z

* " 0 " = All CE inputs Low: "1" = One or more CE inputs High. $X=$ Don't care.

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq V_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \\ & \hline \end{aligned}$	Address access time Chip enable access time	Output Output	Address Chip enable		$\begin{aligned} & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tw}} \end{aligned}$	Disable time ${ }^{10}$ Valid time disable time ${ }^{10}$	Output Output	Chip enable Write enable		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {WSA }}$ ${ }^{2}$ WHA	Setup time Hold time	Write enable	Address	20 10	5 0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {WSD }} \\ & \mathrm{t}_{\text {WHD }} \end{aligned}$	Setup time Hold time	Write enable	Data in	50 10	$\begin{gathered} 30 \\ 0 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {wse }}$ $t_{\text {WHC }}$	Setup time Hold time	Write enable	CE	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{WP}	Write enable pulse width ${ }^{9}$			40	15		ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test each input one at a time.
4. Measured with a logic low stored and $\mathrm{V}_{\mathbb{L}}$ applied to $\mathrm{CE} 1, \mathrm{CE} 2$, and CE 3 .
5. Measured with a logic high stored. Output sink current is supplied through a resistor to V_{cc}.
6. Measured with V_{IH} applied to CE1, CE2, and CE3.
7. Duration of the short-circuit should not exceed 1 second.
8. I_{cc} is measured with the Write enable and memory enable inputs grounded, all other inputs at 4.0 V and the output open.
9. Minimum required to guarantee a Write into the slowest bit.
10. Guaranteed, but not tested.

TIMING DIAGRAMS

MEMORY TIMING DEFINITIONS

TCE Delay between beginning of chip enable low (with address valid) and when data output becomes valid.
$T_{C D}$ Delay between when chip enable becomes high and data output is in off state.
$T_{A A}$ Delay between beginning of valid address (with chip enable low) and when data output becomes valid.

TwsC Required delay between beginning of valid chip enable and beginning of Write enable pulse.
TWHD Required delay between end of Write enable pulse and of valid input data.
TWP Width of Write enable pulse.
TWSA Required delay between beginning of valid address and beginning of Write enable pulse.

TwSD Required delay between beginning of valid data input and end of Write enable pulse.
TwD Delay between beginning of Write enable pulse and when data output reflects complement of data input.
TWHC Required delay between end of Write enable pulse and end of chip enable.
Twha Required delay between end of Write enable pulse and end of valid address.

256-Bit TTL Bipolar RAM (256×1)

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The organization of the 82S212-40 allows byte wide storage of data, including parity. Where parity is not required, the ninth bit can be used a a tag for each word stored. The 82S212-40 is ideal for scratch pads, push down stacks, buffer memories, and other internal memory applications in which space and performance requirements dictate a wide data path in favor of word depth.

Data inputs and outputs are common (common I/O) with separate output disable (OD) line that allows ease of Read/ Write operations using a common bus.
$-55^{\circ} \mathrm{C}$ operation can be guaranteed after a 60 second warmup.

82S212/82S212-40 2304-Bit TTL Bipolar RAM (256×9)

Product Specification

FEATURES

- Address access time: 70ns max
- Schottky clamped TTL
- One chip enable input
- Common I/O
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Cache memory
- Buffer storage
- Writable control store

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Ceramic Dual-In-Line 400mil-wide	$82 S 212 /$
BWA-40	
22-pin Ceramic Dual-In-Line 400mil-wide	$82 S 212 /$ BWA

PIN CONFIGURATION

BLOCK DIAGRAM

TYPICAL I/O STRUCTURE

2304-Bit TTL Bipolar RAM (256×9)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{I}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Off-State Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ${ }^{2}$

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.75	5.0	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			+0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level Output current			-2	mA
I_{OL}	Low-level Output current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{1}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Output voltage ${ }^{2}$						
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	$\begin{aligned} & V_{C C}=\text { Min, } l_{O H}=\text { Max } \\ & V_{C C}=M \text { Min, } I_{O L}=M a x \end{aligned}$	2.4		0.5	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$			-150 40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$\begin{aligned} & \mathrm{loz} \\ & \mathrm{los} \end{aligned}$	Hi-Z State Short circuit ${ }^{4,5}$	$\begin{gathered} V_{C C}=\text { Max } \\ C E=H i g h, \text { or } O D=H i g h, V_{O}=5.5 \mathrm{~V} \\ C E=H i g h, o r O D=H i g h, V_{O}=0.5 \mathrm{~V} \\ V_{C C}=\text { Min, } C E=O D=L o w, V_{0}=O V \end{gathered}$	-15		60 -100 -80	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Supply current						
ICC		$\mathrm{V}_{\mathrm{cc}}=$ Max		135	200	mA
Capacitance ${ }^{6}$						
$\begin{aligned} & \mathrm{C}_{1 \times 1} \\ & \mathrm{C}_{\mathrm{OUUT}} \end{aligned}$	Input Output	$\begin{aligned} V_{c c} & =\mathrm{Nom} \\ V_{1} & =2.0 \mathrm{~V} \\ V_{0} & =2.0 \mathrm{~V} \end{aligned}$		5 8	10 13	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{1}$

SYMBOL	PARAMETER ${ }^{1}$	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{3}$	Max	
$t_{\text {AA }}$	Address access time	Output	Address			70	ns
$\begin{aligned} & \mathrm{COE} \\ & \mathrm{COE} \\ & \hline \end{aligned}$	Output Enable time Output Enable time	Output Output	OD Chip enable			$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { too } \\ & t_{\text {co }} \end{aligned}$	Output Disable time Output Disable time	Output Output	OD Chip enable			$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {WP }}$	Write Pulse width			45			ns
${ }^{t_{\text {WSC }}}$	Setup time Hold time	Write Chip enable	Chip enable Write	10 10			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\text {WSD }} \\ & t_{\text {WHD }} \end{aligned}$	Setup time Hold time	Write Data	DataWrite	45 5			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { twSA } \\ & \text { t wha }^{\text {tw }} \end{aligned}$	Setup time Hold time	Write Address	Address Write	$\begin{aligned} & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tso } \\ & \text { tho } \end{aligned}$	Setup time (from disabled state) Hold time	Chip enable OD	OD Chip enable	5 5			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warmup.
2. All voltages are with respect to network ground terminal.
3. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. Measured on one pin at a time.
5. Duration of los test should not exceed one second.
6. Guaranteed but not tested.

TRUTH TABLE

MODE	WE	CE	OD	D $_{\text {N }}$ IN/OUT
Disable output	X	X	1	Hi-Z
Disable R/W	X	1	X	Hi-Z
Write	0	0	1	Data in
Read	1	0	0	Data out

X = Don't care

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Logic Products

FEATURES

- Address access time: 9ns Max
- Power dissipation: 4.3mW/bit typ
- Schottky clamped TTL
- One chip enable
- Inverting outputs
- I/O
- Inputs: PNP Buffered
- Outputs: 3-State

54F189A

64-Bit TTL Bipolar RAM, Inverting (3-State)

Objective Specification

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

DESCRIPTION

The 54F189A is a high speed, 64-Bit RAM organized as a 16 -word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are in High impedance state whenever the Chip Enable (CE) is High. The outputs are active only in the READ mode (WE = High) and the output data is the complement of the stored data.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic DIP	$54 F 189 \mathrm{~A} / \mathrm{BEA}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	54F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{3}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CE	Chip Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
WE	Write Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\bar{Q}_{0}-\bar{Q}_{3}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUT	
OPERATING MODE				
	WE	$\mathrm{D}_{\boldsymbol{n}}$	$\boldsymbol{Q}_{\boldsymbol{n}}$	
L	H	X	Complement of stored data	Read
L	L	L	High impedance	Write "0"
L	L	H	High impedance	Write "1"
H	X	X	High impedance	Disable input

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage range	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbb{I}}$	Input voltage range	-0.5 to +7.0	V
$\mathrm{I}_{\mathbb{N}}$	Input current range	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state range	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
l_{K}	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
$\mathrm{loL}^{\text {L }}$	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1,4}$	LIMITS			UNIT	
			Min	Typ ${ }^{2}$	Max			
V_{OH}	High-level output voltage			$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I L}=\operatorname{Max}, \\ & V_{I H}=M i n, I_{O H}=\operatorname{Max} \end{aligned}$	2.4			V
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max}, \\ & V_{I H}=\operatorname{Min}, I_{L L}=\operatorname{Max} \end{aligned}$		0.35	0.50	V	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$		-0.73	-1.2	V	
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
I_{IH}	High-level input current		$V_{C C}=$ Max, $V_{i}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {il }}$	Low-level input current	Others	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.6	mA	
		CE, WE				-1.2	mA	
$\mathrm{l}_{\mathrm{OZH}}$	Off-state output current High-level voltage applied		$V_{c c}=M a x, V_{0}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$	
lozl	Off-state output current Low-level voltage applied		$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$	
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=$ Max	-60		-150	mA	
I_{CC}	Supply current (total)		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{CE}=\mathrm{WE}=\mathrm{GND}$		55	85	mA	
$\mathrm{C}_{\text {IN }}$	Input capicitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$		4		pF	
$\mathrm{Cout}^{\text {O }}$	Output capicitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		7		pF	

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Access time	Propagation delay $A_{n} \text { to } Q_{n}$		Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \text { tpZH } \\ & t_{\text {PZZ }} \end{aligned}$		Enable time $C E$ to \bar{Q}_{n}		Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t} \mathrm{LZ} \end{aligned}$	Disable time CE to $\overline{\mathrm{C}}_{\mathrm{n}}$		Waveform 3	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 7.0 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \text { tyZH } \\ & \text { tpZZ } \end{aligned}$	Response time	Enable time WE to \bar{Q}_{n}	Waveform 4	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\begin{aligned} & \mathrm{t} \mathrm{HHZ} \\ & \mathrm{tpLZ} \\ & \hline \end{aligned}$	Write Recovery time	Disable time WE to Q_{n}	Waveform 4	3.5 1.5	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	3.0 1.5	$\begin{array}{r} 10.0 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{s}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time A_{n} to WE	Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \hline \operatorname{tr}_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time WE to A_{n}	Waveform 4	0			0 0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{s}(H) \\ & \mathrm{t}_{\delta}(L) \end{aligned}$	Setup time $D_{n} \text { to WE }$	Waveform 4	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$			9.5 8.5		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{th}^{\prime}(\mathrm{H}) \\ & \mathrm{th}^{(L L)} \end{aligned}$	Hold time WE to D_{n}	Waveform 4	0 0			$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time CE (falling edge) to WE (falling edge)	Waveform 4	0			0		ns
$h_{\text {L }}(\mathrm{L})$	Hold time WE (falling edge)to CE (rising edge)	Waveform 4	6.5			8.0		ns
$t_{\text {w }}(\mathrm{L})$	Pulse width, Low WE	Waveform 4	7.0			8.5		ns

NOTES:

1. For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{Os}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC WAVEFORMS

Waveform 1. Read Cycle, Address Access Time

Waveform 2. Read Cycle, Chip Enable Access Time

Waveform 3. Read Cycle, Chip Disable Time

Waveform 4. Write Cycle

NOTE: For all waveforms $V_{M}=1.5 \mathrm{~V}$

64-Bit TTL Bipolar RAM (16×4)

TEST CIRCUITS AND WAVEFORMS

Signetics

Military
 Bipolar Memory Products

DESCRIPTION

This family of Read/Write Random Access Memories is ideal for use in scratch pad and high-speed buffer memory applications.

These products are fully decoded memory arrays with separate input and output lines. They feature PNP inputs and 1 chip enable line for ease of memory expansion.
During Write, the outputs of each product assume the logic state defined in the truth table.

FEATURES

- Output access time: 50ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- On-chip address decoding
- One chip enable input

54S189

64-Bit TTL Bipolar RAM

Product Specification

- Output options:

54S189: 3-State

- Schottky clamped
- TTL compatible

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic Dual-In-Line 300 mil-wide	54 S189/BEA
16-Pin Ceramic FlatPack	54 S189/BFA

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{6}$	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
Input voltage ${ }^{1}$						
$V_{\text {IL }}$	Low				0.80	V
$V_{\text {IH }}$	High		2.0			V
$V_{\text {IK }}$	Clamp ${ }^{7}$	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$			-1.5	V
Output voltage ${ }^{1}$						
		CE = Low				
V_{OL}	Low ${ }^{2,3}$	$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}$			0.5	V
V_{OH}	High	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{5}$						
		$V_{C C}=5.25 \mathrm{~V}$				
$\mathrm{I}_{\text {L }}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$			25	$\mu \mathrm{A}$
Output current ${ }^{5}$						
Icle	Leakage	$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{~V}_{C C}=5.25 \mathrm{~V}$			100	$\mu \mathrm{A}$
los	Short curcuit	$\overline{C E}=$ Low, $\mathrm{V}_{0}=0 \mathrm{~V}$	-30		-100	mA
loz	Hi-Z	$2.4 \geq V_{0} \geq=0.4 \mathrm{~V}$			± 50	$\mu \mathrm{A}$
Supply current ${ }^{5}$						
Icc		$V_{C C}=5.25 \mathrm{~V}$			110	mA
Capacitance ${ }^{6}$						
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{Cout}^{\text {coun }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{CE}=\mathrm{High}$		8	13	pF

TRUTH TABLE

MODE	CE	WE	$\mathrm{D}_{\mathbf{I N}}$	Data Out
Read	0	1	X	Stored Data
Write " 0 "	0	0	0	Hi Z
Write "1"	0	0	1	$\mathrm{Hi}-\mathrm{Z}$
Disable	1	X	X	Hi Z

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ	Max	
$t_{A C}$	Address access time Chip enable access time					$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{CD}	Disable time	Output	Chip enable			40	ns
$t_{\text {WD }}$	Response time	Output	Write enable			50	ns
$t_{\text {WR }}$	Write recovery time					40	ns
$\begin{aligned} & \mathbf{t}_{\text {WSA }} \\ & \mathbf{t}^{\text {WHA }} \\ & \hline \end{aligned}$	Setup time Hold time	Write enable	Address	0 10			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
twsd $t_{\text {WHD }}$	Setup time Hold time	Write enable	Data in	30 10			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {WSC }}$ twhe	Setup time Hold time	Write enable	CE	0			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {wp }}$	Write enable pulse width ${ }^{4}$			30			ns

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Output sink current is supplied through a resistor to $V_{c c}$.
3. All sense outputs in Low state.
4. To guarantee a Write into the slowest bit.
5. Positive current is defined as into the terminal referenced.
6. Positive logic definition: $\mathrm{High}=+5.0 \mathrm{~V}$, Low $=\mathrm{GND}$.
7. test each input one at a time.
8. Guaranteed, but not tested.

TEST CIRCUIT AND WAVEFORMS

64-Bit TTL Bipolar RAM (16×4)

TIMING DIAGRAMS

Military
Bipolar Memory Products

DESCRIPTION

The 8X350 bipolar RAM is designed principally as a working storage element in an 8×305 based system. Internal circuitry is provided for direct use in 8×305 applications. When used with the 8X305, the RAM address and data busses are tied together and connected to the IV bus of the system.

The data inputs and outputs share a common I/O bus with 3-State outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Ceramic DIP 400 mil-wide	$8 \times 350 /$ BWA

8X350

2K-Bit TTL Bipolar RAM (256×8)

Product Specification

FEATURES

- On-chip address latches
- Schottky clamped
- One master enable input
- Directly interfaces with the 8X305 blpolar microprocessor with no external logic
- May be used on left or right bank
- Common I/O:
- Inputs: PNP buffered
- Outputs: 3-State

APPLICATIONS

- 8X305 working storage

BLOCK DIAGRAM

PIN CONFIGURATION

TYPICAL I/O STRUCTURE

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High	+5.5	$V_{D C}$
V_{O}	Output voltage Off-state	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{2}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ	Max	
Input voltage.						
V_{l}	Low				0.8	V
$V_{1 H}$	High		2.0			V
V_{IK}	Clamp ${ }^{3}$	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		$\mathrm{V}_{C C}=4.75 \mathrm{~V}$				
$\mathrm{V}_{\text {OL }}$	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$			0.5	V
V_{OH}	High ${ }^{5}$	$\mathrm{IOH}^{\text {a }}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{C C}=5.25 \mathrm{~V}$				
I_{1}	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{H}}$	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cc }}=5.25 \mathrm{~V}$				
loz	Hi-Z state	$\mathrm{ME}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			60	$\mu \mathrm{A}$
		ME $=H \mathrm{High}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
los	Short circuit ${ }^{\text {3 }}$ 6, 13	SC = WC, ME = Low				
		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current ${ }^{7}$						
lcc		$V_{C C}=5.25 \mathrm{~V}$			200	mA
Capacitance ${ }^{13}$						
		$\mathrm{ME}=$ High, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{Cout}^{\text {O }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

TRUTH TABLE

MODE	ME	SC	WC	MCLK	BUSSED DATA ADDRESS LNES
Hold address Disable data out Input new address Hold address Disable data out Hold address Write data Hold address Disable data out Hold address Read data Undefined state ${ }^{12}$ Hold address Disable data out$\quad 0$	X	X	X	Hi-Z data out	

X = Don't care

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{2}$

SYMBOL	PARAMETER	T0	FROM	LIMITS			UNIT
				Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{E} 1} \\ & \mathrm{t}_{\mathrm{E} 2} \end{aligned}$	Output enable time Output enable time	Data out Data out	SC- ME-			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{D} 1} \\ & \mathrm{t}_{\mathrm{D} 2} \end{aligned}$	Output disable time Output disable time	Data out Data out	$\begin{aligned} & \mathrm{SC+} \\ & \mathrm{ME}+ \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{w}	Master clock pulse width ${ }^{8}$			50			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{sA}} \\ & \mathrm{t}_{\mathrm{HA}} \end{aligned}$	Setup time Hold time	MCLK- Address	Address MCLK-	$\begin{aligned} & 40 \\ & 10 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\stackrel{t}{S D}_{\boldsymbol{t}_{\mathrm{HD}}}$	Setup time Hold time	MCLKData in	Data in MCLK-	$\begin{aligned} & 45 \\ & 10 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{S} 3} \\ & \mathrm{t}_{\mathrm{H} 3} \end{aligned}$	Setup time Hold time	$\begin{gathered} \text { MCLK- } \\ \mathrm{ME}_{+} \end{gathered}$	ME-MCLK-	$\begin{gathered} 50 \\ 5 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{\mathrm{H} 2} \\ & \hline \end{aligned}$	Setup time Hold time	$\begin{aligned} & \text { MCLK- } \\ & \text { ME- } \end{aligned}$	$\begin{aligned} & \text { ME- } \\ & \text { MCLK- } \end{aligned}$	$\begin{gathered} 40 \\ 5 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathbf{t}_{\mathbf{t} 2} \\ & \mathbf{t}_{\mathrm{H} 1} \\ & \mathrm{t}_{\mathrm{H} 4} \\ & \hline \end{aligned}$	Setup time Hold time Hold time	$\begin{aligned} & \text { ME- } \\ & \mathrm{SC}- \\ & \mathrm{WC}- \end{aligned}$	SC-, WC-MCLK-MCLK-	5 5 5			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. All voltage values are with respect to network ground terminal.
2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.
3. Test each pin one at a time.
4. Measured with a logic Low stored. Output sink current is supplied through a resistor to V_{cc}.
5. Measured with a logic High stored.
6. Duration of the short circuit should not exceed 1 second.
7. Icc is measured with the Write enable and Memory enable inputs grounded, all other inputs $\geq 4.0 \mathrm{~V}$ and the output open.
8. Minimum required to guarantee a Write into the slowest bit.
9. Applied to the 8×305 based system with the data and address pins tied to the IV Bus.
10. $S C+M E=1$ to avoid bus conflict.
11. $W C+M E=1$ to avoid bus conflict.
12. The SC and WC outputs from the 8×305 are never at 1 simultaneously.
13. Guaranteed, but not tested.

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

$\mathrm{t}_{\text {S1 }}$	Required delay between beginning of Master Enable Low and falling edge of Master Clock.
$\mathrm{t}_{\text {SA }}$	Required delay between beginning of valid address and falling edge of Master Clock.
$t_{\text {E1 }}$	Delay between beginning of Select Command Low and beginning of valid data output on the IV Bus.
te2	Delay between when Master Enable becomes Low and beginning of valid data output on the IV Bus.
t_{HA}	Required delay between falling edge of Master Clock and end of valid Address.
$\mathrm{t}_{\mathrm{D} 1}$	Delay between when Select Command becomes High and end of valid data output on the IV Bus.
$t_{D 2}$	Delay between when Master Enable becomes High and end of valid data output on the IV Bus.
t_{H}	Required delay between falling edge of Master Clock and when Select Command becomes Low.
$\mathrm{t}_{\mathbf{H} 2}$	Required delay between falling edge of Master Clock and when Master Enable becomes Low.
$\mathrm{t}_{\text {S } 2}$	Required delay between when Select Command or Write Command becomes Low and when Master Enable becomes Low.
t_{w}	Minimum width of the Master Clock pulse.
tso	Required delay between beginning of valid data input on the IV Bus and falling edge of Master Clock.
t_{53}	Required delay between when Master Enable becomes Low and falling edge of Master Clock.
tho	Required delay between beginning of valid data input on the IV Bus.
th3	Required delay between falling edge of Master Clock and when Master Enable becomes High.
$\mathrm{t}_{\mathrm{H} 4}$	Required delay between falling edge of Master Clock and when Write Command becomes Low.

TYPICAL 8X350 APPLICATION

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Input Pulse Definition

INPUT PULSE CHARACTERISTICS				
$\mathbf{V}_{\mathbf{M}}$	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

Signetics

Military
Bipolar Memory Products

Product Specification

DESCRIPTION

The 8X350-40 bipolar RAM is designed principally as a working storage element in an 8X305 based system. Internal circuitry is provided for direct use in 8X305 applications. When used with the 8×305, the RAM address and data busses are tied together and connected to the IV bus of the system.
The data inputs and outputs share a common I/O bus with 3-State outputs.
$-55^{\circ} \mathrm{C}$ operation can be guaranteed after a 60 second warmup.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
22-pin Ceramic DIP 400 mil-wide	$8 \times 350 /$ BWA-40

8X350-40 2K-Bit TTL Bipolar RAM (256×8)

FEATURES

- On-chip address latches
- Schottky clamped
- One master enable input
- Directly interfaces with the 8X305 bipolar microprocessor with no external logic
- May be used on left or right bank
- Common I/O:
- Inputs: PNP buffered
- Outputs: 3-State

APPLICATIONS

- 8X305 working storage

BLOCK DIAGRAM

TYPICAL I/O STRUCTURE

2K-Bit TTL Bipolar RAM (256 $\times 8$)

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High	+5.5	$V_{D C}$
V_{O}	Output voltage Oft-state	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{2}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			Min	Typ	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
$V_{\mathbb{H}}$	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp ${ }^{3}$	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}}$			-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low ${ }^{4}$ High^{5}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
		$V_{C C}=5.25 \mathrm{~V}$				
ILL	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
${ }_{1}{ }_{H}$	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current						
		$V_{C c}=5.25 \mathrm{~V}$				
loz	Hi-Z state	$M E=H i g h, V_{0}=5.5 \mathrm{~V}$			60	$\mu \mathrm{A}$
los	Short circuit ${ }^{3,6,13}$	$\overline{M E}=H \mathrm{igh}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ $S C=W C \cdot M E=\text { LOW }$			-100	$\mu \mathrm{A}$
		$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current ${ }^{7}$						
Icc		$V_{C C}=5.25 \mathrm{~V}$			200	mA
Capacitance ${ }^{13}$						
C_{IN}	Input	$\begin{gathered} \overline{M E}=\begin{array}{l} \text { High, } V_{c c}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5	10	pF
COUT	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

TRUTH TABLE

MODE	ME	SC	WC	MCLK	BUSSED DATA/ ADDRESS LINES
Hold address Disable data out Input new address Hold address Disable data out Hold address Write data Hold address Disable data out Hold address Read data Undefined state Hold address Disable data out	0	X	X	X	Hi-Z data out

NOTE:
X = Don't care

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}^{2}$

SYMBOL	PARAMETER	TO	FROM	UMITS			UNIT
				Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{E} 1} \\ & \mathrm{t}_{\mathrm{E} 2} \end{aligned}$	Output enable time Output enable time	Data out Data out	$\begin{aligned} & \mathrm{SC}- \\ & \mathrm{ME}- \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{D} 1} \\ & \mathrm{t}_{\mathrm{D} 2} \end{aligned}$	Output disable time Output disable time	Data out Data out	$\begin{aligned} & \mathrm{SC}+ \\ & \mathrm{ME}+ \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{W}	Master clock pulse width ${ }^{8}$			50			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{sA}} \\ & t_{\mathrm{t} A} \end{aligned}$	Setup time Hold time	MCLK- Address	Address MCLK-	$\begin{aligned} & 40 \\ & 10 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{SD}} \\ & \mathrm{t}_{\mathrm{HO}} \end{aligned}$	Setup time Hold time	MCLKData in	Data in MCLK-	$\begin{aligned} & 45 \\ & 10 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{S} 3} \\ & \mathrm{t}_{\mathrm{H} 3} \end{aligned}$	Setup time Hold time	MCLKME+	ME-MCLK-	$\begin{gathered} 50 \\ 5 \end{gathered}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{s}_{1}} \\ & \mathrm{t}_{\mathrm{H} 2} \end{aligned}$	Setup time Hold time	$\begin{aligned} & \text { MCLK- } \\ & \text { ME- } \end{aligned}$	ME-MCLK-	$\begin{gathered} 40 \\ 5 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s} 2} \\ & t_{\mathrm{t}_{11}} \\ & \mathrm{t}_{14} \end{aligned}$	Setup time Hold time Hold time	$\begin{aligned} & \mathrm{ME}- \\ & \mathrm{SC}- \\ & \mathrm{WC}- \end{aligned}$	SC-, WC-MCLK-MCLK-	5 5 5			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. All voltage values are with respect to network ground terminal.
2. The operating ambient temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2-minute warm-up.
3. Test each pin one at a time.
4. Measured with a logic Low stored. Output sink current is supplied through a resistor to V_{CC} -
5. Measured with a logic High stored.
6. Duration of the short circuit should not exceed 1 second.
7. $I_{C C}$ is measured with the write enable and memory enable inputs grounded, all other inputs $\geq 4.0 \mathrm{~V}$ and the output open.
8. Minimum required to guarantee a Write into the slowest bit.
9. Applied to the 8×305 based system with the data and address pins tied to the IV Bus.
10. $S C+M E=1$ to avoid bus conflict.
11. $W C+M E=1$ to avoid bus conflict.
12. The SC and WC outputs from the 8×305 are never at 1 simultaneously.
13. Guaranteed, but not tested.

2K-Bit TTL Bipolar RAM (256×8)

TIMING DIAGRAM

MEMORY TIMING DEFINITIONS

$\mathrm{t}^{1} 1$	Required delay between beginning of Master Enable Low and falling edge of Master Clock.
$\mathrm{t}_{\text {SA }}$	Required delay between beginning of valid address and falling edge of Master Clock.
$t_{E 1}$	Delay between beginning of Select Command Low and beginning of valid data output on the IV Bus.
$t_{\text {E } 2}$	Delay between when Master Enable becomes Low and beginning of valid data output on the IV Bus.
t_{HA}	Required delay between falling edge of Master Clock and end of valid Address.
$t_{D 1}$	Delay between when Select Command becomes High and end of valid data output on the IV Bus.
${ }^{\text {t }} 2$	Delay between when Master Enable becomes High and end of valid data output on the IV Bus.
th1	Required delay between falling edge of Master Clock and when Select Command becomes Low.
${ }^{\text {H }} \mathrm{H}$	Required delay between falling edge of Master Clock and when Master Enable becomes Low.
t_{5}	Required delay between when Select Command or Write Command becomes Low and when Master Enable becomes Low.
tw	Minimum width of the Master Clock pulse.
$\mathrm{t}_{\text {SD }}$	Required delay between beginning of valid data input on the IV Bus and falling edge of Master Clock.
ts3	Required delay between when Master Enable becomes Low and falling edge of Master Clock.
${ }^{\text {LHD }}$	Required delay between beginning of valid data input on the IV Bus.
$t^{\text {H3}}$	Required delay between falling edge of Master Clock and when Master Enable becomes High.
414	Required delay between falling edge of Master Clock and when Write Command becomes Low.

TYPICAL 8X350 APPLICATION

TEST LOAD CIRCUIT

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pf}$

VOLTAGE WAVEFORMS

Input Pulse Definition

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

Signetics

Military Products

Section 6
 PROM Data Sheets

INDEX
 NDEX

$82 S 115$ 4K-Bit TTL Bipolar PROM (512×8) 745
$82 S 115$
82S23 $256-$ Bit TTL Bipolar PROM (32×8) 749
$82 S 123$ 256-Bit TTL Bipolar PROM (32×8) 749
82S23A 256-Bit TTL Bipolar PROM (32×8) 752
82S123A 256-Bit TTL Bipolar PROM (32×8) 752
82S23B
82S123B256-Bit TTL Bipolar PROM (32×8)755
1K-Bit TTL. Bipolar PROM (256×4) 75882S126
82S12982S126A82S129A
82S130
82S13182S130A82S131A82S13782S137A82S14182S147A825181
82LS181
82S185
82S185A
82S185B
82S191
82S191A
82HS195A82S291A82HS321A82HS321B82HS641A82HS641B
755
256-Bit TTL Bipolar PROM (32×8)
1K-Bit TTL Bipolar PROM (256×4) 758
1K-Bit TTL Bipolar PROM (256×4) 761
1K-Bit TTL Bipolar PROM (256×4) 761
2 K -Bit TTL Bipolar PROM (512×4) 764
$2 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (512×4) 764
2 K -Bit TTL Bipolar PROM (512×4) 767
$2 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (512×4) 767
4K-Bit TTL Bipolar PROM (1024×4) 770
4 K-Bit TTL Bipolar PROM (1024×4) 773
4K-Bit TTL Bipolar PROM (512×8) 776
$82 S 147$ 4 K-Bit TTL Bipolar PROM (512×8) 779
4 K-Bit TTL Bipolar PROM (512×8) 779
82S147B 4 K-Bit TTL Bipolar PROM (512×8) 782
8 K -Bit TTL Bipolar PROM (1024×8) 785
82S181A 8K-Bit TTL Bipolar PROM (1024×8) 788
8K-Bit TTL Bipolar PROM (1024×8) 791
8K-Bit TTL Bipolar PROM (2048×4) 794
$8 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (2048×4) 794
$8 \mathrm{~K}-$ Bit TTL Bipolar PROM (2048×4) 794
16K-Bit TTL Bipolar PROM (2048×8) 797
$16 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (2048×8) 797
16K-Bit TTL Bipolar PROM (4096 $\times 4$) 801
16K-Bit TTL Bipolar PROM (2048×8) 804
32K-Bit TTL Bipolar PROM (4096×8) 807
$32 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (4096×8) 807
$64 \mathrm{~K}-\mathrm{Bit}$ TTL Bipolar PROM (8192×8) 810
64 K -Bit TTL Bipolar PROM (8192×8) 810

Military
Bipolar Memory Products

$82 S 115$ 4K-Bit TTL Bipolar PROM (512×8)

Product Specification

put if the chip is enabled, and causes outputs to go to the Hi-Z State if the chip is disabled.
A negative Strobe transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the $\mathrm{Hi}-\mathrm{Z}$ condition if the chip was disabled.

FEATURES

- Address access time: 90ns max
- Input loading: -150 1 A max
- On-chip storage latches
- Schottky clamped
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Microprogramming
- Hardware algorithms
- Character generation
- Control store
- Sequential controllers

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic Dual In-Line 600mil-wide	$82 S 115 /$ BJA
24-Pin Ceramic FlatPack	82 S115/BYA

held in their previous state (High, Low, or $\mathrm{Hi}-\mathrm{Z}$) as long as Strobe is Low, regardless $\mathrm{Hi}-\mathrm{Z}$) as long as Strobe is Low, regardless
of the state of address or chip enable. A positive Strobe transition causes data positive Strobe transition causes data
from the applied address to reach the out-

DESCRIPTION

The 825115 is field programmable and includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations. A D-type latch is used to enable the 3-State output drivers. In the Transparent Read mode, stored data is addressed by applying a binary code to the address inputs while holding Strobe High. In this mode the bit drivers will be controlled solely by CE_{1} and CE_{2} lines.

In the Latched Read mode, outputs are

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}, V_{O}	Input voltage	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN CONFIGURATION

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{5}$	LIMITS			UNIT
			Min	Typ ${ }^{8}$	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
V_{H}	High		2.0			v
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}_{1} \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$C E_{1}=$ Low, $\mathrm{CE}_{2}=$ High				
$V_{\text {OL }}$	Low	$\mathrm{l}_{\mathrm{O}}=9.6 \mathrm{~mA}$		0.4	0.5	v
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{5}$						
		$V_{C C}=5.5 \mathrm{~V}$				
ILL	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$l_{1 H}$	High	$V_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current ${ }^{5}$						
		$V_{\text {cc }}=5.5 \mathrm{~V}$				
loz	Hi-Z State	$\mathrm{CE}_{1}=$ High or $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
		$C E_{1}=$ High or $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{0}=0.5 \mathrm{~V}$			-100	$\mu \mathrm{A}$
los	Short circuit ${ }^{1}$	$C E_{1}=$ Low, $C E_{2}=$ High, $\mathrm{V}_{0}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
CE_{1}						
CE_{2}		$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low		130	185	mA
lcc		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
Capacitance ${ }^{9}$						
		$\mathrm{CE}_{1}=$ High or $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
Cout	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{8}$	Max	
${ }_{t_{A A}}$	Access time ${ }^{6}$	Output Output	Address Chip enable	Latched or transparent Read ${ }^{2,4}$		$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{CD}	Disable time	Output	Chip disable	Latched or transparent Read ${ }^{2,4}$		20	55	ns
t^{CDS} ${ }_{\mathrm{t}}^{\mathrm{CDH}}$	Setup time Hold time	Output	Chip enable	Latched Read only ${ }^{3,4}$	$\begin{aligned} & 50 \\ & 15 \end{aligned}$			
$\mathrm{t}_{\text {ADH }}$	Hold time	Address	Strobe	Latched Read only ${ }^{3,4}$	5	0		
$\mathrm{t}_{\text {SW }}$	Strobe pulse width			Latched Read only ${ }^{3,4}$	40	15		ns
$\mathrm{t}_{\text {SL }}$	Strobe latch time			Latched Read only ${ }^{3,4}$	90	35		ns
t_{DL}	Strobe delatch time			Latched Read only ${ }^{3,4}$			45	ns

NOTES:

1. No more than one output should be grounded at the same time and strobe should be disabled Strobe is in the High state.
2. If the Strobe is High, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear $T_{A A}$ nanoseconds after the address has changed to $T_{C E}$ nanoseconds after the output circuit is enabled. $T_{C D}$ is the time required to disable the output and switch it to an off or High impedance state after it has been enabled.
3. In latched Read Mode data from any selected address will be held on the output when Strobe is lowered only when Strobe is raised will new location data be transferred and chip enable conditions be stored. the new data will appear on the outputs if the chip enable conditions enable the outputs.
4. During operation the fusing pins FE_{1} and FE_{2} may be grounded or left floating.
5. Positive current is defined as into the terminal referenced.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Areas shown by crosshatch are latched data from previous address.
8. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
9. Guaranteed, but not tested.

TEST LOAD CIRCUIT

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pt}$

VOLTAGE WAVEFORM

4K-Bit TTL Bipolar PROM (512×8)

TIMING DIAGRAMS

NOTE:
Output latches not used.
All AC measurements at 1.5 V unless otherwise specified.
Transparent Read ${ }^{2,7}$

NOTE:
Output latches used.
All AC measurements at 1.5 V unless otherwise specified.
Latched Read ${ }^{3}, 7$

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S23 and 82S123 are field-programmable, which means that custom patterns are immediately available by following the Signetics Generic Ifusing procedure. The 82S23 and 82S123 devices are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing a $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

These devices include on-chip decoding and 1 chip enable input for memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

82S23, 82S123 256-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 50ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- On-chip address decoding
- One chip enable input
- Output options:
- 82S23: Open collector
- 82S123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic Dual-In-	82 S23/BEA
Line 300mil-wide	$82 S 123 / \mathrm{BEA}$
16-Pin Ceramic FlatPack	$82 S 23 / \mathrm{BFA}$,
	$82 S 123 / \mathrm{BFA}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S23)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S123)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

256-Bit TTL Bipolar PROM (32×8)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{LL}	Low				0.8	V
V_{H}	High		2.0			V
V_{K}	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		CE = Low				
$V_{\text {OL }}$	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High	$\mathrm{l}_{0}=-2 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
$1 / 1$	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$\mathrm{I}_{1 H 1}$	High	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 2}$	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
IOLK	Leakage (82S23)	$\overline{C E}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	$\mathrm{Hi}-\mathrm{Z}$ state (82S123)	$\overline{C E}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$C E=H i g h, V_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S123) ${ }^{3}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-20		-100	mA
Supply current						
$I_{\text {cc }}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{CE}=\mathrm{High}$			110	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\mathbb{1}}$	Input	$\begin{gathered} \overline{C E}=\begin{array}{c} \text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5	10	
$\mathrm{C}_{\text {Out }}$	Output	$\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
t_{AA}	Access time ${ }^{4}$	Output	Address		45	50	ns
$\mathrm{t}_{\text {CE }}$	Access time ${ }^{4}$	Output	Chip Enable			30	ns
$\mathrm{t}_{\text {CD }}$	Disable time	Output	Chip Disable			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed but not tested.

256-Bit TTL Bipolar PROM (32 $\times 8$)

TEST LOAD CIRCUITS

NOTE:
$R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=50 p F$.

VOLTAGE WAVEFORMS

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

Signetics

Military
Bipolar Memory Products

82S23A, 82S123A 256-Bit TTL Bipolar PROM (32×8)

Product Specification

DESCRIPTION

The 82S23A and 82S123A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23A and 82S123A devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.
These devices include on-chip decoding and 1 chip enable input for memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

FEATURES

- Address access time: 35ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- On-chip address decoding
- One chip enable input
- Output options:
-82S23A: Open collector
-82S123A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic	82S23A/BEA
Dual-ln-Line 300mil-wide	82S $233 / / B E A$
16-pin Ceramic Flat Pack	$82 S 23 A / B F A$
	$82 S 123 A / B F A$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S23A)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S123A)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

256-Bit TTL Bipolar PROM (32 $\times 8$)

82S23A, 82S123A

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low				0.8	V
V_{IH}	High		2.0			V
$V_{\text {iK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}_{1} \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		CE = Low				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{I}_{0}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High	$\mathrm{I}_{0}=-2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	2.4			V
Input current						
		$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$				
I_{12}	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$I_{1 H}$	High	$V_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
lolk	Leakage (82S23A)	- $\mathrm{CE}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	Hi-Z state (82S123A)	$\overline{C E}=$ High, $\mathrm{V}_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$C E=H i g h, V_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S123A) ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-20		-100	mA
Supply current						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}=\mathrm{High}$			110	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\mathbb{1}}$	Input	$\begin{gathered} \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{I}=2.0 \mathrm{~V} \end{gathered}$		5	10	pF
$\mathrm{Cout}^{\text {OU }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{C C} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Access time ${ }^{4}$	Output Output	Address Chip Enable		20	35 22	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{CD}	Disable time	Output	Chip Disable			22	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S23B and 82S123B are field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23B and 82S123B devices are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

These devices include on-chip decoding and 1 chip enable input for memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

82S23B, 82S123B 256-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 30ns max
- Input loading: $-150 \mu \mathrm{~A} \max$
- On-chip address decoding
- One chip enable input
- Output options:
- 82S23B: Open collector
- 82S123B: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Ceramic	$82223 B / B E A$,
Dual-In-Line 300mil-wide	$82 S 123 B / B E A$
16-Pin Ceramic FlatPack	$82 S 23 B / B F A$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S23)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S123)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

256-Bit TTL Bipolar PROM (32×8)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\mathrm{KL}}{ }^{7}$	Low				0.8	V
$V_{1 H^{7}}$	High		2.0			v
$V_{\text {IK }}$	Clamp	$V_{c c}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$.	-1.2	V
Output voltage						
		$\overline{C E}=$ Low				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High (82S123B)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{l}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
ILL	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
${ }_{1}{ }_{H}$	High	$\mathrm{V}_{1}=2.7 \mathrm{~V}$:		25	$\mu \mathrm{A}$
l_{1+2}	High	$V_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$V_{C C}=5.5 \mathrm{~V}$				
louk	Leakage (82S23B)	$C E=H i g h, V_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	Hi-Z state (82S123B)	$C E=H i g h, V_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\overline{C E}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S123B) ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-20		-100	mA
Supply current						
lce		$\overline{C E}=$ High, $\mathrm{V}_{C C}=5.5 \mathrm{~V}$			96	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} \overline{C E}=\begin{array}{c} \text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5	10	
$\mathrm{C}_{\text {OUT }}$	Output			8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{4}$	Output	Address		20	30	ns
lCE	Access time ${ }^{4}$	Output	Chip Enable			18	ns
tco	Disable time	Output	Chip Disable			18	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed but not tested.
7. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

$V_{M}=1.5 \mathrm{~V}$

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S126 and 82S129 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic Ifusing procedure. The 82S126 and 82S129 devices are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.
These devices includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.
$82 S 126$
82S129
1K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 60ns max
- Input loading: -150 $\mu \mathrm{A}$ max
- On-chip address decoding
- Two chip enable Inputs
- Output options:
- 82S126: Open collector
- 82S129: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic	$82 S 126 / \mathrm{BEA}$,
Dual-In-Line 300 mil-wide	$82 S 129 / \mathrm{BEA}$
16-pin Ceramic FlatPack	$82 S 126 / \mathrm{BFA}$,

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S126)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S129)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

1K-Bit TTL Bipolar PROM (256×4)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low				0.8	V
V_{IH}	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		$\mathrm{CE}_{1,2}=$ Low				
V_{OL}	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High (82S129)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{0}=-2.0 \mathrm{~mA}$	2.4			V
Input current						
		$V_{\text {cC }}=5.5 \mathrm{~V}$				
IIL	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
lolk	Leakage (82S126)	CE_{1} or $\mathrm{CE}_{2}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	Hi-Z state (82S129)	$C E_{1}$ or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		CE_{1} or $\mathrm{CE}_{2}=$ High, $\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S129) ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}_{1,2}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
ICC		CE_{1} or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			125	mA
Capacitance ${ }^{6}$						
		$C E_{1}$ or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				
C_{N}	Input	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{C}_{\text {OUT }}$	Output	$V_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{A A}$	Access time ${ }^{4}$	Output	Address		40	60	ns
tce	Access time ${ }^{4}$	Output	Chip Enable			30	ns
$\mathrm{t}_{\text {co }}$	Disable time	Output	Chip Disable			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S126A and 82S129A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S126A and 82S129A devices are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

These devices includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

82S126A 82S129A
 1K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Input loading: -150 1 A max
- On-chip address decoding
- Output options:
- 82S126A: Open collector
- 82S129A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic	$82 S 126 A / B E A$,
Dual-In-Line 300mil-wide	$82 S 129 A / B E A$
16-pin Ceramic FlatPack	$82 S 126 A / B F A$ 82S129A/BFA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S126A)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S129A)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

1K-Bit TTL Bipolar PROM (256 $\times 4$)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
$V_{1 H}$	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		$\mathrm{CE}_{1,2}=$ Low				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	v
V_{OH}	High (82S129A)	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-2.0 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
ILL	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
lolk	Leakage (82S126A)	CE_{1} or $\mathrm{CE}_{2}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	Hi-Z state (82S129A)	$C E_{1}$ or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		CE_{1} or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S129A) ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}_{1,2}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current ${ }^{3}$						
lce		CE_{1} or $\mathrm{CE}_{2}=\mathrm{High}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			125	mA
Capacitance ${ }^{6}$						
		CE_{1} or $\mathrm{CE}_{2}=$ High, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{i}}=2.0 \mathrm{~V}$		5	10	pF
Cout	Output	$\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{4}$	Output	Address		17	35	ns
tee	Access time ${ }^{4}$	Output	Chip Enable		10	20	ns
tod	Disable time	Output	Chip Disable		6	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

NOTE: $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=50 p F$.

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S130 and the 82 S131 arefield-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130 and 82S131 are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
These devices include on-chip decoding and 1 chip enable input for ease of memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

82S130
82S131

2K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 60ns max
\bullet Input loading: -150 A max
- On-chip address decoding
- One chip enable input
- Output optlons:
- 82S130: Open collector
- 82S131: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic	$82 S 130 / \mathrm{BEA}$,
Dual-In-Line 300 mil-wide	$825131 / \mathrm{BEA}$
16-pin Ceramic Flat Pack	$82 \mathrm{~S} 130 / \mathrm{BFA}$,
	$82 S 131 / \mathrm{BFA}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S130)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S131)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

2K-Bit TTL Bipolar PROM (512×4)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low			0.8		V
V_{IH}	High		2.0			V
V_{iK}	Clamp	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
		CE = Low				
$V_{\text {OL }}$	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High (82S131)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
IL	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
		$V_{C C}=5.5 \mathrm{~V}$				
$\mathrm{I}_{\text {OLK }}$	Leakage (82S130)	$C E=H i g h, V_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
l I	Hi-Z state (82S131)	$C E=H i g h, V_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$C E=H i g h, V_{0}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S131) ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
Icc		$\overline{C E}=$ High, $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$			130	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} C E=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{gathered}$		5	10	
${ }_{\text {Cout }}$	Output			8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$\mathrm{t}_{\text {AA }}$	Access time ${ }^{4}$	Output	Address			60	ns
${ }_{\text {LCE }}$	Access time ${ }^{4}$	Output	Chip Enable			30	ns
$\mathrm{t}_{\text {co }}$	Disable time	Output	Chip Disable			30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

2K-Bit TTL Bipolar PROM (512×4)

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
\mathbf{V}_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

NOTE: $\mathrm{R}_{1}=270 \Omega, \mathrm{R}_{2}-600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S130A and 82S131A are field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S130A and 82S131A are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

These devices include on-chip decoding and 1 chip enable input for ease of memory expansion. They feature either Open collector or 3-State outputs for optimization of word expansion in bused organizations.

82S130A
82S131A

2K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Input loading: -150 $\mu \mathrm{A}$ max
- On-chip address decoding
- One chip enable input
- Output options:
-82S130A: Open collector
- 82S131A: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Ceramic Dual-In-Line 300 mil-wide	$82 S 130 \mathrm{~A} / \mathrm{BEA}$, $82 S 131 / / B E A$
16-pin Ceramic Flat Pack	$82 S 130 \mathrm{~A} / \mathrm{BFA}$, 82S131A/BFA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage High (82S130A)	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State (82S131A)	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{L}	Low				0.8	V
V_{1}	High		2.0			V
V_{iK}	Clamp	$V_{C C}=4.5 \mathrm{~V}_{1} \mathrm{I}_{1}=-18 \mathrm{~mA}$			1.2	V
Output voltage						
		CE = Low				
V_{OL}	Low	$\mathrm{I}_{0}=16 \mathrm{~mA}$			0.5	v
V_{OH}	High (82S131A)	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{0}=-2 \mathrm{~mA}$	2.4	.		V
Input current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
$I_{\text {IL }}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
loLk	Leakage (82S130A)	$C E=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
loz	Hi-Z state (82S131A)	$C E=H i g h, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit (82S131A) ${ }^{3}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
Icc		$\overline{C E}=$ High, $\mathrm{V}_{C C}=5.5 \mathrm{~V}$			130	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{gathered}$		5	10	pF
Cout	Output	$V_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{4}$	Output	Address		18	35	ns
$t_{\text {CE }}$	Access time ${ }^{4}$	Output	Chip Enable		10	20	ns
${ }_{\text {t }}$	Disable time	Output	Chip Disable		6	15	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

2K-Bit TTL Bipolar PROM (512 $\times 4$)

82S130A, 82S131A

TEST LOAD CIRCUITS

NOTE: $\mathrm{R}_{1}=270 \Omega, \mathrm{R}_{\mathbf{2}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

Signetics

Military Blpolar Memory Products

DESCRIPTION

The 82S137 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S137 is supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

$82 S 137$

4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 70ns max
- Input loading: - $150 \mu \mathrm{~A}$ max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Two chip enable inputs
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logle
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic Dual-In-Line 300mil-wide	$82 S 137 /$ BVA
18-pin Ceramic FlatPack	$82 S 137 /$ BYA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Ott-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{C C} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{\text {1,2 }}$	LIMITS			UNIT
			Min	Typ	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	
$\mathrm{V}_{1 H}$	High		2.0			v
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{CE}_{1,2}=\mathrm{Low} \\ \mathrm{I}_{0}=16 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} \end{gathered}$	2.4	,	0.5	V
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & V_{1}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -150 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
l_{OZ} los	$\mathrm{Hi}-\mathrm{Z}$ state Short circuit ${ }^{3}$		-15		-40 40 -85	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Supply current						
ICC		$\mathrm{CE}_{1,2}=$ High, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			140	mA
Capacitance ${ }^{6}$						
$\begin{aligned} & \mathrm{C}_{\mathbb{N}} \\ & \mathrm{C}_{\mathrm{OUT}} \\ & \hline \end{aligned}$	Input Output	$\begin{gathered} \mathrm{CE}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{1}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V} \end{gathered}$		5 8	10 13	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A \leq}+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
t_{AA}	Access time ${ }^{4}$	Output	Address		40	70	ns
$\mathrm{t}_{\text {CE }}$	Access time ${ }^{4}$	Output	Chip Enable		25	30	ns
$t_{C D}$	Disable time	Output	Chip Disable		25	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed but not tested.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAMS

Signetics

Military Blpolar Memory Products

DESCRIPTION

The 82S137A is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S137A is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3 -State outputs for optimization of word expansion in bused organizations.

82S137A 4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 55ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Two chip enable inputs
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic Duat-ln-Line 300mil-wide	$82 S 137 \mathrm{~A} / \mathrm{BVA}$
18-pin Ceramic FlatPack	$82 S 137 \mathrm{~A} / \mathrm{BYA}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low				0.8	V
V_{IH}	High		2.0			V
V_{IK}	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} C E_{1,2}=\text { Low } \\ \mathrm{l}=16 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{0}=-2 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
IIL	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{CE}_{1,2}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\mathrm{CE}_{1,2}=$ High, $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$C E_{1,2}=L O W, V_{O}=O V$ $V_{c c}=5.5 \mathrm{~V}, \text { High stored }$	-15	.	-85	mA
Supply current						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}_{1,2}=\mathrm{High}$		85	140	mA
Capacltance ${ }^{6}$						
$\mathrm{CiN}_{\text {IN }}$	Input	$\begin{gathered} \mathrm{CE}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{1}=2.0 \mathrm{~V} \end{gathered}$		5	10	pF
${ }_{\text {cout }}$	Output			8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{4}$	Output	Address		35	55	ns
$t_{\text {ce }}$	Access time ${ }^{4}$	Output	Chip Enable		20	30	ns
$t_{\text {co }}$	Disable time	Output	Chip Disable		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

4K-Bit TTL Bipolar PROM (1024 $\times 4$)

TEST LOAD CIRCUITS

NOTE: $\mathrm{R}_{1}=270 \Omega, \mathrm{R}_{2}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAM

Signetics

Military Blpolar Memory Products

DESCRIPTION

The 82S141 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S141 includes on-chip decoding and four chip enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

82S141 4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 90ns max
- Input loading: -150 A max
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequentlal controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$24-$ pin Ceramic Dual-In-Line 600mil-wide	$82 S 141 / \mathrm{BJA}$
24 -pin Ceramic Flat Pack	$82 S 141 / \mathrm{BKA}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{I}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Of-State	+5.5	$\mathrm{~V}_{D C}$
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\text {IL }}$	Low				0.8	V
$\mathrm{V}_{1 \mathrm{H}}$	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}, \mathrm{CE}_{1,2}=$ Low, $\mathrm{CE}_{3,4}=$ High				
$V_{\text {OL }}$	Low	$\mathrm{l}_{0}=9.6 \mathrm{~mA}$			0.5	v
V_{OH}	High	$\mathrm{l}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
112	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$				
I_{OZ}	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{0}=5.5 \mathrm{~V}$			+40	$\mu \mathrm{A}$
		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\begin{gathered} \mathrm{CE}_{1,2}=\text { Low, } \mathrm{CE}_{3,4}=\text { High, } \mathrm{V}_{0}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \text { High Stored } \end{gathered}$	-15		-85	mA
Supply current						
I_{cc}		$\begin{gathered} \mathrm{CE}_{1,2}=\text { High, } \mathrm{CE}_{3,4}=\text { Low } \\ V_{\mathrm{CC}}=5.5 \mathrm{~V} \end{gathered}$		125	165	mA
Capacitance ${ }^{\text {b }}$						
$\mathrm{C}_{1 \mathrm{~N}}$	Input	$\begin{gathered} V_{C C}=5.0 \mathrm{~V}, \overline{C E} E_{1,2}=\text { High } \\ V_{1}=2.0 V \end{gathered}$		5	10	
$\mathrm{C}_{\text {OUT }}$	Output	$V_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A \leq}+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO.	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{t_{A A}}$	Access time ${ }^{4}$	Output Output	Address Chip enable		$\begin{aligned} & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{CD}	Disable time	Output	Chip disable		20	50	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

$\mathbf{V}_{M}=1.5 \mathrm{~V}$

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S147 and 82S147A are field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 82S147 and 82S147A include on-chip decoding and one chip enable input for ease of memory expansion, and feature 3-State outputs for optimization of word expansion in bused organizations.
$82 S 147$
82S147A
4K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 75ns max
\bullet Input loading: $-150 \mu \mathrm{~A}$ max
- One chip enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Ceramic	82S147/BRA,
Dual-In-Line 300mil-wide	82S147A/BRA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
$\mathrm{V}_{\text {ll }}$	Low				0.8	V
V_{IH}	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$V_{C C}=4.5 \mathrm{~V}, \mathrm{CE}=$ Low				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{I}_{0}=9.6 \mathrm{~mA}$			0.5	V
V_{OH}	High	$\mathrm{l}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
$I_{1 L}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$V_{C C}=5.5 \mathrm{~V}$				
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\overline{C E}=\mathrm{High}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15		-85	mA
Supply current						
Icc		$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		125	160	mA
Capacitance ${ }^{\text {b }}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} \overline{C E}=\begin{array}{c} \text { High, } V_{c c}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5	10°	pF
$\mathrm{C}_{\text {OUt }}$	Output			8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	82S147			82S147A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{4}$	Output	Address		45	75		45	55	ns
$\mathrm{t}_{\text {CE }}$	Access time ${ }^{4}$	Output	Chip Enable		20	45		20	30	ns
t_{CD}	Disable time	Output	Chip Disable		20	45		20	30	ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. Positive current is defined as into the terminal referenced.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

4K-Bit TTL Bipolar PROM (512×8)

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

Signetics

Milltary Bipolar Memory Products

DESCRIPTION

The 82S147B is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82S147B includes on-chip decoding and one chip enable input for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

FEATURES

- Address access time: 45ns max
- Input loading: -150رA max
- One chip enable input
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Outputs: 3-State
- Unprogrammed outputs are Low level

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Ceramic Dual-In-Line 300 mil-wide	$825147 \mathrm{~B} / \mathrm{BRA}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Power supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS			UNIT	
		Min	Nom	Max	
V_{CC}	Supply voltage range	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}{ }^{7}$	High level Input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}{ }^{7}$	Low level Input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High level output current			-2	mA
I_{OL}	Low level output current			9.6	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{I}_{\mathrm{IK}}=$ Max		-0.8	-1.2	V
V_{OL}	Output Low voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{CE}=\mathrm{V}_{\text {LL }}, \mathrm{loL}=$ Max			0.5	V
V OH	Output High voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=$ Max, $\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}$	2.4			V
$\mathrm{f}_{\text {iL }}$	Input Low current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{IH}	Input High current	$\mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$			40	$\mu \mathrm{A}$
IOHz	Off-State Output current High level	$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$			+40	$\mu \mathrm{A}$
lolz	Off-State Output current Low level	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{CE}=$ High, $\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit Output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15		-85	mA
I_{cc}	Supply current	$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		125	160	mA
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \\ & \hline \end{aligned}$	Input Capacitance ${ }^{6}$ Output Capacitance ${ }^{6}$	$\begin{gathered} \hline \overline{C E}=\text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \\ V_{0}=2.0 \mathrm{~V} \\ \hline \end{gathered}$		5 8	10 13	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{4}$	Output	Address		30	45	ns
$\mathrm{L}_{\text {CE }}$	Enable time ${ }^{4}$	Output	Chip Enable		15	25	ns
t_{CD}	Disable time	Output	Chip Disable		15	25	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground terminal.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.
7. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S 181 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82 S 181 is supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.
This device includes on-chip decoding and 4 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

$82 S 181$

8K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 90ns max
- Input loading: - $150 \mu \mathrm{~A}$ max
- On-chip address decoding
- Four chip enable inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Sequentlal controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic Dual-In-Line 600mil-wide	$82 S 181 / \mathrm{BJA}$
24-pin Ceramic Flat Pack	$82 S 181 / \mathrm{BKA}$
$28-$ Pin Ceramic LLCC	$82 S 181 / \mathrm{B} 3 A$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

| | | | |
| :--- | :--- | :--- | :--- | :--- |

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{\text {2 }}$						
V_{L}	Low				0.8	
$V_{1 H}$	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{c C}=4.5 \mathrm{~V}, I_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{gathered} V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{CE}_{1,2}=L_{0 w}, C E_{3,4}=\text { High } \\ \mathrm{I}_{\mathrm{O}}=9.6 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{O}}=-2 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & v \\ & v \end{aligned}$
Input current ${ }^{1}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & V_{1}=0.45 \mathrm{~V} \\ & V_{1}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -150 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current ${ }^{1}$						
I_{OZ} los	Hi-Z state Short circuit	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ \mathrm{CE}_{1,2}=\text { High, } \mathrm{CE}_{3,4}=\text { Low, } \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ \mathrm{CE}_{1,2}=\text { High, } \mathrm{CE}_{3,4}=\text { Low, } \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ \mathrm{CE}_{1,2}=\text { Low, } \mathrm{CE}_{3,4}=\text { High, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		40 -40 -85	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Supply current						
lcc		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		125	185	mA
Capacitance ${ }^{6}$						
C_{IN} $\mathrm{C}_{\text {OUt }}$	input Output	$\begin{gathered} \overline{C E}_{1,2}=\text { High, } V_{c \mathrm{cc}}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \\ V_{0}=2.0 \mathrm{~V} \end{gathered}$		5 8	10 13	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{4}$	Output	Address		50	90	ns
tee	Access time ${ }^{4}$	Output	Chip Enable		20	50	ns
t_{CD}	Disable time	Output	Chip Disable		20	50	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAMS

Signetics

Milltary Blpolar Memory Products

DESCRIPTION

The 82S181A is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82 S 181 A is supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specitied address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and 4 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

82S181A
 8K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 55ns max
- Input loading: $-150 \mu \mathrm{~A} \max$
- On-chip address decoding
- Four chip enable Inputs
- Outputs: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic Dual-In-Line 600mil-wide	$82 S 181 \mathrm{~A} / \mathrm{BJA}$
24-pin Ceramic Flat Pack	$82 S 181 \mathrm{~A} / \mathrm{BKA}$
28-Pin Ceramic LLCC	$825181 \mathrm{~A} / \mathrm{B} 3 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

8K-Bit TTL Bipolar PROM (1024×8)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{\mathbf{2}}$						
V_{IL}	Low				0.8	V
V_{IH}	High		2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{CE}_{1,2}=$ Low, $\mathrm{CE}_{3,4}=$ High				
V_{OL}	Low	$\mathrm{I}_{0}=9.6 \mathrm{~mA}$			0.5	V
V_{OH}	High	$10=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{1}$						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
$\mathrm{I}_{1 / 2}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\begin{gathered} \mathrm{CE}_{1,2}=\text { Low, } \mathrm{CE}_{3,4}=\text { High, } \mathrm{V}_{\mathrm{O}}=\mathrm{OV} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \text { High stored } \end{gathered}$	-15		-85	mA
Supply current						
lce		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$		125	185	mA
Capacitance ${ }^{6}$						
	Input	$\begin{gathered} \mathrm{CE}_{1,2}=\text { High, } \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{1}=2.0 \mathrm{~V} \end{gathered}$		5	10	
$\mathrm{C}_{\text {OUT }}$	Output			8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{4}$	Output	Address		45	55	ns
$\mathrm{t}_{\text {CE }}$	Access time ${ }^{4}$	Output	Chip Enable		25	40	ns
${ }_{\text {c }}$ CD	Disable time	Output	Chip Disable		25	40	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\mathbf{T H L}}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

TIMING DIAGRAMS

Military
Bipolar Memory Products

DESCRIPTION

The 82LS181 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82 LS 181 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.
This device includes on-chip decoding and 4 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

82LS181 8K-Bit TTL Bipolar PROM (1024×8)

Product Specification

FEATURES

- Address access time: 120ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- On-chip address decoding
- Four chip enable Inputs
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic Dual-In-Line 600 mil-wide	$82 L S 181 /$ BJA

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	.${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage ${ }^{2}$						
V_{LL}	Low				0.8	V
V_{IH}	High		2.0			V
$V_{\text {IK }}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$V_{C C}=4.5 \mathrm{~V}, \mathrm{CE}_{1,2}=$ Low, $\mathrm{CE}_{3,4}=$ High				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{V}_{0}=4.8 \mathrm{~mA}$			0.5	v
V_{OH}	High	$10=-1 \mathrm{~mA}$	2.4			V
Input current ${ }^{1}$						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
I_{L}	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{1}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current ${ }^{1}$						
		$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$				
$\mathrm{l}_{0 z}$	Hi-Z state	$\mathrm{CE}_{1,2}=$ High, $C E_{3,4}=$ Low, $\mathrm{V}_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\mathrm{CE}_{1,2}=\mathrm{High}, \mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\overline{C E} E_{1,2}=$ Low, $C E_{3,4}=$ High, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$. High stored	-10		-85	mA
Supply current						
ICC		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$		60	85	mA
Capacitance ${ }^{\text {b }}$						
		$\mathrm{CE}_{1,2}=$ High, $\mathrm{CE}_{3,4}=$ Low, $\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{1 \mathrm{~N}}$.	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
Cout	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{8}$	Max	
$\begin{aligned} & \mathbf{t}_{\mathrm{ta}} \\ & \mathbf{t}_{\mathrm{tEE}} \end{aligned}$	Access time ${ }^{4}$	Output Output	Address Chip enable		$\begin{aligned} & 100 \\ & 35 \end{aligned}$	$\begin{gathered} 120 \\ 50 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{CD}	Disable time	Output	Chip disable		35	50	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of the short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

TEST LOAD CIRCUITS

NOTE:
$R_{1}=1 k \Omega, R_{2}=3 k \Omega, C_{L}=50 p F$.

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

$V_{M}=1.5 \mathrm{~V}$

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S185 is field-programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard 82S185 is supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

This device includes on-chip decoding and one chip enable input for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

82S185/185A/185B 8K-Bit TTL Bipolar PROM

 (2048×4)
Product Specification

FEATURES

- Address access time: 55ns max
- Input loading: - $-150 \mu \mathrm{~A} \max$
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- One chip enable input
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
18-pin Ceramic	82S185/BVA
	82S185A/BVA
	82S185B/BVA
18-pin Ceramic Flat Pack	$82 S 185 /$ BYA
	$82 S 185 A / B Y A$
	$82 S 185 B / B Y A$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

OUTPUT UNES

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{VL}	Low				0.8	V
$\mathrm{V}_{\text {IH }}$	High		2.0			V
$\mathrm{V}_{\text {iK }}$	Clamp	$V_{C C}=4.5 \mathrm{~V}, I_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$V_{C C}=4.5 \mathrm{~V}, \mathrm{CE}=$ Low				
$V_{\text {OL }}$	Low	$\mathrm{l}_{0}=16 \mathrm{~mA}$			0.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High	$\mathrm{I}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
IIL	Low	$V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
${ }_{1 / H}$	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
	-	$V_{C C}=5.5 \mathrm{~V}$				
$\mathrm{l}_{\text {oz }}$	Hi-Z state	$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$\overline{C E}=\mathrm{High}, \mathrm{V}_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\overline{C E}=$ Low, $\mathrm{V}_{0}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
Icc		$\overline{C E}=$ High, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		90	130	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\begin{gathered} \overline{C E}=\begin{array}{c} \text { High, } V_{C C}=5.0 \mathrm{~V} \\ V_{1}=2.0 \mathrm{~V} \end{array} \end{gathered}$		5	10	pF
Cout	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER		TO	FROM	LIMITS			UNIT	
			Min		Typ ${ }^{5}$	Max			
$t_{\text {AA }}$	Access time ${ }^{4}$	185		Output	Address		70	115	ns
		185A				25	55	ns	
		185B				40	90	ns	
${ }^{\text {t CE }}$	Access time ${ }^{4}$	185/185B	Output	Chip Enable		30	50	ns	
		185A				15	30	ns	
t_{CD}	Disable time	185/185B	Output	Chip Disable		30	50	ns	
		185A				15	30	ns	

NOTES:

1. All voltages are with respect to network ground terminal.
2. Positive current is defined as into the terminal referenced.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.

8K-Bit TTL Bipolar PROM (2048×4)

TEST LOAD CIRCUITS

NOTE:
$R_{1}-270 \Omega, R_{2}-600 \Omega, C_{L}=50 p F$.

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82S191 and 82S191A are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S191 and 82S191A are supplied with all outputs at a logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni -Cr link matrix.

This device includes on-chip decoding and 3 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

PIN CONFIGURATION

82S191, 82S191A 16K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time:
- 82S191:100ns max
- 82S191A: 55ns max
- Input loading: $-150 \mu \mathrm{~A}$ max
- Three chip enable Inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic	82S191/BJA Dual-In-Line 600mil-wide 82S191A/BJA
24-pin Ceramic	$82 S 191 / B L A$,
Dual-In-Line 300mil-wide	$82 S 191 A / B L A$
24-pin Ceramic Flat	$82 S 191 / \mathrm{BKA}$,
Package	$82 S 191 \mathrm{ABKA}$
28-pin Ceramic LLCC	$82 S 191 / B 3 A$,

BLOCK DIAGRAM

output unes

16K-Bit TTL Bipolar PROM (2048×8)

ABSOLUTE MAXIMUM RATINGS ${ }^{\circledR}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{I}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage OHf-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATINGS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}^{7}}$	High level input voltage	2.0			V
$\mathrm{V}_{\mathrm{LL}}{ }^{\text {²}}$	Low level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High level output current			-2	mA
lob	Low level output current			9.6	mA
$\mathrm{T}_{\text {A }}$	Operating free air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
V_{IK}	Input Clamp voltage	$\mathrm{V}_{\text {cC }}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
$V_{\text {OL }}$	Low level Output voltage	$\begin{gathered} V_{C C}=\operatorname{Min} \\ C E_{1}=V_{\mathrm{IL}}, \mathrm{CE}_{2,3}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{O}}=\operatorname{Max} \end{gathered}$			0.5	V
V_{OH}	High level Output voltage	$V_{\text {CC }}=$ Min, $\mathrm{I}_{0}=$ Max	2.4			V
ILL^{1}	Low level Input current	$V_{C C}=$ Max, $V_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$\mathrm{I}_{1 \mathrm{H}^{1}}$	High level Input current	$V_{C C}=M_{\text {Max }}, V_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
lotz ${ }^{1}$	OFF-State output current low level	$\begin{gathered} V_{C C}=\text { Max } \\ C E_{1}=\text { High, } \mathrm{CE}_{2.3}=\text { Low, } V_{O}=0.4 \mathrm{~V} \end{gathered}$			-40	$\mu \mathrm{A}$
IOHz^{1}	OFF-State output current High State	$\begin{gathered} V_{c c}=\text { Max } \\ \mathrm{CE}_{1}=\text { High, } \mathrm{CE}_{2.3}=\text { Low, } \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{gathered}$			40	$\mu \mathrm{A}$
los	Short circuit output current ${ }^{3}$	$\begin{gathered} \mathrm{CE}_{1}=\text { Low, } \mathrm{CE}_{2,3}=\text { High }, \\ \mathrm{V}_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \end{gathered}$	-15		-85	mA
Icc	Supply current	$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2,3}=$ Low, $\mathrm{V}_{\text {cc }}=$ Max		130	185	mA
$\mathrm{C}_{1 N^{6}}$	Input Capacitance	$\begin{gathered} \mathrm{CE}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low } \\ \mathrm{V}_{\mathrm{CC}}=\text { Nom }, \mathrm{V}_{1}=2.0 \mathrm{~V} \end{gathered}$		5	10	pF
Cout^{6}	Output Capacitance	$\begin{aligned} \mathrm{V}_{\mathrm{Cc}}=\text { Nom, } \mathrm{CE}_{1} & =\text { High, } \mathrm{CE}_{2,3}=\text { Low } \\ \mathrm{V}_{\mathrm{O}} & =2.0 \mathrm{~V} \end{aligned}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	T0	FROM	$82 \mathrm{S191}$			82S191A			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{4}$	Output	Address		50	100		50	55	ns
tce	Access time ${ }^{4}$	Output	Chip enable		30	50		20	30	ns
$t \mathrm{co}$	Disable time	Output	Chip disable		30	50		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration of short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.
7. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.
8. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TEST LOAD CIRCUITS

NOTE:
$R_{1}=470 \Omega, R_{2}=1 \mathrm{k}, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82 HS 195 A is field programmable, which means that custom patterns are immediately available by following the Generic II fusing procedure. The Signetics 82HS195A supplied with all outputs at logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.
This device includes on-chip decoding and two chip enable inputs for memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

82HS195A 16K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Input loading: $-250 \mu A \max$
- On-chip address decoding

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Ceramic Dual-In-Line 300 mil-wide	82HS195A/BRA

- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{1}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

16K-Bit TTL Bipolar PROM (4096×4)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{IL}	Low ${ }^{3}$				0.8	V
$V_{1 H}$	High ${ }^{3}$		2.0			V
V_{IK}	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}, C E_{1}$ \& $\mathrm{CE}_{2}=$ Low				
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.5	V
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$				
ILL	Low	$V_{1}=0.45 \mathrm{~V}$			-250	$\mu \mathrm{A}$
IH_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$				
loz	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{CE}_{1} \& \mathrm{CE}_{2}=$ High, $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$C E_{1} \& C E_{2}=$ High, $V_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{CE}_{1} \& C E_{2}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, High stored	-15		-85	mA
Supply current						
$I_{C C}$		$C E_{1}+C E_{2}=$ High, $\mathrm{V}_{C C}=5.5 \mathrm{~V}$		120	155	mA
Capacitance ${ }^{7}$						
		$\mathrm{CE}_{1} \& \mathrm{CE}_{2}=$ High, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{C}_{\text {OUt }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$\begin{aligned} & t_{A A} \\ & t_{C E} \\ & \hline \end{aligned}$	Access time ${ }^{6}$	Output Output	Address Chip enable		$\begin{aligned} & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tco	Disable time ${ }^{6}$	Output	Chip disable		20	25	ns

NOTES:

1. All voltages are with respect to network ground terminal.
2. Positive current is defined as into the terminal referenced.
3. Measured with one output switching from a Logic " 1 " to a Logic " 0 ".
4. Output shorted for no more than one second. No more than one output shorted at a time.
5. Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Guaranteed, but not tested.
8. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

16K-Bit TTL Bipolar PROM (4096 $\times 4$)

TEST LOAD CIRCUITS

NOTE: $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

TIMING DIAGRAM

Signetics

Milltary Blpolar Memory Products

DESCRIPTION

The 82S291A is field programmable, which means that custom patterns are immediately available by following the Signetics Generic Ilfusing procedure. The 82S291A is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing the vertical junction matrix.
This device includes on-chip decoding and 3 chip enable inputs for ease of memory expansion. It features 3-State outputs for optimization of word expansion in bused organizations.

82S291A 16K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 35ns max
- Input loading: $-250 \mu \mathrm{~A}$ max
- Three chip enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion
- Prototyping/volume production

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic Dual-In-Line 300 mil-wide	$82 S 291 \mathrm{~A} / B L A$

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

BLOCK DIAGRAM

16K-Bit TTL Bipolar PROM (2048×8)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}{ }^{7}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}{ }^{7}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-2	mA
I_{OL}	Low-level output current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
$V_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{I}_{1}=\mathrm{Max}$		-0.8	-1.2	V
$\mathrm{V}_{\text {OL }}$	Output Low-level current	$\mathrm{CE}_{1}=$ Low, $\mathrm{CE}_{2,3}=$ High, $\mathrm{V}_{\text {CC }}=$ Min, $\mathrm{IOL}=$ Max			0.5	V
V_{OH}	Output High-level current	$\mathrm{CE}_{1}=$ Low, $\mathrm{CE}_{2,3}=$ High, $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4			V
ILI	Input Low-level current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.45 \mathrm{~V}$			-250	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input High-level current	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
lolz	Off-State output current Low-State	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2,3}=$ Low, $\mathrm{V}_{\mathrm{O}}=0.4$			-40	$\mu \mathrm{A}$
IOHz	Off-State output current High-State	$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2,3}=$ Low, $\mathrm{V}_{\mathrm{O}}=5.5, \mathrm{~V} C \mathrm{C}=\mathrm{Max}$			40	$\mu \mathrm{A}$
los	Output short circuit current ${ }^{3}$	$\mathrm{CE}_{1}=$ Low, $\mathrm{CE}_{2,3}=$ High, $\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15		-85	mA
lce	Supply current ${ }^{8}$	$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2,3}=$ Low, $\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$		130	185	mA
$\mathrm{C}_{\text {IN }}$ Cout	Inputcapacitance ${ }^{6}$ Output capacitance ${ }^{6}$	$\begin{gathered} \mathrm{CE}_{1}=\text { High, } \mathrm{CE}_{2,3}=\text { Low, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{1}=2.0 \mathrm{~V} \\ V_{\mathrm{O}}=2.0 \mathrm{~V} \end{gathered}$		5 8	10 13	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	T0	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{4}$	Output	Address		15	35	ns
$\mathrm{t}_{\text {ce }}$	Access time ${ }^{4}$	Output	Chip Enable		10	20	ns
$\mathrm{t}_{\text {cD }}$	Disable time	Output	Chip Disable		10	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Duration oi short circuit should not exceed 1 second.
4. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Guaranteed, but not tested.
7. Measured with one output switching from a logic "1" to a logic " 0 ". These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.
8. Measured with all inputs grounded and all outputs open.

16K-Bit TTL Bipolar PROM (2048×8)

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Military Blpolar Memory Products

DESCRIPTION

The 82 HS321 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic Ilfusing procedure. The 82 HS 321 is supplied with all outputs at a logical High. Outputs are programmed to a logic Low level at any specified address by fusing a programmable matrix.

This device includes on-chip decoding and 2 chip enable inputs for ease of memory expansion. It features 3 -State outputs for optimization of word expansion in bused organizations.

FEATURES

- Address access time:
- 82HS321A: 45ns max
- 82HS321B: 35ns max

82HS321A/82HS321B 32K-Bit TTL Bipolar PROM (4096×8)

Product Specification

- Input loading: $-250 \mu \mathrm{~A} \max$
- Two chip enable inputs
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic Dual-In-Line 600mil-wide	82HS321A/BJA 82HS321B/BJA
24-pin Ceramic Dual-In-Line 300mil-wide	$82 H S 321 \mathrm{~B} / \mathrm{BLA}$
24-pin Ceramic FlatPack	82HS321A/BKA 82HS321B/BKA
24-Pin Ceramic CLCC	82HS321A/B3A 82HS321B/B3A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	+7	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	+5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage Off-State	+5.5	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

For LLCC Pin Assignments, see JEDEC Std. 21

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATINGS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}^{3}}{ }^{3}$	High level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}{ }^{3}$	Low level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High level output current			-2	mA
I_{OL}	Low level output current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
$V_{\text {IK }}$	Input Clamp voltage	$V_{C C}=M i n, I_{1}=I_{1 K}$		-0.8	-1.2	V
V_{OL}	Output Low level current	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{l}_{\mathrm{OL}}=$ Max, $\mathrm{CE}_{1}=$ Low, $\mathrm{CE}_{2}=$ High			0.5	V
V_{OH}	Output High level current	$\mathrm{V}_{\mathrm{CC}}=$ Min, $\mathrm{CE}_{1}=$ Low, $\mathrm{CE}_{2}=$ High, $\mathrm{I}_{\text {OH }}=$ Max	2.4			V
IL	Input Low level current	$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$			-250	$\mu \mathrm{A}$
IH_{1}	Input High level current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
lolz	Off-State output current Low	$\mathrm{V}_{C C}=$ Max, $\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{0}=0.4 \mathrm{~V}$			-40.	$\mu \mathrm{A}$
Iohz	Off-State output current High	$\mathrm{V}_{C C}=$ Max, $\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{0}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$	$V_{C C}=\text { Max, } C E_{1}=\text { Low }, C E_{2}=\text { High },$ $V_{O}=0 V \text { with stored "1" }$	-20		-85	mA
Icc	Supply current	$V_{C C}=$ Max, $\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low		130	185	mA
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{7}$	$\mathrm{CE}_{1}=$ High, $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{\mathrm{Cc}}=$ Nom, $\mathrm{V}_{1}=2.0 \mathrm{~V}$		5	10	pF
Cout	Output Capacitance ${ }^{7}$	$\overline{C E}_{1}=$ High, $\mathrm{CE}_{2}=$ Low, $\mathrm{V}_{\text {cc }}=$ Nom, $\mathrm{V}_{0}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	82HS321A			82HS321B			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
$t_{\text {A }}$	Access time ${ }^{6}$	Output	Address		40	45		28	35	ns
$t_{\text {CE }}$	Access time ${ }^{6}$	Output	Chip enable		25	30		15	20	ns
tco	Disable time	Output	Chip disable		25	30		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching form Logic "1" to a Logic " 0 ". These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.
4. Duration of short circuit should not exceed 1 second.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Guaranteed, but not tested.

TEST LOAD CIRCUITS

NOTE: $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

TIMING DIAGRAM

Signetics

Military Bipolar Memory Products

DESCRIPTION

The 82HS641 is field programmable which means that custom patterns are immediately available by following the Signetics Generic II fusing Procedure. The 82 HS 641 is supplied with all outputs at a logical High. Outputs are programmed to a logic low level at any specified address by fusing the vertical junction matrix.
This device includes on-chip address decoding with 1 chip enable input for ease of memory expansion. It features 3 -State outputs for optimization of word expansion in bused applications.

82HS641A 82HS641B 64K-Bit TTL Bipolar PROM

Product Specification

FEATURES

- Address access time: 82HS641A $=55$ ns max $82 \mathrm{HS641B}=45 \mathrm{~ns} \max$
- Input loading: $-100 \mu \mathrm{~A}$ max
- One chip enable input
- On-chip address decoding
- No separate fusing pins
- Unprogrammed outputs are High level
- Fully TTL compatible
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic Dual-In-Line 600mil-wide	$82 H S 641$ A/BJA $82 H S 641 \mathrm{~B} / B J A$
24-pin Ceramic LLCC	82HS641A/B3A 82HS641B/B3A l

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Power supply voltage	+7	$V_{D C}$
$V_{I N}$	Input voltage	+5.5	$V_{D C}$
V_{O}	Output voltage Off-State	+5.5	$V_{D C}$
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{S T G}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

For LLCC Pin Assignments, see JEDEC Std. 21

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	Limits			UNIT
			Min	Typ ${ }^{5}$	Max	
Input voltage						
V_{12}	Low ${ }^{3}$				0.8	V
V_{IH}	High^{3}		2.0			V
V_{IK}	Clamp	$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
V_{OL}	Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{CE}=\text { Low } \\ \mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA} \end{gathered}$			0.5	V
V_{OH}	High	$\mathrm{I}_{0}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$				
14	Low	$V_{1}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
loz	Hi-Z State	CE $=$ High, $\mathrm{V}_{0}=0.5 \mathrm{~V}$			-40	$\mu \mathrm{A}$
		$\mathrm{CE}=$ High, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			+40	$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$	$\mathrm{CE}=$ Low, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15		-85	mA
Supply current						
Icc		$C E=H i g h, V_{C C}=5.5 \mathrm{~V}$		130	185	mA
Capacitance ${ }^{7}$						
		CE $=$ High, $\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$V_{1}=2.0 \mathrm{~V}$		5	10	pF
$\mathrm{C}_{\text {OUt }}$	Output	$\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}$		8	13	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	82HS641A			82HS641B			UNIT
				Min	Typ ${ }^{5}$	Max	Min	Typ ${ }^{5}$	Max	
$t_{\text {AA }}$	Access time ${ }^{6}$	Output	Address		40	55		40	45	ns
tce	Access time ${ }^{6}$	Output	Chip enable		25	35		25	25	ns
tod	Disable time	Output	Chip disable		25	35		25	25	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. All voltages with respect to network ground.
3. Measured with one output switching from a Logic "1" to a Logic "0".
4. Duration of short circuit should not exceed 1 second, no more than one output shorted at a time.
5. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. Tested at an address cycle time of $1 \mu \mathrm{~s}$.
7. Guaranteed, but not tested.

64K-Bit TTL Bipolar PROM (8192 $\times 8$)

TEST LOAD CIRCUITS

NOTE: $R_{1}=270 \Omega, R_{2}=600 \Omega, C_{L}=50 p F$.

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

Signetics

Section 7

PLD Data Sheets

INDEX

82S100 Field Programmable Logic Array ($16 \times 48 \times 8$) 815
82S101 Field Programmable Logic Array ($16 \times 48 \times 8$) 815
82S105 (PLS105) Field Programmable Logic Sequencer ($16 \times 48 \times 8$) 821
82S153A (PLS153A) Field Programmable Logic Array ($18 \times 42 \times 10$) 832
PLC18V8Z Zero Standby Power Universal PAL(B-type Device 839
PLHS18P8A Programmable AND Array Logic ($18 \times 72 \times 8$) 852
PLC415 CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$) 857
PLHS473 Field Programmable Logic Array ($20 \times 24 \times 11$) 875
PLHS501 Programmable Macro Logic Random Logic Unit ($32 \times 72 \times 24$) 881
PLS159A Field Programmable Logic Sequencer ($16 \times 45 \times 12$) 886
PLS167 Field Programmable Logic Sequencer ($14 \times 48 \times 6$) 896
PLS168 Field Programmable Logic Sequencer ($12 \times 48 \times 8$) 906
PLS173 Field Programmable Logic Array ($22 \times 42 \times 10$) 917
PLS179 Field Programmable Logic Sequencer $(20 \times 45 \times 12)$ 925
PLUS405 Field Programmable Logic Sequencer ($16 \times 64 \times 8$) 935

82S100/82S101
Field Programmable Logic Array $(16 \times 48 \times 8)$

Military

Customer Specific Products

DESCRIPTION

The 82S100 (3-State) and 82S101 (OpenCollector) are bipolar, Fuse Programmable Logic Arrays (FPLAs). Each device utilizes the standard AND/OR invert architecture to directly implement custom sum of product logic equations.
Each device consists of 16 dedicated inputs and 8 dedicated outputs. Each output is capable of being actively controlled by any or all of the 48 product terms. The True, Complement, or Don't Care condition of each of the 16 inputs ANDed together comprise one P-term. All 48 P-terms are selectively ORed to each output. The user must then only select which P-term will activate an output by disconnecting terms which do not affect the output. In addition, each output can be fused as ac-tive-HIGH (H) or active-LOW (L).

The 82S100 and 82S101 are fully TTL compatible, and include chip enable control for expansion of input variables and output inhibit. They feature either OpenCollector or 3-State outputs for ease of expansion of product terms and application in bus-organized systems.

Product Specification

FEATURES

- Fleld-programmable (Ni-Cr link)
- Input variables: 16
- Output functions: 8
- Product terms: 48
- 1/O propagation delay: 80ns max
- Power dissipation: 600 mW typ
- Input loading: $-150 \mu \mathrm{~A} \max$
- Chip enable input
- Output option:
- 82S100: 3-State
- 82S101: Open-Collector
- Output disable function;
- 3-State: HI-Z
- Open-Collector: Hi
- Separate I/O architecture

APPLICATION

- CRT display systems
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Data security encoders
- Fault detectors
- Frequency synthesizers
- 16-bit to 8-bit bus interface
-Random logic replacement

PIN CONFIGURATION

NOTE:
$\dagger=$ Open or grounded during normal operation

For LLCC Pin Assignments, see JEDEC Std. No. 21

LOGIC FUNCTION
TYPICAL PRODUCT TERM: $P n=A \bullet E \bullet C \bullet D$

TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY $=\mathrm{H}$ $Z=P 0+P 1+P 2 \ldots$

AT OUTPUT POLARITY $=L$ $Z=P O+P 1+P 2+\ldots$ $Z=P$ - PT • P2 •...

NOTES:

1. For each of the 8 outputs, either function Z (activeHigh) or Z (active-Low) is available, but not both. The desired output polarity is programmed via the EX-OR gates.
2. Z, A, B, C etc. are user defined connections to fixed inputs (I) and output pins (O).

ORDERING INFORMATION

DESCRIPTION	3-STATE	OPEN-COLLECTOR
28-pin Ceramic DIP 600mil-wide	$82 S 100 / \mathrm{BXA}$	82 S101/BXA
28-pin Ceramic Flat Pack	$82 \mathrm{~S} 100 / \mathrm{BYA}$	$82 \mathrm{~S} 101 / \mathrm{BYA}$
28-pin Ceramic LLCC	$82 \mathrm{~S} 100 / \mathrm{B3A}$	$82 \mathrm{~S} 101 / \mathrm{B} 3 \mathrm{~A}$

FPLA LOGIC DIAGRAM

Field Programmable Logic Array ($16 \times 48 \times 8$)

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Power supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+10.0	$V_{D C}$
V_{O}	Output voltage	+5.5	$V_{D C}$
I_{I}	Input currents	-30 to +30	mA
I_{0}	Output currents	+100	mA
T_{A}	Operating Temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage Temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{3}$	LIMITS			UNIT
			Min	Typ ${ }^{5}$	Max	
Input Voltage						
V_{H}	High	$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$V_{C C}=4.5 \mathrm{~V}$			0.8	V
V_{IK}	Clamp ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output Voltage						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$				V
V_{OH}	High (82S100) ${ }^{5}$. 10	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low ${ }^{6}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.5	V
Input Current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$		<1	50	$\mu \mathrm{A}$
$\mathrm{IL}_{\text {L }}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$		-10	-150	$\mu \mathrm{A}$
Output Current						
		$\overline{C E}=\mathrm{HIGH}, \mathrm{V}_{\text {cc }}=$ Max				
Io(OFF)	Hi-Z State	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		1	60	$\mu \mathrm{A}$
	(82S100)	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$		-1	-60	$\mu \mathrm{A}$
los	Short circuit (82S100)4, 7. 10	$C E=L O W, V_{O}=0 \mathrm{~V}$	-15		-85	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$V_{C C}=5.5 \mathrm{~V}$		120	180	mA
Capacitance ${ }^{9}$						
		CE = HIGH				
		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{1 \mathrm{~N}}$	Input	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		8	13	pF
$\mathrm{C}_{\text {OUT }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		17	22	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{5}$	Max	
Propagation Delay							
$\mathrm{T}_{\text {PD }}$	Input ${ }^{11}$	Output	Input		35	80	ns
TCE	Chip enable	Output	Chip enable		15	40	
Disable Time							
$\mathrm{T}_{C D}$	Chip disable	Output	Chip enable		15	40	ns

NOTES:

1. Stresses above those listed under Absolute Maximum Ratings may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one pin at a time.
5. Measured with V_{IL} applied to $\overline{C E}$ and a logic high stored.
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied through a resistor to $V_{c c}$.
7. Duration of short circuit should not exceed 1 second.
8. $I_{c c}$ is measured with the chip enable input at a logic high, $1_{1-1} 1_{15}=$ GND.
9. Guaranteed, but not tested.
10. On unprogrammed device apply $10 \mathrm{~V}-1_{1}-1_{15}$.
11. Not testable on unprogrammed device.

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table.
In this Table, the logic state or action of variables I, P and F, associated with each Sum Term S_{n}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - (F)

"AND" ARRAY - (I)

"OR" ARRAY - (F)

P ${ }_{\text {STATUS }}$ ACTIVE	CODE	Pn STATUS	CODE

NOTES:

12. This is the initial unprogrammed state of all links.
13. Any gate P_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

TIMING DEFINITIONS

SYMBOL	PARAMETER
t CE	Delay between beginning of Chip Enable Low (with input validd and when Data Output becomes valid.
$T_{\text {CD }}$	Delay between when Chip En- able becomes High and Data Output is in Off-state (Hi-Z or High).
$T_{\text {PD }}$	Delay between beginning of valid input (with Chip Enable Low) and when Data Output becomes valid.

VIRGIN STATE

The 82S $100 / 101$ virgin devices are factory shipped in an unprogrammed state, characterized by:

1. All internal Ni-Cr links are intact.
2. Each product term (P-term) contains both True and Complement values of every input variable I (P-terms always logically "false").
3. The "OR" Matrix contains all 48 P-terms.
4. The polarity of each output is set to activeHigh (Fp function).
5. All outputs are at a Low logic level.

TEST LOAD CIRCUITS

NOTE: $R_{1}=470 \Omega, R_{2}=1000 \Omega, C_{L}=50 \mathrm{pF}$.
TIMING DIAGRAM

VOLTAGE WAVEFORM

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$t_{\text {TLH }}$	$t_{T H L}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$

$82 S 105$ (PLS105)
 Field-Programmable Logic
 Sequencer ($16 \times 48 \times 8$)

Signetics Programmable Logic

Product Specification

Signetics

Military

Application Specific Products

DESCRIPTION

The 82 S 105 is a bipolar programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of $6 Q_{p}$, and $8 Q_{F}$ edge-triggered, clocked S/R flip-flops, with an asynchronous Preset option. All flip-flops are unconditionally preset to " 1 " during power turn-on.
The AND array combines 16 external inputs, I_{0-15}, with six internal inputs, P_{0-5}, fed back from the State Register to form up to 48 transition terms (AND terms).
All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low-to-High transition of the Clock pulse. Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the

Preset input can be converted to Output Enable function, as an additional user-programmable option.

FEATURES

- Field-programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition Complement Array
- Positive edge-trigger clock
- Programmable asynchronous preset or Output Enable
- Power-on preset to all "1" of internal registers
- $\mathrm{f}_{\text {MAX }}=10.5 \mathrm{MHz}$
- 650mW power dissipation (typical)
- TTL compatible

FUNCTIONAL DIAGRAM

- Single +5 V supply
-3-state outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DIP 600mil-wide	$82 S 105 / \mathrm{BXA}$
28-Pin CLCC	$82 S 105 / \mathrm{B} 3 \mathrm{~A}$
28-Pin Ceramic FlatPack	$82 S 105 / \mathrm{BYA}$

PIN CONFIGURATION

For LLCC pin assignments see JEDEC Standard 21

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-8 \\ 20-27 \end{gathered}$	$I_{1.15}$	Logic Inputs: The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
9	10	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercised with standard $T L$ levels. When I_{0} is held at +10 V , device outputs $\mathrm{F}_{0} .5$ reflect the contents of State Register bits $\mathrm{P}_{0.5}$. The contents of each Output Register remains unaltered.	Active-High/Low
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0.7}$	Logic/Diagnostic Outputs: Eight device outputs which normally reflect the contents of Output Register bits $Q_{0.7}$, when enabled. When I_{0} is held at $+10 \mathrm{~V}, F_{0.5}=\left(P_{0-5}\right)$, and $\mathrm{F}_{6,7}=$ Logic " 1 ".	Active-High
19	PRROE	Preset or Output Enable Input: A user programmable function: - Preset: Provides an asynchronous preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and $\mathrm{F}_{0.7}$ are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High (H)
		- Output Enable: Provides an Output Enable function to all output buffers $\mathrm{F}_{0.7}$ from the Output Register.	Active-Low (L)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$V_{C C}$	Supply voltage		+7	$V_{D C}$
V_{1}	Input voltage		+10.0	$V_{D C}$
V_{0}	Output voltage		+5.5	$V_{D C}$
l_{IK}	Input currents	-30	+30	mA
10	Output currents		+100	mA
T_{A}	Operating temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
Input Voltage						
$V_{\text {IH }}$	High	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	2			V
$\mathrm{V}_{\text {IL }}$	Low	$V_{c c}=4.5 \mathrm{~V}$			0.8	V
$\mathrm{V}_{\text {IK }}$	Clamp ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output Voltage						
		$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$				
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			v
V_{OL}	Low ${ }^{6}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.5	V
Input Current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$		<1	50	$\mu \mathrm{A}$
ILL	Low	$V_{1}=0.45 \mathrm{~V}$		-10	-150	$\mu \mathrm{A}$
IL	Low (CK input)	$\mathrm{V}_{1}=0.45 \mathrm{~V}$		-50	-350	$\mu \mathrm{A}$
Output Current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{7}$	$V_{0}=5.5 \mathrm{~V}$		1	60	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=0.45 \mathrm{~V}$		-1	-60	$\mu \mathrm{A}$
los	Short circuit ${ }^{4,8}$	$V_{O}=0 \mathrm{~V}$	-15		-85	mA
${ }_{\text {ICC }}$	$V_{\text {CC }}$ supply current ${ }^{9}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$		120	185	mA
Capacitance ${ }^{\text {7,10 }}$						
		$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$				
C_{s}	Input	$V_{1}=2.0 \mathrm{~V}$		8	13	pF
$\mathrm{C}_{\text {OUT }}$	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		10	15	pF

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{11}$	Max	
Pulse Width							
${ }_{\text {tekh }}$	Clock ${ }^{12}$ High	CK-	CK+	40	15		ns
${ }^{\text {t }} \mathrm{CKL}$	Clock Low	CK+	CK-	40	15		ns
tCKP1	Period (w/o C-array)	CK+	CK+	95	40		ns
tCKP2	Period (w/C-array) ${ }^{10}$	CK+	CK+	135	60		ns
tPRH	Preset pulse	PR+	PR-	40	15		ns
Setup Time							
$\mathrm{t}_{\text {S } 1}$	Input	CK+	Input ${ }^{\text {a }}$	60			ns
$\mathrm{t}_{\text {IS } 2}$	Input (through Complement array) ${ }^{13}$	CK+	Input ${ }^{\text {a }}$	100			ns
tvs	Power-on preset ${ }^{13}$	CK-	$\mathrm{V}_{\text {CC }}{ }^{+}$	5	-10		ns
tPRS	Preset ${ }^{10}$	CK-	PR-	5	-10		ns
Hold Time							
t_{H}	Input ${ }^{10}$	Input ${ }^{\text {a }}$	CK+	10	-10		ns
Propagation Delay							
${ }_{\text {t }}$ ¢оо	Clock	Output \pm	CK+		15	35	ns
toe	Output Enable ${ }^{13}$	Output-	OE-		20	40	ns
tod	Output Disable ${ }^{13}$	Output+	OE+		20	40	ns
$t_{\text {PR }}$	Preset	Output+	PR+		18	45	ns
$\mathrm{t}_{\text {PPR }}$	Power-on preset ${ }^{10}$	Output+	VCC^{+}		0	20	ns
Frequency of Operation							
$\begin{aligned} & f_{\text {max }} \\ & f_{\text {MAX }} \end{aligned}$	w/o C-array w/C-array ${ }^{10}$					$\begin{gathered} \hline 10.5 \\ 8.3 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with V_{IL} applied to $\overline{O E}$ and a logic High stored, or with V_{IH} applied to $P R$.
6. Measured with a programmed logic condition for which the output is at a Low logic level, and V_{IL} applied to PR/OE Output sink current is supplied through a resistor to V_{Cc}.
7. Measured with $V_{I H}$ applied to PROEE.
8. Duration of short circuit should not exceed 1 second.
9. $I_{C C}$ is measured with the PR/OE input grounded, the outputs open.
10. Guaranteed, but not tested.
11. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
12. To prevent spurious clocking, clock rise time ($10 \%-90 \%$) $\leq 30 \mathrm{~ns}$.
13. Not testable on unprogrammed devices.

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathbf{t}_{\text {CKH }}$	Width of input clock pulse.
$\mathrm{t}_{\mathrm{CKL}}$	Interval between clock pulses.
$\mathrm{t}_{\mathrm{CKP1}}$	Operating period - when not using Complement Array.
$\mathrm{t}_{\mathrm{IS} 1}$	Required delay between beginning of valid input and positive transition of Clock.
$\mathrm{t}_{\mathrm{CKP2}}$	Operating period - when using Complement Array.
$\mathrm{t}_{\mathrm{IS} 2}$	Required delay between beginning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).

LOGIC FUNCTION

SYMBOL	PARAMETER
tvs	Required delay between VCC (after power-on) and negative transition of Clock preceding first reliable clock pulse.
tpRS	Required delay between negative transition of Asynchronous Preset and negative transition of Clock preceding first reliable clock pulse.
$\mathrm{t}_{\text {IH }}$	Required delay between positive transition of Clock and end of valid Input data.
tcko	Delay between positive transition of Clock and when outputs become valid (with PR/OE Low).

SYMBOL	PARAMETER
$t_{\text {OE }}$	Delay between beginning of Output Enable Low and when Outputs become valid.
$t_{O D}$	Delay between beginning of Output Enable High and when Outputs are in the Off-State.
$\mathrm{t}_{\text {PR }}$	Delay between positive transition of Preset and when Outputs become valid at "1".
$\mathrm{t}_{\text {PPR }}$	Delay between VCC (after power-on) and when Outputs become preset at "1".
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. $\mathrm{PR} /$ /OE option is set to PR . Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S / R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.

NOTE: The Test Array pattern must be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TRUTH TABLE

V_{cc}	OPTION		l_{0}	CK	S	R	$Q_{\text {P/F }}$	F							
	PR	OE													
+5V	H		*	X	X	X	H	H							
	L		+10V	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{P}}\right)_{n}$							
	L		X	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}$							
		H	*	X	X	X	Q_{n}	$\mathrm{Hi}-\mathrm{Z}$							
		L	+10V	X	X	X	Q_{n}	$\left(Q_{p}\right)_{n}$							
		L	X	X	X	X	Q_{n}	$\left(Q_{F}\right)_{n}$							
		L	X	\uparrow	L	L	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}$							
		L	X	\uparrow	L	H	L	L							
		L	x	\uparrow	H	L	H	H							
		L	X	\uparrow	H	H	IND.	IND.							
\uparrow	X	X	X	X	X	X	H								
NOTES:															
$\begin{array}{ll}\text { Positive Logic } & \left.\begin{array}{ll}S / R-T_{0}+T_{1}+T_{2}+\ldots+T_{47} \\ T_{n}=C\left(l_{0} 1_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{5}\right)\end{array}\right)\end{array}$															
2. Either Preset (Active-High) or סutput Enabie (active-Low) are available, but not both. The desired function is a user programmable option.															
3. T denotes transition from Low to High level.															
5. $*=\mathrm{HJU}+10 \mathrm{~V}$. 6. $X=\operatorname{Don't} \operatorname{Care}(\leq 5.5 \mathrm{~V})$.															

TEST LOAD CIRCUITS

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Table on the following page.
In this table, the logic state or action of control variables C, I, P, N and F, associated with each Transition Term T_{n} is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

PRESET/OE OPTION - (P/E)

OPIION	CODE
PRESET	H

PROGRAMMING THE 82S105:
The 82 S 105 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

						T_{n}			
		$\begin{array}{l\|l} \bar{n}, 1 & \\ \hline \end{array}$							
ACTION	CODE			ACTION	CODE	ACTION	CODE	ACTION	CODE
INACTIVE ${ }^{14,15}$	0	SET	H	RESET	L	NO CHANGE	-		

"COMPLEMENT" ARRAY - (C)

NOTES:
14. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
15. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs are left intact.
16. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
17. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}

FPLS PROGRAM TABLE

PROGRAM TABLE ENTRIES

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TEST ARRAY

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any Signetic's qualified programming equipment.

TEST ARRAY DELETED

OPTION (P/E)														H
OR														
NEXT STATE (Ns)						OUTPUT (Fr)								
5	4	$\overline{3}$	2	1	0	7	6	5	4	3	2	1		0
-	-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-	-	-	-		-

[^13]
Signetics

Military
 Customer Specific Products

DESCRIPTION

The 82S153A is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 di rectional control gates (D), ranging from 18 inputs to 10 outputs.

On chip T/C buffers couple either True (I,B) or Complement (I, B) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.
The 82S153A is field programmable, enabling the use to quickly generate custom patterns using standard programming equipment.

FEATURES

- Field-Programmable (Ni-Cr links)

PIN CONFIGURATION

	20] v_{CC} 19 B_{9} 18 B_{8} $17 \mathrm{~B}_{7}$ ${ }^{16} \mathrm{~B}_{6}$ $15 \mathrm{~B}_{5}$ 14) B_{4} 13 B_{3} 12 B_{2} 11 B_{1}
For LLCC pin assignments, see Package Section	

82S153A (PLS153A) Field Programmable Logic Array $(18 \times 42 \times 10)$

Signetics Programmable Logic
Product Specification

- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 Product Terms:
- 32 Logic Terms
- 10 Control Terms
- I/O propagation delay: 42ns (max)
- Input loading: -150 $\mu \mathrm{A}$ (max)
- Power dissipation: 650mW (typ.)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

Field Programmable Logic Array ($18 \times 42 \times 10$)

FPLA LOGIC DIAGRAM

NOTES:

1. Ali programmed 'AND' gate locations are pulted to logic "1"
2. All programmed OR' gate locations are pulled to logic " 0 ".
3. Programmable connection.

Field Programmable Logic Array ($18 \times 42 \times 10$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$\mathrm{V}_{C C}$	Supply Voltage		+7	$V_{D C}$
V_{1}	Input voltage		+10.0	$V_{D C}$
V_{0}	Output voltage		+5.5	$V_{D C}$
$1 /$	Input currents	-30	+30	mA
10	Output currents		+100	mA
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
Input Voltage						
VL	Low	$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}$			0.80	v
V_{H}	High	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	2.0			v
V_{K}	Clamp ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{1}=-18 \mathrm{~mA}$		-0.8	-1.2	v
Output Voltage						
		$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$				
$\mathrm{V}_{\text {OL }}$	Low ${ }^{5}$	$\mathrm{l}_{\mathrm{ol}}=12 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{6}$	$\mathrm{loh}^{\mathrm{O}}=2 \mathrm{~mA}$	2.4			v
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
IIL	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
Iojofa	Hi-Z state ${ }^{10}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			110	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=0.45 \mathrm{~V}$			-210	$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$, 6.7	$\mathrm{V}_{0}=0 \mathrm{~V}$	-15		-85	mA
lcc	$V_{\text {cC }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$		130	165	mA
Capacitance ${ }^{12}$						
		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$				
C_{N}	Input	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		8	13	pF
C_{B}	110	$V_{B}=2.0 \mathrm{~V}$		15	20	pF

Field Programmable Logic Array ($18 \times 42 \times 10$)

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
$t_{P D}$ toe	Propagation delay Output enable	Output \pm Output \pm	Input \pm Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tod	Output disable ${ }^{9,11}$	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	40	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with +10 V applied to I_{7}.
6. Measured with +10 V applied to $\mathrm{I}_{0.7}$. Output sink current is supplied through a resistor to V_{CC} -
7. Duration of short circuit should not exceed 1 second.
8. I_{cc} is measured with $\mathrm{I}_{0.1}$ grounded, $\mathrm{I}_{2.7}$ and $\mathrm{B}_{0.9}$ at 4.5 V .
9. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
10. Leakage values are a combination of input and output leakage.
11. Not testable on unprogrammed device.
12. Guaranteed, but not tested.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$T_{P D}$	Propagation delay between input and output.
$T_{D D}$	Delay between input change and when output is off (Hi-Z or High).
$T_{D E}$	Delay between input change and when output reflects specified output level.

TIMING DIAGRAMS

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Field Programmable Logic Array ($18 \times 42 \times 10$)

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/OR/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this table the logic state of variables I, P, and Bassociatedwith each Sum Term Sis assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)
ST,

OR ARRAY - (B)

NOTES:

13. This is the initial unprogrammed state of all links.
14. Any gate P_{n} will be unconditioanlly inhibited if both the True and Complement of an input (either I or B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

CAUTION: 82S153A TEST

COLUMNS
The 82S153A incorporates two columns not shown in the logic block diagram. These columns are used for in-house testing of the device in the unprogrammed state. These columns must be disabled prior to using the 82S153A in your application. If you are using a Signeticsapproved programmer, the disabling is accomplished during the device programming $s e-$ quence. If these columns are not disabled, abnormal operation is possible.

Field Programmable Logic Array ($18 \times 42 \times 10$)

FPLA PROGRAM TABLE

TWX TAPE CODING (LOGIC FORMAT)

The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8 -level tape (paper, mylar, fanfold, etc.),
or via TWX: just dial (910) 339-9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.

A number of Program Tables can be sequentially assembled on a continuous tape as follows, however, limit tape length to a roll of 1.75 inch inside diameter and 4.25 outside diameter.

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:
\qquad 4. Purchase Order No
5. Number of Program Tables
-3. Date
6. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

1. Signetics Device No. \qquad 4. Date
2. Program Table No. \qquad 5. Customer Symbolized Part No.
3. Revision \qquad 6. Number of Parts \qquad
C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of output polarity, product term, and output information separated by appropriate identifiers in accordance with the following format. Entries for the data fields correspond to those defined in the Logic PROGRAM TABLE:

Signetics

Signetics Military

Programmable Logic

DESCRIPTION

The PLC18V8Z is a universal PAL-type device featuring high performance and virtually zero-standby power for power sensitive applications. It is a reliable, user-contigurable substitute for discrete TTLCMOS logic. While compatible with TL and HCT it can also replace $H C$ logic over the $V_{C C}$ range of 4.5 to 5.5 V .

The PLC18V8Z is a two-level logic element comprised of 10 inputs, 74 AND gates (product terms) and 8 output Macro cells.
Each output features an "Output Macro Cell" which can be individually configured as a dedicated input, a combinatorial output, or a registered output with internal feedback. As a result, the it is capable of emulating all common 20 -pin PAL devices to reduce documentation, inventory, and manufacturing costs.
A power-up reset function and a Register Preload function have been incorporated in the architecture to facilitate state machine design and testing.

With a standby current of less than $100 \mu \mathrm{~A}$ and active power consumption of $1.5 \mathrm{~mA} / \mathrm{MHz}$, the device is ideally suited for power sensitive applications in battery operated/backed portable instruments and computers.

The PLC18V8Z is also processed to industrial requirements for operation over an extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and supply voltage of 4.5 V to 5.5 V .

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic Dual In-Line Package 300mil-wide	PLC18V8Z/ BRA (OT)
20-Pin Ceramic Dual In-Line Package 300mil-wide w/ quartz window	PLC18V8Z/ BRA
20-Pin Ceramic LLCC 350mil square	PLC18V8/B2A (OT)

PLC18V8Z

Zero Standby Power

Universal PAL®-type Devices

Preliminary Specification

FEATURES

- 20-pin Universal Programmable Array Logic
- Virtually Zero-Standby-power
- Functional replacement for Series 20 PAL devices
- $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
- High-performance CMOS EPROM cell technology
- Erasable
- Reconfigurable
- 100% testable
- 40ns Max propagation delay.
- Up to 18 inputs and 8 input/output macro cells
- Programmable output polarity
- Power-up reset on all registers
- Register Preload capability
- Synchronous PreseV/Asynchronous Reset
- Security fuse to prevent duplication of proprietary designs
- Design support provided using AMAZE software development package and other CAD tools for PLDs
- Available in 300 mil -wide DIP with quartz window, ceramic DIP (OTP) or LLCC (OTP)

APPLICATIONS

- Battery powered instruments
- Laptop and pocket computers
- Industrial control
- Medical Instruments
- Portable communications equipment
PIN LABEL DESCRIPTIONS

I	Dedicated input
B	Bidirectional input/output
O	Dedicated output
D	Registered output (D-type flip-flop)
F	Macrocell Input/Output
CLK	Clock Input
OE	Output Enable
$V_{C C}$	Supply Voltage
GND	Ground

PIN CONFIGURATIONS

LOGIC DIAGRAM

NOTES:

the unprogrammed or virgin state:
All cells are in a conductive state
All AND gate locations are pulled to a logic " σ " (Low)
Output polarity is inverting.

Pins 1 and 11 are configured as loputs 0 and 9, iaspectively, via the configuration cell. The clock and
All output macro cells (OMC) are configured as bidirectional I/O, with the outputs disabled via the direction term.

Denotes a programmable cell location

Zero Standby Power Universal PAL-Type Devices

PAL DEVICE TO PLC18V8Z OUTPUT PIN CONFIGURATION CROSS REFERENCE

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { PLC } \\ 18 \mathrm{~V} 8 \mathrm{Z} \end{gathered}$	$\begin{aligned} & 16 \mathrm{LB} \\ & 16 \mathrm{H} 8 \\ & 16 \mathrm{P} 8 \\ & 16 \mathrm{P} 8 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 16R4 } \\ \text { 16RP4 } \end{array}$	$\begin{array}{\|c\|} \hline \text { 16R6 } \\ \text { 16RP6 } \end{array}$	$\begin{array}{\|c\|} \hline \text { 16R8 } \\ \text { 16RP8 } \end{array}$	$\begin{aligned} & 16 \mathrm{~L} 2 \\ & 16 \mathrm{H} 2 \\ & 16 \mathrm{P} 2 \end{aligned}$	$\begin{aligned} & 14 \mathrm{L4} \\ & 14 \mathrm{H4} \\ & 14 \mathrm{P} 4 \end{aligned}$	$\begin{aligned} & 12 \mathrm{L6} 6 \\ & 12 \mathrm{H} 6 \\ & 12 \mathrm{P} 6 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~L} 8 \\ & 10 \mathrm{H} 8 \\ & 10 \mathrm{P} 8 \end{aligned}$
1	10/CLK	1	CLK	CLK	CLK	1	1	1	1
19	F7	B	B	B	D	1	1	1	0
18	F6	B	B	D	D	1	1	0	0
17	F5	8	D	D	D	1	0	0	0
16	F4	B	D	D	D	0	\bigcirc	\bigcirc	0
15	F3	B	D	D	D	0	0	0	0
14	F2	B	D	D	D	1	\bigcirc	0	0
13	F1	B	B	D	D	1	1	\bigcirc	0
12	F0	B	B	B	D	1	1	1	0
11	Ig/OE	1	OE	OE	OE	1	1	1	1

The Signetics state-of-the-art Floating-Gate CMOS EPROM process yields bipolar equivalent performance at less than one-quarter the power consumption. The erasable nature of the EPROM process enables Signetics to functionally test the devices prior to shipment
to the customer. Additionally, this allows Signetics to extensively stress test, as well as ensure the threshold voltage of each individual EPROM cell. 100% programming yield is subsequently guaranteed.

FUNCTIONAL DIAGRAM

THE OUTPUT MACRO CELL (OMC)
The PLC18V8Z series devices have 8 individually programmable Output Macro Cells. The 74 AND inputs (or product terms) from the programmable AND array are connected to the 8 OMCs in groups of 9 . Eight of the AND terms are dedicated to logic functions; the ninth is for asynchronous direction control, which enables/ disables the respective bidirectional I/O pin. Two product terms are dedicated for the Synchronous Preset and Asynchronous Reset functions.
Each OMC can be independently programmed via 16 architecture control bits, $A C 1_{n}$ and $A C 2_{n}$ (one pair per macro cell). Similarly, each OMC has a programmable output polarity control bit (Xn). By configuring the pair of architecture control bits according to the configuration cell table, 4 differentconfigurations may be implemented. Note that the configuration cell is automatically programmed based on the OMC configuration.

DESIGN SECURITY

The PLC18V8Z series devices have a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

CONFIGURATION CELL

A single configuration cell controls the functions of Pins 1 and 11. Refer to Functional Diagram. When the configuration cell is programmed, Pin 1 is a dedicated clock and Pin 11 is dedicated for output enable. When the configuration cell is unprogrammed, Pins 1 and 11 are both dedicated inputs. Note that the output
enable for all registered OMCs is commonfrom Pin 11 only. Output enable control of the bidirectional I/O OMCs is provided from the AND array via the direction product term.
If any one OMC is contigured as registered, the configuration cell will be automatically configured (via the design software) to ensure that the clock and output enable functions are en-
abled on Pins 1 and 11, respectively. If none of the OMCs are registered, the configuration cell will be programmed such that Pins 1 and 11 are dedicated inputs. The programming codes are as follows:

Pin $1=$ CLK, Pin $11=\mathrm{OE}$	L
Pin 1 and Pin $11=$ Input	H

FUNCTION	CONTROL CELL CONFIGURATIONS		COMMENTS	
	AC1 $_{1}$	AC2		
Registered mode	Programmed	Programmed	Programmed	Dedicated clock from Pin 1. OE Control for all registerd OMCs from Pin 11 only.
Bidirectional I/O mode ${ }^{1}$	Unprogrammed	Unprogrammed	Unprogrammed	Pins 1 and 11 are dedicated inputs. 3-State control from AND array only.
Fixed input mode	Unprogrammed	Programmed	Unprogrammed	Pins 1 and 11 are dedicated inputs.
Fixed output mode	Programmed	Unprogrammed	Unprogrammed	Pins 1 and 11 are dedicated inputs. The feedback path (via $\mathrm{F}_{\text {MUx }}$) is disabled.

NOTE:

1. This is the virgin state as shipped from the factory.

ARCHITECTURE CONTROL-AC1 and AC2

NOTE:
A factory shipped unprogrammed device is configured such that:

1. This is the initial unprogrammed state. All cells are in a conductive state.
2. All AND gates are pulled to a logic " 0 " (Low).
3. Output polarity is inverting.
4. Pins 1 and 11 are configured as inputs 0 and 9 . The clock and $O E$ functions are disabled.
5. All Output Macro Cells (OMCs) are configured as bidirectional I/O, with the outputs disabled via the direction term.
6. This configuration cannot be used if any OMCs are configured as registered ($C o d e=\mathrm{D}$). The configuration cell will be automatically configured to ensure that the clock and output enable functions are enabled on Pins 1 and 11, respectively, if any one OMC is programmed as registered.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7	$V_{D C}$
$V_{C C}$	Operating supply voltage	4.5 to 5.5	$V_{D C}$
$V_{I N}$	Input voltage	-0.5 to $V_{C C}+0.5$	$V_{D C}$
$V_{O U T}$	Output voltage	-0.5 to $V_{C C}+0.5$	$V_{D C}$
$I_{\mathbb{N}}$	Input currents	-10 to +10	mA
$\mathrm{l}_{\text {OUT }}$	Output currents	+24	mA
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfuncion or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage						
V_{IL}	Low	$V_{C C}=\operatorname{Min}$	-0.3		0.8	V
V_{H}	High	$V_{C C}=$ Max	2.0		$\mathrm{V}_{C C}+0.3$	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.100 \\ & 0.500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	High	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, I_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & V_{\mathrm{CC}}=\mathrm{Min}, I_{\mathrm{OH}}=-20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.4 \\ \mathrm{v}_{\mathrm{cc}}-0.1 \mathrm{~V} \\ \hline \end{gathered}$			$\begin{aligned} & v \\ & v \end{aligned}$
Input current						
$\mathrm{I}_{\text {LL }}$	Low ${ }^{7}$	$\mathrm{V}_{\text {IN }}=$ GND			-10	$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
Output current						
lo,off)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & V_{\text {OUT }}=V_{\text {CC }} \\ & V_{\text {OUT }}=G N D \end{aligned}$			$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\overline{\mu \mathrm{A}}$ $\mu \mathrm{A}$
los	Short-circuit ${ }^{3}$	$V_{\text {OUT }}=$ GND			-130	mA
Icc	$\mathrm{V}_{C C}$ supply current (Standby)	$V_{C C}=$ Max, $V_{\text {IN }}=0$ or $V_{C C}{ }^{8}$			100	$\mu \mathrm{A}$
$\mathrm{lcc}^{\text {f }}$	$\mathrm{V}_{\text {CC }}$ supply current (Active) ${ }^{4}$	$V_{\text {CC }}=\operatorname{Max}$ (CMOS inputs) ${ }^{5,6}$			1.5	$\mathrm{mA} M \mathrm{Mz}$
Capacitance						
C_{1}	Input	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{\text {IN }}=2.0 \mathrm{~V} \end{aligned}$		12	17	pF
C_{B}	1/0	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15	20	pF

NOTES:

1. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with $T T L$ input levels: $\mathrm{V}_{\mathbb{L}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathbb{H}}=2.4 \mathrm{~V}$. Measured with all outputs switching.
5. $\Delta \mathrm{I}_{\mathrm{C}} / T \mathrm{TL}$ input $=2 \mathrm{~mA}$.
6. $\Delta \mathrm{l}_{\mathrm{cc}}$ vs frequency (registered configuration) $=2 \mathrm{~mA} / \mathrm{MHz}$.
7. IIL for Pin 1 (Io/CLK) is $\pm 10 \mu \mathrm{~A}$ with $\mathrm{V}_{\mathbb{N}}=0.4 \mathrm{~V}$.
8. $\mathrm{V}_{\mathbb{I N}}$ includes CLK and OE if applicable.

Figure 1. Icc vs Frequency (Worst Case)

Figure 2. $\Delta_{\text {t }}$ pD vs Output Capacitance Loading (Typical)

Zero Standby Power Universal PAL-Type Devices

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION ${ }^{1}$		LIMITS		UNIT
				$\mathrm{R}_{1}(\Omega)$	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	Min	Max	
Pulse width								
${ }^{\text {t. }}$ ¢	Clock period (Minimum $\mathrm{t}_{\mathrm{I}}+\mathrm{t}_{\mathrm{Ck}}$)	CLK +	CLK +	200	50	57		ns
$\mathrm{t}_{\text {CKH }}$	Clock width High	CLK +	CLK -	200	50	25		ns
$\mathrm{t}_{\text {CKL }}$	Clock width Low	CLK -	CLK +	200	50	25		ns
$\mathrm{t}_{\text {ARW }}$	Async reset pulse width	$1 \pm$ F \pm	$17, F \mp$			40	ns	
Hold time								
$\mathrm{t}_{\mathbf{H}}$	Input or feedback data hold time	CLK +	Input \pm	200	50	0		ns
Selup time								
tis	Input or feedback data setup time	$I \pm, F \pm$	CLK +	200	50	30		ns
Propagation delay								
$t_{\text {PD }}$	Delay from input to active output	$1 \pm$ F \pm	$\mathrm{F} \pm$	200	50		40	ns
tcko	Clock High to output valid access Time	CLK +	$\mathrm{F} \pm$	200	50		27	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{3}$	Product term enable to outputs off	$1 \pm . F \pm$	F \pm	Active-High R $=1.5 \mathrm{k}$ Active-Low R $=550$	50		40	ns
tODS^{2}	Product term disable to outputs off	$1 \pm, F \pm$	F \pm	From $V_{O H} R=\infty$ From $V_{\text {OL }} R=200$	5		40	ns
$\mathrm{tOD2}^{2}$	Pin 11 output disable High to outputs off	OE -	F \pm	From $\mathrm{V}_{\mathrm{OH}} \mathrm{R}=\infty$ From $V_{\mathrm{OL}} \mathrm{R}=200$	5		30	ns
LOEF^{3}	Pin 11 output enable to active output	$\mathrm{OE}+$	F \pm	Active-High $R=1.5 \mathrm{k}$ Active-Low R $=550$	50		30	ns
$\mathrm{t}_{\text {ARD }}$	Async reset delay	$1 \pm$ F F	F +				40	ns
$t_{\text {ARR }}$	Async reset recovery time	$1 \pm$ F \pm	CLK +			30		ns
${ }_{\text {t SPR }}$	Sync preset recovery time	$1 \pm$ F F	CLK +			30		ns
tPPR	Power-up reset	$\mathrm{V}_{\mathrm{Cc}}+$	F +				40	ns
Frequency of operation								
$\mathrm{f}_{\text {MAX }}$	Maximum frequency	l/t $\mathrm{t}_{\text {S }}$	(ko)	200	50		18	MHz

NOTES:

1. Refer also to AC Test Conditions. (Test Load Circuit)
2. 3-State levels are measured +0.5 V from the active steady-state level.
3. Resistor values of 1.5 k and 550 W provide 3 -State levels of 1.0 V and 2.0 V , respectively. Output timing measurements are to 1.5 V level.

Zero Standby Power

Universal PAL-Type Devices

AC TEST CONDITIONS

POWER-UP RESET

In order to facilitate state machine design and testing, a power-up reset function has been incorporated in the PLC18V8Z. All internal registers will reset to active-Low (logical " 0 ") after a specified period of time (tpPR^{2}). Therefore, any

VOLTAGE WAVEFORMS

MEASUREMENTS
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.
Input Pulses

OMC that has been configured as a registered output will always produce an active-High on the associated output pin because of the inverted output buffer. The internal feedback (Q)
of a registered OMC will also be set Low. The programmed polarity of OMC will not affect the active-High output condition during a system power-up condition.

Zero Standby Power Universal PAL-Type Devices

TIMING DIAGRAMS

NOTE:
Diagram presupposes that the outputs (F) are enabled. The reset $\propto c c u r s$ regardless of the output condition (enabled or disabled).

Zero Standby Power Universal PAL-Type Devices

TIMING DIAGRAMS (Continued)

REGISTER PRELOAD FUNCTION

 (DIAGNOSTIC MODE ONLY)In order to facilitate the testing of state machine/controller designs, a diagnostic mode register preload feature has been incorporated into the PLC18V8Z series device. This feature enables the user to load the registers with pre-
determined states while a super voltage is applied to Pins 11 and $6\left(I_{9} / O E\right.$ and $\left.I_{5}\right)$. (See diagram for timing and sequence.)
To read the data out, Pins 11 and 6 must be returned to normal TTL levels. The outputs, $F_{0.7}$, must be enabled in order to read data out. The

Q outputs of the registers will reflect data in as input via F_{0-7} during preload. Subsequently, the register Q output via the feedback path will reflect the data in as input via $\mathrm{F}_{0.7}$.

Refer to the voltage waveform for timing and voltage references. $t_{P L}=10 \mu \mathrm{sec}$.

Zero Standby Power Universal PAL-Type Devices

REGISTER PRELOAD (DIAGNOSTIC MODE)

LOGIC PROGRAMMING

The PLC18V8Z can be programmed by means of Logic Programming equipment.

With Logic programming, the AND/OR/Ex-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table. Similarly, various OMC configurations are implemented by programming the Architecture

OUTPUT POLARITY - (O, B)
 Control bits AC1 and AC2. Note that the configuration cell is automatically programmed based on the OMC configuration.

In this table, the logic state of variables I, P and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:
"AND" ARRAY - (I, B)

NOTE:

1. A factory shipped unprogrammed device is configured such that all cells are in a conductive state.

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)

The erasure characteristics of the PLC18V8Z Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescent lighting could erase a typical PLC18V8Z in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight.

If the PLC18V8Z is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.
The recommended erasure procedure for the PLC18V8Z is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA $)$. The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to 35
minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOS EPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.

The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

PROGRAMMING

The PLC18V8Z35/l is programmable on conventional programmers for 20 -pin PAL devices. Refer to the following charts for qualified manufacturers of programmers and software tools:

PROGRAMMER MANUFACTURER	PROGRAMMER MODEL	FAMILY/PINOUT CODES
DATA I/O CORPORATION 10525 WILLOWS ROAD, N.E. P.O. BOX 97046 REDMOND, WASHINGTON 98073-9746 (800) 247-5700	```System 29B, LogicPakTM 303A-011A; V09 (DIL) 303A-011B; V04 (PLCC) UNISITE 40/48 V2.5 (DIL) Chipsite (PLCC) - TBA MODEL60 TBA```	86/4F
STAG MICROSYSTEMS, INC. 1600 WYATT DRIVE, SUITE 3 SANTA CLARA, CALIFORNIA 95054 (408) 988-1118	ZL30/30A PROGRAMMER REV. 30 A34 (DIL) 30A001 Adaptor (PLCC) PPZ PROGRAMMER TBA	12/205

SOFTWARE MANUFACTURER	DEVELOPMENT SYSTEM
SIGNETICS COMPANY	
811 EAST ARQUES AVENUE	
P.O. BOX 3409	
SUNNVALE, CALIFORNIA 94088-3409	AMAZE SOFTWARE
(408) 991-2000	
DATA I/O	
10525 WILLOWS ROAD, N.E.	
P.O. BOX 97046	
REDMOND, WASHINGTON 98073-9746	
(800) 247-5700	ABELTM SOFTWARE
LOGICAL DEVICES, INC.	
1201 NORTHWEST65TH PLACE	
FORT LAUDERDALE, FLORIDA 33309	CUPL™ SOFTWARE
(800) 331-7766	

PLC18V8Z Series

PROGRAM TABLE

* THE CONFGURATION CELL IS AUTOMATICALLY PROGRAMMED BASED ON THE OMC ARCHITECTURE.
"FOR SP, AR: "-" IS NOT ALLOWED.

Signetics

Military
Standard Products

PLHS18P8A

Programmable AND Array Logic
 $(18 \times 72 \times 8)$

DESCRIPTION

The PLHS18P8A is a two-level logic element consisting of 72 AND gates and 8 OR gates with fusible connections for programming I/O polarity and direction.

All AND gates are linked to 10 inputs (1) and 8 bidirectional $1 / O$ lines (B). These yield variable l/O gate configurations via 8 directional control gates, ranging from 18 inputs to 8 outputs.
On-chip T/C buffers couple either True (I, \bar{B}) or Complement (I, B) input polarities to all AND gates. The 72 AND gates are separated into 8 groups of 9 each. Each group of 9 is associated with one bidirectional pin. In each group, eight of the AND terms are ORed together, while the ninth is used to establish I/O direction. All outputs are individually programmable via an EX-OR gate to allow implementation of AND/OR or NAND/NOR logic functions.

Inthe virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections.
Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

The PLHS18P8A is field-programmable, allowing the user to quickly generate custom pattern using standard programming equipment.

FEATURES

- 100\% functionally compatible with AmPAL18P8A
- Field Programmable
- 10 Inputs
- 8 bidirectional I/O lines
- 72 AND gates/product terms configured into eight groups of nine
- Programmable output polarity (3-State output)
- I/O propagation delay: 30ns (max)
- Power dissipation: 750 mW (nominal)
- TTL compatible
- Verify Lock Fuse
- On-chip test features for extensive $A C$ and DC parametric testing

APPLICATIONS

- 100\% functional replacement for all 20-pin combinatorial PALs
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Ceramic DIP 300 mil-wide	PLHS18P8A/BRA
20-Pin Ceramic LLCC	PLHS18P8A/B2A
20-Pin Ceramic FlatPack	PLHS18P8A/BSA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	-0.5	+7	$V_{D C}$
V_{1}	Input voltage range	-0.5	+5.5	$V_{D C}$
V_{0}	Output voltage range	-0.5	$\mathrm{V}_{\mathrm{CC}} \mathrm{MAX}$	$V_{D C}$
Voutprg	Output voltage range (programming)		+21	$V_{D C}$
I_{1}	Input current range	-30	+5	mA
10	Output current range		+100	mA
IOUTPGR	Output current range (programming)		+170	mA
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High level input voltage ${ }^{3}$	2.0			V
IIL	Low level input voltage ${ }^{3}$			0.8	V
$\mathrm{I}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High level output current			-2	mA
loL	Low level output current			24	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{IK}	Input clamp voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{\text {IN }}=$ Max		-0.9	-1.2	V
$V_{\text {OL }}$	Output low voltage ${ }^{10}$	$V_{\text {CC }}=\operatorname{Min}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}{ }^{8,1} \mathrm{OL}=$ Max			+0.50	V
V_{OH}	Output high voltage ${ }^{10}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\text {iN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	+2.4	+3.5		V
I_{1}	Input low current	$V_{\text {CC }}=$ Max, $\mathrm{V}_{1}=+0.40 \mathrm{~V}$		-20	-100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbb{H}}$	Input high current	$V_{C C}=\operatorname{Max}, V_{1}=+2.7 \mathrm{~V}$			+25	$\mu \mathrm{A}$
1	Input high current	$V_{C C}=M a x, V_{1}=+5.5 \mathrm{~V}$			+1.0	mA
$\mathrm{I}_{\mathrm{OHZ}}$	Offstate output current high level ${ }^{7}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\mathrm{IL}}=$ Max, $\mathrm{V}_{\mathrm{IH}}=\mathrm{Min}^{8}, \mathrm{~V}_{\mathrm{O}}=+2.7 \mathrm{~V}$			+100	$\mu \mathrm{A}$
lolz	Offstate output current low level ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{O}}=+0.40 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{HH}}=\mathrm{Min}$			-250	$\mu \mathrm{A}$
Isc	Output short circuit current ${ }^{4.9}$	$V_{C C}=M a x, V_{O}=+0.5 \mathrm{~V}$	-30	-60	-90	mA
Icc	$\mathrm{V}_{\text {CC }}$ Supply current ${ }^{6}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		100	180	mA
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{5}$	$V_{C C}=+5 \mathrm{~V}, V_{1}=2.0 \mathrm{~V}$		9		pF
Cout	I/O capacitance ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}$		13		pF

Programmable AND Array Logic $(18 \times 72 \times 8)$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ R1 $=200 \Omega$, $\mathrm{R} 2=390 \Omega$

SYMBOL	PARAMETER	то	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
tpD 11	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	30	ns
$\mathrm{t}_{\mathrm{EA}}{ }^{12}$	Output enable	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	30	ns
$t_{\text {ER }}{ }^{12}$	Output disable	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	30	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
2. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included. Testing these values requires special equipment.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
5. These parameters are not tested.
6. I I_{CC} is measured with all inputs grounded.
7. On unprogrammed devices, Pins $8 \& 9=10 \mathrm{~V}$. On programmed device, Pin $4=0.4 \mathrm{~V}$.
8. V_{IL} and V_{IH} only tested on a programmed device.
9. Pin $11=10 \mathrm{~V}$ for testing unprogrammed device.
10. Pin $11=0 \mathrm{~V}$ for testing unprogrammed device.
11. tpo is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
12. For Tri-state output; output enable times are tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open of high-impedance to High tests and closed for high-impedance to Low tests. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are at " H " polarity.
2. All outputs are enabled.
3. All p-terms are enabled.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Input to output propagation delay.
$t_{\text {ER }}$	Input to output disable (3- State) delay (Output Disable).
$t_{\text {EA }}$	Input to Output Enable delay (Output Enable).

TIMING DIAGRAM

Programmable AND Array Logic $(18 \times 72 \times 8)$

FPLA LOGIC DIAGRAM

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 1 ".
2. Programmable connections.

Signetics

Military

Customer Specific Products

DESCRIPTION

The PLC415 PLD is a CMOS Programmable Logic Sequencer of the Mealy type. The PLC415 is a pin-for-pin compatible, functional superset of the PLS105 and PLUS405 Bipolar Programmable Logic Sequencer devices.
The PLC415 is ideally suited for high density, power sensitive controller functions. The Power Down feature provides true CMOS standby power levels of less than $100 \mu \mathrm{~A}$. The PLC415 has been designed to accept both CMOS and TTLinput levels to facilitate logic integration in almost any system environment.
The PLC415 architecture has been tailored for state machine functions. Both arrays are programmable, thus providing full interconnectability. Any one or all of the 64 AND transition terms can be connected to any (or all) of the 8 buried state and 8 output registers.

Two clock sources enable the design of 2 state machines on one chip. The J-K flipflops provide the added flexibility of the toggle function which is indeterminate on S-R flip-flops. The programmable Initialization feature supports asynchronous initialization of the state machine to any user defined pattern. Separate INIT functions and Output Enable functions are controllable either from the array or from an external pin.
The unique Complement Array feature supports complex ELSE transition statements with a single product term. The PLC415 has 2 Complement Arrays which allows the user to design two independent complement functions. This is particularly useful if two state machines have been implemented on one chip.

PLC415
 CMOS Programmable Logic
 Sequencer $(17 \times 68 \times 8)$

Preliminary Specification

FEATURES

- Pin-for-Pin compatible, functional superset of PLS105/A and PLUS405 Logic Sequencers
- Zero standby power of less than $100 \mu \mathrm{~A}$ (worst case)
- Power dissipation at $\boldsymbol{f}_{\text {max }}=80 \mathrm{~mA}$ (worst case)
- CMOS and TTL compatible
- Programmable asynchronous Initialization and OE functions
- Controllable from AND Array or external source
- 17 input variables
- 8 output functions
- 68 Product Terms
- 64 transition terms
- 4 control terms
- 8-bit State Register
- 8-bit Output Register
- 2 Transition Complement Arrays
- Multiple clocks
- Dlagnostic test modes features for access to state and output registers
- Power-on preset of all registers to "1"
- J-K flip-flops
- Automatic Hold states
- Security Fuse
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift Registers

PIN CONFIGURATIONS

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DIP with window; Reprogram- mable (600mil-wide)	PLC415/BXA
28-Pin Ceramic DIP; One-time Programmable (600mil-wide)	PLC415/BXA (OT)

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CLK1	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks $\mathrm{P}_{0.3}$ and $\mathrm{F}_{0.3}$ if Pin 4 is also being used as a clock.	Active-High (H)
$\begin{gathered} 2,3,5-9 \\ 26-27 \\ 20-22 \end{gathered}$	$\begin{gathered} I_{0}-I_{4}, I_{7}, I_{6} \\ I_{8}-I_{9} \\ I_{13}-I_{15} \end{gathered}$	Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/Low (H/L)
4	$1_{5} /$ CLK2	Logic Input/Clock: A user programmable function:	
		- Logic Input: A 13th external logic input to the AND array, as above.	Active-High/Low (H / L)
		- Clock: A 2nd clock for the State Registers P_{4-7} and Output Registers F_{4-7}, as above. Note that input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock.	Active-High (H)
23	l_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{12} is held at +11 V , device outputs $\mathrm{F}_{0}-\mathrm{F}_{7}$ reflect the contents of State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H / L)
24	I_{11}	Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{11} is held at +11 V , device outputs $\mathrm{F}_{0}-\mathrm{F}_{7}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7} ;$ a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
25	I_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{10} is held at +11 V , device outputs $\mathrm{F}_{0}-\mathrm{F}_{7}$ become direct inputs for Output Register bits $Q_{0}-Q_{7} ;$ a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	Active-High/Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0}-F_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+11 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)$. When I_{11} is held at $+11 \mathrm{~V}, F_{0}-F_{7}$ become inputs to State Register bits $P_{0}-P_{7}$. When I_{10} is held at $+11 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits Q_{0} - Q_{7}.	Active-High (H)
19	INIT/OE $l_{16} / P D$	External Initialization, External /OE, PD or I_{16} : A user programmable function: Only one of the four options below may be selected. Note that both Initialization and /OE options are alternately available via the AND array. (P-terms INA, INB, OEA, and OEB.)	
		- External Initialization: Provides an asynchronous Preset to logic "1" or Reset to logic " 0 " of any or all State and Output Registers, determined individually on a register-by-register basis. INIT overrides the clock, and when held High, clocking is inhibited. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after the INIT pulse goes Low. See timing diagrams for $\mathrm{t}_{\text {NVCK }}$ and $\mathrm{t}_{\text {vck }}$. Note that if the External Initialization option is selected, I_{16} is disabled automatically via the design software and the Power Down and External OE options are not available. Internal OE is available via P-Terms OEA and/or OEB. This option can be selected for one or both banks of registers.	Active-High (H)
		- External Output Enable: Provides an Output Enable/Disable function for Output Registers. Note that if the External OE option is selected, I_{16} is disabled automatically via the design software and the Power Down and External INIT options are not available. Internal INIT is available via P-terms INA and/or INB. This option can be selected for one or both banks of registers.	Active-Low (L)
		- Power Down: When invoked, provides a Power Down (zero power) mode. The contents of all Registers is retained, despite the toggling of the Inputs or the clocks. To obtain the lowest possible power level, all Inputs should be static and at CMOS input levels. Note that if the PD options is selected, I_{16} is disabled automatically via the design software and the External INIT and External OE options are not available. Internal INIT is available via P-terms INA and/or INB and Internal OE is available via P-terms OEA and/or OEB.	Active-High (H)
		- Logic Input: The 17th external logic input to the AND array as above. Note that when the l_{16} option is selected, the Power Down, External /OE and External INIT are not available. Internal OE and Internal INIT are available from P-Terms OEA/OEB and INA/INB, respectively.	Active-High/Low (H/L)

CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$)

TRUTH TABLE 1, 2, 3, 4, 5, 6

V_{cc}	OPTION		l_{10}	11	l_{12}	CK	J	K	Q_{p}	Q_{F}	F
	INIT	$\overline{O E}$									
+5V	H		X	X	X	X	X	X	H/L	H/L	Q_{F}
	X		+11V	x	x	\uparrow	x	x	Q_{p}	L	L
	x		+11V	X	x	\uparrow	x	x	Q_{p}	H	H
	x		X	+11V	X	\uparrow	x	X	L	Q_{F}	L
	x		X	+11V	X	\uparrow	x	X	H	Q_{F}	H
	X		X	X	+11V	X	X	X	Q_{p}	Q_{F}	QP_{P}
	L		X	X	X	X	X	X	Q_{p}	Q_{F}	Q_{F}
		H	X	X	X	X	x	X	Q_{P}	Q_{F}	$\mathrm{Hi}-\mathrm{Z}$
		x	+11V	x	x	\uparrow	X	x	Q_{P}	L	L
		x	+11V	X	x	\uparrow	x	x	Q_{P}	H	H
		X	X	+11V	x	\uparrow	X	x	L	Q_{F}	L
		X	X	+11V	X	\uparrow	x	x	H	Q_{F}	H
		L	X	X	+11V	X	X	X	Q_{P}	Q_{F}	Q_{p}
		L	X	X	X	X	X	X	Q_{P}	Q_{F}	Q_{F}
		L	x	x	x	\uparrow	L	L	Q_{P}	Q_{F}	Q_{F}
		L	x	x	x	\uparrow	L	H	L	L	L
		L	x	x	x	\uparrow	H	L	H	H	H
		L	x	x	x	\uparrow	H	H	\bar{Q}_{p}	\bar{Q}_{F}	σ_{F}
\uparrow	L	L	X	X	X	X	X	X	H	H	H

NOTES:

1. Positive Logic:
$S / R($ or $J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}$
$T_{n}=\left(C_{0}, C_{1}\right)\left(I_{0}, I_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1} \ldots P_{7}\right)$
2. Either Initialization or Output Enable are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. $X=$ Don't Care $(\leq 5.5 \mathrm{~V})$
5. H/L implies that either a High or a Low can occur, depending upon user-programmed Initialization selection (each State and Output Register individually programmable).
6. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3 -Stated and the indicated levels on the output pins are forced by the user.

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. INIT/OE/PD/I ${ }_{16}$ is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the user-programmed initialization, or even if the INIT function is not used, all registers are preset to " 1 " by the power-up procedure.
2. All transition terms are inactive (0).
3. All J / K flip-flop inputs are disabled (0).
4. The Complement Arrays are inactive.
5. Clock 1 is connected to all State and Output Registers.

LOGIC FUNCTION

CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$)

LOGIC DIAGRAM

DETAILS FOR PLC415 LOGIC DIAGRAM

Detail C
Pin 19 Options: $\mathbf{O E}$, Initialization, Power Down and Input 16

Detail D
Internal and External Initialization

DETAILS FOR PLC415 LOGIC DIAGRAM (Continued)

The Complement Array is a special sequencer feature that is often used for detecting illegal states. It is also ideal for generating IF-THEN-ELSE logic statements with a minimum number of product terms.

The concept is deceptively simple. If you subscribe to the theory that the expressions $(A * / B * / C)$ and $(\overline{A+B+C})$ are equivalent, you will beginto see the value of this single term NOR array.
The Complement Array is a single OR gate with inputs from the AND array. The output of the

Complement Array is inverted and fed back to the AND array (NOR). The output of the array will be Low if any one or more of the AND terms connected to it are active (High). If, however, all the connected terms are inactive (Low), which is a classic unknown state, the output of the Complement Array will be High.
Consider the Product Terms A, B and D that represent defined states. They are also connected to the input of the Complement Array. When the condition (not A and not B and not D) exists, the Complement Array will detect this and propagate an Active-High signal to the

AND array. This signal can be connected to Product Term E, which could be used in turn to reset the slate machine to a known state. Without the Complement Array, one would have to generate product terms for all unknown or illogal states. With very complex state machines, this approach can be prohibitive, both in terms of time and wasted resources.

Note that the PLC415 has 2 Complement Arrays which allow the user to design 2 independent Complement functions. This is particularly useful if 2 independent state machines have been implemented on one device.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
$V_{\text {CC }}$	Supply voltage	+7	$V_{D C}$
$\mathrm{~V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30 to +30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents	+100	mA
$\mathrm{~T}_{\text {A }}$	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION		LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{\text {2 }}$							
$\mathrm{V}_{1 \mathrm{LL}}$	Low	$V_{C C}=$ Min		-0.3		0.8	V
V_{IH}	High	$V_{C C}=$ Max		2.0		$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Output voltage ${ }^{\text {2 }}$							
V_{OL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$				0.5	V
V_{OH}	High	$\mathrm{IOH}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$		2.4			V
Input current							
I_{12}	Low	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
$I_{\text {IH }}$	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$
Output current							
lo(off)	Hi-Z state	$\begin{aligned} & V_{\text {OUT }}=V_{\text {CC }} \\ & V_{\text {OUT }}=G N D \end{aligned}$				$\begin{array}{r} 10 \\ -10 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
los	Short-circuit ${ }^{3.6}$	$V_{\text {OUT }}=$ GND				-130	mA
ICCsB	$V_{\text {CC }}$ supply current with PD asserted ${ }^{7}$	$V_{\text {CC }}=$ Max, $V_{\text {IN }}=0$ or $V_{\text {CC }}$		-	50	100	$\mu \mathrm{A}$
Icc	$V_{C C}$ supply current Active ${ }^{4.5}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$	at $f=1 \mathrm{MHz}$			60	mA
	(TTL or CMOS Inputs)		at $\mathfrak{f}=$ Max			90	mA
Capacitance							
C_{1}	Input	$V_{C C}=5$	$\mathrm{N}=2.0 \mathrm{~V}$		12	17	pF
C_{B}	1/0				15	20	pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time,
4. Tested with TTL input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$. Measured with all inputs and outputs switching.
5. Refer to Figure 1, Icc vs Frequency (worst case).
6. Refer to Figure 2 for $\Delta t_{p D}$ vs output capacitance loading.
7. The outputs are automatically 3 -Stated when the device is in the Power Down mode. To achieve the lowest possible current, the inputs and clocks should be at CMOS static levels.

Figure 1. Icc vs Frequency (Worst Case)

Figure 2. $\Delta t_{p D}$ vs Output Capacitance Loading (Typical)

CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$)
PLC415

AC ELECTRICAL CHARACTERISTICS $\mathrm{R}_{1}=252 \Omega, \mathrm{R}_{2}=178 \Omega,-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
Pulse width								
${ }^{\text {L CKH }}$	Clock High	CK+	CK-	30 pF	25	10		ns
$\mathrm{L}_{\mathrm{CKL}}$	Clock Low	CK-	CK+	30 pF	25	10		ns
$\mathrm{I}_{\text {INTH }}$	Initialization Input pulse	INIT+	INIT-	30 pF	20			ns
Set-up time								
$t_{\text {IS }}$	Input	(I) $+1-$	CK+	30 pF	45	25		ns
$\mathrm{t}_{\text {IS } 2}{ }^{1}$	Input through Complement array	(I) $+1-$	CK+	30pF	65	40		ns
$\mathrm{t}_{\text {ISPD }}$	Power Down Setup (from PD pin)	PD +	CK+	30 pF	38	15		ns
$\mathrm{t}_{\text {ISPU }}$	Power Up Setup (from PD pin)	PD-	First Valid CK+	30pF	38	30		ns
tvs ${ }^{1}$	Power on Preset Setup	VCC^{+}	CK-	30pF	0			ns
tveki	Clock resume (after INIT) when using INIT pin (pin 19)	INIT-	CK-	30pF	10	-5		ns
tvck2 ${ }^{1}$	Clock resume (after INIT) when using P-term INIT (from AND array)	(I) $+1-$	CK-	30pF	20	8		ns
$\mathrm{t}_{\text {NVCKı }}$	Clock lockout (before INIT) when using INIT pin (pin 19)	CK-	INIT-	30pF	10	-3		ns
$\mathrm{t}_{\text {NVCK2 }}{ }^{1}$	Clock lockout (before INIT) when using P-term INIT (from AND array)	CK-	INIT-	30 pF	0	-5		ns
Propagation delays								
tcko	Clock to Output	CK+	(F) +/-	30pF		15	30	ns
tpdz	Power Down to outputs off	PD+	Outputs Off	5 pF		25	35	ns
tpuay	Power Up to outputs Active with dedicated Output Enable	PD.	Outputs Active	30 pF		20	40	ns
tpuaz ${ }^{1}$	Power Up to outputs Active with P-term Output Enable ${ }^{1}$	PD-	Outputs Active	30 pF		37	60	ns
$\mathrm{t}_{\mathrm{H} P \mathrm{U}}$	Last valid clock to Power Down delay (Hold)	Last Valid Clock	PD+	30 pF	25	15		ns
$t_{\text {HPD }}$	First valid clock cycle beforePower Up	Beginning of First Valid Clock Cycle	PD-	30pF	0	-25		ns
toE1	Output Enable: from /OE pin	OE-	Output Enabled	30pF		15	30	ns
toE2 ${ }^{1}$	Output Enable; from P-term	(l) +/-	Output Enabled	30pF		25	40	ns
todi	Output Disable; from /OE pin	OE+	Output Disabled	5 pF		20	30	ns
tod2	Output Disable; from P-term	(I) $+1-$	Output Disabled	5 pF		30	40	ns
$\mathrm{t}_{\text {INIT1 }}$	INIT to output when using INIT pin	INIT+	(F) $+1-$	30 pF		22	35	ns
${ }^{1}$	INIT to output when using P-term INIT	(l) $+1-$	(F) $+1-$	30 pF		35	45	ns
${ }_{\text {tPPR }}{ }^{1}$	Power-on Preset ($\mathrm{F}_{\mathrm{n}}=1$)	$\mathrm{V}_{\mathrm{cc}}+$	(F) +	30pF			15	ns
$\mathrm{t}_{\text {ckP } 1}$	Registered operating period; ($\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO}}{ }^{1}$)	(I) +/-	(F) + $/$	30 pF		40	60	ns
tCKP2 ${ }^{1}$	Registered operating period with Complement Array ($\mathrm{t}_{\text {S } 2}+\mathrm{t}_{\mathrm{CKO}}$)	(i) +/-	(F) +/-	30pF		55	75	ns
Hold time								
$t_{\text {H }}$	Input Hold	CK+	(F) +/-	30pF		-10	0	ns
Frequency of operation								
fclk	Clock (toggle) frequency	C+	C+	30pF	15	45		MHz
$\mathrm{f}_{\text {MAX }}$	Registered operating frequency ($\mathrm{I}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO}}$)	(l) +/-	(F) +/-	30 pF	13.3	22		MHz
$\mathrm{f}_{\text {MAX2 }}$	Registered operating frequency with Complement Array ($\mathrm{t}_{\mathrm{S} 2}+\mathrm{t}_{\mathrm{CKO}}$)	(I) +/-	(F) +/-	30 pF	11.9	16.4		MHz

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

TIMING DIAGRAMS

The PLC415 has a unique power down feature that is ideal for power sensitive controller and state machine applications. During idle periods, the PLC415 can be powered down to a near zero power consumption level of less than 100 micro Amps. Externally controlled from Pin 19, the power down sequence first saves
the data in all the State and Output registers. In order to insure that the last valid states are saved, there are certain hold times associated with the first and last valid clock edges and the Power Down input pulse. The Outputs are then automatically 3-Stated and power consumption is reduced to a minimum.

Once in the power down mode, any or all of the inputs, including the clocks, may be toggled without the loss of data. To obtain the lowest possible power level, the inputs should be at static CMOS input levels during the power down period.

TIMING DIAGRAMS (Continued)

Power Down Enable and Disable

TIMING DIAGRAMS (Continued)

TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }_{\text {fclk }}$	Minimum guaranteed toggle frequency of the clock (from Clock High to Clock High).
$\dagger_{\text {MAX1, } 2}$	Minimum guaranteed operating frequency.
$\mathrm{t}_{\mathrm{CKH}}$	Width of input clock pulse.
${ }_{\text {tckl }}$	Interval between clock pulses.
tCKP1	Minimum guaranteed operating period - when not using Complement Array.
${ }^{\text {t CKP2 }}$	Minimum guaranteed operating period - when using Complement Array.
${ }^{\text {tско }}$	Delay between positive transition of Clock and when Outputs become valid (with outputs enabled).
${ }^{\text {tH }}$	Required delay between positive transition of Clock and end of valid Input data.
$\mathrm{t}_{\mathrm{HPD}}$	Required delay between the positive transition of the beginning of the first valid clock cycle to the beginning of Power Down Low to insure that the last valid states are intact and that the next positive transition of the clock is valid.
$\mathrm{t}_{\text {IHPU }}$	Required delay between the positive transition of the last valid clock and the beginning of Power Down High to insure that last valid states are saved.
$\mathrm{t}_{\mathrm{NITH}}$	Width of initialization input pulse.
$\mathrm{t}_{\text {INIT }}$	Delay between positive transition of Initialization and when Outputs become valid when using external INIT control (from pin 19).
$\mathrm{t}_{\text {INT2 }}$	Delay between positive transition of Initialization and when outputs become valid when using internal INIT control (from P-terms INA and INB).
$\mathrm{t}_{\text {ISPD }}$	Required delay between the beginning of Power Down High (from pin 19) and the positive transition of the next clock to insure that the clock edge is not detected as a valid Clock and that the last valid states are saved.

SYMBOL	PARAMETER
${ }_{\text {t }}^{\text {ISPU }}$	Required delay between the beginning of Power Down Low and the positive transition of the first valid clock.
${ }^{1}$ IS 1	Required delay between beginning of valid input and positive transition of Clock.
$\mathrm{t}_{\mathrm{IS} 2}$	Required delay between beginning of valid input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
${ }^{\text {t }}$ NVCK1	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization when using external INIT control (from pin 19) to guarantee that the clock edge is not detected as a valid negative transition.
twVCK2	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization, when using the internal INIT control (from P-terms INA and INB), to guarantee that the clock edge is not detected as a valid negative transition.
toD1	Delay between beginning of Output Enable High and when Outputs are in the OFF-state, when using external OE control (from pin 19).
toD2	Delay between beginning of Output Enable High and when outputs are in the OFF-State when using internal OE control (from P-terms OEA and OEB).
toe 1	Delay between beginning of Output Enable Low and when Outputs become valid when using external OE control from pin 19.
toe 2	Delay between beginning of Output Enable Low and when outputs become valid when using internal OE control (from P-terms OEA and OEB).
todz	Delay between beginning of Power Down High and when outputs are in OFF-State and the circuit is "powered down".

SYMBOL	PARAMETER
tPPR	$\begin{array}{l}\text { Delay between VCc (after } \\ \text { power-on) and when Outputs } \\ \text { become preset at "1". }\end{array}$
tpuA1,2	$\begin{array}{l}\text { Delay between beginning of } \\ \text { Power Down Low and when } \\ \text { outputs become Active (valid) } \\ \text { and the circuit is "powered } \\ \text { up". See AC Specifications. }\end{array}$
t $_{\text {RH }}$	$\begin{array}{l}\text { Required delay between } \\ \text { positive transition of Clock } \\ \text { and end of valid Input data } \\ \text { when jamming data into State }\end{array}$
or Output Registers in	
diagnostic mode.	

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

LOGIC PROGRAMMING

PLC415 logic designs can be generated using Signetics AMAZE design software or several other commercially available, JEDEC standard PLD design software packages. Boolean and/ or state equation entry format is accepted. Schematic capture entry formats are also supported.

PLC415 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry format (PTE) is supported by the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

To implement the desired logic functions, each logic variable (I, B, P, S, T, etc.) from the logic equations if assigned a symbol. TRUE, COMPLEMENT, PRESET, RESET, OUTPUT ENABLE, INACTIVE, etc., symbols are defined below.

INITIALIZATION (PRESET/RESET) ${ }^{11}$ OPTION - (P/R)

"AND" ARRAY - (I), (P)

STATE	CODE	STATE	CODE	STATE	CODE	STATE	CODE
INACTVE ${ }^{1,2}$	0	I, P	H	$\overline{\mathrm{I}}, \overline{\mathbf{P}}$	L	DON'T CARE	-

Notes are on page 872.

CMOS Programmable Logic Sequencer ($17 \times 68 \times 8$)

LOGIC PROGRAMMING (Continued)

PIN 19 FUNCTION: POWER DOWN, INIITALIZATION, OE, OR INPUT

Notes are on page 872.

LOGIC PROGRAMMING (Continued)

"OR" ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)

CLOCK OPTION - (CLK1/CLK2)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
4. These states are not allowed when using PRESET/RESET option.
5. Input buffer l_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using second clock option.
6. When using Power Down feature, INPUT 16 is automatically disabled via the design software.
7. If the internal (P-term) control fuse for INIT and/or OE is programmed as Active High, the associated External Control function will be permanently disabled, regardless of the state of the External INIT/OE fuse.
8. One internal control fuse exists for each group of 8 registers. P_{0-3} and $F_{0.3}$ are banked together in one group, as are P_{4-7} and F_{4-7}. Control can be split between the INIT/OE pin (Pin 19) and P-terms INA, INB, OEA and OEB.
9. The PLC415 also has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
10. L = cell unprogrammed.
$\mathrm{H}=$ cell programmed.
11. Inputs 10,11 and 12 (pins 25, 24, \& 23) can be used for supervoltage diagnostic mode tests. It is recommended that these inputs not be connected to product terms INA, INB, OEA or OEB if you intend to make use of the diagnostic modes due to the fact that the patterns associated with the internal INIT and OE control product terms may interfere with the diagnostic mode data loading and reading.

NOTES:

1. In the unprogrammed state all celis are conducting. Thus, the program table for an unprogrammed device would contain " 0 "s for all product terms (inactive) and initiaization states (indeterminate). The default or unprogrammed state of all other options is "L".
2. Unused Cn, Im and Ps cells are normally programmed as Don't Care (-).
3. Unused product terms can be left blank (inactive) for future code modification.

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)
 The erasure characteristics of the PLC415 Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescent lamps has wavelengths in the $3000-4000 \AA$ range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC415 in approximately three years, while it would take

approximately one week to cause erasure when exposed to direct sunlight. If the PLC4 15 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for the PLC415 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (A). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to 35
minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOSEPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week @ $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.

The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

Signetics

Military Application Specific Products

DESCRIPTION

The PLHS473 is a two level logic device consisting of 24 AND gates and 22 OR gates with fusible link connections for programming $1 / O$ polarity and direction. The Signetics state-of-the-art Oxide-Isolated Bipolar process is used to produce performance not yet achieved in devices of this complexity.

All AND gates are linked to 11 input pins, 9 bidirectional I/O pins, and 2 dedicated output pins. The bidirectional pins are controlled via the OR array. Using these features, the PLHS473 can be configured with up to 20 inputs and as many as 11 outputs.
The AND array input buffers provide both the True and Complement of the inputs (I X) and the bidirectional signals (BX) as programmable connections to the AND gates. All 24 AND gates can then be optionally linked to all 22 OR gates (a feature known as Product Term sharing not found in PALS© or most macrocell architectures). The OR array drives 11 output buffers which can be programmed as Ac-tive-High for AND-OR functions or Ac-tive-Low for AND-NOR functions. In

PIN CONFIGURATION

PLHS473

Field-Programmable Logic Array

$(20 \times 24 \times 11)$

Signetics Programmable Logic

Product Specification

addition, the I/O configuration of each bidirectional pin is individually controlled by a sum-of-products (AND-OR) function which may also contain any of the 24 AND gate outputs. This allows dynamic I/O configuration of all 9 bidirectional pins.
The PLHS473 contains two new features of significance. A code verification lock has been incorporated to improve user security. The addition of three test columns and one test row enables the user to test the device in an unprogrammed state.
The PLHS473 is field programmable using Vertical Avalanche Migration Programmed (VAMPTM) fuses to program the cells. This enables the generation of custom logic patterns using standard programming equipment..

FEATURES

- Field-Programmable
- 11 dedicated inputs
- 2 dedicated outputs
- 9 bidirectional I/O lines
- 24 product terms
- 22 OR gates
- I/O direction decoded in OR array
- Output Enable decoded in OR array
- I/O propagation delay: 20ns (max)
- Input loading: -100 A (max)
- Power dissipation: 700mW (typ)
- Security fuse
- Testable in unprogrammed state
- Programmable as 3-state or Open-Collector outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic DIP 300 mil-wide	PLHS473/BLA

FUNCTIONAL DIAGRAM

[^14]Field-Programmable Logic Array ($20 \times 24 \times 11$)

FPLA LOGIC DIAGRAM

Field-Programmable Logic Array ($20 \times 24 \times 11$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min		
$V_{C C}$	Supply voltage		+7	$V_{D C}$
$V_{I N}$	Input voltage		+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
$I_{\text {IN }}$	Input currents	-30	+30	mA
I OUT	Output currents		+100	mA
$T_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{HH}^{12}}$	High level input voltage	2.2			V
$\mathrm{V}_{1 \mathrm{~L}}{ }^{12}$	Low level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High level output current			-2	mA
lol	Low level output current			15	mA
T_{A}	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage ${ }^{3,4}$	$V_{C C}=$ Min, $l_{\text {iN }}=I_{1 K}$		-0.8	-1.2	V
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	Output Low voltage ${ }^{3,5}$ Output High voltage ${ }^{3,6}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}} & =\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ I_{\mathrm{OL}} & =\operatorname{Max} \\ \mathrm{I}_{\mathrm{OH}} & =\mathrm{Min} \end{aligned}$	2.4		0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \hline \end{aligned}$
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Input Low current Input High current	$\begin{aligned} V_{C C} & =\operatorname{Max} \\ V_{\mathbb{I N}} & =0.45 \mathrm{~V} \\ V_{\mathbb{I N}} & =5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IOHz	Output Tri-state current ${ }^{10}$	$V_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
lolz	Output Tri-state current ${ }^{10}$	$V_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
los	Output short circuil ${ }^{4.6 .7}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-85	mA
ICC	$V_{\text {cc }}$ supply current ${ }^{8}$	$V_{C C}=$ Max		140	155	mA
$\begin{aligned} & \mathrm{I}_{\mathbb{N}} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	Input capacitance ${ }^{11}$ /O capacitance ${ }^{11}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 12 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{C C} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ	Max	
tPD	Propagation delay	Output ${ }^{\text {I }}$	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	30	ns
toe	Output enable	Output-	Input ${ }_{ \pm}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	30	ns
too	Output disable ${ }^{\text {9,11 }}$	Output+	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		25	30	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with Pins 1-5 = 0V, Pins 6, 8=4.5V, and Pins 7, 9-11 $=10 \mathrm{~V}$.
6. Same conditions as Note 5 , except Pin $9=4.5 \mathrm{~V}$.
7. Duration of short circuit should not exceed 1 second.
8. Icc is measured with all inputs and bidirectional pins at 4.5V. Part in Virgin State.
9. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$, and with $C_{L}=30 \mathrm{pF}$.
10. Leakage values are a combination of input and output leakage.
11. Guaranteed, but not tested.
12. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$T_{P D}$	Propagation delay between input and output.
$T_{O D}$	Delay between input change and when output is off (Hi-Z or High).
$T_{O E}$	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

INCLUDES SCOPE
AND JIG
CAPACITANCE)

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF}$.

TIMING DIAGRAMS

VOLTAGE WAVEFORM

Field-Programmable Logic Array ($20 \times 24 \times 11$)

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR/EX-OR gate inputconnections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this table, the logic state of variables I, P and B, associated with each SumTerm S is assigned a symbol which results in the proper fusing pattern of corresponding links, defined as follows:

LOGIC FUNCTION

NOTES:

1. For each of the 11 outpuls, ether function Z (AC-tive-High) or \mathbf{Z} (Active-Low) is avialable, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. Z, A, B, C, etc., are user defined connections to fixed inputs (I), fixed output pins (0) and bidirectional pins (B).

OUTPUT POLARITY - (O, B)

"AND" ARRAY - (I, B)

"OR" ARRAY - (O, B)

\qquad	$-s$		$-s$
P_{n} STATUS	CODE	P_{n} STATUS	CODE
INACTIVE ${ }^{13}$	\bullet	Active	A

NOTES:

13. This is the initial unprogrammed state of all links.
14. Any gate P_{n} will unconditionally inhibited if the true and complement of either input (I or B) are both programmed for a connection.

VIRGIN STATE
A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at "L" polarity.
2. All P_{n} terms are enabled. (Don't Cares.)
3. All P_{n} terms are inactive on all outputs.

Signetics

Military Application Specific Products

DESCRIPTION

The PLHS501 is a member of the Signetics Programmable Macro Logic family. PML is unique in its capability of performing other than two level logic functions without incurring l/O buffer delays. This allows the logic or system designer to imbed logical operations or macro structures within the framework of the $/ / O$ pins. Since the imbedded functions are independent of the delays created by the I/O buffers, they can be performed at speeds lesser architectures cannot reproduce.

The technique used to perform this operation is a NAND foldback network which allows the direct interconnection of any number of logic nodes within the single fuse matrix. Macros can be formed and then interconnected to the l/O structure. In addition, single-level and multi-level logic can be performed at speeds which reflect only the logic path utilized. Therefore, a single-level logic function has a very short path through the device. Additional levels incur only one NAND foldback delay per level. This delay is less than the combined delay created by previous generations of devices which stipulate that the logic signal must pass through I/O buffers after one or two levels of logic are performed.
The PLHS501 is fabricated with Signetics ZA Oxide-Isolated Bipolar Process. ZA utilizes Vertical Avalanche Migration Programmed (VAMP) fuses as programming elements. These fuses provide high programming yield and reliability. Proprietary onboard test circuitry allows the PLHS501 to be thoroughly tested prior to programming.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
64-Pin Ceramic DIP	PLHS501/BXA

PLHS501

Programmable Macro Logic Random Logic Unit ($32 \times 72 \times 24$)

Product Specification

FEATURES

- Signetics NAND foldback architecture
- Field-Programmable
- 24 dedicated inputs
- Fixed and programmable output buffers
- 8 I/O buffers
- 8 EX-OR buffers
- 4 active-Low buffers
- 4 active-High buffers
- 72 Internal NAND foldback terms
- Supported by AMAZE Development System
- Testable in unprogrammed state
- Verify Lock Fuse
- TTL compatible
- Power dissipation: 1.25W (typ)
- Logic delay times
- Single-level = 35ns (max)
- Two-level = 45ns (max)
- Internal NAND delay $=10 \mathrm{~ns}$ (max)

ARCHITECTURE

- 24 dedicated Inputs: $I_{0}-I_{23}$
- 4 active-High I/Os with individual enable: $\mathrm{B}_{4}-\mathrm{B}_{7}$
- 4 active-Low I/Os with individual fused enable: $\bar{B}_{0}-\bar{B}_{3}$
- 2 active-High output pairs; each pair with common enable: $\mathrm{O}_{0}-\mathrm{O}_{\mathbf{3}}$
- 2 active-Low output pairs; each pair with common enable: $\mathrm{O}_{4}-\mathrm{O}_{7}$
- 4 Ex-OR output pairs; each pair with common enable: $X_{0}-X_{7}$
- 72 Internal NAND foldback terms

PIN CONFIGURATION

Programmable Macro Logic

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {cc }}$	Supply voltage range	-0.5 V to +7.0	V
V_{1}	Input voltage range	-0.5 V to +5.5	V
1	Input current range	-30 to +30	mA
V_{0}	Voltage range applied to output in High output state	-0.5 to $+V_{\text {cc }}$	V
10	Current range applied to output in Low output state	100	mA
T_{A}	Operating temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

FUNCTIONAL DIAGRAM

正

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
Input Voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$V_{c C}=M i n$			0.8	V
V_{IH}	High	$V_{\text {cc }}=\mathrm{Max}$	2.0			V
$V_{\text {IC }}$	Clamp ${ }^{3,4}$	$V_{\text {CC }}=$ Min, $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$V_{C C}=$ Min				
V_{OL}	Low ${ }^{3,5}$	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$. 5	V
V_{OH}	High ${ }^{3,6}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{C C}=$ Max				
ILL	Low	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{IH}	High	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cc }}=$ Max				
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{10}$	$V_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$			-140	
los	Short circuit ${ }^{4,6,7}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-85	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply circuit ${ }^{\text {b }}$	$V_{\text {cc }}=$ Max		225	295	mA
Capacitance						
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$				
I_{N}	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {B }}$	1/0	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq V_{C C} \leq 5.5 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{~K} \Omega$

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS			UNIT
	TO	FROM		Min	Typ ${ }^{2}$	Max	
$t_{\text {PD1 }}$	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	35	ns
${ }_{\text {tPD2 }}$	Output \pm	Input \pm				35	ns
$\mathrm{tpD3}^{\text {l }}$	Output \pm	Input \pm				35	ns
$\mathrm{tPD4}^{11}$	Output \pm	Input \pm				45	ns
tPDS 11,12	Output \pm	Input \pm				45	ns
$t_{P D 6}{ }^{11,12}$	Output \pm	Input \pm				45	ns
$\mathrm{tPD7}^{12}$	Internal						ns
$\begin{aligned} & \mathrm{toE} \\ & \mathrm{tOD}^{9} \end{aligned}$	Output - Output +	Input \pm Input \pm				40 40	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. For Pins 18-22, 26-32 and 45-47, 49, $V_{O L}$ is measured with Pins 5 and $50=9.5 \mathrm{~V}, \mathrm{Pin} 52=0 \mathrm{~V}$ and Pins 51 and $53=4.5 \mathrm{~V}$. For Pins $34-39$ and $43-44, V_{O L}$ is measured under same conditions EXCEPT Pin $53=0 \mathrm{~V}$.
6. V_{OH} is measured with Pins 5 and $50=9.5 \mathrm{~V}$, Pins 51 and $52=4.5 \mathrm{~V}$ and Pin $53=0 \mathrm{~V}$.
7. Duration of short circuit should not exceed 1 second.
8. I_{cc} is measured with all dedicated inputs at OV and bidirectional and output pins open.
9. Measured at $\mathrm{V}_{T}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}-0.5 \mathrm{~V}$.
10. Leakage values are a combination of input and output leakage.
11. Limits are guaranteed with internal feedback buffers simultaneously switching cumulative maximum of eight outputs.
12. Only tested on a programmed device if applicable.

Programmable Macro Logic
 Random Logic Unit ($32 \times 72 \times 24$)

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD1	Input to Output delay, one pass, through X outputs
tpD2	Input to Output delay, one pass, through B outputs
tpD3	Input to Output delay, one pass, through O, O and B out- puts
tpD4	Input to Output delay, two passes, through X outputs
tPD5	Input to Output delay, two passes, through B outputs
tPD6	Input to Output delay, two passes, through O, O and B outputs
tPD7	Feedback delay per internal NAND function performed
toD	Delay between output change and when output is off (Hi-Z or High)
tOE	Delay between input change and when the output reflects specified output level

TIMING DIAGRAM

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

Signetics

Military Application Specific Products

DESCRIPTION

The PLS159A is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "foldback" inverting buffer and control gate F_{C}. It features 8 re gistered I/O outputs (F) in conjunction with 4 bidirectional I/O lines (B). There are 8 dedicated inputs. These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.

The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/Opolarity and direction. All AND gates are linked to 4 inputs (I), 4 bidirectional l/O lines (B), internaliflip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

PLS159A
Field-Programmable Logic Sequencer
$(16 \times 45 \times 12)$

Product Specification

FEATURES

- High-speed version of PLS159
- Field-programmable (Ni-Cr link)
- $F_{\text {MAX }}=16 \mathrm{MHz}$
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J-K, T, or D-type flip-flops
- Power-on reset feature on all flip-flops ($F_{n}=1$)
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge triggered clock
- Input loading: - $100 \mu \mathrm{~A}$ (max)
- Power dissipation: 750mW (typ)
- TTL Compatible
- 3-State outputs

APPLICATIONS

- Random sequential logic
-Synchronous Up/Down counters
- Shift Registers
- Bidirectional data buffers
- Timing function generators
-System controllers/synchronizers
-Priority encoder/registers

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic Dip 300mil-wide	PLS159ABRA

PIN CONFIGURATION

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

On-chip T/C buffers couple either True (1, B, Q) or complement ($\overline{,}, \bar{B}, \bar{Q}, \bar{C}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional I/O lines (B), whose output polarity is individually programmable through a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops, as well as asynchronous Preset and Reset lines (P, R).
All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).

The PLS159A is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $O E$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

CAUTION: PLS159A

PROGRAMMING ALGORITHM

The programming voltage required to program the PLS159A is higher (17.5V) than that required to program the PLS159 (14.5V). Consequently, the PLS159 programming algorithm will not program the PLS159A. Please exercise caution when accessing programmer device codes to ensure that the correct algorithm is used.

LOGIC FUNCTION

FLIP-FLOP TRUTH TABLE

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
V_{1}	Input voltage		+5.5	$V_{D C}$
V_{0}	Output voltage		+5.5	$V_{D C}$
I_{1}	Input current	-30	+30	mA
10	Output current		+100	mA
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {IN }}{ }^{9}$	High level Input voltage	2.2			V
$\mathrm{V}_{1 L^{9}}$	Low level input voltage			0.8	V
l_{IK}	Input clamp current			-18	mA
IOH	High level output current			-2	mA
loL	Low level output current			10	mA
T_{A}	Operation free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMIT ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\text {cc }}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=\mathrm{Max}$		-0.8	-1.2	V
V_{OH}	Output High voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=$ Max	2.4			V
V_{OL}	Output Low voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\text {L }}=$ Max		0.35	0.5	V
I_{H}	Input High current	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$		<1	40	$\mu \mathrm{A}$
I/L	Input Low current	$V_{\text {CC }}=$ Max, $V_{1}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
IOHz	OFF-State output ${ }^{5,8}$ Current High	$V_{C C}=$ Max, $V_{O}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
Iolz	OFF-State output ${ }^{5,8}$ Current High	$V_{C C}=$ Max, $V_{O}=0.45 \mathrm{~V}$			-140	$\mu \mathrm{A}$
los	Short circuit output current ${ }^{4,6}$	$V_{C C}=M a x, V_{O}=0 \mathrm{~V}$	-15		-85	mA
Icc	$V_{\text {CC }}$ supply current ${ }^{7}$	$V_{C C}=M a x$		150	190	mA
$\mathrm{C}_{\text {in }}$	Input capacitance ${ }^{15}$	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=2.0 \mathrm{~V}$		8	13	pF
$\mathrm{Cout}^{\text {con }}$	Output capacitance ${ }^{15}$	$V_{C C}=5.0 \mathrm{~V}, V_{O}=2.0 \mathrm{~V}$		15	20	pF

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min ${ }^{13}$	Typ ${ }^{2}$	Max	
Pulse Width								
${ }_{\text {t }}$ CKH	Clock high ${ }^{10}$	CK-	CK+	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	20	15		ns
${ }_{\text {t }}^{\text {CKL }}$	Clock low	CK+	CK-	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	20	15		ns
$\mathrm{t}_{\text {CKP }}$	CLK min Period ($\mathrm{t}_{\text {S }}+\mathrm{t}_{\mathrm{CKO}}$)	CK+	CK+	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	60	55		ns
$\mathrm{t}_{\text {PRH }}$	Preset/Reset pulse	(I, B)+	(I, B)-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
Setup Time								
$\mathrm{t}_{1 / 1}$	Input	CK+	$(\mathrm{I}, \mathrm{B})_{ \pm}$	$C_{L}=50 \mathrm{pF}$	35	30		ns
$\mathrm{t}_{\text {S } 2}$	Input (through F_{n})	CK+	$\mathrm{F}_{ \pm}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	15	10		ns
$\mathrm{t}_{\text {S }}$	Input (through Complement Array) ${ }^{\text {²,14 }}$	CK+	$(1, B) \pm$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	55	45		ns
Hold Time								
$\mathrm{t}_{\mathbf{H 1}}$	Input	CK+	$(1, B) \pm$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	-5		ns
t_{1+2}	Input (through $\left.F_{n}\right)^{14}$	CK+	$\mathrm{F}_{ \pm}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	15	10		ns
Propagation Delay								
$\mathrm{t}_{\mathrm{CKO}}$	Clock	$F_{ \pm}$	CK+	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	25	ns
toel	Output enable ${ }^{14}$	F-	OE-	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	35	ns
$\mathrm{t}_{00 \mathrm{D} 1}$	Output disable ${ }^{12,14,15}$	F+	$\overline{\mathrm{E}}+$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	35	ns
$\mathrm{t}_{\text {PD }}$	Output	$\mathrm{B}_{ \pm}$	(I, B) \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	45	ns
toen	Output enable ${ }^{14}$	$\mathrm{B}_{ \pm}$	(I, B)+	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	35	ns
t_{002}	Output disable ${ }^{11,14,15}$	B+	(I, B)-	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	35	ns
$\mathrm{t}_{\text {PRo }}$	Preset/Reset ${ }^{14,15}$	F+	(I, B)+	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		35	45	ns
tppr	Power-on/preset ${ }^{14,15}$	F-	$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		0	10	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with $V_{I H}$ applied to $O E$.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with the $O E$ input grounded, all other inputs at 4.5 V , and the outputs open.
8. Leakage values are a combination of input and output leakage.
9. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.
10. To prevent spurious clocking, clock rise time ($10 \%-90 \%$) $\leq 10 \mathrm{~ns}$.
11. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
12. When using the Complement Array $\mathrm{T}_{\mathrm{CKP}}=75 \mathrm{~ns}(\mathrm{~min})$.
13. Limits are guaranteed with 12 product terms maximum connected to each sum term line.
14. Not tested on an unprogrammed device.
15. Guaranteed, but not tested.

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {t }}$ CKH	Width of input clock pulse when High.
${ }^{\text {t CKL }}$	Width of input clock pulse when Low.
$t_{\text {CKP }}$	Clock period.
tpRH	Width of preset input pulse.
t_{151}	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {tS }}$	Required delay between beginning of valid input forced at flip-flop output pins and position transition of clock.
$\mathrm{t}_{\mathrm{H} 1}$	Required delay betweeen positive transition of clock and end of valid input data.
$\mathrm{t}_{\mathrm{H} \mathbf{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
tcko	Delay between positive transition of clock when outputs become valid (with $\overline{O E}$ Low).
toE1	Delay between beginning of Output Enable Low and when outputs become valid.
toD1	Delay between beginning of Output Enable High and when outputs are in the Off-State.
tPPR	Delay between V_{Cc} (after power-on) and when flip-flop outputs become preset at "1" (internal Q outputs at " 0 ").
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational outputs become valid.
toD2	Delay between predefined Output Enable Low and when combinational outputs are in the Off-State.
tpro	Delay between positive transition of predefined Preset/ Reset input and when flip-flop outputs become valid.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS (Continued)

- Preset and Reset functions override Clock. However, F outputs may glitch with the first positive Clock Edge if 'IS1 cannot be guaranteed by the user.

Asynchronous Preset/Reset

Flip-Flop Inpu: Mode

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

The FPLS can be programmed by means of Logic Programming equipment.
With Logic Programming, the AND/OR-EX-OR input connections necessary to implement the
desired logic function are coded directly from the State Diagram using the Program Tablos on the following pages.

In these Tables, the logic state or action of all I/O, control and stato variables are assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:
"AND" ARRAY - (1), (B), (Qp)

"OR" ARRAY - ($Q_{n}=J-K$ Type $)$

ACTION	CODE
SET	H

ACTION	CODE
RESET-T+-	L

"OR" ARRAY- $\left(Q_{n}=D\right.$-Type $)$

"OR" ARRAY - (S or B)

T_{n}			
T_{n} Status	CODE	T_{n} Status	CODE
inactive	-	Active ${ }^{16}$	A

"COMPLEMENT" ARRAY - MODE

CAUTION:
THE PLS159A Programming Algorithm is different from the PLS159.

[^15]"COMPLEMENT" ARRAY - (C)

"EX-OR" ARRAY - (B)

POLARITY	CODE			
LOW	L	\quad	POLARITY	CODE
:---:	:---:			
HIGH	H			

"OE" ARRAY - (E)

NOTES:
16. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
17. Any gate (T, FC. L, P, R, D) will be unconditionally inhibited if any one of the I, B, or Q link pairs are left intact.
18. To prevent oscillations, this state is not allowed for C link, pairs coupled to active gates T_{n}, F_{c}.
19. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
20. These states are not allowed for control gates ($L, P, R, D)_{n}$ due to their lack of "OR" array links.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TEST LOAD CIRCUITS

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF}$

VOLTAGE WAVEFORMS

Signetics

Military

Customer Specific Products

DESCRIPTION

The PLS167 is a bipolar, programmable state machine of the Mealy type. The Field-Programmable Logic Sequencer (FPLS) contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip state and output registers. These consist respectively of $8 Q_{p}$, and $4 Q_{f}$ edge-triggered, clocked S/R flip-flops, with an asynchronous preset option.
All flip-flops are unconditionally preset to " 1 " during power turn-on.

The AND Array combines 14 external inputs, $\mathrm{I}_{0.13}$, with 8 internal inputs, $\mathrm{P}_{0.7}$, fed back from the State Register to form up to 48 transition terms (AND terms). In addition, P_{0} and P_{1} of the internal state register are brought off-chip to allow extending the Output Register to 6 bits, if so desired.
All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR Array to issue next-state and next-output commands to their respective registers on

PIN CONFIGURATION

PLS167

Field-Programmable Logic Sequencer $(14 \times 48 \times 6)$

Product Specification

the Low to High transition of the Clock pulse.
Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to output-enable enable function, as an additional user programmable option.

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Security locking systems

FEATURES

- Field-programmable (Ni-Cr link)
- 14 True/Complement buffered inputs
- 48 programmable AND gates
- 25 programmable OR gates
-8-bit State Register
- 2-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable asynchronous preset/output enable
- Positive edge-trigger clock
- Power-on preset to logic " 1 " of all registers
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip Test Array
- Power: 650mW (typ)
- TTL compatible
- Tri-state outputs
- Single +5 V supply
- 300mil wide 24-Pin DIP

FUNCTIONAL DIAGRAM

Field-Programmable Logic Sequencer $(14 \times 48 \times 6)$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic Dip 300mil-wide	PLS167/BLA

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the state and output registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-7 \\ 17-23 \end{gathered}$	11_{13}	Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
8	10	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercised with standard TTL levels. When I_{0} is held at +10 V , device outputs F_{0-3} and P_{0-1} reflect the contents of state register bits P_{2-7} (see Diagnostic Output Mode diagram). The contents of flip-flops P_{0-1} and F_{0-3} remain unaltered.	Active-High/Low
$\begin{gathered} 9-11 \\ 13 \end{gathered}$	F0.3	Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of output register bits Q_{0-3} when enabled. When I_{0} is held at $+10 \mathrm{~V}, \mathrm{~F}_{0.3}=\left(\mathrm{P}_{2 \cdot 5}\right)$.	Active-High
14-15	P0-1	Logic/Diagnostic Outputs: Two register bits with shared function as least significant state register bits, or most significant output register bits. When I_{0} is held at +10 V , $\mathrm{P}_{0-1}=\left(\mathrm{P}_{6-7}\right)$.	Active-High
16	PR/OE	Preset or Output Enable Input: A user programmable function: - Preset: Provides an asynchronous preset to logic " 1 " of all state and output register bits. Preset overrides Clock, and when held High, clocking is inhibited and $\mathrm{P}_{0.1}$ and $\mathrm{F}_{0.3}$ are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High (H) Active-Low (L)

Field-Programmable Logic Sequencer $(14 \times 48 \times 6)$

LOGIC FUNCTION

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:
6. PR/OE option is set to PR. Thus, all out-
puts will be at "1", as preset by initial pow-er-up procedure.
7. All transition terms are disabled (0).
8. All S/R flip-flop inputs are disabled (0).
9. The device can be clocked via a Test

Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern must be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

TRUTH TABLE1, 2, 3, 4, 5, 6

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($14 \times 48 \times 6$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7	$V_{D C}$
V_{1}	Input voltage	+10.0	$V_{D C}$
V_{O}	Output voltage	+5.5	$V_{D C}$
I_{1}	Input currents	-30 to +30	mA
I_{O}	Output currents	+100	mA
$T_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage range	4.5	5.0	5.5	V
$\mathrm{V}_{1 \times}{ }^{13}$	High level Input voltage	2.0			V
$\mathrm{V}_{\text {IL }}{ }^{13}$	Low level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High level output current			-2	mA
$\mathrm{IOL}^{\text {L }}$	Low level output current			9.6	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1,2}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage ${ }^{4}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$		-0.8	-1.2	V
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	Low level Output Voltage ${ }^{6}$ High level Output Voltage ${ }^{5}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$	2.4	0.35	0.5	$\begin{aligned} & v \\ & v \end{aligned}$
IIL	Low Level Input current	$V_{C C}=\operatorname{Min}, V_{1}=0.45 \mathrm{~V}$		-10	-150	$\mu \mathrm{A}$
ILI	Low (CK input) Level Input current	$\mathrm{V}_{1}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		-50	-350	$\mu \mathrm{A}$
l_{IH}	High level Input current	$\mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		-1	50	$\mu \mathrm{A}$
IOHZ	Off-State output ${ }^{7}$, Current High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		1	60	$\mu \mathrm{A}$
lolz	Off-State output ${ }^{7}$, Current Low	$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max		-1	-60	$\mu \mathrm{A}$
los	Short circuit output current ${ }^{4,8}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$	-15		-85	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{9}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		120	185	mA
$\mathrm{C}_{\mathbb{N}}$ $\mathrm{C}_{\text {OUt }}$	Input Capacitance ${ }^{10}$ Output Capacitance ${ }^{10}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Nom} \\ & V_{1}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 8 \\ 10 \\ \hline \end{gathered}$	13 15	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Field-Programmable Logic Sequencer ($14 \times 48 \times 6$)

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} .4 .5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER		FROM	LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
Pulse Width							
$\mathrm{t}_{\text {CKH }}$	Clock high ${ }^{11}$	CK-	CK+	40	15		ns
$\mathrm{t}_{\text {CKL }}$	Clock low	CK+	CK-	40	15		ns
$\mathrm{t}_{\text {CKP } 1}$	Period (w/o C-array)	CK+	CK+	95	40		ns
$\mathrm{t}_{\text {CKP2 }}$	Period (w/C-array) ${ }^{10}$	CK+	CK+	135	60		ns
$\mathrm{t}_{\text {PRH }}$	Preset pulse	PR+	PR-	40	15		ns
Setup Time							
$\mathrm{t}_{\text {IS }}$	Input	CK+	Input ${ }_{\text {I }}$	60			ns
$\mathrm{t}_{\text {S } 2}$	Input (through Complement array) ${ }^{12}$	CK+	Input ${ }_{ \pm}$	100			ns
tvs	Power-on preset ${ }^{10}$	CK-	VCC^{+}	5	-10		ns
$\mathrm{t}_{\text {PRS }}$	Preset ${ }^{10}$	CK-	PR-	5	-10		ns
Hold Time							
t_{H}	Input ${ }^{10}$	Input \pm	CK+	10	-10		ns
Propagation Delay							
$\mathrm{t}_{\text {cko }}$	Clock	Output \pm	CK+		15	35	ns
Loe	Output Enable ${ }^{12}$	Output-	$\overline{O E}$		20	40	ns
COD	Output Disable ${ }^{\text {² }}$	Output+	OE+		20	40	ns
$t_{\text {PR }}$	Preset	Output+	PR+		18	45	ns
$\mathrm{t}_{\text {PPR }}$	Power-on preset ${ }^{10}$	Output+	VCC^{+}		0	20	ns
Frequency of Operation							
$f_{\text {MAX }}$	W/O C-array					10.5	MHz
$\mathrm{f}_{\text {MAX }}{ }^{\text {c }}$	W/C-array ${ }^{10}$					7.4	MHz

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with $\mathrm{V}_{i \mathrm{~L}}$ applied to $\overline{\mathrm{O}}$ and a logic high stored, or with $\mathrm{V}_{1 H}$ applied to $P R$.
6. Measured with a programmed logic condition for which the output is at a low logic level, and V_{IL} applied to PR/OE Output sink current is supplied through a resistor to V_{cc}.
7. Measured with $\mathrm{V}_{\mathbb{H}}$ applied to PR/OE.
8. Duration of short circuit should not exceed 1 second.
9. Icc is measured with the PRROE input grounded, the outputs open.
10. Guaranteed, but not tested.
11. To prevent spurious clocking, clock rise time ($10 \%-90 \%$) $\leq 30 \mathrm{~ns}$.
12. Not testable on unprogrammed devices.
13. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.

Field-Programmable Logic Sequencer ($14 \times 48 \times 6$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }^{\text {t }}$ CKL	Interval between clock pulses.
$\mathrm{t}_{\text {CKP } 1}$	Clock period - when not using Complement Array.
$\mathrm{t}_{\text {IS }}$	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {CKP2 }}$	Clock period - when using Complement Array.
$\mathrm{t}_{\text {IS } 2}$	Required delay between beginning of valid input and positive transition of clock, when using optional Complement array (wo passes necessary through the AND array).
Ivs	Required delay between $V_{C C}$ (after power-on) and negative transition of clock preceding first reliable clock pulse
tprs	Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse.
t_{H}	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{\text {cko }}$	Delay between positive transition of clock and when Outputs become valid (with PR/OE Low).
toe	Delay between beginning of Output Enable Low and when Outputs become valid.
tod	Delay between beginning of Output Enable High and when Outputs are in the OFF-State.
$t_{\text {PR }}$	Delay between positive transition of Preset and when Outputs become valid at " 1 ".
tppr	Delay between V_{cc} (after power-on) and when Outputs become preset at " 1 ".
tpRH	Width of preset input pulse.
$f_{\text {max }}$	Maximum clock frequency.

Field-Programmable Logic Sequencer $(14 \times 48 \times 6)$

TEST LOAD CIRCUITS

NOTE: $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega, C_{L}=50 \mathrm{pF}$.

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using a Program Table.

In this table, the logic state or action of control variables C, I, P, N and F, associated with each Transition Term T_{n}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

PRESET/OE OPTION - (P/E)

PROGRAMMING:

The PS 167 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You mustprovide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

"OR" ARRAY - (F), (N)

"COMPLEMENT" ARRAY - (C)

NOTES:

14. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
15. Any gate T_{n} will be unconditionally inhibited if any one of ites I or P link pairs are left intact.
16. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
17. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{r}.

Field-Programmable Logic Sequencer ($14 \times 48 \times 6$)

TEST ARRAY

The FPLS may be subjected to $A C$ and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49, factory programmed as shown below.

Testing is accomplished by clocking the FPLS and applying the proper input sequence to $\mathrm{I}_{0.13}$ as shown in the test circuit timing diagram.

State Diagram

FPLS Under Test

TEST ARRAY PROGRAM

$\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{R} \\ & \mathbf{M} \end{aligned}$	AND																						
	C	$-1 T_{1} T_{1}$				INPUT (Im)						\%				PRESENT STATE (Ps).							
		3	2	1	0	9	8	7	6	5	4	3	2	1	0	7	5	5	4	3	2	1	0
48	A	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	-	2	L	L	L	1	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

OPIOON (P/E)												
OR												
NEXT STATE (Ns)								OUTPUT (Fr)				
7	5	5	4	3	2	1	0	3	2	1		-
L	L	L	L	L	L	L	L	L	L	L	1	L
H	H	H	H	H	H	H	H	H	H	H		H

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any Signetic's qualified programming equipment.

TEST ARRAY DELETED

$\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \\ & \mathbf{R} \\ & \mathbf{M} \end{aligned}$	AND																						
	C					INPUT (Im)						3	2			PRESENT STATE (Ps)							
			2	1	0	9	8	7	6	5	4			1	0	7	6	5	4	3	2	1	0
48	-	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	-	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

OPTION (P/E)														
OR														
NEXT STATE (Ns)								OUTPUT (Fr)						
7	6	5	4	3	2	1	0	5	4	3	2	1		
-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-	-		

Test Array Deleted

Signetics

Military Customer Specific Products

DESCRIPTION

The PLS168 is a bipolar, programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip state and output registers. These consist respectively of 10 Q_{p}, and $4 Q_{f}$ edge-triggered, clocked S / R flip-flops, with an asynchronous preset option.
All flip-flops are unconditionally preset to " 1 " during power turn-on.
The AND array combines 12 external inputs, l_{0-11}, with 10 internal inputs, P_{0-9}, fed back from the State register to form up to 48 transition terms (AND terms). In addition, $\mathrm{P}_{0}-\mathrm{P}_{3}$ of the internal state register are brought off-chip to allow extending the output register to 8 bits, if so desired.
All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the \log to high transition of the Clock pulse.

PLS168

Field Programmable Logic Sequencer ($12 \times 48 \times 8$)

Signetics Programmable Logic

Product Specification

Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the complement array. Also, if desired, the Preset input can be converted to output-enable function, as an additional user programmable option.
Order codes for this device are listed in the Ordering Information table.

FEATURES

- Fleld-programmable (Ni-Cr link)
- 12 True/Complement buffered inputs
- 48 programmable AND gates
- 29 programmable OR gates
- 10-bit state register
- 4-bit shared state/output register
- 4-bit output register
- Transition complement array
- Programmable asynchronous preset/output enable
- Positive edge-trigger clock
- Power-on preset to logic "1" of all reglsters
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip test array
- Power: 600mW
- TTL compatible
- 3-State outputs
- Single +5V supply
- 300mil-wide 24-pin DIP

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP 300mil-wide	PLS168/BLA

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the state and output registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-7 \\ 18-23 \end{gathered}$	1 - 11	Logic Inputs: The 11 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
7	I_{0}	Logic/Dlagnostic Input: A 12th external logic input to the AND array, as above, when exercised with standard TTL levels. When I_{0} is held at +10 V , device outputs $\mathrm{F}_{2.3}$ and $\mathrm{P}_{0.3}$ reflect the contents of state register bits $\mathrm{P}_{4.9}$ (see Diagnostic Output Mode diagram on page 7). The contents of flip-flops $\mathrm{P}_{0.1}$ and F_{0-3} remain unaltered.	Active-High/Low
13-16	P_{0-3}	Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of state register bits P_{0-3}. When I_{0} is held at +10 V these pins reflect $\left(\mathrm{P}_{6}-\mathrm{P}_{9}\right)$.	Active-High
10-11	$\mathrm{F}_{2}-\mathrm{F}_{3}$	Logic/Diagnostic Outputs: Two register bits $\left(F_{2}-F_{3}\right)$ which normally reflect output register bits $\left(Q_{2}-Q_{3}\right)$. When I_{0} is held at +10 V these pins reflect $\left(P_{4}-P_{5}\right)$.	Active-High
17	PR/OE	Preset or סutput Enable Input: A user programmable function: - Preset: Provides an asynchronous preset to logic "1" of all state and output register bits. Preset overrides Clock, and when held High, clocking is inhibited and $\mathrm{P}_{0.9}$ and $\mathrm{F}_{0.3}$ are High. Normal clocking resumes with the first full clock pulse foliowing a High-to-Low clock transition, after Preset goes Low.	Active-High (H) Active-Low (L)
8,9	$F_{0}-F_{1}$	Logic Output: Two device outputs which reflect output registers $Q_{0}-Q_{1}$. When I_{0} is held at $+10 \mathrm{~V} \mathrm{~F}_{0}-\mathrm{F}_{1}=$ Logic "1".	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$V_{C C}$	Supply voltage		+7	$V_{D C}$
V_{1}	Input voltage		+10.0	$V_{D C}$
V_{O}	Output voltage		+5.5	$V_{D C}$
I_{1}	Input currents	-30	+30	mA
l_{0}	Output currents		+100	mA
T_{A}	Operating Temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage Temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
Input Voltage						
V_{IH}	High	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	2			V
V_{IL}	Low	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
V_{IK}	Clamp ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output Voltage						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$				
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low ${ }^{6}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.5	V
Input Current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
I_{H}	High	$V_{1}=5.5 \mathrm{~V}$		<1	50	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$		-10	-150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {L }}$	Low (CK input)	$\mathrm{V}_{1}=0.45 \mathrm{~V}$		-50	-350	$\mu \mathrm{A}$
Output Current						
		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$				
lo(GFF)	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1	60	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0.45 \mathrm{~V}$		-1	- 60	$\mu \mathrm{A}$
Ios	Short circuit ${ }^{4,8}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-15		. 85	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{9}$	$V_{C C}=5.5 \mathrm{~V}$		120	185	mA
Capacitance ${ }^{\text {7, }} 10$						
		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{1}=2.0 \mathrm{~V}$		8	10	pF
Cout	Output	$\mathrm{V}_{0}=2.0 \mathrm{~V}$		10	13	pF

Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LImits			UNIT
				Min	Typ ${ }^{2}$	Max	
Putse Width							
ІСкн	Clock ${ }^{11}$ High	CK-	CK+	40	15		ns
CKLL	Clock Low	CK+	CK-	40	15		ns
tCKP1	Period (w/o C-array)	CK+	CK+	95	40		ns
${ }_{\text {CKKP2 }}$	Period (w/C-array) ${ }^{10}$	CK+	CK+	135	60		ns
tpri	Preset pulse	PR+	PR-	40	15		ns
Setup Time							
$t_{\text {IS } 1}$	Input	CK+	Input \pm	60			ns
$\mathrm{t}_{\text {IS } 2}$	Input (through Complement array) ${ }^{12}$	CK+	Input \pm	100			ns
tvs	Power-on preset ${ }^{10}$	CK-	$\mathrm{V}_{\mathrm{cc}}+$	5	-10		ns
tprs	Preset ${ }^{10}$	CK-	PR-	5	-10		ns
Hold Time							
${ }_{1} \mathrm{H}_{\mathrm{H}}$	Input ${ }^{10}$	Input \pm	CK+	10	-10		ns
Propagation Delay							
tcko	Clock	Output \pm	CK+		15	35	ns
toe	Output Enable	Output-	OE-		20	40	ns
Cod	Output Disable	Output+	OE+		20	40	ns
t_{PR}	Preset	Output+	PR+		18	45	ns
tPPR	Power-on preset	Output+	$\mathrm{V}_{\text {CC }}+$		0	20	ns
Frequency of Operation							
$\begin{aligned} & f_{\text {MAX }} \\ & \mathrm{f}_{\text {MAX }} \\ & \hline \end{aligned}$	w/o C-array w/C-array ${ }^{10}$					$\begin{gathered} 10.5 \\ 7.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with V_{IL} applied to $\overline{\mathrm{E}}$ and a logic High stored, or with V_{IH} applied to $P R$.
6. Measured with a programmed logic condition for which the output is at a Low logic level, and $V_{1 L}$ applied to PR/OE Output sink current is applied through a resistor to V_{cc}.
7. Measured with $V_{I H}$ applied to PR/OE.
8. Duration of short circuit should not exceed 1 second.
9. I Cc is measured with the PR/OE input grounded, all other inputs at 4.5 V , ant the outputs open.
10. Guaranteed, but not tested.
11. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 30 \mathrm{~ns}$.
12. Not testable on unprogrammed devices.

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }^{\text {t }}$ CKL	Interval between clock pulses.
$\mathrm{t}_{\text {CKP } 1}$	Clock period - when not using Complement Array.
${ }_{\text {tS }}$ I	Required delay between beginning of valid input and positive transition of clock.
${ }^{\text {t'KKP2 }}$	Clock period - when using Complement Array.
$\mathrm{t}_{\text {IS } 2}$	Required delay between beginning of valid input and positive transition of clock, when using optional Complement array (two passes necessary through the AND array).
tvs	Required delay between $V_{C C}$ (after power-on) and negative transition of clock preceding first reliable clock pulse.
$t_{\text {PRS }}$	Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse.
$t_{\text {H }}$	Required delay between positive transition of clock and end of valid input data.
tcko	Delay between positive transition of clock and when Outputs become valid (with PR/OE Low).
toe	Delay between beginning of Output Enable Low and when Outputs become valid.
t_{OD}	Delay between beginning of Output Enable High and when Outputs are in the OFF-State.
$t_{P R}$	Delay between positive transition of Preset and when Outputs become valid at " 1 ".
$t_{\text {PPR }}$	Delay between $V_{c c}$ (after power-on) and when Outputs become preset at " 1 ".
tPRH	Width of preset input pulse.
$f_{\text {MAX }}$	Maximum clock frequency.

LOGIC FUNCTION

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial pow-er-up procedure.
2. All transition terms are disabled (0).
3. All S / R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern must be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

TRUTH TABLE ${ }^{1,2,3,4,5,6}$

$V_{\text {cc }}$	OPTION		I_{0}	CK	S	R	$Q_{\text {P/F }}$	F							
	PR	OE													
+5V	H		-	X	X	X	H	H							
	L		+10V	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{P}}\right)_{n}$							
	L		X	x	X	X	Q_{n}	$\left(Q_{F}\right)_{n}$							
		H	-	X	X	X	Q_{n}	$\mathrm{Hi}-\mathrm{Z}$							
		L	+10V	X	X	X	Q_{n}	$\left(\mathrm{QP}_{\mathrm{P}}\right)_{n}$							
		L	X	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}$							
		L	X	\uparrow	L	L	Q_{n}	$\left(Q_{F}\right)_{n}$							
		L	X	\uparrow	L	H	L	L							
		L	X	\uparrow	H	L	H	H							
		L	X	\uparrow	H	H	IND.	IND.							
\uparrow	X	X	X	X	X	X	H								
NOTES: 1. Positive Logic $\begin{aligned} & \left.S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47}\right) \\ & T_{n}=C\left(l_{0} T_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{s}\right) \end{aligned}$ 2. Either Preset (Active-High) or OUtput Enable (active-Low) are available, but not both. The desired function is a user programmable option.															
3. \uparrow denotes transition from Low to High level. 4. $\mathrm{R}=\mathrm{S}=$ High is an illegal input condition.															
5. $-=H / U+10 \mathrm{~V}$. 6. $\mathrm{X}=\operatorname{Don}^{\prime \prime} \mathrm{Care}(\leq 5.5 \mathrm{~V})$.															

TEST LOAD CIRCUITS

NOTE: $\mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}-50 \mathrm{PF}$.

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Table on the following page.
In this table, the logic state or action of control variables C, I, P, N and F, associated with each Transition term T_{n} is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

PRESET/OE OPTION - (P/E)

PROGRAMMING:
The PS168 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

NOTES:
13. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
14. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs are left intact.
15. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
16. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Field-Programmable Logic Sequencer ($12 \times 48 \times 8$)
PLS168

FPLS PROGRAM TABLE PLS168

TEST ARRAY

The FPLS may be subjected to $A C$ and $D C$ parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the properinput sequence to I_{0-13} as shown in the test circuit timing diagram.

State Diagram

FPLS Under Test

TEST ARRAY PROGRAM

OPTION (P/E)														
OR														
NEXT STATE (Ns)										OUTPUT (Fr)				
9	8	7	6	5	4	3	2	1	0	3	2	1	0	0
L	L	L	L	L	L	L	L.	L	L	L	L	L	L	L
H	H	H	H	H	H	H	H	H	H	H	H	H		H

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any Signetic's qualified programming equipment.

TEST ARRAY DELETED

	AND																						
	C_{n}	INPUT (Im)												PRESENT STATE (${ }^{\text {Ps }}$)									
		1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
48	-	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	-	L	L	L	L	L	L	L	L	L	L	L	L	L	L	1	L	L	L	L	L	L	L

OPTON (P/E)														
OR														
NEXT STATE (Ns)										OUTPUT (Fr)				
9	8	7	6	5	4	3	2	1	0	3	2	1		
-	-	-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-	-	-		-

Signetics

Military
Application Specific Products

DESCRIPTION

The PLS173 is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable l/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement (\bar{T}, \bar{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLS173 is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Ceramic DIP 300mil-wide	PLS173/BLA

PLS173
Field-Programmable Logic Array $(22 \times 42 \times 10)$

Signetics Programmable Logic

Product Specification

FEATURES

- Fleld-Programmable (Ni-Cr links)
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- 32 Logic Terms
- 10 Control Terms
- Power dissipation: 750mW (typ)
- Output: 3-State
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATION

	24 VCC $23 \mathrm{~B}_{9}$ 22 B_{8} $2 \mathrm{~B}_{7}$ 20) B_{6} 19) B_{5} (18) B_{4} $17 \mathrm{~B}_{3}$ $16 \mathrm{~B}_{2}$ 15 B_{1} (14) B_{0} [13 11

LOGIC FUNCTION

TYPICAL PRODUCT TERM:$P n=A \cdot B \cdot C \cdot D \cdot \ldots$	
TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY $=\mathrm{H}$ $\mathrm{Z}=\mathrm{PO}+\mathrm{P} 1+\mathrm{P} 2 \ldots$	
$\begin{aligned} \text { AT OUTPUT POLARITY } & =\mathrm{L} \\ \mathrm{Z} & =\mathrm{PO}+\mathrm{PI}+\mathrm{P} 2+\ldots \end{aligned}$	
$\mathrm{Z}=\mathrm{PO}_{0} \cdot \mathrm{P}_{1} \cdot \mathrm{P}_{2} \cdot \ldots$	
1. For each of the 10 outputs, either function Z (ac-tive-high) or Z (active-low) is available, but not both. The desired output polarity is programmed via the EX-OR gates. 2. Z, A, B, C, etc., are user defined connections to fixed inputs ($/$) and bidirectional pins (B).	

Field-Programmable Logic Array ($22 \times 42 \times 10$)

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min		
$V_{C C}$	Supply voltage		+7	$V_{D C}$
V_{1}	Input voltage		+10.0	$V_{D C}$
V_{O}	Output voltage		+5.5	$V_{D C}$
I_{1}	Input currents	-30	+30	mA
I_{0}	Output currents		+100	mA
T_{A}	Operating temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
Input voltage						
V_{ll}	Low	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$. 80	V
V_{IH}	High	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	2.0			V
$\mathrm{V}_{\text {IK }}$	Clamp ${ }^{4}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$				
$\mathrm{V}_{\text {OL }}$	Low ${ }^{5}$	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$			0.5	v
V_{OH}	High^{6}	$\mathrm{lOH}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$				
If	Low	$\mathrm{V}_{1}=0.45 \mathrm{~V}$			-150	$\mu \mathrm{A}$
$I_{\text {IH }}$	High	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$				
$\mathrm{I}_{\text {(OFF) }}$	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{10}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			110	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=0.45 \mathrm{~V}$			-210	$\mu \mathrm{A}$
los	Output short circuit ${ }^{4,6,7}$	$\mathrm{V}_{0}=0 \mathrm{~V}$	-15		-85	mA
Icc	$\mathrm{V}_{\text {cc }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		150	170	mA
Capacitance ${ }^{11}$						
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				
C_{1}	Input	$V_{1}=2.0 \mathrm{~V}$		8	12	pF
C_{8}	1/O	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15	19	pF

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITIONS	Limits			UNIT
					Min	Typ	Max	
tPD	Propagation Delay	Output	Input ${ }^{\text {a }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	40	ns
LOE	Output Enable ${ }^{12}$	Output-	Input ${ }_{ \pm}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	35	ns
too	Output Disable ${ }^{\text {9, } 12}$	Output+	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		20	35	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with Pins $1-5=0 \mathrm{~V}$, Pins $6-10=4.5 \mathrm{~V}$, Pin $11=0 \mathrm{~V}$ and $\operatorname{Pin} 13=10 \mathrm{~V}$.
6. Same conditions as Note 5, except Pin $11=+10 \mathrm{~V}$.
7. Duration of short circuit should not exceed 1 second.
8. $I_{c c}$ is measured with I_{0} and $I_{1}=0 V$ and $I_{2}-I_{11}$ and $B_{0}-B_{9}=4.5 \mathrm{~V}$. Part in Virgin State.
9. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
10. Leakage values are a combination of input and output leakage.
11. Guaranteed, but not tested.
12. Guaranteed but not tested in unprogrammed devices.

Field-Programmable Logic Array ($22 \times 42 \times 10$)

TIMING DEFINITIONS

SYMBOL	PARAMETER
$T_{P D}$	Propagation delay between input and output.
$T_{D D}$	Delay between input change and when output is off (Hi-Z or High).
$T_{D E}$	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

TIMING DIAGRAM

VOLTAGE WAVEFORM

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS				
V_{M}	Rep. Rate	Pulse Width	$\mathrm{t}_{\mathrm{TLH}}$	$\mathrm{t}_{\mathrm{THL}}$
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq^{5 n s}$

Field-Programmable Logic Array ($22 \times 42 \times 10$)

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this table, the logic state of variables I, P and B, associated with each Sum Term S is
assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

CAUTION: PLS173 TEST
 COLUMNS

The PLS173 incorporates two columns not shown in the logic block diagram. These col-
umns are used for in-house testing of the device in the unprogrammed state. These columns must be disabled prior to using the PLS173 in your application. If you are using a Signetics approved programmer, the disabling is accomplished during the device programming sequence. If these columns are not disabled, abnormal operation is possible.

OUTPUT POLARITY - (O, B)

Field-Programmable Logic Array ($22 \times 42 \times 10$)

FPLA PROGRAM TABLE

TWX TAPE CODING (LOGIC FORMAT)

The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8 -level tape (paper, mylar, fanfold,
etc.), or via TWX: just dial (910) 339-9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.

A number of Program Tables canbe sequentially assembled on a continuous tape as follows, however, limit tape length to a roll of 1.75 inch inside diameter and 4.25 outside diameter.

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name \qquad 4. Purchase Order No.
2. Number of Program Tables
3. Total Number of Parts
4. Date \qquad
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:
5. Signetics Device No. \qquad 4. Date
6. Program Table No. \qquad 5. Customer Symbolized Part No.
7. Revision \qquad 6. Number of Parts
C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of output polarity, product term, and output information separated by appropriate identifiers in accordance with the following format. Entries for the data fields correspond to those defined in the Logic PROGRAM TABLE:

Signetics

Field Programmable Logic Sequencer
$(20 \times 45 \times 12)$

Product Specification

Military Standard Products

DESCRIPTION

The PLS179 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "foldback" inverting buffer and control gate F_{c}. It features 8 registered I/O outputs (F) in conjunction with 4 bidirectional $/ / O$ lines (B). There are 8 dedicated inputs. These yield variable I/ O gate and register configurations via control gates (D, L) ranging from 20 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 8 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complementary Array output (C). The Complementary Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

APPLICATIONS

- Random sequential logic
- Synchronous Up/Down counters
- Shift Registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

FEATURES

- Field-programmable (Ni-Cr link)
- 8 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J/K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active high or low outputs
- Programmable OE control
- Positive edge triggered clock
- Power-on reset on flip-flop (Fn = "1")
- Power dissipation: 725mW (typ)
- TTL Compatible

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic DIP 300-mil wide	PLS179/BLA

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

On-chip T/C buffers couple either True (I, B, Q) or Complement ($\overline{,}, \bar{B}, \bar{Q}, \bar{C}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional I/O lines (B), whose output polarity is individually programmable through a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops, as well as asynchronous Preset and Reset lines (P, R).
Allfip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (Q) and programmable output select lines (E).
The PLS179 is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $O E$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode.
5. All B pins are inputs and all F pins are outputs.

LOGIC FUNCTION

NOTE:

Similar logic functions are applicable for D and T mode flip-flops.

FLIP-FLOP TRUTH TABLE

OE	L	CK	P	R	J	K	Q	F
H								H/Hi-Z
L	X	X	L	X	X	X	L	H
L	X	X	H	L	X	X	H	L
L	X	X	L	H	X	X	L	H
L	L	\uparrow	L	L	L	L	Q	Q
L	L	\uparrow	L	L	L	H	L	H
L	L	\uparrow	L	L	H	L	H	L
L	L	\uparrow	L	L	H	H	Q	Q
H	H	\uparrow	L	L	L	H	L	H *
H	H	\uparrow	L	L	H	L	H	L *
+10V	X	\uparrow	X	X	L	H	L	H $^{* *}$
	X	\uparrow	X	X	H	L	H	Le* $^{* *}$

NOTES:

1. Positive Logic:

$$
\begin{aligned}
J / K= & T_{0}+T_{1}+T_{2}+\ldots+T_{31} \\
T_{n}= & C \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right) \cdot \\
& \left(B_{0} \cdot B_{1} \ldots\right)
\end{aligned}
$$

2. \uparrow denotes transition for Low to High level.
3. $X=$ Don't care
4. ${ }^{*}=$ Forced at F_{n} pin for loading J / K flip-flop in I/O mode. L must be enabled, and other active T_{R} disabled via steering input(s) I, B, or Q.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ${ }^{* *}=$ Forced at F_{n} pin to load J / K flip-flop independent of program code (Diagnostic mode).

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

FPLS LOGIC DIAGRAM

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	+7.0	$V_{D C}$
V_{1}	Input voltage	+10.0	$V_{D C}$
V_{O}	Output voltage	+5.5	$V_{D C}$
I_{1}	Input currents	-30 to +30	mA
I_{0}	Output currents	+100	mA
$\mathrm{I}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\text {H }}{ }^{15}$	High-level input voltage	2.2			V
$\mathrm{V}_{\text {LL }}{ }^{15}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-2	mA
lol	Low-level output current			10.0	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
$V_{\text {IK }}$	Clamp Voltage	$V_{\text {cC }}=\mathrm{Min}, I_{\text {I }}=I_{\text {IK }}$		-0.8	-1.2	V
v_{OL} V_{OH}	Low-level output voltage High-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max} \\ \mathrm{IOH}_{\mathrm{OH}}=\text { Max } \end{gathered}$	2.4	0.35	0.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IL IL I_{H}	Low-level output current Low-level output current (CK input) High-level output current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.45 \mathrm{~V} \\ & V_{1}=0.45 \mathrm{~V} \\ & V_{1}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & <1.0 \\ & -10 \\ & -50 \\ & \hline \end{aligned}$	$\begin{gathered} -100 \\ -250 \\ 40 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$l_{\text {O(OFF) }}$ los	Hi-Z State output current ${ }^{5,8}$ Short circuit output current ${ }^{4.6}$	$\begin{gathered} \hline V_{C C}=\operatorname{Max} \\ V_{O}=5.5 \mathrm{~V} \\ V_{O}=0.45 \mathrm{~V}^{14} \\ V_{\mathrm{O}}=0 \mathrm{~V} \end{gathered}$	-15	1	$\begin{gathered} 80 \\ -140 \\ -85 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
lcc	$V_{\text {CC }}$ supply current ${ }^{7}$	$V_{\text {cc }}=$ Max		145	210	mA
C_{IN} Cout	Input capacitance ${ }^{9}$ Output capacitance ${ }^{9}$	$\begin{aligned} & V_{C C}=\mathrm{Nom} \\ & V_{1}=2.0 \mathrm{~V} \\ & V_{0}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$	$\begin{aligned} & 12 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITIONS	LIMITS			UNIT
					Min ${ }^{13}$	Typ ${ }^{2}$	Max	
Pulse Width								
$\mathrm{t}_{\text {CKH }}$	Clock high ${ }^{10}$	CK-	CK+		25	15		ns
$\mathrm{t}_{\text {cki }}$	Clock low	CK+	CK-	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	25	15		ns
${ }^{\text {tekp }}$	Period ${ }^{12}$	CK+	CK+		65	45		ns
$t_{\text {PRH }}{ }^{14}$	Preset/Reset pulse	(I,B)+	(1,B)-		45	30		ns
Setup Time								
${ }_{\text {I }}$ S 1	Input	CK+	$(1, B) \pm$		40	30		ns
$\mathrm{t}_{\text {S } 2}$	Input (through F_{n})	CK+	$\mathrm{F}_{ \pm}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	25	10		ns
$\mathrm{t}_{153}{ }^{14}$	Input (through Complement array) ${ }^{12}$	CK+	$(1, B) \pm$		65	45		ns
Hold Time								
\mathbf{t}_{1+1}	Input	CK+	$(1, B) \pm$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	-5		ns
$\mathrm{T}_{1 \mathrm{H} 2}{ }^{14}$	Input (through F ${ }_{\text {n }}$)	CK+	$\mathrm{F}_{ \pm}$		15	10		ns
Propagation Delay								
teko $^{\text {coil }}$	Clock	$\mathrm{F}_{ \pm}$	CK+			15	25	ns
$\mathrm{t}_{\text {OE1 }}{ }^{14}$	Output enable	F-	OE-			20	35	ns
$\mathrm{toD1}^{14}$	Output disable ${ }^{11}$	F_{+}	$\overline{O E}+$			20	35	ns
$t_{\text {PD }}$	Output	$\mathrm{B}_{ \pm}$	$(\mathrm{I}, \mathrm{B}) \pm$			25	40	ns
toes ${ }^{14}$	Output enable	B \pm	(I,B)+	$C_{L}=50 p F$		20	40	ns
${ }^{\text {t }}{ }^{\text {c }}{ }^{14}$	Output disable ${ }^{11}$	B+	($1, B$)			20	40	ns
$\mathrm{t}_{\text {PRO }}{ }^{14}$	Preset/Reset	$\mathrm{F}_{ \pm}$	$(1, B)+$			35	50	ns
${ }^{\text {t PPR }}$	Power-on preset	F-	$\mathrm{V}_{\mathrm{CC}^{+}}$			0	20	ns

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured at $\mathrm{V}_{\mathbb{H}}$ applied to $\overline{O E}$.
6. Duration of short circuit should not exceed 1 second.
7. ICC is measured with the $\overline{O E}$ input grounded, all other inputs at 4.5 V , and the outputs open.
8. Leakage values are a combination of input and output leakage.
9. Guaranteed, but not tested.
10. To prevent spurious clocking, clock rise time ($10 \%-90 \%$) $\leq 10 \mathrm{~ns}$.
11. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
12. When using the Complement Array $T_{C K P}=85 \mathrm{~ns}$ (min.).
13. Limits are guaranteed with 12 product terms maximum connected to each sumterm line.
14. Not tested on an unprogrammed device.
15. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

Input Pulse Definitions

INPUT PULSE CHARACTERISTICS					
V_{M}	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
1.5 V	1 MHz	500 ns	$\leq 5 \mathrm{~ns}$	$\leq 5 \mathrm{~ns}$	

TIMING DIAGRAMS

Flip-Flop Outputs

- Preset and Reset functions override Clock. However. F outputs may glitch with the first positive Clock Edge if TIS1 cannot be guaranteed by the user.

Asynchronous Preset/Reset

MEMORY TIMING DEFINITIONS

${ }^{\text {t CKH }}$	Width of input clock pulse.
$\mathrm{t}_{\text {CKL }}$	Interval between clock pulses.
${ }^{\text {t }}$ CKP	Clock period.
$t_{\text {PRH }}$	Width of preset input pulse.
$\mathrm{t}_{1 / \mathrm{S} 1}$	Required delay between beginning of valid input and positive transition of clock.
t_{152}	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
$\mathrm{t}_{\mathrm{H} 1}$	Required delay between positive transition of clock and end of valid input data.
${ }_{1 / H 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
tcko	Delay between positive transition of clock and when Outputs become valid (w/OE low).
LOE1	Delay between beginning of Output Enable Low and when Outputs become valid.
tod 1	Delay between beginning of Output Enable High and when Outputs are in the off state.
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational Outputs become valid.
tod2	Delay between predefined Output Enable Low and when combinational Outputs are in the off state.
tpro	Delay between positive transition of predefined Presel/Reset input, and when flip-flop outputs become valid.

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

The FPLS can be programmed by means of Logic Programming equipment.
With Logic Programming, the AND/OR-EX-OR input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Tables on the following pages.

In these Tables, the logic state or action of all I/ O , control and state variables are assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:
"AND" ARRAY - (1), (B), (Qp)

STATE	CODE
INACTIVE 16,17	0

STATE	CODE
I, B, O	H

STATE	CODE
$\overline{\mathbf{i}}, \overline{\mathrm{B}}, \overline{\mathbf{Q}}$	\mathbf{L}

STATE	CODE
DON'T CARE	-

"AND" ARRAY - ($Q_{N}=\mathrm{J}-\mathrm{K}$ Type)

"OR" ARRAY - (MODE)

"OR" ARRAY - (S or B), (P), (R)

"OR" ARRAY - $\left(Q_{n}=\right.$ D-Type $)$

"COMPLEMENT" ARRAY - MODE

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)
"COMPLEMENT" ARRAY - (C)

"EX-OR" ARRAY - (B)

POLARITY	CODE	POLARITY	CODE
LOW	L	HIGH	H

"סE" ARRAY - (E)

NOTES:
16. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
17. Any gate (T, F_{C}, L, P, R, D) will be unconditionally inhibited if any one of the I, B, or Q link pairs are left intact.
18. To prevent oscillations, this state is not allowed for C link, pairs coupled to active gates T_{n}, F_{c}.
19. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
20. These states are not allowed for control gates (L, P, R, D) $)_{n}$ due to their lack of "OR" array links.

Field Programmable Logic Sequencer ($20 \times 45 \times 12$)

FPLS PROGRAM TABLE

Signetics

Military
Application Specific Products

- Series 28

DESCRIPTION

The PLUS405 device is a bipolar programmable state machine of the Mealy type. Both the AND and the OR arrays are user-programmable. All 64 AND gates are connected to the 16 external dedicated inputs ($I_{0}-I_{15}$) and to the feedback paths of the 8 on-chip State Registers ($\left.Q_{p 0}-Q_{p 7}\right)$. Two complement arrays support complex IF-THEN-ELSE state transitions with a single product term (input variables C_{0}, C_{1}).
All state transition terms can include True, False, or Don't Care states of the controlling state variables. All AND gates are merged into the programmable OR array to issue the next-state and next-output commands to their respective register. Because the OR array is programmable, any one or all of the 64 transition terms can be connected to any or all of the State and Output Registers.

All state ($\mathrm{Q}_{\mathrm{PO}}-\mathrm{Q}_{\mathrm{P7}}$) and output ($\mathrm{Q}_{\mathrm{FO}}-\mathrm{Q}_{\mathrm{F7}}$) registers are edge-triggered, clocked J-K flip-flops, with Asynchronous Preset and Reset options. The PLUS405 architecture provides the added flexibility of the J-K toggle function which is indeterminate on S-R flip-flops. Each register may be individually programmed such that a specific Preset-Reset pattern is initialized when the initialization pin is raised to a logic level "1". This feature allows the state machine to be asynchronously initialized to known internal state and output conditions prior to proceeding through a sequence of state transitions. Upon power-up, all registers are unconditionally preset to " 1 ". If desired, the initialization input pin (INIT) can be converted to an Output Enable (OE) function as an additional user-programmable feature.

Availability of two user-programmable clocks allows the user to design two independently clocked state machine functions consisting of four state and four output bits each.

PLUS405

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

Signetics Programmable Logic
Product Specification

FEATURES

- 50 and 58.8 MHz clock rates $\mathrm{T}_{\mathrm{CKM}}$
- $f_{\text {max }}=30 \mathrm{MHz}$
$\left(1 /\left(t_{\mathrm{IS} 1}+t_{\mathrm{CKO}}\right)\right.$
- Functional superset of PLS105/105A
- Field-programmable (Ti-W fusible link) See note below
- 16 input variables
- 8 output functions
- 64 transition terms
- 8-bit State Register
- 8-bit Output Register
- 2 transition Complement Array terms
- Multiple clocks*
- Programmable Asynchronous Initialization or Output Enable
- Power-on preset of all registers to "1"
- "On-chip" diagnostic test mode features for access to state and output registers
-950mW power dissipation (typical)
- TTL compatible
- J-K or S-R flip-flop functions
- Automatic "Hold" states
- 3-State outputs
- Factory programmed option available

PIN CONFIGURATION

| CLK $\frac{1}{1}$ |
| :--- | :--- | :--- |

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Ceramic DIP 600mil-wide	PLUS405/BXA
28-Pin Ceramic Leadless Chip Carrier	PLUS405/B3A
28-Pin Ceramic Flat Pack	PLUS405/BYA

[^16]
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CLK1	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks $\mathrm{P}_{0.3}$ and $\mathrm{F}_{0.3}$ if Pin 4 is also being used as a clock.	Active-High (H)
$\begin{gathered} 2,3,5-9 \\ 26-27 \\ 20-22 \end{gathered}$	$\begin{gathered} I_{0}-I_{4}, 1_{7}, I_{6} \\ I_{8}-I_{9} \\ I_{13}-I_{15} \end{gathered}$	Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and "L".	ActiveHigh/Low (H/L)
4	I_{5} CLK2	Logic Input/Clock: A user programmable function: - Logic Input: A 13th external logic input to the AND array, as above.	ActiveHigh/Low (H/L)
		- Clock: A 2nd clock for the State Registers P_{4-7} and Output Registers $\mathrm{F}_{4 \cdot 7}$, as above. Note that input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock.	Active-High (H)
23	I_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{12} is held at +10 V , device outputs $\mathrm{F}_{0}-\mathrm{F}_{7}$ reflect the contents of State Register bits $\mathrm{P}_{\mathbf{0}}-\mathrm{P}_{7}$. The contents of each Output Register remains unaltered.	ActiveHigh/Low (H/L)
24	l_{11}	Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{11} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$: a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	ActiveHigh/Low (H/L)
25	I_{10}	Logic/Dlagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{10} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $Q_{0}-Q_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	ActiveHigh/Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0}-F_{7}$	Logic Outputs/Diagnostic Outputs/Dlagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+10 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)$. When I_{11} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to State Register bits $P_{0}-P_{7}$. When I_{10} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $\mathrm{Q}_{0}-\mathrm{Q}_{7}$.	Active-High (H)
19	INIT/OE	Initialization or סutput Enabie Input: A user-programmable function:	
		- Initialization: Provides an asynchronous preset to logic "1" or reset to logic " 0 " of all State and Output Register bits, determined individually for each register bit through user programming. INIT overrides Clock, and when held High, clocking is inhibited and $F_{0}-F_{7}$ are in their initialization state. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after INIT goes Low. See timing definition for tvek and thuck.	Active-High (H)
		- Output Enable: Provides an output enable function to buffers $F_{0}-F_{7}$ from the Output Registers.	Active-Low (L)

Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

FUNCTIONAL DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$V_{C C}$	Supply voltage		+7	$V_{D C}$
$V_{I N}$	Input voltage		+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
$I_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$T_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT		UNIT	
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}^{9}}$	High level Input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}{ }^{9}$	Low level Input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High level Output current			-2	mA
I_{OL}	Low level Output current			9.6	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	-55		+125	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER ${ }^{3}$	TEST CONDITIONS ${ }^{3}$	LIMITS ${ }^{3}$			UNIT
			Min	Typ ${ }^{2}$	Max	
$\mathrm{V}_{1 \mathrm{C}}$	Input Clamp voltage ${ }^{4}$	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\mathrm{iN}}=\mathrm{Max}$		-0.8	-1.2	V
V_{OH}	High Level Output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4			V
V_{OL}	Low Level Output voltage	$V_{C C}=$ Min, $\mathrm{I}_{\text {OL }}=\mathrm{Max}$		0.35	0.5	V
I_{1}	High Level Input current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}=\mathrm{Max}$		<1	25	$\mu \mathrm{A}$
$\mathrm{I}_{1 H}$	High Level Input current (Pin 1 only)	$V_{\text {IN }}=V_{C C}=M a x$			50	$\mu \mathrm{A}$
IL	Low Level Input current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max}$		-10	-100	$\mu \mathrm{A}$
IL	Low (CK input) Level Input current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max}$		-50	-150	$\mu \mathrm{A}$
IOHz	Off-State Output current High level	$V_{\text {CC }}=$ Max, $V_{\text {Out }} 5.5 \mathrm{~V}$		1	40	$\mu \mathrm{A}$
lolz	Off-State Output current Low level	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }} 0.45 \mathrm{~V}$		-1	-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{4.5}$	$V_{\text {CC }}=$ Max, $V_{\text {OUT }}=0 \mathrm{~V}$	-15		-85	mA
Icc	$V_{\text {cc }}$ supply current ${ }^{6}$	$V_{\text {CC }}=$ Max		190	225	mA
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{7}$	$V_{\text {CC }}=$ Nom, $V_{\text {IN }}=2.0 \mathrm{~V}$		8	13	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{7}$	$\mathrm{V}_{\text {CC }}=\mathrm{Nom}, \mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		10	15	pF

Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

AC ELECTRICAL CHARACTERISTICS $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
Pulse Width							
tckh	Clock High; CLK1 (Pin 1)	CK-	CK+	10	8		ns
tekli	Clock Low; CLK1 (Pin 1)	CK+	CK-	10	8		ns
t'KP1	CLK1 Period (without Complement Array)	Output \pm	Input \pm	33	24		ns
$\mathrm{t}_{\text {CKH2 }}$	Clock High: CLK2 (Pin 4)	CK-	CK+	10	8		ns
tekl2	Clock Low; CLK2 (Pin 4)	CK+	CK-	10	8		ns
tckp2	CLK2 Period (without Complement Array)	Output+	Input ${ }_{ \pm}$	30	25		ns
tckp	CLK1 Period (with Complement Array)	CK+	CK+	40	32		ns
$\mathrm{t}_{\text {cKP4 }}$	CLK2 Period (with Complement Array) ${ }^{11}$	Output \pm	Input ${ }_{ \pm}$	40	35		ns
tinith	Initialization pulse	INIT+	INIT-	15	10		ns
Setup Time ${ }^{\text {d }}$							
IS1	Input	CK+	Input ${ }_{ \pm}$	18	12		ns
${ }^{\text {tis2 }}$	Input (through Complement Array)	CK+	Input \pm	25	20		ns
tvs	Power-on preset ${ }^{10}$	CK-	$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	0	-10		ns
tvek	Clock resume (after initialization)	CK-	INIT-	0	-5		ns
thvek	Clock lockout (before initialization)	INIT-	CK-	15	5		ns
Hold Time							
t_{H}	Input	Input \pm	CK+	0	-5		ns
Propagation Delay							
tckor	Clock1 (Pin 1)	Output \pm	CK1+		10	15	ns
$\mathrm{t}_{\text {ckoz }}$	Clock2 (Pin 4)	Output \pm	CK2+		12	15	ns
toe	Output Enable	Output-	OE-		12	15	ns
tod	Output Disable ${ }^{8}$	Output+	OE+		12	15	ns
${ }_{\text {Init }}$	Initialization	Output+	INIT+		15	20	ns
tPR	Power-on preset ${ }^{10}$	Output+	$\mathrm{V}_{\mathrm{CC}}+$		0	10	ns
Max. Frequency of Operation							
$\begin{aligned} & f_{\text {Max1 }} \\ & f_{\text {MAX }} \\ & \hline \end{aligned}$	CLK1; (without Complement Array) CLK1; (with Complement Array)					$\begin{aligned} & 30.0 \\ & 25.0 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Duration of short circuit should not exceed 1 second.
6. Measured with the INIT/OE input grounded, all other inputs $\geq 4.5 \mathrm{~V}$ and the outputs open.
7. $\mathrm{C}_{\mathbb{I N}}$ and $\mathrm{C}_{\text {OUT }}$ is guaranteed but not measured.
8. $C_{L}=5 p F ; V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Testing of these values requires special equipment.
10. These parameters are guaranteed, but not tested.
11. Not tested, but guaranteed through the testing of $\mathrm{t}_{\text {IS2 }}$ and $\mathrm{t}_{\mathrm{CKO}}$.

TRUTH TABLE

V_{cc}	OPTION		I_{10}	l_{11}		CK	J	K	$Q_{\text {P }}$	Q_{F}	F									
	INIT	OE																		
$+5 \mathrm{~V}$	H		*	*	*	X	X	X	H/L	H/L	Q_{F}									
	L		+10V	x	X	\uparrow	X	x	Q_{p}	L	L^{9}									
	L		+10V	X	x	\uparrow	x	x	Qp	H	H^{9}									
	L		X	+10V	x	\uparrow	X	x	L	Q_{F}	L^{9}									
	L		x	+10V	X	\uparrow	x	x	H	Q_{F}	H^{9}									
	L		X	X	+10V	x	x	X	Q_{P}	Q_{F}	Q_{p}									
	L		X	X	X	X	X	X	Q_{p}	Q_{F}	Q_{F}									
		H	X	X	*	X	X	X	Q_{P}	Q_{F}	Hi-Z									
		X	+10V	x	x	\uparrow	x	x	Q_{p}	L	L^{9}									
		x	$+10 \mathrm{~V}$	X	X	\uparrow	x	x	Q_{p}	H	H^{9}									
		X	X	$+10 \mathrm{~V}$	x	\uparrow	X	x	L	Q_{F}	$\left\llcorner^{9}\right.$									
		x	x	$+10 \mathrm{~V}$	X	\uparrow	x	x	H	Q_{F}	H^{9}									
		L	X	X	+10V	X	X	X	Q_{p}	Q_{F}	Q_{p}									
		L	X	X	X	x	X	X	Q_{p}	Q_{F}	Q_{F}									
		L	X	X	X	\uparrow	L	L	Q_{p}.	Q_{F}	Q_{F}									
		L	X	x	x	\uparrow	L.	H	L	L	L									
		L	X	X	X	\uparrow	H	L	H	H	H									
		L	X	X	X	\uparrow	H	H	Q_{p}	$\bar{\alpha}_{F}$	$\overline{Q_{F}}$									
\uparrow	X	X	X	X	X	X	X	X	X	X	H									
NOTES: 1. Positive Logic: $S / R($ or $J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}$ $T_{n}=\left(C_{0}, C_{1}\right)\left(I_{0}, I_{1}, T_{2} \ldots\right)\left(P_{0}, P_{1} \ldots P_{7}\right)$ 2. Ether Intialization (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option. 3. \uparrow denotes transition from Low-to-High level.																				
4. $*=H / L+10 \mathrm{~V}$. 5. $\mathrm{X}=$ Don't Care $(\leq 5.5 \mathrm{~V})$											6. H/L implies that either a High or a Low can occur, depending upon user-programmed selection (each State and Output Register individually programmable). 7. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F butfers are 3 -Stated and the indicated levels on the output pins are forced by the user									

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. INIT/OE option is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the user-programmed initialization, or even if the INIT function is not used, all registers are presetto " 1 " by the power-upprocedure.
2. All transition terms are inactive (0).
3. All S / R (or J/K) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.

LOGIC FUNCTION

DETAILS FOR REGISTERS FOR PLUS405

TIMING DIAGRAMS

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

TIMING DIAGRAMS (Continued)

Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

TIMING DIAGRAMS (Continued)

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH12,13 }}$	Width of input clock pulse.
$\mathrm{t}_{\mathrm{CKP}} 12,13$	Clock period - when not using Complement Array.
$\mathrm{t}_{\text {S }} 1$	Required delay between beginning of valid input and positive transition of Clock.
$\mathrm{t}_{\text {CKO12,13 }}$	Delay between positive transition of Clock and when Outputs become valid (with INIT/OE Low).
tPPR	Delay between $V_{C C}$ (after power-on) and when Outputs become preset at "1".
$\mathrm{t}_{\text {IS } 2}$	Required delay between beginning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
$t_{\text {RJH }}$	Required delay between positive transition of Clock and end of inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively.
$\begin{aligned} & f_{\text {MAX } 12,13,} \\ & 14,15 \end{aligned}$	Maximum operating frequency.

SYMBOL	PARAMETER
$t_{\text {CKL 12, } 13}$	Interval between clock pulses.
$\mathrm{t}_{\text {CKP14,15 }}$	Clock period - when using Complement Array.
t_{H}	Required delay between positive transition of Clock and end of valid Input data.
toe	Delay between beginning of Output Enable Low and when Outputs become valid.
${ }^{\text {tSRE }}$	Delay between input l_{12} transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register.
$\mathrm{t}_{\text {RJS }}$	Required delay between inputs l_{11} or l_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively, and when the output pins become available as inputs.
$\mathrm{t}_{\text {NVCK }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization to guarantee that the clock edge is not detected as a valid negative transition.

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)
PLUS405

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLUS405 Logic designs can be generated using Signetics AMAZE design software or several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry format is accepted.
PLUS405 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry format (PTE) is supported by the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

To implement the desired logic functions, each logic variable (I, B, P, S, T, etc.) from the logic equations is assigned a symbol. TRUE, COMPLEMENT, PRESET, RESET, OUTPUT ENABLE, INACTIVE, etc., symbols are defined below.

INITIALIZATION/OE OPTION - (INIT/OE)

OPTION	CODE
INITIALZATION	H

OPTION	CODE
OE	L

PROGRAMMING THE PLUS405:
The PLUS405 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state. PROGRAMMING VERIFICATION;
The fuse verity circuitry is not available for Military grade product. Fuse pattern verification must be accomplished by functional teting. Signetics can provide product programmed andfunctionally tested directly from the factory as an option. Contact your local Signetics sales representative or the Military Marketing Group for details.

PRESET/RESET OPTION - (P/R)

"AND" ARRAY - (I), (P)

"OR" ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)

CLOCK OPTION - (CLK1/CLK2)

NOTES:

12. This is the initial unprogrammed state of all links.
13. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs are left intact.
14. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
15. These states are not allowed when using PRESET/RESET option.
16. Input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using second clock option.
17. A single product term cannot drive more than 8 registers by itself when used in TOGGLE mode.

Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

PLUS405 PROGRAM TABLE

NOTES:

1. The FPLS is shipped with all links initially Intact. Thus, a background of "O" for all Terms, and an " H " for the \mathbb{N} / E and H for the clock option, exists in the table, shown BLANK instead for clarity.
2. Unused Cn Im, and Ps bits are normally programmed Dont Care (-).
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.

Signetics

Military Products

Section 8 Package Outlines

Signetics

Military Products

Section 9 Sales Offices, Representatives \& Distributors

Sales Offices, Representatives \& Distributors

DISTRIBUTORS

Contact one of our
local distributors:
Anthem Electronics
Falcon Electronics, Inc.
Gerber Electronics
Hamilton/Avnet Electronics
Marshall Industries
Schweber Electronics
Wyle/LEMG
Zentronics, Ltd.

FOR SIGNETICS

PRODUCTS
WORLDWIDE:

ARGENTINA

Philips Argentina S.A.
Buenos Aires
Phone:54-1-541-4261

AUSTRALIA

Philips Components PTY Ltd.
Artarmon, N.S.W.
Phone: 61-2-439-3322
AUSTRIA
Osterreichische Philips
Wien
Phone:43-222-60-101-820
BELGIUM
N.V. Philips Prof. Systems

Brussels
Phone: 32-2-525-61-11
BRAZIL
Philips Components
Sao Paulo
Phone: 55-11-211-2600
CANADA
Philips Electronics Ltd.
Scarborough, Ontario
Phone: (416)292-5161
CHILE
Philips Chilena S.A.
Santiago
Phone:56-02-077-3816
COLUMBIA
Iprelenso, Lida.
Bogota
Phone: 57-1-2497624

DENMARK

Philips Components A/S
Copenhagen S
Phone: 45-1-54-11-33

FINLAND
Philips Components
Espoo
Phone: 358-0-502-61
FRANCE
Philips Composants
Issy-les-Moulineaux
Cedex
Phone: 33-1-40-93-80-00
GERMANY
Philips Components
Hamburg
Phone: 49-40-3-296-0
GREECE
Philips Hellenique S.A.
Tavros
Phone: 30-1-4894-339
HONG KONG
Phillips Hong Kong, Lid. Kwai Chung, Kowloon Phone: 852-0-424-5121

INDIA
Peico Electronics
\& Elect. Lid.
Bombay
Phone:91-22-493-0311
INDONESIA
P.T. Philips-Ralin

Electronics
Jakarta Selatan
Phone: 62-21-517-995
IRELAND
Philips Electronics Lid. Dublin
Phone: 353-1-69-33-55
ITALY
Philips S.p.A.
Milano
Phone: 38-2-67-52-1
JAPAN
Philips Japan Lid.
Tokyo
Phone:81-3-740-5028
KOREA
Philips Electronics, Lid. Seoul
Phone: 82-2-794-5011 /2/3/4/5

MALAYSIA
Philips Malaysia SDN BHD
Petaling Jaya
Phone:60-3-734-5511
MEXICO
Philips Components Juarez, Chihuahua Phone:(16)18-67-01/02
NETHERLANDS
Philips Nederland
Eindhoven
Phone:31-40-783-749
NEW ZEALAND
Philips New Zealand Ltd. Auckland Phone:64-9-605-914

NORWAY

Norsk A/S Philips Oslo
Phone:47-2-68-02-00
PAKISTAN
Philips Electrical Co., Ltd. Karachi Phone:(021)725772
PERU
Cadesa
San Isidro
Phone:51-14-707-080
PHILIPPINES
Philips Industrial Dev., Inc. Makati-Rizal Phone: (02)868951 to 59
PORTUGAL
Phillps Portuguesa SARL Lisbon
Phone:351-1-68-31-21
SINGAPORE
Philips Singapore
Pte., Lid.
Singapore Phone:65-350-2000
SOUTH AFRICA
SA Philips (PTY), Ltd. Johannesburg P.O. Box 7430

SPAIN
Philips Components Barcelona
Phone:34-3-301-63-12

SWEDEN
Philips Components A.B. Stockholm
Phone:46-8-782-10-00
SWITZERLAND
Phillips A.G.
Zuerich
Phone:41-1-488-2211
TAIWAN
Philips Taiwan, Lid.
Taipei
Phone: (02)712-0500
THAILAND
Philips Electrical Co.
of Thailand Lid.
Bangkok
Phone:66-2-223-6330-9
TURKEY
Turk Philips
Ticaret A.S.
Istanbul
Phone: 90-1-179-27-70
UNITED KINGDOM
Philips Components Lid. London
Phone:44-1-580-6633
UNITED STATES
Signetics (IC Products) Sunnyvale, California Phone: (408) 991-2000

URUGUAY

Philips Components Montevideo Phone: (02) 70-4044
VENEZUELA
Magnetica S.A. Caracas
Phone:58-2-241-7509
ZIMBABWE
Philips Electrical (PVT) Lid. Harare Phone: 47211

07/25/90

Sales Offices, Representatives \& Distributors

Military Products

SIGNETICS
 HEADQUARTERS

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409
Phone: (408) 991-2000

ALABAMA

Huntsville
Phone: (205) 830-4001
CALIFORNIA
Calabasas
Phone: (818) 880-6304
Irvine
Phone: (714) 833-8980 (714) 752-2780

San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5071
GEORGIA
Atlanta
Phone: (404) 594-1392
ILLINOIS
itasca Phone: (708) 250-0050

INDIANA
Kokomo
Phone: (317) 459-5355
MASSACHUSETTS
Westiord
Phone: (508) 692-6211
MICHIGAN
Farmington Hills
Phone: (313) 553-6070

NEW JERSEY

Parsippany
Phone: (201) 334-4405
Toms River
Phone: (201) 505-1200

NEW YORK

Wappingers Falls
Phone: (914) 297-4074

NORTH CAROLINA

Raleigh
Phone: (919) 787-4990
OHIO
Columbus Phone: (614) 888-7143
Dayton
Phone: (513) 436-0066
September 1990

OREGON

Beaverton
Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
TENNESSEE
Greeneville
Phone: (615) 639-0251
TEXAS
Austin
Phone: (512) 339-9945
Richardson
Phone: (214)644-1610
CANADA
SIGNETICS CANADA, LTD.
Etobicoke, Ontario Phone: (416) 626-6676

Nepean, Ontario
Phone: (613) 225-5467

REPRESENTATIVES

ALABAMA
Huntsville
Elcom, Inc.
Phone: (205) 830-4001

ARIZONA

Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 941-1901

CALIFORNIA

Folsom
Webster Associates
Phone: (916) 989-0843

COLORADO

Aurora

Thom Luke Sales, Inc.
Phone: (303) 751-5011

CONNECTICUT

Wallingford
JEBCO
Phone: (203) 265-1318
FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283

GEORGIA

Norcross
Elcom, Inc.
Phone: (404) 447-8200

ILLINOIS

Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 382-3001

INDIANA
Indianapolis
Mohrfield Marketing, Inc.
Phone: (317) 546-6969

IOWA

Cedar Rapids
J.R. Sales

Phone: (319) 393-2232
MARYLAND
Columbia
Third Wave Solutions, Inc.
Phone: (301) 290-5990

MASSACHUSETTS

Chelmsford
JEBCO
Phone: (508) 256-5800
MICHIGAN
Brighton
AP Associates, Inc.
Phone: (313) 229-6550
MINNESOTA
Eden Prairie
High Technology Sales
Phone: (612) 944-7274
MISSOURI
Bridgeton
Centech, Inc.
Phone: (314) 291-4230

Raytown

Centech, Inc.
Phone: (816) 358-8100
NEW HAMPSHIRE
Hooksett
JEBCO
Phone: (603) 645-0209

NEW MEXICO

Albuquerque
F.P. Sales

Phone: (505) 345-5553

NEW YORK

lthaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Bob Dean, Inc.
Phone: (914) 297-6406

NORTH CAROLINA

Smithfield
ADI
Phone: (919) 934-8136

OHIO

Centerville
Bear Marketing, Inc.
Phone: (513) 436-2061

Richfield
Bear Marketing, Inc.
Phone: (216) 659-3131
OREGON
Beaverton
Western Technical Sales
Phone: (503) 644-8860
PENNSYLVANIA
Pittsburgh
Bear Marketing, Inc.
Phone: (412) 531-2002
Hatboro
Delta Technical Sales, Inc.
Phone: (215) 957-0600
TEXAS
Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston
Synergistic Sales, Inc.
Phone: (713) 937-1990
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500
UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050
WASHINGTON
Bellevue
Western Technical Sales
Phone: (206) 641-3900
Spokane
Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352
CANADA
Calgary, Alberta
Tech-Trek, Ltd.
Phone: (403) 241-1719
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Nepean, Ontarlo
Tech-Trek, Lid
Phone: (613) 225-5161
Richmond, B.C.
Tech-Trek, Lid
Phone: (604) 276-8735
Ville St. Laurent, Quebec
Tech-Trek, Ltd.
Phone: (514) 337-7540
PUERTO RICO
Santurce
Mectron Group
Phone: (809) 728-3280

Signetics
 a division of North American Philips Corporation

 Signetics Company 811 E. Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone (408) 991-2000
Signetics

Whwernative
 Philips Gomponents

PHILIPS

[^0]: $H=$ High voltage level
 $\mathrm{L}=$ Low voltage level
 $X=$ Don't care

[^1]: H = High voltage level
 L = Low voltage level
 X = Don't care

[^2]: L = Low voltage level
 $H=$ High voltage level

 * Each bit is shifted to the next more significant position.
 ** Arithmetic operations expressed in 2 s complement notation.

[^3]: VCC = Pin 24
 GND $=\operatorname{Pin} 12$
 () = Pin numbers

[^4]: $H=$ High voltage level steady state.

[^5]: NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High State and 0.6 mA in the Low state.

[^6]: H = High voltage level
 $L=$ Low voltage level
 $X=$ Don't care

[^7]: $H=$ High voltage level
 $L=$ Low voltage level
 X = Don't care

[^8]: $H=$ High voltage level
 $h=H i g h$ voltage level one setup time prior to the Low-to-High clock transition
 $L=$ Low voltage level
 1 = Low voltage level one setup time prior to the Low-to-High clock transition
 $\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input (or output) on setup time prior to the Low-to-High clock transition
 $X=$ Don't care
 $(Z)=$ High impedance "off" state
 $\uparrow=$ Low-to-High clock transition

[^9]: Optional load for 54LSXXX only: $\mathrm{R}_{\mathrm{B}}=631 \Omega ; \mathrm{V}_{\mathrm{B}}=5.5 \mathrm{~V}$ for all tests except $T_{\mathrm{PHZ}} ; \mathrm{V}_{\mathrm{B}}=-0.6 \mathrm{~V}$ for T_{PHZ} test.
 DEFINITIONS:
 $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
 $\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of Pulse Generators.
 $D=$ Diodes are 1N916, 1N3064, or equivalent.
 $\mathrm{V}_{\mathrm{X}}=$ Unclocked pins must be held at $\leq 0.8 \mathrm{~V}, \geq 2.7 \mathrm{~V}$ or open per FunctionTable.

[^10]: $V_{C C}=$ Pin 20
 GND $=$ Pin 10

[^11]: $V_{C C}=P$ in 20
 GND $=$ Pin 10

[^12]: Using 8X60 With High-Density MOS RAMs

[^13]: Test Array Deleted

[^14]: PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices. Inc.

[^15]: Notes on following page.

[^16]: * Refer to AC Specifications for clock and operating frequencies when using multiple clocks.

 NOTE: The standard to use verify function circuitry is not available for Military product. To use pattern veritication must be accormplished by functional testing only.

