Signetics

PLD
 Data Manual

Schweber Electronics 9265 Counselor's Row Suite 100
Indianapolis, Indiana 46240 317-843-1050
TOLL FREE: 800-289-4574 FAX: 317-848-7859

Signetics Approach to
 Logic Flexibility: Programmable Logic Devices

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.
© Copyright 1988 Signetics Company
a division of North American Philips Corporation

Preface

Application Specific Products

The continuing trend of system integration has created new challenges for Design Engineering. They must strive to consolidate higher complexity, and more feature intensive circuits into designs without sacrificing flexibility. Today's competitive electronic marketplace has created the need for logic devices, which can provide cost effective methods of reducing random logic requirements, interface with fixed and custom LSI logic, and maintain the flexible features required to make necessary system modifications prior to production. Signetics has responded to this need with Signetics Programmable Logic Devices (Signetics PLD).

The Signetics Programmable Logic family consists of devices which are designed to address logic needs ranging from random gates in the case of the Field Programmable Gate Arrays, to highly sophisticated state machines in the case of Field Programmable Logic Sequencers. Signetics pioneered the fully-programmable AND/OR/INVERT architecture in 1975. In 1987, Signetics introduced yet another new concept in PLD architectures. Moving away from an AND-OR array structure, the Signetics' Programmable Macro Logic architecture relies on a single NAND array concept. Signetics' novel architectural approach to Programmable Logic incorporates all the advantages associated with more dense complex gate arrays while retaining all the benefits of instantly programmable PLDs. By using the programmable features allowed by either powerful architecture, Signetics Programmable Logic can encompass wide-ranging levels of integration without the necessity of a multitude of devices, each with a different I/O configuration. The flexible programming structure allows the designer to 'mold' the device architecture to the range of applications typically found in system design. In this way, one device can be used to perform several functions in the same design.
The 1988-1989 Signetics Programmable Logic Data Manual contains information that the designer will require in order to effectively utilize these products.
Signetics Application Specific Products Marketing

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Speciffcation	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Contents

Application Specific Products

Preface iii
Product Status iv
Section 1-General Information
Alphanumeric Index 1-3
Selection Guide 1-4
Device Programmer Reference Guides 1-6
Ordering Information 1-10
Section 2 - Introduction
What Is Signetics Programmable Logic 2-3
Quality and Reliability 2-28
Section 3-PAL ${ }^{\circledR}$-Type Devices Data Sheets
Series 20
PLC16V8 Erasable and OTP PAL ${ }^{\circledR}$-Type Device 3-3
PLHS16L8A PAL®-Type Device 3-13
PLHS16L8B PAL®-Type Device 3-20
PLUS16R8D PAL ${ }^{\circ}$-Type Devices 3-27
PLHS18P8A PAL ${ }^{\circledR}$-Type Device 3-30
PLHS18P8B PAL ${ }^{\circledR}$-Type Device 3-37
Series 24

Erasable and OTP PAL ${ }^{\circledR}$-Type Device

Erasable and OTP PAL ${ }^{\circledR}$-Type Device 3-44 3-44
PAL ${ }^{\circledR}$-Type Devices 3-54
PLC20V8
PLC20V8
Section 4 - Programmable Logic Array Devices Data Sheets
Series 20
PLS151 Field-Programmable Gate Array ($18 \times 15 \times 12$); 25 ns 4-3
PLC153 Erasable and OTP Programmable Logic Array ($18 \times 32 \times 10$); 45/60ns 4-9
PLS153 Field-Programmable Logic Array $(18 \times 42 \times 10)$; 40ns 4-16
PLS153A Field-Programmable Logic Array ($18 \times 42 \times 10$); 30ns 4-22
PLHS153 Field-Programmable Logic Array ($18 \times 42 \times 10$); 20ns 4-28
PLUS153B Field-Programmable Logic Array ($18 \times 42 \times 10$); 15 ns 4-34
PLUS153D Field-Programmable Logic Array ($18 \times 42 \times 10$); 12 ns 4-40
Series 24
PLS161 Field-Programmable Logic Array ($12 \times 48 \times 8$); 50ns 4-46
PLS162 Field-Programmable Address Decoder (16×5); 30ns 4-52
PLS163 Field-Programmable Address Decoder (12×9); 30ns 4-58
PLS173 Field-Programmable Logic Array ($22 \times 42 \times 10$); 30ns 4-64
PLUS173B Field-Programmable Logic Array ($22 \times 42 \times 10$); 15 ns 4-70
PLUS173D Field-Programmable Logic Array ($22 \times 42 \times 10$); 12ns 4-76
PLC473-60 Erasable and OTP Programmable Logic Array ($20 \times 24 \times 11$); 60ns 4-82
PLHS473 Field-Programmable Logic Array ($20 \times 24 \times 11$); 22 ns 4-89
Series 28
PLS100/101 Programmable Logic Array ($16 \times 48 \times 8$); 50ns 4-95
PLS103 Programmable Gate Array ($16 \times 9 \times 9$); 35ns 4-102
Section 5-Programmable Logic Sequencer Devices Data Sheets
Series 20
PLS155 Field-Programmable Logic Sequencer ($16 \times 45 \times 12$); 18.2 MHz 5-3
PLS157 Field-Programmable Logic Sequencer ($16 \times 45 \times 12$); 18.2 MHz 5-14
PLS159A Field-Programmable Logic Sequencer ($16 \times 45 \times 12$); 25 MHz 5-25
Series 24PLS167Field-Programmable Logic Sequencer ($14 \times 48 \times 6$); 20MHz5-35
PLS167A Field-Programmable Logic Sequencer ($14 \times 48 \times 6$); 25 MHz 5-47
PLS168 Field-Programmable Logic Sequencer ($12 \times 48 \times 8$); 20MHz 5-59
PLS168A Field-Programmable Logic Sequencer ($12 \times 48 \times 8$); 25 MHz 5-71
PLS179 Field-Programmable Logic Sequencer ($20 \times 45 \times 12$); 25 MHz 5-83

Contents

Series 28
PLS105 Field-Programmable Logic Sequencer ($16 \times 48 \times 8$); 20MHz 5-93
PLS105A Field-Programmable Logic Sequencer ($16 \times 48 \times 8$); 25 MHz 5-105
PLUS405 Field-Programmable Logic Sequencer ($16 \times 64 \times 8$); 50 MHz 5-117
Section 6-Programmable Macro Logic Devices Data Sheets
PLHS501 Programmable Macro Logic 6-3
PLHS502 Programmable Macro Logic 6-13
Section 7-Military Products
Military Errata 7-1
Section 8 - Development SoftwareAMAZE - Automatic Map and Zap Equations Design Software.. 8-3
Section 9 - Application Notes
PLD Application Notes
AN7 Single Chip Multiprocessor Arbiter 9-3
AN8 Introduction to Signetics Programmable Logic. 9-15
AN10 4-Bit Binary-To-7 Segment Decoder 9-27
AN11 PLD Programmable Retriggerable One-Shot 9-51
AN13 Oscillator With PLS159 9-55
AN14 Latches and Flip-Flops With PLS153 9-60
AN15 PLS159 Primer 9-73
AN16 PLS159 as Modulo Counters 9-84
AN17 Electronic Combination Lock 9-91
AN18 Schmitt Trigger Using PLS153 and PLS159 9-94
AN19 Electronic Dice 9-102
AN21 9-Bit Parity Generator/Checker With PLS153/153A 9-106
AN22 PLS151 Toolkit 9-112
AN23 PLS168/168A Primer 9-120
AN24 PLS173 as a 10-Bit Comparator, 74LS460 9-133
AN25 A Simple Entry/Exit Meeting Device (PLS157) 9-139
AN26 PLHS18P8A Primer 9-145
AN27 PLHS473 Primer 9-154
AN28 High-Speed 12-Bit Tracking A/D Converter Using PLS179 9-162
PML Application Notes
AN29 PLHS501 Programmable Macro Logic Primer 9-172
Designing with Programmable Macro Logic
Chapter 1 Introduction to PML Design Concepts 9-187
Performance 9-187
NAND Gate Flip-Flops 9-194
Chapter 2 Functional Fit 9-197
Chapter 3 Design Examples 9-200
Chapter 4 Successor Architectures 9-205
Chapter 5 Support Issues 9-206
Chapter 6 PLHS501 Examples Using AMAZE Revision 1.6 9-207
Simple Gate Implementations 9-207
8-Bit Barrel Shifter 9-210
12-Bit Comparator with Dual 1-of-8 Decoders 9-216
8-Bit Carry Look-Ahead Adder 9-219
32-to-5-Bit Priority Encoder 9-222
8-Bit Shift Register with Sequence Detector 9-227
4-Bit Synchronous Counter 9-233
List of Figures1.1
9-187
PML Basic Functions
9-189
PLHS501 Logic Diagram
9-190
9-190
1.3 Tpd3-22ns max
9-191
Tpd4-30ns max
9-192
5 Tpd1-25ns max
9-193
Tpd7-8ns max.

9-194

9-194
Edge-Triggered D Flip-Flop
Edge-Triggered D Flip-Flop 9-195 9-195
PLHS501 Test Flip-Flop
PLHS501 Test Flip-Flop
1.7
1.7
9-195
9-195
9-195
Partial PLHS501 Fusemap Showing Test Flip-Flop Fusing
Partial PLHS501 Fusemap Showing Test Flip-Flop Fusing
Partial PLHS501 Fusemap Showing Test Flip-Flop Fusing 9-196
1.9
1.9
1.9
Waveforms of Test Flip-Flop9-198

Contents

3.1 Decoder Implementation in NAND Foldback Structure 9-200
3.2 Two Flip-Flops Inplemented in the NAND Foldback Structure 9-201
3.3 68000 Microprocessor Address Decoder 9-201
3.4 8-Bit Barrel Shifter Implemented with the PLHS501 9-202
3.5
Partial NAND Gate Equivalence of the 8-Bit Look-Ahead Adder 9-203
3.6
12-Bit Ripple Counter 9-2043.7
Encoder 9-204
4.1 PLHS502 Diagram 9-205
6.1 Gates Pin List 9-207
6.2 Gates Boolean Equations 9-208
6.3 Gates Simulation Input File 9-208
6.4
Gates Simulation Log File 9-209
6.56.6
6.76.86.9
6.10 12-Bit Comparator Pin List 9-216
Barrel Shifter Pin List. 9-210
8-Bit Barrel Shifter Schematic 9-210
Barrel Shifter Boolean Equations 9-211
Barrel Shifter Simulation Input File 9-214
Barrel Shifter Simulation Log File 9-215
6.11 12-Bit Comparator with Dual 1-8 Decoders Block Diagram 9-216
6.12 12-Bit Comparator Boolean Equations 9-217
6.13 12-Bit Comparator Simulation Input File 9-218
6.14 12-Bit Comparator Simulation Log File. 9-218
6.15 8-Bit Adder Pin List 9-219
6.16 8-Bit Carry Look-Ahead Adder Block Diagram and Equations 9-219
6.17 8 -Bit Adder Boolean Equations. 9-220
6.18 8 -Bit Adder Simulation Input File 9-220
6.19 8-Bit Adder Simulation Log File 9-221
6.20 Encoder Pin List 9-222
6.21 32 to 5 Priority Encoder Block Diagram 9-222
6.22 Encoder Boolean Equations 9-223
6.23 Encoder Simulation Input File 9-225
6.24 Encoder Simulation Log File 9-226
6.25 8-Bit Shifter Pin List 9-227
6.26 Shift Register with Sequence Detector Block Diagram 9-227
6.27 8-Bit Shifter Boolean Equations 9-228
6.28 Portion of STD Files 9-230
6.29 8 -Bit Shifter Simulation Input File 9-231
6.30 8 -Bit Shifter Simulation Log File 9-232
6.31 4-Bit Counter Pin List 9-233
6.32 4-Bit Counter Boolean Equations 9-234
6.33 4-Bit Counter Simulation Input File 9-235
6.34 4-Bit Counter Simulation Log File 9-236
List of Tables 1.1
Example Demonstration 9-188
2.1 Equivalency Ratio 9-198
2.2 PLHS501 Gate Count Equivalents 9-199
Section 10-Package Outlines
A PLASTIC: Leaded Chip Carrier 10-3
F CERAMIC: Dual-In-Line 10-6
FA CERAMIC: Dual-In-Line With Quartz Window 10-8
N PLASTIC: Dual-In-Line 10-10
Section 11 -Sales Offices
Office Listing 11-3

Section 1

General Information

Application Specific Products
INDEX

Device Programmer Reference Guides...

Application Specific Products

AN7
AN8
AN10
AN11
AN13
AN14
AN15
AN16
AN17
AN18
AN19
AN21
AN22
AN23
AN24
AN25
AN26
AN27
AN28
AN29
PLC16V8 Series 20
PLC20V8 Series 24
PLC153 Series 20
PLC473 Series 24
PLHS153 Series 20
PLHS473
PLHS16L8A
PLHS16L8B
PLHS18P8A
PLHS18P8B
PLHS501
PLHS502
PLS100/PLS101
PLS103
PLS105
PLS105A
PLS151
PLS153
PLS153A
PLS155
PLS157
PLS159A
PLS161
PLS162
PLS163
PLS167
PLS167A
PLS168
PLS168A
PLS173
PLS179
PLUS153B
PLUS153D
PLUS16R8D
PLUS173B
PLUS173D PLUS20R8D PLUS405

Alphanumeric Index
Single Chip Multiprocessor Arbiter 9-3
Introduction To Signetics Programmable Logic. 9-15
4-Bit Binary-To-7 Segment Decoder 9-27
PLD Programmable Retriggerable One-Shot 9-51
Oscillator With PLS159 9-55
Latches \& Flip-Flops With PLS153 9-60
PLS159 Primer 9-73
PLS159 As Modulo Counters 9-84
Electronic Combination Lock 9-91
Schmitt Trigger Using PLS153 and PLS159 9-94
Electronic Dice 9-102
9-Bit Parity Generator/Checker With 82S153/153A 9-106
PLS151 Toolkit. 9-112
PLS168/168A Primer 9-120
PLS173 As A 10-Bit Comparator, 74LS460 9-133
A Simple Entry/Exit Meeting Device (PLS157) 9-139
PLHS18P8A Primer 9-145
PLHS473 Primer 9-154
High-Speed 12-Bit Tracking A/D Converter Using PLS179 9-162
PLHS501 Programmable Macro Logic Primer 9-172
Erasable and OTP PAL ${ }^{\circledR}$-Type Device 3-3
Erasable and OTP PAL ${ }^{\circledR}$-Type Device 3-44
Erasable and OTP Programmable Logic Array ($18 \times 42 \times 10$) 4-9
Erasable-Programmable Logic Array ($20 \times 24 \times 11$) 4-82
Field-Programmable Logic Array $(18 \times 42 \times 10)$ 4-28
Field-Programmable Logic Array ($20 \times 24 \times 11$) 4-89
PAL ${ }^{\circledR}$-Type Device 3-13
PAL ${ }^{-}$-Type Device 3-20
PAL ${ }^{-}$-Type Device 3-30
PAL ${ }^{-}$-Type Device 3-37
Programmable Macro Logic. 6-3
Programmable Macro Logic 6-13
Field-Programmable Logic Array $(16 \times 48 \times 8)$ 4-95
Field-Programmable Gate Array $(16 \times 9 \times 9)$ 4-102
Field-Programmable Logic Sequencer ($16 \times 48 \times 8$) 5-93
Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$ 5-105
Field-Programmable Gate Array $(18 \times 15 \times 12)$ 4-3
Field-Programmable Logic Array $(18 \times 42 \times 10)$ 4-16
Field-Programmable Logic Array ($18 \times 42 \times 10$) 4-22
Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$ 5-3
Field-Programmable Logic Sequencer ($16 \times 45 \times 12$) 5-14
Field-Programmable Logic Sequencer ($16 \times 45 \times 12$) 5-25
Field-Programmable Logic Array ($12 \times 48 \times 8$) 4-46
Field-Programmable Address Decoder (16×5) 4-52
Field-Programmable Address Decoder (12×9) 4-58
Field-Programmable Logic Sequencer ($14 \times 48 \times 6$) 5-35
Field-Programmable Logic Sequencer; Enhanced Speed ($14 \times 48 \times 6$). 5-47
Field-Programmable Logic Sequencer ($12 \times 48 \times 8$) 5-59
Field-Programmable Logic Sequencer; Enhanced Speed ($12 \times 48 \times 8$) 5-71
Field-Programmable Logic Array $(22 \times 42 \times 10)$ 4-64
Field-Programmable Logic Sequencer ($20 \times 45 \times 12$) 5-83
Field-Programmable Logic Array $(18 \times 42 \times 10)$ 4-34
Field-Programmable Logic Array ($18 \times 42 \times 10$) 4-40
PAL ${ }^{-}$-Type Devices. 3-27
Field-Programmable Logic Array ($22 \times 42 \times 10$) 4-70
Field-Programmable Logic Array $(22 \times 42 \times 10)$ 4-76
PAL ${ }^{\circledR}$-Type Devices $(20 \times 64 \times 8)$ 3-54
Field-Programmable Logic Sequencer ($16 \times 64 \times 8$) 5-117

SIGNETICS PN	ARCHITECTURE	PACKAGE	$\begin{gathered} \text { TOTAL } \\ \text { INPUTS } \\ \text { (\# Dedicated) } \end{gathered}$	PRODUCT TERMS	INTERNAL STATE REGISTERS (\# Dedicated)	OUTPUTS C, I/O, R/RI/O	TPD (Max)	$F_{\text {max }}$	$\underset{(\text { Max })}{\text { Icc }}$
PGA									
PLS103 PLS151	$\begin{gathered} 16 \times 9 \times 9 \\ 18 \times 15 \times 12 \end{gathered}$	$\begin{aligned} & \text { 28-Pin } \\ & 20-\mathrm{Pin} \end{aligned}$	$\begin{aligned} & 16(16) \\ & 18(6) \end{aligned}$	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 9 \mathrm{C} \\ 12 \mathrm{I} / \mathrm{O} \end{gathered}$	$\begin{aligned} & 35 \mathrm{~ns} \\ & 25 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & 170 \mathrm{~mA} \\ & 155 \mathrm{~mA} \end{aligned}$
PAD									
$\begin{aligned} & \text { PLS162 } \\ & \text { PLS163 } \end{aligned}$	$\begin{aligned} & 16 \times 5 \\ & 12 \times 9 \end{aligned}$	$\begin{aligned} & \text { 24-Pin } \\ & \text { 24-Pin } \end{aligned}$	$\begin{aligned} & \hline 16(16) \\ & 12(12) \end{aligned}$	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{C} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~ns} \\ & 30 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & 155 \mathrm{~mA} \\ & 155 \mathrm{~mA} \end{aligned}$
PLA									
PLS100 PLC153-45/60 PLS153 PLS153A PLHS153 PLUS153B PLUS153D PLS161 PLS173 PLUS173B PLUS173D PLC473-60 PLHS473	$\begin{aligned} & 16 \times 48 \times 8 \\ & 18 \times 42 \times 10 \\ & 12 \times 48 \times 8 \\ & 22 \times 42 \times 10 \\ & 22 \times 42 \times 10 \\ & 22 \times 42 \times 10 \\ & 20 \times 24 \times 11 \\ & 20 \times 24 \times 11 \end{aligned}$	28-Pin 20-Pin 20-Pin 20-Pin 20-Pin 20-Pin 20-Pin 24-Pin 24-Pin 24-Pin 24-Pin 24-Pin 24-Pin	$\begin{aligned} & 16(16) \\ & 18(8) \\ & 18(8) \\ & 18(8) \\ & 18(8) \\ & 18(8) \\ & 18(8) \\ & 12(12) \\ & 22(12) \\ & 22(12) \\ & 22(12) \\ & 20(11) \\ & 20(11) \end{aligned}$	48 42 42 42 42 42 42 48 42 42 42 24 24	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		50ns $45 / 60 \mathrm{~ns}$ 40 ns 30 ns 20 ns 15 ns 12 ns 50 ns 30 ns 15 ns 12 ns 60 ns 22 ns		170 mA 60 mA * 155mA 155mA 155mA 200mA 200 mA 170 mA 170 mA 200mA 200 mA $60 \mathrm{~mA}^{*}$ 155 mA
PAL ${ }^{\text {® }}$-TYPE									
PLHS18P8A PLHS18P8B PLHS16L8A PLHS16L8B PLUS16XXD** PLC16V8Q PLC16V8H PLC20V8Q PLC20V8H PLUS20XXD**	$\begin{aligned} & 18 \times 72 \times 8 \\ & 18 \times 72 \times 8 \\ & 16 \times 64 \times 8 \\ & 16 \times 64 \times 8 \\ & 16 \times 64 \times 8 \\ & 16 \times 72 \times 8 \\ & 16 \times 72 \times 8 \\ & 20 \times 72 \times 8 \\ & 20 \times 72 \times 8 \\ & 20 \times 64 \times 8 \end{aligned}$		$\begin{gathered} 18(10) \\ 18(10) \\ 16(10) \\ 16(10) \\ \text { Variable } \\ 16(8) \\ 16(8) \\ 20(12) \\ 20(12) \\ \text { Variable } \end{gathered}$	$\begin{aligned} & 72 \\ & 72 \\ & 64 \\ & 64 \\ & 64 \\ & 72 \\ & 72 \\ & 72 \\ & 72 \\ & 64 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0-8 \\ 8(0) \\ 8(0) \\ 8(0) \\ 8(0) \\ 0-8 \end{gathered}$	$8 \mathrm{I} / \mathrm{O}$ $8 \mathrm{I} / \mathrm{O}$ $2 \mathrm{C}, 6 \mathrm{I} / \mathrm{O}$ $2 \mathrm{C}, 6 \mathrm{I} / \mathrm{O}$ Variable $8 \mathrm{RI} / \mathrm{O}$ $8 \mathrm{RI} / \mathrm{O}$ $8 \mathrm{RI} / \mathrm{O}$ $8 \mathrm{RI} / \mathrm{O}$ Variable	20 ns 15ns 20ns 15ns 10ns 35, 45ns $35,45 \mathrm{~ns}$ $35,45 \mathrm{~ns}$ 35, 45ns 10ns	56 MHz $18,13 \mathrm{MHz}$ $18,13 \mathrm{MHz}$ $18,13 \mathrm{MHz}$ $18,13 \mathrm{MHz}$ 56 MHz	155 mA 155 mA 155 mA 155 mA 180 mA $50 \mathrm{~mA}^{*}$ $90 \mathrm{~mA}^{*}$ $50 \mathrm{~mA}^{*}$ 90 mA 210 mA
PLS									
PLS105 PLS105A PLUS405 PLS155 PLS157 PLS159A PLS167 PLS167A PLS168 PLS168A PLS179	$16 \times 48 \times 8$ $16 \times 48 \times 8$ $16 \times 64 \times 8$ $16 \times 45 \times 12$ $16 \times 45 \times 12$ $16 \times 45 \times 12$ $14 \times 48 \times 6$ $14 \times 48 \times 6$ $12 \times 48 \times 8$ $12 \times 48 \times 8$ $20 \times 45 \times 12$	$\begin{aligned} & 28-\text {-Pin } \\ & 28-\text {-Pin } \\ & 28-\text { Pin } \\ & 20-\text { Pin } \\ & 20-\text {-Pin } \\ & 20-\text { Pin } \\ & 24-\text {-in } \\ & 24-\text {-Pin } \\ & 24-\text {-in } \\ & 24-\text { Pin } \\ & 24-\text { Pin } \end{aligned}$	16 (16) 16 (16) 16 (16) 16 (4) 16 (4) 16 (4) 14 (14) 14 (14) 12 (12) 12 (12) 20 (8)	$\begin{aligned} & 48 \\ & 48 \\ & 64 \\ & 45 \\ & 45 \\ & 45 \\ & 48 \\ & 48 \\ & 48 \\ & 48 \\ & 45 \end{aligned}$	$\begin{array}{r} 6(6) \\ 6(6) \\ 8(6) \\ 4(0) \\ 6(0) \\ 8(0) \\ 8(6) \\ 8(6) \\ 10(6) \\ 10(6) \\ 8(0) \end{array}$	8 6 6 4 4 4	50ns 50ns 35ns	13.9 MHz 20 MHz 33 MHz 14.3 MHz 14.3 MHz 18 MHz 13.9 MHz 20 MHz 13.9 MHz 20 MHz 18 MHz	180 mA 180 mA 225 mA 190mA 190mA 190mA 180 mA 180 mA 180 mA 180 mA 210 mA
PML									
$\begin{aligned} & \text { PLHS501 } \\ & \text { PLHS502 } \end{aligned}$	$\begin{aligned} & 32 \times 116 \times 24 \\ & 32 \times 144 \times 24 \end{aligned}$	$\begin{aligned} & 52-\text {-Pin } \\ & 68 \text {-Pin } \end{aligned}$	$\begin{aligned} & 32(24) \\ & 32 \text { (24) } \end{aligned}$	$\begin{aligned} & 72 \\ & 64 \end{aligned}$	$\begin{gathered} 0 \\ 16(0) \end{gathered}$	$\begin{array}{\|c} \hline 16 \mathrm{C} \text { and } 8 \mathrm{I} / \mathrm{O} \\ 16 \mathrm{C} \text { or R, } \\ 8 \mathrm{I} / \mathrm{O} \text { or RI/O } \end{array}$	$\begin{aligned} & 22 \mathrm{~ns} \\ & 20 \mathrm{~ns} \end{aligned}$	50 MHz	$\begin{aligned} & 295 \mathrm{~mA} \\ & 370 \mathrm{~mA} \end{aligned}$

OUTPUTS:

$\mathrm{C}=$ Combinatorial output
R $=$ Registered output
I/O = Combinatorial I/O
R $1 / O=$ Registered $1 / O$

- Measured at 15 MHz (TTL input level)
** Under development

NOTES:

$F_{\text {MAX }}=1 /\left(T_{\text {is }}+T_{\text {cKO }}\right)$ worst case
(8) PAL is a trademark of Monolithic Memories Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

PGA = Programmable Gate Array

PAD = Programmable Address Decoder
PLA = Programmable Logic Array
PAL ${ }^{\circledR}$-Type $=$ Programmable Array Logic (Fixed OR Array)-Type
PLS = Programmable Logic Sequencer
PML = Programmable Macro Logic

Signetics

Application Specific Products

Programmer Reference Guides

The software and hardware revisions listed are the earliest revisions that support these products. Later revisions can also be assumed to support these products. The software and hardwe
NOTES:

1. Also supported on 303A-001; V06.
2. Also supported on 303A-001;
3. For Unisite model users only:
4. For Unisite model users only.

- Family codes listed above must be preceeded with a " 0 " when programming PLCC packages.
- Pin codes listed above must be preceeded with a " 7 " when programming PLCC packages.

3. " - - " indicates no support planned.

The software and hardware revisions listed are the earliest revisions that support these products. Lates revisions can also be assumed to support these products. NOTES:

1. Requires 30A101 Adaptor; includes PLCC support.
2. Requires 30A100 Adaptor
3. Requires 30-1594 Adaptor

Pequires 30-1595 Adaptor.
4. Requires 30-1595 Adaptor.

Socket Adaptors required

Signetics

Ordering Information

Application Specific Products

Signetics Programmable Logic Devices may be ordered by contacting either the local Signetics sales office, Signetics representatives or authorized distributors. A complete listing is located in the back of this manual.

Table 1 provides part number definition for Signetics PLD's. The Signetics part number system allows complete ordering information to be specified in the part number. The part number and product
description is located on each data sheet.

Military versions of these commercial products may be ordered. Please refer to the military products data manual for complete ordering information.

New Signetics PLD Part Numbering System

Package Designator
F - 20-, 24-, 28 -pin CERDIP DIP
N - 20-, 24-, 28-pin Plastic DIP
A - 20-, 28-lead Plastic Leaded
Chip Carrier
FA - 20-, 24-pin CERDIP DIP with Quartz Window

Performance Indicator
(may be blank, A, B, D etc. to designate speed variations in basic part.)

Basic Part Number
(3 or 4 characters)
(e.g. $100,105,153,168,173,18 \mathrm{P} 8,151$)

Process Indicator
S - Bipolar Junction Isolated
Schottky - Nichrome fuses
C - CMOS-EPROM cells
HS - High Speed Bipolar
Oxide Isolated - Vertical Fuse
US - High Speed Bipolar Oxide Isolated-Lateral Fuse

Indicator for Signetics
Programmable Logic

Signetics

Application Specific Products

WHAT IS PROGRAMMABLE LOGIC

In 1975, Signetics Corporation developed a new product family by combining its expertise in semi-custom gate array products and fuse-link Programmable Read Only Memories (PROMs). Out of this marriage came Signetics Programmable Logic Family. The PLS100 FieldProgrammable Logic Array (FPLA) was the first member of this family. The FPLA was an important industry first in two ways. First, the AND/OR/INVERT architecture allowed the custom implementations of Sum of Product logic equations. Second, the three-level fusing allows complete flexibility in the use of this device family. All logic interconnections from input to output are programmable.

Introduction Signetics Programmable Logic

Development of this family did not stop with the PLS100. In 1977, the PLS103 Field-Programmable Gate Array (FPGA) and the PLS107 Field-Programmable ROM Patch (FPRP) were introduced.

The PLS105 Field-Programmable Logic Sequencer (FPLS) was announced in 1979. This device represents a significant step forward for PLD. The FPLS is a fully-implemented Mealy State Machine on a chip. Incorporated into its architecture are 48 P-terms, an 8 -bit Output Register, and a 6-bit internal State Register. Reference Figure 1.
The FPLS can synchronously perform sequential routines at 20 MHz . All of these products are now known as the Signetics PLD Series 28 Programmable Logic Family.

Signetics next innovation in this area was the Series 20 Programmable Logic Family. All members of this family are assembled in 20-pin packages. While reducing the number of pins in this family, Signetics has utilized controlled I/O in order to maintain the utility of the Series 20. Appropriate control terms have been included to allow active control of pin direction. Reference Figure 2.
The latest addition to the Signetics Programmable Logic families is the Series 24 devices. The PLS161 FPLA and the PLS167 FPLS are 24-pin devices comparable to the 28 -pin PLS100 and PLS105 respectively. These devices have been followed by the PLS162/ PLS163 Field-Programmable Address Decoder and the PLS168 FPLS.

BDO1900s

NOTE:

I, P, C, N, F and P/E are user-programmable connections.
Figure 1. FPLS

Table 1. PLD Product Family

PART NUMBER	TYPE	CONFIGURATION
20-PIN		
PLS151 PLS153/153A/PLHS153 PLUS153B/153D/PLC153 PLS155-159 PLS155 PLS157 PLS159 PLHS18P8A/B PLHS16L8A/B/D PLC16V8 Series	PGA PLA PLA PLS PLS PLS PLS PAL-Type PAL-Type PAL-Type	18-Input/12-Output 18-Input/10-Output - 42-Term 18 input/10-Output - 42-Term 16-Input/12-Output - 45-Term 4 Registered Outputs 6 Registered Outputs 8 Registered Outputs 18-Input/10-Output - 72-Term 16-Input/8-Output -64-Term 18-Input/8-Output-72-Term
24-PIN		
PLS161 PLS162 PLS163 PLS167/A PLS168/A PLS173/PLUS173B/D PLS179 PLHS473/PLC473 PLC20V8 Series	PLA PGA PGA PLS PLS PLA PLS PLA PAL-Type	12-Input/8-Output - 48-Term 16-Input/5-Output 12-Input/9-Output 14-Input/6-Output - 48-Term 8-Bit State Registers 6-Output Registers 12-Input/8-Output - 48-Term 10-Bit State Registers 8-Output Registers 22-Input/10-Output - 42-Term 16-Input/ 12-Output - 42-Term 8 -Bit State and Output Registers 20-Inputs/11-Output - 24 -Term 22-Input/8-Output - 72-Term
28-PIN		
PLS100/101 PLS103 PLS105/105A/PLC105 PLUS405	PLA PGA PLS PLS	16-Inputs/8-Output - 48-Term 16-Inputs/9-Output 16-Inputs/8-Output - 48-Term 6-Bit State Register 8-Output Registers 16-Inputs/8-Outputs - 64 -Terms 8 -Bit State and Output Registers
52-, 68-PIN		
PLHS501 PLHS502	$\begin{aligned} & \text { PML } \\ & \text { PML } \end{aligned}$	32-Input/24-Output - 116-Term 32-Input/24-Output - 144-Term

$74502 \times 2 \times 2$ Fixed Interconnections Dual, 2-Wide, 2-Input, AND/OR/INVERT

Table 2. Gate Replacement (All Terms Used)

| | Gates | I.C.s |
| ---: | ---: | ---: | :---: |
| Each P-Term = 2 8-Input AND Gates \& 1 2-Input AND Gate $=$ | 144 | 108 |
| OR Matrix $=16$ 4-Input OR Gates $=$ | $\frac{128}{272}$ | $\frac{32}{140}$ |

Table 3. Typical Application

4 Variables/P-Term	40 Gates
4 P-Terms/Output	$15-20$ I.C.s

PRODUCT DESCRIPTION

While all PLD devices are architecturally similar, the Field-Programmable Logic Array is most representative of the concepts involved. The FPLA is an AND/OR/INVERT device, with all internal interconnections programmable via fuse links. If we compare the PLS100 FPLS to the familiar 7450 AOI gate, the similarity of function becomes apparent.

Package-Gate Replacement Potential

All Signetics PLD devices are capable of replacing multiple discrete logic devices. The number of packages is dependent on the application and the device used.
If all product terms and inputs on the PLS100 are utilized, a total of 272 gates and 140 I.C.s can theoretically be replaced. (See Table 2.) Since the PLS100 is made up of logic structures which are not available as commercial logic devices, such as 32 input AND gates and 48 input OR gates, these numbers are based on breakdowns of these high complexity logic structures into structures which are available as discrete logic.
The typical application does not fully utilize the FPLA, however. We can assume that the typical application is as defined in Table 3.
The replacement of $15-20$ I.C.s with one PLS100 is not unusual.

PLD ECONOMICS

The reason any product line exists is because it solves a problem in a cost-effective manner.

PLD is no different in this respect. Let's assume that one PLS100 is replacing only 10 TTL logic packages.
If we assume that the average selling price of an SSI level device is $\$ 0.25$, then we have a basis for comparison.

> 10 I.C.s @ $0.35=\$ 3.50$
> 1 PLS100 FPLA $=\$ 7.00$

Considering piece-part cost alone does not fare well for the PLS100 FPLA. But, part cost is one of the smaller costs in systems manufacturing. Let's next consider PC board costs.

PC BOARD

The purchase price of a PCB is calculated on a per square inch basis. Typical costs at the 5 K level are $\$ 0.23 / \mathrm{in}^{2}$, the cost for LS is $1.2 \mathrm{in}^{2}=\$ 0.23 / \mathrm{in}^{2}=\$ 0.28$. For a 28 -pin FPLA device, the packing density is

Table 4. Cost Analysis

	LS TTL	FPLA
IC COMPONENTS	.35	7.00
PCB MANUFACTURING		
Incoming Inspection	.15	.28
Component Inventory/Usage	. .28	.16
PC Board	.14	.58
Fabrication	.18	.16
Test	.09	.45
Rework	.28	.18
ASSEMBLY LABOR	$\times 1.50$.65
COST PER COMPONENT	15.00	9.46
NUMBER OF COMPONENTS	$\times 1$	
TOTAL		9.46
CONCLUSION:		
THE FPLA is a 37\% savings over the LS TTL DESIGN.		

1-PLS100 per $2.5 \mathrm{in}^{2}$, giving a cost of $2.5 \mathrm{in}^{2} \times \$ 0.23 / \mathrm{in}^{2}=\$ 0.58$.

PCB FABRICATION

Now let's consider the cost of building the board. The primary cost for PCB fabrication is parts preparation and stuffing.

Estimates by PCB manufacturers indicate a nominal cost of $\$ 0.14$ per device for LS TTL and $\$ 0.16$ for 28-pin FPLA. There is also a basic cost of $\$ 0.02$ per in^{2} for handling, soldering, and inspecting.

The cost of incoming inspection and inventory/usage must also be considered in any fair comparison.

INCOMING INSPECTION

The cost of incoming inspection can be calculated on a per-pin basis. Assuming an equal mix of 14- and 16-pin SSI parts and a testing cost of $\$ 0.01$ per pin, the LS TTL cost is $\$ 0.15$ per I.C. The corresponding cost for
the PLS100 would be $\$ 0.01 \times 28$ or $\$ 0.28$ total.

COMPONENT INVENTORY/

USAGE
The inventory cost for LS TTL parts is dominated by inventory maintenance, while the LSI type parts, the piece price dominates. Assuming a 2% usage rate due to parts breakage, burnout, etc., in the manufacturing process, the parts cost for LS TTL is $2 \% \times \$ 0.25=\$ 0.005$. Adding $\$ 0.02$ per device for inventory maintenance, the total LS cost $\$ 0.03$. For FPLA, $2 \%=\$ 7.00 \pm$ $\$ 0.02=\$ 0.16$.

Consideration must also be given to testing the completed PCB and Rework costs.

PCB TESTING

Testing costs are generally figured on a PCB basis and are usually go-no-go tests using a 'bed of nails'. For this comparison, assume a PCB of $5^{\prime \prime} \times 7^{\prime \prime}$. The cost for testing the completed PCB is estimated to be $\$ 3.60$ for 20 I.C.s. This breaks down as $\$ 0.18$ per LS TTL device or about $\$ 0.45$ per FPLA device.

PCB REWORK

The main causes of rework are poorly plated holes, solder bridges, and parts inserted incorrectly. The "bed of nails" test can usually detect all of the faults. Rework costs about 50% of test costs. The result is $\$ 1.80$ per PCB, or $\$ 0.09$ per device for LS TTL and $\$ 0.18$ for the 28 -pin FPLA.

System manufacturing costs are harder to define. For this comparison we estimated $\$ 0.28$ for each LS device and about $\$ 0.65$ for the FPLA. These costs include backplane wiring, final system assembly and test costs.
Now using these figures, the comparison in Table 4 can be made.

PLD LOGIC SYNTHESIS

28-PIN

PLD is capable of Logic Synthesis. No intermediate step is required to implement Bool-
ean Logic Equations with PLD. Each term in each equation simply becomes a direct entry into the Logic Program Table. The following example illustrates this straightforward concept:
$X_{0}=A B+\bar{C} D+B \bar{D}$
$\bar{X}_{1}=\bar{A} B+\bar{C} D+E F G$
$X_{0}=P_{0}+P_{1}+P_{2}$

$$
\bar{X}_{1}=P_{3}+P_{1}+P_{4}
$$

tBot910s
Figure 3. Field-Programmable Logic Array ($16 \times 48 \times 8$) PLS100/PLS101

Figure 4. Equivalent Fixed Logic Diagram

In the previous example, the two Boolean Logic equations were broken into Product terms. Each P-term was then programmed into the P-term section of the PLS100 FPLA

Program Table. This was accomplished in the following manner:

Step 1

Select which input pins $I_{0}-I_{15}$ will correspond to the input variables. In this case
$A-G$ are the input variable names. I_{6} through I_{0} were selected to accept inputs $A-G$ respectively.

Figure 5

Step 2

Transfer the Boolean Terms to the FPLA Program Table. This is done simply by defining each term and entering it on the Program Table.

This P-term translates to the Program Table by selecting $A=I_{6}=H$ and $B=I_{5}=H$ and entering the information in the appropriate column.

$$
P_{1}=\bar{C} D
$$

This term is defined by selecting $\mathrm{C}=\mathrm{I}_{4}=\mathrm{L}$ and $\mathrm{D}=\mathrm{I}_{3}=\mathrm{H}$, and entering the data into the Program Table. Continue this operation until all P-terms are entered into the Program Table.
e.g., $P_{0}=A B$

tB01890s
Figure 6

Step 3

Select which output pins correspond to each output function. In this case $\mathrm{F}_{0}=\mathrm{Pin}$ $18=X_{0}$, and $F_{1}=\operatorname{Pin} 17=X_{1}$.

Figure 7

Step 4
Select the Output Active Level desired for each Output Function. For X_{0} the active
level is high for a positive logic expression of this equation. Therefore, it is only necessary to place an (H) in the Active Level box above Output Function $0,\left(\mathrm{~F}_{0}\right)$. Conversely, X_{1} can
be expressed as \bar{X}_{1} by placing an (L) in the Active Level box above Output Function 1, (F_{1}).

TB01870S
Figure 8

Step 5
Select the P-Terms you wish to make active for each Output Function. In this case $X_{0}=P_{0}+P_{1}+P_{2}$, so an A has been placed in the intersection box for P_{0} and X_{0}, P_{1} and X_{0} and P_{2} and X_{0}.

Terms which are not active for a given output are made inactive by placing a (\bullet) in the box under that P-term. Leave all unused P-terms unprogrammed.

Continue this operation until all outputs have been defined in the Program Table.

Step 6
Enter the data into a Signetics approved programmer. The input format is identical to the Signetics Program Table. You specify the P-terms, Output Active Level, and which Pterms are active for each output exactly the way it appears on the Program Table.

T801861S
Figure 9

PLD LOGIC SYNTHESIS

20-PIN

When fewer inputs and outputs are required in a logic design and low cost is most important, the Signetics 20-pin PLD should be
considered first choice. The PLS153 is an FPLA with 8 inputs, $10 \mathrm{I} / \mathrm{O}$ pins, and 42 product terms. The user can configure the device by defining the direction of the 1/O pins. This is easily accomplished by using the direction control terms $D_{0}-D_{9}$ to establish
the direction of pins $\mathrm{B}_{0}-\mathrm{B}_{9}$. The D-terms control the Tri-state buffers found on the outputs of the EX-OR gates. Figures 10 and 11 show how the D-term configures each B_{x} pin.

Figure 10. PLS153 Functional Diagram

Figure 11

Signetics Programmable Logic

To control each D-term, it is necessary to understand that each control gate is a 36input AND gate. To make the Tri-state buffer active (B_{x} pin an output), the output of the control gate must be at logic HIGH (1). This can be accomplished in one of two ways. A

HIGH can be forced on all control gate input nodes, or fuses can be programmed. When a fuse is programmed, that control gate input node is internally pulled up to HIGH (1). See Figure 12 and Figure 13.

Programming the fuse permanently places a HIGH (1) on the input to the control gate. The input pin no longer has any effect on that state.

Figure 12. Input Effect on Control Gates (Fuse Intact)

Figure 13. Effect on Control Gate if Fuse is Programmed

DEDICATING BX PIN DIRECTION

Since each input to the D-terms is true and complement buffered (see Figure 11), when the device is shipped with all fuses intact, all control gates have half of the 36 input lines at logic low (0). The result of this is all Control Gate outputs are low (0) and the Tri-state buffers are inactive. This results in all B_{x} pins being in the input condition. The resultant
device is, therefore, an 18 -input, 0-output FPLA. While useful as a bit bucket or Write-Only-Memory (WOM), most applications require at least one output. Clearly, the first task is to determine which of the B_{x} pins are to be outputs. The next step is to condition the control gate to make the Tri-state buffer for those gates active. To dedicate B_{0} and B_{1} as outputs, it is necessary to program all fuses to the inputs to Control Gates D_{0} and D_{1}. This internally pulls all inputs to those gates to

HIGH (1) permanently. Since all inputs to the Control Gates are HIGH (1), the output is HIGH (1) and the Tri-state buffers for B_{0} and B_{1} are active. This permanently enables B_{0} and B_{1} as outputs. Note that even though B_{0} and B_{1} are outputs, the output data is available to the AND array via the internal feedback (see Figure 11a).
To program this data, the PLS153 Program Table is used as shown in Figure 14.

TBO1830S
Figure 14. Dedicating B_{0} and B_{1} as Outputs and B_{2} Through B_{9} as Inputs

By placing a (-) Don't Care in each input box you are specifying that the True and Complement fuses are programmed on each Control Gate, thus permanently dedicating the B_{0} and B_{1} pins as outputs. By placing a (0) in all input boxes for $\mathrm{B}_{2}-\mathrm{B}_{9}$, you are specifying that both True and Complement fuses are intact. This causes a low (0) to be forced on half of the Control Gate inputs, guaranteeing the output of the Control Gate will be low (0). When the Control Gate outputs are low (0), the Tri-state buffer is inactive
and the $\mathrm{B}_{2}-\mathrm{B}_{9}$ pins are enabled as inputs. All B_{x} pin directions can be controlled in this manner.

ACTIVE DIRECTION CONTROL

Sometimes it is necessary to be able to actively change the direction of the B_{x} pins without permanently dedicating them. Some applications which require this include Tristate bus enable, multi-function decoding, etc. This can easily be done by programming
the Control Gate to respond to one or more input pins. It is only necessary to select which I_{x} and B_{x} pins will control the pin directions and the active level HIGH (H) or LOW (L) that will be used. The PLS153 Program Table in Figure 15 shows the method of controlling $\mathrm{B}_{0}-\mathrm{B}_{9}$ with I_{7}. When I_{7} is LOW (L), pins $\mathrm{B}_{0}-\mathrm{B}_{9}$ are outputs when I_{7} is HIGH (H), pins $B_{0}-B_{9}$ are inputs. Note that by programming all other I_{x} and B_{x} pins as DON'T CARE (-), they are permanently disconnected from control of B_{x} pin direction.
TB01840S

Figure 15. Active Control of $\mathrm{B}_{0}-\mathrm{B}_{9}$ Using I_{7} Active Low (L)

The previous 28 -pin logic synthesis example (Page 2-5) could be done on the PLS153 as follows:

$$
\begin{aligned}
& X_{0}=A B+\bar{C} D+B \bar{D} \\
& \bar{X}_{1}=\bar{A} B+\bar{C} D+E F G
\end{aligned}
$$

Note that B_{0} was used as a CHANGE input. When B_{0} is HIGH (H) the outputs appear on B_{8} and B_{9}. When B_{0} is LOW (L), the outputs appear on B_{6} and $B_{7} . B_{1}$ through B_{5} are not used and therefore left unprogrammed.

THE ROLE OF AMAZE (AUTOMATIC MAP AND ZAP ENTRY) IN LOGIC DEVELOPMENT

AMAZE is a software development package which provides the logic designer with a multimode data input capability. This software package, which has been developed for both mainframe and microcomputer environments, allows data entry in the program table format previously described, or on one of two equation formats. Both Boolean Logic Equations and State Variable Equations are supported on AMAZE. In addition to the flexible input formats offered, AMAZE also provides full
device documentation, and a functional simulator. The simulator features manual and automatic modes. In the automatic mode, the software generates a set of input vectors which can be used as functional test vectors. The manual mode is an interactive procedure which allows the designer to input vectors to the simulator. The AMAZE simulator then responds with the appropriate output vector. In both modes, the simulator uses the functional model generated by the user's input data.

For more information on AMAZE refer to Section 8 of the 1987 Signetics Programmable Logic Data Manual.

Figure 16. PLS153 Example

SEQUENTIAL LOGIC CONSIDERATIONS

The PLS105 and PLS155 - PLS159 represent significant increases in complexity when compared to the combinatorial logic devices pre-
viously discussed. By combining the AND/OR combinatorial logic with clocked output flipflops and appropriate feedback, Signetics has created the first family of totally flexible sequential logic machines.

Figure 17. Basic Architecture of PLS105 FPLS. I, P, N, and F are Multi-line Paths Denoting Groups of Binary Variables Programmed by The User.

Af02180S
Figure 18. Typical State Diagram. I_{1-3} Are Jump Conditions Which Must be Satisfied Before Any Transitions Take Place. F_{r} Are Changes in Output Triggered by I_{m}, and Stored in The Output Register. State Transitions $\mathbf{a} \rightarrow \mathbf{b}$ and $\mathbf{c} \rightarrow \mathbf{d}$ Involve No Output Change.

The PLS105 FPLS (Field-Programmable Logic Sequencer) is an example of a high-order machine whose applications are manifold. Application areas for this device include highspeed data controllers, microprocessor and minicomputer bus arbitration, industrial controls, timing generation, multi-function counters and shift registers, and microprocessordriven microcontrollers. The PLS105 is fully capable of performing fast sequential operations in relatively low-speed processor systems. By placing repetitive sequential operations on the PLS105, processor overhead is reduced. Each PLS105 can be viewed as a high-speed, 48 -state subroutine.

The following pages summarize the PLS105 architecture and features.

FPLS Architecture

The PLS105 Logic Sequencer is a programmable state machine of the Mealy type, in which the output is a function of the present state and the present input.
With the FPLS a user can program any logic sequence expressed as a series of jumps between stable states, triggered by a valid input condition (I) at clock time (t). All stable states are arbitrarily assigned and stored in the State Register. The logic output of the machine is also programmable, and is stored in the Output Register.

Clocked Sequence

A synchronous logic sequence can be represented as a group of circles interconnected with arrows. The circles represent stable states, labeled with an arbitrary numerical code (binary, hex, etc.) corresponding to discrete states of a suitable register. The arrows represent state transitions, labeled with symbols denoting the jump condition and the required change in output. The number of states in the sequence depends on the length and complexity of the desired algorithm.

Figure 20. Typical State Jump From State (0) to State (1), if Inputs $A=B=" 1$ ". The Jump Also Forces $F=' 1 "$, as Required.

LDO23B0S
Figure 21. Simplified Logic Diagram of PLS105 FPLS

State Jumps

The state from which a jump originates is referred to as the Present state (P), and the state to which a jump terminates is defined as the Next state (N). A state jump always causes a change in state, but may or may not cause a change in machine output (F).

State jumps can occur only via 'transition terms' T_{n}. These are logical AND functions of the clock (t), the Present state (P), and a valid input (I). Since the clock is actually applied to the State Register, $T_{n}=10 P$. When T_{n} is 'true', a control signal is generated and used at clock time (t) to force the contents of the State Register from (P) to (N), and to change the contents of the Output Register (if necessary). The simple state jump in Figure 20 , involving 2 inputs, 1 state bit, and 1 output bit, illustrates the equivalence of discrete and programmable logic implementations.

FPLS Logic Structure

The FPLS consists of programmable AND and OR gate arrays which control the Set and Reset inputs of a State Register, as well as monitor its output via an internal feedback path. The arrays also control an independent Output Register, added to store output commands generated during state transitions, and to hold the output constant during state sequences involving no output changes. If desired, any number of bits of the Output Register can be used to extend the width of the State Register, via external feedback.

LD02370S
Figure 22. Typical AND Gate Coupled to (I) and (P) Inputs.
If at Least One Link Pair Remains Intact, T_{n} is Unconditionally Forced Low.

Figure 23. Choice of Input Polarity Coupling to a Typical AND Gate. With Both Links Open, (I) is Logically Don't Care.

Figure 24. Typical Transition Terms Involving Arbitrary Inputs and State Variables. All Remaining Gate Inputs Are Programmed Don't Care. Note That $\mathbf{T}_{\mathbf{2}}$ Output is State Independent.

Input Buffers

16 external inputs (1 m) and 6 internal inputs $\left(P_{s}\right)$, fed back from the State Register, are combined in the AND array through two sets of True/Complement (T/C) buffers. There are a total of 22 T/C buffers, all connected to multi-input AND gates via fusible links which are initially intact.

Selective fusing of these links allows coupling either True, Complement, or Don't Care valles of $\left(1_{m}\right)$ and (P_{s}).

"AND" Array

State jumps and output changes are triggered at clock time by valid transition terms T_{n}. These are logical AND functions of the presint state (P) and the present input (I).

The FPLS AND Array contains a total of 48 AND gates. Each gate has 45 inputs - 44 connected to 22 T/C input buffers, and 1 dedicated to the Complement Array. The outputs of all AND gates are propagated through the OR Array, and used at clock time (t) to force the contents of the State Register from (P) to (N). They are also used to control the Output Register, so that the FPLS 8 -bit output F_{r} is a function of the inputs and present state.

LOO2350S
Figure 25. Typical OR Array Gating of Transition Terms $\mathbf{T}_{\mathbf{1 , 2 , 3}}$ Controlling Arbitrary State and Output Register Stages.

Figure 26. The COMPLEMENT Array is Logically Constructed from a 48-Input Programmable OR Gate Followed by an Inverter. All AND Terms Coupled to the OR Gate are Complemented at the Inverter Output, and Can be Fed Back as Inputs to the AND Array.
'OR" Array
In general, a clocked sequence will consist of several stable states and transitions, as determined by the complexity of the desired algorithm. All state and output changes in the state diagram imply changes in the contents of State and Output Registers.

Thus, each flip-flop in both registers may need to be conditionally set or reset several times with T_{n} commands. This is accomplished by selectively ORing through a programmable OR Array all AND gate outputs T_{n} necessary to activate the proper flip-flop control inputs.
The FPLS OR Array consists of 14 pairs of OR gates, controlling the S/R inputs of 14 State and Output Register stages, and a single OR gate for the Complement Array. All gates have 48 inputs for connecting to all 48 AND gates.

Complement Array

The COMPLEMENT Array provides an asynchronous feedback path from the OR Array back to the AND Array.

This structure enables the FPLS to perform both direct and complement sequential state jumps with a minimum of transition (AND) terms.

Typically direct jumps, such as T_{1} and T_{2} in Figure 27 require only a single AND gate each.

But a complement jump such as T_{3} generally requires many AND gates if implemented as a direct jump. However, by using the Complement Array, the logic requirements for this type of jump can be handled with just one more gate from the AND Array.

DIRECT $\left\{\begin{array}{l}T_{1}=P_{0} X \\ T_{2}=P_{0} Y\end{array}\right.$

COMPLEMENT $\quad\left\{\quad T_{3}=P_{0}(\bar{X} \cdot \bar{Y})=P_{0}\left(\overline{T_{1}+T_{2}}\right)\right.$
a. Typical State Sequence

$$
\begin{aligned}
& T_{3}=P_{0}\left(\overline{P_{0} X+P_{0} Y}\right) \\
& T_{3}=P_{0}\left[P_{0}(X+Y)\right] \\
& \left.T_{3}=P_{0}\left[\bar{P}_{0}+\overline{X+Y}\right)\right] \\
& T_{3}=0+P_{0}(\overline{X+Y}) \\
& T_{3}=P_{0}(\bar{X} \cdot \bar{Y})
\end{aligned}
$$

b. Complement Jump

Figure 27. a. X And Y Specify the Conditional Logic for Direct Jump Transition Terms T_{1} and T_{2}. The Complement Jump Term T_{3} is True Only When Both T_{1} and T_{2} are False. b. Note that the Complementary Logic Expression for $T_{3}, \overline{T_{1}+T_{2}}$, Corresponds Exactly to the Logic Structure of the Complement Array.

As indicated in Figure 28, the single Complement Array gate may be used for many states of the state diagram. This happens because all transition terms linked to the OR gate include the present state as a part of their conditional logic. In any particular state, only those transition terms which are a function of that state are enabled; all other terms coupled to different states are disabled and do not influence the output of the Complement Array. As a general rule of thumb, the Complement Array can be used as many times as there are states.

Figure 28. Logic Reduction with the Complement Array. The Logic State Diagram in (a) Includes Complement Jumps T_{C} and Tc5 Defined in (b). When Using the Complement Array, a Savings of 2 Transition Terms Results, as Shown in (c) and (d).

Table 5. 20-Pin PLD Sequential Family Summary

DEVICE	REGISTERED OUTPUTS	OUTPUT TYPE
PLS155	4-Bit Register	T.S.
PLS157	6-Bit Register	T.S.
PLS159	8-Bit Register	T.S.

PLD-20 SEQUENTIAL DEVICES

The 20-pin PLD family also includes sequential devices. These devices are all similar in architecture. The major difference consists of the number of outputs which are registered.

FEATURES

The PLD-20 sequencers have been designed with a maximum of flexibility in mind. Each element of the architecture contributes to the ease of use the PLD-20 family provides. Each part has the features listed:

- J/K flip-flop Output Register
- Dynamic control of flip-flop type (J/K or D)

Parallel bus load

- Asynchronous preset and reset capability
- Combinational I/O pins
- Programmable enable pins
- Output feedback to AND Array available

OUTPUT REGISTER

The Output Register of the PLD-20 sequential devices are comprised of fully implemented J/K flip-flops. Each flip-flop is positive edgetriggered from a common clock.

In addition, a dynamically controllable "foldback' buffer between the J and K inputs to the flip-flop allows the designer to change the function of the flip-flop from J / K to D-type under the control of the flip-flop control term (F). A fuse allows the designer to dedicate the flip-flop as a permanent D-type by programming the fuse.
By leaving the fuse intact, the flip-flop control line (F) is maintained as the active mode control. If the output of F is logic Low (0), then the flip-flop is configured as a D-type. If the output of F is a logic High (1), then the flipflop is configured as a J / K type. Term F is programmed in the same manner as the 32 logic transition terms (T). It is well to note at this time that when the flip-flop is configured as a D-type, the OR-term driving the K input of the flip-flop must not be active.
During all modes of operation, the output register data is fed back to the AND Array. This feedback is used to establish presentstate to next-state jumps.

Figure 29

Signetics Programmable Logic

PARALLEL BUS LOADING
The Output Register may be loaded from the bus via the load control term (L). This feature
forces the data contained on the F_{0} pin into the J/K flip-flop. It operates synchronously with the rising edge of the clock. This feature
can be used to preload a state into the machine, or to latch input data into the AND Array.

Figure 30

PRESET AND RESET

Asynchronous preset and reset capability has been provided on the PLD-20 sequential
devices. This feature is controlled in the ANDArray on the PLS159. However, the preset and reset function on the PLS155 is controlled via the OR Array. The PLS157 preset
and reset controls are split between the two arrays. See the individual data sheets for details.

COMBINATIONAL I/O PINS
Each PLD-20 sequential device has a number of combinational pins $\left(B_{n}\right)$ which can be
programmed and used exactly as the B pins on the PLS153 FPLA. The direction control term (D) establishes the data flow on these
pins. The individual data sheet should be consulted for the quantity and pin number assignment for each device.

PLA vs. PAL ${ }^{\circledR}$ ARRAYS
The PLA architecture provides the most efficient means of implementing logic. The $28-$ pin devices, PLS100/101 and PLS103 are unique in their ability to directly implement logic.

They offer the most useable P-terms, the highest number of inputs and outputs, and the most straightforward programming of any logic device in the industry. The following diagrams illustrate the relative ease of programming the flexible PLA structure against the fixed OR Array of the PAL.

The Signetics approach to programmable logic gives the designer the flexibility he needs where he needs it - in the device itself. The combination of totally flexible architecture, more useable product terms, and ease of logic implementation make Signetics Programmable Logic Family the obvious choice.

NOTES:

1. Unused P-terms lost to designer.
2. Common P-term to 2 or more outputs requires 2 or more P-terms; one on each output.
3. External inverter required to change active level of output.
4. 10 P-terms used.

Figure 33. Application Example PAL Approach

LD02481S
NOTES:

1. All P-terms usable.
2. Common P-terms available to all outputs.
3. Programmable outputs eliminate need for external component.
4. 6 P-terms used.

Figure 34. PLD Approach

Application Specific Products

SIGNETICS PROGRAMMABLE LOGIC QUALITY

Signetics has put together winning processes for manufacturing Programmable Logic. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.
The PLD's produced in the Application Specific Products Division must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed $2 \times 10^{5} \mathrm{amps} / \mathrm{cm}^{2}$. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to insure that the distribution of parameters resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data
also provides a basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and at $+10 \%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05 - QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available on request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.
The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Bipolar Memory and Programmable Logic products, samples are
selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One-hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life: $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, 1000$ hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, 1000 hours
- Temperature Humidity Biased Life: $85^{\circ} \mathrm{C}$, 85% relative humidity, 1000 hours, static biased
- Temperature Cycling (Air-to-Air): $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 1000$ cycles

THE SHORT-TERM MONITOR

Every other week a 50-piece sample from each generic family is run to 168 hours of pressure pot $\left(15 \mathrm{psig}, 121^{\circ} \mathrm{C}, 100 \%\right.$ saturated steam) and 300 cycles of thermal shock $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$.
In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fiftypiece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.
Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the Programmable Logic SURE program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

Included in the engineering process are:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors.
- Device or generic group failure rate studies.
- Advanced environmental stress development.
- Failure mechanism characterization and corrective action/prevention reporting.
The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cy-cle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, lower cost of ownership.

Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals, inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues. For example, in 1978 a program to reduce electrically defective units for a major automotive manufacturer improved outgoing quality levels by an order of magnitude.

In 1980 we recognized that in order to achieve outgoing levels on the order of 100PPM (parts per million), down from an industry practice of $10,000 \mathrm{PPM}$, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedent-
ed low defect levels could only be achieved by contributions from all employees, from the R and D laboratory to the shipping dock. In short, from a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these cost-saving practices.
We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality (see Figure 1).

Figure 1. Signetics Quality Progress

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed upon price. Signetics considers Performance to Customer Request and Performance to Original Schedule Date to be key Quality issues. Employees treat delinquencies as quality defects. They analyze the cause for the delinquency and seek corrective action to prevent future occurance. Continuous effort is given to try to acheive the ultimate goal of zero delinquencies.

ONGOING QUALITY PROGRAM

The quality improvement program at Signetics is based on 'Do it Right the First Time". The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared by all technical and administrative functions equally.

This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.

Key components of the program are the Quality College, the 'Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.
2. The system to achieve quality improvement is prevention.
3. The performance standard is zero defects.
4. The measurement system is the cost of quality.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

"MAKING CERTAIN" ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing problems.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

PRODUCT QUALITY PROGRAM

To reduce defects in outgoing products, we created the Product Quality Program. This is managed by the Product Engineering Council, composed of the top product engineering and test professionals in the company. This group:

1. Sets aggressive product quality improvement goals;
2. provides corporate-level visibility and focus on problem areas;
3. serves as a corporate resource for any group requiring assistance in quality improvement; and
4. drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.

Quality and Reliability

Figure 3. Lot Acceptance Rate From Signetics Vendors

Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously , waivers of incoming material have been eliminated.

MATERIAL WAIVERS

1988-STD = 0 Waivers
1987-0
1986- 0
1985- 0
1984- 0
1983- 0
1982- 2
1981-134
Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.

Quality and Reliability Functions

- Manufacturing quality control
- Product assurance testing
- Laboratory facilities - failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letter-head directly to the corporate V.P. of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence levels.
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Linepull information and field failure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sample of the devices in question can start us on the problem
resolution before physical return of shipment.

This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time'", a key concept of the quality improvement program. During the development of the program many profound changes were made. Figure 4, Programmable Logic Process Flow, shows the result. Key changes included such things as implementing 100% temperature testing on all products as well as upgrading test handlers to insure 100% positive binning. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.
The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of Programmable Logic. These achievements have also led to our participation in several Ship-to-Stock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

OUR GOAL: 100\%
 PROGRAMMING YIELD

Our original goal back in the early 1970s was to develop a broad line of programmable products which would be recognized as having the best programming yield in the industry. Within the framework of a formal quality program, our efforts to improve circuit designs and refine manufacturing controls have resulted in major advances toward that goal.
Also within the framework of our formal quality program we have now established a stated goal of 100% programming yield. Through the increasing effectiveness of a quality attitude of "Do It Right The First Time" we're moving ever closer to that target.
Signetics PLD programming yields have been shown in collected data from internal audits and customer reporting to be consistently higher than comparable devices produced by our competition. We use systematic methods involving publication of exacting specifications of our programming algorithms, and through evaluation of those algorithms as implemented in industry standard programming equipment. Because of this we can assure our customers who program Signetics PLD's on such qualified equipment they will see consistently high yields. Our data base shows that average lot programming yield exceeds 97%.

Quality and Reliability

Figure 3. Application Specific Products Programmable Logic Process Flow

Quality and Reliability

As time goes on the drive for a product line that has Zero Defects will grow in intensity. These efforts will provide both Signetics and our customers with the ability to achieve the mutual goal of improved product quality.
The Application Specific Quality Assurance department has monitored PPM progress, which can be seen in Figure 4. We are pleased with the progress that has been made, and expect to achieve even more impressive results as the procedures for accomplishing these tasks are fine tuned.

Figure 4. Programmable Logic EPQ (Estimated Process Quality)

Quality and Reliability

The Application Specific Reliability Department has established an ongoing Infant Mortality Monitor, the results of which can be seen in Figure 5. This monitor is used to determine and drive ongoing Corrective Action for the purposes of continuously improving product reliability.
The real measure of any quality improvement program is the result that our customers see. The meaning of Quality is more than just working circuits. It means commitment to On Time Delivery at the Right Place of the Right Quantity of the Right Product at the Agreed Upon Price.
Product Programmability, as illustrated in Figure 6 , is continously monitored to assure that the highest performance possible is attained.

CMOS RELIABILITY INFORMATION

All Signetics' EPROM die are designed as low power UV light erasable and electrically programmable read only memories. They have been designed to perform over military and commercial temperature ranges. These die are assembled in EPROM packages that comply with industry standard packages: Cerdip (Quartz window), Plastic DIP (One Time Programmable) and Plastic Leaded Chip Carrier (One Time Programmable).
The following descriptions are of the tests and calculations performed on each device organization and package type to validate the quality and reliability of the CMOS design and technotogy. All described tests are performed on each package type, with the exception of the 'Program-erase cycling' test for the One Time Programmable devices.

ELECTROSTATIC DISCHARGE PROTECTION (ESD)

This test is performed to validate the product's tolerance to electrostatic discharge damage.

Both MIL-STD-883 criteria (human body model) and mechanical model charged device test are performed.

HIGH TEMPERATURE STORAGE LIFE TEST (HTSL)

Another popular name for this test is data retention bake. This process is used to thermally accelerate charge loss from the floating gate. The test is performed by subjecting devices that contain a 100% programmed data pattern to a $250^{\circ} \mathrm{C}$ bake with no applied electrical bias or clocks.

In addition to charge loss, this test is used to detect mechanical reliability (i.e., bond integrity) and process instability.

DYNAMIC LOW TEMPERATURE LIFE TEST (DLTL)

This test is performed at $-10^{\circ} \mathrm{C}$ to detect the effects of hot electron injection into the gate oxide as well as package-related failures (i.e., metal corrosion). The biasing and clocking conditions for this test are identical to the DHTL \#1 test.

TEMPERATURE CYCLE (TMCL)

This test consists of performing 200 cycles of ambient air temperature of the chamber and housing the unbiased subject devices from $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and back. The 200 cycles are performed at 20 minutes per cycle.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#1)

This test is used to accelerate failure mechanisms by operating the devices at $125^{\circ} \mathrm{C}$ ambient temperature with worst-case specified power supply voltages of $V_{C C}$ and $V_{P P}$ at 5.5 V . The memory is sequentially addressed to exercise the fully-loaded outputs. A checkerboard complement data pattern is used to simulate random patterns expected during actual use.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#2)

This test is used to accelerate oxide breakdown failures and to further accelerate the failure mechanisms of DHTL \#1. The test setup is identical to the one used for the DHTL \#1 test except the temperature is $150^{\circ} \mathrm{C}$ and the $V_{C C}$ and $V_{P P}$ power supply voltages are 6.5 V , resulting in a 20% increase over the specified operational electrical field across the gate oxides of the device $(1.25 \mathrm{mV} / \mathrm{cm}$ for $325 \AA$ oxide thickness). This represents a $55 \times$ electrical field induced acceleration in addition to the thermal acceleration at $150^{\circ} \mathrm{C}$.

PROGRAM-ERASE CYCLING AND PROGRAMMABILITY

All four power supply voltage combinations for $V_{C C}$ and $V_{P P}$ are tested for programmability ($V_{C C}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PP}}=12.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ in program mode). The number of possible program/erase cycles is then tested to establish program-erase cycling expectations.

FAILURE RATE PREDICTIONS

In preparation for the various life tests, a 168 hour, $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ production burn-in is performed on the devices. The infant mortality rejects are removed from the population in order to develop long-term failure rate information during the random failure rate portion of the device life cycle.
The failure rate calculation combines all failure mechanisms by activation energies and associated device hours for the $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ Dynamic Life Test (DHTL \#1), the $150^{\circ} \mathrm{C}$, 6.5 V Dynamic Life Test (DHTL \#2), the $150^{\circ} \mathrm{C}, 7.5 \mathrm{~V}$ Static Life Test and the $250^{\circ} \mathrm{C}$ Bake.

The activation energies for the various EPROM failure mechanisms are:

Defective bit charge gain/loss (electron hopping conduction)	0.6 eV
Oxide breakdown	0.3 eV
Silicon defects	0.3 eV
Contamination	$1.0-1.2 \mathrm{eV}$
Intrinsic charge loss	1.4 eV

NOTE:

The combined failure rate for the stresses is the sum of failure rates by activation energies.

Quality and Reliability

METHODS OF FAILURE RATE CALCULATIONS

Actual Device Hours = Number of Devices \times Number of Hours. In order to determine the Equivalent Hours derated to a given operating temperature, the junction temperatures of the devices should be calculated using the known thermal resistance of the package (θ_{JA}) and the power dissipation of the devices:

$$
\begin{equation*}
\mathrm{T}_{1,2}=\theta_{\mathrm{JA}}(\mathrm{IV})_{1,2}+\mathrm{T}_{\mathrm{A} 1,2} \tag{1}
\end{equation*}
$$

Using the Arrhenius relation, the test temperature and the derated operating temperature will yield the thermal acceleration factor from T_{1} to T_{2} :
$\left.\frac{R_{1}}{R_{2}}=\frac{A \cdot \exp \left\lfloor\frac{E_{A}}{k T_{1}}\right\rfloor}{A \cdot \exp \left[\frac{E_{A}}{k T_{2}}\right.}\right\rfloor=\exp \left[\frac{E_{A}}{k}\right\rfloor\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$\mathrm{k}=8.617 \times 10^{-5} \mathrm{eV} /$ Kelvin (Boltzmann's constant)
A = proportionality constant for a given failure mechanism
$R_{1}=$ mean time to failure @ T_{1}
$R_{2}=$ mean time to failure @ T_{2}
$\mathrm{E}_{\mathrm{A}}=$ activation energy for the failure mechanism
$T_{1}=$ operating temperature
$T_{2}=$ life test temperature

An additional $55 \times$ acceleration factor should be added for the $150^{\circ} \mathrm{C} / 6.5 \mathrm{~V}$ dynamic life test due to the time-dependent oxide failure acceleration (20% higher than specified power supply voltage).
Multiplying the actual device hours by the acceleration factor for each failure mechanism will result in the equivalent hours.

Poisson statistics are applied to estimate the performance of the population from the life test results of a sample test. This is useful when the probability of failures is small and the failures occur randomly in time. A commonly used formula for estimating the failure rate is the 'chi-squared' equation:

$$
\begin{equation*}
F_{C}=\frac{\chi^{2}}{2 n t} \times 100 \% \tag{3}
\end{equation*}
$$

$\mathrm{F}_{\mathrm{C}}=$ calculated failure rate estimate (in $\% / 1000 \mathrm{hrs}$) at upper confidence limit
$\chi^{2}=$ '"chi-squared" value for $2 F_{A}+2$ degrees of freedom for \propto where F_{A} is the number of actual failures (χ^{2} comes from available tables for a known \propto)
$\alpha=1-B$, where B is the confidence limit (B is stated in \%).
$\mathrm{n}=$ number of units in test
$t=$ test time in thousands of hours (equivalent)

Equation 3 will calculate the estimated failure rates $/ 1000 \mathrm{hrs}$ for 60% confidence level (industry standard) for each failure mechanism.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Memory products, samples are selected that represent product groups from all wafer fabrication and assembly locations.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Signetics

Section 3 PAL ${ }^{\circledR}$-Type Device Data Sheets

Application Specific Products
aname

INDEX
Series 20
PLC16V8 PLHS16L8A PLHS16L8B PLUS16R8D
PLHS18P8A
PLHS18P8B PAL ${ }^{\circledR}$-Type Device 3-37
Series 24
PLC20V8 Erasable and OTP PAL ${ }^{\circledR}$-Type Device 3-44
PLUS20R8D PAL ${ }^{\circledR}$-Type Devices 3-54

Signetics

Application Specific Products
 - Series 20

DESCRIPTION

The PLC16V8 Programmable Array Logic device is a 20 -pin CMOS PLD designed to replace full-power as well as quarter-power and half-power Series 20 PAL ${ }^{\circledR}$ devices. Available in four speed/ power configurations, the generic PLC16V8 device can be configured to emulate 22 different PAL devices in multiple speed/power configurations. The more complex AND/OR logic functions can be easily implemented with the PLC16V8 because of the flexibility inherent to its generic Output Macro Cell architecture.

The PLC16V8 is a two-level logic element comprised of 10 inputs, 72 AND gates and 8 Output Macro Cells (OMC). Each Output Macro Cell can be individually configured as a dedicated input, a dedicated output, a bidirectional I/O or as a registered output with feedback. This generic architecture provides a means of reducing documentation, inventory and manufacturing related costs. Furthermore, the PLC16V8 series devices are designed to accept both TTL and CMOS input levels to facilitate logic integration in almost any system environment.

FUNCTIONAL DIAGRAM

Signetics Programmable Logic Product Specification

FEATURES

- 100\% functional replacement for Series 20 PAL devices
$-\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
- Low power performance: 50 and 90mA max
- All inputs and outputs switching at 15 MHz
- Equivalent bipolar performance
- 35 and 45ns tpD
- 28.5 and $22.2 \mathrm{MHz} \mathrm{f}_{\text {MAX }}$ (async)
- EPROM cell technology
- Erasable
- 100\% testable
- Reconfigurable (quartz window package only)
- TTL and CMOS compatible
- Security fuse
- Available in 300 mil -wide DIP with quartz window, plastic DIP (OTP), or PLCC (OTP)

PIN LABEL DESCRIPTIONS

I	Dedicated input
B	Bidirectional input/output
O	Dedicated output
D	Registered output (D-type flip-flop)

PAL DEVICE TO PLC16V8 OUTPUT PIN CONFIGURATION CROSS REFERENCE

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PLC } \\ & \text { 16V8 } \end{aligned}$	$\begin{aligned} & 16 \mathrm{L8} \\ & 16 \mathrm{H8} \\ & 16 \mathrm{P} 8 \\ & 18 \mathrm{P} 8 \end{aligned}$	$\begin{gathered} \text { 16R4 } \\ \text { 16RP4 } \end{gathered}$	$\begin{gathered} \text { 16R6 } \\ \text { 16RP6 } \end{gathered}$	$\begin{gathered} \text { 16R8 } \\ \text { 16RP8 } \end{gathered}$	16 L 2 16H2 16P2	14 L 4 14H4 14P4	$\begin{aligned} & \text { 12L6 } \\ & \text { 12H6 } \\ & \text { 12P6 } \end{aligned}$	$\begin{aligned} & \text { 10L8 } \\ & \text { 10H8 } \\ & \text { 10P8 } \end{aligned}$
1	$I_{0} /$ CLK	1	CLK	CLK	CLK	1	1	1	1
19	F7	B	B	B	D	1	1	1	0
18	F6	B	B	D	D	1	1	0	0
17	F5	B	D	D	D	1	0	0	0
16	F4	B	D	D	D	0	0	0	0
15	F3	B	D	D	D	0	0	0	0
14	F2	B	D	D	D	1	0	0	0
13	F1	B	B	D	D	1	1	0	0
12	F0	B	B	B	D	1	1	1	0
11	$\mathrm{I}_{9} / \overline{\mathrm{OE}}$	1	$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$	1	1	1	1

PIN CONFIGURATIONS

$\mathrm{N}=$ Plastic
FA $=$ Ceramic with Quartz Window
A Package

A = Plastic Leaded Chip Carrier

[^0]
Erasable and OTP

PAL ${ }^{\circledR}$-Type Device

LOGIC DIAGRAM

NOTES:

In the unprogrammed or virgin state:
All colls are in a conductive state.
All AND gate locations are pulled to a logic " 0 " (Low).
Output polarity is non-inverting.
Pins 1 and 11 are configured as Inputs 0 and 9, respectively, via the configuration cell. The clock and $\overline{O E}$ functions are disabled.
All output macro cells (OMC) are configured as bidirectional I/O, with the outputs disabled via the direction term.繁 Denotes a programmable cell location.

Erasable and OTP
 PAL ${ }^{\circledR}$-Type Device

The Signetics state-of-the-art Floating-Gate CMOS EPROM process yields bipolar equivalent performance at one-quarter to one-half the power consumption. The erasable nature of the EPROM process enables Signetics to functionally test the devices prior to shipment to the customer. Additionally, this allows Signetics to extensively stress test, as well as ensure the threshold voltage of each individual EPROM cell. 100% programming yield is subsequently guaranteed.

Signetics' AMAZE PLD design software supports all aspects of design, simulation and programming. For simple conversion of existing PAL device codes into the PLC16V8 series format, a PAL-to-V8 Converter is also available. This stand-alone, single-disk software package translates a PAL device code (from a device or a JEDEC standard fuse map) into an equivalent PLC16V8 series JEDEC format. The PAL-to-V8 converter, which runs on an IBM PC or compatible, includes the necessary programmer interface software for most commercially available programmers.

THE OUTPUT MACRO CELL (OMC)

The PLC16V8 has 8 individually programmable Output Macro Cells. The 72 AND inputs (or product terms) from the programmable AND array are connected to the 8 OMCs in groups of 9 . Eight of the AND terms are dedicated to logic functions; the ninth is for asynchronous direction control.
Each OMC can be independently programmed via 16 architecture control bits, $\mathrm{AC1}_{\mathrm{n}}$ and $\mathrm{AC} 2_{\mathrm{n}}$ (one pair per macro cell). Similarly, each OMC has a programmable output polarity control bit (Xn). By configuring the pair of architecture control bits according to the table, 4 different configurations may be implemented.

CONFIGURATION CELL

A single configuration cell controls the functions of Pins 1 and 11. Refer to Functional Diagram. When the configuration cell is programmed, Pin 1 is a dedicated clock and Pin 11 is dedicated for output enable. When the configuration cell is unprogrammed, Pins 1 and 11 are both dedicated inputs. Note that the output enable for all registered OMCs is common - from Pin 11 only. Output enable control of the bidirectional I/O OMCs is provided from the AND array via the direction product term.

If any one OMC is configured as registered, the configuration cell will be automatically config-

FUNCTION	CONTROL CELL CONFIGURATIONS			COMMENTS
	AC1 ${ }_{\text {n }}$	AC2n	CONFIG. CELL	
Registered mode	Programmed	Programmed	Programmed	Dedicated clock from Pin 1. OE Control for all registered OMCs from Pin 11 only.
Bidirectional I/O mode ${ }^{1}$	Unprogrammed	Unprogrammed	Unprogrammed	Pins 1 and 11 are dedicated inputs. 3State control from AND array only.
Fixed input mode	Unprogrammed	Programmed	Unprogrammed	Pins 1 and 11 are dedicated inputs.
Fixed output mode	Programmed	Unprogrammed	Unprogrammed	Pins 1 and 11 are dedicated inputs. The feedback path (via $\mathrm{F}_{\text {MUX }}$) is disabled.

NOTE:

1. This is the virgin state as shipped from the factory.

OUTPUT MACRO CELL (OMC)

ured (via the design software) to ensure that the clock and output enable functions are enabled on Pins 1 and 11, respectively. If none of the OMCs are registered, the configuration cell will be programmed such that Pins 1 and

11 are dedicated inputs. The programming
codes are as follow:

Pin $1=$ CLK, Pin $11=\overline{\mathrm{OE}}$	L
Pin 1 and Pin $11=$ Input	H

Erasable and OTP PAL ${ }^{\circledR}$-Type Device

ORDERING INFORMATION

DESCRIPTION			ORDER CODE
Propagation Delay (Max)		Icc (Active at 15MHz)	
$t_{\text {PD }}=35 \mathrm{~ns}$	$f_{\text {MAX }}=18.1 \mathrm{MHZ}$(Synchronous)	50 mA	PLC16V8Q35
		90 mA	PLC16V8H35
$t_{\text {PD }}=45 \mathrm{~ns}$	$f_{\text {MAX }}=13.3 \mathrm{MHz}$(Synchronous)	50 mA	PLC16V8Q45
		90 mA	PLC16V8H45
Package Type			PACKAGE ${ }^{1}$
20-pin Plastic DIP (one time programmable; OTP)			N
20-pin Plastic Leaded Chip Carrier			A
20-pin Ceramic DIP with quartz window (reprogrammable)			FA

NOTE:

1. The package order code directly follows the device order code, i.e., PLC16V8Q35N for Plastic DIP (OTP).

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-10 to +10	mA
$\mathrm{I}_{\text {OUT }}$	Output currents	+24	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RATINGS

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLC16V8 device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

AC TEST CONDITIONS

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified. Input Pulses

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION		LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$							
V_{IL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		-0.3		0.8	V
V_{IH}	High	$V_{C C}=$ Max		2.0		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage ${ }^{2}$							
$\mathrm{V}_{\text {OL }}$	Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{IOL}=24 \mathrm{~mA} \end{gathered}$				0.5	V
V_{OH}	High	$\mathrm{IOH}^{=}=-3.2 \mathrm{~mA}$		2.4			V
Input current							
$\mathrm{I}_{1 / 2}$	Low ${ }^{6}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
IH_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$
Output current							
Io(off)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & V_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$				$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
los	Short-circuit ${ }^{\text {3, }} 7$	$\mathrm{V}_{\text {OUT }}=$ GND				-130	mA
Icc	$\mathrm{V}_{\text {cc }}$ supply current (Active) ${ }^{4}$	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \mathrm{f}=15 \mathrm{MHz}^{5}$	Quarter power (Q)			50	mA
			Half power (H)			90	mA
Capacitance							
C_{1}	Input	$\begin{aligned} & V_{C C}=5 \\ & V_{I N}=2 . \end{aligned}$			12		pF
C_{B}	1/0	$\mathrm{V}_{\mathrm{B}}=2$.			15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with TTL input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$. Measured with all inputs and outputs switching.
5. Refer to Figure 1, $\Delta \mathrm{l}$ cc vs Frequency (worst case). (Referenced from 15 MHz)
6. IL for $\operatorname{Pin} 1$ ($I_{0} / C L K$) is $\pm 10 \mu \mathrm{~A}$ with $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$.
7. Refer to Figure 2 for $\Delta t_{\text {PD }}$ vs output capacitance loading.

Figure 1. $\Delta l_{\text {cc }}$ vs Frequency (Worst Case) (Referenced from ${ }^{15 M H z}$)

Figure 2. $\Delta t_{\text {pD }}$ vs Output Capacitance Loading (Typical)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V} \quad \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION ${ }^{1}$		PLC16V8Q-35 PLC16V8H-35		PLC16V8Q-45 PLC16V8H-45		UNIT
				R1 (Ω)	$C_{L}(\mathrm{pF})$	Min	Max	Min	Max	
Pulse width										
${ }^{\text {tCKP }}$	Clock period (Minimum $\left.\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CkO}}\right)$	CLK +	CLK +			55		75		ns
$\mathrm{t}_{\text {CKH }}$	Clock width High	CLK -	CLK +			20		25		ns
$\mathrm{t}_{\text {CKL }}$	Clock width Low	CLK +	CLK -			20		25		ns
Hold time										
t_{H}	Input or feedback data hold time	Input \pm	CLK +			0		0		ns
Setup time										
$\mathrm{tis}^{\text {S }}$	Input or feedback data setup time	CLK +	$1 \pm, \mathrm{F} \pm$			30		40		ns
Propagation delay										
tPD	Delay from input to active output	F \pm	$1 \pm, \mathrm{F} \pm$	200	50		35		45	ns
${ }_{\text {tcko }}$	Clock High to output valid access Time	$\mathrm{F} \pm$	CLK +	200	50		25		35	ns
$\mathrm{t}_{\mathrm{OE} 1}{ }^{3}$	Product term enable to active output	$\mathrm{F} \pm$	$1 \pm, \mathrm{F} \pm$	Active-High R $=1.5 \mathrm{k}$ Active-Low $R=550$	50		35		45	ns
tODI^{2}	Product term disable to outputs off	$\mathrm{F} \pm$	$1 \pm, \mathrm{F} \pm$	From $V_{O H} R=\infty$ From VoL $\mathrm{R}=200$	5		35		45	ns
$\mathrm{tOD2}^{2}$	Pin 11 output disable High to outputs off	F \pm	OE-	From $V_{\mathrm{OH}} \mathrm{R}=\infty$ From $\mathrm{V}_{\mathrm{OL}} \mathrm{R}=200$	5		25		30	ns
toen 3	Pin 11 output enable to active output	$\mathrm{F} \pm$	OE +	Active-High R $=1.5 \mathrm{k}$ Active-Low $\mathrm{R}=550$	50		25		30	ns
tPPR	Power-up reset	F +	$\mathrm{V}_{\mathrm{CC}}+$				35		45	ns
Frequency of operation ($\mathrm{I}_{\text {IS }}+\mathrm{t}_{\text {cko }}$)										
$f_{\text {max }}$	Maximum frequency	Synch. Asynch.		200	50		$\begin{aligned} & \hline 18.1 \\ & 28.5 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 22.2 \end{aligned}$	MHz

NOTES:

1. Refer also to AC Test Conditions. (Test Load Circuit)
2. 3-State levels are measured $\pm 0.5 \mathrm{~V}$ from the active steady-state level.
3. Resistor values of 1.5 k and 550Ω provide 3 -State levels of 1.0 V and 2.0 V , respectively. Output timing measurements are to 1.5 V level.

Erasable and OTP

POWER-UP RESET

In order to facilitate state machine design and testing, a power-up reset function has been incorporated in the PLC16V8. All internal registers will reset to active-Low (logical ' 0 '') after a specified period of time (tpPR). Therefore, any OMC that has been configured as a
registered output will always produce an ac-tive-High on the associated output pin because of the inverted output buffer. The internal feedback ($\overline{\mathrm{Q}}$) of a registered OMC will also be set High. The programmed polarity of OMC will not affect the active-High output condition during a system power-up condition.

The following conditions must be considered when the asynchronous power-up reset occurs. $V_{\text {CC }}$ rise to $4.5 \mathrm{~V}(90 \%)$ must be monotonic. The clock input must stabilize to a valid TTL level prior to the V_{Cc} rise to 60% (3.0 V). All input setup and hold times ($t_{I S}$ and t_{tH}) must be adhered to prior to clocking the device.

TIMING DIAGRAMS

NOTE:
Diagram presupposes that the outputs (F) are enabled. The reset occurs regardless of the output conditon (enabled or disabled).

REGISTER PRELOAD FUNCTION (DIAGNOSTIC MODE ONLY)

In order to facilitate the testing of state machine/controller designs, a diagnostic mode register preload feature has been incorporated into the PLC16V8 series device. This feature enables the user to load the registers
with predetermined states while a super voltage is applied to Pins 11 and $6\left(I_{9} / \overline{O E}\right.$ and $\left.I_{5}\right)$. (See diagram for timing and sequence.)
To read the data out, Pins 11 and 6 must be returned to normal TTL levels. The outputs, F_{0-7}, must be enabled in order to read data out. The Q outputs of the registers will reflect
data in as input via F_{0-7} during preload. Subsequently, the register \bar{Q} output via the feedback path will reflect the complement of the data in as input via F_{0-7}.
Refer to the voltage waveform for timing and voltage references.

REGISTER PRELOAD (DIAGNOSTIC MODE)

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic Programming equipment.
With Logic programming, the AND/Ex-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table. Similarly, various OMC configurations are implemented by programming the Architecture Control bits AC1 and AC2, as shown below. Note that the configuration cell is automatically programmed based on the OMC configuration.

In this table, the logic state of variables I, P, and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - $(0, B)$

"AND' ARRAY - (I, B)

ARCHITECTURE CONTROL - AC1 and AC2

NOTE:
A factory shipped unprogrammed device is configured such that:

1. All cells are in a conductive state.
2. All AND gates are pulled to a logic " 0 " (Low).
3. Output polarity is non-inverting.
4. Pins 1 and 11 are configured as inputs 0 and 9 . The clock and $\bar{O} E$ functions are disabled.
5. All Output Macro Cells (OMCs) are configured as bidirectional I/O, with the outputs disabled via the direction term.
6. This configuration cannot be used if any OMCs are configured as registered ($\mathrm{Code}=\mathrm{D}$). The configuration cell will be automatically configured to ensure that the clock and output enable functions are enabled on Pins 1 and 11, respectively, if any one OMC is programmed as registered.

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)

The erasure characteristics of the PLC16V8 Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 \AA range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC16V8 in approximately three years, while
it would take approximately one week to cause erasure when exposed to direct sunlight. If the PLC16V8 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for the PLC16V8 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure
time with this dosage is approximately 30 to 35 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOS EPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week (1) $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage:
The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

PLC16V8 Series

PROGRAM TABLE

Signetics

Application Specific Products - Series 20

DESCRIPTION

The PLHS16L8A is a high-speed " A " version PAL ${ }^{\circledR}$-type device. The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 OR gates. The Signetics PLHS16L8A offers 100\% functional compatibility with other PAL 16 L 8 devices. Specified at a tpd of 20 ns (maximum), the PLHS16L8A is 20\% faster than other " A " version PAL 16L8 devices. And, the PLHS16L8A consumes 20% less power than most other " A " speed 16L8 devices.
All AND gates are linked to 10 dedicated inputs, 6 bidirectional I/O and 2 dedicated outputs. On-chip buffers couple either true $(\bar{l}, \mathrm{~B})$ or complement (\bar{I}, \bar{B}) input polarities to all AND gates. The 64 AND gates are separated into eight groups of eight product terms each. Within each group, seven of the AND terms are OR'ed together, while the eighth is used to control the 3 -State function of the bidirectional I/O. All outputs (bidirectional and dedicated) are inverting.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs, which act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides

PLHS16L8A PAL ${ }^{\circledR}$-Type Device

Signetics Programmable Logic Product Specification

the connection for the associated product term.

The PLHS16L8A is field-programmable, allowing the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- 20\% faster than other " A " version PAL devices
$-t_{p d}=20 n s$ (MAX)
- Icc supply current: 155 mA (worst-case)
- 100\% functionally and pin-for-pin compatible with AmPAL16L8A, MMI PAL16L8A, TIBPAL16L8-25 and NSC PAL16L8A devices
- Field-programmable
- 10 dedicated inputs
- 8 outputs
- 6 bidirectional I/O
- 2 dedicated outputs
- Individual 3-State control of all outputs
- 64 AND gates/product terms
- Security Fuse

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

CD05323S

cD05339S

APPLICATIONS

- 100\% functional replacement for 20-pin 16L8 combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping/decoding
- Multiplexing

[^1]FPLA LOGIC DIAGRAM

PAL ${ }^{\circledR}$-Type Device

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP (300mil-wide)	PLHS16L8AN
20-pin Plastic Leaded Chip Carrier	PLHS16L8AA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
I_{I}	Input current	-30 to +5	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{I}_{\text {OUTPRG }}$	Output current (programming)	+170	mA
$\mathrm{~T}_{\text {A }}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{VL}	Low	$\mathrm{V}_{\text {cC }}=\mathrm{Min}$			+0.8	V
V_{IH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	+2.0			V
$V_{\text {IC }}$	Clamp	$V_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$		-0.9	-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{C}} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \end{gathered}$	+2.4	+3.5	+0.50	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & I_{\mathrm{H}} \\ & I_{\mathrm{I}} \end{aligned}$	Low High High	$\begin{aligned} V_{C C} & =M a x \\ V_{I N} & =+0.40 \mathrm{~V} \\ V_{\mathbb{I N}} & =+2.7 \mathrm{~V} \\ V_{\mathbb{I N}} & =+5.5 \mathrm{~V} \end{aligned}$		-20	$\begin{aligned} & -100 \\ & +25 \\ & +1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Output current						
$\begin{aligned} & \mathrm{l}_{\mathrm{OZH}} \\ & \mathrm{lozl} \\ & \mathrm{los} \end{aligned}$	Output leakage Output leakage Short circuit ${ }^{3}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\text { Max, } V_{\mathrm{VIL}} & =0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+2.7 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.40 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.5 \mathrm{~V} \end{aligned}$	-30	-60	$\begin{aligned} & +100 \\ & -50 \\ & -90 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$V_{\text {cc }}$ current	$\mathrm{V}_{\text {CC }}=$ Max, All inputs $=$ GND		100	155	mA
Capacitance ${ }^{4}$						
C_{IN} Cout	Input I/O	$\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \\ V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \end{gathered}$		6 9		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

NOTES:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $T_{P D}$ is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are enabled.
2. All p-terms are enabled in the AND array.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Input to output progagation delay.
$t_{\text {ER }}$	Input to output disable (3- State) delay (Output Disable).
$t_{\text {EA }}$	Input to Output Enable delay (Output Enable).

TIMING DIAGRAMS

WAVEFORM	INPUTS	OUTPUTS		
	MUST BE			
STEADY			\quad	WILL BE
:---:				
STEADY				

INPUTS	OUTPUTS
DON'T CARE;	CHANGING;
ANY CHANGE	STATE
PERMITTED	UNKNOWN
DOES NOT	CENTER
LINE IS HIGH	

AC TEST LOAD CIRCUIT

LOGIC PROGRAMMING

PLHS16L8A logic designs can be generated using any commercially available, JEDEC standard design software that supports the 16L8 architecture. No JEDEC fuse map conversion or translation is necessary when using the PLHS16L8A.

PLHS16L8A designs can also be generated using the program table format, detailed on the following page. This program table entry (PTE) format is supported on the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

To implement the desired logic functions, each logic variable (I, B, P and D) from the logic equations is assigned a symbol. TRUE (High), COMPLEMENT (Low), DON'T CARE and INACTIVE symbols are defined below.
"AND" ARRAY - (I, B)

NOTES:

1. This is the initial state of all diodes pairs.
2. All unused product terms must be programmed with all pairs of diodes in the INACTIVE state (all fuses on an unused p-term must be programmed).

PROGRAM TABLE

Signetics

Application Specific Products

- Series 20

DESCRIPTION

The PLHS16L8B is a very high-speed " B " version PAL ${ }^{\circledR}$-type device. The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 OR gates. The Signetics PLHS16L8B offers 100% functional compatibility with other PAL 16L8 devices. Specified at 155mA ICC (maximum), the PLHS16L8B consumes 20% less power than other ' B ' version PAL 16L8 devices.
All AND gates are linked to 10 dedicated inputs, 6 bidirectional I/O and 2 dedicated outputs. On-chip buffers couple either true (I, B) or complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}}$) input polarities to all AND gates. The 64 AND gates are separated into eight groups of eight product terms each. Within each group, seven of the AND terms are OR'ed together, while the eighth is used to control the 3-State function of the bidirectional I/O. All outputs (bidirectional and dedicated) are inverting.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

FUNCTIONAL DIAGRAM

PLHS16L8B PAL ${ }^{\circledR}$-Type Device

Signetics Programmable Logic Product Specification

The PLHS16L8B is field-programmable, allowing the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- Consumes 20% less power than other " B " version PAL devices - 155mA Icc (worst-case)
- I/O propagation delay: 15ns (MAX)
- 100\% functionally and pin-for-pin compatible with AmPAL16L8B, MMI PAL16L8B, TIBPAL16L8-15 and NSC PAL16L8B devices
- Field-programmable
- 10 dedicated inputs
- 8 outputs
- 6 bidirectional I/O
- 2 dedicated outputs
- Individual 3-State control of all outputs
- 64 AND gates/product terms
- Security Fuse

PIN CONFIGURATIONS

APPLICATIONS

- 100\% functional replacement for 20-pin 16L8 combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping/decoding
- Multiplexing

[^2]February 12, 1988
3-20

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP (300mil-wide)	PLHS16L8BN
20-pin Plastic Leaded Chip Carrier	PLHS16L8BA

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
louT	Output current	+100	mA
loutPRG	Output current (programming)	+170	mA
$\mathrm{~T}_{\text {A }}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{\mathbf{2}}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{gathered} V_{C C}=\text { Min } \\ V_{C C}=M a x \\ V_{C C}=\text { Min, } \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA} \end{gathered}$	+2.0	-0.9	$\begin{gathered} +0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Output voitage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \end{gathered}$	+2.4	+3.5	+0.50	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{I H} \\ & I_{\mathrm{I}} \end{aligned}$	Low High High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}}=+0.40 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=+2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=+5.5 \mathrm{~V} \end{gathered}$		-20	$\begin{aligned} & -100 \\ & +25 \\ & +1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Output current						
$\begin{aligned} & \text { lozh } \\ & \text { lozl } \\ & \text { los } \end{aligned}$	Output leakage Output leakage Short circuit ${ }^{3}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{\mathrm{IL}} & =0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+2.7 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.40 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.5 \mathrm{~V} \end{aligned}$	-30	-60	$\begin{aligned} & +100 \\ & -50 \\ & -90 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ mA
Icc	$V_{\text {CC }}$ current	$\mathrm{V}_{\mathrm{CC}}=$ Max, All inputs $=\mathrm{GND}$		100	155	mA
Capacitance ${ }^{4}$						
C_{IN} Cout	Input I/O	$\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \\ V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \end{gathered}$		6 9		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12	15	ns
$t_{\text {EA }}$	Output enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12	15	ns
ter	Output disable	Input \pm	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		12	15	ns

NOTES:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $T_{P D}$ is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $V_{O L}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are enabled.
2. All p-terms are enabled in the AND array.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Input to output progagation delay.
$t_{\text {ER }}$	Input to output disable (3- State) delay (Output Disable).
$t_{\text {EA }}$	Input to Output Enable delay (Output Enable).

TIMING DIAGRAMS

WAVEFORM	OUTPUTS	WAVEFORM	INPUTS MUST BE STEADY	WILL BE STEADY
OUTPUTS				

AC TEST LOAD CIRCUIT

LOGIC PROGRAMMING

PLHS16L8B logic designs can be generated using any commercially available, JEDEC standard design software that supports the 16 L 8 architecture. No JEDEC fuse map conversion or translation is necessary when using the PLHS16L8B.

PLHS16L8B designs can also be generated using the program table format, detailed on the following page. This program table entry (PTE) format is supported on the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

To implement the desired logic functions, each logic variable (I, B, P and D) from the logic equations is assigned a symbol. TRUE (High), COMPLEMENT (Low), DON'T CARE and INACTIVE symbols are defined below.
"AND' ARRAY - (I, B)

NOTES:

1. This is the initial state of all diodes pairs.
2. All unused product terms must be programmed with all pairs of diodes in the INACTIVE state (all fuses on an unused p-term must be programmed).

PROGRAM TABLE

Signetics

Application Specific Products
 - Series 20

FEATURES

- Ultra high-speed:
- $\mathrm{t}_{\mathrm{PD}}=10 \mathrm{~ns}$
- $\mathrm{f}_{\text {MAX }}=55.5 \mathrm{MHz}$ (with feedback)
- $\mathrm{t}_{\mathrm{IS}}=10 \mathrm{~ns}$ (worst case)
- $\mathbf{t}_{\text {CKO }}=8 \mathrm{~ns}$ (worst case)
- 100% functionally and pin-for-pin compatible with industry standard 20-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 20 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

PLUS16R8D Series
 PAL ${ }^{\circledR}$-Type Devices

Signetics Programmable Logic
Preliminary Specification

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS	tPD	ICC	fMAX WITHOUT FEEDBACK	fMAX WITH FEEDBACK
PLUS16L8D	10	$8(6 / / O)$	0	10 ns	180 mA		
PLUS16R8D	8	0	8		180 mA	62.5 MHz	55.5 MHz
PLUS16R6D	8	$2 / / 0$	6	10 ns	180 mA	62.5 MHz	55.5 MHz
PLUS16R4D	8	$4 / / 0$	4	10 ns	180 mA	62.5 MHz	55.5 MHz

Signetics

Application Specific Products - Series 20

DESCRIPTION

The PLHS18P8A is a two-level logic element consisting of 72 AND gates and 8 OR gates with fusible connections for programming I/O polarity and direction.
All AND gates are linked to 10 inputs (I) and 8 bidirectional I/O lines (B). These yield variable I/O gate configurations via 8 direction control gates, ranging from 18 inputs to 8 outputs.

On-chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}})$ input polarities to all AND gates. The 72 AND gates are separated into 8 groups of 9 each. Each group of 9 is associated with one bidirectional pin. In each group, eight of the AND terms are ORed together, while the ninth is used to establish I/O direction. All outputs are individually programmable via an Ex-OR gate to allow implementation of AND/OR or NAND/NOR logic functions.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

FUNCTIONAL DIAGRAM

PLHS18P8A PAL ${ }^{\circledR}$-Type Device

Signetics Programmable Logic Product Specification

The PLHS18P8A is field-programmable, allowing the user to quickly generate custom pattern using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- 100% functionally compatible with AmPAL18P8A and all 16L8, 16P8, 16H8, 16L2, 16H2, 14L4, 14H4, 12L6, 12H6, 10L8, 10H8, 16LD8 and 16HD8 PAL type products
- Field-Programmable
- 10 inputs
- 8 bidirectional I/O lines
- 72 AND gates/product terms
- configured into eight groups of nine
- Programmable output polarity (3-State output)
- I/O propagation delay: 20ns (max)
- Power dissipation: 500mW (typ)
- TTL compatible
- Security Fuse

PIN CONFIGURATIONS

APPLICATIONS

- 100\% functional replacement for all 20-pin combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

[^3]FPLA LOGIC DIAGRAM

[^4]
ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP (300mil-wide)	PLHS18P8AN
20-pin Plastic Leaded Chip Carrier	PLHS18P8AA

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
I_{I}	Input current	-30 to +5	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{l}_{\text {OUTPRG }}$	Output current (programming)	+170	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$V_{C C}=\mathrm{Min}$			+0.8	V
V_{H}	High	$V_{C C}=$ Max	+2.0			V
V_{1}	Clamp	$V_{C C}=M i n, l_{\text {IN }}=-18 \mathrm{~mA}$		-0.9	-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{IOLL}^{2}+24 \mathrm{~mA} \\ \mathrm{IOH}_{\mathrm{OH}}=-3.2 \end{gathered}$	+2.4	+3.5	+0.50	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{I L} \\ & I_{I H} \\ & I_{I} \end{aligned}$	Low High High	$\begin{gathered} V_{\text {CC }}=\operatorname{Max} \\ V_{I N}=+0.40 \mathrm{~V} \\ V_{I N}=+2.7 \mathrm{~V} \\ V_{I N}=+5.5 \mathrm{~V} \end{gathered}$		-20	$\begin{aligned} & -100 \\ & +25 \\ & +1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Output current						
${ }_{\mathrm{I}}^{\mathrm{IOHH}}$ Isc	Output leakage Output leakage Short circuit ${ }^{3}$	$\begin{aligned} V_{\text {CC }}=\text { Max, } V_{\mathrm{IL}} & =0.8 \mathrm{~V}, V_{\mathrm{IH}}=2.0 \mathrm{~V} \\ V_{\text {OUT }} & =+2.7 \mathrm{~V} \\ V_{\text {OUT }} & =+0.40 \mathrm{~V} \\ V_{\text {OUT }} & =+0.5 \mathrm{~V} \end{aligned}$	-25	-60	$\begin{aligned} & +100 \\ & -250 \\ & -90 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
lcc	$\mathrm{V}_{\text {CC }}$ current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$, All inputs $=\mathrm{GND}$		100	155	mA
Capacitance ${ }^{\text {4 }}$						
C_{IN} Cout	Input I/O	$\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \text { @ } f=1 \mathrm{MHz} \end{gathered}$		6 9		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	20	ns
t_{EA}	Output enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	20	ns
ter	Output disable	Input \pm	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		14	20	ns

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
2. $T_{P D}$ is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $C_{L}=5 p F$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are at ' H ' polarity.
2. All outputs are enabled.
3. All p-terms are enabled.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Input to output progagation delay.
$t_{\text {ER }}$	Input to output disable (3- State) delay (Output Disable).
$t_{\text {EA }}$	Input to Output Enable delay (Output Enable).

TIMING DIAGRAMS

AC TEST LOAD CIRCUIT

TC02551S

NOTE:

C_{1} and C_{2} are to bypass V_{CC} to GND .

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

LOGIC PROGRAMMING

PLHS18P8A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLHS18P8A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

"AND" ARRAY - (I, B)

NOTES:

1. This is the initial state of all link pairs.
2. All unused product terms must be programmed with all pairs of fuses in the INACTIVE state (all fuses on an unused p-term must be programmed).

PROGRAM TABLE

Application Specific Products - Series 20

DESCRIPTION

The PLHS18P8B is a two-level logic element consisting of 72 AND gates and 8 OR gates with fusible connections for programming I/O polarity and direction.
All AND gates are linked to 10 inputs (I) and 8 bidirectional I/O lines (B). These yield variable I/O gate configurations via 8 direction control gates, ranging from 18 inputs to 8 outputs.
On-chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \mathrm{B}$) input polarities to all AND gates. The 72 AND gates are separated into 8 groups of 9 each. Each group of 9 is associated with one bidirectional pin. In each group, eight of the AND terms are ORed together, while the ninth is used to establish I/O direction. All outputs are individually programmable via an Ex-OR gate to allow implementation of AND/OR or NAND/NOR logic functions.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

The PLHS18P8B is field-programmable, allowing the user to quickly generate custom pattern using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- 100\% functionally compatible with AmPAL18P8B and all 16L8, 16P8, 16H8, 16L2, 16H2, 14L4, 14H4, 12L6, 12H6, 10L8, 10H8, 16LD8 and 16HD8 PAL type products
- Field-Programmable
- 10 inputs
- 8 bidirectional I/O lines
- 72 AND gates/product terms - configured into eight groups of nine
- Programmable output polarity (3-State output)
- I/O propagation delay: 15ns (max)
- Power dissipation: 500mW (typ)
- TTL compatible
- Security Fuse

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

APPLICATIONS

- 100\% functional replacement for all 20-pin combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing
${ }^{\circledR}$ PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

FPLA LOGIC DIAGRAM

LD02621S

```
NOTES:
1. All unprogrammed or virgin "AND" gate locations are pulled to logic "1"
2. Programmable connections.
```

PLHS18P8B

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP (300mil-wide)	PLHS18P8BN
20-pin Plastic Leaded Chip Carrier	PLHS18P8BA

ABSOLUTE MAXIMUM RATINGS ${ }^{1 *}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
l $_{\text {OUT }}$	Output current	+100	mA
l OUTPRG	Output current (programming)	+170	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}} \end{aligned}$	Low High Clamp	$\begin{gathered} V_{C C}=\text { Min } \\ V_{C C}=M a x \\ V_{C C}=\text { Min, }, I_{\mathbb{N}}=-18 \mathrm{~mA} \end{gathered}$	+2.0	-0.9	$\begin{aligned} & +0.8 \\ & -1.2 \end{aligned}$	V V V
Output voltage						
$V_{\text {OL }}$ V_{OH}	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \end{gathered}$	+2.4	+3.5	+0.50	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{I}} \end{aligned}$	Low High High	$\begin{gathered} V_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}}=+0.40 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=+2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=+5.5 \mathrm{~V} \end{gathered}$		-20	$\begin{array}{r} -100 \\ +25 \\ +1.0 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Output current						
$\begin{aligned} & \mathrm{lozh} \\ & \mathrm{lozL} \\ & \mathrm{IOc} \\ & \hline \end{aligned}$	Output leakage Output leakage Short circuit ${ }^{3}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IL}} & =0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+2.7 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.40 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =+0.5 \mathrm{~V} \end{aligned}$	-30	-60	$\begin{aligned} & +100 \\ & -250 \\ & -90 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {cc }}$ current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$, All inputs $=$ GND		100	155	mA
Capacitance ${ }^{4}$						
C_{IN} Cout	Input I/O	$\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \\ V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \end{gathered}$		6 9		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
$\mathrm{t}_{\text {PD }}$	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12	15	ns
$t_{\text {EA }}$	Output enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12	15	ns
t_{ER}	Output disable	Input \pm	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		12	15	ns

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $T_{P D}$ is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are at " H " polarity.
2. All outputs are enabled.
3. All p-terms are enabled.

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Input to output progagation delay.
ter	Input to output disable (3- State) delay (Output Disable).
$t_{\text {EA }}$	Input to Output Enable delay (Output Enable).

TIMING DIAGRAMS

WAVEFORM	InPUTS	OUTPUTS	WAVEFORM	InPuts	OUTPUTS
	MUST BE STEADY	WILL BE STEADY		DON'T CARE; ANY CHANGE PERMITTED	CHANGING; STATE UNKNOWN
				DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified. Input Pulses

LOGIC PROGRAMMING

PLHS18P8B logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLHS18P8B logic designs can also be generated using the program table entry format detailed on the following pages. This program OUTPUT POLARITY - (B)
 table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I, B)

NOTES:

1. This is the initial state of all link pairs.
2. All unused product terms must be programmed with all pairs of fuses in the INACTIVE state (all fuses on an unused p-term must be programmed).

PROGRAM TABLE

Signetics

PLC20V8 Series Erasable and OTP PAL ${ }^{\circledR}$-Type Device

Signetics Programmable Logic
Product Specification

Application Specific Products

- Serles 24

DESCRIPTION

The PLC20V8 Programmable Array Logic device is a 24 -pin CMOS PLD designed to replace full-power as well as quarter-power and half-power Series 24 PAL ${ }^{\circledR}$ devices. Available in four speed/ power configurations, the generic PLC20V8 device can be configured to emulate 21 different PAL devices in multiple speed/power configurations. The more complex AND-OR logic functions can be easily implemented with the PLC20V8 because of the flexibility inherent to its generic Output Macro Cell architecture.
The PLC20V8 is a two-level logic element comprised of 14 inputs, 72 AND gates and 8 Output Macro Cells (OMC). Each Output Macro Cell can be individually configured as a dedicated input, a dedicated output, a bidirectional I/O or as a registered output with feedback. This generic architecture provides a means of reducing documentation, inventory and manufacturing related costs. Furthermore, the PLC20V8 series devices are designed to accept both TTL and CMOS input levels to facilitate logic integration in almost any system environment.

FUNCTIONAL DIAGRAM

FEATURES

- 100\% functional replacement for Series 24 PAL devices
$-\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
- Low power performance: 50 and 90 mA max
- All inputs and outputs switching at 15 MHz
- Equivalent bipolar performance
- 35 and 45ns t $_{\text {PD }}$
- 28.5 and 22.2MHz $f_{\text {MAX }}$ (async)
- EPROM cell technology
- Erasable
- 100\% testable
- Reconfigurable (quartz window package only)
- TTL and CMOS compatible
- Security fuse
- Available in 300 mil -wide DIP with quartz window, plastic DIP (OTP), or PLCC (OTP)

PIN LABEL DESCRIPTIONS

I	Dedicated input
B	Bidirectional input/output
O	Dedicated output
D	Registered output (D-type flip-flop)

PIN CONFIGURATIONS

PAL DEVICE TO PLC20V8 OUTPUT PIN CONFIGURATION CROSS REFERENCE (DIP Packages Only)

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PLC } \\ & \text { 20V8 } \end{aligned}$	$\begin{aligned} & \text { 20R8 } \\ & \text { 20RP8 } \end{aligned}$	$\begin{aligned} & \text { 20R6 } \\ & \text { 20RP6 } \end{aligned}$	$\begin{aligned} & \text { 20R4 } \\ & \text { 20RP4 } \end{aligned}$	$\begin{aligned} & \text { 20L8 } \\ & 20 \mathrm{HB} \\ & 20 \mathrm{P} 8 \end{aligned}$	$\begin{aligned} & \text { 20L2 } \\ & \text { 20H2 } \\ & 20 \mathrm{P} 2 \end{aligned}$	$\begin{aligned} & 18 \mathrm{~L} 4 \\ & 18 \mathrm{H} 4 \\ & 18 \mathrm{P} 4 \end{aligned}$	16L6 16H6 16P6	$\begin{aligned} & \text { 14L8 } \\ & \text { 14H8 } \\ & \text { 14P8 } \end{aligned}$
1	I0/CLK	CLK	CLK	CLK	1	I	I	1	1
13	$\mathrm{I}_{11} / \overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$	$\overline{\text { OE }}$	$\overline{\mathrm{OE}}$	1	I	1	1	1
14	112	1	1	1	1	1	1	1	1
15	F0	D	B	B	0	1	I	1	0
16	F1	D	D	B	B	I	1	0	0
17	F2	D	D	D	B	1	0	0	0
18	F3	D	D	D	B	0	0	0	0
19	F4	D	D	D	B	0	0	0	0
20	F5	D	D	D	B	1	0	0	0
21	F6	D	D	B	B	1	1	0	0
22	F7	D	B	B	0	1	1	1	0
23	113	I	1	1	1	1	I	I	1

[^5]Erasable and OTP PAL ${ }^{\circledR}$-Type Device

LOGIC DIAGRAM

The Signetics state-of-the-art Floating-Gate CMOS EPROM process yields bipolar equivalent performance at one-quarter to one-half the power consumption. The erasable nature of the EPROM process enables Signetics to functionally test the devices prior to shipment to the customer. Additionally, this allows Signetics to extensively stress test, as well as ensure the threshold voltage of each individual EPROM cell. 100% programming yield is subsequently guaranteed.
Signetics' AMAZE PLD design software supports all aspects of design, simulation and programming. For simple conversion of existing PAL device codes into the PLC20V8 series format, a PAL-to-V8 converter is also available. SimPal, (sim'pal), a stand-alone, single-disk software package translates a PAL device code (from a device or a JEDEC standard fuse map) into an equivalent PLC20V8 series JEDEC format. The SimPal PAL-to-V8 converter, which runs on an IBM PC or compatible, includes the necessary programmer interface software for most commercially available programmers.

THE OUTPUT MACRO CELL (OMC)

The PLC20V8 has 8 individually programmable Output Macro Cells. The 72 AND inputs (or product terms) from the programmable AND array are connected to the 8 OMCs in groups of 9 . Eight of the AND terms are dedicated to logic functions; the ninth is for asynchronous direction control.
Each OMC can be independently programmed via 16 architecture control bits, $\mathrm{AC1}_{\mathrm{n}}$ and $\mathrm{AC} 2_{n}$ (one pair per macro cell). Similarly, each OMC has a programmable output polarity control bit (Xn). By configuring the pair of architecture control bits according to the table, 4 different configurations may be implemented.

CONFIGURATION CELL

A single configuration cell controls the functions of Pins 1 and 13. Refer to Functional Diagram. When the configuration cell is programmed, Pin 1 is a dedicated clock and Pin 13 is dedicated for output enable. When the configuration cell is unprogrammed, Pins 1 and 13 are both dedicated inputs. Note that the output enable for all registered OMCs is common - from Pin 13 only. Output enable control of the bidirectional I/O OMCs is provided from the AND array via the direction product term.

If any one OMC is configured as registered, the configuration cell will be automatically config-

FUNCTION	CONTROL CELL CONFIGURATIONS			COMMENTS
	$A^{\prime} 1_{n}$	$A^{\prime} 2^{n}$	CONFIG. CELL	
Registered mode	Programmed	Programmed	Programmed	Dedicated clock from Pin 1. $\overline{O E}$ Control for all registered OMCs from Pin 13 only.
Bidirectional 1/O mode ${ }^{1}$	Unprogrammed	Unprogrammed	Unprogrammed	Pins 1 and 13 are dedicated inputs. 3State control from AND array only.
Fixed input mode	Unprogrammed	Programmed	Unprogrammed	Pins 1 and 13 are dedicated inputs.
Fixed output mode	Programmed	Unprogrammed	Unprogrammed	Pins 1 and 13 are dedicated inputs. The feedback path (via $F_{\text {MUX }}$) is disabled.

NOTE:

1. This is the virgin state as shipped from the factory.

OUTPUT MACRO CELL (OMC)

ured (via the design software) to ensure that the clock and output enable functions are enabled on Pins 1 and 13, respectively. If none of the OMCs are registered, the configuration cell will be programmed such that Pins 1 and

13 are dedicated inputs. The programming codes are as follow:

Pin $1=\mathrm{CLK}$, Pin $13=\overline{\mathrm{OE}}$	L
Pin 1 and Pin $13=$ Input	H

Erasable and OTP

ORDERING INFORMATION

DESCRIPTION			ORDER CODE
Propagation Delay (Max)		Icc (Active at 15 MHz)	
$t_{\text {PD }}=35 \mathrm{~ns}$	$\mathrm{f}_{\mathrm{MAX}}=18.1 \mathrm{MHz}$(Synchronous)	50 mA	PLC20V8Q35
		90 mA	PLC20V8H35
$t_{\text {PD }}=45 \mathrm{~ns}$	$f_{\text {MAX }}=13.3 \mathrm{MHz}$(Synchronous)	50 mA	PLC20V8Q45
		90 mA	PLC20V8H45
Package Type			PACKAGE ${ }^{1}$
24-pin Plastic DIP (one time programmable; OTP)			N
24-pin Plastic Leaded Chip Carrier (one time programmable; OTP)			A
24-pin Ceramic DIP with quartz window (reprogrammable)			FA

NOTE:

1. The package order code directly follows the device order code, i.e., PLC20V8Q35N for Plastic DIP (OTP).

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}$	Input currents	-10 to +10	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents	+24	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature rnage	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLC20V8 device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

AC TEST CONDITIONS

VOLTAGE WAVEFORMS

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION		LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$							
V_{IL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		-0.3		0.8	V
V_{IH}	High	$\mathrm{V}_{\text {CC }}=$ Max		2.0		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage ${ }^{2}$							
$\mathrm{V}_{\text {OL }}$	Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ \hline \end{gathered}$				0.5	V
V_{OH}	High	$\mathrm{IOH}=-3.2 \mathrm{~mA}$		2.4			V
Input current							
I_{1}	Low ${ }^{6}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$				10	$\mu \mathrm{A}$
Output current							
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} V_{\text {OUT }} & =V_{\text {CC }} \\ V_{\text {OUT }} & =G N D \end{aligned}$				$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
los	Short-circuit ${ }^{3,7}$	$\mathrm{V}_{\text {OUT }}=$ GND				-130	mA
$I_{\text {cc }}$	$\mathrm{V}_{\text {CC }}$ supply current (Active) ${ }^{4}$	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \mathrm{f}=15 \mathrm{MHz}^{5}$	Quarter power (Q)			50	mA
			Half power (H)			90	mA
Capacitance							
Cl_{1}	Input	$\begin{gathered} V_{C C}= \\ V_{I N}=2 . \end{gathered}$			12		pF
C_{8}	I/O	$\mathrm{V}_{\mathrm{B}}=2.0$			15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with TTL input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$. Measured with all inputs and outputs switching.
5. Refer to Figure 1, Δ_{CC} vs Frequency (worst case). (Referenced from 15 MHz)
6. IIL for Pin 1 ($\left.I_{0} / \mathrm{CLK}\right)$ is $\pm 10 \mu \mathrm{~A}$ with $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$.
7. Refer to Figure 2 for $\Delta t_{P D}$ vs output capacitance loading.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V} \quad \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION ${ }^{1}$		$\begin{aligned} & \text { PLC20V8Q-35 } \\ & \text { PLC20V8H-35 } \end{aligned}$		$\begin{aligned} & \text { PLC20V8Q-45 } \\ & \text { PLC20V8H-45 } \end{aligned}$		UNIT
				$\mathrm{R}_{1}(\Omega)$	$C_{L}(\mathrm{pF})$	Min	Max	Min	Max	
Pulse width										
${ }^{\text {tCKP }}$	Clock period (Minimum $\left.\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}\right)$	CLK +	CLK +			55		75		ns
$\mathrm{t}_{\text {CKH }}$	Clock width High	CLK -	CLK +			20		25		ns
tckL	Clock width Low	CLK +	CLK -			20		25		ns
Hold time										
t_{H}	Input or feedback data hold time	Input \pm	CLK +			0		0		ns
Setup time										
$\mathrm{t}_{1} \mathrm{~S}$	Input or feedback data setup time	CLK +	$1 \pm, F \pm$			30		40		ns
Propagation delay										
$t_{\text {PD }}$	Delay from input to active output	$F \pm$	$1 \pm, F \pm$	200	50		35		45	ns
${ }^{\text {teko }}$	Clock High to output valid access Time	$\mathrm{F} \pm$	CLK +	200	50		25		35	ns
$t_{O E 1}{ }^{3}$	Product term enable to active output	$F \pm$	$\mathrm{I} \pm, \mathrm{F} \pm$	Active-High $\mathrm{R}=1.5 \mathrm{k}$ Active-Low $R=550$	50		35		45	ns
$t_{O D 1}{ }^{2}$	Product term disable to outputs off	$F \pm$	$\mathrm{I} \pm, \mathrm{F} \pm$	From $\mathrm{V}_{\mathrm{OH}} \mathrm{R}=\infty$ From $V_{O L} R=200$	5		35		45	ns
$\mathrm{tOD2}^{2}$	Pin 13 output disable High to outputs off	$\mathrm{F} \pm$	OE -	From $\mathrm{V}_{\mathrm{OH}} \mathrm{R}=\infty$ From $V_{\text {OL }} R=200$	5		25		30	ns
$\mathrm{tOE} 2^{3}$	Pin 13 output enable to active output	$\mathrm{F} \pm$	OE +	Active-High $R=1.5 \mathrm{k}$ Active-Low $R=550$	50		25		30	ns
tPPR	Power-up reset	F+	$\mathrm{V}_{\mathrm{CC}}+$				35		45	ns
Frequency of operation ($t_{\text {IS }}+t_{\text {cKo }}$)										
$f_{\text {MAX }}$	Maximum frequency	Synch. Asynch.		200	50		$\begin{aligned} & 18.1 \\ & 28.5 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 22.2 \end{aligned}$	MHz

NOTES:

1. Refer also to AC Test Conditions. (Test Load Circuit)
2. 3-State levels are measured $\pm 0.5 \mathrm{~V}$ from the active steady-state level.
3. Resistor values of 1.5 k and 550Ω provide 3 -State levels of 1.0 V and 2.0 V , respectively. Output timing measurements are to 1.5 V level.

Erasable and OTP PAL ${ }^{\circledR}$-Type Device

PLC20V8 Series

POWER-UP RESET

In order to facilitate state machine design and testing, a power-up reset function has been incorporated in the PLC20V8. All internal registers will reset to active-Low (logical " 0 ") after a specified period of time (tppR). Therefore, any OMC that has been configured as a
registered output will always produce an ac-tive-High on the associated output pin because of the inverted output buffer. The internal feedback ($\overline{\mathrm{Q}}$) of a registered OMC will also be set High. The programmed polarity of OMC will not affect the active-High output condition during a system power-up condition.

The following conditions must be considered when the asynchronous power-up reset occurs. $V_{\text {CC }}$ rise to $4.5 \mathrm{~V}(90 \%)$ must be monotonic. The clock input must stabilize to a valid TTL level prior to the V_{CC} rise to 60% (3.0 V). All input setup and hold times ($t_{I S}$ and $t_{i H}$) must be adhered to prior to clocking the device.

TIMING DIAGRAMS

NOTE:
Dlagram presupposes that the outputs (F) are enabled. The reset occurs regardiess of the output conditon (enabled or disabled).

REGISTER PRELOAD FUNCTION (DIAGNOSTIC MODE ONLY)

In order to facilitate the testing of state machine/controller designs, a diagnostic mode register preload feature has been incorporated into the PLC20V8 series device. This feature enables the user to load the registers
with predetermined states while a super voltage is applied to Pins 13 and $8\left(l_{11} / \overline{\mathrm{OE}}\right.$ and 17). (See diagram for timing and sequence.) To read the data out, Pins 13 and 8 must be returned to normal TTL levels. The outputs, F_{0-7}, must be enabled in order to read data out. The Q outputs of the registers will reflect
data in as input via F_{0-7} during preload. Subsequently, the register \bar{Q} output via the feedback path will reflect the complement of the data in as input via F_{0-7}.

Refer to the voltage waveform for timing and voltage references.

REGISTER PRELOAD (DIAGNOSTIC MODE)

LOGIC PROGRAMMING

The EPLD can be programmed by means of Logic Programming equipment.

With Logic programming, the AND/Ex-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table. Similarly, various OMC configurations are implemented by programming the Architecture Control bits AC1 and AC2, as shown below. Note that the configuration cell is automatically programmed based on the OMC configuration.

In this table, the logic state of variables I, P, and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - (O, B)

"AND" ARRAY - (I, B)

LD08940S		LD08950S					
STATE	CODE	STATE	CODE	STATE	CODE	STATE	CODE
DON'T CARE	-	INACTIVE	0	I, B	H	İ, B	L

Erasable and OTP PAL ${ }^{\circledR}$-Type Device

ARCHITECTURE CONTROL - AC1 and AC2

NOTE:
A factory shipped unprogrammed device is configured such that:

1. All cells are in a conductive state.
2. All AND gates are pulled to a logic " 0 " (Low).
3. Output polarity is non-inverting.
4. Pins 1 and 13 are configured as inputs 0 and 11. The clock and $\bar{O} E$ functions are disabled.
5. All Output Macro Cells (OMCs) are configured as bidirectional I/O, with the outputs disabled via the direction term.
6. This configuration cannot be used if any OMCs are configured as registered (Code = D). The configuration cell will be automatically configured to ensure that the clock and output enable functions are enabled on Pins 1 and 13 , respectively, if any one OMC is programmed as registered.

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)

The erasure characteristics of the PLC20V8 Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\mathcal{A}). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 \AA range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC20V8 in approximately three years, while
it would take approximately one week to cause erasure when exposed to direct sunlight. If the PLC20V8 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.
The recommended erasure procedure for the PLC20V8 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms ((\hat{A}). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure
time with this dosage is approximately 30 to 35 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOS EPLD can be exposed to without damage is $7258 W s e c / \mathrm{cm}^{2}$ (1 week (a) $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.

The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

Erasable and OTP
 PAL ${ }^{\circledR}$-Type Device

PROGRAM TABLE

Signetics

Application Specific Products

- Series 24

FEATURES

- Ultra high-speed:
$-\mathrm{t}_{\mathrm{PD}}=10 \mathrm{~ns}$
$-\mathrm{f}_{\mathrm{MAX}}=55.5 \mathrm{MHz}$ (with feedback)
$-t_{I S}=10 \mathrm{~ns}$ (worst case)
- tcko $=8 \mathrm{~ns}$ (worst case)
- $\mathbf{1 0 0 \%}$ functionally and pin-for-pin compatible with industry standard 24-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 24 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

PLUS20R8D Series PAL ${ }^{\circledR}$-Type Devices

Signetics Programmable Logic Preliminary Specification

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS	$t_{\text {PD }}$	Icc	$f_{\text {max }}$ WITHOUT FEEDBACK	$\begin{gathered} f_{\text {MAX }} \\ \text { WITH } \\ \text { FEEDBACK } \end{gathered}$
PLUS20L8D	14	8(6 I/O)	0	10 ns	210 mA		
PLUS20R8D	12	0	8		210 mA	62.5 MHz	55.5MHz
PLUS20R6D	12	$21 / 0$	6	10ns	210 mA	62.5 MHz	55.5 MHz
PLUS20R4D	12	$41 / 0$	4	10ns	210 mA	62.5 MHz	55.5 MHz

Section 4

Programmable Logic Array Device Data Sheets

Series 20		
PLS151	Field-Programmable Gate Array ($18 \times 15 \times 12$); 25 ns .	4-3
PLC153	Erasable and OTP Programmable Logic Array ($18 \times 32 \times 10$);	
	45/60ns.	4-9
PLS153	Field-Programmable Logic Array ($18 \times 42 \times 10$); 40 ns	4-16
PLS153A	Field-Programmable Logic Array ($18 \times 42 \times 10$); 30ns	4-22
PLHS153	Field-Programmable Logic Array ($18 \times 42 \times 10$); 20 ns	4-28
PLUS153B	Field-Programmable Logic Array ($18 \times 42 \times 10$); 15 ns	4-34
PLUS153D	Field-Programmable Logic Array ($18 \times 42 \times 10$); 12ns	4-40
Series 24		
PLS161	Field-Programmable Logic Array ($12 \times 48 \times 8$); 50 ns .	4-46
PLS162	Field-Programmable Address Decoder (16×5); 30ns	4-52
PLS163	Field-Programmable Address Decoder (12×9); 30ns	4-58
PLS173	Field-Programmable Logic Array ($22 \times 42 \times 10$); 30ns	4-64
PLUS173B	Field-Programmable Logic Array ($22 \times 42 \times 10$); 15 ns	4-70
PLUS173D	Field-Programmable Logic Array ($22 \times 42 \times 10$); 12ns	4-76
PLC473-60	Erasable and OTP Programmable Logic Array ($20 \times 24 \times 11$); 60ns .	4-82
PLHS473	Field-Programmable Logic Array ($20 \times 24 \times 11$); $22 \mathrm{~ns}$.	4-89
Series 28		
PLS100/101	Programmable Logic Array ($16 \times 48 \times 8$); 50 ns .	4-95
PLS103	Programmable Gate Array ($16 \times 9 \times 9$); 35 ns	4-102

Signetics

Application Specific Products

- Series 20

DESCRIPTION

The PLS151 is a single level logic element, consisting of 15 AND gates with fusible link connections for programming I/O polarity, I/O direction and output enable control.

All gates are linked to 6 inputs (I) and 12 bidirectional I/O lines (B). These yield variable I/O gate configurations via 3 direction control gates (D), ranging from 18 inputs to 12 outputs.

On chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}}$) input polarities to each AND gate. The polarity of all gate outputs is individually programmable through a set of EX-OR gates for implementing AND/NAND logic functions. Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its inputs and outputs (DeMorgan's Theorem).
The PLS151 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ni-Cr link)
- 6 inputs
- 15 product terms:
- 12 logic terms
- 3 control terms
- 12 bidirectional I/O lines
- Programmable output polarity
- Active-High or -Low outputs
- Programmable output enable
- Power dissipation: 575mW (typ.)
- I/O propagation delay: 25ns (max.)
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- TTL compatible
- 3-State outputs

APPLICATIONS

- Random gating functions
- Address decoding
- Code detectors
- Memory mapped I/O
- Fault monitors
- I/O port decoders

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

LOGIC FUNCTION

```
TYPICAL OUTPUT FUNCTIONS:
    ACTIVE-HIQH
        X=A\cdotE\cdotC}\cdot
    ACTIVE-LOW
        X=
```


NOTES:

1. For each of the 12 outputs, either function X (Active-High) or X (Active-Low) is available, but not both. The desired output polarity is programmed via the EX-OR gates
2. X, A, B, C, etc. are user defined connections to fixed inputs (I) and bidirectional pins (B).

Field-Programmable Gate
PLS151
Array ($18 \times 15 \times 12$)

FPGA LOGIC DIAGRAM

NOTES:

1. All gato inputs with a blown link float to a logic " 1 ".
2. Programmable connection.

Field-Programmable Gate
Array $(18 \times 15 \times 12)$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	PLS151N
20 -pin Plastic Leaded Chip Carrier	PLS151A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS 1	
		UNIT		
			Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{I}	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

nоте:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2.3}$	$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=\operatorname{Max} \\ V_{C C}=\text { Min, } \mathbb{I I N}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	Low High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{OL}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current ${ }^{6}$						
$\begin{aligned} & I_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{HH}} \end{aligned}$	Low High	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			-100 40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo(off) los	Hi-Z state Short circuit ${ }^{3,4}$	$\begin{gathered} V_{\text {CC }}=\mathrm{Max} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ mA
lc	$\mathrm{V}_{\text {CC }}$ supply current	$V_{C C}=$ Max		115	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^6]Field-Programmable Gate
Array ($18 \times 15 \times 12$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
tPD	Propagation delay	Output \pm	Input \pm	$C_{L}=30 \mathrm{pF}$		16	25	ns
toe	Output enable	Output -	Input \pm			17	25	ns
tod	Output disable ${ }^{5}$	Ouput +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		17	25	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one pin at a time.
4. Duration of short circuit should not exceed 1 second.
5. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
6. $I_{I L}$ and $I_{I H}$ limits are for dedicated inputs only ($I_{O}-I_{5}$).

TEST LOAD CIRCUITS

TIMING DIAGRAM

VOLTAGE WAVEFORMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
$t_{\text {OD }}$	Delay between input change and when output is off (Hi-Z or High).
$t_{\text {OE }}$	Delay between input change and when output reflects specified output level.

Field-Programmable Gate

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at ' H ' polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.
4. All B terms are I/O unless otherwise programmed.

I/O DIRECTION - (B)

OUTPUT POLARITY - (B)
 on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ($\mathrm{I}, \mathrm{B}, \mathrm{O}, \mathrm{P}$, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
In a virgin device all $\mathrm{Ni}-\mathrm{Cr}$ links are intact. PLS151 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS151 logic designs can also be generated using the program table entry format detailed

LOGIC PROGRAMMING

"AND' ARRAY - (I, B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the True and Complement of an input (either I or B) are left intact.

Field-Programmable Gate
Array ($18 \times 15 \times 12$)

FPGA PROGRAM TABLE

Signetics

Application Specific Products
 - Series 20

DESCRIPTION

The PLC153 CMOS devices are twolevel logic Erasable and OTP (One Time Programmable) Programmable Logic Arrays. The PLC153 devices are low power versions of the Signetics PLS153/153A and PLHS153 Bipolar Programmable Logic devices. EPROM cells provide the connections for the programmable AND array, the programmable OR array and the Ex-OR output polarity gates.
On-chip buffers couple either $\operatorname{True}(I, B)$ or Complement (\bar{I}, \bar{B}) inputs to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLC153 is field-programmable, using Floating-Gate EPROM cells. This enables the generation of custom logic patterns using standard programming equipment.

PLC153
Erasable and OTP
Programmable Logic Array $(18 \times 42 \times 10)$

Signetics Programmable Logic
Product Specification

FEATURES

- Low power, 100% functional replacement for PLS153 Series PLAs
- EPROM cell technology
- Erasable (quartz window package only)
- 100\% Testable
- Reconfigurable
- 8 dedicated inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 45 and 60ns (max.)
- Input loading: - $\mathbf{1 0 \mu \mathrm { A }}$ (max)
- Power dissipation: 60mA at 15 MHz (max)
- 3-State outputs
- CMOS and TTL compatible

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

$N=$ Plastic
FA = Ceramic with Quartz Window

CDOA690S
A = Plastic Leaded Chip Carrier

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
$20-$ Pin Ceramic DIP with Window (300mil-wide)	PLC153-45FA
	PLC153-60FA
$20-$ Pin Plastic DIP (300mil-wide)	PLC153-45N
	PLC153-60N
	PLC153-45A

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$70^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	$\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30 to +30	mA
$\mathrm{l}_{\text {OUT }}$	Output currents	+100	mA
$\mathrm{~T}_{\text {A }}$	Operating temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION		LImits			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$							
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	Low High			$\begin{gathered} -0.3 \\ 2.0 \end{gathered}$		$\begin{gathered} 0.8 \\ \mathrm{v}_{\mathrm{CC}}+0.3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Output voltage ${ }^{2}$							
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low High			2.4		0.45	V
Input current ${ }^{10}$							
$\begin{aligned} & \mathrm{IIL} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High					$\begin{gathered} -10 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current							
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{7}$ Short circuit ${ }^{3}$, 6	$\mathrm{V}_{\text {OU }}$ $\mathrm{V}_{\text {Ou }}$ $\mathrm{V}_{\text {OU }}$		-15		$\begin{array}{r} 10 \\ -10 \\ -70 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \end{aligned}$
Icc	V_{CC} supply current (Active) ${ }^{4,5,9}$	No load $f=15 \mathrm{MHz}$	TTL inputs		48	60	mA
Capacitance							
$\begin{aligned} & \mathrm{C}_{\mathbb{N}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O (bidirectional)				$\begin{gathered} 6 \\ 12 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^7]AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	PLC153-45		PLC153-60		UNIT
					Min	Max	Min	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		45		60	ns
$\mathrm{t}_{\text {OE }}$	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		45		60	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		45		60	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. TTL inputs: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
5. Measured with all inputs and outputs switching.
6. Duration of short circuit should not exceed 1 second.
7. Leakage values are a combination of input and output leakage.
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Refer to Figure 1 for worst case $I_{C C}$ vs frequency specifications.
10. Pin $1\left(\mathrm{~V}_{\mathrm{pp}}\right)$ has an input leakage current of $100 \mu \mathrm{~A}$.

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {PD }}$	Propagation delay between input and output.
t_{OD}	Delay between input change and when output is off (Hi-Z or High).
t_{OE}	Delay between input change and when output reflects specified output level.

TIMING DIAGRAM

NOTES:

1. Tested with all outputs switching
2. Tested with TTL inputs.

Figure 1. (Worst-case) Icc vs Frequency

VOLTAGE WAVEFORMS

MEASUREMENTS

All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.
Input Pulses

TEST LOAD CIRCUITS

LOGIC PROGRAMMING

The EPLA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/OR/ExOR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.

In this table, the logic state of variables I, P, and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - (O, B)

"AND' ARRAY - (I, B)

"OR" ARRAY - (O, B)

NOTES:

1. This is the initial unprogrammed state of all link pairs.
2. Any Product Term $\left(P_{n}\right)$ will always be inactive if one of its input pairs (I, B) is left unprogrammed as shown.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are inactive.
3. All P_{n} terms are active in the OR array.

Programmable Logic Array ($18 \times 42 \times 10$)

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)

The erasure characteristics of the PLC153 Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 \AA range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC153 in approximately three years, while it
would take approximately one week to cause erasure when exposed to direct sunlight. If the PLC153 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.
The recommended erasure procedure for the PLC153 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to

35 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOS EPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week (a) $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS to high intensity UV light for longer periods may cause permanent damage.

The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

Programmable Logic Array ($18 \times 42 \times 10$)
fPLA PROGRAM TABLE

Signetics

Application Specific Products

- Series 20

DESCRIPTION

The PLS153 is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLS153 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

PLS153

Field-Programmable Logic Array ($18 \times 42 \times 10$)

Signetics Programmable Logic Product Specification

FEATURES

- Field-Programmable (Ni-Cr links)
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 40ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 650mW (typ.)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

Field-Programmable Logic Array ($18 \times 42 \times 10$)
PLS153

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	PLS153N

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\text {A }}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLS153 device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{II}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2,3}$	$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=M \operatorname{Min}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low }^{2,4} 4 \\ & \text { High }^{2,5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	v
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{ILL}_{1} \\ & \mathrm{I}_{\mathrm{IH}} \\ & \hline \end{aligned}$	Low High	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{aligned} V_{\text {CC }} & =M a x \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ mA
Icc	$V_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=$ Max		130	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{1 \mathrm{~N}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input 1/0	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{1 N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
tpD	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	35	ns
tod	Output disable ${ }^{8}$	Output +	input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		25	35	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with +10 V applied to I_{7}.
5. Measured with +10 V applied to I_{0-7}. Output sink current is supplied through a resistor to V_{CC}.
6. Duration of short circuit should not exceed 1 second.
7. I_{CC} is measured with $\mathrm{I}_{0}, \mathrm{I}_{1}$ at $0 \mathrm{~V}, \mathrm{I}_{2}-\mathrm{I}_{7}$ and B_{0-9} at 4.5 V .
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{I L}$ and $I_{I H}$ limits are for dedicated inputs only $\left(I_{0}-I_{7}\right)$.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
$t_{\text {OD }}$	Delay between input change and when output is off (Hi-Z or High).
toE	Delay between input change and when output reflects specified output level.

LOGIC PROGRAMMING

PLS153 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS153 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND' ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the True and Complement of an input (either I or B) are left intact.

OUTPUT POLARITY - (B)

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Signetics

Application Specific Products - Series 20

DESCRIPTION

The PLS153A is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLS153A is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed int the Ordering Information Table.

PLS153A

Field-Programmable Logic Array ($18 \times 42 \times 10$)

Signetics Programmable Logic Product Specification

FEATURES

- Field-Programmable (Ni-Cr links)
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 30ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 650mW (typ.)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

LOGIC FUNCTION

TYPICAL PRODUCT TERM:
$P n=A \cdot B \cdot C \cdot D \cdot \ldots$
TYPICAL LOCIC FUNCTION:
AT OUTPUT POLARITY $=\mathrm{H}$ $\mathrm{Z}=\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2 \ldots$

AT OUTPUT POLARITY $=\mathbf{L}$
$\mathrm{Z}=\mathrm{PO}+\mathrm{PI}+\mathrm{P}_{2}+\ldots$
$Z=P 0+P 1+P 2+$.
$Z=P 0 \cdot P 1 \cdot P_{2} \ldots$.
NOTES:

1. For each of the 10 outputs, either function \mathbf{Z} (Active-High) or \mathbb{Z} (Active-Low) is available, but not both. The desired output polarity is programmed via the EX-OR gates.
2. Z, A, B, C, etc. are user defined connections to fixed inputs (I) and bidirectional pins (B).

Field-Programmable Logic Array $(18 \times 42 \times 10)$ PLS153A

FPLA LOGIC DIAGRAM

Field-Programmable Logic Array ($18 \times 42 \times 10$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	PLS153AN
20-pin Plastic Leaded Chip Carrier	PLS153AA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathrm{OUT}}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30	+30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0	+75	${ }^{\circ}{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{\mathbf{2}}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2,3}$	$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=\text { Min, } \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Output voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low }^{2,4} 4 \\ & \text { High }^{2,5} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{OL}=15 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & v \\ & v \end{aligned}$
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \hline \end{aligned}$	Low High	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \\ \hline \end{gathered}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$
Output current						
lo(ofF) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3}$, 5, 6	$\begin{aligned} V_{\mathrm{CC}} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
ICC	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		130	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{N}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { I/O } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^8]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
toe	Output enable	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tod	Output disable ${ }^{8}$	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with +10 V applied to I_{7}.
5. Measured with +10 V applied to I_{0-7}. Output sink current is supplied through a resistor to V_{CC}
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with $\mathrm{I}_{0,1}$ at OV and I_{2-7} and B_{0-9} at 4.5 V .
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{I H}$ and $I_{I L}$ limits are for dedicated inputs only ($I_{0}-I_{9}$).

TEST LOAD CIRCUITS

TIMING DIAGRAM

VOLTAGE WAVEFORMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
t PD $^{\text {tOD }}$	Propagation delay between input and output.
tOE	Delay between input change and when output is off (Hi-Z or High).
	Delay between input change and when output reflects specified output level.

LOGIC PROGRAMMING

PLS153A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS153A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ($1, B, O, P$, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND' ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the True and Complement of an input (either I or B) are left intact.

OUTPUT POLARITY - (B)

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at ' H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

CAUTION: PLS153A TEST COLUMNS

The PLS153A incorporates two columns not shown in the logic block diagram. These columns are used for in-house testing of the device in the unprogrammed state. These columns must be disabled prior to using the PLS153A in your application. If you are using a Signetics-approved programmer the disabling is accomplished during the device programming sequence. If these columns are not disabled, abnormal operation is possible.

Furthermore, because of these test columns, the PLS153A cannot be programmed using the programmer algorithm for the PLS153.

Field-Programmable Logic Array (18×42×10)

FPLA PROGRAM TABLE

Signetics

Application Specific Products

- Series 20

DESCRIPTION

The PLHS153 is a high-speed version of the PLS153 and PLS153A FPLAs.
The PLHS153 is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement (\bar{I}, \bar{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections. Current is avalanched across individual

PLHS153

Field-Programmable Logic
 Array ($18 \times 42 \times 10$)

Signetics Programmable Logic
Product Specification
diode pairs during fusing, which essentia!!y short circuits the EB diode and provides the connection for the associated product term.

FEATURES

- Field-Programmable
- Functionally identical to PLS153/ 153A
- 8 inputs
- 10 bidirectional I/O lines
- 42 AND gates
- 10 OR gates
- Programmable output polarity
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 20ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 650mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

FUNCTIONAL DIAGRAM

Field-Programmable Logic Array ($18 \times 42 \times 10$)

FPLA LOGIC DIAGRAM

Field-Programmable Logic Array ($18 \times 42 \times 10$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20 -pin Plastic DIP 300mil-wide	PLHS153N
20-pin Plastic Leaded Chip Carrier	PLHS153A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30 to +30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLHS153 device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=M_{i n}, \mathrm{I}_{\mathbb{I}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Output voltage ${ }^{2}$						
VOL V_{OH}	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{O}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Low High	$\begin{aligned} V_{\mathrm{CC}} & =M a x \\ \mathrm{~V}_{\text {IN }} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{aligned} V_{\text {CC }} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0.5 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
$I_{\text {cc }}$	$V_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\text {CC }}=$ Max		130	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{1 \mathrm{~N}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		pF pF

[^9]Field-Programmable Logic Array ($18 \times 42 \times 10$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		14	20	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		16	20	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		14	20	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with +10 V applied to I_{5}.
5. Output sink current is supplied through a resistor to V_{cc}.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with all pins $=$ open or 4.5 V .
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. I_{IL} and I_{IH} limits are for dedicated inputs only $\left(I_{0}-1_{7}\right)$.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUITS

TIMING DIAGRAM

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
toD	Delay between input change and when output is off (Hi-Z or High).
toE	Delay between input change and when output reflects specified output level.

Field-Programmable Logic Array ($18 \times 42 \times 10$)

LOGIC PROGRAMMING

PLHS153 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLHS153 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

'AND' ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links. All unused P_{n} and D_{n} terms must be programmed as INACTIVE.
2. Any gate P_{n} will be unconditionally inhibited if both the True and Complement of an input (either I or B) are programmed for a connection.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " L "' polarity.
2. All P_{n} terms are enabled in the AND array.
3. All P_{n} terms are inactive in the OR array.

Field-Programmable Logic Array ($18 \times 42 \times 10$)
PLHS153

FPLA PROGRAM TABLE

Application Specific Products

 - Series 20
DESCRIPTION

The PLUS153B is a 15 ns version of the Signetics PLS153 FPLA architecture. The Signetics state-of-the-art Oxide isolated Bipolar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.
The PLUS153B is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On-chip T/C buffers couple either True (I, B) or Complement (\bar{I}, \bar{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLUS153B is field programmable, enabling the user to quickly generate

PLUS153B

Field-Programmable Logic Array ($18 \times 42 \times 10$)

Signetics Programmable Logic

 Product Specificationcustom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pin-for-pin compatible with, the PLS153/153A, PLHS153, and the PLUS153D
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity - active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 15ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

Field-Programmable Logic Array ($18 \times 42 \times 10$)

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	PLUS153BN
20-pin Plastic Leaded Chip Carrier	PLUS153BA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
V_{CC}	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$V_{\text {DC }}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
IN	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLUS153B device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp		2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	V V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low }^{4} \\ & \mathrm{High}^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} & V_{C C}=M a x \\ & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\mu \mathrm{A}$
Output current						
lo(OFF) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{aligned} V_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	200	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^10]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$\mathrm{t}_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		11	15	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{2}=0 \mathrm{~V}$, inputs $I_{3}-I_{5}=4.5 \mathrm{~V}$, inputs $I_{7}=4.5 \mathrm{~V}$ and $\mathrm{I}_{6}=10 \mathrm{~V}$. For outputs $\mathrm{B}_{0}-\mathrm{B}_{4}$ and for outputs $\mathrm{B}_{5}-\mathrm{B}_{9}$ apply the same conditions, except $\mathrm{I}_{7}=\mathrm{OV}$.
5. Same conditions as Note 5 , except $\mathrm{I}_{7}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $\mathrm{I} C \mathrm{C}$ is measured with inputs $\mathrm{I}_{0}-\mathrm{I}_{7}$ and $\mathrm{B}_{0}-\mathrm{B}_{9}=0 \mathrm{~V}$.
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{I L}$ and $I_{I H}$ limits are for dedicated inputs only $\left(I_{0}-I_{7}\right)$.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level
of inputs and outputs, unless otherwise specified.
Input Pulses

TEST LOAD CIRCUITS

TIMING DEFINITIONS

SYMBOL	PARAMETER
t PD $^{\text {tOD }}$	Propagation delay between input and output.
toe	Delay between input change and when output is off (Hi-Z or High).
	Delay between input change and when output reflects specified output level.

TIMING DIAGRAM

LOGIC PROGRAMMING

PLUS153B logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLUS153B logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

AND ARRAY - (I, B)

OUTPUT POLARITY - (B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the true and complement of an input (either I or B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at ' H ' polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Field-Programmable Logic Array ($18 \times 42 \times 10$)

FPLA PROGRAM TABLE

Signetics

Application Specific Products

- Series 20

DESCRIPTION

The PLUS153D is a 12 ns version of the Signetics PLS153 FPLA architecture. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.
The PLUS153D is a two-level logic element, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On-chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{l}}, \bar{B}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLUS153D is field programmable, enabling the user to quickly generate

PLUS153D

Field-Programmable Logic Array $(18 \times 42 \times 10)$

Signetics Programmable Logic Product Specification

custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pin-for-pin compatible with, the PLS153/153A, PLHS153 and PLUS153B
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity - active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 12ns (max.)
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

FUNCTIONAL DIAGRAM

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-pin Plastic DIP 300mil-wide	PLUS153DN
20-pin Plastic Leaded Chip Carrier	PLUS153DA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
	UNIT			
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{gathered} V_{C C}=M i n \\ V_{C C}=M a x \\ V_{C C}=M_{\text {in }}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Output voltage ${ }^{2}$						
VoL V_{OH}	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current ${ }^{11}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,}$ 5, 6	$\begin{aligned} V_{\mathrm{CC}} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		80 -140 -70	$\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	200	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^11]Field-Programmable Logic Array ($18 \times 42 \times 10$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LImits			UNIT
					Min	Typ ${ }^{1}$	Max	
tPD	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	12	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	12	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		10	12	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{2}=0 \mathrm{~V}$, inputs $\mathrm{I}_{3}-\mathrm{I}_{5}=4.5 \mathrm{~V}$, inputs $\mathrm{I}_{7}=4.5 \mathrm{~V}$ and $\mathrm{I}_{6}=10 \mathrm{~V}$. For outputs $\mathrm{B}_{0}-\mathrm{B}_{4}$ and for outputs $\mathrm{B}_{5}-\mathrm{B}_{9}$ apply the same conditions, except $\mathrm{I}_{7}=0 \mathrm{~V}$.
5. Same conditions as Note 5 , except $\mathrm{I}_{7}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. ICC is measured with inputs $\mathrm{I}_{0}-\mathrm{I}_{7}$ and $\mathrm{B}_{0}-\mathrm{B}_{9}=0 \mathrm{~V}$.
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. I_{L} and $I_{I_{H}}$ limits are for dedicated inputs only $\left(I_{0}-I_{7}\right)$.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUITS

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Propagation delay between input and output.
tOD	Delay between input change and when output is off (Hi-Z or High).
toE	Delay between input change and when output reflects specified output level.

TIMING DIAGRAM

LOGIC PROGRAMMING

PLUS153D logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLUS153D logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

AND ARRAY - (I, B)

OUTPUT POLARITY - (B)

				Lsot9eos
STATE ${ }^{\text {a }}$ (CODE	STATE ${ }^{\text {a }}$ (CODE	STATE ${ }^{\text {S }}$ CODE	STATE	CODE
INACTIVE ${ }^{1,2}$ 2 0	\mathbf{I}, B H	İ, $\overline{\mathbf{B}}$ L	DON'T CARE	-

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the true and complement of an input (either I or B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at ' H ' polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Field-Programmable Logic Array $(18 \times 42 \times 10) \quad$ PLUS153D

FPLA PROGRAM TABLE

Signetics

Application Specific Products

 - Series 24
DESCRIPTION

The PLS161 is a bipolar, Field-Programmable Logic Array (FPLA). The device utilizes the standard AND/OR/Invert architecture to directly implement custom sum of product logic equations.

This device consists of 12 dedicated inputs and 8 dedicated outputs. Each output is capable of being actively controlled by any or all of the 48 product terms. The True, Complement, or Don't Care condition of each of the 12 inputs ANDed together comprise one P-term. All 48 P-terms are selectively ORed to each output. The user must then only select which P-terms will activate an output by disconnecting terms which do not affect the output. In addition each output can be fused as active-High (H) or active-Low (L).
The PLS161 is fully TTL compatible, and includes a chip enable input for output inhibit controi and expansion of input variables.

Order codes are listed in the Ordering Information Table.

PLS161

Field-Programmable Logic Array ($12 \times 48 \times 8$)

Signetics Programmable Logic Product Specification

FEATURES

- Field-Programmable (Ni-Cr Link)
- Input variables: 12
- Output functions: 8
- Product terms: 48
- I/O propagation delay: 50ns (max.)
- Power dissipation: 600mW (typ.)
- input loading: $-100 \mu \mathrm{~A}$ (max.)
- Chip Enable input
- Output disable function
- Separate I/O architecture
- 3-State outputs

APPLICATIONS

- CRT display systems
- Random logic
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

N Package	
$\mathrm{FE}^{\dagger}+\square$	$2{ }^{24} \mathrm{vcc}$
15	$23{ }^{16}$
45	2217
134	2118
125	2019
4.6	(19) 19
107	1811
$\mathrm{F}_{7} 8$	17] $\overline{C E}$
$\mathrm{F}_{6} 9$	$16 F_{0}$
F5 10	$15 \mathrm{~F}{ }_{1}$
$\mathrm{F}_{4} 11$	14 F 2
GND 12	[13) F_{3}
TOP VIEW	
CD03332S + Fuse Enable Pin: It is recommended that this pin either be left open or tied to ground during normal operation.	

LOGIC FUNCTION

TYPICAL PRODUCT TERM
$\mathrm{P}_{0}=I_{0} \cdot I_{1} \cdot I_{2} \cdot I_{5} \cdot I_{11}$
TYPICAL OUTPUT FUNCTIONS: (a) $\overline{C E}=0$:
$\mathrm{F}_{0}=\left(\mathrm{P}_{\mathbf{0}}+\mathrm{P}_{1}+\mathrm{P}_{2}\right)$ @ $\mathrm{L}=$ CLOSED
$\mathrm{F}_{0}=\left(\overline{P_{0}} \cdot \overline{P_{1}} \cdot \overline{\boldsymbol{P}_{2}}\right) @ L=$ OPEN

NOTE:

For each of the 8 outputs either the function F_{p} (active-High) or \bar{F}_{p} (active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.

Field-Programmable Logic Array ($12 \times 48 \times 8$)

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLS161N

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input current	± 30	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	High Low Clamp ${ }^{3}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}_{1}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{gathered} 0.8 \\ -1.2 \\ \hline \end{gathered}$	V v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High }^{4} \\ & \text { Low }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{I H} \\ & I_{I L} \\ & \hline \end{aligned}$	High Low	$\begin{gathered} V_{C C}=M a x \\ V_{I N}=5.5 \mathrm{~V} \\ V_{I N}=0.45 \mathrm{~V} \end{gathered}$		$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{gathered} 40 \\ -100 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo(off) los	Hi-Z state Short circuit ${ }^{3}$, 6	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { Low, } \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15	1 -1	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$V_{C C}=M a x$		120	170	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \hline \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 17 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^12]AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Propagation delay							
tPD	Input	Output	Input		35	50	ns
$\mathrm{t}_{\text {ce }}$	Chip enable	Output	Chip enable		15	30	ns
Disable time							
$t_{C D}$	Chip disable	Output	Chip enable		15	30	ns

NOTES:

1. All values are at $V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one pin at a time.
4. Measured with V_{IL} applied to $\overline{\mathrm{CE}}$ and a logic high stored.
5. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied through a resistor to V_{CC}.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

LOGIC PROGRAMMING

PLS161 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS161 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics'

EX-OR ARRAY - (F)
 AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND' ARRAY - (I)

VIRGIN STATE

The PLS161 virgin device is factory shipped in an unprogrammed state, with all fuses intact, such that:

1. All P_{n} terms are disabled. (Inactive).
2. All P_{n} terms are active on all outputs.
3. All outputs are active-High.
"OR" ARRAY-(F)

| | |
| :---: | :---: | :---: | :---: |
| P_{n} STATUS | CODE |
| ACTIVE | \mathbf{A} |

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}
2. Any gate P_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

TEST LOAD CIRCUITS

TIMING DIAGRAM

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5v level
of inputs and outputs, unless otherwise specified.
Input Pulses

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {CE }}$	Delay between beginning of Chip Enable Low (with Input valid) and when Data Output becomes valid.
$t_{\text {CD }}$	Delay between when Chip Enable becomes High and Data Output is in off state (Hi-Z or High).
$t_{\text {PD }}$	Delay between beginning of valid Input (with Chip Enable Low) and when Data Output becomes valid.

8861 ＇LI KEW

PROGRAM TABLE ENTRIES						
INPUT VARIABLE			OUTPUT FUNCTION		OUTPUT ACTIVE LEVEL	
I_{m}	I_{m}	Don＇t Care	Prod Term Present in F_{p}	Prod Term Not Present in F_{p}	Active High	Active Low
H	L	－（dash）	A	－（period）	H	L
NOTE Enter（－）for unused inputs of used P－terms．			NOTES		NOTES	
			1．Entries independent of output polarity． 2．Enter（A）for unused outputs of used P－terms．		1．Polarity programmed once only． 2．Enter (H) for all unused outputs	

VARIABLE NAME	$\underline{\mathrm{z}} \mathrm{O}$	A	क	合	\pm	А	A	A $\stackrel{\text { d }}{ }$	¢	${ }^{\infty}$	$\stackrel{\omega}{*}$	ω	$\stackrel{\sim}{+}$	$\stackrel{\omega}{\omega}$	N	$\stackrel{\sim}{\sim}$	N	N	N	N	\sim	N	\cdots	N	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{1}$	の狺	$\stackrel{\rightharpoonup}{4}$	$\stackrel{\rightharpoonup}{\omega}$	$\vec{\square}$	ㅎ． 0	∞	10	$0 \cdot 0$	－ω	N	－	3 Pr m－1	
	$\infty-$																																					$-{ }^{-1}$	
	$0-$																																					\bigcirc	
	0 N																																					01	
	\cdots																																					$\infty 1$	
	N N																																					$\cdots{ }_{0}$	
	$\omega \mathrm{N}$																																					\cdots ¢	z
	N																																					01 ${ }^{3}$	
	ω																																					$\stackrel{-}{\square}$	
	－																																					c1	
	or																																					\cdots	
	or																																					-1	
	\checkmark																																					01	

L9lS7d

Signetics

Application Specific Products

 - Series 24
DESCRIPTION

The PLS162 is a bipolar, Field-Programmable Address Decoder. The device consists of five AND/NAND gates which share 16 common inputs. The type of gate is selected by programming the output as active-High (H) or active-Low (L). Each of the 16 inputs $I_{0}-I_{15}$ can be programmed to provide the True (H), Complement (L), or Don't Care (-) state to each of the five AND/NAND gates. OR/NOR logic functions can also be implemented by complementing the inputs and outputs via on-chip inverting buffers.

The device is field programmable, which means that custom patterns are immediately available.
The PLS162 includes chip-enable control for output strobing and inhibit. It features 3-State outputs for ease of expansion of input variables and application in bus-organized systems.

Order codes are listed in the Ordering Information Table.

Field-Programmable Address Decoder (16×5)

Signetics Programmable Logic
Product Specification

FEATURES

- Field-Programmable (Ni-Cr link)
- 16 input variables
- 5 output functions
- Chip Enable input
- I/O propagation delay: 30ns (max.)
- Power dissipation: 500mW (typ.)
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- 3-State outputs
- Output disable function: Hi-Z
- Fully TTL compatible

APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders

PIN CONFIGURATION

N Package	
17	24 vcc
162	2318
15	2219
144	21 10
135	20111
126	(19) 112
1.7	$18{ }_{1 / 3}$
108	177 I_{14}
$\mathrm{F}_{4} 9$	16 1_{15}
$\mathrm{F}_{3} 10$	15 CE
$\mathrm{F}_{2} 11$	14 F 0
OND 12	13] F_{1}
	coos341s

LOGIC FUNCTION

TYPICAL OUTPUT FUNCTIONS: ACTIVE-HIGH
$\mathbf{X}=\mathbf{A} \cdot \overline{\mathbf{B}} \cdot \mathbf{C} \cdot \ldots$
ACTIVE-LOW

$$
\begin{aligned}
& X=\overline{A \cdot \bar{B} \cdot C \cdot} \ldots \\
& X=\bar{A}+B+\bar{C}+\ldots
\end{aligned}
$$

NOTES:

1. For each of the 5 outputs, either function X (activeHigh) or \bar{X} (active-Low) is available, but not both The desired output polarity is programmed via the Ex-OR gates.
2. $\mathrm{X}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, etc. are user defined connections to fixed inputs (I) and output pins (F).

FPAD LOGIC DIAGRAM

Field-Programmable Address Decoder (16 $\times 5$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLS162N

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input current	± 30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output current	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temporature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may causo malfunction or permanent damage to the device. This is a stress rating only. Functional operation at thoso or any other conditions above those indicated in the operational and programming specification of tho dovico is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LImits			UNIT
			Min	Typ ${ }^{2}$	Max	
Input voltage ${ }^{1}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	High Low Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=M i n \\ V_{C C}=M i n, ~_{I_{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V
Output voltage ${ }^{1}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High }^{5} \\ & \text { Low }^{4} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{HH}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$	High Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=0.45 \mathrm{~V} \end{gathered}$		$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{gathered} 40 \\ -100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo (OFF) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{6}$ Short circuit ${ }^{3,7}$	$\begin{aligned} V_{\mathrm{CC}} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15	1 -1	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$V_{C C}=$ Max		100	155	mA
Capacitance						
C_{IN} Cout	Input Output ${ }^{6}$	$\begin{aligned} V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^13]AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$t_{\text {PD }}$	Propagation delay	Output	Input	$C_{L}=30 \mathrm{pF}$		20	30	ns
$t_{\text {CE }}$	Chip enable	Output	Chip enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
$t_{C D}$	Chip disable	Output	Chip enable	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. Test each pin one at a time.
4. Measure with a programmed logic condition for which the output under test is at low logic level. Output sink current is supplied through a resistor to $V_{\text {cc }}$.
5. Measured with V_{IL} applied to $\overline{\mathrm{CE}}$ and logic high at the output.
6. Measured with V_{IH} applied to $\overline{\mathrm{CE}}$.
7. Duration of short circuit should not exceed 1 second.
8. ICC is measured with the outputs open.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLS162 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS162 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate G_{n} will be unconditionally inhibited if both the True and Complement of any input (either I or B) are left intact.

VIRGIN DEVICE

The PLS162 is shipped in an unprogrammed state, in which:

1. All P_{n} terms are disabled. (Inactive).
2. All P_{n} terms are active on all outputs.
3. All outputs are active-Low.

Field-Programmable Address Decoder (16×5)

FPAD PROGRAM TABLE

CUSTOMER NAME	THIS PORTION TO BE COMPLETED BY SIGNETICS
PURCHASE ORDER \#	$C F(X X X X)$
SIGNETICS DEVICE \# ______	CUSTOMER SYMBOLIZED PART $\#$
TOTAL NUMBER OF PARTS	DATE RECEIVED _
PROGRAM TABLE \# ___	COMMENTS _

$F_{0}(14)$	$=$
$F_{1}(13)$	$=$
$F_{2}(11)$	
$F_{3}(10)$	
$F_{4}(9)$	$=$

Application Specific Products

 - Series 24
DESCRIPTION

The PLS163 is a bipolar, Field-Programmable Address Decoder. The device consists of nine AND/NAND gates which share 12 common inputs. The type of gate is selected by programming the output as active-High (H) or activeLow (L). Each of the 12 inputs $I_{0}-I_{11}$ can be programmed to provide the True (H), Complement (L), or Don't Care (-) state to each of the nine AND/NAND gates. OR/NOR logic functions can also be implemented by complementing the inputs and outputs via on-chip inverting buffers.

The device is field programmable, which means that custom patterns are immediately available.
The PLS163 includes chip-enable control for output strobing and inhibit. It features 3-State outputs for ease of expansion of input variables and application in bus-organized systems.

Order codes are listed in the Ordering Information Table.

PLS163
Field-Programmable Address Decoder (12×9)

Signetics Programmable Logic Product Specification

FEATURES

- Field-Programmable (Ni-Cr link)
- 12 input variables
- 9 output functions
- Chip Enable input
- I/O propagation delay: 30ns (max.)
- Power dissipation: 600mW (typ.)
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- 3-State outputs
- Output disable function: $\mathrm{Hi}-\mathrm{Z}$
- Fully TTL compatible

APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders

PIN CONFIGURATION

LOGIC FUNCTION

```
TYPICAL OUTPUT FUNCTIONS:
    ACTIVE-HIGH
        X=A\cdot\overline{B}\cdotC\cdot...
    ACTIVE-LOW
        X=
        X=A
```


NOTES:

1. For each of the 9 outputs, either function X (activeHigh) or \bar{X} (active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates
2. $\mathrm{X}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, etc. are user defined connections to fixed inputs (I) and output pins (F).

FPAD LOGIC DIAGRAM

NOTES:

1. All gate inputs with a blown link float to a logic "1".
2. Programmable connection.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300 mil-wide	PLS163N

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage Off-State	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input current	± 30	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{2}$	Max	
Input voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	High ${ }^{1}$ Low ${ }^{1}$ Clamp ${ }^{1,3}$	$\begin{gathered} V_{C C}=M a x \\ V_{C C}=M i n \\ V_{C C}=M i n, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High }^{1,5} \\ & \text { Low }^{1,4} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.5	V
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$	High Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \end{aligned}$		$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{gathered} 40 \\ -100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo (off) Ios	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{6}$ Short circuit ${ }^{3 . \%}$	$\begin{gathered} V_{\text {CC }}=\mathrm{MaX} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15	1 -1	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		120	155	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output ${ }^{6}$	$\begin{aligned} V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^14]AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
tpd	Propagation delay	Output	Input	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
$\mathrm{t}_{\text {CE }}$	Chip enable	Output	Chip enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
${ }_{\text {t }}$ D	Chip disable	Output	Chip enable	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns

NOTES:

1. All voltage values are with respect to network ground terminal
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. Test each pin one at a time.
4. Measure with a programmed logic condition for which the output under test is at low logic level. Output sink current is supplied through a resistor to V_{Cc}.
5. Measured with $\mathrm{V}_{\text {IL }}$ applied to $\overline{\mathrm{CE}}$ and logic high at the output.
6. Measured with V_{IH} applied to $\overline{\mathrm{CE}}$.
7. Duration of short circuit should not exceed 1 second.
8. $I_{C C}$ is measured with the outputs open.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLS163 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS163 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the

OUTPUT POLARITY - (F)

 state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

"AND" ARRAY - (I)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate G_{n} will be unconditionally inhibited if both the True and Complement fuses of any input (I) are left intact.

VIRGIN DEVICE

The PLS163 is shipped in an unprogrammed state, in which:

1. All P_{n} terms are disabled. (Inactive).
2. All P_{n} terms are active on all outputs.
3. All outputs are active-Low.

Field-Programmable Address Decoder (12×9)

FPAD PROGRAM TABLE

GATE	INPUT											
POLARITY	${ }_{11}$	110	19	I_{8}	I_{7}	I_{6}	I_{5}	14	1_{3}	I_{2}	1,	10
F_{0}												
F_{1}												
F_{2}												
F_{3}												
F_{4}												
F_{5}												
F_{6}												
F_{7}												
F_{B}												
$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	18	19	20	21	22	23	1	2	3	4	5	6

notes

1. The FPAD is shipped with all links intact. Thus a background of entries corresponding to states of virgin links exists in the table. shown BLANK for clarity.
2. Unused I bits are normally programmed Don't Care (-)
3. Unused Gates can be left blank.

PROGRAM TABLE ENTRIES

Application Specific Products

 - Series 24
DESCRIPTION

The PLS173 is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.

On chip T/C buffers couple either True (I, B) or Complement ($\overline{\bar{l}}, \bar{B}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLS173 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

PLS173

Field-Programmable Logic Array ($22 \times 42 \times 10$)

Signetics Programmable Logic

 Product Specification
FEATURES

- Field-Programmable (Ni-Cr links)
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 30ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

Field-Programmable Logic Array ($22 \times 42 \times 10$)

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLS173N
28-pin Plastic Leaded Chip Carrier	PLS173A

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{I}	Input currents	-30	+30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{VII}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2,3}$	$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=M i n, ~_{\text {IN }}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	V V
Output voltage						
$V_{\text {OL }}$ V_{OH}	$\begin{aligned} & \text { Low }^{2,4} 4 \\ & \mathrm{High}^{2,5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	V
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =5.5 \mathrm{~V} \end{aligned}$			-100 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{aligned} V_{\text {CC }} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	170	mA
Capacitance						
$\begin{aligned} & { }^{\mathrm{INN}_{1}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^15]Field-Programmable Logic Array ($22 \times 42 \times 10$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
t_{OE}	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pf}$		20	30	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with $V_{1 L}$ applied to l_{11}. Pins $1-5=0 \mathrm{~V}$, Pins $6-10=4.5 \mathrm{~V}$, Pin $11=0 \mathrm{~V}$ and Pin $13=10 \mathrm{~V}$.
5. Same conditions as Note 5 except Pin $11=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $I_{C C}$ is measured with I_{0} and $I_{1}=0 V$ and $I_{2}-I_{11}$ and $B_{0}-B_{9}=4.5 \mathrm{~V}$. Part in Virgin State.
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{L L}$ and $I_{I H}$ limits are for dedicated inputs only $\left(I_{0}-I_{11}\right)$.

TEST LOAD CIRCUITS

TIMING DIAGRAM

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses
TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
$t_{\text {OD }}$	Delay between input change and when output is off (Hi-Z or High).
$t_{\text {OE }}$	Delay between input change and when output reflects specified output level.

LOGIC PROGRAMMING

PLS173 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS173 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I, B)

OR ARRAY - (B)
$\mathrm{P}^{\mathrm{P}} \mathrm{S}$

P $_{\mathbf{n}}$ STATUS	CODE
ACTIVE $^{\mathbf{1}}$	A

LSO2020S

$\mathbf{P}_{\mathbf{n}}$ STATUS	CODE
INACTIVE	\bullet

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the True and Complement of any input (I, B) are left intact.

OUTPUT POLARITY - (B)

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Field-Programmable Logic Array $(22 \times 42 \times 10) \quad$ PLS173

FPLA PROGRAM TABLE

Signetics

Application Specific Products

- Series 24

DESCRIPTION

The PLUS173B is a 15 ns version of the PLS173 FPLA architecture. The Signetics state-of-the-art Oxide Isolated Bi polar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.
The PLUS173B is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement (\bar{I}, \bar{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLUS173B is field-programmable, enabling the user to quickly generate
custom patterns using standard programming equipment.

FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pin-for-pin compatible with, the PLS173 and the PLUS173D
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity
- active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 15ns (max.)
- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

cooc3sos

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

Field-Programmable Logic Array $(22 \times 42 \times 10)$

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLUS173BN
28-pin Plastic Leaded Chip Carrier	PLUS173BA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150.	${ }^{\circ} \mathrm{C}$

NOTE:
1.Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{HH}	High	$\mathrm{V}_{\text {CC }}=$ Max	2.0			V
$V_{\text {IC }}$	Clamp	$V_{C C}=$ Min, $l_{\text {IN }}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	V
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{LL}} \\ & \mathrm{I}_{\mathrm{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \\ & \hline \end{aligned}$	$\begin{aligned} V_{\mathrm{CC}} & =M a x \\ V_{\text {IN }} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =5.5 \mathrm{~V} \end{aligned}$			-100 40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{gathered} V_{\mathrm{CC}}=\mathrm{Max} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
Icc	V_{CC} supply current ${ }^{7}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$		150	200	mA
Capacitance						
$\begin{aligned} & { }^{\mathrm{I} N} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^16]Field-Programmable Logic Array ($22 \times 42 \times 10$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
tpD	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		11	15	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{4}=0 \mathrm{~V}$, inputs $\mathrm{I}_{5}-\mathrm{I}_{9}=4.5 \mathrm{~V}, \mathrm{I}_{11}=4.5 \mathrm{~V}$ and $\mathrm{I}_{10}=10 \mathrm{~V}$. For outputs $\mathrm{B}_{0}-B_{4}$ and for outputs $\mathrm{B}_{5}-\mathrm{B}_{9}$ apply the same conditions except $\mathrm{I}_{11}=\mathrm{oV}$.
5. Same conditions as Note 4 except input $\mathrm{I}_{11}=+10 \mathrm{~V}$.
6. Icc is measured with inputs $\mathrm{I}_{0}-\mathrm{I}_{11}$ and $\mathrm{B}_{0}-\mathrm{B}_{9}=0 \mathrm{~V}$. Part in Virgin State.
7. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
8. Leakage values are a combination of input and output leakage.
9. $I_{I L}$ and $I_{I H}$ limits are for dedicated inputs only $\left(I_{0}-I_{11}\right)$.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

TIMING DEFINITIONS

SYMBOL	PARAMETER
t PD	Propagation delay between input and output.
tOD	Delay between input change and when output is off (Hi-Z or High).
tOE	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUITS

TIMING DIAGRAM

WFO5412S

LOGIC PROGRAMMING

PLUS173B logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLUS173B logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations ($(1, B, O, P$, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

| | | |
| :---: | :---: | :---: | :---: |
| P_{n} STATUS | CODE | |
| ACTIVE | A | |

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the True and Complement of any input (I, B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Field-Programmable Logic Array $(22 \times 42 \times 10) \quad$ PLUS173B

FPLA PROGRAM TABLE

Signetics

Application Specific Products

 - Series 24
DESCRIPTION

The PLUS173D is a 12 ns version of the PLS173 FPLA architecture. The Signetics state-of-the-art Oxide Isolated Bi polar fabrication process is employed to produce performance levels not yet achieved in devices of this complexity.
The PLUS173D is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement ($\overline{\mathrm{I}}, \overline{\mathrm{B}}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLUS173D is field-programmable, enabling the user to quickly generate

PLUS173D

Field-Programmable Logic
Array ($22 \times 42 \times 10$)

Signetics Programmable Logic Product Specification

custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ti-W links)
- Functionally identical to, and pin-for-pin compatible with, the
PLS173 and the PLUS173B
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Programmable output polarity
- active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 coritrol terms
- I/O propagation delay: 12ns (max.)
- Input loading: - $100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible
- Security fuse

FUNCTIONAL DIAGRAM

Field-Programmable Logic Array ($22 \times 42 \times 10$)

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLUS173DN
28-pin Plastic Leaded Chip Carrier	PLUS173DA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{I}	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:
1.Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Min } \\ V_{\mathrm{CC}}=\mathrm{Max}^{2} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}^{2}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage ${ }^{2}$						
VoL V_{OH}	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	V
Input current ${ }^{10}$						
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \end{aligned}$			-100 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3}$, 5, 6	$\begin{aligned} V_{\mathrm{CC}} & =\mathrm{Max} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15		80 -140 -70	$\mu \mathrm{A}$ mA
Icc	V_{CC} supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	200	mA
Capacitance						
$\begin{aligned} & \mathrm{I}_{\mathrm{N}} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		8 15		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^17]AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	то	FROM	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	12	ns
toe	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		10	12	ns
tod	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		10	12	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{4}=0 \mathrm{~V}$, inputs $I_{5}-I_{9}=4.5 \mathrm{~V}, I_{11}=4.5 \mathrm{~V}$ and $\mathrm{I}_{10}=10 \mathrm{~V}$. For outputs $B_{0}-B_{4}$ and for outputs $B_{5}-B_{9}$ apply the same conditions except $\mathrm{I}_{11}=0 \mathrm{~V}$.
5. Same conditions as Note 4 except input $\mathrm{l}_{11}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with inputs $I_{0}-I_{11}$ and $B_{0}-B_{9}=0 V$. Part in Virgin State.
8. Measured at $V_{T}=V_{O L}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{I L}$ and I_{H} limits are for dedicated inputs only $\left(I_{0}-I_{11}\right)$.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUITS

TC01801s

TIMING DIAGRAM

WF05412

LOGIC PROGRAMMING

PLUS173D logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLUS173D logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

| | | |
| :---: | :---: | :---: | :---: |
| P_{n} STATUS | CODE | |
| ACTIVE ${ }^{1}$ | A | |

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the True and Complement of any input (l, B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.
```
Field-Programmable Logic Array (22 }\times42\times10

FPLA PROGRAM TABLE


\section*{Signetics}

\section*{Application Specific Products \\ - Series}

\section*{DESCRIPTION}

The PLC473-60 is a two-level logic CMOS Erasable Programmable Logic Device (EPLD) consisting of 24 AND gates and 22 OR gates with EPROM cell connections for programming I/O polarity and direction. The Signetics state-of-the-art Floating-Gate CMOS process is used to produce UV erasable and One Time Programmable (O.T.P.) versions of the PLC473.
All AND gate inputs are linked to 11 dedicated input pins \(\left(I_{0}-I_{10}\right)\) and 9 bidirectional I/O pins \(\left(\mathrm{B}_{0}-\mathrm{B}_{8}\right)\). These bidirectional pins are controlled via the OR array. Employing the 2 dedicated outputs \(\left(\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{B}}\right)\) and the programmable I/O direction feature, the PLC473 can be configured with up to 20 inputs - and as many as 11 outputs.
The AND array input buffers provide both the True and Complement of the inputs ( Ix ) and the bidirectional signals ( \(\mathrm{B}_{\mathrm{X}}\) ) as programmable connections to

PLC473-60
Erasable and O.T.P. Programmable Logic Array ( \(20 \times 24 \times 11\) )

\section*{Signetics Programmable Logic}

Product Specification

\section*{FEATURES}
- Electrically Programmable; UV erasable and One Time Programmable (O.T.P.) versions available
- 11 dedicated inputs
- 2 dedicated outputs
- 9 bidirectional I/O lines
- 24 product terms
- I/O direction decoded in OR array
- I/O propagation delay: 60ns (max.)
- Input loading: \(\mathbf{- 1 0 \mu \mathrm { A }}\) (max.)
- Power dissipation:
- CMOS inputs: 53mA max at 15MHz
- TTL inputs: 60mA max at 15MHz
- Output: 3-State condition decoded in OR array
- TTL and CMOS compatible

FUNCTIONAL DIAGRAM


PIN CONFIGURATIONS


\section*{APPLICATIONS}
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

Erasable and O.T.P. Programmable Logic Array \((20 \times 24 \times 11)\)

FPLA LOGIC DIAGRAM


\section*{Erasable and O.T.P. Programmable Logic Array \((20 \times 24 \times 11)\)}

\section*{PLC473-60}
the AND gates. All 24 AND gates can then be optionally linked to all 22 OR gates (a feature known as Product Term sharing not found in PALs \({ }^{1}\) or most macrocell architectures). The OR array drives 11 output buffers which can be programmed as active-High for AND-OR functions or active-Low for AND-NOR func-
tions. In addition, the 1/O configuration of each bidirectional pin is individually controlled by a sum-of-products (AND-OR) function which may also contain any of the 24 AND gate outputs. This allows dynamic I/O configuration of all 9 bidirectional pins.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline 24-pin Ceramic DIP with Window (300mil-wide) & PLC473-60FA \\
\hline 24-pin Plastic DIP (300mil-wide) & PLC473-60N \\
\hline 28-pin Plastic Leaded Chip Carrier (PLCC) & PLC473-60A \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & RATINGS & UNIT \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & \(\mathrm{V}_{\mathrm{CC}}+0.5\) & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & \(\mathrm{V}_{\mathrm{CC}}+0.5\) & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 to +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

The PLC473-60 is field programmable using Floating-Gate Ultraviolet Erasable Cells. The UV erasable version is available in a ceramic DIP (300mil-wide) with a quartz window. One Time Programmable versions are available in plastic DIP and PLCC.

\section*{LOGIC FUNCTION}

TYPICAL PRODUCT TERM:
Pn \(=A \cdot \bar{B} \cdot C \cdot D \cdot\)
\(\mathbf{P n}=\mathbf{A} \cdot \overline{\mathbf{B}} \cdot \mathbf{C} \cdot \mathbf{D} \cdot \ldots\)
TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY \(=\mathrm{H}\) \(\mathbf{Z}=\mathbf{P O}_{0}+\mathrm{P}_{1}+\mathrm{P}_{2} \ldots\)
AT OUTPUT POLARITY \(=\mathrm{L}\) \(\mathrm{Z}=\overline{\mathrm{P} 0+\mathrm{P} 1+\mathrm{P} 2+} \ldots\) \(\mathbf{Z}=\overline{\mathbf{P 0}} \cdot \overline{\mathbf{P} 1} \cdot \overline{\mathbf{P} \mathbf{2}} \cdot \ldots\)

NOTES:
1. For each of the 11 outputs, either function \(Z\) (Active-High) or \(\bar{Z}\) (Active-Low) is available, but not both. The desired output polarity is programmed via the EX-OR gates.
2. \(\mathrm{Z}, \mathrm{A}, \mathrm{B}, \mathrm{C}\), etc. are user defined connections to fixed inputs (I), fixed output pins ( \(O\) ) and bidirectional pins (B).

\section*{Erasable and O.T.P. Programmable Logic Array \((20 \times 24 \times 11)\)}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{\multirow{2}{*}{TEST CONDITION}} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IH}}
\end{aligned}
\] & \begin{tabular}{l}
Low \\
High
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M i n \\
& V_{C C}=M a x
\end{aligned}
\]} & \[
\begin{gathered}
\hline-0.3 \\
2.0
\end{gathered}
\] & & \[
\begin{gathered}
0.8 \\
v_{c C}+0.3
\end{gathered}
\] & V \\
\hline \multicolumn{8}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL}} \\
& \mathrm{~V}_{\mathrm{OH}}
\end{aligned}
\] & Low High & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\
\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{gathered}
\]} & 2.4 & & 0.45 & V \\
\hline \multicolumn{8}{|l|}{Input current \({ }^{9}\)} \\
\hline \[
\begin{aligned}
& I_{\mathrm{IL}} \\
& I_{\mathrm{IH}}
\end{aligned}
\] & \begin{tabular}{l}
Low \\
High
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{I N}=G N D \\
& V_{I N}=V_{C C}
\end{aligned}
\]} & & & \[
\begin{gathered}
-10 \\
10
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \multicolumn{8}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(OFF) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{7}\) \\
Short circuit \({ }^{3,6}\)
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\text {OUT }}=V_{\text {CC }} \\
& V_{\text {OUT }}=G N D \\
& V_{\text {OUT }}=G N D
\end{aligned}
\]} & -15 & & \[
\begin{gathered}
10 \\
-10 \\
-70
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{\(\mathrm{Icc}_{\text {c }}\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}\) supply current (Active) \({ }^{4,5,8}\)} & \multirow[t]{2}{*}{No load, \(f=15 \mathrm{MHz}\),
\[
V_{C C}=\operatorname{Max}
\]} & CMOS inputs & & & 53 & mA \\
\hline & & & TTL inputs & & & 60 & mA \\
\hline \multicolumn{8}{|l|}{Capacitance} \\
\hline \[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}} \\
& \mathrm{C}_{\mathrm{B}}
\end{aligned}
\] & Input I/O (bidirectional) & \[
\begin{aligned}
& V_{C C}= \\
& V_{I N}=2 . \\
& V_{B}=2 .
\end{aligned}
\] & & & \[
\begin{gathered}
6 \\
12
\end{gathered}
\] & & pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. CMOS inputs: \(V_{I L}=G N D, V_{I H}=V_{C C}\)

TTL inputs: \(\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}\)
5. Measured with all inputs and outputs switching.
6. Duration of short circuit should not exceed 1 second.
7. Leakage values are a combination of input and output leakage.
8. Refer to Figure 1 for Icc vs frequency specifications (worst case).
9. Pin \(1\left(V_{P P}\right)\) has a leakage current of \(\pm 100 \mu \mathrm{~A}\).

AC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TO} & \multirow{2}{*}{FROM} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & & Min & Max & \\
\hline \(t_{\text {PD }}\) & Propagation delay & Output \(\pm\) & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 60 & ns \\
\hline toe & Output enable & Output - & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 60 & ns \\
\hline tod & Output disable \({ }^{1}\) & Output + & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 60 & ns \\
\hline
\end{tabular}

\section*{NOTE:}
1. Measured at \(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).

\section*{Erasable and O.T.P. Programmable Logic Array \((20 \times 24 \times 11)\)}

TIMING DIAGRAM


\section*{VOLTAGE WAVEFORMS}


MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified

Input Pulses

\section*{TEST LOAD CIRCUITS}


TIMING DEFINITIONS
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline\(t_{\text {PD }}\) & \begin{tabular}{l} 
Propagation delay between \\
input and output.
\end{tabular} \\
\hline\(t_{\text {OD }}\) & \begin{tabular}{l} 
Delay between input change \\
and when output is off (Hi-Z \\
or High).
\end{tabular} \\
\hline\(t_{\mathrm{OE}}\) & \begin{tabular}{l} 
Delay between input change \\
and when output reflects \\
specified output level.
\end{tabular} \\
\hline
\end{tabular}


MAXIMUM FREQUENCY(MHz)

\section*{NOTES:}
1. Tested with all outputs switching.
2. Tested with TTL inputs (worst case).

Figure 1. Dynamic Icc vs Frequency

\section*{LOGIC PROGRAMMING}

PLC473-60 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLC473-60 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(1, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

\section*{Erasable and O.T.P. Programmable Logic Array \((20 \times 24 \times 11)\)}

OUTPUT POLARITY - (O, B)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline ACtive level & CODE & ACtive level & CODE \\
\hline LOW & L & \(\mathrm{HIGH}^{1}\) & H \\
\hline \multicolumn{2}{|r|}{\(T_{\text {TC02561s }}\)} & & TC025715 \\
\hline
\end{tabular}
'AND' ARRAY - (I, B)

' OR' ARRAY - (O, B)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline \(\mathrm{P}_{\mathrm{n}}\) STATUS & CODE & \(\mathrm{P}_{\mathrm{n}}\) Status & CODE \\
\hline inactive & - & ACTIVE \({ }^{1}\) & A \\
\hline & TC025815 & & \\
\hline
\end{tabular}

\section*{NOTES:}
1. This is the initial unprogrammed state of all link pairs.
2. Any Product Term \(\left(P_{n}\right)\) will always be False (logic low) if at least one of its \((I, B)\) link pairs is unprogrammed as shown.

\section*{ERASURE CHARACTERISTICS (FOR FA PACKAGE ONLY)}

The PLC473 is erased by exposure to ultraviolet light. The recommended erasure procedure is exposure to short-wave ultraviolet light which has a wavelength of 2537 Angstroms ( \(\AA\) ). The integrated dose (i.e., UV intensity \(\times\) exposure time) for erasure should be a minimum of \(15 \mathrm{Wsec} / \mathrm{cm}^{3}\).

The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with \(12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}\) power rating.
The PLC473 should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a PLC473 can be exposed to without damage is \(7258 \mathrm{Wsec} / \mathrm{cm}^{2}\) (1week @) \(12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}\) ).

\section*{VIRGIN STATE}

A factory shipped virgin device is configured such that:
1. All outputs are at " H " polarity.
2. All \(P_{n}\) terms are inactive in the AND array.
3. All \(P_{n}\) terms are active in the OR array.

Exposure of this CMOS EPROM to highintensity UV light for longer periods may cause permanent damage. Some erasure may occur with exposure to light sources having wavelengths shorter than \(4,000 \AA\) such as sunlight or fluorescent light. For maximum system reliability, precautions should be taken by placing opaque labels over the quartz window when used in these environments.


\footnotetext{
fPLA PRogram table
Erasable and O.T.P. Programmable
Logic Array \((20 \times 24 \times 11)\)

PLC473-60
}

Signetics Application Specific Products • Series 24

\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 24}

\section*{DESCRIPTION}

The PLHS473 is a two level logic device consisting of 24 AND gates and 22 OR gates with fusible link connections for programming I/O polarity and direction. The Signetics state of the art OxideIsolated Bipolar process is used to produce performance not yet achieved in devices of this complexity.
All AND gates are linked to 11 input pins, 9 bidirectional I/O pins, and 2 dedicated output pins. The bidirectional pins are controlled via the OR array. Using these features, the PLHS473 can be configured with up to 20 inputs and as many as 11 outputs.
The AND array input buffers provide both the True and Complement of the inputs ( 1 x ) and the bidirectional signals ( \(\mathrm{B}_{\mathrm{X}}\) ) as programmable connections to the AND gates. All 24 AND gates can then be optionally linked to all 22 OR gates (a feature known as Product Term sharing not found in \(\mathrm{PAL}^{\circledR}\) device architectures or most macrocell architectures). The OR array drives 11 output buffers which can be programmed as active-High for AND-OR functions or active-Low for AND-NOR functions. In addition, the I/O configuration of each bidirectional pin is individually controlled by a sum-of-products (AND-OR) function which may also contain any of the 24 AND gate outputs. This allows dynamic

PLHS473
Field-Programmable Logic
Array \((20 \times 24 \times 11)\)

\section*{Signetics Programmable Logic Product Specification}

I/O configuration of all 9 bidirectional pins.
The PLHS473 contains two new features of significance. A code verification lock has been incorporated to improve user security. The addition of three test columns and one test row enables the user to test the device in an unprogrammed state.
The PLHS473 is field programmable using Vertical Avalanche Migration Programmed (VAMP \({ }^{\text {TM }}\) ) fuses to program the cells. This enables the generation of custom logic patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

\section*{FEATURES}
- Field-Programmable
- 11 dedicated inputs
- 2 dedicated outputs
- 9 bidirectional I/O lines
- 24 product terms
- 22 OR gates
- I/O direction decoded in OR array
- Output Enable decoded in OR array
- Security fuse
- I/O propagation delay: 22ns (max.)

\section*{FUNCTIONAL DIAGRAM}


\section*{PIN CONFIGURATIONS}


PAL is a trademark of Monolithic Memories, Inc., a wholly owned subsidary of Advanced Micro Devices, Inc.

Field-Programmable Logic Array ( \(20 \times 24 \times 11\) )
PLHS473

FPLA LOGIC DIAGRAM


Field-Programmable Logic Array \((20 \times 24 \times 11)\)

ORDERING INFORMATION
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300 mil-wide
\end{tabular} & PLHS473N \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLHS473A \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & RATINGS & UNIT \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 to +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & +100 & mA \\
\hline \(\mathrm{~T}_{\text {A }}\) & Operating free-air temperature range & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.
thermal ratings
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{LOGIC FUNCTION}

\section*{TYPICAL PRODUCT TERM: \\ Pn \(=\mathbf{A} \cdot \bar{B} \cdot C \cdot D \cdot \ldots\)}

TYPICAL LOGIC FUNCTION:
AT OUTPUT POLARITY \(=\mathrm{H}\) \(Z=P 0+P 1+P 2 \ldots\)

AT OUTPUT POLARITY \(=\mathbf{L}\) \(Z=\overline{\mathbf{P O}_{0}+\mathbf{P} 1+\mathbf{P} 2+\ldots}\).
\(\mathrm{Z}=\overline{\mathrm{P} 0} \cdot \overline{\mathrm{P} 1} \cdot \overline{\mathrm{P} 2} \cdot \ldots\)
NOTES:
1. For each of the 11 outputs, either function \(Z\) (Active-High) or \(\bar{Z}\) (Active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. Z, A, B, C, etc. are user defined connections to fixed inputs (I), fixed output pins (0) and bidirectional pins (B).

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant V_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\) & & & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) & 2.0 & & & V \\
\hline \(V_{\text {IC }}\) & Clamp \({ }^{3}\) & \(\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}_{\mathrm{N}}}=-12 \mathrm{~mA}\) & & -0.8 & -1.2 & V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{3}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL}} \\
& \mathrm{~V}_{\mathrm{OH}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Low }^{4} \\
& \text { High }^{5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOL}^{\mathrm{OL}}=15 \mathrm{~mA} \\
& \mathrm{IOH}=-2 \mathrm{~mA}
\end{aligned}
\] & 2.4 & & 0.5 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& I_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{H}}
\end{aligned}
\] & Low High & \[
\begin{aligned}
& V_{C C}=M a x \\
& V_{I N}=0.45 \mathrm{~V} \\
& V_{I N}=5.5 \mathrm{~V}
\end{aligned}
\] & & & -100
40 & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
logoff) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{9}\) \\
Short circuit \({ }^{3,5,6}\)
\end{tabular} & \[
\begin{aligned}
V_{C C} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0.5 \mathrm{~V}
\end{aligned}
\] & -15 & & \begin{tabular}{c}
40 \\
-100 \\
-70 \\
\hline
\end{tabular} & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Icc & \(\mathrm{V}_{\mathrm{CC}}\) supply current \({ }^{7}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 140 & 155 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \[
\begin{aligned}
& { }^{\mathrm{I}_{\mathrm{N}}} \\
& \mathrm{C}_{\mathrm{B}} \\
& \hline
\end{aligned}
\] & Input I/O & \[
\begin{aligned}
& V_{C C}=5 \mathrm{~V} \\
& V_{I N}=2.0 \mathrm{~V} \\
& V_{B}=2.0 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
8 \\
15
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Notes on the following page.
}

AC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multirow[t]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & & Min & Typ & Max & \\
\hline \(t_{\text {PD }}\) & Propagation delay & Output \(\pm\) & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 15 & 22 & ns \\
\hline toe & Output enable & Output - & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 15 & 22 & ns \\
\hline tod & Output disable \({ }^{8}\) & Output + & Input \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 15 & 22 & ns \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs \(0-4=0 \mathrm{~V}\), inputs \(5,7=4.5 \mathrm{~V}\), and inputs \(6,8-10=10 \mathrm{~V}\).
5. Same conditions as Note 5 except input \(8=4.5 \mathrm{~V}\).
6. Duration of short circuit should not exceed 1 second.
7. ICC is measured with all inputs and bidirectional pins at 4.5V. Part in Virgin State.
8. Measured at \(\mathrm{V}_{T}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).
9. Leakage values are a combination of input and output leakage.

\section*{VOLTAGE WAVEFORMS}


\section*{MEASUREMENTS:}

All circuit delays are measured at the +1.5 V lovel of inputs and outputs, unless otherwise spocified.

Input Pulses

\section*{TIMING DEFINITIONS}
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline t pD & \begin{tabular}{l} 
Propagation delay betwoen \\
input and output.
\end{tabular} \\
\hline toD \(^{\text {tOE }}\) & \begin{tabular}{l} 
Delay between input change \\
and when output is off (Hi-Z \\
or High).
\end{tabular} \\
\hline & \begin{tabular}{l} 
Delay between input change \\
and when output reflects \\
specified output level.
\end{tabular} \\
\hline
\end{tabular}

TEST LOAD CIRCUITS


TIMING DIAGRAM


\section*{LOGIC PROGRAMMING}

PLHS473 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLHS473 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(\mathrm{I}, \mathrm{B}, \mathrm{O}, \mathrm{P}\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (O, B)

"AND' ARRAY - (I, B)


\section*{OR ARRAY - (O, B)}


\section*{NOTES:}
1. This is the initial unprogrammed state of all links. All unused \(P_{n}\) and \(D_{n}\) terms must be programmed as INACTIVE.
2. Any gate \(P_{n}\) will be unconditionally inhibited if the True and Complement of either input (I or B) are both programmed for a connection.

\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. All outputs are at " \(L\) " polarity.
2. All \(P_{n}\) terms are enabled in the AND array. (Don't Cares)
3. All \(P_{n}\) terms are inactive in the OR array.



\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 28}

\section*{DESCRIPTION}

The PLS100 (3-state) and PLS101 (Open-Collector) are bipolar, fuse Programmable Logic Arrays (FPLAs). Each device utilizes the standard AND/OR/ Invert architecture to directly implement custom sum of product logic equations.

Each device consists of 16 dedicated inputs and 8 dedicated outputs. Each output is capable of being actively controlled by any or all of the 48 product terms. The True, Complement, or Don't Care condition of each of the 16 inputs can be ANDed together to comprise one P-term. All 48 P-terms can be selectively ORed to each output.
The PLS100 and PLS101 are fully TTL compatible, and chip enable control for expansion of input variables and output inhibit. They feature either Open-Collector or 3-state outputs for ease of expansion of product terms and application in bus-organized systems.

Order codes are listed in the Ordering Information Table.

\section*{PLS100/PLS101 Field-Programmable Logic Array ( \(16 \times 48 \times 8\) )}

Signetics Programmable Logic Product Specification

\section*{FEATURES}
- Field-Programmable (Ni-Cr link)
- Input variables: 16
- Output functions: 8
- Product terms: 48
- I/O propagation delay: 50ns (max.)
- Power dissipation: 600mW (typ.)
- Input loading: \(-100 \mu \mathrm{~A}\) (max.)
- Chip Enable input
- Output option:
- PLS100: 3-State
- PLS101: Open-Collector
- Output disable function:
- 3-State: Hi-Z
- Open-Collector: High

\section*{APPLICATIONS}
- CRT display systems
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Data security encoders
- Fault detectors
- Frequency synthesizers
- 16-bit to 8 -bit bus interface
- Random logic replacement

FUNCTIONAL DIAGRAM


Field-Programmable Logic
Array ( \(16 \times 48 \times 8\) )

FPLA LOGIC DIAGRAM


\footnotetext{
NOTES:
1. All AND gate inputs with a blown link float to a logic " 1 "
2. All OR gate inputs with a blown fuse float to logic " 0 ".
3. 億 Programmable connection.
}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline DESCRIPTION & TRI-STATE & OPEN-COLLECTOR \\
\hline 28-pin Plastic DIP 600mil-wide & PLS100N & PLS101N \\
\hline 28-pin Plastic Leaded Chip Carrier & PLS100A & PLS101A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & RATINGS & UNIT \\
\hline\(V_{\mathrm{CC}}\) & Supply voltage & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & Output voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input current & \(\pm 30\) & mA \\
\hline \(\mathrm{I}_{\mathrm{OUT}}\) & Output current & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

The PLS100 device is also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

\section*{THERMAL RATINGS}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& V_{I H} \\
& V_{I L} \\
& V_{I C}
\end{aligned}
\] & High Low Clamp \({ }^{2,3}\) & \[
\begin{gathered}
V_{C C}=\operatorname{Max} \\
V_{C C}=M \operatorname{Min} \\
V_{C C}=\mathrm{Min}^{\prime}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\left.{ }_{\text {High }}^{\text {Low }}{ }^{5} \text { PLS } 100\right)^{4}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}^{\mathrm{OH}}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& I_{I H} \\
& I_{I L}
\end{aligned}
\] & High Low & \[
\begin{gathered}
\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{array}{r}
<1 \\
-10
\end{array}
\] & \[
\begin{gathered}
25 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
Hi-Z state (PLS100) \\
Short circuit (PLS100) \({ }^{3.6}\)
\end{tabular} & \[
\begin{gathered}
\overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\
V_{\text {OUT }}=5.5 \mathrm{~V} \\
V_{\text {OUT }}=0.45 \mathrm{~V} \\
\overline{\mathrm{CE}}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & 1
-1 & \[
\begin{gathered}
40 \\
-40 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{7}\) & \(V_{C C}=\) Max & & 120 & 170 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{gathered}
\hline \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\
V_{\text {IN }}=2.0 \mathrm{~V} \\
V_{\text {OUT }}=2.0 \mathrm{~V}
\end{gathered}
\] & & 8
17 & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Notes on following page.
}

Field-Programmable Logic
Array ( \(16 \times 48 \times 8\) )

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \(t_{\text {PD }}\) & Input & Output & Input & & 35 & 50 & ns \\
\hline \(\mathrm{t}_{\text {CE }}\) & Chip enable & Output & Chip enable & & 15 & 30 & ns \\
\hline \multicolumn{8}{|l|}{Disable time} \\
\hline \(t_{\text {CD }}\) & Chip disable & Output & Chip enable & & 15 & 30 & ns \\
\hline
\end{tabular}

NOTES:
1. All values are at \(V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one pin at a time.
4. Measured with \(V_{\text {IL }}\) applied to \(\overline{C E}\) and a logic high stored.
5. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied through a resistor to \(\mathrm{V}_{\mathrm{CC}}\).
6. Duration of short circuit should not exceed 1 second.
7. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic
Array \((16 \times 48 \times 8\) )

\section*{LOGIC PROGRAMMING}

PLS100/PLS101 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS100/PLS101 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations ( \(l, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (F)

"AND" ARRAY - (I)

"OR" ARRAY - (F)


NOTES:
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates \(P_{n}\).
2. Any gate \(P_{n}\) will be unconditionally inhibited if any one of its (l) link pairs is left intact.

Field-Programmable Logic
Array ( \(16 \times 48 \times 8\) )

\section*{TEST LOAD CIRCUITS}


\section*{TIMING DIAGRAM}


\section*{VOLTAGE WAVEFORMS}
MEASUREMENTS:
All circuit delays are measured at the +1.5 V level
of inputs and outputs, unless otherwise specified.
Input Pulses

TIMING DEFINITIONS
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline\(t_{\text {CE }}\) & \begin{tabular}{l} 
Delay between beginning of \\
Chip Enable Iow (with Input \\
valid) and when Data Output \\
becomes valid.
\end{tabular} \\
\hline\(t_{\text {CD }}\) & \begin{tabular}{l} 
Delay between when Chip \\
Enable becomes High and \\
Data Output is in off state \\
(Hi-Z or High).
\end{tabular} \\
\hline\(t_{\text {PD }}\) & \begin{tabular}{l} 
Delay between beginning of \\
valid Input (with Chip Enable \\
Low) and when Data Output \\
becomes valid.
\end{tabular} \\
\hline
\end{tabular}

\section*{VIRGIN STATE}

The PLS100/101 virgin devices are factory shipped in an unprogrammed state, with all fuses intact, such that:
1. All \(P_{n}\) terms are disabled (inactive), in the AND array.
2. All \(P_{n}\) terms are active in the OR array.
3. All outputs are active-High.

Field-Programmable Logic
Array ( \(16 \times 48 \times 8\) )

FPLA PROGRAM TABLE


\section*{Signetics}

\section*{Application Specific Products}
- Series 28

\section*{DESCRIPTION}

The PLS103 is a bipolar, fuse Programmable Gate Array. The device consists of nine AND/NAND gates which share 16 common inputs. The type of gate is selected by programming the output as active-High (H) or active-Low (L). Each of the 16 inputs \(I_{0}-I_{15}\) can be programmed to provide the True (H), Complement (L), or Don't Care ( - ) state to each of the nine AND/NAND gates. OR/ NOR logic functions can also be implemented by complementing the inputs and outputs via on-chip inverting buffers.
The device is field programmable, which means that custom patterns are immediately available.

The PLS103 includes chip-enable control for output strobing and inhibit. It features 3-State outputs for ease of expansion of input variables and application in bus-organized systems.
Order codes are listed in the Ordering Information Table.

\section*{FUNCTIONAL DIAGRAM}


PIN CONFIGURATIONS


\section*{LOGIC FUNCTION}
```

TYPICAL OUTPUT FUNCTIONS:
ACTIVE-HIGH
X =A\cdot\overline{B}}\cdot\mathbf{C}\cdot
ACTIVE-LOW
X=}\overline{A\cdot\overline{B}\cdotC
X}=\overline{\mathbf{A}}+\mathbf{B}+\overline{\mathbf{C}}+

```
NOTES:
1. For each of the 9 outputs, either function \(X\) (activeHigh) or \(\bar{X}\) (active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. \(\mathrm{X}, \mathrm{A}, \mathrm{B}, \mathrm{C}\), etc. are user defined connections to fixed inputs (I) and output pins (O).

FPGA LOGIC DIAGRAM


Field-Programmable Gate

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 28-pin Plastic DIP 600mil-wide & PLS103N \\
\hline 28 -pin Plastic Leaded Chip Carrier & PLS103A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & RATINGS & UNIT \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\mathrm{O}}\) & Output voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input current & \(\pm 30\) & mA \\
\hline \(\mathrm{I}_{\mathrm{OUT}}\) & Output current & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

\section*{THERMAL RATINGS}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{2}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{1}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}} \\
& \hline
\end{aligned}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
V_{C C}=\text { Max } \\
V_{C C}=\text { Min } \\
V_{C C}=\text { Min, } I_{\mathbb{N}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2.0 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2
\end{gathered}
\] & V
V
v \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{1}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High }^{5} \\
& \text { Low }^{4}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{HH}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & High Low & \[
\begin{gathered}
V_{I N}=5.5 \mathrm{~V} \\
V_{I N}=0.45 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{array}{r}
<1 \\
-10
\end{array}
\] & \[
\begin{gathered}
25 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(OFF) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \\
Short circuit \({ }^{3,6}\)
\end{tabular} & \[
\begin{gathered}
\hline \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\
V_{\text {OUT }}=5.5 \mathrm{~V} \\
V_{\text {OUT }}=0.45 \mathrm{~V} \\
\overline{\mathrm{CE}}=\text { Low, } V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{gathered}
40 \\
-40 \\
-70 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \(^{7}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 170 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{\text {CC }} & =5.0 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
V_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
15 & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Notes on following page.
}

Field-Programmable Gate
Array \((16 \times 9 \times 9)\)

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{2}\) & Max & \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline tPD & Input & Output & Input & & 20 & 35 & ns \\
\hline \({ }^{\text {t }}\) CE & Chip enable & Output & Chip enable & & 15 & 30 & ns \\
\hline \multicolumn{8}{|l|}{Disable time} \\
\hline \({ }_{\text {t }}{ }_{\text {c }}\) & Chip disable & Output & Chip enable & & 15 & 30 & ns \\
\hline
\end{tabular}

\section*{NOTES:}
1. All voltage values are with respect to network ground terminal.
2. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
3. Test one pin at a time.
4. Measure with a programmed logic condition for which the output under test is at a low logic level. Output sink current is supplied through a resistor to \(V_{\mathrm{CC}}\)
5. Measured with \(\mathrm{V}_{\mathrm{IL}}\) applied to CE and a logic high at the output.
6. Duration of short circuit should not exceed 1 second.
7. \(\mathrm{I}_{\mathrm{Cc}}\) is measured with the outputs open.

Field-Programmable Gate
Array \((16 \times 9 \times 9)\)

\section*{TEST LOAD CIRCUITS}


\section*{VOLTAGE WAVEFORMS}


\section*{LOGIC PROGRAMMING}

In a virgin device all \(\mathrm{Ni}-\mathrm{Cr}\) links are intact. PLS013 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS013 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(\mathrm{I}, \mathrm{B}, \mathrm{O}, \mathrm{P}\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND' ARRAY - (I), (P)


\section*{NOTES:}
1. This is the initial unprogrammed state of all links.
2. Any gate \(G_{n}\) will be unconditionally inhibited if both the True and Complement fuses of any input (I) are left intact.

\section*{VIRGIN STATE}

The PLS103 virgin device is factory shipped in an unprogrammed state, with all fuses intact, such that:
1. All \(P_{n}\) terms are disabled (inactive).
2. All \(P_{n}\) terms are active on all outputs.
3. All outputs are active-Low.

\section*{FPGA PROGRAM TABLE}
\begin{tabular}{|c|c|}
\hline CUSTOMER NAME & IHIS PORTION TO BE COMPLETED BY SIGNETICS \\
\hline PURCHASE ORDER \# & \(C F(X X X X)\) \\
\hline SIGNETICS DEVICE \# & CUSTOMER SYMBOLIZED PART \# \\
\hline TOTAL NUMBER OF PARTS & DATE RECEIVED \\
\hline PROGRAM TABLE \# & COMMENTS \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline GATE & & & & & & & & & & & & & & & & \\
\hline POLARITY & \(1_{15}\) & \(I_{14}\) & \({ }_{1} 1\) & \({ }_{12}\) & \({ }^{11}\) & \({ }_{10}\) & \(\mathrm{I}_{9}\) & \(\mathrm{I}_{8}\) & \(l_{7}\) & \(1_{6}\) & \(I_{5}\) & \(I_{4}\) & \(\mathrm{I}_{3}\) & \(\mathrm{I}_{2}\) & 1 & \(I_{0}\) \\
\hline \(\mathrm{F}_{0}\) & & & & & & & & & & & & & & & & \\
\hline F, & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{2}\) & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{3}\) & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{4}\) & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{5}\) & & & & & & & & & & & & & & & & \\
\hline \(F_{6}\) & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{7}\) & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{F}_{8}\) & & & & & & & & & & & & & & & & \\
\hline PIN
NO. & 2 & 2
1 & 2
2 & 2
3 & 2
4 & 2
5 & 2
6 & 2
7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline VARIABLE NAME & & & & & & & & & & & & & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
NOTES: \\
1. The FPGA is shipped with all links intact. Thus a background of entries corresponding to states of virgin links exists in the table, shown BLANK for clarity. \\
2. Unused Inputs are normally programmed Don't Care (-). \\
3. Unused Gates can be left blank.
\end{tabular}}} & \multicolumn{5}{|r|}{PROGRAM TABLE ENTRIES} & \multicolumn{2}{|l|}{AND} & \multicolumn{3}{|r|}{CONTROL} \\
\hline & & & & & & & \multicolumn{4}{|l|}{\begin{tabular}{|l:l|}
\hline INACTIVE & 0 \\
\hline I & H \\
\hline I & 1 \\
\hline Don't Caro & - \\
\hline \multicolumn{2}{c|}{ (1) }
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{|l|l|}
\hline INACTIVE & 0 \\
\hline 1 & \(H\) \\
\hline 1 & 1 \\
\hline Don't Care & - \\
\hline \multicolumn{2}{c|}{} \\
\hline \multicolumn{2}{c|}{} \\
\hline
\end{tabular}} & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\section*{Section 5 Programmable Logic Sequencer Device}

\section*{Application Specific Products}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{INDEX} \\
\hline \multicolumn{5}{|l|}{Series 20} \\
\hline PLS155 & Field-Programmable & Logic Sequencer & \((16 \times 45 \times 12) ; 18.2 \mathrm{MHz}\). & 5-3 \\
\hline PLS157 & Field-Programmable & Logic Sequencer & \((16 \times 45 \times 12) ; 18.2 \mathrm{MHz}\). & 5-14 \\
\hline PLS159A & Field-Programmable & Logic Sequencer & ( \(16 \times 45 \times 12\) ); \(25 \mathrm{MHz} \ldots\) & 5-25 \\
\hline \multicolumn{5}{|l|}{Series 24} \\
\hline PLS167 & Field-Programmable & Logic Sequencer & \((14 \times 48 \times 6) ; 20 \mathrm{MHz}\).... & 5-35 \\
\hline PLS167A & Field-Programmable & Logic Sequencer & \((14 \times 48 \times 6) ; 25 \mathrm{MHz} \ldots .\). & 5-47 \\
\hline PLS168 & Field-Programmable & Logic Sequencer & \((12 \times 48 \times 8) ; 20 \mathrm{MHz} \ldots .\). & 5-59 \\
\hline PLS168A & Field-Programmable & Logic Sequencer & \((12 \times 48 \times 8) ; 25 \mathrm{MHz} \ldots \ldots\) & 5-71 \\
\hline PLS179 & Field-Programmable & Logic Sequencer & \((20 \times 45 \times 12) ; 25 \mathrm{MHz} \ldots\) & 5-83 \\
\hline \multicolumn{5}{|l|}{Series 28} \\
\hline PLS105 & Field-Programmable & Logic Sequencer & \((16 \times 48 \times 8) ; 20 \mathrm{MHz} \ldots .\). & 5-93 \\
\hline PLS105A & Field-Programmable & Logic Sequencer & \((16 \times 48 \times 8) ; 25 \mathrm{MHz} \ldots .\). & 5-105 \\
\hline PLUS405 & Field-Programmable & Logic Sequencer & \((16 \times 64 \times 8) ; 50 \mathrm{MHz} \ldots .\). & 5-117 \\
\hline
\end{tabular}

\section*{Signetics}

\section*{Application Specific Products - Series 20}

\section*{DESCRIPTION}

The PLS155 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "fold-back" inverting buffer and control gate \(\mathrm{F}_{\mathrm{C}}\). It features 4 registered I/O outputs ( \(F\) ) in conjunction with 8 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs ( \(Q\) ), and Complement Array output ( \(\overline{\mathrm{C}}\) ). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

\title{
PLS155 \\ Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )
}

Signetics Programmable Logic
Product Specification

\section*{FEATURES}
- \(\mathrm{f}_{\text {MAX }}=14 \mathrm{MHz}\)
- 18.2 MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 8 bidirectional I/O lines
- 4 bidirectional registers
- J-K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable \(\overline{\mathrm{OE}}\) control
- Positive edge-triggered clock
- Input loading: \(\mathbf{- 1 0 0} \mu \mathrm{A}\) (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State outputs

FUNCTIONAL DIAGRAM


On-chip T/C buffers couple either True (I, B, Q) or Complement ( \(\bar{i}, \bar{B}, \bar{Q}, \bar{C}\) ) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional 1/O lines (B), whose output polarity is individually programmable through a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops. The Asynchronous Preset and Reset lines ( \(P, R\) ), are driven from the OR matrix.
All flip-flops are positive edge-triggered and can be used as input, output or 1/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).
The PLS155 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

\section*{VIRGIN STATE}

The factory shipped virgin device contains all fusible links intact, such that:
1. \(\overline{\mathrm{OE}}\) is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J/K only or J/K or D (controlled).
5. All B pins, are inputs and all F pins are outputs unless otherwise programmed.

\section*{LOGIC FUNCTION}


\section*{NOTES:}

Similar logic functions are applicable for \(D\) and \(T\) mode flip-flops.

\section*{FLIP-FLOP TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline \(\overline{O E}\) & L CK P R J K & Q & F \\
\hline H & & & Hi-Z \\
\hline L & X X H L X X & H & L \\
\hline L & X X L H X X & L & H \\
\hline L & L \(\uparrow\) L L L L & Q & \(\bar{Q}\) \\
\hline L & L \(\uparrow\) L L L H & L & H \\
\hline L & L 介 L L H L & H & L \\
\hline L & L \(\uparrow\) L L H H & \(\overline{\mathrm{Q}}\) & Q \\
\hline H & H \(\uparrow\) L L L H & L & \(\mathrm{H}^{*}\) \\
\hline H & H \(\uparrow\) L L H L & H & L* \\
\hline \multirow[t]{2}{*}{\(+10 \mathrm{~V}\)} & \(\times \uparrow \times \times\) L \({ }^{1}\) & L & \(H^{* *}\) \\
\hline & X \(\uparrow \times \times \mathrm{HL}\) & H & L** \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\(\mathrm{J} / \mathrm{K}=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2} \ldots \ldots \ldots \ldots \ldots . T_{31}\) \(T_{n}=\bar{C} \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \bullet Q_{1} \ldots\right) \cdot\left(B_{0} \cdot B_{1} \bullet \ldots\right)\) 2. \(\uparrow\) denotes transition from Low to High level. 3. \(X=\) Don't care
4. * \(=\) Forced at \(\mathrm{F}_{\mathrm{n}}\) pin for loading J/K flip-flop in I/O mode. \(L\) must be enabled, and other active \(T_{n}\) disabled via steering input(s) I, B, or Q .
5. At \(P=R=H, Q=H\). The final state of \(Q\) depends on which is released first.
6. * * Forced at \(\mathrm{F}_{\mathrm{n}}\) pin to load J/K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

\section*{FPLS LOGIC DIAGRAM}


\footnotetext{
NOTES:
1. All OR gate inputs with a blown link float to logic " 0 "
2. All other gates and control inputs with a blown link float to logic " 1 ".
3. \(\oplus\) denotes WIRE-OR.
4. Programmable connection.
}

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 20-pin Plastic DIP 300mil-wide & PLS155N \\
\hline 20-pin Plastic Leaded Chip Carrier & PLS155A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\text {IN }}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant V_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LImits} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low & \(V_{C C}=M i n\) & & & 0.8 & v \\
\hline \(V_{1 C}\) & Clamp & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}\) & & -0.8 & -1.2 & V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline & & \(V_{C C}=\) Min & & & & \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High & \(\mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA}\) & 2.4 & & & v \\
\hline \(\mathrm{V}_{\text {OL }}\) & Low & \(\mathrm{lOL}_{\mathrm{OL}}=10 \mathrm{~mA}\) & & 0.35 & 0.5 & V \\
\hline \multicolumn{7}{|l|}{Input current \({ }^{5}\)} \\
\hline & & \(V_{C C}=\) Max & & & & \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High & \(\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\) & & <1 & 80 & \(\mu \mathrm{A}\) \\
\hline ILL & Low & \(\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}\) & & -10 & -100 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline & & \(V_{C C}=\) Max & & & & \\
\hline 10 (OFF) & Hi-Z state \({ }^{5,6}\) & \(V_{\text {OUT }}=5.5 \mathrm{~V}\) & & 1 & 80 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}\) & & -1 & -140 & \(\mu \mathrm{A}\) \\
\hline los & Short circuit \({ }^{3,7}\) & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & -15 & & -70 & mA \\
\hline \({ }_{\text {ICc }}\) & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{4}\) & \(V_{C C}=\) Max & & 150 & 190 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline & & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) & & & & \\
\hline \(\mathrm{ClN}_{\text {I }}\) & Input & \(\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}\) & & 8 & & pF \\
\hline Cout & Output & & & 15 & & pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Icc is measured with the \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V , and the outputs open.
5. Leakage values are a combination of input and output leakage.
6. Measured with \(V_{I H}\) applied to \(\overline{O E}\).
7. Duration of short circuit should not exceed 1 second.

AC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & & Min \({ }^{5}\) & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{9}{|l|}{Pulse width} \\
\hline \begin{tabular}{l}
\(t_{\text {CKH }}\) \\
\(t_{\text {CKL }}\) \\
\(\mathrm{t}_{\mathrm{CKP}}\) \\
tpRH
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period \\
Preset/Reset pulse
\end{tabular} & \[
\begin{aligned}
& \mathrm{CK}- \\
& \mathrm{CK}+ \\
& \mathrm{CK}+ \\
& (\mathrm{I}, \mathrm{~B})+
\end{aligned}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK - } \\
& \text { CK + } \\
& (1, B)-
\end{aligned}
\] & \(C_{L}=30 \mathrm{pF}\) & 25
30
70
40 & \[
\begin{aligned}
& 20 \\
& 20 \\
& 50 \\
& 30
\end{aligned}
\] & & ns \\
\hline \multicolumn{9}{|l|}{Setup time} \\
\hline \[
\begin{aligned}
& t_{\text {IS1 }} \\
& t_{\text {IS2 }} \\
& t_{\text {IS3 }}
\end{aligned}
\] & \begin{tabular}{l}
Input \\
Input (through \(\mathrm{F}_{\mathrm{n}}\) ) \\
Input (through \\
Complement Array \({ }^{4}\)
\end{tabular} & \[
\begin{aligned}
& \text { CK + } \\
& \mathrm{CK}+ \\
& \mathrm{CK}+
\end{aligned}
\] & \[
\begin{aligned}
& (\mathrm{I}, \mathrm{~B}) \pm \\
& \mathrm{F} \pm \\
& (\mathrm{I}, \mathrm{~B}) \pm
\end{aligned}
\] & \(C_{L}=30 \mathrm{pF}\) & \[
\begin{aligned}
& 40 \\
& 20 \\
& 65
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 10 \\
& 40 \\
& \hline
\end{aligned}
\] & & ns \\
\hline \multicolumn{9}{|l|}{Hold time} \\
\hline \[
\begin{aligned}
& \mathbf{t}_{1 \mathrm{H} 1} \\
& \mathbf{t}_{\mathrm{tH2}}
\end{aligned}
\] & Input & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK + }
\end{aligned}
\] & \(\stackrel{(1, B)}{\mathrm{F}} \pm \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & \[
\begin{gathered}
0 \\
15
\end{gathered}
\] & \[
\begin{gathered}
-10 \\
10
\end{gathered}
\] & & ns \\
\hline \multicolumn{9}{|l|}{Propagation delays} \\
\hline \(\mathrm{t}_{\text {CKO }}\) & Clock & \(\mathrm{F} \pm\) & CK + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 25 & 30 & \multirow{7}{*}{ns} \\
\hline toei & Output enable & F- & \(\overline{\mathrm{OE}}\) - & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 20 & 30 & \\
\hline todi & Output disable \({ }^{3}\) & F + & \(\overline{O E}+\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 20 & 30 & \\
\hline \(t_{\text {PD }}\) & Output & \(\mathrm{B} \pm\) & \((1, B) \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 40 & 50 & \\
\hline \(\mathrm{t}_{\mathrm{OE} 2}\) & Output enable & B \(\pm\) & \((1, B)+\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 35 & 55 & \\
\hline tod2 & Output disable \({ }^{3}\) & B + & ( \(1, \mathrm{~B}\) ) - & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 30 & 35 & \\
\hline tPRO & Preset/Reset & \(\mathrm{F} \pm\) & \((1, B)+\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 50 & 55 & \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 10\) ns.
3. Measured at \(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).
4. When using the Complement Array \(\mathrm{T}_{\mathrm{CKP}}=95 \mathrm{~ns}(\mathrm{~min})\).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.
6. For test circuits, waveforms and timing diagrams see the following pages.

\section*{TEST LOAD CIRCUITS}


TIMING DIAGRAMS


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(t_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {ckL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Clock period. \\
\hline tpar & Width of preset input pulse. \\
\hline \(\mathrm{t}_{\text {S } 1}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {S } 2}\) & Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock. \\
\hline \(\mathrm{t}_{\mathrm{H} \mathbf{H}}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\mathrm{H} 2}\) & Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins. \\
\hline \({ }_{\text {teкo }}\) & Delay between positive transition of clock and when Outputs become valid (with OE Low). \\
\hline \(\mathrm{t}_{\text {OE1 }}\) & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline \(t_{0 D 1}\) & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {PD }}\) & Propagation delay between combinational inputs and outputs. \\
\hline toe2 & Delay between predefined Output Enable High, and when combinational Outputs become valid. \\
\hline \(\mathrm{t}_{\mathrm{OD} 2}\) & Delay between predefined Output Enable Low, and when combinational Outputs are in the OFF-state. \\
\hline \(\mathrm{t}_{\text {PRO }}\) & Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid. \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

TIMING DIAGRAMS (Continued)


\section*{VOLTAGE WAVEFORMS}


MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

\section*{LOGIC PROGRAMMING}

PLS155 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS155 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(1, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), ( \(\mathrm{Q}_{\mathrm{p}}\) )

'COMPLEMENT'' ARRAY - (C)

"OR" ARRAY - (F-F CONTROL MODE)


Notes on following page.

\section*{"OR" ARRAY - ( \(\mathrm{Q}_{\mathrm{n}}=\mathrm{D}\)-Type)}

"OR" ARRAY - \(\mathbf{Q}_{\mathrm{n}}=\mathrm{J}-\mathrm{K}\) Type)

"OR" ARRAY - (S or B), (P), (R)

"EX-OR" ARRAY-(B)

'" \(\overline{O E}\) ' ARRAY - (E)

LSO2250S
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline CONTROL & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline ENABLE \(^{4}\) & \(\bullet\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline DISABLE & - \\
\hline
\end{tabular}

\section*{NOTES:}
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ( \(\left.T, F_{C}, L, P, R, D\right)_{n}\) will be unconditionally inhibited if both of the \(I, B\), or \(Q\) links are left intact.
3. To prevent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}, F_{C}\).
4. \(E_{n} \because O\) and \(E_{n}=\cdot\) are logically equivalent states, since both cause \(F_{n}\) outputs to be unconditionally enabled.
5. Those states are not allowed for control gates (L, P, R, D) \()_{n}\) due to their lack of "OR" array links.

FPLS PROGRAM TABLE


\title{
Signetics
}

\section*{Application Specific Products} - Series 20

\section*{DESCRIPTION}

The PLS157 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "fold-back' inverting buffer and control gate \(\mathrm{F}_{\mathrm{C}}\). It features 6 registered I/O outputs ( \(F\) ) in conjunction with 6 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output ( \(\overline{\mathrm{C}}\) ). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

\title{
PLS157 \\ Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )
}

\section*{Signetics Programmable Logic}

Product Specification

\section*{FEATURES}
- \(\mathrm{f}_{\text {MAX }}=14 \mathrm{MHz}\)
- 18.2 MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 6 bidirectional I/O lines
- 6 bidirectional registers
- J-K, T, or D-type flip-flops
- 3-State outputs
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable \(\overline{\mathrm{OE}}\) control
- Positive edge-triggered clock
- Input loading: \(\mathbf{- 1 0 0} \mu \mathrm{A}\) (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible

FUNCTIONAL DIAGRAM


On-chip T/C buffers couple either True (I, B, Q) or Complement ( \(\bar{I}, \bar{B}, \bar{Q}, \bar{C}\) ) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional I/O lines (B), whose output polarity is individually programmable through a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops. The Asynchronous Preset and Reset lines ( \(\mathrm{P}, \mathrm{R}\) ), for two of the registers are driven from the AND matrix. The Preset and Reset lines ( \(\mathrm{P}, \mathrm{R}\) ) controlling the lower four registers are driven from the OR matrix.
All flip-flops are positive edge-triggered and can be used as input, output or \(1 / O\) (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).
The PLS157 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

\section*{VIRGIN STATE}

The factory shipped virgin device contains all fusible links intact, such that:
1. \(\overline{O E}\) is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to \(\mathrm{J} / \mathrm{K}\) only or \(\mathrm{J} / \mathrm{K}\) or D (controlled).
5. All \(B\) pins are inputs and all \(F\) pins are outputs unless otherwise programmed.

\section*{LOGIC FUNCTION}


\section*{NOTES:}

Similar logic functions are applicable for D and T mode flip-flops.

\section*{FLIP-FLOP TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline \(\overline{O E}\) & L CK P R J K & Q & F \\
\hline H & & & Hi-Z \\
\hline L & X X H L X X & H & L \\
\hline L & X X L H X X & L & H \\
\hline L & L \(\uparrow\) L L L L & Q & \(\bar{Q}\) \\
\hline L & L \(\uparrow\) L L L H & L & H \\
\hline L & L \(\uparrow\) L L H L & H & L \\
\hline L & L \(\uparrow\) L L H H & \(\bar{Q}\) & Q \\
\hline H & H \(\uparrow\) L L L H & L & \(\mathrm{H}^{*}\) \\
\hline H & H \(\uparrow\) L L H L & H & L* \\
\hline \multirow[b]{2}{*}{+10V} & \(\times \uparrow \times \times\) L & L & \(\mathrm{H}^{* *}\) \\
\hline & X \(\uparrow \times \times \mathrm{HL}\) & H & L** \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\(J / K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots . . T_{31}\)
\(T_{n}=\bar{C} \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right) \cdot\left(B_{0} \bullet B_{1} \cdot \ldots\right)\)
2. Idenotes transition from Low to High level.
3. \(X=\) Don't care
4. \({ }^{*}=\) Forced at \(F_{n}\) pin for loading \(\mathrm{J} / \mathrm{K}\) flip-flop in \(\mathrm{I} / \mathrm{O}\) mode. L must be enabled, and other active \(T_{n}\) disabled via steering input(s) I, B, or Q.
5. At \(P=R=H, Q=H\). The final state of \(Q\) depends on which is released first.
6. * * = Forced at \(F_{n}\) pin to load J/K flip-flop independent of program code (Diagnostic mode), 3 -State B outputs.

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

FPLS LOGIC DIAGRAM


Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 20-pin Plastic DIP 300mil-wide & PLS157N \\
\hline 20-pin Plastic Leaded Chip Carrier & PLS157A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & \multicolumn{2}{|c|}{ Min } & Max \\
& \\
\hline \(\mathrm{V}_{\text {CC }}\) & Supply voltage & & +7 & \(\mathrm{~V}_{D C}\) \\
\hline \(\mathrm{~V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\text {IN }}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\text {A }}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{\mathbf{2}}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & High Low Clamp & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\text { Max } \\
\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
\mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I}}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2
\end{gathered}
\] & v
v
v \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{v}_{\mathrm{OH}} \\
& \mathrm{v}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High } \\
& \text { Low }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.5 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
I_{\mathrm{IH}}
\] & High Low & \[
\begin{aligned}
V_{I N} & =5.5 \mathrm{~V} \\
V_{I N} & =0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
<1 \\
-10
\end{array}
\] & \[
\begin{gathered}
80 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline 10 (OFF) los & \(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{5,6}\) Short circuit \({ }^{3}\), 7 & \[
\begin{aligned}
V_{\mathrm{CC}} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{gathered}
80 \\
-140 \\
-70
\end{gathered}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) mA \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{4}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 150 & 190 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{C C} & =5.0 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
V_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
8 \\
15
\end{gathered}
\] & & pF
pF
pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Icc is measured with the \(\overline{O E}\) input grounded, all other inputs at 4.5 V , and the outputs open.
5. Leakage values are a combination of input and output leakage.
6. Measured with \(V_{I H}\) applied to \(\overline{O E}\).
7. Duration of short circuit should not exceed 1 second.

AC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & & Min \({ }^{5}\) & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{9}{|l|}{Pulse width} \\
\hline \begin{tabular}{l}
\({ }^{\text {t.KKH }}\) \\
\({ }^{\text {t. }}\) CKL \\
\({ }^{\text {tckp }}\) \\
tpre
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period \\
Preset/Reset pulse
\end{tabular} & \[
\begin{gathered}
\text { CK - } \\
\text { CK + } \\
\text { CK + } \\
(1, B)+
\end{gathered}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK }- \\
& \text { CK + } \\
& (\mathrm{I}, \mathrm{~B})-
\end{aligned}
\] & \(C_{L}=30 \mathrm{pF}\) & 25
30
70
40 & 20
20
50
30 & & ns \\
\hline \multicolumn{9}{|l|}{Setup time} \\
\hline \[
\begin{aligned}
& t_{\mid S 1} \\
& t_{\text {IS2 }} \\
& t_{\text {IS }}
\end{aligned}
\] & \begin{tabular}{l}
Input \\
Input (through \(\mathrm{F}_{\mathrm{n}}\) ) \\
Input (through \\
Complement Array) \({ }^{4}\)
\end{tabular} & \[
\begin{aligned}
& \text { CK + } \\
& \mathrm{CK}+ \\
& \mathrm{CK}+
\end{aligned}
\] & \[
\begin{aligned}
& (\mathrm{I}, \mathrm{~B}) \pm \\
& \mathrm{F} \pm \\
& (\mathrm{I}, \mathrm{~B}) \pm
\end{aligned}
\] & \(C_{L}=30 \mathrm{pF}\) & \[
\begin{aligned}
& 40 \\
& 20 \\
& 65
\end{aligned}
\] & \[
\begin{array}{r}
30 \\
10 \\
40
\end{array}
\] & & ns \\
\hline \multicolumn{9}{|l|}{Hold time} \\
\hline \[
\begin{aligned}
& t_{t_{1 H}}
\end{aligned}
\] & Input & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK + }
\end{aligned}
\] & \(\stackrel{(1, B)}{\mathrm{F}} \pm \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & \[
\begin{gathered}
0 \\
15
\end{gathered}
\] & \[
\begin{gathered}
-10 \\
10
\end{gathered}
\] & & ns \\
\hline \multicolumn{9}{|l|}{Propagation delays} \\
\hline \({ }_{\text {t }}\) & Clock & \(F \pm\) & CK + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 25 & 30 & \multirow{7}{*}{ns} \\
\hline toen & Output enable & F - & OE - & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 20 & 30 & \\
\hline tod 1 & Output disable \({ }^{3}\) & F + & \(\overline{\mathrm{OE}}+\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 20 & 30 & \\
\hline tPD & Output & \(\mathrm{B} \pm\) & \((1, B) \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 40 & 50 & \\
\hline toe2 & Output enable & \(\mathrm{B} \pm\) & \((1, B)+\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 35 & 55 & \\
\hline tod 2 & Output disable \({ }^{3}\) & B + & \((1, B)-\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 30 & 35 & \\
\hline tpro & Preset/Reset & \(\mathrm{F} \pm\) & \((1, B)+\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 50 & 55 & \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 10 \mathrm{~ns}\).
3. Measured at \(V_{T}=V_{O L}+0.5 \mathrm{~V}\).
4. When using the Complement Array \(\mathrm{T}_{\text {CKP }}=95 \mathrm{~ns}\) (min).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.
6. For test circuits, waveforms and timing diagrams see the following pages.

TEST LOAD CIRCUITS


\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(t_{\text {cKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Clock period. \\
\hline \(t_{\text {PRH }}\) & Width of preset input pulse. \\
\hline \(\mathrm{t}_{\text {IS } 1}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {IS2 }}\) & Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock. \\
\hline \(\mathrm{t}_{\mathrm{H} 1}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\mathrm{IH} 2}\) & Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins. \\
\hline \(\mathrm{t}_{\text {CKO }}\) & Delay between positive transition of clock and when Outputs become valid (with OE Low). \\
\hline toE1 & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline toD1 & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {PD }}\) & Propagation delay between combinational inputs and outputs. \\
\hline toe2 & Delay between predefined Output Enable High, and when combinational Outputs become valid. \\
\hline tod2 & Delay between predefined Output Enable Low, and when combinational Outputs are in the OFF-state. \\
\hline \(t_{\text {PRO }}\) & Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


VOLTAGE WAVEFORMS
MEASUREMENTS:
All circuit delays are measured at the +1.5V level
of inputs and outputs, unless otherwise specified.
Input Pulses

\section*{LOGIC PROGRAMMING}

PLS157 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS157 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND' ARRAY - (I), (B), ( \(\mathbf{Q p}_{\mathrm{p}}\) )

'COMPLEMENT" ARRAY - (C)

\[
\begin{array}{|c|c|}
\hline \text { ACTION } & \text { CODE } \\
\hline \text { GENERATE }^{5} & \mathbf{A} \\
\hline
\end{array}
\]

'OR' ARRAY - (F-F CONTROL MODE)

'OR' ARRAY - ( \(\left.\mathbf{Q}_{\mathbf{n}}=\mathbf{D - T y p e}\right)\)


Notes on following page.
"OR" ARRAY - ( \(\mathrm{Q}_{\mathrm{n}}=\mathrm{J}-\mathrm{K}\) Type)

"OR" ARRAY - (S or B), (P), (R)

"EX-OR" ARRAY - (B)

"'OE" ARRAY - (E)

\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline ENABLE & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline DISABLE & - \\
\hline
\end{tabular}

\section*{NOTES:}
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ( \(\left.T, F_{C}, L, P, R, D\right)_{n}\) will be unconditionally inhibited if both of the \(I, B\), or \(Q\) links are left intact.
3. To prevent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}, F_{C}\).
4. \(E_{n}=O\) and \(E_{n}=\cdot\) are logically equivalent states, since both cause \(F_{n}\) outputs to be unconditionally enabled.
5. These states are not allowed for control gates (L, P, R, D) \(n\) due to their lack of "OR" array links.

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

FPLS PROGRAM TABLE


T801350S

\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 20}

\section*{DESCRIPTION}

The PLS159A is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a 'fold-back' inverting buffer and control gate \(\mathrm{F}_{\mathrm{C}}\). It features 8 registered I/O outputs ( \(F\) ) in conjunction with 4 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates ( \(\mathrm{D}, \mathrm{L}\) ) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output ( \(\overline{\mathrm{C}}\) ). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

\section*{FEATURES}
- High-speed version of PLS159
- \(\mathrm{f}_{\mathrm{MAX}}=18 \mathrm{MHz}\)
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J-K, T, or D-type flip-flops
- Power-on reset feature on all flip-flops ( \(F_{n}=1\) )
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable \(\overline{O E}\) control
- Positive edge-triggered clock
- Input loading: \(-100 \mu \mathrm{~A}\) (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State outputs

FUNCTIONAL DIAGRAM


PIN CONFIGURATIONS


\section*{A Package}


\section*{APPLICATIONS}
- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

On-chip T/C buffers couple either True (I, B, Q) or Complement ( \(\bar{I}, \bar{B}, \bar{Q}, \bar{C})\) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional I/O lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops, as well as asynchronous Preset and Reset lines (P, R).
All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).
The PLS159A is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

\section*{VIRGIN STATE}

The factory shipped virgin device contains all fusible links intact, such that:
1. \(\overline{O E}\) is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All \(B\) pins are inputs and all \(F\) pins are outputs unless otherwise programmed.

\section*{CAUTION: PLS159A}

\section*{PROGRAMMING ALGORITHM}

The programming voltage required to program the PLS159A is higher (17.5V) then that required to program the PLS159 (14.5V). Consequently, the PLS159 programming algorithm will not program the PLS159A. Please exercise caution when accessing programmer device codes to insure that the correct algorithm is used.

\section*{LOGIC FUNCTION}


\section*{NOTE:}

Similar logic functions are applicable for \(D\) and \(T\) mode flip-flops.

\section*{FLIP-FLOP TRUTH TABLE}
\begin{tabular}{|c|c|c|c|}
\hline \(\overline{O E}\) & L CK P R J K & Q & F \\
\hline H & & & Hi-Z \\
\hline L & X X L X X X & L & H \\
\hline \[
\begin{aligned}
& L \\
& L
\end{aligned}
\] & \[
\begin{array}{llllll}
\hline X & X & H & L & X & X \\
X & X & L & H & X & X
\end{array}
\] & H
\(L\) & \[
\begin{aligned}
& L \\
& H
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{array}{llllll}
L & \uparrow & L & L & L & L \\
L & \uparrow & L & L & L & H \\
L & \uparrow & L & L & H & L \\
L & \uparrow & L & L & H & H
\end{array}
\] & \begin{tabular}{l} 
Q \\
\hline \\
\hline \\
\hline Q
\end{tabular} & \[
\begin{aligned}
& \bar{Q} \\
& H \\
& L \\
& Q
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{array}{llllll}
H & \uparrow & L & L & L & H \\
H & \uparrow & L & L & H & L
\end{array}
\] & L & \[
\begin{aligned}
& \mathrm{H}^{*} \\
& \mathrm{~L}^{*}
\end{aligned}
\] \\
\hline +10V & \[
\begin{array}{lllllll}
X & \uparrow & X & X & L & H \\
X & \uparrow & X & X & H & L
\end{array}
\] & L & \[
\begin{aligned}
& \mathrm{H}^{* *} \\
& \mathrm{~L}^{* *}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\[
J-K=T_{0}+T_{1}+T_{2}
\]
\(\qquad\) \(T_{31}\) \(T_{n}=\bar{C} \cdot\left(I_{0} \bullet I_{1} \bullet I_{2} \ldots\right) \cdot\left(Q_{0} \bullet Q_{1} \ldots\right) \cdot\left(B_{0} \cdot B_{1} \bullet \ldots\right)\)
2. Tdenotes transition from Low to High level.
3. \(X=\) Don't Care
4. * \(=\) Forced at \(F_{n}\) pin for loading J-K flip-flop in I/O mode. L must be enabled, and other active \(T_{n}\) disabled via steering input(s) I, B, or Q .
5. At \(P=R=H, Q=H\). The final state of \(Q\) depends on which is released first.
6. * * = Forced at \(\mathrm{F}_{\mathrm{n}}\) pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

\section*{FPLS LOGIC DIAGRAM}


\footnotetext{
wore
1. All OR gate inputs with a blown link float to logic " 0 ".
2. All other gates and control inputs with a blown link float to logic " 1 ".
3. \(\oplus\) denotes WIRE-OR.
4. Programmable connection
}

ORDERING INFORMATION
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 20-pin Plastic DIP 300mil-wide & PLS159AN \\
\hline 20-pin Plastic Leaded Chip Carrier & PLS159AA \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } \\
\multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{I}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\text {A }}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LImits} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& V_{\text {IH }} \\
& V_{I L} \\
& V_{I C} \\
& \hline
\end{aligned}
\] & High Low Clamp & \[
\begin{gathered}
V_{C C}=\text { Max } \\
V_{C C}=\text { Min } \\
V_{C C}=\text { Min, } \mathbb{I N}_{N}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \begin{tabular}{c}
0.8 \\
-1.2 \\
\hline
\end{tabular} & V
V
V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
V_{\mathrm{OH}}
\]
\[
\mathrm{v}_{\mathrm{OL}}
\] & High Low & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\
\mathrm{IOL}^{2}=10 \mathrm{~mA}
\end{gathered}
\] & 2.4 & 0.35 & 0.5 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & High
Low & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{array}{r}
<1 \\
-10
\end{array}
\] & \[
\begin{gathered}
40 \\
-100
\end{gathered}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
Hi-Z state \({ }^{4,7}\) \\
Short circuit \({ }^{3}\), 5
\end{tabular} & \[
\begin{gathered}
V_{C C}=M a x, V_{\text {OUT }}=5.5 \mathrm{~V} \\
V_{\text {OUT }}=0.45 \mathrm{~V} \\
V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{gathered}
80 \\
-140 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{6}\) & \(\mathrm{V}_{C C}=\mathrm{Max}\) & & 150 & 190 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\text {IN }}\) Cout & Input Output & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{gathered}
8 \\
15
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(\mathrm{V}_{\mathrm{IH}}\) applied to \(\overline{\mathrm{OE}}\).
5. Duration of short circuit should not exceed 1 second.
6. ICC is measured with the \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V , and the outputs open.
7. Leakage values are a combination of input and output leakage.

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multirow[t]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & & Min \({ }^{5}\) & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{9}{|l|}{Pulse width} \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Clock \({ }^{2}\) High & CK - & CK + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 20 & 15 & & \multirow{4}{*}{ns} \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Clock Low & CK + & CK- & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 20 & 15 & & \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Period & CK + & CK + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 55 & 45 & & \\
\hline tPRH & Preset/Reset pulse & (I, B) + & (I, B) - & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 35 & 30 & & \\
\hline \multicolumn{9}{|l|}{Setup time} \\
\hline \(\mathrm{t}_{1} 1\) & Input & CK + & ( \(1, \mathrm{~B}\) ) \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 35 & 30 & & \multirow{3}{*}{ns} \\
\hline \(\mathrm{t}_{1} 2\) & Input (through \(\mathrm{F}_{\mathrm{n}}\) ) & CK + & \(\mathrm{F} \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 15 & 10 & & \\
\hline \({ }_{\text {tis3 }}\) & Input (through Complement Array) \({ }^{4}\) & CK + & \((1, B) \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 55 & 45 & & \\
\hline \multicolumn{9}{|l|}{Hold time} \\
\hline \(\mathrm{t}_{\mathrm{H} 1}\) & Input & CK + & (I, B) \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 0 & -5 & & \multirow[b]{2}{*}{ns} \\
\hline \(\mathrm{t}_{\mathrm{H} 2}\) & Input (through \(\mathrm{F}_{\mathrm{n}}\) ) & CK + & \(\mathrm{F} \pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 15 & 10 & & \\
\hline \multicolumn{9}{|l|}{Propagation delay} \\
\hline tско & Clock & \(\mathrm{F} \pm\) & CK + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 15 & 20 & \multirow{8}{*}{ns} \\
\hline toew & Output enable & F- & \(\overline{\mathrm{OE}}\) - & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 20 & 30 & \\
\hline todi & Output disable \({ }^{3}\) & F + & \(\overline{\mathrm{OE}}+\) & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 20 & 30 & \\
\hline \(t_{\text {PD }}\) & Output & \(\mathrm{B} \pm\) & ( \(1, \mathrm{~B}\) ) \(\pm\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 25 & 35 & \\
\hline \(\mathrm{t}_{\mathrm{EE} 2}\) & Output enable & B \(\pm\) & ( \(1, \mathrm{~B}\) ) + & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 20 & 30 & \\
\hline tod2 & Output disable \({ }^{3}\) & B + & (1, B) - & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & 20 & 30 & \\
\hline tPRO & Preset/Reset & \(\mathrm{F} \pm\) & \((1, B)+\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 35 & 45 & \\
\hline tppr & Power-on/preset & F - & \(\mathrm{V}_{\mathrm{CC}^{+}}\) & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & 0 & 10 & \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 10 n s\).
3. Measured at \(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).
4. When using the Complement Array \(\mathrm{T}_{\mathrm{CKP}}=75 \mathrm{~ns}\) (min).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.

\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\mathrm{CKH}}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Clock period. \\
\hline tPRH & Width of preset input pulse. \\
\hline \(\mathrm{t}_{\text {IS }}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {S } 2}\) & Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock. \\
\hline \(\mathrm{t}_{\mathrm{H} 1}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\mathrm{H} 2}\) & Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins. \\
\hline tcko & Delay between positive transition of clock and when outputs become valid (with \(\overline{\mathrm{OE}}\) Low). \\
\hline toe1 & Delay between beginning of Output Enable Low and when outputs become valid. \\
\hline toD1 & Delay between beginning of Output Enable High and when outputs are in the OFF-state. \\
\hline \(\mathrm{t}_{\text {PPR }}\) & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when flip-flop outputs become preset at "1" (internal Q outputs at " 0 '). \\
\hline \(t_{\text {PD }}\) & Propagation delay between combinational inputs and outputs. \\
\hline toe2 & Delay between predefined Output Enable High, and when combinational outputs become valid. \\
\hline tod2 & Delay between predefined Output Enable Low and when combinational outputs are in the OFF-state. \\
\hline tPRO & Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid. \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(16 \times 45 \times 12\) )

TIMING DIAGRAMS (Continued)


LOGIC PROGRAMMING
PLS159A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS159A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(I, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

"OR" ARRAY - (F-F CONTROL MODE)

"OR" ARRAY - ( \(\mathrm{Q}_{\mathrm{n}}=\mathrm{D}\) - Type)


CAUTION:
The PLS159A Programming Algorithm is different from the PLS159.

\section*{"OR" ARRAY - ( \(\mathbf{Q}_{\mathrm{n}}=\mathrm{J}-\mathrm{K}\) Type)}

"OR" ARRAY - (S or B)

"EX-OR" ARRAY - (B)

"OE " ARRAY - (E)


NOTES:
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ( \(\left.\mathrm{T}, \mathrm{F}_{\mathrm{C}}, \mathrm{L}, \mathrm{P}, \mathrm{R}, \mathrm{D}\right)_{\mathrm{n}}\) will be unconditionally inhibited if both of the I, B, or Q links are left intact.
3. To prevent oscillations, this state is not allowed for \(C\) link, pairs coupled to active gates \(T_{n}, F_{C}\).
4. \(E_{n}=0\) and \(E_{n}=\cdot\) are logically equivalent states, since both cause \(F_{n}\) outputs to be unconditionally enabled.
5. These states are not allowed for control gates ( \(L, P, R, D)_{n}\) due to their lack of "OR" array links.

FPLS PROGRAM TABLE


\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 24}

\section*{DESCRIPTION}

The PLS167 is a bipolar, programmable state machine of the Mealy type. The Field Programmable Logic Sequencer (FPLS) contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(8 Q_{p}\), and \(4 Q_{f}\) edgetriggered, clocked S/R flip-flops, with an asynchronous preset option.

All flip-flops are unconditionally preset to "1" during power turn-on.

The AND Array combines 14 external inputs, \(\mathrm{I}_{0-13}\), with 8 internal inputs, \(\mathrm{P}_{0-7}\), fed back from the State Register to form up to 48 transition terms (AND terms). In addition, \(P_{0}\) and \(P_{1}\) of the internal State Register are brought off-chip to allow extending the Output Register to 6 bits, if so desired.
All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR Array to issue next-state and nextoutput commands to their respective registers on the Low-to-High transition of the Clock pulse.

Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to Output-

\section*{PLS167}

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

\author{
Signetics Programmable Logic Product Specification
}

Enable function, as an additional user programmable option.
Order codes are listed in the Ordering Information Table.
FEATURES
- fax 13.9 MHz
- 20MHz clock rate
- Field-Programmable (Ni-Cr link)
- 14 True/Complement buffered inputs
- 48 programmable AND gates
- 25 programmable OR gates
- 8-bit State Register
- 2-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic " 1 " of all registers
- Automatic logic "HOLD' state via S/R flip-flops
- On-chip Test Array
- Power: 600mW (typ.)
- TTL compatible
- 3-State outputs
- Single +5V supply
- 300mil-wide 24-pin DIP

FUNCTIONAL DIAGRAM


\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-7 \\
17-23
\end{gathered}
\] & \(\mathrm{I}_{1-13}\) & Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 8 & 10 & Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(I_{0}\) is held at +10 V , device outputs \(\mathrm{F}_{0-3}\) and \(\mathrm{P}_{0-1}\) reflect the contents of State Register bits \(\mathrm{P}_{2-7}\) (see Diagnostic Output Mode diagram). The contents of flip-flops \(\mathrm{P}_{0-1}\) and \(\mathrm{F}_{0-3}\) remain unaltered. & Active-High/Low \\
\hline \[
\begin{gathered}
9-11 \\
13
\end{gathered}
\] & \(\mathrm{F}_{0-3}\) & Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of Output Register bits \(Q_{0-3}\), when enabled. When \(I_{0}\) is held at \(+10 \mathrm{~V}, \mathrm{~F}_{0-3}=\left(P_{2-5}\right)\). & Active-High \\
\hline 14-15 & \(\mathrm{P}_{0-1}\) & Logic/Diagnostic Outputs: Two register bits with shared function as least significant State Register bits, or most significant Output Register bits. When \(\mathrm{I}_{0}\) is held at +10 V , \(\mathrm{P}_{0-1}=\left(\mathrm{P}_{6-7}\right)\). & Active-High \\
\hline 16 & PR/ \(\overline{O E}\) & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an asynchronous preset to logic " 1 " of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and \(\mathrm{P}_{0-1}\) and \(\mathrm{F}_{0-3}\) are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low. \\
- Output Enable: Provides an Output Enable function to all cutput buffers.
\end{tabular} & Active-High (H)
Active-Low (L) \\
\hline
\end{tabular}

\section*{LOGIC FUNCTION}


\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ठE option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All \(\mathrm{S} / \mathrm{R}\) flip-flop inputs are disabled ( 0 ).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

TRUTH TABLE 1, 2, 3, 4, 5, 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{V cc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{CK} & \multirow[b]{2}{*}{S} & \multirow[b]{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow[b]{2}{*}{F} \\
\hline & PR & \(\overline{\mathrm{OE}}\) & & & & & & \\
\hline \multirow{3}{*}{+5V} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
\begin{gathered}
* \\
+10 \mathrm{~V} \\
\mathrm{x}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \begin{tabular}{l} 
X \\
X \\
X \\
\hline
\end{tabular} & \(x\)
x
x & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{gathered}
H \\
\left(Q_{P}\right)_{n} \\
\left(Q_{F}\right)_{n}
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& H \\
& L \\
& L
\end{aligned}
\] & \[
\begin{gathered}
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & X
X
X & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \begin{tabular}{l}
Hi -Z \\
\(\left(Q_{p}\right)_{n}\) \\
\(\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}\)
\end{tabular} \\
\hline & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
Q_{n} \\
\mathrm{~L} \\
\mathrm{H} \\
\text { IND. }
\end{gathered}
\] & \[
\begin{gathered}
\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}} \\
\mathrm{~L} \\
\mathrm{H} \\
\text { IND. }
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\[
S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47}
\]
\(T_{n}=C\left(l_{0} l_{1} l_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{7}\right)\)
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user programmable option.
3. \(\uparrow\) denotes transition from Low to High level.
4. \(R=S=\) High is an illegal input condition.
5. \(*=H / L /+10 \mathrm{~V}\)
6. \(X=\) Don't Care \((\leqslant 5.5 \mathrm{~V})\)

FPLS LOGIC DIAGRAM


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300mil-wide
\end{tabular} & PLS167N \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLS167A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } \\
\multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the dovico is not implied.

\section*{THERMAL RATINGS}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{c} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\]
\[
V_{I C}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
V_{C C}=\text { Max } \\
V_{C C}=M \operatorname{Min} \\
V_{C C}=M i n, \operatorname{l}_{\mathbb{N}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2
\end{gathered}
\] & V
V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High }^{4} \\
& \text { Low }^{5}
\end{aligned}
\] & \[
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\
\mathrm{IOH}^{\prime} & =-2 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{OL}} & =9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& I_{I H} \\
& I_{I L} \\
& I_{I L}
\end{aligned}
\] & High Low Low (CK input) & \[
\begin{aligned}
& V_{I N}=5.5 \mathrm{~V} \\
& V_{I N}=0.45 \mathrm{~V} \\
& V_{I N}=0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
<1 \\
-10 \\
-50
\end{array}
\] & \[
\begin{gathered}
25 \\
-100 \\
-250
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{6}\) \\
Short circuit \({ }^{3,7}\)
\end{tabular} & \[
\begin{aligned}
V_{\text {CC }} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & 1
-1 & \[
\begin{gathered}
40 \\
-40 \\
-70 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{\text {CC }} & =5.0 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
V_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
10 & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(V_{C C}=5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(V_{I L}\) applied to \(\overline{O E}\) and a logic high stored, or with \(V_{I H}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(\mathrm{V}_{\mathrm{IL}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\) Output sink current is supplied through a resistor to \(V_{c c}\).
6. Measured with \(V_{I H}\) applied to PR/OE.
7. Duration of short circuit should not exceed 1 second.
8. \(I_{C C}\) is measured with the PR/ \(\overline{O E}\) input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(t_{\text {CKH }}\) \\
\(t_{\text {CKL }}\) \\
\(\mathrm{t}_{\mathrm{CKP} 1^{1}} \mathrm{~B}\) \\
\(\mathrm{t}_{\mathrm{CKP} 2^{B}}\) \\
tpRH
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period (without Complement Array) \\
Period (with Complement Array) \\
Preset pulse
\end{tabular} & \[
\begin{aligned}
& \text { CK - } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR - }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK }- \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR + }
\end{aligned}
\] & \[
\begin{gathered}
25 \\
25 \\
80 \\
120 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 60 \\
& 15
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IS} 1} \mathrm{~A}\) \\
\(\mathrm{t}_{1 S 1} B\) \\
\(\mathrm{t}_{\mathrm{IS} 1} \mathrm{C}\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~A}\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~B}^{\mathrm{B}}\) \\
\(\mathrm{t}_{1 \mathrm{~S} 2} \mathrm{C}\) \\
tvs \\
tpRs
\end{tabular} & \begin{tabular}{l}
Input \\
Input \\
Input \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Power-on preset \\
Preset
\end{tabular} & \begin{tabular}{l}
CK + \\
CK + \\
CK + \\
CK + \\
CK + \\
CK + \\
CK - \\
CK -
\end{tabular} & \begin{tabular}{l}
Input \(\pm\) \\
Input \(\pm\) \\
Input \(\pm\) \\
Input \(\pm\) \\
Input \\
Input \\
\(\mathrm{V}_{\mathrm{Cc}}{ }^{+}\) \\
PR-
\end{tabular} & \[
\begin{gathered}
60 \\
50 \\
42 \\
90 \\
80 \\
72 \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & Input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{CKO}}\) \\
toe \\
tod \\
\(t_{\text {PR }}\) \\
\(t_{\text {PPR }}\)
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \\
Preset \\
Power-on preset
\end{tabular} & \begin{tabular}{l}
Output \(\pm\) \\
Output - \\
Output + \\
Output + \\
Output +
\end{tabular} & \[
\begin{aligned}
& \mathrm{CK}+ \\
& \mathrm{OE}- \\
& \mathrm{OE}+ \\
& \mathrm{PR}+ \\
& \mathrm{V}_{\mathrm{CC}}+
\end{aligned}
\] & & 15
20
20
18
0 & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30 \\
& 10
\end{aligned}
\] & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation \({ }^{3}\)} \\
\hline \[
\begin{aligned}
& f_{\text {MAX }} \\
& f_{\text {MAXC }}
\end{aligned}
\] & Without Complement Array With Complement Array & & & & & \[
\begin{gathered}
13.9 \\
9.8
\end{gathered}
\] & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time ( \(10 \%-90 \%\) ) \(\leqslant 30 \mathrm{~ns}\).
3. Soo "Speed vs. OR Loading" diagrams.

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \({ }^{\text {tekL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP1 }}\) & Clock period - when not using Complement array. \\
\hline \(\mathrm{t}_{\text {IS }}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {CKP2 }}\) & Clock period - when using complement array. \\
\hline \(\mathrm{t}_{\text {IS } 2}\) & Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array). \\
\hline \(\mathrm{t}_{\mathrm{vs}}\) & Required delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and negative transition of clock preceding first reliable clock pulse. \\
\hline \(t_{\text {PRS }}\) & Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse. \\
\hline \(\mathrm{t}_{\mathrm{IH}}\) & Required delay between positive transition of clock and end of valid Input data. \\
\hline \(\mathrm{t}_{\mathrm{CKO}}\) & Delay between positive transition of clock and when Outputs become valid (with PR/OE Low). \\
\hline toe & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline tod & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {SRE }}\) & Delay between input \(\mathrm{I}_{0}\) transition to Diagnostic mode and when the Outputs reflect the contents of the State Register. \\
\hline \({ }^{\text {tsRD }}\) & Delay between input \(I_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid at "1". \\
\hline \(t_{\text {PPR }}\) & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when Outputs become preset at " 1 ". \\
\hline tPRH & Width of preset input puise. \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{SPEED VS. 'OR' LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\(\left(1 / f_{M A X}\right)=t_{C Y}=t_{I S}+t_{C K O}\)

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(t_{I S}\), due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of \(t_{I S 1}\) with the number of terms connected per OR.

The AC electrical characteristics contain three limits for the parameters \(\mathrm{t}_{\mathrm{I} 1}\) and \(\mathrm{t}_{\mathrm{I} 2}\). The first, \(t_{I S 1 A}\) is guaranteed for a device with 48 terms connected to any OR line. \(t_{I_{S 1 B}}\) is guaranteed for a device with 32 terms connected to any OR line. And \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{C}}\) is guaranteed for a device with 24 terms connected to any OR line.


Figure 1. \(\mathbf{t}_{\mathbf{I S} 1}\) vs. Terms/OR Connected

The Three other entries in the AC table, \(t_{I S 2}\) \(A, B\), and \(C\) are corresponding 48,32 , and 24 term limits when using the on-chip Complement Array.

The worst case \(t_{I S}\) for a given application can be determined by identifying the \(O R\) line with the maximum number of \(T_{n}\) connections. This can be done by referring to
the interconnect pattern in the FPLS logic diagram, typically illustrated in Figure 2, or by counting the maximum number of " H " or 'L'" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{\text {IS }}\) and, by implication, the maximum clocking frequency for reliable operation.

Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

\section*{LOGIC PROGRAMMING}

PLS167 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS167 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(1, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

\section*{PRESET/ \(\overline{O E}\) OPTION - (P/E)}


LSO1814S
\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline PRESET \(^{1}\) & H \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline\(\overline{O E}\) & \(L\) \\
\hline
\end{tabular}

\section*{PROGRAMMING:}

The PLS167 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs \((H)\) as the present state.
"AND" ARRAY - (I), (P)

'OR" ARRAY - (N), (F)


LSO1850S
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline INACTIVE \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline SET & H \\
\hline
\end{tabular}



LSO1880S
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline NO CHANGE & - \\
\hline
\end{tabular}
"COMPLEMENT' ARRAY - (C)


\section*{NOTES:}
1. This is the initial unprogrammed state of all links.
2. Any gate \(T_{n}\) will be unconditionally inhibited if both the true and complement of any input ( \(I, P\) ) are left intact.
3. To provent simultaneous Set and Reset flip-flop commands, this state is not allowed for \(N\) and \(F\) link pairs coupled to active gates \(T_{n}\) (see flip-flop truth tables).
4. To provent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).

\section*{Field-Programmable Logic Sequencer \((14 \times 48 \times 6) \quad\) PLS167}

FPLS PROGRAM TABLE


\footnotetext{
1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 ' for all Terms, and an " H " for the P/E option, exits in the table, shown BLANK instead for clarity. 2. Unused \(C_{n}, I_{m}\), and \(P_{s}\) bits are normally programmed Don't Care ( - ).
3. Unused Transition Terms can be left for future code modification or programmed as ( - ) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmers.
}

\section*{TEST ARRAY}

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49 , factory programmed as shown below.

Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0-13}\) as shown in the test circuit timing diagram.


State Diagram


TC01592s FPLS Under Test

tB01600s

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Circuit Timing Diagram


TB01610S

Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 24}

\section*{DESCRIPTION}

The PLS167A is a bipolar, programmable state machine of the Mealy type.The Field-Programmable Logic Sequencer (FPLS) contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(8 Q_{p}\), and \(4 Q_{f}\) edgetriggered, clocked S/R flip-flops, with an Asynchronous Preset Option.

All flip-flops are unconditionally preset to " 1 " during power turn-on.
The AND array combines 14 external inputs, \(\mathrm{I}_{0-13}\), with 8 internal inputs, \(\mathrm{P}_{0-7}\), fed back from the State Register to form up to 48 transition terms (AND terms). In addition, \(P_{0}\) and \(P_{1}\) of the internal State Register are brought off-chip to allow extending the Output Register to 6 bits, if so desired.

All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and nextoutput commands to their respective registers on the Low-to-High transition of the Clock pulse.
Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to output-

\section*{PLS167A}

\section*{Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )}

\author{
Signetics Programmable Logic \\ Product Specification
}
enable function, as an additional user programmable option.
Order codes are listed in the Ordering Information Table.

\section*{FEATURES}
- \(\mathrm{f}_{\mathrm{MAX}}\) : 20MHz
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 14 True/Complement buffered inputs
- 48 programmable AND gates
- 25 programmable OR gates
- 8-bit State Register
- 2-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic "1" of all registers
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip Test Array
- Power: 600mW (typ.)
- TTL compatible
- 3-State outputs
- Single +5V supply
- 300mil-wide 24-pin DIP

FUNCTIONAL DIAGRAM


PIN CONFIGURATIONS


\section*{APPLICATIONS}
- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Security locking systems

\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A low-to-high transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-7 \\
17-23
\end{gathered}
\] & \(I_{1-13}\) & Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 8 & \(I_{0}\) & Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(\mathrm{I}_{0}\) is held at +10 V , device outputs \(\mathrm{F}_{0-3}\) and \(\mathrm{P}_{0-1}\) reflect the contents of state register bits \(\mathrm{P}_{2-7}\) (see Diagnostic Output Mode diagram). The contents of flip-flops \(\mathrm{P}_{0-1}\) and \(\mathrm{F}_{0-3}\) remain unaltered. & Active-High/Low \\
\hline \[
\begin{gathered}
9-11 \\
13
\end{gathered}
\] & \(\mathrm{F}_{0-3}\) & Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of Output Register bits \(Q_{0-3}\), when enabled. When \(I_{0}\) is held at \(+10 \mathrm{~V}, \mathrm{~F}_{0-3}=\left(\mathrm{P}_{2-5}\right)\). & Active-High \\
\hline 14-15 & \(\mathrm{P}_{0-1}\) & Logic/Diagnostic Outputs: Two register bits with shared function as least significant State Register bits, or most significant Output Register bits. When \(\mathrm{I}_{0}\) is held at +10 V , \(\mathrm{P}_{0-1}=\left(\mathrm{P}_{6-7}\right)\). & Active-High \\
\hline \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{PR/ \(\overline{O E}\)} & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and \(P_{0-1}\) and \(\mathrm{F}_{0-3}\) are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.
\end{tabular} & Active High (H) \\
\hline & & - Output Enable: Provides an Output Enable function to all output buffers. & Active-Low (L) \\
\hline
\end{tabular}

\section*{LOGIC FUNCTION}


\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ \(\overline{O E}\) option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S/R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

TRUTH TABLE \({ }^{1,2,3,4,5,6}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Vcc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{10} & \multirow{2}{*}{CK} & \multirow{2}{*}{S} & \multirow{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow{2}{*}{F} \\
\hline & PR & \(\overline{\mathbf{O E}}\) & & & & & & \\
\hline \multirow{3}{*}{\(+5 \mathrm{~V}\)} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
\begin{gathered}
* \\
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & X
X
X & X
X
X & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{H} \\
\left(\mathrm{Q} \mathrm{P}_{n}\right. \\
(\mathrm{Q})_{n}
\end{gathered}
\] \\
\hline & & \[
\begin{gathered}
H \\
L \\
L
\end{gathered}
\] & \[
\begin{gathered}
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & X
X
X
X & \begin{tabular}{l} 
X \\
X \\
X \\
X \\
\hline
\end{tabular} & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \begin{tabular}{l}
Hi-Z \\
\(\left(Q_{p}\right)_{n}\) \\
\(\left(Q_{F}\right)_{n}\)
\end{tabular} \\
\hline & & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
Q_{n} \\
L \\
H \\
\text { IND. }
\end{gathered}
\] & \[
\begin{gathered}
\left(Q_{F}\right)_{n} \\
L \\
H \\
\text { IND. }
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\(\mathrm{S} / \mathrm{R}=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots+\mathrm{T}_{47}\) \(T_{n}=C\left(l_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{7}\right)\)
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user programmable option.
3. \(\uparrow\) denotes transition from Low-to-High level.
4. \(R=S=\) High is an illegal input condition.
5. \({ }^{*}=H / L /+10 \mathrm{~V}\)
6. \(\mathrm{X}=\) Don't care \((\leqslant 5.5 \mathrm{~V})\)

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )
PLS167A

FPLS LOGIC DIAGRAM


Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )
PLS167A

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300mil-wide
\end{tabular} & PLS167AN \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLS167AA \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & MIn & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\mathrm{OUT}}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
thermal ratings
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \hline \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\text { Max } \\
\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
\mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}_{1}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & 0.8
-1.2 & V
V
V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High }^{4} \\
& \text { Low }^{5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & High Low Low (CK input) & \[
\begin{aligned}
V_{I N} & =5.5 \mathrm{~V} \\
V_{I N} & =0.45 \mathrm{~V} \\
V_{I N} & =0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
<1 \\
-10 \\
-50
\end{array}
\] & \[
\begin{gathered}
25 \\
-100 \\
-250
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline Io(off) los & \(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{6}\) Short circuit \({ }^{3,7}\) & \[
\begin{aligned}
V_{\mathrm{CC}} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{gathered}
40 \\
-40 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\mathrm{CC}}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
10 & & pF
pF \\
\hline
\end{tabular}

NOTES:
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\). \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(\mathrm{V}_{\mathrm{IL}}\) applied to \(\overline{O E}\) and a logic high stored, or with \(\mathrm{V}_{\mathrm{IH}}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(V_{I L}\) applied to \(P R / \overline{O E}\) Output sink current is supplied through a resistor to \(V_{c c}\).
6. Measured with \(\mathrm{V}_{\mathrm{IH}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\).
7. Duration of short circuit should not exceed 1 second.
8. \(\mathrm{I}_{\mathrm{CC}}\) is measured with the PR/ \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width \({ }^{3}\)} \\
\hline tckH \({ }^{\text {t }}\) CKL \({ }^{\text {t }}{ }^{\text {CKP }} 1 \mathrm{~B}\) \(\mathrm{t}_{\mathrm{CKP}} \mathrm{B}^{\mathrm{B}}\) tpRH & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period (without Complement Array) \\
Period (with Complement Array) \\
Preset pulse
\end{tabular} & \[
\begin{aligned}
& \mathrm{CK}- \\
& \mathrm{CK}+ \\
& \mathrm{CK}+ \\
& \mathrm{CK}+ \\
& \mathrm{PR}-
\end{aligned}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK }- \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR + }
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 50 \\
& 80 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 50 \\
& 15
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IS} 1} \mathrm{~A}\) \\
\(t_{1 S 1} B\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~A}\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~B}\) \\
tvs \\
tpRS
\end{tabular} & \begin{tabular}{l}
Input \\
Input \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Power-on preset \\
Preset
\end{tabular} & CK + CK + CK + CK + CK CK - & \begin{tabular}{l}
Input \(\pm\) \\
Input \(\pm\) \\
Input \(\pm\) \\
Input \\
\(\mathrm{VCC}^{+}\) \\
PR-
\end{tabular} & \[
\begin{aligned}
& 40 \\
& 30 \\
& 70 \\
& 60 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(\mathrm{tiH}_{\mathrm{I}}\) & input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \begin{tabular}{l}
tско \\
toe \\
tod \\
\(t_{P R}\) \\
tppR
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \\
Preset \\
Power-on preset
\end{tabular} & \begin{tabular}{l}
Output \(\pm\) \\
Output - \\
Output + \\
Output + \\
Output +
\end{tabular} & \begin{tabular}{l}
CK + \\
OE- \\
OE + \\
PR + \\
\(\mathrm{V}_{\mathrm{CC}}{ }^{+}\)
\end{tabular} & & 15
20
20
18
0 & \[
\begin{aligned}
& 20 \\
& 30 \\
& 30 \\
& 30 \\
& 10
\end{aligned}
\] & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation \({ }^{3}\)} \\
\hline \[
\begin{aligned}
& f_{\text {Max }} B \\
& f_{\text {Max }} \\
& \hline
\end{aligned}
\] & Without Complement Array With Complement Array & & & & & \[
\begin{aligned}
& 20.0 \\
& 12.5
\end{aligned}
\] & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 30 \mathrm{~ns}\).
3. See "Speed vs. OR Loading" diagrams.

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP1 }}\) & Clock period - when not using Complement array. \\
\hline \(\mathrm{t}_{\mathrm{S} 1}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\mathrm{CKP} 2}\) & Clock period - when using complement array. \\
\hline \(\mathrm{t}_{\mathrm{l} 2}\) & Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array). \\
\hline tvs & Required delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and negative transition of clock preceding first reliable clock pulse. \\
\hline tpRS & Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse. \\
\hline \(t_{1 H}\) & Required delay between positive transition of clock and end of valid Input data. \\
\hline tcko & Delay between positive transition of clock and when Outputs become valid (with PR/OE Low). \\
\hline toe & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline \({ }^{\text {toD }}\) & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \({ }^{\text {t SRE }}\) & Delay between input \(\mathrm{I}_{0}\) transition to Diagnostic mode and when the Outputs reflect the contents of the State Register. \\
\hline \(t_{\text {SRD }}\) & Delay between input \(I_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid at "1'". \\
\hline tPPR & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when Outputs become preset at " 1 ". \\
\hline \(\mathrm{t}_{\text {PRH }}\) & Width of preset input pulse. \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )}

\section*{SPEED VS. "OR" LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\[
\left(1 / f_{\text {MAX }}\right)=t_{C Y}=t_{I S}+t_{C K O}
\]

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(\mathrm{t}_{\mathrm{IS}}\), due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of \(\mathrm{t}_{\mathrm{IS} 1}\) with the number of terms connected per OR.
The AC electrical characteristics contain two limits for the parameters \(\mathrm{t}_{\mathrm{IS} 1}\) and \(\mathrm{t}_{\mathrm{IS} 2}\). The first, \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}\) is guaranteed for a device with 24 terms connected to any OR line. \(t_{I S 1 B}\) is guaranteed for a device with 16 terms connected to any OR line.


Figure 1. \(\mathrm{t}_{\mathrm{IS} 1}\) vs. Terms/OR Connected

The three other entries in the AC table, \(\mathrm{t}_{\mathrm{IS} 2}\) \(A\) and \(B\) are corresponding 24 and 16 term limits when using the on-chip Complement Array.
The worst case of \(t_{I S}\) for a given application can be determined by identifying the OR line with the maximum number of \(T_{n}\) connections. This can be done by referring to the interconnect pattern in the FPLS logic
diagram, typically illustrated in Figure 2, or by counting the maximum number of " H " or "L" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{\text {IS }}\) and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

\section*{LOGIC PROGRAMMING}

PLS167A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS167A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations ( \(I, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

\section*{PRESET/OE OPTION - (P/E)}

\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline PRESET \(^{1}\) & H \\
\hline
\end{tabular}

\section*{PROGRAMMING:}

The PLS167A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High \((H)\). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)
\begin{tabular}{|c|c|c|c|c|}
\hline  &  &  &  & Lso1840S \\
\hline STATE \({ }^{\text {S }}\) CODE & STATE \({ }^{\text {a }}\) ( CODE & STATE \({ }^{\text {a }}\) ( CODE & STATE & CODE \\
\hline INACTIVE \({ }^{\text {1,2 }}\) & \begin{tabular}{|l|l|}
\hline \(\mathbf{I}, \mathrm{P}\) & H \\
\hline
\end{tabular} & \begin{tabular}{l|l|} 
I, \(\overline{\mathbf{F}}\) & \(\mathbf{L}\) \\
\hline
\end{tabular} & DON'T CARE & \(\cdots\) \\
\hline
\end{tabular}
"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)


\section*{NOTES:}
1. This is the initial unprogrammed state of all links.
2. Any gate \(T_{n}\) will be unconditionally inhibited if both the true and complement of any input ( \(I, P\) ) are left intact.
3. To provent simultaneous Set and Reset flip-flop commands, this state is not allowed for \(N\) and \(F\) link pairs coupled to active gates \(T_{n}\) (see flip-flop truth tables). 4. To provent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).


\section*{NOTES:}
1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 ' for all Terms, and an ' H ' for \(\mathrm{P} / \mathrm{E}\) option, exists in the table, shown BLANK instead for clarity.
2. Unused \(\mathrm{C}_{\mathrm{n}}, \mathrm{I}_{\mathrm{m}}\), and \(\mathrm{P}_{\mathrm{s}}\) bits are normally programmed Don't Care (-).
3. Unused Transition Terms can be left blank for future code modification or programmed as ( - ) for maximum speed.
4. Letters in variable fields are used as identifiers by logic programmers.

Field-Programmable Logic Sequencer ( \(14 \times 48 \times 6\) )

\section*{TEST ARRAY}

The FPLS may be subjected to \(A C\) and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49, factory programmed as shown below.

Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0-13}\) as shown in the test circuit timing diagram.


State Diagram


TC01582S

FPLS Under Test


Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products - Series 24}

\section*{DESCRIPTION}

The PLS168 is a bipolar, programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(10 Q_{p}\), and \(4 Q_{f}\) edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option.
All flip-flops are unconditionally preset to "1" during power turn-on.

The AND array combines 12 external inputs, \(\mathrm{I}_{0-11}\), with 10 internal inputs, \(\mathrm{P}_{0-9}\), fed back from the State Register to form up to 48 transition terms (AND terms). In addition, \(\mathrm{P}_{0}-\mathrm{P}_{3}\) of the internal State Register are brought off-chip to allow extending the Output Register to 8 bits, if so desired.

All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and nextoutput commands to their respective registers on the Low-to-High transition of the Clock pulse.
Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to outputenable function, as an additional user programmable option.

\section*{PLS168}

\title{
Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )
}

\author{
Signetics Programmable Logic \\ Product Specification
}

Order codes are listed in the Ordering Information Table.

\section*{FEATURES}
- \(\mathrm{f}_{\text {MAX: }} 13.9 \mathrm{MHz}\)
- 20MHz clock rate
- Field-Programmable ( \(\mathrm{Ni}-\mathrm{Cr}\) link)
- 12 True/Complement buffered inputs
- 48 programmable AND gates
- 29 programmable OR gates
- 10-bit State Register
- 4-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic "1" of all registers
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip Test Array
- Power: 600mW (typ.)
- TTL compatible
- 3-State outputs
- Single +5 V supply
- 300mil-wide 24-pin DIP

FUNCTIONAL DIAGRAM


PIN CONFIGURATIONS


\section*{APPLICATIONS}
- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-6 \\
18-23
\end{gathered}
\] & \(l_{1-11}\) & Logic Inputs: The 11 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 7 & \(I_{0}\) & Logic/Diagnostic Input: A 12th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(I_{0}\) is held at +10 V , device outputs \(\mathrm{F}_{2-3}\) and \(\mathrm{P}_{0-3}\) reflect the contents of State Register bits \(\mathrm{P}_{4-9}\) (see Diagnostic Output Mode diagram). The contents of flip-flops \(\mathrm{P}_{0-1}\) and \(\mathrm{F}_{0-3}\) remain unaltered. & Active-High/Low \\
\hline 13-16 & \(\mathrm{P}_{0-3}\) & Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of State Register bits \(\mathrm{P}_{0-3}\). When \(\mathrm{I}_{0}\) is held at +10 V these pins reflect \(\left(\mathrm{P}_{6}-\mathrm{P}_{9}\right)\). & Active-High \\
\hline 10-11 & \(F_{2}-F_{3}\) & Logic/Diagnostic Outputs: Two register bits ( \(F_{2}-F_{3}\) ) which normally reflect Output Register bits \(\left(Q_{2}-Q_{3}\right)\). When \(I_{0}\) is held at +10 V these pins reflect \(\left(P_{4}-P_{5}\right)\). & Active-High \\
\hline 17 & PR/ \(\overline{O E}\) & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held high, clocking is inhibited and \(\mathrm{P}_{0-9}\) and \(\mathrm{F}_{0-3}\) are high. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes low.
\end{tabular} & Active-High (H) \\
\hline 8, 9 & \(F_{0}-F_{1}\) & Logic Output: Two device outputs which reflect Output Registers \(Q_{0}-Q_{1}\). When \(I_{0}\) is held at \(+10 \mathrm{~V} F_{0}-F_{1}=\) Logic " 1 ". & \\
\hline
\end{tabular}

\section*{LOGIC FUNCTION}


\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ \(\overline{O E}\) option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All \(S / R\) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

TRUTH TABLE \({ }^{1,2,3,4,5,6}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Vcc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow[b]{2}{*}{CK} & \multirow[b]{2}{*}{S} & \multirow[b]{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow[b]{2}{*}{F} \\
\hline & PR & \(\overline{O E}\) & & & & & & \\
\hline \multirow{3}{*}{+5V} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
\begin{gathered}
* \\
+10 \mathrm{~V} \\
\mathrm{x}
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x
\end{aligned}
\] & \begin{tabular}{l} 
X \\
X \\
X \\
\hline
\end{tabular} & \begin{tabular}{l} 
X \\
X \\
X \\
\hline
\end{tabular} & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{gathered}
H \\
\left(Q_{P}\right)_{n} \\
\left(Q_{E}\right)
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& H \\
& L \\
& L
\end{aligned}
\] & \[
\begin{gathered}
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hi}-\mathrm{Z} \\
& \left(\mathrm{Q}_{\mathrm{P}}\right)_{\mathrm{n}} \\
& \left(\mathrm{Q}_{\mathrm{F}}\right)_{n}
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
\hline Q_{n} \\
L \\
H \\
\text { IND. }
\end{gathered}
\] & \[
\begin{gathered}
\hline\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}} \\
\mathrm{~L} \\
\mathrm{H} \\
\mathrm{IND} .
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

\section*{NOTES:}
1. Positive Logic:
\[
\begin{aligned}
& S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47} \\
& T_{n}=C\left(l_{0} I_{1} l_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{9}\right)
\end{aligned}
\]
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user programmable option.
3. \(\uparrow\) denotes transition from Low to High level.
4. \(R=S=\) High is an illegal input condition.
5. * \(=H / L /+10 V\)
6. \(\mathrm{X}=\) Don't care \((\leqslant 5.5 \mathrm{~V})\)

Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

FPLS LOGIC DIAGRAM


Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300mil-wide
\end{tabular} & PLS168N \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLS168A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \multirow{2}{*}{\(\mathrm{~V}_{\mathrm{DC}}\)} \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{I}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\mathrm{I}}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

\section*{THERMAL RATING}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\]
\[
v_{1 C}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
V_{C C}=\text { Max } \\
V_{C C}=\text { Min } \\
V_{C C}=\text { Min, }_{\mathrm{I}_{\mathrm{N}}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & 0.8
-1.2 & v
v \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High }^{4} \\
& \text { Low }^{5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}^{\mathrm{OH}}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& I_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{IL}}
\end{aligned}
\] & High Low Low (CK input) & \[
\begin{aligned}
\mathrm{V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =0.45 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
\hline<1 \\
-10 \\
-50
\end{array}
\] & \[
\begin{gathered}
25 \\
-100 \\
-250
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(OFF) \\
los
\end{tabular} & \(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{6}\) Short circuit \({ }^{3,7}\) & \[
\begin{aligned}
V_{\text {CC }} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & 1
-1 & \[
\begin{gathered}
40 \\
-40 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
8 \\
10
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(V_{\mathbb{I L}}\) applied to \(\overline{O E}\) and a logic high stored, or with \(V_{\mathbb{I H}}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(V_{\mathrm{IL}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\) Output sink current is supplied through a resistor to \(\mathrm{V}_{\mathrm{Cc}}\).
6. Measured with \(V_{I H}\) applied to PR/OE.
7. Duration of short circuit should not exceed 1 second.
8. ICC is measured with the PR/ \(\overline{O E}\) input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width \({ }^{3}\)} \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Clock \({ }^{2}\) High & CK - & CK + & 25 & 15 & & \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Clock Low & CK + & CK- & 25 & 15 & & \\
\hline \({ }_{\text {t }}^{\text {CKP1 }}\) B & Period (without Complement Array) & CK + & CK + & 80 & 40 & & ns \\
\hline \(\mathrm{t}_{\text {CKP2 }} \mathrm{B}\) & Period (with Complement Array) & CK + & CK + & 120 & 60 & & \\
\hline tPRH & Preset pulse & PR - & PR + & 25 & 15 & & \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \(\mathrm{t}_{\mathrm{IS} 1} \mathrm{~A}\) & Input & CK + & Input \(\pm\) & 60 & & & \\
\hline \(t_{151} B\) & Input & CK + & Input \(\pm\) & 50 & & & \\
\hline \(\mathrm{t}_{151} \mathrm{C}\) & Input & CK + & Input \(\pm\) & 42 & & & \\
\hline \(\mathrm{t}_{\text {S } 2} \mathrm{~A}\) & Input (through Complement Array) & CK + & Input \(\pm\) & 90 & & & ns \\
\hline \(\mathrm{t}_{152} \mathrm{~B}\) & Input (through Complement Array) & CK + & Input & 80 & & & \\
\hline \(\mathrm{t}_{152} \mathrm{C}\) & Input (through Complement Array) & CK + & Input & 72 & & & \\
\hline tvs & Power-on preset & CK - & \(\mathrm{V}_{\mathrm{CC}}{ }^{+}\) & 0 & -10 & & \\
\hline tpas & Preset & CK- & PR - & 0 & -10 & & \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & Input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \(\mathrm{t}_{\text {cko }}\) & Clock & Output \(\pm\) & CK + & & 15 & 30 & \\
\hline toe & Output enable & Output - & OE- & & 20 & 30 & \\
\hline tod & Output disable & Output + & OE + & & 20 & 30 & ns \\
\hline \(t_{\text {PR }}\) & Preset & Output + & PR + & & 18 & 30 & \\
\hline \(\mathrm{t}_{\text {PPR }}\) & Power-on preset & Output + & \(\mathrm{V}_{\mathrm{CC}}{ }^{+}\) & & 0 & 10 & \\
\hline \multicolumn{8}{|l|}{Frequency of operation \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(f_{\text {MAX }} \mathrm{C}\) \\
\(f_{\text {MAX }}\)
\end{tabular} & Without Complement Array With Complement Array & & & & & \[
\begin{gathered}
13.9 \\
9.8
\end{gathered}
\] & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 30 \mathrm{~ns}\).
3. See "Speed vs. OR Loading" diagrams.

TIMING DIAGRAMS


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\mathrm{CKL}}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP1 }}\) & Clock period - when not using Complement array. \\
\hline \(t_{\text {IS } 1}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {CKP } 2}\) & Clock period - when using complement array. \\
\hline \(\mathrm{t}_{\text {IS } 2}\). & Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array). \\
\hline tvs & Required delay between \(V_{C C}\) (after power-on) and negative transition of clock preceding first reliable clock pulse. \\
\hline tPRS & Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse. \\
\hline \(t_{1 H}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\text {CKO }}\) & Delay between positive transition of clock and when Outputs become valid (with PR/OE Low). \\
\hline \(\mathrm{t}_{\text {OE }}\) & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline \(\mathrm{t}_{\mathrm{OD}}\) & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \({ }^{\text {tsRE }}\) & Delay between input \(\mathrm{I}_{0}\) transition to Diagnostic mode and when the Outputs reflect the contents of the State Register. \\
\hline tsRD & Delay between input \(\mathrm{I}_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid "1". \\
\hline \(t_{\text {PPR }}\) & Delay between \(V_{\text {CC }}\) (after power-on) and when Outputs become preset at " 1 ". \\
\hline \(t_{\text {PRH }}\) & Width of preset input pulse. \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}
timing diagrams (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{SPEED VS. 'OR' LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\[
\left(1 / f_{\text {MAX }}\right)=t_{C Y}=t_{I S}+t_{C K O}
\]

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(t_{I S}\), due to capacitive loading. The effect of this loading can be seen in Figure 1 , showing the variation of \(t_{i S 1}\) with the number of terms connected per OR.

The AC electrical characteristics contain three limits for the parameters \(\mathrm{t}_{\mathrm{IS}_{1}}\) and \(\mathrm{t}_{\mathrm{IS} 2}\). The first, \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}\) is guaranteed for a device with 48 terms connected to any OR line. \(t_{\text {IS18 }}\) is guaranteed for a device with 32 terms connected to any OR line. And \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{C}}\) is guaranteed for a device with 24 terms connected to any OR line.


Figure 1. \(\mathrm{t}_{\mathrm{IS} 1}\) vs. Terms/OR Connected

The three other entries in the AC table, \(\mathrm{t}_{\text {IS }}\) A, B and C are corresponding 48, 32 and 24 term limits when using the on-chip Complement Array.

The worst case of \(t_{I S}\) for a given application can be determined by identifying the OR line with the maximum number of \(T_{n}\) connections. This can be done by referring to the interconnect pattern in the FPLS logic
diagram, typically illustrated in Figure 2, or by counting the maximum number of " H " or "L" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{\text {Is }}\) and, by implication, the maximum clocking frequency for reliable operation.

Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

\section*{LOGIC PROGRAMMING}

PLS168 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS168 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/ \(\overline{O E}\) OPTION - (P/E)


PROGRAMMING:
The PLS168 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High \((H)\). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs ( \(H\) ) as the present state.
"AND' ARRAY - (I), (P)

"OR' ARRAY - (N), (F)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline ACTION & CODE & ACTION & CODE & ACTION & CODE & ACTION & CODE \\
\hline INACTIVE \({ }^{1,3}\) & 0 & SET & H & RESET & L & NO CHANGE & - \\
\hline
\end{tabular}
"COMPLEMENT' ARRAY - (C)


\section*{NOTES:}
1. This is the initial unprogrammed state of all links.
2. Any gate \(T_{n}\) will be unconditionally inhibited if both the true and complement of any input (I or \(P\) ) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for \(N\) and \(F\) link pairs coupled to active gates \(T_{n}\) (see flip-flop truth tables).
4. To provent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).

Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

FPLS PROGRAM TABLE PLS168


\section*{TEST ARRAY}

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.
The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0-11}\) as shown in the test circuit timing diagram.


State Diagram


TC01593s
FPLS Under Test


Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products - Series 24}

\section*{DESCRIPTION}

The PLS168A is a bipolar, programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(10 Q_{p}\), and \(4 Q_{f}\) edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option.

All flip-flops are unconditionally preset to " 1 " during power turn-on.
The AND array combines 12 external inputs, \(\mathrm{I}_{0-11}\), with 10 internal inputs, \(\mathrm{P}_{0-9}\), fed back from the State Register to form up to 48 transition terms (AND terms). In addition, \(\mathrm{P}_{0}-\mathrm{P}_{3}\) of the internal State Register are brought off-chip to allow extending the Output Register to 8 bits, if so desired.
All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and nextoutput commands to their respective registers on the Low-to-High transition of the Clock pulse.
Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to outputenable function, as an additional user programmable option.

\title{
PLS168A \\ Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )
}

\section*{Signetics Programmable Logic}

Product Specification

Order codes are listed in the Ordering Information Table.

\section*{FEATURES}
- f \({ }_{\text {MAX }}\) : 20MHz
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 12 True/Complement buffered inputs
- 48 programmable AND gates
- 29 programmable OR gates
- 10-bit State Register
- 4-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic " 1 " of all registers
- Automatic logic 'HOLD' state via S/R flip-flops
- On-chip Test Array
- Power: \(\mathbf{6 0 0 m W}\) (typ.)
- TTL compatible
- 3-State outputs
- Single +5 V supply
- 300mil-wide 24-pin DIP

FUNCTIONAL DIAGRAM


\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-6 \\
18-23
\end{gathered}
\] & \(11-11\) & Logic Inputs: The 11 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 7 & 10 & Logic/Diagnostic Input: A 12th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(I_{0}\) is held at +10 V , device outputs \(F_{2}-F_{3}\) and \(P_{0}-P_{3}\) reflect the contents of State Register bits \(P_{4-9}\) (see Diagnostic Output Mode diagram). The contents of flip-flops \(\mathrm{P}_{0-1}\) and \(\mathrm{F}_{0-3}\) remain unaltered. & Active-High/Low \\
\hline 13-16 & \(P_{0-3}\) & Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of State Register bits \(P_{0-3}\). When \(\mathrm{I}_{0}\) is held at +10 V these pins reflect ( \(\mathrm{P}_{6}-\mathrm{P}_{9}\) ). & Active-High \\
\hline 10-11 & \(F_{2}-F_{3}\) & Logic/Diagnostic Outputs: Two register bits ( \(F_{2}-F_{3}\) ) which reflect Output Register bits \(\left(Q_{2}-Q_{3}\right)\). When \(I_{0}\) is held at +10 V these pins reflect \(\left(P_{4}-P_{5}\right)\). & Active-High \\
\hline 17 & PR/ \(\overline{\mathrm{OE}}\) & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held high, clocking is inhibited and \(\mathrm{P}_{0-9}\) and \(\mathrm{F}_{0-3}\) are high. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes low.
\end{tabular} & Active-High (H) \\
\hline 8, 9 & \(F_{0}-F_{1}\) & \begin{tabular}{l}
- Output Enable: Provides an Output Enable function to all output buffers. \\
Logic Output: Two device outputs which reflect Output Registers \(Q_{0}-Q_{1}\). When \(I_{0}\) is held at \(+10 \mathrm{~V} \mathrm{~F}_{0}-\mathrm{F}_{1}=\) Logic " 1 "
\end{tabular} & Active-Low (L) \\
\hline
\end{tabular}

\section*{LOGIC FUNCTION}


\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ \(\overline{O E}\) option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S/R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program.

TRUTH TABLE \({ }^{1,2,3,4,5,6}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Vcc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow{2}{*}{CK} & \multirow{2}{*}{S} & \multirow{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow{2}{*}{F} \\
\hline & PR & \(\overline{O E}\) & & & & & & \\
\hline & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
+\underset{X}{10 \mathrm{~V}}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
H \\
\left(Q_{P}\right)_{n} \\
\left(Q_{F}\right)_{n}
\end{gathered}
\] \\
\hline +5V & & \[
\begin{gathered}
\mathrm{H} \\
\mathrm{~L} \\
\mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hi}-\mathrm{Z} \\
& \left(\mathrm{Q}_{\mathrm{P}}\right)_{n} \\
& \left(\mathrm{Q}_{\mathrm{F}}\right)_{n}
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
Q_{n} \\
L \\
H \\
\text { IND. }
\end{gathered}
\] & \[
\begin{gathered}
\left(\mathrm{Q}_{\mathrm{F}}\right)_{n} \\
\mathrm{~L} \\
\mathrm{H} \\
\text { IND. }
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\[
\begin{aligned}
& S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47} \\
& T_{n}=C\left(l_{0} l_{1} l_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{9}\right)
\end{aligned}
\]
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user programmable option.
3. \(\uparrow\) denotes transition from Low to High level.
4. \(\mathrm{R}=\mathrm{S}=\) High is an illegal input condition.
5. \(*=H / L /+10 \mathrm{~V}\)
6. \(X=\) Don't Care \((\leqslant 5.5 \mathrm{~V})\)

Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

FPLS LOGIC DIAGRAM


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300mil-wide
\end{tabular} & PLS168AN \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLS168AA \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } \\
\multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\mathrm{IN}}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathbb{N}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\mathbb{N}}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATING
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & High & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\) & & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IC }}\) & Clamp \({ }^{3}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{IN}}=-12 \mathrm{~mA}\) & & -0.8 & -1.2 & V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\begin{aligned}
& \text { High }^{4} \\
& \text { Low }^{5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}_{\mathrm{OH}}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High & \(\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\) & & <1 & 25 & \(\mu \mathrm{A}\) \\
\hline IIL & Low & \(\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}\) & & -10 & -100 & \(\mu \mathrm{A}\) \\
\hline ILL & Low (CK input) & \(\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}\) & & -50 & -250 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
Io(off) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{6}\) \\
Short circuit \({ }^{3 \text { 3, }} 7\)
\end{tabular} & \[
\begin{aligned}
V_{\text {CC }} & =\mathrm{Max} \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & 1
-1 & \[
\begin{gathered}
40 \\
-40 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
10 & & pF
pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(V_{I L}\) applied to \(\overline{O E}\) and a logic high stored, or with \(V_{I H}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(V_{\mathrm{IL}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\) Output sink current is supplied through a resistor to \(\mathrm{V}_{\mathrm{cc}}\).
6. Measured with \(V_{I H}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\).
7. Duration of short circuit should not exceed 1 second.
8. ICC is measured with the PR/ \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TO} & \multirow{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(t_{\text {CKH }}\) \\
\(t_{\text {CKL }}\) \({ }^{\text {t CKP }}{ }^{B}\) \\
\(\mathrm{t}_{\mathrm{CKP2}} \mathrm{~B}^{\mathrm{B}}\) \\
tpRH
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period (without Complement Array) \\
Period (with Complement Array) \\
Preset pulse
\end{tabular} & \begin{tabular}{l}
CK - \\
CK + \\
CK + \\
CK + \\
PR-
\end{tabular} & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK }- \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR + }
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 50 \\
& 80 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 50 \\
& 15 \\
& \hline
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IS} 1} \mathrm{~A}\) \\
\(t_{1 S 1} B\) \\
\(t_{1} \mathbf{S}_{2} A\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~B}\) \\
tvs \\
tpps
\end{tabular} & \begin{tabular}{l}
Input \\
Input \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Power-on preset \\
Preset
\end{tabular} & \begin{tabular}{l}
CK + \\
CK + \\
CK + \\
CK + \\
CK - \\
CK -
\end{tabular} & \begin{tabular}{l}
Input \(\pm\) \\
Input \(\pm\) \\
Input \(\pm\) \\
Input \\
\(\mathrm{V}_{\mathrm{CC}}+\) \\
PR-
\end{tabular} & \[
\begin{gathered}
40 \\
30 \\
70 \\
60 \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(\mathrm{t}_{\mathrm{IH}}\) & Input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{CKO}}\) \\
toe \\
tod \\
\(t_{P R}\) \\
tppR
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \\
Preset \\
Power-on preset
\end{tabular} & \begin{tabular}{l}
Output \(\pm\) \\
Output - \\
Output + \\
Output + \\
Output +
\end{tabular} & \[
\begin{aligned}
& \mathrm{CK}+ \\
& \mathrm{OE}- \\
& \mathrm{OE}+ \\
& \mathrm{PR}+ \\
& \mathrm{V}_{\mathrm{CC}}+ \\
& \hline
\end{aligned}
\] & & 15
20
20
18
0 & 20
30
30
30
10 & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(f_{\text {max }}{ }^{\text {m }}\) \\
\(f_{\text {MAXB }}\)
\end{tabular} & Without Complement Array With Complement Array & & & & & \[
\begin{gathered}
20 \\
12.5
\end{gathered}
\] & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time ( \(10 \%-90 \%\) ) \(\leqslant 30 \mathrm{~ns}\).
3. See "Speed vs. OR Loading" diagrams.

TIMING DIAGRAMS


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP } 1}\) & Clock period - when not using Complement array. \\
\hline \(\mathrm{t}_{\text {S }} 1\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {CKP2 }}\) & Clock period - when using complement array. \\
\hline \(\mathrm{t}_{\mathrm{IS} 2}\) & Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array). \\
\hline tvs & Required delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and negative transition of clock preceding first reliable clock pulse. \\
\hline tpRS & Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse. \\
\hline \(t_{\text {IH }}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\mathrm{CKO}}\) & Delay between positive transition of clock and when Outputs become valid (with PR/OE Low). \\
\hline toe & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline \(\mathrm{t}_{\mathrm{OD}}\) & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {SRE }}\) & Delay between input \(I_{0}\) transition to Diagnostic mode and when the Outputs reflect the contents of the State Register. \\
\hline tsRD & Delay between input \(I_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid "1". \\
\hline \(t_{\text {PPR }}\) & Delay between \(V_{C C}\) (after power-on) and when Outputs become preset at " 1 ". \\
\hline tPRH & Width of preset input pulse. \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{Field-Programmable Logic Sequencer ( \(12 \times 48 \times 8\) )}

\section*{SPEED VS. 'OR' LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\[
\left(1 / f_{\text {MAX }}\right)=\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}
\]

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(\mathrm{t}_{\mathrm{IS}}\), due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of \(\mathrm{t}_{\mid S 1}\) with the number of terms connected per OR.
The AC electrical characteristics contain two limits for the parameters \(\mathrm{t}_{\mathrm{IS} 1}\) and \(\mathrm{t}_{\mathrm{IS} 2}\). The first, \(\mathrm{t}_{\mathrm{IS1A}}\) is guaranteed for a device with 24 terms connected to any OR line. \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{~B}}\) is guaranteed for a device with 16 terms connected to any OR line.


Figure 1. \(\mathrm{t}_{\mathrm{l} \mathbf{S}_{1}} \mathrm{vs}\). Terms/OR Connected

The three other entries in the AC table, \(\mathrm{t}_{\mathrm{I} 2}\) A and B are corresponding 24 and 16 term limits when using the on-chip Complement Array.
The worst case of \(\mathrm{t}_{\mathrm{IS}}\) for a given application can be determined by identifying the OR line with the maximum number of \(T_{n}\) connections. This can be done by referring to the interconnect pattern in the FPLS logic
diagram, typically illustrated in Figure 2, or by counting the maximum number of " H " or "L" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{1 s}\) and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

\section*{LOGIC PROGRAMMING}

PLS168A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS168A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(1, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

\section*{PRESET/OE OPTION - (P/E)}

\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline PRESET \(^{1}\) & \(H\) \\
\hline
\end{tabular}


LSO1825s
\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline\(\overline{\mathrm{OE}}\) & L \\
\hline
\end{tabular}

PROGRAMMING:
The PLS168A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs \((H)\) as the present state.
'AND' ARRAY - (I), (P)

' OR'' ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)


\section*{NOTES:}
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates \(T_{n}\).
2. Any gate \(T_{n}\) will be unconditionally inhibited if any one of its \(I\) or \(P\) link pairs is left intact.
3. To provent simultaneous Set and Reset flip-flop commands, this state is not allowed for \(N\) and \(F\) link pairs coupled to active gates \(T_{n}\) (see flip-flop truth tables).
4. To provent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).

Field-Programmable Logic Sequencer \((12 \times 48 \times 8)\) PLS168A

FPLS PROGRAM TABLE PLS168A


\section*{TEST ARRAY}

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.
The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0.11}\) as shown in the test circuit timing diagram.


State Diagram


FPLS Under Test


Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Circuit Timing Diagram


Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products} - Series 24

\section*{DESCRIPTION}

The PLS179 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a 'foldback' inverting buffer and control gate \(\mathrm{F}_{\mathrm{C}}\). It features 8 registered I/O outputs ( \(F\) ) in conjunction with 4 bidirectional I/O lines (B). There are 8 dedicated inputs. These yield variable I/O gate and register configurations via control gates ( \(D, L\) ) ranging from 20 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 8 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output ( \(\overline{\mathrm{C}}\) ). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

Field-Programmable Logic Sequencer ( \(20 \times 45 \times 12\) )

Signetics Programmable Logic
Product Specification

\section*{FEATURES}
- \(\mathrm{f}_{\mathrm{MAX}}=18.2 \mathrm{MHz}\)
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 8 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J/K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable \(\overline{O E}\) control
- Positive edge-triggered clock
- Power-on reset on flip-flop ( \(F_{n}=\) "1')
- input loading: PLS179:-100 \(\mu \mathrm{A}\) (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State option

FUNCTIONAL DIAGRAM


On-chip T/C buffers couple either True (I, B, Q) or Complement ( \(\bar{I}, \bar{B}, \bar{Q}, \bar{C}\) ) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of AND gates drives bidirectional I/O lines (B), whose output polarity is individually programmable through a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops, as well as asynchronous Preset and Reset lines (P, R).

All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs ( \((1)\), \((B),(Q)\) and programmable output select lines (E).
The PLS179 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

\section*{LOGIC FUNCTION}


\section*{NOTES:}

Similar logic functions are applicable for \(D\) and \(T\) mode flip-flops.

\section*{FLIP-FLOP TRUTH TABLE}
\begin{tabular}{|c|cccccc|c|c|}
\hline\(\overline{\mathbf{O E}}\) & L & \(\mathbf{C K}\) & \(\mathbf{P}\) & \(\mathbf{R}\) & \(\mathbf{J}\) & \(\mathbf{K}\) & \(\mathbf{Q}\) & \(\mathbf{F}\) \\
\hline H & & & & & & & & H/Hi-Z \\
\hline L & X & X & X & X & X & X & L & H \\
\hline L & X & X & H & L & X & X & H & L \\
L & X & X & L & H & X & X & L & H \\
\hline L & L & \(\uparrow\) & L & L & L & L & Q & \(\overline{\text { Q }}\) \\
L & L & \(\uparrow\) & L & L & L & H & L & H \\
L & L & \(\uparrow\) & L & L & H & L & H & L \\
L & L & \(\uparrow\) & L & L & H & H & \(\bar{Q}\) & Q \\
\hline H & H & \(\uparrow\) & L & L & L & H & L & \(H^{*}\) \\
H & H & \(\uparrow\) & L & L & H & L & H & L* \(^{*}\) \\
\hline\(+10 V\) & X & \(\uparrow\) & X & X & L & H & L & Hen \(^{* *}\) \\
& X & \(\uparrow\) & X & X & H & L & H & L** \(^{*}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Positive Logic:
\(J / K=T_{0}+T_{1}+T_{2}+\ldots+T_{31}\) \(\mathrm{T}_{\mathrm{n}}=\overline{\mathrm{C}} \cdot\left(\mathrm{I}_{0} \quad \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(\mathrm{Q}_{0} \cdot \mathrm{Q}_{1} \ldots\right) \cdot\left(\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \ldots\right)\)
2. \(\uparrow\) denotes transition from Low to High level. 3. \(X=\) Don't Care
4. \({ }^{*}=\) Forced at \(F_{n}\) pin for loading \(\mathrm{J} / \mathrm{K}\) flip-flop in \(1 / \mathrm{O}\) mode. \(L\) must be enabled, and other active \(T_{n}\) disabled via steering input(s) I, B, or Q.
5. At \(P=R=H, Q=H\). The final state of \(Q\) depends on which is released first.
6. \({ }^{* *}=\) Forced at \(F_{n}\) pin to load J/K flip-flop independent of program code (Diagnostic mode), 3 -State B outputs.

\section*{VIRGIN STATE}

The factory shipped virgin device contains all fusible links intact, such that:
1. \(\overline{O E}\) is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to \(\mathrm{J} / \mathrm{K}\) only or \(\mathrm{J} / \mathrm{K}\) or D (controlled).
5. All \(B\) pins are inputs and all \(F\) pins are outputs unless otherwise programmed.

Field-Programmable Logic Sequencer \((20 \times 45 \times 12)\)

FPLS LOGIC DIAGRAM


ORDERING INFORMATION
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ DESCRIPTION } & ORDER CODE \\
\hline \begin{tabular}{l} 
24-pin Plastic DIP \\
300mil-wide
\end{tabular} & PLS179N \\
\hline \begin{tabular}{l} 
28-pin Plastic Leaded \\
Chip Carrier
\end{tabular} & PLS179A \\
\hline
\end{tabular}

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } \\
\multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE:
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.
DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}} \\
& \hline
\end{aligned}
\] & High Low Clamp & \[
\begin{gathered}
V_{C C}=\operatorname{Max} \\
V_{C C}=\text { Min } \\
V_{C C}=\text { Min, } \mathrm{IIN}_{N}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2 \\
\hline
\end{gathered}
\] & v
v
V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) \(V_{\text {OL }}\) & High Low & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}
\end{gathered}
\] & 2.4 & 0.35 & 0.5 & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{2}
\end{aligned}
\] & High Low & \[
\begin{gathered}
\hline V_{C C}=M a x, ~ V_{I N}=5.5 \mathrm{~V} \\
V_{I N}=0.45 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{array}{r}
<1 \\
-10
\end{array}
\] & \[
\begin{gathered}
40 \\
-100
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
Hi-Z state \({ }^{4,7}\) \\
Short circuit \({ }^{3}\), 5
\end{tabular} & \[
\begin{gathered}
V_{C C}=M a x, V_{\text {OUT }}=5.5 \mathrm{~V} \\
V_{\text {OUT }}=0.45 \mathrm{~V} \\
V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & 1 & \[
\begin{gathered}
80 \\
-140 \\
-70
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{6}\) & \(V_{C C}=\operatorname{Max}\) & & 150 & 210 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\text {IN }}\) Cout & Input Output & \[
\begin{gathered}
V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}
\end{gathered}
\] & & \[
\begin{gathered}
8 \\
15
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{nF}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.

3 Test one at a time.
4. Measured with \(\mathrm{V}_{I H}\) applied to \(\overline{\mathrm{OE}}\).
5. Duration of short circuit should not exceed 1 second.

6 . ICC is measured with the \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V , and the outputs open.
7. Leakago values are a combination of input and output leakage.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multirow[t]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & & Min \({ }^{5}\) & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{4}{|l|}{Pulse width} & \multirow{7}{*}{\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)} & & & & \\
\hline \begin{tabular}{l}
\(t_{\text {CKH }}\) \\
\(t_{\text {CKL }}\) \\
tckp \\
\(t_{\text {PRH }}\)
\end{tabular} & Clock \(^{2}\) High
Clock Low
Period
Preset/Reset pulse & \[
\begin{aligned}
& \text { CK - } \\
& \text { CK + } \\
& \text { CK + } \\
& (\mathrm{I}, \mathrm{~B})+
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CK}+ \\
& \mathrm{CK}- \\
& \mathrm{CK}+ \\
& (1, \mathrm{~B})-
\end{aligned}
\] & & \[
\begin{aligned}
& 20 \\
& 20 \\
& 55 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 45 \\
& 30
\end{aligned}
\] & & ns \\
\hline \multicolumn{4}{|l|}{Setup time} & & & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{lS1}} \\
& \mathrm{t}_{\mathrm{IS} 2} \\
& \mathrm{t}_{\mathrm{S} 3}
\end{aligned}
\] & \begin{tabular}{l}
Input \\
Input (through \(\mathrm{F}_{\mathrm{n}}\) ) \\
Input (through \\
Complement Array) \({ }^{4}\)
\end{tabular} & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + }
\end{aligned}
\] & \[
\begin{gathered}
(\mathrm{I}, \mathrm{~B}) \pm \\
\mathrm{F} \pm \\
(\mathrm{I}, \mathrm{~B}) \pm
\end{gathered}
\] & & \[
\begin{aligned}
& 35 \\
& 15 \\
& \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 10 \\
& 45
\end{aligned}
\] & & ns \\
\hline \multicolumn{4}{|l|}{Hold time} & & & & & \\
\hline \[
\begin{aligned}
& \mathbf{t}_{\mathbf{H} \mathbf{1}} \\
& \mathbf{t}_{\mathbf{H} \mathbf{2}} \\
& \hline
\end{aligned}
\] & Input Input (through \(\mathrm{F}_{\mathrm{n}}\) ) & \[
\begin{aligned}
& \text { CK + } \\
& \mathrm{CK}+
\end{aligned}
\] & \[
\begin{gathered}
(1, B) \pm \\
F \pm
\end{gathered}
\] & & \[
\begin{gathered}
0 \\
15
\end{gathered}
\] & \[
\begin{gathered}
-5 \\
10
\end{gathered}
\] & & ns \\
\hline \multicolumn{4}{|l|}{Propagation delay} & & & & & \\
\hline \begin{tabular}{l}
\({ }^{\text {teko }}\) \\
toel \\
toD1 \\
tpd \\
toe? \\
tod2 \\
\(t_{\text {PRO }}\) \\
tPPR
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \({ }^{3}\) \\
Output \\
Output enable \\
Output disable \({ }^{3}\) \\
Preset/Reset \\
Power-on preset
\end{tabular} & \[
\begin{aligned}
& \mathrm{F} \pm \\
& \mathrm{F}- \\
& \mathrm{F}+ \\
& \mathrm{B} \pm \\
& \mathrm{B} \pm \\
& \mathrm{B}+ \\
& \mathrm{F} \pm \\
& \mathrm{F}-
\end{aligned}
\] & \begin{tabular}{l}
CK \(\pm\) \\
OE- \\
\(\overline{\mathrm{OE}}+\) \\
\((1, B) \pm\) \\
\((1, B)+\) \\
( \(1, B\) ) - \\
\((1, B)+\) \\
\(\mathrm{V}_{\mathrm{CC}}+\)
\end{tabular} & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\)
\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)
\(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\)
\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & & \[
\begin{aligned}
& 15 \\
& 20 \\
& 20 \\
& 25 \\
& 20 \\
& 20 \\
& 35 \\
& 0
\end{aligned}
\] & 20
30
30
35
30
30
45
10 & ns \\
\hline
\end{tabular}

NOTES:
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 10 \mathrm{~ns}\).
3. Measured at \(V_{T}=V_{O L}+0.5 \mathrm{~V}\).
4. When using the Complement Array \(\mathrm{T}_{\mathrm{CKP}}=75 \mathrm{~ns}(\mathrm{~min})\).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.

\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Clock period. \\
\hline \(\mathrm{t}_{\text {PRH }}\) & Width of preset input pulse. \\
\hline \(\mathrm{t}_{\text {S } 1}\) & Required delay between beginning of valid input and positive transition of clock. \\
\hline \(\mathrm{t}_{\text {S } 2}\) & Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock. \\
\hline \(\mathrm{t}_{\mathrm{H} 1}\) & Required delay between positive transition of clock and end of valid input data. \\
\hline \(\mathrm{t}_{\mathrm{H} 2}\) & Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins. \\
\hline \(\mathrm{t}_{\text {CKO }}\) & Delay between positive transition of clock and when Outputs become valid (with OE Low). \\
\hline toe 1 & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline tod 1 & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {PPR }}\) & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when flip-flop outputs become preset at "1" (internal Q outputs at " 0 "). \\
\hline \(t_{\text {PD }}\) & Propagation delay between combinational inputs and outputs. \\
\hline toe2 & Delay between predefined Output Enable High, and when combinational Outputs become valid. \\
\hline tod2 & Delay between predefined Output Enable Low and when combinational Outputs are in the off state. \\
\hline tpro & Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{LOGIC PROGRAMMING}

PLS179 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS179 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(I, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)
\begin{tabular}{|c|c|c|c|}
\hline  &  &  &  \\
\hline STATE \({ }^{\text {S }}\) ( CODE & & STATE \({ }^{\text {a }}\) CODE & STATE \({ }^{\text {S }}\) CODE \\
\hline \begin{tabular}{|l|l|} 
INACTIVE \\
\\
\hline
\end{tabular} & \begin{tabular}{l|l|}
\hline \(1, B, Q\) & \(H\)
\end{tabular} & \begin{tabular}{l|l|}
\(\overline{1}, \overline{\mathrm{~B}}, \overline{\mathrm{a}}\) & L \\
\hline
\end{tabular} & DON'T CARE \\
\hline & Soz & Lso2050S & Ls02060s \\
\hline
\end{tabular}
'COMPLEMENT' ARRAY - (C)

"OR" ARRAY - ( \(\left.Q_{N}=D-T y p e\right)\)

"OR" ARRAY - (F-F CONTROL MODE)


Notes on following page.
"AND' ARRAY - ( \(Q_{N}=\mathbf{J}-K\) Type \()\)

"OR" ARRAY - (S or B)

"EX-OR" ARRAY - (B)

'OE " ARRAY - (E)

\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline IDLE \(^{4}\) & \(\mathbf{O}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline CONTROL & A \\
\hline \multicolumn{1}{|c|}{ LSO226OS }
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline ENABLE & \\
\hline \multicolumn{2}{|c|}{ LSO2270S } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACTION & CODE \\
\hline DISABLE & - \\
\hline
\end{tabular}

NOTES:
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ( \(\left.T, F_{C}, L, P, R, D\right)_{n}\) will be unconditionally inhibited if any one of the \(I, B\), or \(Q\) link pairs is left intact.
3. To prevent oscillations, this state is not allowed for \(C\) link, pairs coupled to active gates \(T_{n} F_{C}\).
4. \(E_{n}=O\) and \(E_{n}=\cdot\) are logically equivalent states, since both cause \(F_{n}\) outputs to be unconditionally enabled.
5. These states are not allowed for control gates ( \(L, P, R, D)_{n}\) due to their lack of "OR" array links.

FPLS PROGRAM TABLE


\section*{Signetics}

\section*{Application Specific Products - Series 28}

\section*{DESCRIPTION}

The PLS105 is a bipolar programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(6 Q_{p}\), and \(8 Q_{F}\) edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option. All flip-flops are unconditionally preset to " 1 " during power turn on
The AND array combines 16 external inputs \(I_{0-15}\) with six internal inputs \(\mathrm{P}_{0-5}\), which are fed back from the State Registers to form up to 48 transition terms (AND terms). All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low-toHigh transition of the Clock pulse. Both True and Complement transition terms can be generated by optional use of the internal input variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to Output Enable function, as an additional userprogrammable option.

Order codes are listed in the Ordering Information Table.

PLS105
Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )

\section*{Signetics Programmable Logic} Product Specification

\section*{FEATURES}
- \(\mathrm{f}_{\mathrm{MAX}}=13.9 \mathrm{MHz}\)
- 20MHz clock rate
- Field-Programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition Complement Array
- Positive edge-triggered clocked flip-flops
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all " 1 " of internal registers
- Power dissipation: 600mW (typ.)
- TTL compatible
- Single +5 V supply
- 3-State outputs

\section*{APPLICATIONS}
- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

FUNCTIONAL DIAGRAM


PIN CONFIGURATIONS



\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-8 \\
20-27
\end{gathered}
\] & \(I_{1-15}\) & Logic Inputs: The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 9 & 10 & Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(\mathrm{I}_{0}\) is held at +10 V , device outputs \(\mathrm{F}_{0-5}\) refiect the contents of State Register bits \(\mathrm{P}_{0-5}\). The contents of each Output Register remains unaltered. & Active-High/Low \\
\hline \[
\begin{aligned}
& 10-13 \\
& 15-18
\end{aligned}
\] & \(\mathrm{F}_{0-7}\) & Logic/Diagnostic Outputs: Eight device outputs which normally reflect the contents of Output Register bits \(Q_{0-7}\), when enabled. When \(\mathrm{I}_{0}\) is held at \(+10 \mathrm{~V}, \mathrm{~F}_{0-5}=\left(\mathrm{P}_{0-5}\right)\), and \(F_{6,7}=\) Logic " 1 ". & Active-High \\
\hline 19 & PR/ \(\overline{O E}\) & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and \(\mathrm{F}_{0-7}\) are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.
\end{tabular} & Active-High (H) \\
\hline & & - Output Enable: Provides an Output Enable function to all output buffers \(\mathrm{F}_{0-7}\) from the Output Register. & Active-Low (L) \\
\hline
\end{tabular}

TRUTH TABLE 1, 2, 3, 4, 5, 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Vcc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow[b]{2}{*}{CK} & \multirow[b]{2}{*}{S} & \multirow[b]{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow[b]{2}{*}{F} \\
\hline & PR & \(\overline{O E}\) & & & & & & \\
\hline \multirow{3}{*}{\(+5 \mathrm{~V}\)} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
\begin{gathered}
+10 \mathrm{~V} \\
\mathrm{X}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & X
X
X & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{gathered}
H \\
\left(Q_{P}\right)_{n} \\
\left(Q_{F}\right)_{n}
\end{gathered}
\] \\
\hline & & \[
\mathrm{H}
\] & \[
+\underset{X}{+10 \mathrm{~V}}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & X
X
X
X & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hi}-\mathrm{Z} \\
& \left(\mathrm{Q}_{\mathrm{P}}\right)_{n} \\
& \left(\mathrm{Q}_{\mathrm{F}}\right)_{n}
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
\hline Q_{\mathrm{n}} \\
\mathrm{~L} \\
\mathrm{H} \\
\mathrm{IND} .
\end{gathered}
\] & \[
\begin{gathered}
\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}} \\
\mathrm{~L} \\
\mathrm{H} \\
\text { IND. }
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

\section*{NOTES:}
1. Positive Logic:
\[
\begin{aligned}
& S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47} \\
& T_{n}=C\left(I_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{5}\right)
\end{aligned}
\]
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \(\uparrow\) donotes transition from Low to High level.
4. \(R=S=\) High is an illegal input condition.
5. \(\quad=\mathrm{H} / \mathrm{L} /+10 \mathrm{~V}\)
6. \(X=\) Don't Care \((\leqslant 5.5 \mathrm{~V}\) )

\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ \(\overline{\mathrm{OE}}\) option is set to PR. Thus, all outputs will be at '1', as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All \(S / R\) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically when using Signetics qualified programming equipment.

FPLS LOGIC DIAGRAM


ORDERING INFORMATION
\begin{tabular}{|l|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 28-pin Plastic DIP 600mil-wide & PLS105N \\
\hline 28-pin Plastic Leaded Chip Carrier & PLS105A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

\section*{THERMAL RATINGS}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )
PLS105

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LImits} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
V_{C C}=\operatorname{Max} \\
V_{C C}=M i n \\
V_{C C}=\text { Min, } \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & 0.8
-1.2 & V
v \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline VOH VoL & \[
\begin{aligned}
& \text { High }^{4} \\
& \text { Low }^{5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA} \\
& \mathrm{lOL}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & v \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& I_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{LL}} \\
& \mathrm{I}_{\mathrm{L}}
\end{aligned}
\] & High Low Low (CK input) & \[
\begin{aligned}
& V_{I N}=5.5 \mathrm{~V} \\
& V_{I N}=0.45 \mathrm{~V} \\
& V_{I N}=0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
<1 \\
-10 \\
-50
\end{array}
\] & \[
\begin{gathered}
25 \\
-100 \\
-250
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(OFF) \\
los
\end{tabular} & \begin{tabular}{l}
Hi-Z state \({ }^{6}\) \\
Short circuit \({ }^{3,7}\)
\end{tabular} & \[
\begin{gathered}
V_{\text {CC }}=\mathrm{Max} \\
V_{\text {OUT }}=5.5 \mathrm{~V} \\
V_{\text {OUT }}=0.45 \mathrm{~V} \\
V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & 1
-1 & \[
\begin{gathered}
40 \\
-40 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline lcc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\mathrm{IN}}\) Cout & Input Output & \[
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
8 \\
10
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES:
1. All typical values are at \(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(\mathrm{V}_{\mathrm{IL}}\) applied to \(\overline{\mathrm{OE}}\) and a logic high stored, or with \(\mathrm{V}_{\mathrm{IH}}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(\mathrm{V}_{\mathrm{IL}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\) Output sink current is supplied through a resistor to \(V_{c c}\).
6. Measured with \(\mathrm{V}_{1 H}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\).
7. Duration of short circuit should not exceed 1 second.
8. \(\mathrm{l}_{\mathrm{CC}}\) is measured with the PR/ \(\overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width} \\
\hline \begin{tabular}{l}
\(t_{\text {CKH }}\) \\
\(t_{\text {CKL }}\) \\
\({ }^{t_{C K P 1} B}\) \\
\(\mathrm{t}_{\mathrm{CKP} 2}{ }^{\mathrm{B}}\) \\
\(t_{\text {PRH }}\)
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period (without Complement Array) \\
Period (with Complement Array) \\
Preset pulse
\end{tabular} & \[
\begin{aligned}
& \text { CK - } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR - }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK - } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR + }
\end{aligned}
\] & \[
\begin{gathered}
25 \\
25 \\
80 \\
120 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 60 \\
& 15
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(t_{1 S 1} A\) \\
\(t_{1 S 1} B\) \\
\({ }_{\mathrm{I}}^{\mathrm{IS} 1} \mathrm{C}\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~A}\) \\
\(\mathrm{t}_{\mathrm{IS} 2} B\) \\
\(\mathrm{t}_{\mathrm{IS} 2} \mathrm{C}\) \\
tvs \\
tpRS
\end{tabular} & \begin{tabular}{l}
Input \\
Input \\
Input \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Power-on preset \\
Preset
\end{tabular} & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { CK - } \\
& \text { CK - }
\end{aligned}
\] & Input \(\pm\) Input \(\pm\) Input \(\pm\) Input \(\pm\) Input Input \(\mathrm{V}_{\mathrm{CC}}+\) PR - & \[
\begin{aligned}
& 60 \\
& 50 \\
& 42 \\
& 90 \\
& 80 \\
& 72 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(t_{\text {IH }}\) & Input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{CKO}}\) \\
toe \\
tod \\
\(t_{P R}\) \\
tPPR
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \\
Preset \\
Power-on preset
\end{tabular} & \begin{tabular}{l}
Output \(\pm\) \\
Output - \\
Output + \\
Output + \\
Output +
\end{tabular} & \begin{tabular}{l}
CK + \\
OE - \\
\(O E+\) \\
PR + \\
\(\mathrm{V}_{\mathrm{CC}}{ }^{+}\)
\end{tabular} & & \[
\begin{gathered}
15 \\
20 \\
20 \\
18 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 30 \\
& 10
\end{aligned}
\] & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{MAX}} \mathrm{C}\) \\
\(f_{\text {MAX }} \mathrm{C}\)
\end{tabular} & Without Complement Array With Complement Array & & & & & \[
\begin{gathered}
13.9 \\
9.8
\end{gathered}
\] & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 30 \mathrm{~ns}\).
3. Seo "Speed vs. OR Loading" diagrams.

Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )

\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \({ }_{\text {t }}\) CKH & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP1 }}\) & Clock period - when not using Complement Array. \\
\hline \begin{tabular}{l}
\(t_{I S 1}\) \\
\({ }^{\text {t.CKP2 }}\)
\end{tabular} & Required delay between beginning of valid input and positive transition of Clock. Clock period - when using Complement Array. \\
\hline \(\mathrm{t}_{\text {IS } 2}\) & Required delay between beginning of valid input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array). \\
\hline tvs & Required delay between \(V_{C C}\) (after power-on) and negative transition of Clock preceding first reliable clock pulse. \\
\hline \(t_{\text {PRA }}\) & Required delay between negative transition of Asynchronous Preset and negative transition of Clock preceding first reliable clock pulse. \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & Required delay between positive transition of Clock and end of valid input data. \\
\hline \(\mathrm{t}_{\text {cko }}\) & Delay between positive transition of clock and when outputs become valid (with PR/OE Low). \\
\hline \(\mathrm{t}_{\text {OE }}\) & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline tod & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \({ }^{\text {tsRE }}\) & Delay between input \(I_{0}\) transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register. \\
\hline \({ }^{\text {tsRD }}\) & Delay between input \(I_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid at " 1 ". \\
\hline tppR & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when Outputs become preset at " 1 ". \\
\hline \(\mathrm{t}_{\text {PRH }}\) & Width of preset input pulse. \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


MEASUREMENTS:
All circuit delays are measured at the +1.5 V of inputs and outputs, unless otherwise specified. Input Pulses

\section*{SPEED VS. 'OR'' LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\[
\left(1 / f_{\mathrm{MAX}}\right)=t_{\mathrm{CY}}=\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}
\]

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(t_{I S}\), due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of \(t_{I S 1}\) with the number of terms connected per OR.

The AC electrical characteristics contain three limits for the parameters \(\mathrm{t}_{\mathrm{IS} 1}\) and \(\mathrm{t}_{\mathrm{IS} 2}\). The first, \(t_{I S 1 A}\) is guaranteed for a device with 48 terms connected to any OR line. \(t_{I S 1 B}\) is guaranteed for a device with 32 terms connected to any OR line. And \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{C}}\) is guaranteed for a device with 24 terms connected to any OR line.


The three other entries in the AC table, \(\mathrm{t}_{\mathrm{IS} 2}\) \(A, B\), and \(C\) are corresponding 48,32 , and 24 term limits when using the on-chip Complement Array.
The worst case \(t_{I S}\) for a given application can be determined by identifying the \(O R\) line with the maximum number of \(t_{n}\) connections. This can be done by referring to
the interconnect pattern in the FPLS logic diagram, typically illustrated in Figure 2, or by counting the maximum number of ' H ' or 'LL" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{I S}\) and, by implication, the maximum clocking frequency for reliable operation.

Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

\section*{LOGIC PROGRAMMING}

PLS105 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS105 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations ( \(I, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/ \(\overline{\mathrm{OE}}\) OPTION - (P/E)


PROGRAMMING THE PLS105:
The PLS105 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs \((H)\) as the present state.
"AND" ARRAY - (I), (P)

'OR' ARRAY - (N), (F)

"COMPLEMENT' ARRAY - (C)


\section*{NOTES:}
1. This is the initial unprogrammed state of all links.
2. Any gate \(T_{n}\) will be unconditionally inhibited if both the true and complement fuses of any input ( \(I, P\) ) are left intact.
3. To provont simultaneous Set and Reset flip-flop commands, this state is not allowed for \(N\) and \(F\) link pairs coupled to active gates \(T_{n}\) (see flip-flop truth tables).
4. To provent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).

May 11, 1988
5-102

FPLS PROGRAM TABLE
PROGRAM TABLE ENTRIES


NOTES:
1. The FPLS is shipped with all links initially intact. Thus, a background of " \(O\) ' for all Terms, and an " \(H\) " for the P/E option, exits in the table, shown BLANK instead for clarity. 2. Unused Cn Im, and Ps bits are normally programmed Don't Care ( - ).
3. Unused Transition Terms can be left blank for future code modification, or programmed as ( - ) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmed.

\section*{TEST ARRAY}

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49 , factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0.15}\) as shown in the test circuit timing diagram.


State Diagram


TC01597s

FPLS Under Test

\section*{TEST ARRAY PROGRAM}

r801760s
Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Circuit Timing Diagram

TEST ARRAY DELETED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{m} & \multicolumn{23}{|c|}{AND} \\
\hline & \multirow[b]{2}{*}{c} & \multicolumn{16}{|c|}{INPUT (Im)} & \multicolumn{6}{|l|}{PRESENT STATE (Ps)} \\
\hline & & \[
1
\] & \[
1
\] & 1 & 1 & 1 & 1 & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & 3 & 2 & 1 & 0 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 48 & - & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline 49 & \(\bullet\) & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|r|}{OPTION (P/E)} \\
\hline \multicolumn{15}{|c|}{OR} \\
\hline \multicolumn{6}{|c|}{next state (nz)} & \multicolumn{9}{|c|}{OUTPUT (FI)} \\
\hline 5 & 4 & 3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
\hline - & - & - & - & - & - & - & - & - & - & - & - & - & & - \\
\hline - & - & - & - & - & - & - & - & - & - & - & - & - & & - \\
\hline
\end{tabular}

TB01750S
Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products}

\section*{- Series 28}

\section*{DESCRIPTION}

The PLS105A is a bipolar programmable state machine of the Mealy type. It contains logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of \(6 Q_{p}\), and \(8 Q_{F}\) edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option. All flip-flops are unconditionally preset to " 1 " during power turn on.

The AND array combines 16 external inputs \(\mathrm{I}_{0-15}\) with 6 internal inputs \(\mathrm{P}_{0-5}\), which are fed back from the State Registers to form up to 48 Transition terms (AND terms). All Transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue nextstate and next-output commands to their respective registers on the Low-to-High transition of the Clock pulse. Both True and Complement Transition terms can be generated by optional use of the internal input variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to OutputEnable function, as an additional user programmable option.

Order codes are listed in the Ordering Information Table.

PLS105A

\section*{Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )}

\author{
Signetics Programmable Logic \\ Product Specification
}

\section*{FEATURES}
- \({ }^{-}{ }^{\text {f }}\) MAX \(=20 \mathrm{MHz}\)
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition complement array
- Positive edge-triggered clocked flip-flops
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all " 1 " of internal registers
- Power dissipation: 600 mW (typ.)
- TTL compatible
- Single +5 V supply
- 3-State outputs

\section*{APPLICATIONS}
- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

FUNCTIONAL DIAGRAM


\section*{LOGIC FUNCTION}

Typical State Transition:


SET \(Q_{0}: S_{0}=\left(\bar{Q}_{2} \cdot Q_{1} \cdot \bar{Q}_{0}\right) \cdot \bar{A} \cdot \bar{B} \cdot C \ldots\)
\(R_{0}=0\)
RESET \(Q_{1}: S_{1}=0\)
\(S_{1}=0\)
\(R_{1}=\left(\bar{Q}_{2} \cdot Q_{1} \cdot \bar{Q}_{0}\right) \cdot \bar{A} \cdot \bar{B} \cdot C \ldots\)
HOLD \(Q_{2}: \begin{aligned} S_{2} & =0 \\ R_{2} & =0\end{aligned}\)
Thooosos

\section*{PIN DESCRIPTION}
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. & Active-High \\
\hline \[
\begin{gathered}
2-8 \\
20-27
\end{gathered}
\] & \(I_{1-15}\) & Logic Inputs: The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. & Active-High/Low \\
\hline 9 & 10 & Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercised with standard TTL levels. When \(I_{0}\) is held at +10 V , device outputs \(F_{0-5}\) reflect the contents of State Register bits \(\mathrm{P}_{0-5}\). The contents of each Output Register remains unaltered. & Active-High/Low \\
\hline \[
\begin{aligned}
& 10-13 \\
& 15-18
\end{aligned}
\] & \(\mathrm{F}_{0-7}\) & Logic/Diagnostic Outputs: Eight device outputs which normally reflect the contents of Output Register bits \(Q_{0-7}\), when enabled. When \(I_{0}\) is held at \(+10 \mathrm{~V}, \mathrm{~F}_{0-5}=\left(P_{0-5}\right)\), and \(F_{6,7}=\) Logic " 1 ". & Active-High \\
\hline 19 & PR/OE & \begin{tabular}{l}
Preset or Output Enable Input: A user programmable function: \\
- Preset: Provides an Asynchronous Preset to logic " 1 " of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and \(\mathrm{F}_{0-7}\) are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.
\end{tabular} & Active-High (H) \\
\hline & & - Output Enable: Provides an output enable function to buffers \(\mathrm{F}_{0-7}\) from the Output Register. & Active-Low (L) \\
\hline
\end{tabular}

TRUTH TABLE 1, 2, 3, 4, 5, 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{V cc} & \multicolumn{2}{|r|}{OPTION} & \multirow[b]{2}{*}{\(\mathrm{I}_{0}\)} & \multirow[b]{2}{*}{CK} & \multirow[b]{2}{*}{S} & \multirow[b]{2}{*}{R} & \multirow[b]{2}{*}{\(Q_{\text {P/F }}\)} & \multirow[b]{2}{*}{F} \\
\hline & PR & \(\overline{O E}\) & & & & & & \\
\hline \multirow{3}{*}{+5V} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & & \[
\begin{gathered}
* \\
+10 \mathrm{~V} \\
\mathrm{x}
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x
\end{aligned}
\] & X
X
X & \begin{tabular}{l}
X \\
X \\
X \\
\hline
\end{tabular} & \[
\begin{aligned}
& H \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{H} \\
\left(\mathrm{Q}_{\mathrm{P}}\right)_{n} \\
\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{gathered}
* \\
+10 \mathrm{~V} \\
\mathrm{x}
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& Q_{n} \\
& Q_{n} \\
& Q_{n}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hi}-\mathrm{Z} \\
& \left(\mathrm{Q}_{\mathrm{P}}\right)_{n} \\
& \left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\uparrow
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
\hline Q_{n} \\
L \\
H \\
\text { IND. }
\end{gathered}
\] & \[
\begin{gathered}
\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}} \\
\mathrm{~L} \\
\mathrm{H} \\
\mathrm{IND} .
\end{gathered}
\] \\
\hline \(\uparrow\) & X & X & X & X & X & X & H & \\
\hline
\end{tabular}

NOTES:
1. Positive Logic:
\[
\begin{aligned}
& \left.S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47}+{ }_{47}\right) \\
& T_{n}=C\left(l_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{5}\right)
\end{aligned}
\]
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \(\uparrow\) denotes transition from Low to High level.
4. \(R=S=\) High is an illegal input condition.
5. \({ }^{*}=H / L /+10 \mathrm{~V}\)
6. \(\mathrm{X}=\) Don't Care \((\leqslant 5.5 \mathrm{~V})\)

\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links intact, such that:
1. PR/ \(\overline{O E}\) option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All \(S / R\) flip-flop inputs are disabled ( 0 ).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically when using any of Signetics' qualified programming equipment.
\[
\text { Field-Programmable Logic Sequencer }(16 \times 48 \times 8) \quad \text { PLS105A }
\]

FPLS LOGIC DIAGRAM


Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )

ORDERING INFORMATION
\begin{tabular}{|l|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 28-pin Plastic DIP 600mil-wide & PLS105AN \\
\hline 28-pin Plastic Leaded Chip Carrier & PLS105AA \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\mathrm{OUT}}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{\mathbf{2}}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & High Low Clamp \({ }^{3}\) & \[
\begin{gathered}
V_{C C}=\operatorname{Max} \\
V_{C C}=\operatorname{Min} \\
V_{C C}=\text { Min, } \operatorname{liN}_{\mathrm{N}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2 \\
\hline
\end{gathered}
\] & V
v \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}} \\
& \mathrm{~V}_{\mathrm{OL}}
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \mathrm{High}^{4} \\
& \text { Low }^{5}
\end{aligned}\right.
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{IOH}=-2 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 0.35 & 0.45 & v \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IH}} \\
& \mathrm{I}_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{L}}
\end{aligned}
\] & High Low Low (CK input) & \[
\begin{aligned}
\mathrm{V}_{I N} & =5.5 \mathrm{~V} \\
V_{I N} & =0.45 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =0.45 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
<1 \\
-10 \\
-50 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25 \\
-100 \\
-250 \\
\hline
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline lo(off) los & \begin{tabular}{l}
Hi-Z state \({ }^{6}\) \\
Short circuit \({ }^{3,7}\)
\end{tabular} & \[
\begin{aligned}
V_{\mathrm{CC}} & =\mathrm{Max} \\
\mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =0.45 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & \[
\begin{gathered}
1 \\
-1
\end{gathered}
\] & \[
\begin{array}{r}
40 \\
-40 \\
-70 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) \(\mu \mathrm{A}\) mA \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 120 & 180 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance \({ }^{6}\)} \\
\hline \(\mathrm{C}_{\text {IN }}\) Cout & Input Output & \[
\begin{aligned}
V_{\mathrm{CC}} & =5.0 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{OUT}} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
10 & & pF
pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with \(\mathrm{V}_{\mathrm{IL}}\) applied to \(\overline{\mathrm{OE}}\) and a logic high stored, or with \(\mathrm{V}_{\mathrm{IH}}\) applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and \(V_{\mathrm{IL}}\) applied to \(\mathrm{PR} / \overline{\mathrm{OE}}\) Output sink current is supplied through a resistor to \(\mathrm{V}_{\mathrm{cc}}\).
6. Measured with \(V_{I H}\) applied to \(P R / \overline{O E}\).
7. Duration of short circuit should not exceed 1 second.
8. \(I_{C C}\) is measured with the PR/ \(\overline{O E}\) input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{то} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width} \\
\hline \begin{tabular}{l}
\({ }^{\text {t }}\) CKH \\
\(t_{\text {CKL }}\) \({ }^{\text {tCKP1 }} \mathrm{B}\) \\
\(\mathrm{t}_{\mathrm{CKP2}} \mathrm{~B}^{\mathrm{B}}\) \\
tpRH
\end{tabular} & \begin{tabular}{l}
Clock \({ }^{2}\) High \\
Clock Low \\
Period (without Complement Array) \\
Period (with Complement Array) \\
Preset pulse
\end{tabular} & \[
\begin{aligned}
& \mathrm{CK}- \\
& \mathrm{CK}+ \\
& \mathrm{CK}+ \\
& \mathrm{CK}+ \\
& \mathrm{PR}-
\end{aligned}
\] & \[
\begin{aligned}
& \text { CK + } \\
& \text { CK - } \\
& \text { CK + } \\
& \text { CK + } \\
& \text { PR + }
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 50 \\
& 80 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 50 \\
& 15
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{3}\)} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{IS} 1} \mathrm{~A}\) \\
\(\mathrm{t}_{151} \mathrm{~B}\) \\
\(\mathrm{t}_{152} \mathrm{~A}\) \\
\(\mathrm{t}_{152} \mathrm{~B}\) \\
tvs \\
tpRs
\end{tabular} & \begin{tabular}{l}
Input \\
Input \\
Input (through Complement Array) \\
Input (through Complement Array) \\
Power-on preset \\
Preset
\end{tabular} & \begin{tabular}{l}
CK + \\
CK + \\
CK + \\
CK + \\
CK - \\
CK -
\end{tabular} & \begin{tabular}{l}
Input \(\pm\) \\
Input \(\pm\) \\
Input \(\pm\) \\
Input \\
\(\mathrm{V}_{\mathrm{cc}}+\) PR-
\end{tabular} & \[
\begin{gathered}
40 \\
30 \\
70 \\
60 \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(\mathrm{t}_{\mathrm{I}}\) & Input & Input \(\pm\) & CK + & 5 & -10 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{C}} \mathrm{KO}\) \\
toe \\
tod \\
\(t_{P R}\) \\
tppR
\end{tabular} & \begin{tabular}{l}
Clock \\
Output enable \\
Output disable \\
Preset \\
Power-on preset
\end{tabular} & \begin{tabular}{l}
Output \(\pm\) \\
Output - \\
Output + \\
Output + \\
Output +
\end{tabular} & \begin{tabular}{l}
CK + \\
OE- \\
OE + \\
PR + \\
\(\mathrm{V}_{\mathrm{CC}}{ }^{+}\)
\end{tabular} & & \[
\begin{gathered}
15 \\
20 \\
20 \\
18 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 20 \\
& 30 \\
& 30 \\
& 30 \\
& 10
\end{aligned}
\] & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation} \\
\hline \[
\begin{aligned}
& f_{\text {MAX }} \\
& f_{\text {MAX }}
\end{aligned}
\] & Without Complement Array With Complement Array & & & & & \[
\begin{gathered}
\hline 20 \\
12.5
\end{gathered}
\] & MHz \\
\hline
\end{tabular}

NOTES:
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. To prevent spurious clocking, clock rise time \((10 \%-90 \%) \leqslant 30 \mathrm{~ns}\).
3. See "Speed vs. OR Loading"' diagrams.

\section*{TIMING DIAGRAMS}


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & Clock period - when not using Complement Array. \\
\hline \(\mathrm{t}_{\text {IS } 1}\) & Required delay between beginning of valid input and positive transition of Clock. \\
\hline \(\mathrm{t}_{\text {CKP2 }}\) & Clock period - when using Complement Array. \\
\hline \(\mathrm{t}_{\text {IS } 2}\) & Required delay between beginning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array). \\
\hline tvs & Required delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and negative transition of Clock preceding first reliable clock pulse. \\
\hline \(\mathrm{t}_{\text {PRS }}\) & Required delay between negative transition of Asynchronous Preset and negative transition of Clock preceding first reliable clock pulse. \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & Required delay between positive transition of Clock and end of valid Input data. \\
\hline \(\mathrm{t}_{\mathrm{CKO}}\) & Delay between positive transition of Clock and when Outputs become valid (with PR/OE Low). \\
\hline \(\mathrm{t}_{\mathrm{OE}}\) & Delay between beginning of Output Enable Low and when Outputs become valid. \\
\hline \({ }^{\text {tod }}\) & Delay between beginning of Output Enable High and when Outputs are in the OFF-state. \\
\hline \(t_{\text {SRE }}\) & Delay between input \(I_{0}\) transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register. \\
\hline \(t_{\text {SRD }}\) & Delay between input \(\mathrm{I}_{0}\) transition to Logic mode and when the Outputs reflect the contents of the Output Register. \\
\hline \(t_{\text {PR }}\) & Delay between positive transition of Preset and when Outputs become valid at "1". \\
\hline \(t_{\text {PPR }}\) & Delay between \(\mathrm{V}_{\mathrm{CC}}\) (after power-on) and when Outputs \\
\hline tpRH & Width of preset input pulse. \\
\hline \(f_{\text {MAX }}\) & Maximum clock frequency. \\
\hline
\end{tabular}

TIMING DIAGRAMS (Continued)


\section*{TEST LOAD CIRCUITS}


VOLTAGE WAVEFORMS


Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )

\section*{SPEED VS. 'OR' LOADING}

The maximum frequency at which the FPLS can be clocked while operating in sequential mode is given by:
\[
\left(1 / \mathrm{f}_{\mathrm{MAX}}\right)=\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}
\]

This frequency depends on the number of transition terms \(T_{n}\) used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects \(\mathrm{t}_{\mathrm{IS}}\), due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of \(\mathrm{t}_{\mathrm{IS} 1}\) with the number of terms connected per OR.

The AC electrical characteristics contain two limits for the parameters \(\mathrm{t}_{\mathrm{IS} 1}\) and \(\mathrm{t}_{\mathrm{IS} 2}\). The first, \(\mathrm{t}_{\mathrm{S} 1 \mathrm{~A}}\) is guaranteed for a device with 24 terms connected to any OR line. \(\mathrm{t}_{\mathrm{IS} 1 \mathrm{~B}}\) is guaranteed for a device with 16 terms connected to any OR line.

The two other entries in the AC table, \(\mathrm{t}_{\mathrm{IS} 2} \mathrm{~A}\) and \(B\) are corresponding 24 and 16 term limits when using the on-chip Complement array.


Figure 1. \(\mathrm{t}_{\mathrm{IS} 1}\) vs. Terms/OR Connected

The worst case of \(t_{\text {IS }}\) for a given application can be determined by identifying the OR line with the maximum number of \(T_{n}\) connections. This can be done by referring to
the interconnect pattern in the FPLS logic diagram, typically illustrated in Figure 2, or by counting the maximum number of " H " or "L" entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 will yield the worst case \(t_{l s}\) and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.


Figure 2. Typical OR Array Interconnect Pattern

\section*{LOGIC PROGRAMMING}

PLS105A logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS105A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations ( \(1, B, O, P\), etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/OE OPTION - (P/E)


PROGRAMMING THE PLS105A:
The PLS105A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs \((H)\) as the present state.
"AND' ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)


NOTES:
1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates \(\mathbf{T}_{\mathbf{n}}\).
2. Any gate \(T_{n}\) will be unconditionally inhibited if both the true and complement fuses of any input (I,P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for \(\mathbf{N}\) and \(F\) link pairs coupled to active gates \(\mathbf{T}_{\mathbf{n}}\) (see filp-flop truth tables).
4. To prevent oscillations, this state is not allowed for \(\mathbf{C}\) link pairs coupled to active gates \(\mathbf{T}_{\mathbf{n}}\).

Field-Programmable Logic Sequencer ( \(16 \times 48 \times 8\) )
PLS105A

\section*{FPLS PROGRAM TABLE}

\section*{TEST ARRAY}

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.
The array consists of test transition terms 48 and 49 , factory programmed as shown below.

Testing is accomplished by clocking the FPLS and applying the proper input sequence to \(\mathrm{I}_{0.15}\) as shown in the test circuit timing diagram.


State Diagram


TC01597s

FPLS Under Test

TEST ARRAY PROGRAM


tBolif60s
Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desirod logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.


Test Circuit Timing Diagram

TEST ARRAY DELETED
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{E
\(\mathbf{R}\)
\(\mathbf{M}\)} & \multicolumn{23}{|c|}{AND} \\
\hline & \multirow{3}{*}{c} & \multicolumn{16}{|c|}{INPUT (Im)} & \multicolumn{6}{|l|}{PRESENT STATE (Pz)} \\
\hline & & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\[
\left[\begin{array}{l}
1 \\
2
\end{array}\right.
\]} & \multirow[t]{2}{*}{\[
\left.\begin{aligned}
& 1 \\
& 1
\end{aligned} \right\rvert\,
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \\
& 0
\end{aligned}
\]} & \multirow[b]{2}{*}{9} & \multirow[b]{2}{*}{8} & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{6} & \multirow[b]{2}{*}{5} & \multirow[t]{2}{*}{-} & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{2} & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{5} & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & 4 & 3 & 2 & 1 & 0 \\
\hline 48 & - & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline 49 & \(\bullet\) & 1 & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & 1 & L & L & L \\
\hline
\end{tabular}


TBO1750S
Test Array Deleted

\section*{Signetics}

\section*{Application Specific Products - Series 28}

\section*{DESCRIPTION}

The PLUS405 is a bipolar, programmable state machine of the Mealy type. Both the AND and the OR array are user-programmable. All 64 AND gates are connected to the 16 external dedicated inputs \(\left(I_{0}-I_{15}\right)\) and to the feedback paths of the 8 on-chip State Registers \(\left(Q_{P 0}-Q_{P 7}\right)\). Complement transition terms can be generated via optional use of the two internal Complement Arrays (input variables \(C_{0}, C_{1}\) ).
All state transition terms can include True, False and Don't Care states of the controlling state variables. All AND gates are merged into the programmable OR array to issue the next-state and next-output commands to their respective registers. Because the OR array is programmable, any one or all of the 64 transition terms can be connected to any or all of the State and Output Registers.
All state \(\left(Q_{P 0}-Q_{P 7}\right)\) and output ( \(Q_{F 0}-Q_{F 7}\) ) registers are edge-triggered, clocked J-K flip-flops, with Asynchronous Preset and Reset options. The PLUS405 architecture provides the added flexibility of the J-K toggle function which is indeterminate on S-R flip-flops. Each register may be individually programmed such that a specific PresetReset pattern is initialized when the initialization pin is raised to a logic level " 1 ". This feature allows the state machine to be asynchronously initialized to known internal state and output conditions prior to proceeding through a sequence of state transitions. Upon powerup, all registers are unconditionally preset to " 1 ". If desired, the initialization input pin (INIT) can be converted to an Output Enable ( \(\overline{\mathrm{OE}}\) ) function as an additional user-programmable feature.

Availability of two user-programmable clocks allows the user to design two independently clocked state machine functions consisting of four state and four output bits each.
Order codes are listed in the Ordering Information Table.

\author{
Signetics Programmable Logic Product Specification
}

\section*{FEATURES}
- Functional superset of PLS105/ 105A
- 50MHz clock rate
- \(\mathrm{f}_{\mathrm{MAX}}=33 \mathrm{MHz}\) \(\left(1 /\left(t_{\text {IS }}+t_{\text {CKO }}\right)=f_{\text {MAX }}\right)\)
- Field-programmable (Ti-W fusible link)
- 16 input variables
- 8 output functions
- 64 transition terms
- 8-bit State Register
- 8-bit Output Register
- 2 transition Complement Array terms
- Multiple clocks
- Programmable Asynchronous Initialization or Output Enable
- Power-on preset of all registers to " 1 "
-950mW power dissipation (typ.)
- TTL compatible
- J-K or S-R flip-flop functions
- 3-State outputs

\section*{APPLICATIONS}
- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

\section*{PIN CONFIGURATIONS}


\section*{Field-Programmable Logic}

PIN DESCRIPTION
\begin{tabular}{|c|c|c|c|}
\hline PIN NO. & SYMBOL & NAME AND FUNCTION & POLARITY \\
\hline 1 & CLK & Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks \(P_{0-3}\) and \(F_{0-3}\) if Pin 4 is also being used as a clock. & ActiveHigh (H) \\
\hline \[
\begin{gathered}
2,3,5-9 \\
26-27 \\
20-22
\end{gathered}
\] & \[
\begin{aligned}
& I_{0}-I_{4}, I_{7}, I_{6} \\
& I_{8}-I_{9} \\
& I_{13}-I_{15}
\end{aligned}
\] & Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of "H" and "L". & ActiveHigh/Low (H/L) \\
\hline 4 & \(\mathrm{I}_{5}\) /CLK & \begin{tabular}{l}
Logic Input/Clock: A user programmable function: \\
- Logic Input: A 13th external logic input to the AND array, as above.
\end{tabular} & ActiveHigh/Low (H/L) \\
\hline & & - Clock: A 2nd clock for the State Registers \(\mathrm{P}_{4-7}\) and Output. Registers \(\mathrm{F}_{4-7}\), as above. Note that input buffer \(\mathrm{I}_{5}\) must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock. & ActiveHigh (H) \\
\hline 23 & \(I_{12}\) & Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL levels. When \(\mathrm{I}_{12}\) is held at +10 V , device outputs \(F_{0}-F_{7}\) reflect the contents of State Register bits \(P_{0}-P_{7}\). The contents of each Output Register remains unaltered. & ActiveHigh/Low (H/L) \\
\hline 24 & \(I_{11}\) & Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When \(\mathrm{I}_{11}\) is held at +10 V , device outputs \(\mathrm{F}_{0}-\mathrm{F}_{7}\) become direct inputs for State Register bits \(\mathrm{P}_{0}-\mathrm{P}_{7}\); a Low-to-High transition on the appropriate clock line loads the values on pins \(F_{0}-F_{7}\) into the State Register bits \(\mathrm{P}_{0}-\mathrm{P}_{7}\). The contents of each Output Register remains unaltered. & ActiveHigh/Low (H/L) \\
\hline 25 & \(l_{10}\) & Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When \(\mathrm{I}_{10}\) is held at +10 V , device outputs \(F_{0}-F_{7}\) become direct inputs for Output Register bits \(Q_{0}-Q_{7}\); a Low-to-High transition on the appropriate clock line loads the values on pins \(F_{0}-F_{7}\) into the Output Register bits \(Q_{0}-Q_{7}\). The contents of each State Register remains unaltered. & ActiveHigh/Low (H/L) \\
\hline \[
\begin{aligned}
& 10-13 \\
& 15-18
\end{aligned}
\] & \(F_{0}-F_{7}\) & Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits \(Q_{0}-Q_{7}\), when enabled. When \(I_{12}\) is held at \(+10 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)\). When \(I_{11}\) is held at +10 V , \(\mathrm{F}_{0}-\mathrm{F}_{7}\) become inputs to State Register bits \(\mathrm{P}_{0}-\mathrm{P}_{7}\). When \(\mathrm{I}_{10}\) is held at +10 V , \(\mathrm{F}_{0}-\mathrm{F}_{7}\) become inputs to Output Register bits \(\mathrm{Q}_{0}-\mathrm{Q}_{7}\). & ActiveHigh (H) \\
\hline 19 & INIT/ \(\overline{O E}\) & \begin{tabular}{l}
Initialization or Output Enable Input: \\
A user-programmable function: \\
- Initialization: Provides an asynchronous preset to logic " 1 " or reset to logic " 0 " of all State and Output Register bits, determined individually for each register bit through user programming. INIT overrides Clock, and when held High, clocking is inhibited and \(\mathrm{F}_{0}-\mathrm{F}_{7}\) are in their initialization state. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after INIT goes Low. See timing definition for \(\mathrm{t}_{\mathrm{vCK}}\) and \(\mathrm{t}_{\text {NVCK }}\). \\
- Output Enable: Provides an output enable function to buffers \(F_{0}-F_{7}\) from the Output Registers.
\end{tabular} & \begin{tabular}{l}
Active- \\
High (H) \\
ActiveLow \\
(L)
\end{tabular} \\
\hline
\end{tabular}

Field-Programmable Logic
Sequencer ( \(16 \times 64 \times 8\) )

TRUTH TABLE 1, 2, 3, 4, 5, 6, 7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{V cc} & \multicolumn{2}{|c|}{OPTION} & \multirow[b]{2}{*}{\(\mathrm{l}_{10}\)} & \multirow[b]{2}{*}{\(\mathrm{I}_{11}\)} & \multirow[b]{2}{*}{\(\mathrm{I}_{12}\)} & \multirow[b]{2}{*}{CK} & \multirow[b]{2}{*}{J} & \multirow[b]{2}{*}{K} & \multirow[b]{2}{*}{\(Q_{p}\)} & \multirow[b]{2}{*}{\(Q_{F}\)} & \multirow[b]{2}{*}{F} \\
\hline & INIT & \(\overline{O E}\) & & & & & & & & & \\
\hline \multirow{3}{*}{\(+5 \mathrm{~V}\)} &  & & \[
\begin{gathered}
+10 \mathrm{~V} \\
+10 \mathrm{~V} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
* \\
\mathrm{X} \\
\mathrm{X} \\
+10 \mathrm{~V} \\
+10 \mathrm{~V} \\
\mathrm{X} \\
\mathrm{X} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
* \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
\mathrm{X} \\
+10 \mathrm{~V} \\
\mathrm{X} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{X} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline H / L \\
Q_{P} \\
Q_{P} \\
L \\
H \\
Q_{P} \\
Q_{P} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{H} / \mathrm{L} \\
\mathrm{~L} \\
H \\
\mathrm{Q}_{\mathrm{F}} \\
\mathrm{Q}_{\mathrm{F}} \\
\mathrm{Q}_{\mathrm{F}} \\
\mathrm{Q}_{\mathrm{F}} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& Q_{F} \\
& L^{9} \\
& H^{9} \\
& L^{9} \\
& H^{9} \\
& Q_{P} \\
& Q_{F} \\
& \hline
\end{aligned}
\] \\
\hline & & \(H\)
\(X\)
\(X\)
\(X\)
\(X\)
\(X\)
\(L\)
\(L\) & \[
\begin{gathered}
X \\
+10 V \\
+10 V \\
X \\
X \\
X \\
X \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
X \\
X \\
X \\
+10 V \\
+10 V \\
X \\
X
\end{gathered}
\] & \[
\begin{gathered}
* \\
X \\
X \\
X \\
X \\
+10 V \\
\text { X } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline x \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Q}_{p} \\
\mathrm{Q}_{\mathrm{p}} \\
\mathrm{Q}_{\mathrm{P}} \\
\mathrm{~L} \\
\mathrm{H} \\
\mathrm{Q}_{\mathrm{P}} \\
\mathrm{Q}_{\mathrm{P}}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Q}_{F} \\
\mathrm{~L} \\
\mathrm{H} \\
\mathrm{Q}_{F} \\
\mathrm{Q}_{F} \\
\mathrm{Q}_{F} \\
\mathrm{Q}_{\mathrm{F}}
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{Hi}_{\mathrm{L}-\mathrm{Z}} \\
\mathrm{~L}^{9} \\
\mathrm{H}^{9} \\
\mathrm{~L}^{9} \\
\mathrm{H}^{9} \\
Q_{P} \\
Q_{F}
\end{gathered}
\] \\
\hline & & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \hline x \\
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & \[
\begin{aligned}
& \uparrow \\
& \uparrow \\
& \uparrow \\
& \uparrow
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{gathered}
Q_{p} \\
L \\
\frac{H}{Q_{P}}
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Q}_{\mathrm{F}} \\
& \mathrm{~L} \\
& \frac{\mathrm{H}}{\mathrm{Q}_{\mathrm{F}}}
\end{aligned}
\] & \[
\begin{gathered}
Q_{F} \\
L \\
\frac{H}{Q_{F}}
\end{gathered}
\] \\
\hline \(\uparrow\) & x & X & X & X & X & X & X & X & X & X & H \\
\hline
\end{tabular}

\section*{NOTES:}
1. Positive Logic:
\(S / R(\) or \(J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}\)
\(T_{n}=\left(C_{0}, C_{1}\right)\left(I_{0}, I_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1}, \ldots P_{7}\right)\)
2. Either Initialization (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \(\uparrow\) denotes transition from Low-to-High level.
4. \(*=H / L /+10 \mathrm{~V}\)
5. \(\mathrm{X}=\) Don't Care \((\leqslant 5.5 \mathrm{~V}\) )
6. H/L implies that either a High or a Low can occur, depending upon user-programmed selection (each State and Output Register individually programmable).
7. When using the \(F_{\mathrm{n}}\) pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3 -stated and the indicated levels on the output pins are forced by the user.

\section*{VIRGIN STATE}

A factory-shipped virgin device contains all fusible links intact, such that:
1. INIT/信 option is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the user-programmed initialization, or even if the INIT function is not used, all registers are preset to " 1 '" by the power-up procedure.

\section*{LOGIC FUNCTION}
2. All transition terms are inactive (0).
3. All S/R (or \(J / K\) ) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array preprogrammed with a standard test pattern.


FUNCTIONAL DIAGRAM


Field-Programmable Logic
Sequencer ( \(16 \times 64 \times 8\) )
PLUS405

FPLS LOGIC DIAGRAM


Field-Programmable Logic
Sequencer ( \(16 \times 64 \times 8\) )

\section*{DETAILS FOR REGISTERS FOR PLUS405}


Field-Programmable Logic Sequencer ( \(16 \times 64 \times 8\) )

\section*{PLUS405}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 28-Pin Plastic DIP (600mil-wide) & PLUS405N \\
\hline 28-Pin Plastic Leaded Chip Carrier & PLUS405A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & RATINGS & UNIT \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{N}}\) & Input currents & -30 to +30 & mA \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 to +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High & \(V_{C C}=\) Max & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\) & & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {IC }}\) & Clamp \({ }^{3}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{IN}}=-12 \mathrm{~mA}\) & & -0.8 & -1.2 & V \\
\hline \multicolumn{7}{|l|}{Output voltage \({ }^{2}\)} \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}\) & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{LL}}=9.6 \mathrm{~mA}\) & & 0.35 & 0.45 & V \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High & \(\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\) & & <1 & 25 & \(\mu \mathrm{A}\) \\
\hline IIL & Low & \(\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}\) & & -20 & -250 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline lo(off) & Hi-Z state & \(\mathrm{V}_{\text {CC }}=\) Max, \(\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\) & & 1 & 40 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {CC }}=\) Max, \(\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}\) & & -1 & -40 & \(\mu \mathrm{A}\) \\
\hline los & Short circuit \({ }^{3,4}\) & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & -15 & & -70 & mA \\
\hline Icc & \(\mathrm{V}_{C C}\) supply current \({ }^{5}\) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & 190 & 225 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}\) & & 8 & & pF \\
\hline Cout & Output & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}\) & & 10 & & pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short circuit should not exceed 1 second.
5. ICC is measured with the \(\operatorname{INIT} / \overline{\mathrm{OE}}\) input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS \(R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75^{\circ} \mathrm{CV} \leqslant \mathrm{V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TO} & \multirow[b]{2}{*}{FROM} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{8}{|l|}{Pulse width} \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Clock High & CK - & CK + & 10 & 8 & & ns \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Clock Low & CK + & CK - & 10 & 8 & & ns \\
\hline \(\mathrm{t}_{\text {CKP1 }}\) & Period (without Complement Array) & CK + & CK + & 30 & 25 & & ns \\
\hline \(\mathrm{t}_{\text {CKP2 }}\) & Period (with Complement Array) & CK + & CK + & 40 & 35 & & ns \\
\hline tinith & Initialization pulse & INIT + & INIT - & 15 & 8 & & ns \\
\hline \multicolumn{8}{|l|}{Setup time \({ }^{2}\)} \\
\hline \(\mathrm{t}_{\mathrm{S} 1}\) & Input & CK + & Input \(\pm\) & 15 & 12 & & ns \\
\hline \(\mathrm{t}_{\mathrm{IS} 2}\) & Input (through Complement Array) & CK + & Input \(\pm\) & 25 & 20 & & ns \\
\hline tvs & Power-on preset & CK - & \(\mathrm{V}_{\mathrm{CC}}+\) & 0 & -10 & & ns \\
\hline tvCK & Clock resume (after initiallization) & CK - & INIT - & 0 & -5 & & ns \\
\hline \(t_{\text {NVCK }}\) & Clock lockout (before Initialization) & INIT - & CK - & 15 & 5 & & ns \\
\hline \multicolumn{8}{|l|}{Hold time} \\
\hline \(t_{\text {IH }}\) & Input & Input \(\pm\) & CK + & 0 & -5 & & ns \\
\hline \multicolumn{8}{|l|}{Propagation delay} \\
\hline \(\mathrm{t}_{\text {cKo }}\) & Clock & Output \(\pm\) & CK + & & 10 & 15 & ns \\
\hline \(\mathrm{t}_{\text {OE }}\) & Output enable & Output - & OE - & & 12 & 15 & ns \\
\hline tod & Output disablo \({ }^{3}\) & Output + & \(\mathrm{OE}+\) & & 12 & 15 & ns \\
\hline \(\mathrm{t}_{\text {INIT }}\) & Initialization & Output + & INIT + & & 15 & 20 & ns \\
\hline \(t_{\text {PPR }}\) & Power-on preset & Output + & \(\mathrm{V}_{\mathrm{CC}}+\) & & 0 & 10 & ns \\
\hline \multicolumn{8}{|l|}{Frequency of operation} \\
\hline \(f_{\text {MAX }}\) & Without Complement Array With Complement Array & & & & & \begin{tabular}{l}
33 \\
25 \\
\hline
\end{tabular} & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. Product term loading considerations: Connecting more than 8 toggle mode registers to only one product term by itself may compromise the setup time performance. This restriction does not apply if toggle mode function is not used.
3. \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).

\section*{TIMING DIAGRAMS}


Field-Programmable Logic



Power-On Preset

\section*{Field-Programmable Logic}

TIMING DIAGRAMS (Continued)


Diagnostic Mode - State Register Outputs


Diagnostic Mode - State Register Input Jam

Field-Programmable Logic
Sequencer ( \(16 \times 64 \times 8\) )

TIMING DIAGRAMS (Continued)


TIMING DEFINITIONS
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline \(\mathrm{t}_{\text {CKH }}\) & Width of input clock pulse. \\
\hline \(\mathrm{t}_{\text {CKP }}\) & \begin{tabular}{l} 
Clock period - when not \\
using Complement Array.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {IS1 }}\) & \begin{tabular}{l} 
Required delay between \\
beginning of valid input and \\
positive transition of Clock.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {CKO }}\) & \begin{tabular}{l} 
Delay between positive \\
transition of Clock and when \\
Outputs become valid (with \\
INIT/OE Low).
\end{tabular} \\
\hline \(\mathrm{t}_{\text {PPR }}\) & \begin{tabular}{l} 
Delay between V \({ }_{\text {CC (after }}\) \\
power-on) and when Outputs \\
become preset at "1".
\end{tabular} \\
\hline \(\mathrm{t}_{\text {IS2 }}\) & \begin{tabular}{l} 
Required delay between \\
beginning of valid Input and \\
positive transition of Clock, \\
when using optional \\
Complement Array (two \\
passes necessary through \\
the AND Array).
\end{tabular} \\
\hline \(\mathrm{t}_{\text {RJH }}\) & \begin{tabular}{l} 
Required delay between \\
positive transition of Clock \\
and end of inputs I I1 or \(\mathrm{I}_{10}\) \\
transition to State and \\
Output Register Input Jam \\
Diagnostic Modes, \\
respectively.
\end{tabular} \\
\hline \(\mathrm{f}_{\text {MAX }}\) & \begin{tabular}{l} 
Maximum clock frequency.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline \(\mathrm{t}_{\text {CKL }}\) & Interval between clock pulses. \\
\hline \(\mathrm{t}_{\text {CKP2 }}\) & \begin{tabular}{l} 
Clock period - when using \\
Complement Array.
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{IH}}\) & \begin{tabular}{l} 
Required delay between \\
positive transition of Clock \\
and end of valid Input data.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {OE }}\) & \begin{tabular}{l} 
Delay between beginning of \\
Output Enable Low and \\
when Outputs become valid.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {SRE }}\) & \begin{tabular}{l} 
Delay between input \(\mathrm{I}_{12}\) \\
transition to Diagnostic Mode \\
and when the Outputs reflect \\
the contents of the State \\
Register.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {RJS }}\) & \begin{tabular}{l} 
Required delay between \\
inputs \(\mathrm{I}_{11}\) or \(\mathrm{I}_{10}\) transition to \\
State and Output Register \\
Input Jam Diagnostic Modes, \\
respectively, and when the \\
ouput pins become available \\
as inputs.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {NVCK }}\) & \begin{tabular}{l} 
Required delay between the \\
negative transition of the \\
clock and the negative \\
transition of the \\
Asynchronous Initialization to \\
guarantee that the clock \\
edge is not detected as a \\
valid negative transition.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } \\
\hline \(\mathrm{t}_{\text {INITH }}\) & \begin{tabular}{l} 
Width of initialization input \\
pulse.
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{VS}}\) & \begin{tabular}{l} 
Required delay between \(V_{\mathrm{CC}}\) \\
(after power-on) and negative \\
transition of Clock preceding \\
first reliable clock pulse.
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{OD}}\) & \begin{tabular}{l} 
Delay between beginning of \\
Output Enable High and when \\
Outputs are in the OFF-state.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {INIT }}\) & \begin{tabular}{l} 
Delay between positive \\
transition of Initialization and \\
when Outputs become valid.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {SRD }}\) & \begin{tabular}{l} 
Delay between input \(\mathrm{I}_{12}\) \\
transition to Logic mode and \\
when the Outputs reflect the \\
contents of the Output \\
Register.
\end{tabular} \\
\hline \(\mathrm{t}_{\text {RH }}\) & \begin{tabular}{l} 
Required delay between \\
positive transition of Clock \\
and end of valid Input data \\
when jaming data into State \\
or Output Registers in \\
diagnostic mode.
\end{tabular} \\
\hline \(\mathrm{t}_{\mathrm{VCK}}\) & \begin{tabular}{l} 
Required delay between \\
negative transition of \\
Asynchronous Initialization \\
and negative transition of \\
Clock preceding first reliable \\
clock pulse.
\end{tabular} \\
\hline
\end{tabular}

Field-Programmable Logic Sequencer ( \(16 \times 64 \times 8\) )

\section*{TEST LOAD CIRCUIT}


\section*{VOLTAGE WAVEFORMS}


MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

\section*{LOGIC PROGRAMMING}

PLUS405 Logic designs can be generated using Signetics' AMAZE design software or several other commercially availabe, JEDEC standard PLD design software packages. Boolean and/or state equation entry format is accepted.

PLUS405 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry Format (PTE) is supported by the Signetics' AMAZE PLD design software. AMAZE is available free of charge to qualified users.
To implement the desired logic functions, each logic variable (I, B, P, S, T, etc.) from the logic equations is assigned a symbol. TRUE, COMPLEMENT, PRESET, RESET, OUTPUT ENABLE, INACTIVE, etc., symbols are defined below.

\section*{INITIALIZATION/OE OPTION - (INIT/ \(\overline{O E}\) )}
\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline INITIALIZATION \(^{1}\) & \(H\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline OPTION & CODE \\
\hline\(\overline{O E}\) & L \\
\hline
\end{tabular}

PROGRAMMING THE PLUS405:
The PLUS405 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs \((H)\) as the present state.

PRESET/RESET OPTION - (P/R)


Field-Programmable Logic Sequencer ( \(16 \times 64 \times 8\) )
"AND' ARRAY - (I), (P)

'OR' ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)


\section*{CLOCK OPTION - (CLK1/CLK2)}


NOTES:
1. This is the initial unprogrammed state of all links.
2. Any gate \(T_{n}\) will be unconditionally inhibited if any one of its I or \(P\) link pairs is left intact.
3. To prevent oscillations, this state is not allowed for \(C\) link pairs coupled to active gates \(T_{n}\).
4. These states are not allowed when using PRESET/RESET option.
5. Input buffer \(I_{5}\) must be deleted from the AND array (i.e., all fuse locations 'Don't Care') when using second clock option.
6. A single product term cannot drive more than 8 registers by itself when used in TOGGLE mode.

Field-Programmable Logic Sequencer ( \(16 \times 64 \times 8\) )

\section*{PLUS405 FPLS PROGRAM TABLE}


NOTES:

\section*{Signetics}

Application Specific Products

\section*{Section 6 PML Data Sheets}

\section*{Signetics}

\section*{Applied Specific Application} Products - PML Series

\section*{FEATURES}
- Programmable instant gate array
- SNAP development system:
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- AMAZE development system:
- Supports third-party schematic entry formats
- Boolean equation entry
- Logic, timing, and fault simulation
- TTL compatible
- Power dissipation = 1.12W (typ.)

\section*{PROPAGATION DELAYS}
- Single level (excluding the internal core) \(=\mathbf{2 2 n s}\) (max)
- Two level (through the internal core) \(=30 \mathrm{~ns} \quad\) (max)
- Delay per internal NAND function \(=\mathbf{8 n s}\) (max)

\section*{PLHS501}

\section*{Programmable Macro Logic}

\section*{Product Specification}

\section*{STRUCTURE}
- NAND gate based architecture:
- 72 foldback NAND terms
- 24 dedicated inputs (10-I23)
- 8 bidirectional I/Os with individual 3-State enable:
- 4 active-High (B4-B7)
- 4 active-Low (/B0-/B3)
- 16 dedicated outputs:
- 4 active-High outputs: O0, 01 with common 3-State enable
O2, \(\mathrm{O3}\) with common 3-State enable
- 4 active-Low outputs:
\(\overline{04}, \overline{05}\) with common 3-State enable
\(\overline{06}, \overline{07}\) with common 3-State enable
- 8 Exclusive-OR outputs: X0-X3 with common 3-State enable
X4-X7 with common 3-State enable
- Security fuse allows protection of proprietary designs
- Testable in unprogrammed state

\section*{DESCRIPTION}

The PLHS501 is a high-density Bipolar Programmable Macro Logic device. PML incorporates a programmable NAND structure. The NAND architecture is an efficient method for implementing any logic function. The SNAP software development system provides a user friendly environment for design entry. SNAP eliminates the need for a detailed understanding of the PLHS501 architecture and makes it transparent to the user. PLHS501 is also supported on the Signetics AMAZE software development system.

\section*{PIN CONFIGURATION}


\section*{ARCHITECTURE}

The core of the PLHS501 is a programmable fuse array of 72 NAND gates. The output of each gate folds back upon itself and all other NAND gates. In this manner total interconnectivity of all logic functions is achieved in the PLHS501. Any logic function can be created within the core of the device without wasting valuable I/O pins. Furthermore, a speed advantage is acquired by implementing multi-level logic within a fast internal core without incurring any delays from the I/O buffers.

\section*{DESIGN DEVELOPMENT TOOLS}

\section*{SNAP}

The SNAP Software Development System provides the necessary tools for designing with PML. SNAP provides the following:
- Schematic entry netlist generation from third party schematic design packages such as OrCAD/STD \({ }^{T M}\) and FutureNet \({ }^{T M}\).
- Macro library for standard PLHS501 functions and user defined functions
- Boolean equation entry
- State equation entry
- Syntax and design entry checking
- Simulator includes logic simulation, fault simulation, automatic test vector generation, and timing simulation.
SNAP operates on an IBM \({ }^{\circledR}\) PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. The minimum system configuration for SNAP is 640K bytes of RAM and a hard disk.

SNAP provides primitive PML function libraries for third-party schematic design packages. Custom macro function libraries can be defined in schematic or equation form.

After the completion of a design, the software compiles the design for syntax and completeness. Complete simulation can be carried out using the different simulation tools available.

The programming data is generated in JEDEC format. Using the Device Programmer Interface (DPI) module of SNAP, the JEDEC fusemap is sent from the host computer to the device programmer.

\section*{AMAZE}

The AMAZE PLD Design Software development system also supports the PLHS501. AMAZE provides the following capabilities for the PLHS501:
- Schematic entry netlist conversion from third-party schematic software
- Boolean equation entry
- Logic and timing simulation
- Automatic test vector generation

AMAZE operates on an IBM PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.0 or higher. The minimum system configuration for AMAZE is 640 K bytes of RAM and a hard disk.

AMAZE compiles the design after completion for syntax and completeness. Programming data is generated in JEDEC format.

\section*{DESIGN SECURITY}

The PLHS501 has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

\footnotetext{
FuturoNet is a trademark of FutureNet Corporation.
OrCAD/STD is a trademark of OrCAD, Inc.
IBM is a registered trademark of International Business Machines Corporation.
June 16, 1988
}

FUNCTIONAL DIAGRAM


\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 52-Pin Plastic Leaded Chip Carrier & PLHS501A \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ PARAMETER } & \multicolumn{2}{c|}{ RATINGS } \\
\multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\text {CC }}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\text {DC }}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\text {IN }}\) & Input currents & & -30 & +30 \\
\hline \(\mathrm{I}_{\text {OUT }}\) & Output currents & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links open, such that:
1. All product terms are enabled.
2. All bidirectional (B) pins are outputs.
3. All outputs are enabled.
4. All outputs are active-High except \(\overline{\mathrm{B}}_{0}-\overline{\mathrm{B}}_{3}\) (fusable \(\mathrm{I} / \mathrm{O}\) ) and \(\overline{\mathrm{O}}_{4}-\overline{\mathrm{O}}_{7}\) which are active-Low.

\section*{LOGIC DIAGRAM}



DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & \begin{tabular}{l}
Low \\
High Clamp \({ }^{2,3}\)
\end{tabular} & \[
\begin{gathered}
V_{C C}=\operatorname{Min} \\
V_{C C}=M a x \\
V_{C C}=\text { Min, } \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}
\end{gathered}
\] & 2.0 & -0.8 & \[
\begin{gathered}
\hline 0.8 \\
-1.2 \\
\hline
\end{gathered}
\] & V
V
V \\
\hline \multicolumn{7}{|l|}{Output voltage} \\
\hline \[
\mathrm{V}_{\mathrm{OL}}
\]
\[
\mathrm{V}_{\mathrm{OH}}
\] & \begin{tabular}{l}
Low \({ }^{2,4}\) \\
\(\mathrm{High}^{2,5}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}
\end{aligned}
\] & \[
2.4
\] & & 0.45 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{ILL}^{\prime} \\
& \mathrm{I}_{\mathrm{IH}}
\end{aligned}
\] & Low High & \[
\begin{aligned}
\mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\
\mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V}
\end{aligned}
\] & & & \[
\begin{gathered}
-100 \\
40
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \({ }^{9}\) \\
Short circuit \({ }^{3,5,6}\)
\end{tabular} & \[
\begin{gathered}
V_{\mathrm{CC}}=\mathrm{Max} \\
\mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\
\mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\
V_{\text {OUT }}=0 \mathrm{~V}
\end{gathered}
\] & -15 & & \[
\begin{gathered}
80 \\
-140 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current \({ }^{8}\) & \(V_{C C}=\) Max & & 225 & 295 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \[
\begin{aligned}
& \mathrm{C}_{\mathrm{IN}} \\
& \mathrm{C}_{\mathrm{B}}
\end{aligned}
\] & Input I/O & \[
\begin{aligned}
V_{C C} & =5 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
V_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & 8
15 & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}, 4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1000 \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{PARAMETER} & \multirow{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & TO & FROM & & Min & Typ & Max & \\
\hline \(t_{\text {PD1 }}\) & Output \(\pm\) & Input \(\pm\) & \multirow[t]{8}{*}{\(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)} & & & 25 & ns \\
\hline \(t_{\text {PD2 }}\) & Output \(\pm\) & Input \(\pm\) & & & & 25 & ns \\
\hline \(t_{\text {PD }}\) & Output \(\pm\) & Input \(\pm\) & & & & 22 & ns \\
\hline \(\mathrm{t}_{\text {PD4 }}{ }^{10}\) & Output \(\pm\) & Input \(\pm\) & & & & 30 & ns \\
\hline \(\mathrm{t}_{\text {PDS }}{ }^{10}\) & Output \(\pm\) & Input \(\pm\) & & & & 30 & ns \\
\hline \(t_{\text {PD } 6}{ }^{10}\) & Output \(\pm\) & Input \(\pm\) & & & & 28 & ns \\
\hline tPD7 & \multicolumn{2}{|c|}{Internal} & & & & 8 & ns \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& t_{\mathrm{OE}} \\
& \mathrm{t}_{\mathrm{OD}}{ }^{8} \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{Output Output +} & \multirow[t]{2}{*}{Input \(\pm\) Input \(\pm\)} & & & & 26 & ns \\
\hline & & & \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\) & & & 26 & ns \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. For Pins 15-19, 21-27 and \(37-40, V_{O L}\) is measured with Pins 5 and \(41=8.75 \mathrm{~V}\), Pin \(43=0 \mathrm{~V}\) and Pins 42 and \(44=4.5 \mathrm{~V}\). For Pins 28-33 and 35-36, \(\mathrm{V}_{\mathrm{OL}}\) is measured under same conditions EXCEPT Pin \(44=0 \mathrm{~V}\).
5. \(\mathrm{V}_{\mathrm{OH}}\) is measured with Pins 5 and \(41=8.75 \mathrm{~V}\), Pins 42 and \(43=4.5 \mathrm{~V}\) and Pin \(44=0 \mathrm{~V}\).
6. Duration of short circuit should not exceed 1 second.
7. \(\mathrm{I}_{\mathrm{CC}}\) is measured with all dedicated inputs at OV and bidirectional and output pins open.
8. Measured at \(\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}\).
9. Leakage values are a combination of input and output leakage.
10. Limits are guaranteed with internal feedback buffers simultaneously switching cumulative maximum of eight outputs.

TEST LOAD CIRCUITS


TIMING DIAGRAMS


TIMING DEFINITIONS
\begin{tabular}{|c|c|}
\hline SYMBOL & PARAMETER \\
\hline \(t_{\text {PD1 }}\) & Input to Output delay, one pass, through \(X\) outputs. \\
\hline tpp2 & Input to Output delay, one pass, through \(\bar{B}\) outputs. \\
\hline \(t_{\text {PD3 }}\) & Input to Output delay, one pass, through \(\mathrm{O}, \overline{\mathrm{O}}\) and B outputs. \\
\hline tpD 4 & Input to Output delay, two passes, through X outputs. \\
\hline tpD5 & Input to Output delay, two passes, through \(\bar{B}\) outputs. \\
\hline tpD6 & Input to Output delay, two passes, through \(\mathrm{O}, \overline{\mathrm{O}}\) and B outputs. \\
\hline tpD7 & Feedback delay per internal NAND function performed. \\
\hline tod & Delay between output change and when output is off (Hi-Z or High). \\
\hline toe & Delay between input change and when the output reflects specified output level. \\
\hline
\end{tabular}

\section*{VOLTAGE WAVEFORMS}


\section*{MEASUREMENTS:}

All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

\section*{MACRO CELL SPECIFICATIONS}


Programmable Macro Logic

MACRO CELL SPECIFICATIONS (Continued)


\section*{PLHS501 GATE COUNT EQUIVALENTS}
\begin{tabular}{|c|c|c|}
\hline FUNCTION & PLHS501 INTERNAL NAND EQUIVALENT & COMMENTS \\
\hline \begin{tabular}{l}
Gates: \\
NANDs \\
ANDs \\
NORs \\
ORs
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & For 1 to 32 input variables. For 1 to 32 input variables. For 1 to 32 input variables. For 1 to 32 input variables. \\
\hline \[
\begin{aligned}
& \text { Decoders: } \\
& 3 \text { to } 8 \\
& 4 \text { to } 16 \\
& 5 \text { to } 32
\end{aligned}
\] & \[
\begin{array}{r}
8 \\
16 \\
32
\end{array}
\] & Inverted inputs available. Inverted inputs available. Inverted inputs available (24 chip outputs only). \\
\hline \[
\begin{aligned}
& \text { Encoders: } \\
& 8 \text { to } 3 \\
& 16 \text { to } 4 \\
& 32 \text { to } 5
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 32 \\
& 41
\end{aligned}
\] & \begin{tabular}{l}
Inverted inputs, 2 logic levels. \\
Inverted inputs, 2 logic levels. \\
Inverted inputs, 2 logic levels, factored solution.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Multiplexers: } \\
& 4 \text { to } 1 \\
& 8 \text { to } 1 \\
& 16 \text { to } 1 \\
& 27 \text { to } 1
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
9 \\
17 \\
28
\end{array}
\] & \begin{tabular}{l}
Inverted inputs available. \\
Can address only 27 external inputs - more if internal.
\end{tabular} \\
\hline \[
\begin{gathered}
\hline \text { Flip-Flops: } \\
\text { D-FF } \\
\mathrm{T}-\mathrm{FF} \\
\mathrm{~J}-\mathrm{K}-\mathrm{FF}
\end{gathered}
\] & \[
\begin{array}{r}
6 \\
6 \\
10
\end{array}
\] & With asynch S-R. With asynch S-R. With asynch S-R. \\
\hline \begin{tabular}{l}
Adders: \\
8-bit
\end{tabular} & 45 & Full carry-lookahead (four levels of logic). \\
\hline Barrel Shifters: 8-bit & 72 & 2 levels of logic. \\
\hline Latches D-latch & 3 & 2 levels of logic with one shared gate. \\
\hline
\end{tabular}

\section*{Signetics}

\section*{Application Specific Products}

\section*{FEATURES}
- Programmable instant gate array
- SNAP development system
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- TTL compatible
- Power dissipation \(=1.25 \mathrm{~W}\) (typ.)

\section*{PROPAGATION DELAYS}
- Single level (excluding the internal core) \(=22 n s \quad\) (max)
- Two level (through the internal core) \(=30\) ns (max)
- Delay per internal NAND function \(=8 n s\) (max)
- Maximum operating frequency \(=50 \mathrm{MHz}\) (internal flipflop)

\section*{PLHS502}

\section*{Programmable Macro Logic}

\section*{Preliminary Specification}

\section*{STRUCTURE}
- NAND gate based architecture
- 64 foldback NAND terms
- 20 dedicated inputs
- 4 programmable input/clock inputs
- 8 independent clocks
- 4 from input/clock pins
- 4 from NAND array
- 8 bidirectional I/Os
- 16 dedicated outputs
- 8 active-High outputs
- 4 outputs with programmable polarity
- 4 3-State outputs with programmable polarity
- 16 buried flip-flops
- 8 D type
- 8 S-R type
- Security fuse allows protection of proprietary designs
- Testable in unprogrammed state

\section*{DESCRIPTION}

The PLHS502 is a high-density Bipolar Programmable Macro Logic device. PML incorporates a programmable NAND structure. The NAND architecture is an efficient method for implementing any logic function. The SNAP software development system provides a user friendly environment for design entry. SNAP eliminates the need for a detailed understanding of the PLHS502 architecture and makes it transparent to the user.

\section*{PIN CONFIGURATION}

\section*{-}


\section*{ARCHITECTURE}

The core of the PLHS502 is a programmable fuse array of 64 NAND gates and 16 buried flip-flops. The output of each gate and flipflop folds back upon itself and all other NAND gates and flip-flops. In this manner, total interconnectivity of all logic functions is achieved in the PLHS502. Any logic function can be created within the core of the device without wasting valuable \(1 / O\) pins. Furthermore, a speed advantage is acquired by implementing multi-level logic within a fast internal core without incurring any delays from the I/O buffers.

\section*{- Buried Flip-Flops}

The 16 buried flip-flops can be connected to the input or output structures through the NAND array. Intricate state machine designs can be implemented within the core without any unnecessary delays from the input or output buffers. Each flip-flop can be realized as an input or output register with no constraints.
- The Clock Array

The 16 buried flip-flops (8-D and 8 S-R) can be clocked individually through the 'Clock Array'. The Clock Array consists of 8 individual clocks, 4 directly from the input pins and 4 from the NAND array. The clock inputs from the NAND array enable the user to create different functions for clocking the flip-flops. This, together with the fully interconnectivity of the device, offers the capability to implement a variety of synchronous and asynchronous state machines as well as multi-phase design, such as pipelined processing.

\section*{DESIGN DEVELOPMENT TOOLS}

The SNAP Software Development System provides the necessary tools for designing with PML. SNAP provides the following:
- Schematic entry netlist generation from third-party schematic design packages such as OrCAD/STD \({ }^{\text {TM }}\) and FutureNet \({ }^{T M}\).
- Macro library for standard PLHS502 functions and user defined functions
- Boolean equation entry
- State equation entry
- Syntax and design entry checking
- Simulator includes logic simulation, fault simulation, automatic test generation, and timing simulation.
SNAP operates on an IBM \({ }^{\circledR}\) PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. A minimum of 640 K bytes of RAM is required together with a hard disk.
SNAP provides primitive PML function libraries for third party schematic design packages. Custom macro function libraries can be defined in schematic or equation form.
After the completion of a design, the software compiles the design for syntax and completeness. Complete simulation can be carried out using the different simulation tools available.
The programming data is generated in JEDEC format. Using the Device Programmer Interface (DPI) module of SNAP, the JEDEC fusemap is sent from the host computer to the device programmer.

\section*{DESIGN SECURITY}

The PLHS502 has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

\footnotetext{
FutureNot is a trademark of FutureNet Corporation.
OrCAD/STD is a trademark of OrCAD, Inc.
IBM is a registered trademark of International Business Machines Corporation.
}

\section*{Programmable Macro Logic}

FUNCTIONAL DIAGRAM



\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|}
\hline DESCRIPTION & ORDER CODE \\
\hline 68-Pin Plastic Leaded Chip Carrier & PLHS502A \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)
\begin{tabular}{|l|l|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ PARAMETER } & \multicolumn{2}{|c|}{ RATINGS } & \multirow{2}{*}{ UNIT } \\
\cline { 3 - 4 } & & Min & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply voltage & & +7 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {IN }}\) & Input voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Output voltage & & +5.5 & \(\mathrm{~V}_{\mathrm{DC}}\) \\
\hline \(\mathrm{I}_{\mathrm{IN}}\) & Input currents & -30 & +30 & mA \\
\hline \(\mathrm{I}_{\mathrm{OUT}}\) & Output currents & & +100 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Operating temperature range & 0 & +75 & \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{T}_{\text {STG }}\) & Storage temperature range & -65 & +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{NOTE:}
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ TEMPERATURE } \\
\hline Maximum junction & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum ambient & \(75^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l} 
Allowable thermal rise \\
ambient to junction
\end{tabular} & \(75^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{VIRGIN STATE}

A factory shipped virgin device contains all fusible links open, such that:
1. All bidirectional (B) pins are outputs.
2. All outputs are enabled.
3. All outputs are active-Low except \(\mathrm{O}_{0}-\mathrm{O}_{7}\), which are active-High.

DC ELECTRICAL CHARACTERISTICS \(0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant V_{C C} \leqslant 5.25 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITION} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ \({ }^{1}\) & Max & \\
\hline \multicolumn{7}{|l|}{Input voltage \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \hline \mathrm{V}_{\mathrm{IL}} \\
& \mathrm{~V}_{\mathrm{H}} \\
& \mathrm{~V}_{\mathrm{IC}}
\end{aligned}
\] & \begin{tabular}{l}
Low \\
High Clamp \({ }^{2}\)
\end{tabular} & \[
\begin{gathered}
V_{C C}=M i n \\
V_{C C}=M a x \\
V_{C C}=M i n, \operatorname{liN}^{\prime}=-12 \mathrm{~mA}
\end{gathered}
\] & 2.0 & -0.8 & \[
\begin{gathered}
0.8 \\
-1.2
\end{gathered}
\] & v
V
V \\
\hline \multicolumn{7}{|l|}{Output voltage} \\
\hline \[
V_{O L}
\]
\[
\mathrm{V}_{\mathrm{OH}}
\] & \[
\begin{aligned}
& \text { Low }^{2} \\
& \text { High }^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}
\end{aligned}
\] & 2.4 & & 0.45 & v \\
\hline \multicolumn{7}{|l|}{Input current} \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{IL}} \\
& \mathrm{I}_{\mathrm{H}}
\end{aligned}
\] & \begin{tabular}{l}
Low \\
High
\end{tabular} & \[
\begin{aligned}
& V_{C C}=M a x \\
& V_{I N}=0.45 \mathrm{~V} \\
& V_{I N}=5.5 \mathrm{~V}
\end{aligned}
\] & & & \[
\begin{gathered}
-100 \\
40
\end{gathered}
\] & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{Output current} \\
\hline \begin{tabular}{l}
lo(off) \\
los
\end{tabular} & \begin{tabular}{l}
\(\mathrm{Hi}-\mathrm{Z}\) state \\
Short circuit
\end{tabular} & \[
\begin{aligned}
V_{\text {CC }} & =M a x \\
V_{\text {OUT }} & =5.5 \mathrm{~V} \\
V_{\text {OUT }} & =0.45 \mathrm{~V} \\
V_{\text {OUT }} & =0 \mathrm{~V}
\end{aligned}
\] & -15 & & \[
\begin{gathered}
80 \\
-140 \\
-70
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA
\end{tabular} \\
\hline Icc & \(\mathrm{V}_{\text {CC }}\) supply current & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & & 375 & mA \\
\hline \multicolumn{7}{|l|}{Capacitance} \\
\hline \[
\begin{aligned}
& \mathrm{C}_{1 \mathrm{~N}} \\
& \mathrm{C}_{\mathrm{B}}
\end{aligned}
\] & Input I/O & \[
\begin{aligned}
V_{C C} & =5 \mathrm{~V} \\
V_{\text {IN }} & =2.0 \mathrm{~V} \\
V_{\text {OUT }} & =2.0 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
8 \\
15
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. All typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. All voltage values are with respect to network ground terminal.

\section*{TEST LOAD CIRCUITS}


\section*{VOLTAGE WAVEFORMS}


MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

TIMING DIAGRAMS


AC ELECTRICAL CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}, 4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1000 \Omega\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{LIMITS} \\
\hline & & Min & Typ & Max \\
\hline \multicolumn{5}{|l|}{Non registered operations} \\
\hline \(t_{\text {PD1 }}\) & Input to output delay - no NAND feedback w/Ex-OR buffer & & 17ns & 22ns \\
\hline tpD2 & Input to output delay - no NAND feedback w/NAND buffer & & 15ns & 20 ns \\
\hline tpD3 & Input to output delay - no NAND feedback w/AND buffer & & 15ns & 20 ns \\
\hline tpD4 & Input to output delay - w/1 NAND feedback w/Ex-OR buffer & & 22 ns & 30ns \\
\hline tpD5 & Input to output delay - w/1 NAND feedback w/NAND buffer & & 20 ns & 28ns \\
\hline tpD6 & Input to output delay - w/1 NAND feedback w/AND buffer & & 20 ns & 28ns \\
\hline tpD7 & Feedback delay per internal NAND function performed & & 5 ns & 8 ns . \\
\hline \(\mathrm{t}_{\mathrm{OE}}\) & Output enable time - no NAND feedback & & 20ns & 25ns \\
\hline tod & Output disable time - no NAND feedback & & 18ns & 22ns \\
\hline
\end{tabular}

AC ELECTRICAL CHARACTERISTICS (Continued) \(T_{A}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}, 4.75<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1000 \Omega\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{LIMITS} \\
\hline & & Min & Typ & Max \\
\hline \multicolumn{5}{|l|}{Reglstered operations from dedicated clock inputs} \\
\hline \(t_{1 S 1}\) & Input to clock setup time & 10ns & 6 ns & \\
\hline \(\mathrm{t}_{\text {IS } 2}\) & NAND feedback to clock setup time (not including tD7) & 5ns & 3 ns & \\
\hline \(t_{1 H 1}\) & Input hold time & 4 ns & 3 ns & \\
\hline \(\mathrm{t}_{1 \mathrm{H} 2}\) & NAND feedback to clock hold time & 7 ns & 5 ns & \\
\hline \(\mathrm{t}_{\text {CKO }}\) & Clock to output (includes NAND output buffer delay) & & 20ns & 25ns \\
\hline \(\mathrm{t}_{\mathrm{CK} 1}\) & Clock to output (includes AND output buffer delay) & & 20ns & 25ns \\
\hline \(\mathrm{t}_{\mathrm{CK} 2}\) & Clock to output (includes Ex-OR output buffer delay) & & 22ns & 27ns \\
\hline \({ }_{\text {tek3 }}\) & Clock to output (includes NAND output buffer delay +1 feedback) & & 23ns & 30 ns \\
\hline \(\mathrm{t}_{\text {CK4 }}\) & Clock to output (includes AND output buffer delay +1 feedback) & & 23ns & 30 ns \\
\hline \(t_{\text {CK5 }}\) & Clock to output (includes Ex-OR output buffer delay +1 feedback) & & 25ns & 32 ns \\
\hline \(\mathrm{t}_{\text {CK6 }}\) & Clock to feedback matrix (not including buffer delay) & & 15ns & 20ns \\
\hline \(\mathrm{t}_{\mathrm{CKH} 1}\) & Width of input clock pulse & 15ns & 10ns & \\
\hline \(\mathrm{t}_{\mathrm{CKL1}}\) & Interval between clock pulses & 15ns & 10ns & \\
\hline \(\mathrm{t}_{\mathrm{CLR} 1}\) & Clear input to output (includes NAND output buffer delay) & & 23ns & 30 ns \\
\hline \(\mathrm{t}_{\text {CLR2 }}\) & Clear input to output (includes AND output buffer delay) & & 23ns & 30ns \\
\hline \({ }^{\text {chera }}\) & Clear input to output (includes Ex-OR output buffer delay) & & 25ns & 32 ns \\
\hline tclRQ & Clear input to register output & & 15 ns & 20ns \\
\hline \(\mathrm{t}_{\mathrm{CLH}}\) & & 20ns & 15 ns & \\
\hline tPPR & & & Ons & 10ns \\
\hline \multicolumn{5}{|l|}{Operations from P-term clocks (abbreviated as P-CK)} \\
\hline \(\mathrm{t}_{\text {IS }}\) & Input to P-CK setup time & 8 ns & 6 ns & \\
\hline \(\mathrm{t}_{\text {IS } 5}\) & NAND feedback to P-CK setup time & 5ns & 3ns & \\
\hline \(\mathrm{t}_{\mathrm{HOLD}}\) & Input hold time for P-CK & 13ns & 8ns & \\
\hline \(\mathrm{t}_{\mathrm{HOLD} 4}\) & NAND feedback hold time for P-CK & 18 ns & 11 ns & \\
\hline \(\mathrm{t}_{\text {CK7 }}\) & P-CK to output (includes NAND output buffer delay) & & 25ns & 35ns \\
\hline \(\mathrm{t}_{\text {CK8 }}\) & P-CK to output (includes AND output buffer delay) & & 25ns & 35ns \\
\hline \(\mathrm{t}_{\text {CK9 }}\) & P-CK to output (includes Ex-OR output buffer delay) & & 27ns & 38ns \\
\hline \(\mathrm{t}_{\text {CK10 }}\) & P-CK to output (includes NAND output buffer delay +1 feedback) & & 32ns & 42ns \\
\hline \(\mathrm{t}_{\mathrm{CK11}}\) & P-CK to output (includes AND output buffer delay +1 feedback) & & 32ns & 42ns \\
\hline \(\mathrm{t}_{\text {CK12 }}\) & P-CK to output (includes Ex-OR output buffer delay +1 feedback) & & 34ns & 44ns \\
\hline \(\mathrm{t}_{\mathrm{CK} 13}\) & P-CK to feedback matrix (not including output buffer delay) & & 18ns & 25ns \\
\hline \(\mathrm{t}_{\text {CKH2 }}\) & Width of P-CK pulse & 20ns & 15 ns & \\
\hline \(\mathrm{t}_{\mathrm{CKL} 2}\) & Interval between P-CK pulses & 20ns & 15ns & \\
\hline
\end{tabular}

MACRO CELL A.C. SPECIFICATIONS


Bidirectional and Output Pins: 19, 22-25, 27, 28, 30

Internal Foldback NAND


MACRO CELL A.C. SPECIFICATIONS (Continued)


\section*{D FLIP-FLOP}
\begin{tabular}{|c|c|c||c|c|}
\hline \multicolumn{3}{|c|}{ INPUTS } & \multicolumn{2}{c|}{ OUTPUTS } \\
\hline CLR & CK & \(\overline{\mathbf{D}}\) & Q & \(\overline{\mathbf{Q}}\) \\
\hline H & X & X & \(H\) & L \\
L & L & \(Q_{0}\) & \(Q_{0}\) & \(\bar{Q}_{0}\) \\
L & \(\uparrow\) & H & H & L \\
L & \(\uparrow\) & L & L & \(H\) \\
\hline
\end{tabular}

NOTE:
\(Q_{0}, \bar{Q}_{0}\) represent previous stable condition of \(\mathrm{Q}, \overline{\mathrm{Q}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multicolumn{3}{|c|}{LImits} & \multirow{2}{*}{UNIT} \\
\hline & Min & Typ & Max & \\
\hline \(\mathrm{f}_{\mathrm{CK} 1}\) & & & TBD & MHz \\
\hline \(\mathrm{f}_{\text {CK2 }}\) & & & TBD & MHz \\
\hline \(\mathrm{f}_{\text {CK3 }}\) & & & TBD & MHz \\
\hline fСкзу & & & TBD & MHz \\
\hline tw Ck1 High & & & TBD & ns \\
\hline tw CK1 Low & & & TBD & ns \\
\hline tw CK2 High & & & TBD & ns \\
\hline tw CK2 Low & & & TBD & ns \\
\hline tw ck3x High & & & TBD & ns \\
\hline tw cкзу Low & & & TBD & ns \\
\hline tsetup D & & & TBD & ns \\
\hline thold D & & & TBD & ns \\
\hline tw CLR High & & & TBD & ns \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{FROM (INPUT)} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { TO } \\
\text { (OUTPUT) }
\end{array}
\]} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & Min & Typ & Max & \\
\hline tpLH & CK1 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tpHL & CK1 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{tpLH}^{\text {P }}\) & CK2 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tpHL & CK2 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tple & СК3X & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & СК3X & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tpLH & CK3Y & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\mathrm{PHL}}\) & СКЗY & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tpLH & CLR & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & CLR & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline
\end{tabular}

\section*{Programmable Macro Logic}

S-R FLIP-FLOP
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{INPUTS} & \multicolumn{2}{|l|}{OUTPUTS} \\
\hline CLR & CK & S & \(\overline{\text { i }}\) & Q & \(\overline{0}\) \\
\hline H & X & X & X & H & L \\
\hline L & L & X & X & \(Q_{0}\) & \(\bar{Q}_{0}\) \\
\hline L & \(\uparrow\) & H & L & L & H \\
\hline L & \(\uparrow\) & L & H & H & L \\
\hline L & \(\uparrow\) & L & L & \(Q_{0}\) & \(\overline{\mathrm{Q}}_{0}\) \\
\hline L & \(\uparrow\) & H & H & Not & owed \\
\hline
\end{tabular}

NOTE:
\(\mathrm{Q}_{0}, \bar{Q}_{0}\) represent previous stable condition of \(\mathrm{Q}, \overline{\mathrm{Q}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & Min & Typ & Max & \\
\hline \(\mathrm{f}_{\mathrm{CK} 1}\) & & & TBD & MHz \\
\hline \(\mathrm{f}_{\mathrm{CK} 2}\) & & & TBD & MHz \\
\hline \(\mathrm{f}_{\mathrm{CK} 3 \mathrm{X}}\) & & & TBD & MHz \\
\hline \(\mathrm{f}_{\text {CK3 }} \mathrm{Y}\) & & & TBD & MHz \\
\hline tw CKı High & & & TBD & ns \\
\hline tw CK1 Low & & & TBD & ns \\
\hline tw CK2 High & & & TBD & ns \\
\hline tw CK2 Low & & & TBD & ns \\
\hline tw ck3x High & & & TBD & ns \\
\hline tw CK3x Low & & & TBD & ns \\
\hline tw ckay High & & & TBD & ns \\
\hline tw ckay Low & & & TBD & ns \\
\hline tsetup S, R & & & TBD & ns \\
\hline \(t_{\text {Hold }} \mathrm{S}, \mathrm{R}\) & & & TBD & ns \\
\hline \(t_{\text {W CLR }}\) High & & & TBD & ns \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{FROM (INPUT)} & \multirow[t]{2}{*}{TO
(OUTPUT)} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & Min & Typ & Max & \\
\hline tpLH & CK1 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline tpHL & CK1 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PLH }}\) & CK2 & \(Q, \overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & CK2 & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(t_{\text {PLH }}\) & СК3х & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & CK3X & Q, \(\overline{\mathrm{Q}}\) & & & TBD & ns \\
\hline \(t_{\text {PLH }}\) & СК3Y & Q, \(\overline{\mathbf{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & СК3Y & Q, \(\overline{\mathbf{Q}}\) & & & TBD & ns \\
\hline tpLH & CLR & Q, \(\overline{\mathbf{Q}}\) & & & TBD & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & CLR & Q, \(\overline{\mathbf{Q}}\) & & & TBD & ns \\
\hline
\end{tabular}




\section*{Section 7 Military Errata}

Application Specific Products

\begin{abstract}
Effective October 1986, this section has been superseded by the Military Products Data Manual. Information regarding this manual can be obtained from the Military Division in Sacramento, (916) 925-6700.
Electrical specifications herein do not necessarily describe the performance characterization of military processed products.
\end{abstract}

\section*{Signetics \\ Section 8 Development Software \\ Application Specific Products}

\section*{Signetics}

\section*{Application Specific Products}

\section*{SOFTWARE SUPPORT FOR USER PROGRAMMABLE LOGIC}

Computer Aided Design (CAD) support is becoming necessary to address the time-consuming details required by the more complex programmable logic devices available today. The design effort can include the manipulation of Boolean equations, truth tables, state diagrams, flowcharts etc, to create the binary fuse map required to program such devices.

For many years, design engineers have used programmable read-only memories (PROMs) to replace conventional logic. The architecture of the PROM can be described as a programmable logic device containing a fixed AND array followed by a programmable OR array. The fixed structure of the PROM requires a full assignment of output words to be programmed for every input combination. Therefore, little use can be made of programmable logic software programs for logic minimization or other compiling efforts when using PROMs.

Signetics Programmable Logic Devices are the most advanced approach to solving the inherent limitations of PROMs. Their architecture consists of a programmable AND array, followed by a programmable OR array - with the addition of a programmable invert function for flexible output control.

A Signetics PLD device can implement any set of Boolean expressions, provided that they are first put into the standard sum of products form. The logical ANDs are implemented at the first gate level of the programmable logic device and the logical ORs are implemented by the second gate level within the PLD. The only limitations on the expressions are those imposed by the number of inputs, outputs, and internal product terms provided by the particular PLD circuit selected. The efficiency of implementing the set of equations can be increased significantly by applying DeMorgan's theorem, and utilizing the programmable invert function on each output.

If there seems to be too few product terms to handle a relatively large equation set, one of several minimization methods can be pursued.
The probability of reducing such equations to manageable size is enhanced through the flexibility of shared AND terms for each output function, the accessibility of all AND terms to each output, and having a programmable invert function on each output. All of these features can be utilized by applying the manual manipulation of Venn Diagrams or Karnaugh Maps. However, the time and effort to accomplish these tasks as well as document the effort for procurement specification purposes increase
the need and desire to have software programs to automatically perform such manipulations.

Many types of software programs are being developed to provide this assistance for operation on a wide range of computer hardware. This list of software is expanding rapidly, consisting of both Signetics generated software and some independent software houses' contributions.

This discussion is intended to outline the Signetics developed software program called AMAZE (Automatic Map And Zap Equation Entry) The AMAZE software program currently consists of five modules, BLAST ('Boolean Logic And State Transfer' entry program), PTP ('PAL To PLD' conversion program), DPI ('Device Programmer Interface' program), PLD SIM ('PLD Simulator' program) and the PTE ('Program Table Editor' program). Other modules will be added when product developments require additional software tools.

It must be noted that the AMAZE program is not by any means the total extent of software available for use in designing with PLD (Programmable Logic Devices). Several other commercially available PLD Design Software packages support Signetics' PLD product line. Please contact your local Signetics ropresentative for the latest word on the most currontly available software.

\section*{Programmable Logic Development Software}

\section*{AMAZE Version 1.65}

\section*{Description}

The AMAZE software program, Automatic Map And Zap Equation Entry software, consists of the following five modules:
- BLAST ('Boolean Logic And State Transfer' entry program)
- PTE ('Program Table Editor')
- PTP ('PAL To PLD' conversion program)
- DPI ('Device Programmer Interface' program)
- PLD SIM ('PLD \(\quad\)...ıulator' program)

Each module performs specific tasks as outlined in the following section.

\section*{Features}
- Multiple modules allowing expansion for future requirements
- Each module designed to be user friendly
- Both HELP and ERROR messages
- Document printout: Header, Pin diagram, Boolean equation and Fuse map
- Interface with most commercial programmers
- SIMULATOR programs provide applications assistance and Automatic Test Vector Generation

Equipment Requirements (for
Version 1.65)
- Platform 1: IBM-PC, XT, AT, PS-2 and compatibles
- Memory: Minimum of 640K bytes
- Operating system: PC-DOS version 2.0 or higher
- Disk Drive: One hard disk drive and one double sided floppy disk drive
- Platform 2: DEC VAX/VMS
- Version 4.0 or higher

Please contact your Signetics Sales Representative for availability and ordering information.

Products Supported
AMAZE Version 1.65 supports the following products:
\begin{tabular}{|c|}
\hline 20-Pin PLDs \\
\hline PLS151 \\
PLS153 \\
PLS153A \\
PLHS153 \\
PLUS153B \\
PLUS153D \\
PLC153 \\
PLS155 \\
PLS157 \\
PLS159 \\
PLS159A \\
PLC16V8 Series \\
PLHS18P8A \\
PLHS18P8B \\
\hline 24-Pin PLDs \\
\hline PLS161 \\
PLS162 \\
PLS163 \\
PLS167 \\
PLS167A \\
PLS168 \\
PLS168A \\
PLS173 \\
PLUS173B \\
PLUS173D \\
PLS179 \\
PLHS473 \\
PLC473 \\
PLC20V8 Series \\
\hline 28-Pin PLDs \\
\hline PLS100 \\
PLS5501 \\
\hline PLS101 \\
PLS105 \\
PLS105A \\
\hline
\end{tabular}

NOTE:
1. The PLHS501 and other Programmable Macro Logic devices will also be supported on a separate PML Development System (scheduled to be available in 1989).

\section*{BLAST}

Boolean Logic And State Transfer program is a menu driven software package that supports the engineer in implementing logic designs into Signetics Programmable Logic Devices. It checks design data and automatically compiles a program table from Boolean and State Machine equations. Data from the program table is then used to produce a Standard File which contains the fusing codes in a form acceptable to all the AMAZE modules (i.e. PLD-SIM and DPI).

BLAST reports the logic and syntax errors, and lists the equations in a Sum of Products form, which can help the user to minimize the entered logic equations. It will automatically partition State machine designs into specified devices, and then delete redundant terms during compilation.
BLAST also provides the capability of modifying a current logic set programmed into a device by overlaying new data onto unused fuses.

\section*{bOOLEAN LOGIC AND STATE TRANSFER FEATURES}
- User friendly interactive pinlist editor
- Boolean equation or state vector entry
- Schematic entry (with external schematic capture package)**
- On-line error checking, minimization, and design overlay
- Capable of partitioning single designs into multiple PLDs
- Generates standard PLD fusemap files
- Supports all Signetics' PLDs and PLEs
- User definable device files for support of PALs and other PLD devices

\section*{PTE}

Program Table Entry is an interactive editor which allows the logic designer to enter data into AMAZE in the form of SIGNETICS APPROVED PROGRAM TABLES. Each Signetics PLD data sheet has the program table format which applies to that device. In addition, PTE can be used to document completed designs and to make changes in logic functions which have been previously defined in the BLAST module.

\section*{PROGRAM TABLE EDITOR}

\section*{FEATURES}
- Allows easy creation and editing of new and existing PLD designs
- Truth-table representation of PLD fusemap in High/Low format
- On-line editor provides automatic cursor control and prevents syntax errors
- On-line help screen and print facility
- Operates on standard PLD fusemap files

\section*{PTP}

PAL To PLD is a conversion program to allow easy transfer of the various PAL 20 and 24 pin circuits to the Signetics PLD 20 and 24 pin series devices.

PTP can automatically upload the PAL pattern from a Commercial programmer, convert the pattern into a PLD pattern, and then download the PLD pattern into the programmer. The PAL pattern and it's corresponding PLD pattern are documented, and the PLD pattern can be directed to other AMAZE modules.

PTP can also convert the PAL fuse file in a HEXPLOT format.

\section*{PAL-TO-PLD CONVERSION FEATURES}
- Menu-driven fusemap conversion of 20- and 24-pin PAL devices to pin and functional equivalent Signetics' PLDs and PAL-type devices
- Automatic assembler removes duplicated p-terms providing efficient PLD mapping (PLD conversions only)
- Accepts JEDEC, fuseplot files or direct PAL master input via commercial PLD programmer
- User selectable RS-232 programmable interface parameters
- Provides fusemap conversion documentation
- Generates standard PLD fusemap files compatible with other AMAZE modules

The PTP module supports the conversion of the following device types:
\begin{tabular}{|c|c|}
\hline PLS153 PLHS18P8 PLC16V8 & 10H8, 10L8, 12H6, 12L6, 14H4, 14L4, 16H2, 16L2, 16C1, 16H8, 16L8, 16P8 \\
\hline PLC16V8 & 18P8, 16RP8 \\
\hline \begin{tabular}{l}
PLS155 \\
PLC16V8
\end{tabular} & 16R4 \\
\hline \begin{tabular}{l}
PLS157 \\
PLC16V8
\end{tabular} & 16R6 \\
\hline PLS159 PLC16V8 & 16R8 \\
\hline \[
\begin{aligned}
& \text { PLS173 } \\
& \text { PLC20V8 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 14L8, 16L6, 18L4, 20C1, } \\
& \text { 20L2, 20L8 }
\end{aligned}
\] \\
\hline PLS173 & 12L10, 20L10 \\
\hline \[
\begin{aligned}
& \text { PLS179 } \\
& \text { PLC20V8 }
\end{aligned}
\] & 20R8 \\
\hline PLC20V8 & 20R4, 20R6 \\
\hline
\end{tabular}

Signetics also provides a stand-alone version of the PTP module, SimPal, which supports the conversion of PAL device fuse maps into equivalent Signetics PAL-type PLDs.
SimPal operates on an IBM-PC/AT/XT/PS-2 or compatible platform (PC-DOS Version 2.0 or higher). SimPal supports the conversion of the following PAL JEDEC fuse maps:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
PLC16V8 \\
PLHS18P8
\end{tabular} & \begin{tabular}{l} 
10H8, 10L8, 12H6, 12L6, \\
\(14 \mathrm{H} 4,14 \mathrm{L4}, 16 \mathrm{H} 2,16 \mathrm{~L} 2\), \\
\(16 \mathrm{C} 1,16 \mathrm{H} 8,16 \mathrm{LB}, 16 \mathrm{P}\)
\end{tabular} \\
\hline PLC16V8 & \begin{tabular}{l}
\(16 \mathrm{R} 4,16 \mathrm{R} 6,16 \mathrm{R} 8\), \\
\(16 R P 8,18 P 8\)
\end{tabular} \\
\hline PLC20V8 & \begin{tabular}{l} 
14L8, 16L6, 18L4, 20C1, \\
\(20 L 2, ~ 20 L 8, ~ 20 R 8, ~ 20 R 4, ~\) \\
\(20 R 6\)
\end{tabular} \\
\hline
\end{tabular}

\section*{DPI}

Device Programmer Interface is the software module that provides the interface between the Standard File created by the AMAZE modules and a commercial programmer. This module allows both download (sending from host to programmer) and upload (sending from programmer into the host) operations.
DPI supports both JEDEC and Signetics High/Low formats to convey fusing information to and from several commercial programmers.

\footnotetext{
(** AMAZE accepts TTL schematics generated with DATA-I/O FUTURENET DASH and OrCAD's OrCAD STD design software packages). June 1988
}

\section*{DEVICE PROGRAMMER}

INTERFACE FEATURES
- Supports standard JEDEC and Signetics High/Low fusemap file formats
- RS-232 interface to commercial PLD programmers
- Screen menus for easy upload and download of fusemaps
- User selectable RS-232 parameters for programmer flexibility
- Test vectors automatically transferred to programmer along with fusemap file
- Operates with standard PLD fusemap files

\section*{PLD SIMULATOR}

The PLD Simulator program is a software package that simulates the operation of the logic that has been defined for Signetics PLD products. The input to the program is the Standard File generated by other AMAZE modules. The simulator has the capability of running manually or automatically. In the automatic mode the simulator creates a file of test vectors that can be used to test the programmed devices. In the manual mode the program will allow the operator to assign an input vector and observe the resultant output.

\section*{PLD FUNCTIONAL SIMULATOR}

\section*{FEATURES}
- Functional simulation of designs created from equations, program tables, or existing programmed devices
- Automatic test vector generation from standard or JEDEC PLD fusemap files
- Interactive keyboard entry or batch file input of test vectors
- Detects illegal State Machine transitions and flags affected p-terms
- On-line help screen

\section*{Section 9 Application Notes}

\section*{INDEX}
Application Notes
AN7 Single Chip Multiprocessor Arbiter ..... 9-3
AN8 Introduction to Signetics Programmable Logic ..... 9-15
AN10 4-Bit Binary-To-7 Segment Decoder ..... 9-27
AN11 PLD Programmable Retriggerable One-Shot ..... 9-51
AN13 Oscillator With PLS159 ..... \(9-55\)
AN14 Latches and Flip-Flops With PLS153 ..... 9-60
AN15 PLS159 Primer ..... 9-73
AN16 PLS159 as Modulo Counters ..... 9-84
AN17 Electronic Combination Lock ..... 9-91
AN1 Schmitt Trigger Using PLS153 and PLS159 ..... 9-94
AN19 Electronic Dice ..... 9-102
AN21 9-Bit Parity Generator/Checker With PLS153/153A ..... 9-106
AN22 PLS151 Toolkit ..... 9-112
AN23 PLS168/168A Primer ..... 9-120
AN24 PLS173 as a 10-Bit Comparator, 74LS460 ..... 9-133
AN25 A Simple Entry/Exit Meeting Device (PLS157) ..... 9-139
AN2 PLHS18P8A Primer ..... 9-145
AN27 PLHS473 Primer ..... 9-154
AN28 High-Speed 12-Bit Tracking A/D Converter Using PLS179 ..... 9-162
PML Application NotesAN29 PLHS501 Programmable Macro Logic Primer9-172
Designing with Programmable Macro Logic
Chapter 1 Introduction to PML Design Concepts ..... 9-187
Performance ..... 9-187
NAND Gate Flip-Flops ..... 9-194
Chapter 2 Functional Fit ..... 9-197
Chapter 3 Design Examples ..... 9-200
Chapter 4 Successor Architectures ..... 9-205
Chapter 5 Support Issues ..... 9-206
Chapter 6 PLHS501 Examples Using AMAZE Revision 1.6 ..... 9-207
Simple Gate Implementations ..... 9-207
8 -Bit Barrel Shifter ..... 9-210
12-Bit Comparator with Dual 1-of-8 Decoders ..... 9-216
8-Bit Carry Look-Ahead Adder ..... 9-219
32-to-5-Bit Priority Encoder ..... 9-222
8-Bit Shift Register with Sequence Detector ..... 9-227
4-Bit Synchronous Counter ..... 9-233
List of Figures
1.1 PML Basic Functions ..... 9-187
1.2 PLHS501 Logic Diagram ..... 9-189
1.3 tpd3-22ns max ..... 9-190
1.4 tpd4-30ns max ..... 9-191
1.5 tpd1-25ns max ..... 9-192
1.6 tpd7-8ns max. ..... 9-193
1.7 Edge-Triggered D Flip-Flop ..... 9-194
1.8 PLHS501 Test Flip-Flop ..... 9-195
Llst of Figures (Continues)
Partial PLHS501 Fusemap Showing Test Flip-Flop Fusing ..... 9-195
1.10 Waveforms of Test Flip-Flop
1.10 Waveforms of Test Flip-Flop ..... 9-196 ..... 9-196
\(2.1 \quad 16\) Input NAND Formed From 2 Input Gates ..... 9-198
3.1 Decoder Implementation in NAND Foldback Structure ..... 9-200
Two Flip-Flops Inplemented in the NAND Foldback Structure ..... 9-201
3.2 ..... 3.3 ..... 9-2013.43.53.6
8-Bit Barrel Shifter Implemented with the PLHS501 ..... 9-202
Partial NAND Gate Equivalence of the 8-Bit Look-Ahead Adder ..... 9-203
12-Bit Ripple Counter ..... 9-204
Encoder ..... 9-204
PLHS502 Diagram ..... 9-205
Gates Pin List ..... 9-207
Gates Boolean Equations ..... 9-208
Gates Simulation Input File ..... 9-208
Gates Simulation Log File ..... 9-209
Barrel Shifter Pin List ..... 9-210
8-Bit Barrel Shifter Schematic ..... 9-210
Barrel Shifter Boolean Equations ..... 9-211
Barrel Shifter Simulation Input File ..... 9-214
Barrel Shifter Simulation Log File ..... 9-215
12-Bit Comparator Pin List ..... 9-216
12-Bit Comparator with Dual 1-8 Decoders Block Diagram ..... 9-216
12-Bit Comparator Boolean Equations ..... 9-217
12-Bit Comparator Simulation Input File ..... 9-218
12-Bit Comparator Simulation Log File ..... 9-218
8-Bit Adder Pin List ..... 9-219
8-Bit Carry Look-Ahead Adder Block Diagram and Equations ..... 9-219
8 -Bit Adder Boolean Equations ..... 9-220
8 -Bit Adder Simulation Input File ..... 9-220
8-Bit Adder Simulation Log File ..... 9-221
6.20 Encoder Pin List ..... 9-222
6.21
6.2 32 to 5 Priority Encoder Block Diagram ..... 9-222
6.22 Encoder Boolean Equations ..... 9-223
6.23 Encoder Simulation Input File ..... 9-225
6.24 Encoder Simulation Log File ..... 9-226
6.25 8-Bit Shifter Pin List. ..... 9-227
6.26 Shift Register with Sequence Detector Block Diagram ..... 9-227
6.27 8 -Bit Shifter Boolean Equations ..... 9-228
6.28 Portion of STD Files ..... 9-230
6.29 8-Bit Shifter Simulation Input File ..... 9-231
6.30 8-Bit Shifter Simulation Log File ..... 9-232
6.31 4-Bit Counter Pin List ..... 9-233
6.32 4-Bit Counter Boolean Equations ..... 9-234
6.33 4-Bit Counter Simulation Input File ..... 9-235
6.34 4-Bit Counter Simulation Log File ..... 9-236
List of Tables ..... 1.1
Example Demonstration ..... 9-188
2.1 Equivaiency Ratio ..... 9-198
2.2 PLHS501 Gate Count Equivalents ..... 9-199

\section*{Signetics}

\section*{Application Specific Products}

\section*{INTRODUCTION}

In multiprocessor environments there is considerable savings to be made through sharing system resources. If each processor must support its own bus structure, I/O devices, and bulk storage medium, system cost could be very high. In the configuration shown in Figure 1, all processors share a common communication bus, and a number of system resources.
Since every processor must use the common system bus to communicate with its peripherals, a priority structure that resolves simultaneous processor bus requests into a single bus grant must be integrated into the system. In addition to making request-grant transactions, transient bus contention due to grant switching must be removed by inserting precise guard band times between bus grants.
Signetics' Field Programmable Logic Sequencer provides a convenient and costeffective means for implementing a synchronous arbiter to perform these tasks within a single chip.

AN7
Single Chip Multiprocessor Arbiter

\author{
Application Note
}

\section*{ARBITER STRUCTURE}

Within a multiprocessor system, two general classes of processors can be recognized: Priority A and Priority b. Priority A processors have the highest request priority and must only compete with other Priority A processors for bus control. The arbiter must issue " A " grants in manner that prevents any high priority "A" processor from locking out another Priority A processor. To enable this, the Priority A rules implemented here use a Last Granted Lowest Priority (LGLP) ring structure. After an "A" processor has completed a busrelated task, its next arbitrated request priority will be lowest in the " A " request group. The previously second highest priority " \(A\) " processor will then become highest priority requester. The net effect of the 'round robin'" exchange is that every Priority A processor will have a turn at being highest priority processor. Priority A processors are typically ones that perform real-time operations or vital system tasks.

Priority b processors are lower in priority than the "A's" and may only be granted system control when no " A " requests are pending. " \(b\) " processors usually perform background tasks. Within the Priority b group, further priority ordering exists such that each " \(b\) " processor has a fixed priority position.
Plumber \({ }^{1}\), Pearce \({ }^{2}\), and Hojberg \({ }^{3}\) present asynchronous techniques of arbiter implementation. These methods all have hardwired priority rules and imprecise guard band times during grant switching. As pointed out by Hojberg, a synchronous state machine can be configured as a Mealy-type controller to provide not only precise guard band times and programmable priority rules, but also programmable input/output polarity. The state machine in Figure 2 is made from a control PROM array and an edge-triggered latch. The " A " and ' b " requests and the machine's present state are used by the control PROM to determine the next " A " and " b " grants and the next state.


Figure 1. Multiprocessor Structure

a. \(A\) and \(b\) service requests \(\left(R_{N}, r_{N}\right)\) plus the present state determine, through the control PROM, the next state and the next grant outputs ( \(G_{N}, g_{N}\) ).

b. Requests \(\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{1}, \mathrm{r}_{\mathbf{0}}\), and \(\mathrm{r}_{\mathbf{1}}\) are asserted low in the same clock sample period. The priority rules that determine the order in which the grants are issued and the shaded guard-band areas are programmed into the control PROM. Note that the A and \(b\) request lines and the present state input to the PROM must have a set-up time equal or greater than the latch set-up time plus the PROM access time.

Figure 2. Arbiter Constructed from a Mealy-Type State Machine

\section*{SYSTEM OPERATION}

Two machine states can be identified by inspection: a wait state and a grant state. The state machine enters a grant state as a response to a system request on either \(\mathrm{R}_{\mathrm{N}}\) or \(r_{N}\). The machine will remain in this state with a single grant line asserted as long as the request remains asserted. Upon releasing the request line, the machine will pass through a single wait state before considering other pending requests. This provides a single state guard band time. The requests received must meet the set-up requirement of the edgetriggered latch after propagating through the control PROM. If these time considerations do not fit within a given multiprocessor structure, an input latch may be added such that the \(R_{N}\) and \(r_{N}\) lines are clocked through the latch by the system clock, thereby removing asynchronous set-up time considerations. On the basis of a state machine approach, two techniques of implementation are feasible: 1) using an architecturally advanced single IC controller, the FPLS, and, 2) a traditional PROM/LATCH configuration.

a. FPLS Single Chip System


\section*{b. FPLS Standard Program Table}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{C K}\) & \(\mathbf{S}\) & \(\mathbf{R}\) & \(\mathbf{Q}\) \\
\hline\(\uparrow\) & 0 & 0 & \(\mathbf{Q}\) \\
\(\uparrow\) & 0 & 1 & 0 \\
\(\uparrow\) & 1 & 0 & 1 \\
\(\uparrow\) & 1 & 1 & Undefined \\
\hline
\end{tabular}

NOTE:
( \(\uparrow\) ) denotes positive clock transition. \(S=R=1\) is an illegal input condition.
c. Transition Table of Clocked S/R Flip-Flop

Figure 3

\section*{FPLS ARBITER}

\section*{IMPLEMENTATION}

A five Priority " A " and three Priority " b " arbiter will be constructed such that all grant outputs will be asserted low for grants and all request inputs will be asserted low for system requests.

\section*{Brief FPLS Description}

The FPLS block diagram shown in Figure 3(a) consists of a control PLA and 14 clocked S/R flip-flops. The control PLA is actually an ANDOR logic array that functions as a Content Addressable PROM. The PLA is organized as 48 words of 28 bits with 16 external input
lines, and six internal inputs fed back from the State Register. The 28 PLA outputs drive the S/R inputs of the six-bit State Register and eight-bit Output Register. Note that the state feedback path is made inside the FPLS.
\(I_{N}\) and present state inputs, \(\mathrm{P}_{\mathrm{S}}\), represent \(2^{22}\) possible input codes; 48 of these codes may be mapped in the PLA to provide a 14 bit register control word. As shown in Figure 3(b) each input code may be specified by assigning to the variables either Low "L", High " H ", or Don't Care "--" logic states. If any input code falls logically outside the programmed codes, the PLA asserts a Low on all its 28
internal outputs, thereby issuing a "no change" command to the R/S flip-flops.
This is an important architectural feature because it requires that only state or output transition terms be programmed. Looping terms that change neither state nor output need not be programmed in the FPLS, owing to the functional characteristics of S/R flipflops tabulated in Figure 3(c). An example of this is shown in Figure 4.

The S/R inputs of both state and output registers are specified by using PLA outputs ('AND' functions of request inputs and present state) in the program table of Figure 3(c).

The corresponding next state of each bit will be set to 0 for " L ", 1 for " H ', and No Change for " - ". The FPLS's PR/OE line may be assigned either Asynchronous Preset or Output Enable functions, via a user programmable option.
The entire function is integrated into a single 28-pin package designated as PLS105.

\section*{State Algorithm}

Figure 5(a) displays the circular state form and all possible state transitions of the LGLP priority structure. Hex states 3F, 3E, 3D, 3C, and \(3 B\) are arbiter wait states \(W_{0-4}\). In these states; processor " A " and ' b ' requests are monitored. Figure 5(b) illustrates a typical grant to processor \(A_{1}\) in hex state 07. As long as \(A_{1}\) asserts its request line low, the next state will be \(07_{16}\) and the next output will remain with \(\mathrm{G}_{1}\) asserted low and all the other grant outputs asserted high. Since no change in state or grant output results from this transition, no PLA resources are required.
As soon as processor \(A_{1}\) returns its request line, \(R_{1}\), to 1 , a state transition is made to 3D, and an output transition is made to set all grant outputs to 1 . Since processor \(A_{1}\) was the last to be granted system resources, it will now have the lowest \(A\) level request priority (LGLP). In wait state \(W_{2}\), the highest priority processor will be \(A_{2}\), second \(A_{3}\), third \(A_{4}\), and fourth \(A_{0}\). To maintain the LGLP rule, grant transitions must follow the state rule \(\mathrm{G}_{\mathrm{N}} \rightarrow \mathrm{W}_{(\mathrm{N}+1)}\), and wait states, \(\mathrm{W}_{\mathrm{M}}\), must set their " \(A\) " priorities so that processor \(A_{M}\) is highest priority. Priority decreases as one proceeds clockwise around the state ring to the lowest priority processor, \(A_{(m-1)}\).
When no " \(A\) " requests are pending, " \(b\) " requests may be granted. To avoid upsetting the LGLP priority rule, \(a\) " \(b\) " grant must leave and return to the same wait state. Since the " \(b\) " priority structure is the same regardless of the wait state, only a single set of " \(b\) " transition terms are required.


NOTE:
\(T_{N} / F_{N}=\) Inputs/outputs.
The FPLS requires that only two out of the three transition terms be programmed.
Figure 4. FPLS State and Output Transitions

For example, a grant transition to \(\mathrm{g}_{2}\) (Hex 20-25) can be issued only if there are no " \(A\) ', ' \(b_{0}\) ", or " \(b_{1}\) " requests pending. Given the binary wait state code 111XXX, where " X 's" represent Don't Cares, a request code of 01111111 will transfer the arbiter to the grant state \(\mathrm{g}_{2}\) from any of the wait states, \(\mathrm{W}_{0-4}\).
It is important to realize that in making this transition, the lower three-state bits will not be changed - they provide the wait state return address. When \(r_{2}\) returns high, 1 XXXXXXXX, a transition back to the previously exited wait state is made by forcing a " 1 " in the three most significant state bits and leaving the lower three-state bits unchanged.
All output and state bits are initially preset to " 1 " through the use of the optional preset function. Grant output lines are only forced low when transitions are made to grant states and are returned to " 1 " when jumping back to a wait state.
Table 1 provides the complete arbiter program. The complete arbiter circuit diagram is shown in Figure 6. The AMAZE equations are shown in Figure 7.

\section*{PROM/LATCH \\ IMPLEMENTATION}

The same five " A " processor and three " b " processor arbiter can be implemented with discrete PROM's and Latches using the same state diagrams for the FPLS, except that now looping transition terms must be programmed. Coding of all state and output transitions requires programming of two memory fields: the " A " request PROM's \((2 K X 6)\) and the " \(b\) " request PROM \((64 \times 3)\). The complete circuit diagram is shown in Figure 6(b).
The " A " request PROM's determine the next machine state \(\left(\mathrm{N}_{0-5}\right)\) at all times, except when there are no ' A " requests pending and there is a ' \(b\) ' request, or if the machine is presently in a " \(b\) " grant state. In these cases, the " \(b\) " request PROM controls the machine's next state.
The grant control lines are decoded from the next state lines and latched in two quad output latches. This PROM/LATCH organization is conceptually the same as that shown in Figure 2.

a.


AF01770S
b.

Figure 5. Arbiter State Transition Diagram

\section*{Single Chip Multiprocessor Arbiter}


Figure 6. Arbiter Circuit Diagram Summary

Table 1. FPLS Program Table for Priority Arbiter


```

WHILE [W2]
CASE
[/FA2] :: [GAZ] WITH [QAZ']
[/RAS * RA2] :: [GA3] WITH [QAS']
[/RA4 * FAS * RA2] :: [GA4] WITH [QA4']
[/RAO * RA4 * RAS * RA2] :: [GAO] WITH [QAO']
[/RA1 * RAO * RA4 * RAS * RA2] :: [GA1] WITH [QA1']
ENDCASE
WHILE [W3]
CASE
[/FAS] :: [GAS] WITH [QAB']
[/RA4 * RAS] :: [GA4] WITH [QA4']
/FAOO * RA4 * FAS] :: [GAO] WITH [QAO']
[/RA1 * RAO * RA4 * RAS] :: [GA1] WITH [QA1']
[/RA2 * RA1 * RAO * RA4 * RAS] :: [GA2] WITH [QA2']
ENDCASE
WHILE [W4]
CASE
[/FA4] :: [GA4] WITH [QA4']
[/RAO * RA4] :: [GAO] WITH [GAO']
[/FA1 * RAO * FA4] :: [GA1] WITH [CA1']
[/FA2 * RA1 * RAO * RA4] :: [GA2] WITH [QA2']
[/RAS * FA22 * RA1 *RA1 * RA4] : : [GAS] WITH [QAS']
ENDCASE
WHILE [WO4]
CASE
[/REO * RA4 * RAS * RA2 * RA1 * FAOO] : : [GBO] WITH [QEO']
[/FB1 * RBO * RA4 * RAS * FAR2 * RA1 * FAO] :: [GB1] WITH [QB1`]
[/RB2 * FRB1 * RBO * FA4 * RAS * RAI2 * RA1 * FAO] : : [GB2] WITH [QE2']
ENDCASE
WHILE [GAO]
IF [RAO] THEN [W1] WITH [NOGRANT']
WHILE [GA1]
IF [RAI] THEN [W2] WITH [NOGRANT']
WHILE [GAZ]
IF [RA2] THEN [WS] WITH [NOGRANT']
WHILE [GAB]
IF [RAS] THEN [W4] WITH [NOGFANT']
WHILE [GA4]
IF [FA4] THEN [WO] WITH [NOGRANT']
WHILE [GBO]
IF [REO] THEN [GB1] WITH [NOGFIANT']
WHILE [GB1]
IF [RB1] THEN [GB2] WITH [NOGRANT']
WHILE [GB2]
IF [RE2] THEN [GBO] WITH [NOGRANT']

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LABEL & ** & FNC & **F & IN & & - FIN & *** & FNC & ** & LABEL \\
\hline CLOCK & ** & CK & ** & 1-: & & 1-28 & ** & +5V & **VCC & \\
\hline RB2 & ** & I & ** & 2-: & & : -27 & ** & I & **N/C & \\
\hline RE1 & ** & I & ** & 3-1 & & : -26 & ** & I & **N/C & \\
\hline REO & ** & I & ** & 4-1 & 8 & : -25 & ** & I & **N/C & \\
\hline RA4 & ** & I & ** & 5-1 & 2 & 1-24 & ** & I & **N/C & \\
\hline RAS & ** & I & ** & 6-1 & 5 & 1-23 & ** & I & **N/C & \\
\hline FA2 & ** & I & ** & 7-1 & 1 & 1-22 & ** & I & **N/C & \\
\hline RA 1 & ** & I & ** & 8-1 & 0 & : -21 & ** & I & **N/C & \\
\hline RAO & ** & 1 & * & 9-: & 5 & i-20 & ** & I & **N/C & \\
\hline OB2 & ** & 0 & ** & 10-1 & & 1-19 & ** & PR & **FRRE & SET \\
\hline OE1 & & 0 & ** & 11-1 & & :-18 & ** & O & **UAO & \\
\hline OBO & & 0 & ** & 12-: & & 1-17 & & 0 & **0A1 & \\
\hline OA4 & & 0 & ** & 13-1 & & :-16 & & 0 & **OAZ & \\
\hline GND & ** & OV & ** & 14-1 & & 1-15 & ** & 0 & **OA3 & \\
\hline
\end{tabular}

\section*{b. Arbiter Pin List}
******************** ARBITERE \(* * * * * * * * * * * * * * * * * * * * * ~\)
EDEVICE TYFE
825105
GDFAWING
************ MULTI-FROCESSOR EUS ARBITOR
EREVISION
************ ARBITERE REV. 0
gDATE
************ JULY 26, 1985
ESYMBOL
************ AREITERE
@COMFANY
************ SIGNEIICS
@NAME
************ DAVIL k. WONG
GDESCRIFTION
gINTERINAL SR FLIF FLOF LAEELS
FFO FF1 FF2 FFS FF4 FFS
GCOMNON FFCIDLCT TEFRM
GCOMFLEMENT ARFAY
glutic evuation

\section*{c. Arbiter Boolean Equations}

Figure 7 (Continued)

Table 2. Arbiter Program Table

> ******************** ARBITERB ********************
> Cust/Project - ************ DAVID K. WONG
> Date - ************ JULY 26, 1985
> Rev/I. D. - \(\quad\) ************ AREITERB REV. 0
> 825105
O!A! -
1:A! - - - , - - - , - - - - - - L H!H H, H H H H!LL,LH H H!H H H H, H HL H!
2!A!- - - - , - - - , - - - - , - L H H!H H, H H H H!L L, H H H L!H H H H, HL H H!
S!A! - - - , - \(-\infty,-\infty-\infty, L H H H!H H, H H H H!L L, H H H H!H \cdot H H H, L H H H!\)
4!A! - - - - - - - - - - - L, H H H H!H H,H H H H!L H,L H H L!H H H L, H H H H:
1O!A! - - - , - - - , - - - - L - - H H,HHL H!LL,HHHL!H H H H,HLH H!
12!A!- - - - - - - , - - - L, HH- -!H H,H HLH!LH,LHHL!HHHL,HHHH!
1S!A!- - - - - - - - - - - H,HH-L!H H,HHLH!LL,LHHL!HHHH,HHHL!
14!A!- - - - - - - - - - - H,HHLH!H H,H HLH!LL,L H H H!H H H H, H HL H!
16!A! - - - - - - - - - L.H - - - H H,HHLLLLH,LHHL!H H H L,HHHH!
2S!A! - - - , - - - , - - - , - L H H!H H, H L H H!L L, H H H L:H H H H, H L H H!
24:A!- - - , - - - , - - H,LHH-!H H,HLHH!LL,HHHH!HHHH,LHHH!
25!A! - - - , - - - - , - L H,HHHH!HH,H->--!HL,H-->!HHLH,HHHH!
26!A!- - - -- -- - - - L H H,HHHH!HH,H---!HH,L---!HLHH,HHHH!
27'A! - - - - - - - , L HHH,HHHH!HH,H---!HL,L---)LHHH,HHHH!
28!A! - - - , - - - - - - - - - - H!LL,LHHL!HH,HHHL!HHHH,HHHH:
29!A!- - - , - - - , - - - - - H - ! L, L H H H!H H, HHL H!H H H H, H H H H!
31!A! - - - , - - - , - - - , H - - - ! L L, H H H H! H H, H L H H!H H H H, H H H H!
32!A! - - - , - - - - - - H, - - - L H, L H L!H H, H H H H!H H H H, H H H H!
उS:A:- - - , - - - , H - - - - - - - ! H L, L - - - H L, H - - - ! H H H H,HHHH:

\section*{Single Chip Multiprocessor Arbiter}

AN7

\section*{SUMMARY}

As can be seen from the circuit diagrams, the FPLS can offer significant advantages over discrete MSI arrays in the design of state machines. The tradeoff in both design alternatives for the Priority Arbiter is shown in Table 2. Clearly, the FPLS approach uses fewer parts, with savings in PC board space and power requirements.

\section*{REFERENCES}
1. W.W. Plumber: ' 'Asynchronous Arbiters''; IEEE Transactions on Computers, January 1972, pp. 37-42.

Table 3. Design Alternatives for the Priority Arbiter
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & F.P.L.S. & PROM/LATCH \\
\hline Parts count & 1 IC & \(\approx 191 \mathrm{C}^{\prime} \mathrm{s}\) \\
PCB space & \(.84 \mathrm{in}^{2}\) & \(7.92 \mathrm{in}^{2}\) \\
Power & .65 W & 2.85 W \\
Voltage & +5 V & +5 V \\
\hline
\end{tabular}
2. R.C. Pearce, J.A. Field, and W.D. Little: ''Asynchronous Arbiter Module'"; IEEE Transactions on Computers, September 1975, pp. 931-933.
3. K. Soe Hojberg: ' An Asynchronous Arbiter Resolves Resource Allocation Con-
flicts on a Random Priority Basis'; Computer Design, August 1977, pp. 120-123.
4. K. Soe Hojberg: ''One-Step Programmable Arbiter for Multiprocessors' '; Computer Design, April 1978, pp. 154-158.

\title{
Signetics
}

\section*{Application Specific Products}

\author{
Author: K. A. H. Noach
}

\section*{INTRODUCTION}

Custom logic is expensive - too expensive if your production run is short. 'Random logic' is cheaper but occupies more sockets and board space. Signetics Programmable Logic bridges the gap. Using PLD, you can configure an off-the-shelf chip to perform just the logic functions you need. Design and development times are much shorter, and risk much lower than for custom logic. Connections are fewer than for random logic, and, for all but the simplest functions, propagation delay is usually shorter. Yet another advantage that PLD has over custom logic is that it allows you to redesign the functions without redesigning the chip-giving you an invaluable margin not only for cut-and-try during system development, but also for later revision of system design. You're not tied down by the need to recover capital invested in a custom chip.

A PLD chip is an array of logic ele-ments-gates, inverters, and flip-flops, for instance. In the virgin state, everything is connected to everything else by nichrome fuses, and although the chip has the capacity to perform an extensive variety of logic functions, it doesn't have the ability to. What gives it that is programming: selectively blowing undesired fuses so that those that remain provide the interconnections necessary for the required functions.

Signetics Series 20 PLD, named for the number of pins, supplements the well-known Series 28. The package is smaller-little more than a third the size, in fact-but the improved architecture, with user-programmable shared I/O. compensates for the fewer pins. The series comprises the following members, in order of increasing complexity:
- PLS151-field-programmable gate array
- PLS153 - field-programmable logic array

\title{
Introduction To Signetics Programmable Logic
}

\author{
Application Note
}
- PLS155-field-programmable logic sequencer
- PLS157 - field-programmable logic sequencer
- PLS159-field-programmable logic sequencer
Entry to all the devices is via a product matrix, an array of input and shared 1/O lines fuseconnected to the multiple inputs of an array of AND gates (see Figures 1, 2 and 5). To exploit the capacity of any device, it is important to make the most economical use of the AND gates it has available. Application of de Morgan's theorem can help in this. For example, inputs for the function
\[
F=A+B+C+D
\]
would occupy four of the AND gates of the product matrix. However, the same function rewritten as
\[
\bar{F}=\bar{A} \bar{B} \bar{C} \bar{D}
\]
would occupy only one. Moreover, the second function could be done on the simplest of the Series 20 devices (and leave eleven gates over for other functions), whereas the first could not. The fact that all inputs of the Series 20 devices, including the shared ones, incorporate double buffers that make the true and complement forms of all input variables equally accessible, greatly facilitates the use of de Morgan's theorem for logic minimization.
To convert the minimized logic equations to the pattern of fuses to be blown, you can use either a programming sheet (see e.g. Table 1) or Boolean equation program-entry software that lets you enter the equations via the keyboard of a terminal. The direct programmability of logic equations makes system design with PLD simple and sure. Functional changes can be made by replacing one PLD chip by another differently programmed. In many cases you can even remove the original one, reprogram it on the spot, and re-insert it. Programming machines qualified for the Se-
ries 20 are at present available from DATA I/ O, KONTRON, and STAG.

\section*{FPGA PLS151}

The field-programmable gate array is the simplest of the Series 20 PLD devices; Figure 1 shows the functional diagram. The array can accept up to 18 inputs. There are six dedicated input pins ( \(A\) ) and twelve ( \(A^{\prime}\) ) that can be programmed as inputs, outputs, or bidirectional I/O. All input variables, whether on dedicated or programmed input pins, are available in bott, true and complement form in the product matrix ( \(B\) ), and both forms are buffered: either form can drive all 12 product lines if required. In the virgin state, all the input variables and their complements are connected to all the product lines via a diode and a fuse ( C ), and the product matrix is effectively inoperative. To enable it to generate the required functions, unrequired connections between individual input lines and product lines are severed by blowing the connecting fuses.
At the output of the product matrix are 12 NAND gates, each with 36 inputs to accommodate the 18 possible input variables and their complements. Each of the product terms is normally active-Low, but a unique feature of Signetics PLD is that any or all of them can be independently programmed active-High. This is done by means of an array of exclusive-OR gates (D) at the NAND-gate outputs; when the fuse that grounds the second input of each OR gate is blown, the output of that gate is inverted.
The product matrix and exclusive OR-gate connections shown in Figure 1 illustrate the flexibility conferred by having buffered complements of all input variables internally available, together with independently programmable output polarities. Output \(\mathrm{B}_{11}\), shown with its exclusive OR-gate fuse intact, is programmed
\[
\overline{B_{11}}=\left.I_{0}\right|_{1} \overline{5}
\]

\section*{Introduction To Signetics Programmable Logic}


\section*{LOOH31S}

NOTE:
A, dedicated inputs; \(A^{\prime}\), programmable I/O. B, product (NAND) matrix with fused connections \(C\); each of the vertical lines in the matrix represents 36 inputs to the terminating NAND gated. \(D\), exclusive-OR array with inputs grounded via fuses for polarity control. E, programmable Tri-state output buffers. \(F\), fuse-programmable control matrix. Square dots ( \(\boldsymbol{B}\) ) represent permanent connections; round dots ( \(\bullet\) ) intact fuse connections. Connected as shown, the array is programmed for the functions \(\bar{B}_{11}=I_{0} I_{1} \bar{\Gamma}_{5}\) and \(B_{10}=\Gamma_{0} \Gamma_{1} \Gamma_{5}\).

Figure 1. Field-Programmable Gate Array PLS151A

Introduction To Signetics Programmable Logic
AN8


\section*{NOTE:}

A to F, as in Figure 1. G, sum (OR) matrix. Connected as shown, the array is programmed as a single-bit adder with Carry Enable.
Figure 2. Field-Programmable Logic Array PLS153

At the same time, and without using any additional inputs, output \(\mathrm{B}_{10}\) (fuse blown) is programmed

\section*{\(B_{10}=\bar{T}_{0} \bar{T}_{1} \Gamma_{5}\)}

Each of the exclusive-OR gates drives a three-state output buffer. In the virgin state all the buffers ( \(E\) ) are disabled and therefore in the high-impedance state. The function of the programmable \(1 / O\) pins ( \(A^{\prime}\) ) is then determined by the I/O control matrix ( F ). The three AND gates at the control-matrix output are

Active-High, and when one of them is in the High state, the four output buffers it controls are enabled; the corresponding I/O pins then act as outputs. conversely, when a controlmatrix AND-gate output is Low and the control fuse for the corresponding Tri-state buffer is intact, the pins controlled by that gate act as inputs. Thus, these pins can be programmed in groups of up to four to act as inputs or outputs according to the state of selected input variables. If required, any of the programmable I/O pins can be made a
dedicated output by blowing the control fuse of the output buffer associated with it.

The speed of the FPGA compares favorably with TTL, although its propagation delay is longer than the individual gate delay of TTL. When the number of inputs required is large, however, the FPGA more than makes up for this. When more than eight inputs are required, for example, the FPGA has a distinct advantage. Then, the overall propagation de-
lay of TTL often amounts to two or three gate delays, but that of the FPGA to only one.

\section*{FPLA PLS153}

\section*{Architecture}

With two levels of logic embodied in a product matrix terminating in 32 AND gates coupled to a ten-output OR matrix (Figure 2), the FPLA is a step up in complexity from the FPGA. Again, there is provision for 18 input variables, internally complemented and buffered, but here divided between eight dedicated input pins and ten individually programmable I/O pins. As before, exclusive-OR gates grounded by fuses provide output polarity control, and any of the programmable I/O pins can be made a dedicated output by blowing the control fuse of the output buffer associated with it.

\section*{Programming}

When the required functions have been defined, corresponding programming instructions are entered in a programming table, the layout of which reflects the FPLA architecture. (A Signetics computer program named AMAZE, which accepts Boolean equations as input and generates an FPLA programming table as output, is also available.) The programming machine blows the FPLA fuses in the pattern prescribed by the table.

As an illustration of FPLA programming, consider a full adder. Figure 3 shows a TTL version (74LS80) and the corresponding logic equations. Note that the feedback of \(\overline{\mathrm{C}}_{\mathrm{n}}+1\) introduces a second propagation delay. In the FPLA this is eliminated by redefining \(\Sigma\) in terms of \(A, B\), and \(C_{n}\), as shown in Figure 4, and using the right side of the equation for \(\overline{\mathrm{C}}_{\mathrm{n}+1}\) instead of the term itself. At first glance this would appear to require a minimum of three product terms for \(\overline{\mathrm{C}}_{n+1}\) plus four for \(\Sigma\), or a total of seven. The Karnaugh maps, however, show considerable overlap between the two functions: the map for \(\overline{\mathrm{C}}_{\mathrm{n}+1}\) differs from that for \(\sum\) only by having ABC \(C_{n}\) instead of \(\bar{A} \bar{B} \overline{C_{n}}\). Rewriting the equation for \(\bar{C}_{n+1}\) to introduce \(\bar{A} \bar{B} \bar{C}_{n}\) and eliminate \(A B C_{n}\),
\[
\bar{C}_{n+1}=A \bar{B} \bar{C}_{n}+\bar{A} B \overline{C_{n}}+\bar{A} \bar{B} C_{n}+\bar{A} \bar{B} \bar{C}_{n}
\]
increases the number of product terms by one, but now \(\overline{\mathrm{C}}_{\mathrm{n}+1}\) and \(\Sigma\) have three terms in common. Therefore, since the FPLA allows multiple use of product terms, it is sufficient to program each of the common terms only once; thus, the original seven product terms are effectively reduced to five.
To fill in the programming table (Table 1), first allocate inputs and outputs.


LDO1370S
Figure 3. Single-Bit Full Adder in TTL (e.g. 74LS80)


Inputs: \(\begin{aligned} A & =I_{0} & \text { Outputs: } \bar{C}_{n+1} & =B_{7} \\ B & =I_{1} & & =B_{8}\end{aligned}\)
\(\begin{array}{ll}\mathrm{B}=\mathrm{I}_{1} & \Sigma \\ \mathrm{C}_{n}=\mathrm{I}_{2} & \Sigma \mathrm{~B}_{8} \\ & \Sigma \\ =\mathrm{B}_{9}\end{array}\)
Next, enter the product terms of \(\Sigma\) in the product-matrix (AND) part of the table, using \(H\) to indicate a true input and \(L\) a false one.
- Term 0 is \(A \bar{B} \bar{C}_{n}\) : mark \(H, L, L\) in columns \(\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}\) of row 0
- Term 1 is \(\bar{A}\) B \(\overline{C_{n}}\) : mark \(L, H, L\) in columns \(\mathrm{I}_{0}, \mathrm{l}_{1}, \mathrm{l}_{2}\) of row 1
- Term 2 is \(\bar{A} \bar{B} C_{n}\) : mark \(L, L, H\) in columns \(I_{0}, l_{1}, I_{2}\) of row 2
- Term 3 is \(A \quad B C_{n}\) : mark \(H, H, H\) in columns \(I_{0}, I_{1}, I_{2}\) of row 3 .
Fill the rest of rows \(0,1,2\), and 3 with dashes to indicate that all other inputs are to be disconnected from Terms \(0,1,2\), and 3 (fuses blown).
The product terms of \(\Sigma\) must be added to form the sum-of-products required at output
\(\mathrm{B}_{9}\). Indicate the required addition by putting an A (for Attached, i.e. fuse unblown) in the Term \(0,1,2\), and 3 spaces of column \(\mathrm{B}(\mathrm{O})_{9}\); Term 4 is not required for \(\Sigma\), so put a dot in the Term 4 space to indicate that it is to be disconnected (fuse blown). To indicate that the output is to be Active-High, put an H in the polarity square above the \(\mathrm{B}(\mathrm{O})_{9}\) column. Finally, fill row \(D_{g}\) with dashes to indicate that all fuses on line \(D_{9}\) of the control matrix are to be blown and \(\mathrm{B}_{9}\) is to be a dedicated output. This completes the programming of \(\Sigma\).
The \(\bar{\Sigma}\) output on \(\mathrm{B}_{8}\) is programmed in just the same way, except that the polarity square above the \(\mathrm{B}(\mathrm{O})_{8}\) column is marked L to indicate Active-Low. (Note that in the FPLA, the \(\Sigma\) and \(\bar{\Sigma}\) outputs change simultaneously, because all output signals traverse the exclu-sive-OR array (D), whether they are ActiveHigh or Active-Low. In the TTL full adder shown in Figure 3, the output inverter delays the change of \(\Sigma\) with respect to \(\bar{\Sigma}\).)

\section*{Introduction To Signetics Programmable Logic}

Table 1. FPLA Programming Table Filled in for the Full Adder of Figure 2


The output \(\mathrm{C}_{\mathrm{n}+1}\) on \(\mathrm{B}_{7}\) contains three of the same terms as \(\Sigma\), plus the term \(\bar{A} \bar{B} \overline{C_{n}}\). Only this last term needs to be additionally programmod in the product matrix: mark \(L, L, L\) in columns \(I_{0}, I_{1}, I_{2}\) of the Term 4 row. Indicate the addition
\[
A \bar{B} \overline{C_{n}}+\bar{A} B \overline{C_{n}}+\bar{A} \bar{B} C_{n}+\bar{A} \bar{B} \overline{C_{n}}
\]
by putting an \(A\) in rows \(0,1,2\), and 4 of column \(\mathrm{B}(\mathrm{O})_{7}\), and show that Term \(3\left(\mathrm{ABC} \mathrm{C}_{n}\right.\) ) is not required by putting a dot in the Term 3 row to indicate disconnection (fuse blown). Put an \(L\) in the \(B(O)_{7}\) polarity square to indicate Active-Low.

Identifying \(B_{7}\) as a dedicated output by indicating that all the fuses to control term \(D_{7}\) are to be blown, would now complete the programming of the full adder. However, a useful supplementary feature would be a Carry Enable function to keep the \(\mathrm{B}_{7}\) output buffer in the high-impedance state except when the enable input \(I_{3}\) is true. The output buffer is enabled when both the fuses of a control term are blown, or when one is blown and the term that controls the output buffer is true. Thus, a Carry Enable can be provided via the \(I_{3}\) input by leaving intact the fuse for ActiveHigh operation of the enable signal to control term \(D_{7}\). To indicate this, put an \(H\) in the \(I_{3}\) column of row \(D_{7}\) and fill the rest of the row with dashes.
The full adder with output Carry Enable uses only four of the eight dedicated inputs, three of the ten programmable I/O pins, and five of the 32 AND gates. The remaining capacity can be used for programming other functions which may, if required, also make use of AND-gate outputs already programmed for the full adder.

All fuses not indicated as blown in the programming table are normally left intact to preserve capacity for later program revisions or the addition of supplementary functions. If it is essential to minimize propagation delay, however, the finalized program should include instructions for blowing all unused fuses to minimize load capacitance.

\section*{FPLS PLS155-PLS157-PLS159}

\section*{Architecture}

The FPLS (Figure 5) is the most complex of the Series 20 PLD devices. Like the FPLA, it has a 32-term product matrix followed by an OR matrix. In the FPLS, however, the OR matrix is larger and comprises three distinct parts, with architecture differing in detail from type to type. In the PLS155, for instance, the first part consists of eight 32 -input gates coupled, like those of the FPLA, to an output-polarity-controlling exclusive-OR array. The
second consists of twelve additional gates which control four flip-flops. These are what give the FPLS its sequential character, enabling it to dictate its next state as a function of its present state. The third part is the deceptively simple Complement Array (I in Figure 5): a single OR gate with its output inverted and fed back into the product matrix. This enables a chosen sum-of-products to become a common factor of any or all the product terms and makes it possible to work factored sum-of-products equations. it is also useful for handshaking control when interfacing with a processor and for altering the sequence of a state machine without resorting to a large number of product terms.
PLS155 has four dedicated inputs and eight programmable I/O pins that can be allocated in the same way as in the FPLA. It also has four shared I/O pins (L) whereby the flip-flops can be interfaced with a bidirectional data bus: Two product terms, \(L_{A}\) and \(L_{B}\) in the control matrix \(F\), control the loading of the flip-flops, in pairs, synchronized with the clock.
Figure 6 shows the architecture of the flip-flop circuitry in the PLS155. The flip-flops are positive-edge-triggered and can be dynamically changed to \(\mathrm{J}-\mathrm{K}, \mathrm{T}\), or D types according to the requirements of the function being performed; this considerably lessens the demands on the logic. The Tri-state inverter between the \(J\) and \(K\) inputs governs the mode of operation, under the control of the product term F :
- When the inverter is in the highimpedance state, the flip-flop is a J-K type, or a \(T\) type when \(J=K\).
- When the inverter is active, \(\mathrm{K}=\mathrm{J}\) and the flip-flop is a D type; the \(K\) input must then be disconnected from the OR matrix.
All the product terms from the product matrix ( \(T_{0}\) to \(T_{31}\) in Figure 5) are fuse-connected to the \(J\) and \(K\) input OR gates. if both fuses of any one product term are left intact, \(\mathrm{J}=\mathrm{K}\) and the flip-flop is a \(T\) type.

The flip-flops of the PLS155 have asynchronous Preset and Reset controlled by terms in the OR matrix that take priority over the clock. Their three-state output buffers can be controlled from the enable pin OE or permanently enabled or disabled by blowing fuses or leaving them intact in the enable array ( K in Figure 5).
The PLS157 and PLS159 sequencers have, respectively, six and eight flip-flops. The architecture differs in detail but is similar in principle to that of PLS155.

\section*{Programming}

The FPLS is programmed in much the same way as the FPLA, using a table to instruct the machine that blows the undesired fuses. It is not necessary to work with a circuit diagram; in fact, it is even undesirable to do so, since applying the necessary logic reduction techniques would in most cases make the diagram difficult to read and more a hindrance than a help. An example of how to program the FPLS as a universal counter/shift-register is given in the Appendix.

\section*{DEVELOPMENT AND PRODUCTION ECONOMY WITH PLD}

Underlying the design philosophy of the Signetics Series 20 PLD is the concept of programmable arrays whose architecture emulates logic equation formats rather than mere aggregations of gates. The unique combination of features which support this philosophy includes:
- double-buffered true and complement inputs
- programmable-polarity outputs
- programmable I/O for internal feedback and maximum freedom in allocating inputs and outputs
- truth-table programming format

These features are common to all the PLD devices. In the field-programmable logic sequencers they are further supported by:
- flip-flops with dynamically alterable operating modes
- a complement array for simplified handshaking control

From the development engineer's point of view an important advantage of PLD is that it eliminates breadboarding. Once the functions required in terms of minimized logic equations are worked out, a PLD can be programmed accordingly. Once programmed, it will perform those functions.
Loading the instructions into the programming machine usually takes no more than a couple of hours; after that, the machine can program the devices at a rate of 100 an hour. Moreover, since any PLD can be programmed in many different ways, PLD has considerable potential for simplifying purchasing and stock control. One type of device can be programmed to perform a diversity of tasks for which it would otherwise be necessary to purchase and stock many different devices.

Series 20 PLD is second-sourced by Harris Semiconductor.

\section*{Introduction To Signetics Programmable Logic}



LDO1350S
b. denotes wire-OR
denotes fixed connection
Figure 6. Architecture of the PLS155 Flip-Flop Circuitry

\section*{APPENDIX}

\section*{Programming an FPLS as a \\ Counter/Shift-Register}

Objective: to program a PLS155 FPLS as a count-up, count-down, shift-right, shift-left machine governed by three control terms-COUNT/SHIFT, RIGHT/UP, LEFT/ DOWN. Direct implementation would result in a machine with 64 state transitions (see Table \(A-1\) ), which is beyond the scope of the PLS155 or even the 28-pin PLS105. Logic reduction is therefore necessary.
As there are only four feedback variables ( \(D\), \(C, B, A)\), you can do the reduction by hand, one mode at a time; the control terms need not be included till the summary equations are written. Using the transition mapping method suggested here, you can examine the excitation equations for all types of flip-flops
(R-S, J-K, D, T) and choose those types that will perform the required functions using the fewest product terms. Table A-2 summarizes the rules for flip-flop implementation using transition maps; the transition symbols used in the table mean:
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
PRESENT \\
STATE
\end{tabular} & \begin{tabular}{c} 
NEXT \\
STATE
\end{tabular} & \begin{tabular}{c} 
TRANSITION \\
SYMBOL
\end{tabular} \\
\hline 0 & 0 & 0 \\
0 & 1 & \(a\) \\
1 & 0 & \(\beta\) \\
1 & 1 & 1 \\
\hline
\end{tabular}

Using these symbols, construct Table A-3 from Table A-1 to enable you to examine the excitation equations for all types of flip-flops. Proceeding one mode at a time, transfer the state conditions from Table A-3 to Karnaugh maps, as in Figure A-1. Following the rules in

Table A-2, derive the excitation equations for the different types of flip-flops (the examples shown in Figure A-1 omit the T type because it is the same as the \(J-K\) type when \(J=K\) ). In deciding which types of flip-flop to use, remember that logic minimization with PLD is different from logic minimization with 'random logic': with random logic you seek to reduce the number of standard packages required; with PLD you seek to reduce the number of product terms.
From Figure A-1 it is evident that you should choose J-K or T flip-flops for the counter mode and D flip-flops for the shift mode, for you then require only one product term per flip-flop per mode. Table A-4 summarizes the number of product terms per mode the various types of flip-flops would require.

Table A-5 shows the completed programming table for the counter/shift-register. The programming of Terms 0 to 15 reflects the flipflop excitation equations and illustrates the value of being able to switch the flip-flops dynamically from one type of operation to another. Terms 16, 17 and 18, respectively, provide for INITIALIZE, asynchronous RESET, and STOP functions.

The programming of the two additional inputs \(\overline{\text { HALT }}\) and \(\overline{B U S Y}\) illustrates the value of the complementary, which is made active when \(\overline{\text { HALT }}\) and \(\overline{B U S Y}\) are Low (A in the Complement square of Term 18) and propagated into all the other terms (dot in the Complement squares of Terms 0 to 17). This means that unless the \(\overline{H A L T}\) and \(\overline{B U S Y}\) inputs are High, none of the product terms will be true and the state of the machine will not change. If the Complement Array were not used, twice the number of product terms would be required, even if one of the additional inputs were omitted.
As it is, the design uses only 19 of the 32 product terms available, so there is ample capacity for extending its capabilities. For example, the shift-left function can be augmented by a binary multiplication capability, using a D type flip-flop to make it shift one, two, or three places according to the state of two extra inputs, \(X\) and \(Y\). Table A-6 shows the revised programming table. The binary multiplication function occupies nine additional product terms.

\section*{ACKNOWLEDGEMENT}

Electronic Components and Applications; Vol. 4, No. 2, February 1982. Reprinted with the permission of PHILIPS.

Table A-1. Present-State/Next-State Table for Counter/Shift-Register
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STATE & & & & & & & & & & & & EX & AT & & & & & & & \\
\hline & & & & & & un & Do & & & ou & Up & & & Shif & Lef & & & ift & Righ & \\
\hline & D & C & B & A & D & C & B & A & D & C & B & A & D & C & B & A & D & C & B & A \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 3 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 4 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 5 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 6 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 7 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline 8 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 9 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 10 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 11 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 12 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 13 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 14 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multicolumn{5}{|l|}{CONTROL TERMS} & & & & & & & & & & & & & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{COUNT/SHIFT}} & \multicolumn{4}{|l|}{1} & \multicolumn{4}{|l|}{1} & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{0} \\
\hline & & & & & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{1} & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{0}} \\
\hline \multicolumn{5}{|l|}{RIGHT/UP
LEFT/DOWN} & \multicolumn{4}{|l|}{1} & \multicolumn{4}{|l|}{0} & \multicolumn{4}{|l|}{1} & \multicolumn{3}{|l|}{0} & \\
\hline
\end{tabular}

Table A-2. Rules for Flip-Flop Implementation Using Transition Maps
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
FLIP-FLOP \\
TYPE
\end{tabular} & INPUT & \begin{tabular}{c} 
MUST \\
INCLUDE
\end{tabular} & \begin{tabular}{c} 
MUST \\
EXCLUDE
\end{tabular} & REDUNDANT \\
\hline R-S & S & \(a\) & \(\beta, 0\) & \(1, x\) \\
D & R & \(\beta\) & \(a, 1\) & \(0, x\) \\
T J-K & D & \(a, 1\) & 0,0 & x \\
& T & \(a, \beta\) & 0 & \(1, \beta, \mathrm{x}\) \\
\hline
\end{tabular}

Table A-3. Transition Table for Counter/Shift-Register
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{STATE NO.} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{PRESENT
STATE}} & \multicolumn{16}{|c|}{TRANSITION} \\
\hline & & & & & \multicolumn{4}{|c|}{Count Down} & \multicolumn{4}{|c|}{Count Up} & \multicolumn{4}{|c|}{Shift Left} & \multicolumn{4}{|c|}{Shift Right} \\
\hline & D & C & B & A & D & C & B & A & D & C & B & A & D & C & B & A & D & C & B & A \\
\hline 0 & 0 & 0 & 0 & 0 & \(a\) & \(a\) & \(a\) & \(a\) & 0 & 0 & 0 & \(a\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \(\beta\) & 0 & 0 & \(a\) & \(\beta\) & 0 & 0 & \(a\) & \(\beta\) & \(a\) & 0 & 0 & \(\beta\) \\
\hline 2 & 0 & 0 & 1 & 0 & 0 & 0 & \(\beta\) & \(a\) & 0 & 0 & 1 & \(a\) & 0 & \(a\) & \(\beta\) & 0 & 0 & 0 & \(\beta\) & \(a\) \\
\hline 3 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \(\beta\) & 0 & \(a\) & \(\beta\) & \(\beta\) & 0 & \(a\) & 1 & \(\beta\) & \(a\) & 0 & \(\beta\) & 1 \\
\hline 4 & 0 & 1 & 0 & 0 & 0 & \(\beta\) & \(a\) & \(a\) & 0 & 1 & 0 & \(a\) & \(a\) & \(\beta\) & 0 & 0 & 0 & \(\beta\) & \(a\) & 0 \\
\hline 5 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \(\beta\) & 0 & 1 & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) & \(\beta\) \\
\hline 6 & 0 & 1 & 1 & 0 & 0 & 1 & \(\beta\) & \(a\) & 0 & 1 & 1 & \(a\) & \(a\) & 1 & \(\beta\) & 0 & 0 & \(\beta\) & 1 & \(a\) \\
\hline 7 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & \(\beta\) & \(a\) & \(\beta\) & \(\beta\) & \(\beta\) & \(a\) & 1 & 1 & \(\beta\) & \(a\) & \(\beta\) & 1 & 1 \\
\hline 8 & 1 & 0 & 0 & 0 & \(\beta\) & \(a\) & \(a\) & \(a\) & 1 & 0 & 0 & \(a\) & \(\beta\) & 0 & 0 & \(a\) & \(\beta\) & \(a\) & 0 & 0 \\
\hline 9 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \(\beta\) & 1 & 0 & \(a\) & \(\beta\) & \(\beta\) & 0 & \(a\) & 1 & 1 & \(a\) & 0 & \(\beta\) \\
\hline 10 & 1 & 0 & 1 & 0 & 1 & 0 & \(\beta\) & \(a\) & 1 & 0 & 1 & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) & \(\beta\) & \(a\) \\
\hline 11 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & \(\beta\) & 1 & \(a\) & \(\beta\) & \(\beta\) & \(\beta\) & \(a\) & 1 & 1 & 1 & \(a\) & \(\beta\) & 1 \\
\hline 12 & 1 & 1 & 0 & 0 & 1 & \(\beta\) & \(a\) & \(a\) & 1 & 1 & 0 & \(a\) & 1 & \(\beta\) & 0 & \(a\) & \(\beta\) & 1 & \(a\) & 0 \\
\hline 13 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & \(\beta\) & 1 & 1 & \(a\) & \(\beta\) & 1 & \(\beta\) & \(a\) & 1 & 1 & 1 & \(a\) & \(\beta\) \\
\hline 14 & 1 & 1 & 1 & 0 & 1 & 1 & \(\beta\) & \(a\) & 1 & 1 & 1 & \(a\) & 1 & 1 & \(\beta\) & \(a\) & \(\beta\) & 1 & 1 & \(a\) \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \(\beta\) & \(\beta\) & \(\beta\) & \(\beta\) & \(\beta\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table A-4. Number of Product Terms Required for Counter/Shift-Register Flip-Flop Excitation
\begin{tabular}{|l|l|l|l|l|c|}
\hline \begin{tabular}{c} 
FLIP-FLOP \\
TYPE
\end{tabular} & \begin{tabular}{c} 
COUNT \\
UP
\end{tabular} & \begin{tabular}{l} 
COUNT \\
DOWN
\end{tabular} & \begin{tabular}{l} 
SHIFT \\
RIGHT
\end{tabular} & \begin{tabular}{c} 
SHIFT \\
LEFT
\end{tabular} & TOTAL \\
\hline SR only & 8 & 8 & 8 & 8 & 32 \\
JK only & 4 & 4 & 8 & 8 & 24 \\
D only & 10 & 10 & 4 & 4 & 28 \\
FPLS & \(4(\mathrm{~J}-\mathrm{K})\) & \(4(\mathrm{~J}-\mathrm{K})\) & \(4(\mathrm{D})\) & \(4(\mathrm{D})\) & 16 \\
\hline
\end{tabular}


\section*{Introduction To Signetics Programmable Logic}

Table A-5. PLS155 FPLS Programming Table for the Counter/Shift-Register


Table A-6. Modified PLS155 FPLS Programming Table for the Counter/Shift-Register With the Addition of a Binary Multiplier


\section*{Signetics}

\section*{Application Specific Products}

\section*{INTRODUCTION}

Using the PLS153 or PLS153A, a 4-bit binary-to- 7 segment decoder may be easily constructed. This paper will cover Hex-to-7 segment decoder, BCD-to-7 segment decoder, decoder with latches, and decoder with multiplexer. The architecture of PLS153/153A is basically an AND-OR matrix. The large number of inputs of each AND term is ideal for decoder applications, and the ability to drive the entire OR array makes possible the efficient use of AND terms such that, together with the programmable output polarity, a minimum number of AND terms is needed to implement the decoder function. Another important feature of the PLS153/153A architecture is the 10 bidirectional I/O pins. The bidirectionality of these pins provides internal feedback to the AND matrix, which eliminates the need for external wiring and, more importantly, it saves I/O pin requirements. All I/O pins of the PLS153/153A have tri-state output buffers, each may be enabled or disabled by its own controlling AND terms. In applications where high current drive is necessary but low power consumption is still desirable, the AND term controlled tri-state buffers are ideal for multiplexing. The LED display may be driven at a higher current and lower duty cycle to get better brightness/current efficiency and reduce the overall power dissipation.

AN10
4-Bit Binary-To-7 Segment Decoder

\author{
Application Note
}

\section*{DESCRIPTION}

\section*{Hex-To-7 Segment Decoder}

A 7 segment display (Figure 1) may be used to represent a hexadecimal number as shown in Table 1. The format serves merely as an example. Some designers may prefer other configurations, particularly for letters B and D. Before implementing the truth table with programmable logic devices, one has to decide whether the outputs should be Active-High or Active-Low. If a moderate drive current of 15 mA or less is needed, and if a common anode LED
display is used, then an Active-Low output configuration is sufficient. On the other hand, if only a common cathode LED display is available and the current drive requirement is not very critical, an Active-High output configuration may be used. The change of output polarity may be easily affected by putting in the POLARITY section 'H' for Active-High and 'L' for Active-Low. Since the output polarity is programmable, one may choose to describe the logic in terms of outputs equal to '1's or outputs equal to '0's.


Figure 1. 7 Segment Decoder Driving a Common Anode LED Display


Figure 2. Pin List of Binary-to-7 Segment Decoder

\section*{NOTE:}

PLSXXX and 82SXXX are interchangeable part numbers.

Table 1. Truth Table of Hex-to-7-Segment Decoder

\begin{tabular}{|lllllllllll|}
\hline 2 & 4 & \(x\) & 4 & 0 & \(b\) & \(c\) & \(d\) & \(e\) & \(f\) & \(g\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 2. H/L Programming Table for Binary-to-7-Segment Decoder


Table 3. H/L Programming Table for Binary-to-7 Segment Decoder


QDESCRIPTION
********************************************************************
* This circuit converts a 4-bit binary code (HEX) into
a 7 -segment display. The display is a common anode 7 -segment LED.
    The output of the 825153 goes LOW for each segment that is ON.
**************************************************\#\#\#\#\#*******************



Figure 3. Boolean Equation for Binary-to-7 Segment Decoder


In this example, an Active-Low output goes Low when a segment is to be turned on. The truth table shown in Table 1 is translated into an \(\mathrm{H} / \mathrm{L}\) programming table as shown in Table 2. Since the LED display used here is common anode, the output polarity of each output pin is programmed "L" so that an output goes low when a segment is to be turned on. The decoder takes 16 AND terms. Notice that all outputs go Low when input equals " 8 ". If
the logic is written for " 0 '" instead of '1s', one AND term could be saved. Table 3 shows that the same circuit may be implemented by using only 15 AND terms. Notice that the polarity is the reverse of that of Table 2. The outputs may be turned on and off by \(I_{7}, / \mathrm{IEE}\), which controls the 7 tri-state output buffers through control terms (AND terms \(D_{1}\) to \(D_{7}\) ). The same design is also implemented using Boolean equations with AMAZE. Figures 2
through 4 are, respectively, pin list, logic equations, and logic simulation results of the hex-to-7 segment decoder circuit generated by AMAZE. Table 4 is the H/L table generated by AMAZE. In the process of generating Boolean equations for the decoder, common product terms are used to economize the usage of AND terms.

Table 4. H/L Table Generated by AMAZE for Binary-to-7 Segment Decoder

```

82S153 A:7deco153.5TD
" 4-bit binary to 7-segment decoder simulation
"
" INPUTS <=B (I/O)=> TRACE TERMS
"76543210 9876543210
00000000 ..LLLLLLH. ;
00000001 ..HLLHHHH. ;
00000010 ..LLHLLHL. ;
00000011 ..LLLLHHL. ;
00000100 ..HLLHHLLL.
00000101 ..LHLLHLL.
00000110 ..LHLLLLL.
00000111 ..LLLHHHH. ;
00001000 ..LLLLLLL.
00001001 ..LLLLHLL.
00001010 ..LLLHLLL.
00001011 ..HHLLLLL.
00001100 ..LHHLLLH.
00001101 ..HLLLLHL. ;
00001110 ..LHHLLLL.;
000011111 ..LHHHLLL.;
10001111
10000000
" x
I IBBBBBBEI
I IBBBBEBBI
IN LINES
DESIGNATED I/O USAGE
ACTUAL I/O USAGE
" PIN LIST...
" OB O7 06 05 04 03 02 01 19 18 18

```

Figure 4

t801060s
Figure 5. Pin List of Binary-to-7 Segment Decoder Generated by AMAZE

\section*{BCD-To-7 Segment Decoder}

Using the same principle as in the previous example, a BCD input may be converted to a 7 segment display. If the input will always be within the range of 0000 B to 1001 B , the design will take ten AND terms to implement the decoding function. But if the display of an error message is desired when input exceeds 1001B, the design shown in Figures 5 and 6 and Table 5, may be used. Alternatively, the error message " \(E\) ' will be displayed if the input does not equal anything between 0000B and 1001B inclusively. The circuit used to detect that none of the ten AND terms being true is shown in Figure 7 where if the input is outside of the range of 0000 B to 1001 B , none of the terms ZER to NIN will be active, which in turn causes the output of the NOR term to be High. The High output then causes the ' \(E\) ' term to be active and thus an output " \(E\) "' is displayed. This scheme takes two propagation delays before ' \(E\) ' is displayed but only one delay for ' 0 ' to ' 9 ' to be displayed. The circuit shown in Figure 7 is implemented as shown in Table 4, column \(\mathrm{B}(\mathrm{O})_{0}\) of terms 0 to 9 , and term \#11. The output \(\mathrm{B}(\mathrm{O})_{0}\) becomes High when terms 0 to 9 are inactive, \(\left(T_{0}+T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}+T_{7}+T_{8}\right.\) \(\left.+T_{9}\right)=0\) where \(T_{0}\) is term \#0, \(T_{1}\) is term \(\# 1, T_{2}\) is . .., etc. \(B(O)_{0}\) is then fed back to the input of term \#11 which, when active, causes outputs \(B\) and \(C\) to be High, segments \(B\) and \(C\) to turn off and the other segments to turn on. Term \#10 is left blank to separate the main decoding function and the feedback function for the sake of clarity of this demonstration. A similar feature (the COMPLEMENT ARRAY) may be found in PLS155/157/159 where the feedback path is buried inside the chip without having to use up one I/O pin. Notice that this feature greatly reduces the number of AND terms needed. But for device architectures which do not allow common AND terms, this logic minimization will not be possible. Figure 8 and Table 6 implement design with AMAZE. The circuit is then simulated as shown in Figure 9.
```

N@DEVICE TVPE
825153
@DRAWING
*********************** BCD-TO-7 SEGMENT DECODER
@REVISION
*********************** REV. -
@DATE
*********************** OCT 1, 1984
@SYMBIL
*********************** FILE ID: BCD-7153
@COMPANY
*********************** SIIGNETICS
@NAME
*********************** DAVID K. WONG
@DESCRIPTION

* This circuit converts a 4-bit BCD code into a 7-segment display. *
* The display is a common anode 7-segment LED.
* The output of the 825153 goss LOW for each segment that is ON.
**

```

\begin{tabular}{|c|c|c|c|}
\hline @COMMON & PRODUCT & TERM & \\
\hline ZER \(=1\) & * /y * & /x * & /w \\
\hline ONE \(=1\) & z * /y * & /x & w \\
\hline TWD \(=1\) & \(z\) * /y & \(\times\) & /w \\
\hline THR \(=1\) & z */y & x * & w \\
\hline FOU \(=1\) & \(z\) * y & /x * & /w \\
\hline FIV \(=1\) & \(z\) * y & /x & w \\
\hline SIX \(=1\) & \(z\) * y * & \(\times\) & /w \\
\hline SEV \(=1\) & z * y * & x * & w \\
\hline EIG & z * /y * & /x & /w \\
\hline NIN = & z * /y * & /x * & w \\
\hline AAA & z * /y * & x * & /w \\
\hline EBB & \(z\) * /y * & x * & w \\
\hline CCC & \(z\) * y * & /x * & /w \\
\hline DDD & \(z\) * y & /x * & w \\
\hline EEE & \(z\) * y * & & /w \\
\hline FFF \(=\) & \(z * y *\) & x & w \\
\hline
\end{tabular}

Figure 6. Boolean Equations for BCD-to-7 Segment Decoder for AMAZE
```

@LOGIC EQUATION
/SEG_A = ONE + FOU + AAA
/SEG_B = FIV + SIX
/SEG_C = TWO
/SEG_D = /(ZER + TWO + THR
/SEG_E = /(ZER + TWO + SIX
/SEG_F = /(ZER + FOU + FIV
/SEG_G = /(TWO + THR + FOU
@I/0 DIRECTION 150/1, 152/3,
"

* DUTPUTS ARE ENF
* THEREFORE, D1..

"
D1 = DE ;
D2 = DE ;
DS = DE ;
D4 = DE :
DS = DE ;
DG = DE ;
D7 = DE ;
"

* END

```
"

Figure 6 (Continued)


Figure 7. Complement Array - "None of the Above" Detection Circuit

Table 5. H/L Table for BCD-to-7 Segment Decoder Generated by AMAZE

```

@DEVICE TYPE
*********************** 825153
@DRAWING
*********************** BINARY-TD-7 SEGMENT DECDDER
@REVISION
************************ REV. -
@DATE
*********************** OCT 1, 1984
@SYMBOL
*********************** FILE ID: BCD77153
@COMPANY
*********************** SIGNETICS
@NAME
*********************** DAVID K. WONG
ODESCRIPTION
**

* This circuit converts a 4-bit BCD code into a 7-segment display.
* The display is a common anode 7-segment LED.
The output of the 825153 goes LOW for each segment that is ON.
**

```


ECOMMON PRODUCT TERM


Figure 8. Boolean Equation for BCD-to-7 Segment Decoder
```

GLOGIC EQUATION
"

* When input is greater than 9, QVR (Over Range) will go HIGH, WHICH
* will be fed-back to the AND array to control the segments.
* Here the QVR pin and the feedback loop is used as COMPLEMENT ARRAY.
* The COMPLEMENT ARRAY saves 5 P-terms but loses one I/O pin.

```

```

"
OVR = /(ZER + ONE + TWO + THR + FOU + FIV + SIX + SEV + EIG + NIN) ;
/SEG_A = ONE + FOU ;
/SEG_B = FIV + SIX + OVR ;
/SEG_C = TWO + QVR ;
/SEG_D = DNE + FOU + SEV ;
/SEG_E = /(ZER + TWQ + SIX + EIG + OVR) ;
/SEG_F = ONE + TWO + THR + SEV ;
/SEG_G = ZER + ONE + SEV ;
@I/0 DIRECTION 150/1, 152/3, 154-9
"
**

* DUTPUTS ARE ENABLED WHEN /OE GOES LDW.
* THEREFORE,D1...D7 =/(/OE) = OE ; * *
**
"
D1 = DE ;
D2 = OE
D3 = OE
D4 = DE
DS = DE
DG = DE
D7 = OE ;
"
**
* END OF LOGIC EQUATIONS
*

!

```

Table 6. H/L Table of BCD-to-7 Segment Decoder Generated by AMAZE

```

82S153 A:bcd77153.STD
" yhgfikuhyfouiy
" INPUTS <=B(I/O)=> TRACE TERMS
"76543210 9876543210
00000000 ..LLLLLLHL;
00001111 ..LHHLLLLH;
10001111H;
00000000 ..LLLLLLHL.;
01000001 ..HLLHHHHL ;
01000010 ..LLHLLHLL ;
01000011 LLILHHLL
01000011 ..LLLLHHLL
01000100 ...HLLHHLLL,
01000101 ..LHLLHLLL
01000110 ..LHLLLLLLL;
01000111 -.LLLHHHHL;
01001000 ..LLLLLLLLL ;
01001001 ..LLLLHLLL ;
01001010 ..LHHLLLLH ;
01001011 ..LHHLLLLH ;
01001100 ..LHHLLLLH ;
01001101 ..LHHLLLLH;
O1001101 ..LHHLLLLH ;
01001111 ..LHHLLLLH;
11001111H;
10000000L ;
X---n--- --------- I/O CONTROL LINES
" IIBBBBBBBO DESIGNATED I/D USAGE
" IIBBBBBBBO ACTUAL I/O USAGE
"
PIN LIST...
108}00

```

Figure 9. Simulation Results of H/L Table

\section*{BCD-To-7 Segment Decoder with Output Latches}

Output latches may be constructed by using the bidirectional I/Os of PLS153/153A as shown in Figure 10. When /LE (latch enable) is High, the output equals the input. But when /LE is Low, the output is latched. Changing the input will not effect the output. Segments \(a\) and \(e\) are used to illustrate the decoding and latch circuit as shown in Figures 11 and 12 which are expressed in H/L format as shown in Table 8. The complete design of the decoder is shown in Figures 13 and 14 and Table 7. With the output latches, the circuit cannot be tri-stated since the tri-state condition will interrupt the feedback path. An alternative approach is shown in Figure 15 where the display is a common cathode, the segment drivers are always on and the duty cycling is implemented with a digit driver which pulls the common cathode of the display to ground as the input "Duty Cycle"' goes High. A common practice is to drive the segments with 10 time the desired DC current and drive the digit with a \(10 \%\) duty cycle pulse. The \(H / L\) implementation is as shown in Tables 9 and 10. The 'Duty Cycle" control input is generated externally.


Figure 10. Block Diagram of a Simple D-Latch


L001180S
Figure 11. Segment-A Latch Circuit


Figure 12. Segment-E Latch


Figure 13. Pin List of BCD-to-7 Segment Decoder with Latches


Figure 14. Boolean Equation of BCD-to-7 Segment Decoder with Latches
```

AL = LE */SEG_A ;
"Note that in LOGIC EQUATION definition, SEG_E is
inverted. Therefore, the feedback for E has to
be inverted too."
FL = LE * /SEG_F ;
GL = LE * /SEG_G;
GLOGIC EQUATION
"

* When input is greater than 9, OVR (Over Range) will go HIGH, WHICH
* will be fed-back to the AND array to control the segments.
* Here the QVF pin and the feedback loop is used as COMFLEMENT ARRAY
* The COMPLEMENT AFRFAY saves 5 F-terms but uses up one I/O pin.
**OMPLEMENT ARRAY saves S F-terms but uses up one l/O PIn. *

OVR = /(ZER + ONE + TWO + THR + FOU + FIV + SIX + SEV + EIG + NIN + LE) ;
ISEG_A = ONE + FOU + AL
/SEG_B = FIV + SIX + QVF + EL
SEG_C = TWO + OVR + CL
SEG_D = ONE + FOU + SEV + DL
/SEG_E = /C ZER + TWO + SIX + EIG + OVR + EL
SEG_E = /(VER + TWO + SIX + EIG + OVE + TWO + THR + SEV + FL
SEG_G = ZER + ONE + SEV + GL
GI/O DIRECTION
**

```

Figure 14 (Continued)
```

Table 7. H/L Table of BCD-to-7 Segment Decoder with Latches

Table 8. BCD-to-7 Segment Decoder Using Complement Array

4-Bit Binary-To-7 Segment Decoder

Table 9. Segments A and E with Latches

4-Bit Binary-To-7 Segment Decoder

Table 10. H/L Table of BCD-to-7 Segment Decoder with Latches with Outputs Active-High

	53/153A PROGRRIMIING GNER: \qquad D. K. culong		NG TRBLE\qquad DATE:		$\begin{aligned} & \text { DRRUING } \\ & \text { L26/84 } \end{aligned}$	10: BCD $7 \angle M$			REU. -
							LiLikiLl	Likikih	
	FTID						Of		
		1 - 1		B(1)			B (0)		
	7:6:5:4	3:2:1:0	9:8	7:6:5:4	3:2:1:0	9:8	7:6:5:4	3:2:10	
0	-: \boldsymbol{H} :-:	L:L LiLiL	-:	- -: - - -	-:- - -	\cdots	- \cdot - : $\cdot \bullet$	- \cdot - A A	\square
1	- H ! - -	LLLLL	-	-- - - - -	-- - - -	:	$A:$: A	A:A!A:A	i
2		L:L L $\mathrm{H}: \mathrm{L}$	-:	-i-:- - -	-	-	- -1.	- A: A	2
3	-ithi-i-	L:L:H:H	-	--:-	-- - -	-	. - . . .	$A: A: A$	7
4	- H :-	LIH:L	--	-- - - -	--:-	-	A : : - A	A	4
5	- $\mathrm{H}^{\text {! }}$ -	L:H:L L H	-:	- - - - - -	--- --	!	- : A:.--	A:- - A	5
6	- H^{\prime} : $-1-$	L:H:H:L	- -	-: - - - - -	--:- -	-	- A :- ${ }^{\text {- }}$	-: - A	5
7	- $\mathrm{H}:$	Lictitild	-:-	- - - - -	--	-	$\cdots \cdot \mathrm{C}$ - 4	$A: A: A: A$	7
8	- $:+H^{\prime}-\vdots=$	H:LLL 2	-	- - - -	- - - - -	!	$\cdots \cdot 1-1-1$	- - - - A	θ
9	-itil:-	H:L L L H	:-	- - - -	-	;	- . . . -	A - 1 :A	9
10	! !	¢	-	-	-	!	!	!	
11	--- - -	-- - - -	--	- - - - -	- - - -	:	$\cdot A \cdot A$	- • - -	E (ERROR)
12	-	-	i	-		:	!	!	
13	L L - -	-i-i-:-	- -	L:- - - -	-i- - -	:	A 1 -		SEGA LATCH
14	- L : -	-- - -	-	- L L - -1	-	\vdots	- $A \cdot$	- : \cdot - :-	$\because B \quad$.
15	CL:	- - -	-	- - L -	-	-	- - $A^{\text {a }}$	- , - - :	$\because \mathrm{C}$ "
16	- L_{1} ! - -	-	-	-- - 2	- - - - - $=$:	- $-:-1$	- : \cdot - :-	\cdots
17	- L L - - -	-i-i-:	-	-: - - -	L:- - - $=$:	\cdots	A	. E
18	- Li, -	-- - -	-	---	- L L - : -	\%	$\cdots \cdot \cdot \cdot$	- $A^{\text {A - }}$ -	F
19	- L L:- -	-:- - - -	-:	-:- - - -	-- - L -	!	$\cdot \cdot \cdot$	- : -	$\cdots G \quad$.
20	:	:	-	!	-	!	!	!	
21	!	!	;	!	!	!	?		
22	+	-	!	!	\vdots	!	!	-	
23	!	-	!	! :	!	\vdots	:	!	
24	-	,	S	:	!	!	-	-	
25	-	-	:	\% :	!	\vdots	-		
26	! :	! :	:	!	!	!	:	U	
27	!	!	:	:	!	:	+	-	
28	!	-	i	-	!	!	!		
29	!	+	!	!		:	!	-	
30	-	!	:	!		!	! :		
31	:	!	:	:	!	!			
D9	-	-	!	! !		ALC	auract	polpritu	ces qef untsten
D8	-	-	-	:		Sor	wit An	"A" CAus	wes A" "oul "oxpant
D7	-- -	---	-	-	-	A	\cdots. cefceses	Es A mat	Hed "ourrut.
D6	--:-	-i-i-i-	-	---	-				
D5	- -:-	-二-:	-	-- - -	-	Sunc	ce Absevt	Tputs Area	er wheriten trif
D4	--:-	- - -	--	--:	-:- -	EEE	SOBSCK	cipcutrs	cos tome catemes
D3	--- -1	--- -1	-:	-:- - -	--:-	485	Abse 1	ukcerso	
D2	--- -	--:-	-:	-:-	----1-				
D1	--:-	- - - -	-	--	-:-	THE	OVR 0	exstpur	CPEets mte "ERRR"
00						Dise	OLAY İ	HPCT $\# 10$	970 9)
N A M E	4		-		[u wis	

Signetics

Application Specific Products

Author: David Wong
FEATURES

- Programmable pulse-width/delay
- Maximum 256 clock cycles
- Asynchronous TRIGGER input
- Active-High and Active-Low outputs
- Asynchronous RESET
- 20-pin package

THEORY OF OPERATION

The one-shot consists of an FPLS PLS159 and an external clock which may be part of the system in which this one-shot is to work. As shown in Figure 1 and Table 1 the FPLS is configured to have a latch and an eight-bit binary up counter which is presettable by input data to any number less than 256 . Since the input data is inverted before it is loaded into the registers, counting from the comple-

AN11

PLD Programmable Retriggerable One-Shot

Application Note

ments of the input to FF will give the correct number of counts as counting from the input down to 00.
Pulse-width/delay inputs may be the outputs of another device or switches. When /RESET goes Low, flip-flops are set to all 1's (terms PB and PA). At the rising edge of the next clock, data is latched into the registers (terms LB and LA). When /TRIG goes Low, it is latched into the input latch formed by term \# $0,1,2$ and 13. The output O_{1} of the latch goes High and O_{2} goes Low which enables the 8 -bit counting cycle. The O_{1} and $/ \mathrm{O}_{1}$ will maintain their output levels until the end of the counting cycle at which time the counter reaches the count FF , resets the latch by term \# 13, and sets O_{2} High. At the rising edge of the next clock, terms LA and LB cause data to be loaded again into the registers, and the device is ready for another /TRIG input. The output wave-forms are illustrated in Figure 2.

If the /TRIG pulse-width is longer than the desired pulse-width of the one-shot, the device will react as mentioned above, and at the end of the count cycle new data will be loaded, another count cycle begins while the outputs remain set by the /TRIG input without changing throughout the change-over of one count cycle to another. $\mathrm{O}_{1 \mathrm{a}}$, on the other hand, will go Low for one clock period at the change-over. As long as the /TRIG is Low, $\mathrm{O}_{1 \mathrm{a}}$ will continue to pulse Low for one clock period at the change-over of one count cycle to another. The output O_{2} will pulse High for one clock cycle at the change-over. Figure 2 illustrates output wave-forms for both cases. The output wave-forms are as illustrated in Figure 2.
The one-shot is implemented by programming the PLS159 as shown in Table 1. The logic representation of the program is shown in Figure 3.

Figure 1. Programmable Retriggerable One-Shot

Table 1. PLS159 FPLS Program Table

COMMENTS:

This one-shot will load data at the end of the count cycle. If TRIG pulse-width is longer than the count cycle, output B3 will go Low for one clock period and go High again for another count cycle. Outputs B_{2} and B_{0} stay Low and High respectively until TRIG goes High and count cycle is completed without interruption.

PLD Programmable Retriggerable One-Shot

Figure 3. Logic Representation of Table 1

Signetics

Application Specific Products

INTRODUCTION

The Field-Programmable Logic Sequencer PLS159 may be a self-contained system except that it requires a system clock which is generally provided by an external source. Using a simple R-C network, two bidirectional I/O pins, one can make a simple oscillator which can provide a clock frequency up to 7 MHz (typical) with a pulse width of about 75 ns . The frequency of oscillation is set by adjusting the RC network, or by adjusting a reference voltage, V . The circuit is shown in Figure 1. This circuit may be used to clock the flip flops on the same chip, or provide a clock for a bigger system. While this circuit uses only two AND-terms and one control term, the rest of the chip may be used for other circuits.
Initially, the capacitor has zero charge and thus is at zero volt. Output is also at a Low, which disables the tri-state buffer. As the capacitor is being charged up, its voltage increases. At about 1.6 V , the non-inverting input buffer begins to turn on. One propagation delay later, the output goes High, which enables the tri-state buffer after another propagation delay. Since the tri-state buffer is unconditionally programmed to a Low, it be-

AN13

Oscillator With PLS159

Application Note

gins to discharge the capacitor at a fast rate. As the input voltage to the non-inverting buffer drops below 1.6 V , the buffer begins to change state. One propagation delay later, output goes Low, which disables the tri-state buffer after another propagation delay. The R-C network is ready to start all over again.

To implement this circuit, we first choose B_{1} to input voltage from the RC network and B_{0} to be the output pin. As shown in Table 1, we enable the output $\mathrm{B}(\mathrm{O})_{0}$ by "dashing out" the AND-term D_{0}, make the output non-inverting by programming POLARITY " H " and connect it to term- 0 by entering an A in column $B(O)_{0}$ term- 0 . We then program an H in $\mathrm{B}\left(\mathrm{l}_{1}\right.$, term- 0 to connect the non-inverting input of B_{1} to term-0. Since we don't need the rest of the inputs and outputs, we "dash out' all other input entries and "dot out' all unused outputs in term- 0 . To create a Low output on $\mathrm{B}(\mathrm{O})_{1}$, we may either have a Low input on the OR and have the output non-inverted, or have a High on the input of OR and have the output inverted to produce a Low. We will arbitrarily use the second method. Here we dash out all inputs and outputs in term-1 except $\mathrm{B}(\mathrm{O})_{1}$ which is programmed an A. We then program the POLARITY of $\mathrm{B}(\mathrm{O})_{1}$ " L " to be inverting.

Figure 1. R-C Network Circuit

Finally we program an H in $\mathrm{B}\left(\mathrm{I}_{0}\right.$ and term- D_{1} and dash out all unused inputs so that when $\mathrm{B}(\mathrm{O})_{0}$ becomes High, D_{1} will enable the output buffer $\mathrm{B}\left(\mathrm{O}_{1}\right.$. The program is further illustrated by Figure 2.

Since the High output pulsewidth is about two propagation delays of B_{1} to B_{0}, it is wide enough to drive the clock input of the PLS159. If a square wave is desired, one of the flip flops may be programmed to toggle, as shown in Table 1, term-4, in which case the output frequency of the square wave is half that of $\mathrm{B}(\mathrm{O})_{0}$.

The stability of the output frequency can be controlled by:

1. Making V a stable voltage source,
2. making the charging current of the RC network much greater than the input current of $\mathrm{B}(\mathrm{I})_{1}$ (see Figure 4 for input current characteristics),
3. making the period of oscillation much greater than four times the internal propagation delay (typical $\mathrm{tPD}=35 \mathrm{~ns}$).

Recommendations:

a) Use capacitance less than 500pf.
b) Choose R such that $\mathrm{V} / \mathrm{R} \gg \mathrm{I}_{\text {IL }}$ (since $I_{\text {IL }}=-100 \mu \mathrm{~A}$, worst case, over temperature range, V/R may be 1 mA , for example).
The recommendations above put a limit to the range of frequency which the PLS159 may operate in exchange for stable operating frequency. One may extend its range by reducing C to zero (remove the capacitor) and thus operate the circuit at its maximum frequency, or increase the resistance to infinite (remove the resistor), and let the external capacitor be charged by the input current ILL, which gives a much lower frequency.

Table 1. PLS159 FPLS Program Table

CODE NO.										FF MODE								REMARKS	E_{B}				$E_{\text {A }}$			POLARITY			REMARKS
																												[H]	
\mathbf{T} \mathbf{E} \mathbf{R} M	AND																		(OR)										
	1					B(1)					Q(P)								Q(N)							B(O)			
	3	2		1	0	3	2	1	0		76	5	-	3	2	1	0		7	6	5	4	3	21	10	3		10	
$0-$	-	-		-	-	-	-	H	-		--	-	-	-	-	-	-		-	-	-	-	-	- -	-	-	-	A	$B_{0}=B_{1}$
$1-$	-	-		-	-	-	-	-	-	-	--	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- A	A	$B_{10} 0$) $I=L$ Low
2																													
3																				-									
4 -	-	-		-	-	-	-	-	-		--	-	-	-	-	-	-		-	-	-	-	-	- -	- 0	-	-	\cdot	SqunRe WAlE
5																													COEMMENT*2
6																													
7																													
8																													
9																													
10																													
11																													
12																													
13																													
14																													
15																													
16																													
17																													
18																													
19																													
20																													
21																													
22																													
23																													
24																													
25																													
26																													
27																													
28																													
29																													
30																													
31																													
FC																													
PB																												,	
RB																					1	1			1			1	
LB																									1	11		1	
PA																			11	11	11	,			1	11	1	1	
RA																			11	11	11		1	1	1	1		1	
LA																											1	1	
D3																			11	11	11		1	1	1	1		1	
D2																			1		11		1	1	1	1		1	
D1 -	-	-		-	-	-	-	-	-	-	- -	-	-	-	-	-				11	11			1	1			1	
DO -	-	-		-		-	-	-	-	-	-	-	-	-	-														O)
PIN	5	4		3	2	9	8	7	6		918	17	16	15	14		12			18	17		151	1413	312	9	8	76	10
¢												1																	$\frac{5}{0}$

COMMENTS:

1. D_{1} is controlled by $B(1)_{0}$, which enables $B(O)_{1}$ when $B(O)_{0}$ outputs a High
2. $Q(N) \cdot o$ is programmed as J-K flip-flop, and will toggle automatically at each rising-edge of the clock.

NOTE:

1. In order for the flip-flop to work the clock out (B_{O}) must be externally connected to pin 1.

Figure 2. Logic Diagram of Oscillator Circuit

Oscillator With PLS159
AN13

Figure 3. Logic Diagram of PLS159 FPLS

Figure 4. Input Current vs Input Voltage Characteristics of I/O Pins

Signetics

DESCRIPTION

Using the simple AND, OR and INVERT logic functions of the PLS153, memory functions such as latches and edge-triggered flip-flops may be implemented with a relatively small part of the chip and without external wiring. In this application note, we will discuss the implementation of two R-S latches, a D-latch, an edge-triggered R-S flip-flop, and an edgetriggered D flip-flop.

INTRODUCTION TO PLS153

To implement this function, let's first take a look at the PLS153 logic diagram and its programming table as shown in Appendices A and B. On the left side of the logic diagram (Appendix A) are eight dedicated inputs, I_{0} to I_{7}, each of which has a true and a complement output. Each output is connected to the inputs of 32 AND functions (we will call them AND-terms from now on), the outputs of which are, in turn, connected to the inputs of ten OR functions. The output of each OR function is connected to one input of an Exclusive-OR function, which is in turn connected to a non-inverting output buffer. The function of the XOR is to control the output polarity. The output, in its virgin state, is noninverting, since one side of the XOR is

AN14
Latches and Flip-Flops With PLS153

Application Note

Application Specific Products

connected to ground by the fuse X_{n}, where $n=0,1,3 \ldots 9$. To have the output inverted, one needs only to blow fuse X_{n} open so that the X_{n} input is unconditionally High. The output buffers are all three-state buffers which may be enabled or disabled by their corresponding AND gates. The output buffers are disabled in their virgin state. All pins labeled " B " are bidirectional. Input buffers of the " B " pins are identical to those of the " 1 " pins.

The programming table shown in Appendix B emulates a truth table. All the inputs to the device are positioned on the left side, and all the outputs are on the right side. Each row in the table corresponds to an 18 -input ANDterm with up to ten outputs. On the left side, or the input side of the table, each column represents an input. The 18 columns represent input buffers I_{0} to $\mathrm{I}_{7}, \mathrm{~B}_{0}$ to B_{9}. To distinguish between inputs and outputs of the bidirectional pin, $B(I)$ is used for input and $B(O)$ is used for outputs as shown in the programming table. On the right side of the table, each column represents an output circuit $\left(B(O)_{0-9}\right)$ which consists of an $O R$ gate, an XOR, and a non-inverting three-state buffer. The output buffers are controlled by AND-terms D_{0} to D_{9}, the inputs of which may be connected to any number of the 18 inputs.

The polarity of the outputs is defined by the POLARITY entries which are on the upper right corner of the programming table.
To program the inputs to the AND-terms, an " H " will cause the fuse of the inverting input buffer to be blown, leaving the non-inverting buffer connected to the AND-term; an "L" will do the opposite. A " - " will cause both fuses to be blown, and therefore the programmed input is a "Don't care". A ' 0 ', the virgin state of the device, has both fuses intact, which causes the output of the ANDterm to be unconditionally Low.

To program the outputs, a "." causes the fuse that connects the output of AND-term to the input of an OR to be blown and thus renders the output inactive. $A n$ " A " causes the fuse to remain intact and thus the output is active.

The output polarity of each output buffer may be programmed by entering an " H " or an " L " in the POLARITY section. An "L" causes the XOR to blow its grounding fuse and become inverted, whereas an ' H ' leaves the fuse intact and the output is non-inverted.
To AND several inputs, we put them in a row; to OR several inputs, we put them in different rows, as shown in illustrations in Appendix B.

SIMPLE R-S LATCH

A simple R-S latch may be formed by crosscoupling two NAND functions together as shown in Figure 1.
As an illustration, let's assign the input R to I_{0} of the PLS153, input S to I_{1}, output Q to B_{0}, and output \bar{Q} to B_{1}. As shown in Table 1, to form the NAND gates we need to program the POLARITY Low on $\mathrm{B}(\mathrm{O})_{0}$ and $\mathrm{B}(\mathrm{O})_{1}$. To unconditionally enable the output buffers, we "dash' out all inputs to D_{0} and D_{1}. As for the inputs, we put an ' H ' on I_{0}, term-0 for the input R, non-inverted; another ' H ' on $\mathrm{B}(\mathrm{I})_{1}$, term- 0 for the feedback from Q. In the same manner, we program I_{1}, term-1 and $B(O)_{0}$ ' H ''. The POLARITY, rows $0,1, D_{0}$ and D_{1}, forms a "truth table" with which one can analyze his own or someone else's design. The program in Table 1 may be illustrated as shown in Figure 2.

Latches and Flip-Flops With PLS153

Table 1. PLS153/153A Programming Table

ANOTHER SIMPLE R-S LATCH

Another way to implement a simple latch is shown in Figure 3, in which two NOR functions are cross-coupled to form a latch.
As with the previous example, we first define the input and output pins. For this example, we use I_{2} for the R input, I_{3} for the S input, B_{2} for the Q output, and B_{3} for the \bar{Q} output. We program B_{2} and B_{3} to have inverted outputs by programming POLARITY of B_{2} and B_{3} Low, as shown in Table 2. Terms 6 and 7 are ORed together by $\mathrm{B}(\mathrm{O})_{2}$, rows 6 and 7 . In the same manner $B(O)_{3}$ ORs Terms 8 and 9 . The programmed table of this design may be represented as shown in Figure 4.
Since each AND-term of the PLS153 can accommodate up to 18 inputs (true or inverting inputs of eight from I_{0} to I_{7} and ten from B_{0} to B_{9}), and each OR circuit can be connected to up to thirty-two AND-terms, we can add additional features such as those shown in Figure 5.

The programming of this design is left to the reader as an exercise.

Figure 4. RS Latch

LS01740S

Figure 5. RS Latch

Table 2. PLS153/153A Programming Table

CODE NO.																				POLARITY								REMARKS
																			REMARKS									
\square	AND																			OR								
									B(1)																			
	7	6	5	4	3	2	1	0	9	8	7	6	5		3	2		0		9	817	6	5	4	312	21	10	
0	-	-		-	-	2	-	H	-	-	-	-			$1-$	-	H	-	R Q	\bullet	${ }^{\text {c }}$	V	\bullet	-	- 1	$\bullet \cdot$	- A	$Q=/(R \cdot \bar{Q})$
1	-	-	-	-	-	-	H	-	-	-	-	-	-		-	-	-	H	S.Q	\bullet	$\stackrel{1}{ }$	-	-		\bullet	- A	$A \cdot$	$\bar{Q}=($ (S.Q $)$
2																												
3																												
4																												
5																												
6	-	-	-	$-$	-	H	-	-	-	-	-	-	-		-	-	-	-	R	-	-	-	-		- A	A \cdot	\bullet	$Q=/(R+\bar{Q})$
7	-	-	-	-	-	-	-	-	-	-	-	-	-		H	-	-	-	\bar{Q}	-	${ }^{\circ}$	-	-		- A	A	-	$Q=/(R+\bar{Q})$
8	-	-	-		-	-	-	-	-		-	-	-		-	H	-	-	Q	-	${ }^{\circ}$	-	-	$\stackrel{1}{+1}$	A	$\bullet \cdot$	- \cdot	$\bar{Q}=/(Q+S)$
9	-	-	-	-1	H	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-	-	-		A.	\cdots	- -	$\bar{Q}=/(Q+S)$
10																												
11																												
12																												
13																												
14																												
15																												
16																												
17																												
18																												
19																												
20																												
21.																												
22																												
23																												
24																												
25																												
26																												
27																												
28																												
29																												
30																												
31																												
D9																												
D8																								1		1		
D7																								1	11	1		
D6																					1	1	1	1				
D5																				1	11	1		11		1		
D4																					11	1	11	11		1	1	
D3																					11	1	11	11	11		1	
D2																				1	11	1	1	11	11		1	
D1	-	-	-	+	$1-$	-	-	-	-	$-$	-	-	-		1-	-	-	-			11	1	1	11	11	1	1	
D0	-	-	-		-	-	-	-	-			-	-								11	1	1	11	1	1		()
PN	8	7	6	5	4	3	2	1	19	18	17	16	15	14	13	12	11	9			1817	716	15		1312	1211	119	19
					0	α	 0	${ }^{2}$							10	10			\square									\%

D-LATCH

A simple D-latch can be constructed with an PLS153 as shown in Figure 6.
This circuit may be easily programmed into the PLS153 as shown in Table 3. The program may, in turn, be represented as shown in Figure 7.
This circuit may be expanded to have multiple D-latches using the same latch enable (LE).

Figure 6. D Latch

R-S FLIP-FLOP

Two R-S latches may be combined to form a master-save flip-flop that is triggered at the rising-edge of the clock (or the falling-edge of the clock, if the designer so desires). Figure 8 shows a combination of two sets of crosscoupled NOR gates concatenated to form the flip-flop. The implementation of this circuit using PLS153 is as illustrated in Table 4 and Figure 9.

Figure 8. RS Flip-Flop

Table 3. PLS153/153A Programming Table

CODE NO.																			POLARITY									REMARKS
																		REMARKS					H	H14	14			
$\begin{array}{\|l} \hline T \\ \mathrm{E} \\ \mathrm{R} \\ \hline \end{array}$	AND																											
		1						B(I)											B(0)									
	71	6	5	43	$3 / 2$		10	9	8	7	6	5	$4 \sqrt{3}$		2	1	0		9	817	76	65	54	4	2		10	
0	-	-	-	- -	--	-	14	-	$-$	-	-	-	-1-	-	- 1	H	-	R. $\bar{\theta}$	-	- 1	-	$\cdot 1$	-	1	-	-	A	($(R \cdot \bar{Q})$
1	=	-	-	-1-	- -	H	$1-$	-	-	-	-	-	-	=	-		H	S. C	-	\bullet	-	-		\%	-	A	-	(cs.a)
2																												
3																												
4																												
5				1																								
6	-	-	-	-	- H	-	-	-	-	-	-	-	-1-		-		-	R	-	\bigcirc	$\cdot 1$	\bullet		+	A	-	-	/ $/(R+\bar{Q})$
7	-	-	-	- 1	-	-	-	-	-	-	-	-	- 1		-		-	$\overline{6}$	\cdot	$\bullet \cdot$	-	\bullet		$1 \cdot$	A	\bullet	-	$)$
8 9	-	-	-	-1-	-	-	-	-	-	-	-	-	-1-		H	-	-	Q	$\stackrel{ }{ }$	\bullet	$\stackrel{ }{*}$	$\bullet \cdot$		IA		\bullet	-]/(Q+5)
	-	-	-	-14	H=	-	-	-	-	-	-	$-$	-		-	-	-	S	-	$\bigcirc 1$	\bullet	-		A	,	-	\bullet)
9 10 11																												
11	-	H	H	-	--	- -	-	-	-	-	-	-	- -		-	-	-	LE•D	-	-	-			A	\bullet	-	-	(LE.D+
12	-	L	-	--	- -	-	-	-	-1	-	-	-	H_{1}		-	-	-	$\overline{L E} \cdot Q$	\bullet	${ }^{-1}$	-	-		A	\bullet	-	\bullet	$\overline{\overline{L E} \cdot Q)}$
13																												
14 15				1																								
15																												
16				+																								
17				+																								
18																												
19																												
20																												
21																												
22																												
23																												
24																												
25																												
26																												
27																												
28																												
29																												
30																												
31																												
D9																												
D88																								1	1	1	11	
																				1	11				1	1	1	
D6																												
D5																											1	
D4	-	-	-	-1-	- -	-	-	-			-		-		-	-				1	11	1	1			1	1	
D3	-	-	-	- 1	-	-	-	-			-	-	-1-		-	-								1			1	
D2	-	-	-		-	-	-	-		-	-	-	-1		-	-	-											
D	-	-	-	-1-	-	-	-	-	-		-	-	-1-		$-$	-				11	11	1	1	1	1	1	1	
DO PN 	-	-	-		- -	-	-	-					- 1							1	1		1	1				\cdots
	8	7	6	5	43	32	21	19	181								9			181	171	1615		413				15
		W	Δ		$\checkmark \sim$		ก						0	10			\bigcirc										± 0	\%

Table 4. PLS153/153A Programming Table

CODE NO.																		REMARKS				LA	RITY				REMARKS
$\begin{array}{\|c\|} \hline \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \hline \mathbf{N} \\ \hline \end{array}$	AND																					OP	R				
				1				B(1)											B(0)								
	7	6	5	43	32	21	10	9	8	7	6	5	4	3	2		0		9	87	6	5	4	32		10	
0	-	-	-	-	-L	L-	-	H-	-	-	-	-	-	-	-	-	-	$\overline{C K} \cdot R$	\bullet	$\bullet \cdot$	-	\bullet	$\bullet \cdot$	-		A	\}/CR $\overline{C K}+B_{1}$
1	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	H	-	B_{1}	-	\cdots	-	-		-		A)
2	-	-	-	-	- -	- -	- -	-	-	-	-	-	-	-	-	-	H	Bo	-	$\bullet \cdot$	\bullet	\bullet	-	-	A	A \cdot	$3 /\left(s \cdot \overline{C K}+B_{0}\right)$
3	-	-	-	-	- L	H	H-	-	-	-	-	-	-	-	-	-	-	$\overline{C K} \cdot \mathrm{~S}$	-	-	-	-		-	A	A	
4																				,							
5	-	-	-		- H	H-	-	-	-	-	-	-	-1	-	-	-	H	CK. Bo	-	$\bullet \cdot$	-	-		- A	A	-	$7\left(B_{0} \cdot C K+B_{3}\right)$
6	-	-	-		- -	- -	-	-	-	-	-	-	-	H	-	-	-	B3	\bullet	${ }^{-1} \cdot$	\bullet	\bullet		- A	A	-	$)$
7	-	-	-		- -	- -	-	-	-	-	-	-		-	H	-	-	B_{2}	\bullet	$\bullet \cdot$	-	-		A	-	\bullet	$\} /\left(B_{1} \cdot C K+B_{2}\right)$
8	-	-	-	-	- H	H-	-	-	$-$	-	-	-	-	-	-	H	-	$C K \cdot B_{1}$	\bullet	-	-	-		A	-	-	
9																											
10																											
11				1																+			,				
12				1																							
. 13																											
14																											
15																											
16																				,							
17																				,							
18				,																							
19																											
20																											
21				1																							
22																											
23																											
24																											
25																											
26																											
27																											
28																											
29																											
30																											
31																											
D9																											
D8																						1	11	1	1	1	
D7																				11		1	11	1	1	1	
D6																			11	11			11	1	1	1	
D5																			11	11			11			1	
D4					- -					-									11	11	11	11				1	
D3	-	-	-		- -	--	--	-	-1	F^{-}	-	-	$-$	-	-	-	-		11	11	11	11	11	1		1	
D1	-	-	-		--	- -	--	-	-	$\stackrel{1}{-}_{-}^{-}$	-	-		-	-	-			11	11	11	11	11	1	1	1	
D0	-	-	-	-1-1	-	- -	-	-		-	-	-			-					11	1	1	11	1	1	1	$\boldsymbol{\theta}$
PN	8	7	6	54	43	32	21	119	918	17	16		14				9			1817	16	15		1312	211		10
						\cdots	n / α	α						\%	(${ }^{0}$		n										5

Latches and Flip-Flops With PLS153

D FLIP-FLOP
An edge-triggered master-slave D flip-flop may be constructed with two D-latches in the manner shown in Figure 10.

An PLS153 may be programmed as shown in Figure 11 to implement the D flip-flop which is equivalent to the circuit shown in Table 5 in the PLS153 logic representation.

Figure 11. D Flip-Flop

Latches and Flip-Flops With PLS153

Table 5. PLS153/153A Programming Table

CODE NO.																		REMARKS	POLARITY								REMARKS	
																						[H\|L						
$\begin{array}{\|l\|} \hline \mathbf{T} \\ \mathrm{E} \\ \mathrm{R} \\ \mathrm{M} \\ \hline \end{array}$	AND																		OR(O)									
					1				B(l)																			
	7	6	5		3	2	1	0	9	817	76	65	$5{ }^{5} 4$	43	32		10											
0	7	-	-	-1	-	L	-	H	-	-1-	- -	--	-	$-1-$	-	-	-		R. $\overline{C K}$	\bullet		-	-		-	-1.	- A	/ $\left(R \cdot \overline{C K}+B_{1}\right)$
1	-	-	-	-	-	-	-	-	-	-	-	- -	-	-1-	-	H	H	B_{1}	-	${ }^{+} \cdot$	-	-	1	$\cdot{ }^{-}$	- -	- A		
2	-	-	-	-1	-	-	-	-	-	-	- -	--	--	-1-	-	-	H	Bo							A	A		
3	-	-	-	-1	1-	L	H	-	-	-1	- -	--	- -	-	-	-	-	$s \cdot \overline{C K}$							A	A.		
4														+				\%										
5	-	-	-	-	-	H	-	-	-	-1	- -	- -	- -	- +	-	-	- H	CK. B_{0}							A]/($\left.B_{0}+C K+Q\right)$	
6	-	-	-	-1	$1-$	-	-	-	-	-1-	-	$-$	-2	- ${ }^{\text {H }}$	$1-$	-	-	Q							A		1 ,	
7	-	-	-		-	-	-	-	-		-	-	-	- -	-	4	-	B_{2}						A			// $\left(B_{1} \cdot C k+B_{2}\right)$	
8	-	-	-		-	H	-	-	-		-	-	- -	-1-	-		H	B 1 CK						A				
9																												
10																												
11	-	-	-	L	H	-	-	-	-	--	-	- -	-	$-{ }_{-}$	-	-	-	$\overline{C K} \cdot D$					A_{1}				($\overline{C K} \cdot D+C K \cdot$	
12	-	-	-	H	-	-	-	-	-	-	-	-	- H	H^{-}	-	-	- -	CK. ${ }_{4}$					A				B4)	
13	-	-	-	-	-	-	-	-	-	-	-	- -	- -	- -	-	-	-											
14	-	-	-	${ }^{+}$	-	-	-	-	-	-	-	-	H	H_{-}	-	- -	- -	$C K \cdot B_{4}$				A					(CK. $B_{4}+\overline{C \overline{C K}_{0}}$	
15	-	-	-	L		-	-	-	-	-	- -	$-\mathrm{H}$	H-	-	-	-	-	$\overline{C K} \cdot Q$				A					Q)	
16																												
17														1														
18																												
19																												
20																												
21																												
22																												
23																												
24																												
25																												
26																												
27																												
28																												
29					+																							
30																												
31																												
D9																												
D8																							1	11	1	1		
D7																									1			
D6																							11	1	1	1		
D5	-	-	-			-	-	-	-			-	-	- -											1	1		
D4	-	-	-		+	-	-	-	-			-	-	- -	-	- -					1							
D3	-	-	-	4	-	-	-	-	-	-	-	$-$	- -	$-1-$	-	-								11	1			
D2	-	-	-		1	-	-	-	-	- +	-	$-$	- -	$-$	-								$\frac{1}{1}$					
D1	-	-	T		$1-$	-	-	-	-		-	- -	-	-1-	-	-							11	11	1			
D0	-	-	-	-1							--	- -	--	- -						1							\cdots	
PN	8	7	6	5	4	3	2	1			1716	1615	1514	1413	312					1817	16		14	1312	1211	119	$1 ?$	
				-	\bigcirc	\%	n	$\stackrel{\sim}{4}$						$\left.\begin{array}{\|c\|c} \\ \infty \\ \infty \\ \infty \\ \infty \\ 1 \\ 0 \end{array}\right]$		\sim \sim 0 0 0						O				20	8	

APPENDIX A

NOTES:

1. All programmed "AND" gate locations are pulled to logic " 1 ".
2. All programmed "OR" gate locations are pulled to logic " 0 '"
3. A. Programmable connection.

Figure A-1. FPLA Logic Diagram

Latches and Flip-Flops With PLS153

Appendix B. PLS153/153A Programming Table

CODE NO.																							LA	AR1	ITY			REMARKS	
																			REMARKS		H\| H		L	L	L\| H	H) H	H/ H		
$\begin{array}{\|l\|} \hline T \\ \hline \\ R \\ M \\ \hline \end{array}$	AND																							OR					
	1								B(I)											B(O)									
	7		5	4	43	2	1	0	9	18	7	6	5	4	3	2		10		9	87	76	5	54	32	21	10		
0	H	H	H		$\mathrm{H}_{1}-$	-	-	-	-	-1	-	-	-			-	-	-	A.B.C.D	A	-	-	A	A	-	-	- \cdot	$\{X=A \cdot B \cdot C \cdot D$	
1																													$T=/(A \cdot B \cdot C \cdot D)$
2																													
3																													
4	L	L	L		- ${ }^{-}$	-	-	-	-	-	-	-	-	-	-	-	-	-	$\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$	-	$A^{+} \cdot$	-	-	A	-	-	- \cdot		$Y=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$
5																													$U=/(\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D})$
6																													
7																													
8																													
9	-	H	HL		-	-	-	-	-		-	-	-			-			B.C	\bullet	- ${ }^{-1}$	A	\bullet	-	A	-	\bullet		$z=(B \cdot \bar{C}+B \cdot \bar{D}+$
10	-	H	-	L	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	B. D	-	- ${ }^{\text {A }}$	A	-	-	A	-	- \cdot		$\bar{C} \cdot \overline{\text { D }}$)
11	-	-	L		-	-	-	-	-	-	-	-	-	-1	-	-	-	-	$\bar{C} \cdot \bar{D}$	-	- A	A	-	-	A	-	-		$V=/(B \cdot \bar{C}+B \cdot \bar{D}$
12																													+ $\bar{C} \cdot \overline{\text { d }}$)
13																													
14																													
15																													
16																													
17																													
18																													
19																													
20																													
21																													
22																													
23																													
24																													
25																													
26																													
27																													
28																													
29																													
30																													
31																													
D9	-	-	-		-	-	-	-	-		-	-	-			-	-	-											
D8	-	-	-		;-	-	-	-	-		-	-	-			-					111		I	1	11	1	1		
D7	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-				1	$\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$,	1	111	1	1		
D6																				-	11		1	11					
D5		-	-			-	-	-	-			-	-			-	-				11	1	1	11	11	1	1		
D4			-			-	-	-	-		-	-	-	-		-					11	1	1			1			
D3	-	-	-		-	-	-	-	-		-	-	-			-	-				1	1	1	1	1	1			
D2																					1	1	1	1	11	1	1		
D1																					1	1	1	1	1	1			
DO																					1	1	1		1	1			ω
PN	8	7	6	5	54	3	2	1	19	18	17	16	15	14	13	12	11	9			1817	716	15	14	1312	121	119		1Ω
				A	(1)				x		N		1	7						\times		N	$\mid-$	\mid	$>$	$\underline{1}$			\%

APPENDIX C

Signetics

Application Specific Products

INTRODUCTION

The PLS159 is a field programmable logic sequencer which consists of four dedicated inputs, four bidirectional I/O's, eight flip-flops, thirty two 16 -input AND gates, twenty 32 -input OR gates, and a complement array. Each flipflop has a bidirectional I/O and may be individually programmed as J-K or D flip-flop, or switch between the two types dynamically. The flip-flops will accept data from the internal logic array or from the bidirectional I/O, or they may be set or reset asynchronously from the AND array. The output polarity of the four bidirectional I/O's are programmable and the direction is controlled by the AND array. Figure 1 is the logic diagram of PLS159.

PROGRAMMING THE PLS159

The programming table is shown in Table 1 where there is a place for everything that is

Application Note

shown in Figure 1. The program table is basically divided into two main sections. The left hand side of the table, section A, represents the input side of the AND gates, while the right hand side, section B, represents the OR gates sections which includes the flipflops and the combinatorial outputs $B(0)$ to $B(3)$. The flip-flops modes are defined in section C and the output polarities of the combinatorial outputs are defined in section E. The programming symbols are detailed in Figure 2.

As shown in Table 1, the programming table is very similar to a truth table. Each column in section A represents an input to the 32 AND gates, and each row represents an AND gate connecting to 17 inputs. Columns l_{0} to l_{3} represent the 4 dedicated inputs, I_{0} to I_{3}. Columns $\mathrm{B}(\mathrm{I})_{0}$ to $\mathrm{B}(\mathrm{I})_{3}$ represent the inputs of the 4 bidirectional $I / O, B_{0}$ to B_{3}. Columns
$Q(P)_{0}$ to $Q(P)_{7}$ represent the feedback, F_{0} to F_{7}, from the flip-flops (the present state). Column ' C ' represents the complement array.
As shown in Figure 1, the outputs of the AND gates are connected to an array of OR gates which, in turn, are connected to either flipflops or output circuits. Columns $Q(N)_{0}$ to $Q(\mathrm{~N})_{7}$ represent the next state which the flipflops will be in. Columns $\mathrm{B}(\mathrm{O})_{0}$ to $\mathrm{B}(\mathrm{O})_{3}$ represent the combinatorial outputs B_{0} to B_{3}.
Each row represents an AND gate with 17 inputs each of which may be true and/or complement and is, therefore, a perfect decoder. Referring to the programming symbols in Figure 2, to implement the equation

$$
Z=A * B * C * D,
$$

all one has to do is to enter one line as shown in Table 2, term-0.

PLS159 Primer

Figure 1. FPLS Logic Diagram

Table 1. FPLS Program Table

CODE NO. SECTION C\{										FF MODE								REMARKS	E_{B}				E_{A}			POLARITY				SECTION E REMARKS
																			SECTION D											
$\begin{aligned} & \hline \text { T } \\ & \mathrm{E} \\ & \mathrm{R} \\ & \mathrm{M} \\ & \hline \end{aligned}$	AND																		(OR)							B(O)				
	C	1				$B(1)$				Q(P)																				
		3	2	1	0	3	32	21	0	7	76	5	514	43	32	21	0		7	6	5	4	3	2	10	0	32	1	0	
0																														
1																														
2																														
3																														
4																														
5																														
6																														
7																														
8																														
9															,															
10																														
11																														
12													γ																	
13											\cdots	V													${ }^{1}$					
14								1))													4	0					
15							+																							
16							C	C																						
17							6	\checkmark																						
18							0																							
19																														
20																														
21																														
22																														
23																														
24																														
25																														
26																														
27																														
28																														
29																														
30																														
31																														
FC																			1			1		,						
PB																							11	,	1	1	$\left.\begin{aligned} & 1 \\ & 1 \end{aligned} \right\rvert\,$			
RB																				1		11	11	1	1	1	11	1.1		
LB																			1	11	1	1	11		1	1	11	1		
PA																			1	11	11	11	11		1	1	11	1		
RA																			11	11	T	11	11	1	1	1	i	11		
LA																			1	11	I	1	1	1	1		1			
D3																			11	11	11	11	11	11				11		
D2																			11	11	T	11	11	11			11	11		
D1																			1	11	11	11	11	11						
D0																				1										-)
PIN	- 5	5	4	3	2	9	8	7	61	19	18	17	716	-15	514	113	12		19	18	17	16	15	141	1312	29	98	7	6	19
						1	0																							
																														180005

The FPLS can be programmed by means of Logic Programming equipment.

With Logic programming, the AND/OR-EXOR input connections necessary to imple-
ment the desired logic function are coded directly from the State Diagram using the Program Tables on the following pages.

In these Tables, the logic state or action of all I / O, control, and state variables is assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:

"AND" ARRAY - (I), (B), (Qp)

'COMPLEMENT' ARRAY - (C)

'COMPLEMENT' ARRAY (cont.)
'OR' ARRAY - (MODE)

Figure 2

PLS159 Primer

$T_{\text {n STATUS }}$	CODE
TOGGLE	O

$$
\begin{array}{|c|c|}
\hline \text { ACTION } & \text { CODE } \\
\hline \text { SET } & H \\
\hline
\end{array}
$$

ACTION	CODE
RESET	L

ACTION	CODE
HOLD	-

"OR" ARRAY-($Q_{n}=\mathrm{J}-\mathrm{K}$ Type)

"OR' ARRAY - (S or B), (P), (R)
"EX-OR" ARRAY - (B)

'" $\overline{O E}$ ' ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if any one of the I, B, or Q link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\cdot$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates ($L, P, R, D)_{n}$ due to their lack of "OR" array links.

Figure 2 (continued)

Table 2. FPLS Program Table

Notice that only I_{0} to I_{3} on the left hand side and $\mathrm{B}(\mathrm{O})_{4}$ on the right hand side have entries to implement the equation. All unused columns are dashed out or dotted out.

To implement the equation

$$
Y=/ A * B * / C
$$

enter one line as shown in Table 2, term-2 where the entry " H " represents the noninverting input buffer while the entry "L" represents the inverting buffer. To have the AND gate to be unconditionally 'High', dash out all the inputs of that particular AND gate as shown in Table 2, term-4. The virgin condition of the device, as shipped from the factory, has all connections intact, which means that the inverting and the non-inverting buffers of the same inputs are connected together. Such connection will cause the AND gate to be unconditionally 'Low' as shown in Table 2, terms 6 and 7. The unconditional High and Low states are normally useful only internally and seldom brought out to the output pins.

To implement the equation

$$
W=A * / B+C * / D
$$

enter one line for A */B and another line for C^{*} / D as shown in Table 2, terms 9 and 10. Use one line to AND something together; use different lines to OR something together one line per item to be OR'ed.
All the pins which are labelled B's are bidirectional I/O pins. Their input buffers are represented by the $B(I)$ columns on the left hand side of the programming table. An ' H ' entry represents the non-inverting buffer and an " L " entry represents the inverting buffer. Their output buffers are represented by the $B(O)$ columns on the right hand side of the table. An " A " entry means that the output is active (connected to the AND gates); a "."'
entry means that the output is inactive (not connected). The outputs may be programmed to be inverting or noninverting. The polarity of each output is determined by its exclusive OR gate (Figure 1 and Figure 2). To have a noninverting output, enter an " H ' in the section labelled "POLARITY" (Table 1, Section E). To have an inverting output, enter an ' L '. For example, Table 3, terms-0 and-2 implement the equation

$$
Z=/(A * B) \text { and } Y=A * B
$$

respectively. The above two equations may also be implement by term- 4 which uses the same AND gate to drive two OR gates.

Besides being able to have programmable Active-High or Active-Low output, the programmable output polarity feature also low output, the programmable output polarity feature also allows the user to minimize his AND term utilization by converting his logic equation into other forms such as conversion by De Morgan Theorem.

For example, the equation

$$
X=A+B+C+D
$$

takes four AND terms to implement as shown in Table 3, terms 6 to 9 . By using De Morgan Theorem, the same equation is changed to

$$
/ W=/ A * / B * / C * / D
$$

The result is as shown in term 11-a saving of three AND terms. The output buffers are disabled in their virgin states so that they all behave as inputs. The buffers are enabled or disabled by their corresponding Control AND terms D_{0} to D_{3} (see Figure 1). The Control AND terms are represented in the programming table on the last four rows on the left hand side. Dashing out all the inputs will
cause the output buffer to be unconditionally enabled, whereas a " 0 " (zero) will cause the buffer to be unconditionally disabled. The buffers may also be controlled by a logical condition, e.g. $A * / B * / C$, etc.

There are eight flip-flops on the chip each of which may be programmed as a J/K or a D flip-flop, or they may be programmed to switch dynamically. As shown in Figure 1, each flip-flop is a J / K to begin with. A tri-state inverter is connected in between the J and K inputs of each flip-flop, which when enabled by the AND gate F_{C}, will cause the flip-flop to function as a D flip-flop. The inverters are enabled by F_{C} through fuses M_{0} to M_{7}. A '.'" in the F/F Mode entry of the programming table means that particular fuse is to be disconnected and that particular flip-flop is to be J / K. An ' A '" entry will leave the M fuses intact, which allow the flip-flop to be D or J/K as controlled by the output of F_{C} (see Figure 2, "OR" ARRAY - (MODE)). The inputs to the flip-flops are represented by the programming table as the next state, $Q(N)_{0}$ to 7 since their inputs are from the OR array. The outputs of these registers are connected to their respective tri-state inverting output buffers, four of which are controlled by EA and the other four by EB. A ' ${ }^{\prime}$.' in EA will enable outputs F_{0} to F_{3}, whereas a "-" will disable them. An " A " will allow the output buffers to be controlled by /OE, pin 11. Table 4, terms 0,1 and 3 represent the following equations

$$
\begin{array}{ll}
Q_{0}: J=A * C+/ B * / E & \text { eq. } 1 \\
Q_{0}: K=A * / C & \text { eq. } 2
\end{array}
$$

Notice that the J input in equation 1 is represented by the ' H ' entry in terms-0 and 1 , column $Q(N)_{0}$ while the K input in equation 2 is represented by the ' L '" entry in term-3, column $Q(N)_{0}$. An undefined input, J or K, is considered 'Low'.

Table 3. FPLS Program Table

Table 4. FPLS Program Table

CODE NO.										FF MODE								REMARKS					E_{A}			POLARITY			REMARKS
										\bullet	$\bullet \cdot$	-				A			-										
$\begin{array}{l\|l} \hline \mathbf{T} & \\ \mathbf{E} & \\ \mathbf{R} & \mathbf{C} \\ \mathbf{M} & \\ \hline \end{array}$	AND																		(OR)										
	1					B(I)				Q(P)									Q(N)							B(0)			
	3	2		1	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	21	10	3	2	10	
0 -	H	-		H	-	-	-	-	-	-	-	-	-	-	-	-	-	A*C	-	-	-	-	-	- -	- H				$J=A * C$
1 -	-	L	-	-	L	-	-	-	-	-	-	-	-	-	-	-	-	/B*/E	-	-	-	-	-	- -	- H				+18*/E
2																													
3 -	H	-		L	-	-	-	-	-	-	-	-	-	-	-	-	-	A*/C	-	-	-	-	-	- -	-L				$K=A * / C$
4																													
5 -	L	L		L	-	-	-	- -	-	-	-	-	-	-	-	-	-	/A*/B*/C	-	-	-	-	-	- A	A				$D=/ A * / B * / C$
6	-	-		- H	H	-	-	-	-	-	-	- -	-	-	-	-	-	E	-	-	-	-	-	- A	A				+E
7																													
8 -	L	L		L	-	-	-	-	-	-	-	-	-	-	-	-	-	/A*/B*/C	-	-	-	-	-	H	H				$D=1 A * / B * / C$
9 -	-	-		-	H	-	-	-	-	-	-	-	-	-	-	-	-	E	-	-	-	-	-	- H	H-				+E
10																													
11 -	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0	-	-	--	- -				
12 -	-	-		-	-	-	-	-	-	-	-	H	-	-	-	-	-		-	0	-	-	-	-	- -				$T=1$
13 -	-	-	-	-	-	-	-	- -	-	-	H	H	-	-	-	-	-		0	-	-	-	-	- -	--				$T=Q_{5}$
14																													$T=Q_{5} * Q_{6}$
15																													
16																													
17																													
18																													
19																													
20																													
21																													
22																													
23																													
24																													
25																													
26																													
27																													
28																													
29																													
30																													
31																													
FC	-	-		-	-	-	-	--	-	-	-	-	-	-	-	-	-										1		
PB																						11	1			1	1	,	1
RB																									1	1	1	1	1
LB																				1	11				1	1	1	1	1
PA																				11					1		1	1	1
RA																				11	11	11	11	1	1	1	1	1	1
LA																			1	1	11	11	1	11	1		1	1	1
D3																			1	11	11	11	1	11	1			1	1
D2																				11	1	11	11						
D1																							11						
D0																													0
PIN	5	4	4	3	2	9	8	7	6	19	181	171	16	15	14	13	12		19	18	171	16	15	1413	1312	9	8	76	1
	A	B	C		D																								

A D flip-flop may be implemented by first entering an " A " in F/F MODE. Then enter " O " in the row F_{C}, which will unconditionally enable the tri-state inverter between the J and K inputs. The following logic equation may be implemented as shown in Table 4, term 5

$$
Q_{1}: D=/ A * / B * / C+E
$$

Notice that the entries in term 5 , columns $Q(N)_{0}$ to 7 are " A " and "." instead of ' H " and ' L " as in the case of J/K flip-flops. The entry " A " will cause the fuse connecting to the ' K ' input to be disconnected and the " J "' fuse to be intact. Whereas the entry "." will cause both fuses to be disconnected. This feature enables the user to quickly recognize the mode in which the flip-flops are operating without having to go through the control terms. Some commercially available device programmers in the market may not have the software capability to implement this feature, in which case an ' H '" and a " - "' may be used in place of " A " and '"." respectively as shown in Table 4, terms 8 and 9.
Of course, the term F_{C} may have inputs instead of zeros and dashes, in which case the flip-flop modes are controlled dynamically.
When both the J and K inputs are ' 1 ' s ', the flip-flop will toggle. A simple 3-bit counter may be implemented using only AND terms as shown in Table 4 terms 11, 12 and 13. The logic equations for the three flip-flops are as the following:

$$
\begin{array}{ll}
Q_{5}: T=1 ; & \left(Q_{5} \text { toggles unconditionally }\right) \\
Q_{6}: T=Q_{5} ; & \left(Q_{6} \text { toggles when } Q_{5}=1\right) \\
Q_{7}: T=Q_{5}^{*} Q_{6} ; & \left(Q_{7} \text { toggles when } Q_{5}^{*}\right. \\
& \left.Q_{6}=1\right)
\end{array}
$$

The above equations represent an octal upcounter. However, since the outputs of the flip-flops are inverted, the counting sequence of the outputs is that of a down-counter.
The flip-flops may be asynchronously set and reset by the Control AND terms PA/PB and

RA/RB respectively. As shown in Figure 1, PA and RA controls flip-flops F_{0} to F_{3}, while $P B$ and $R B$ control F_{4} to F_{7}.

In order to save the number of input pins, the eight flip-flops may be synchronously loaded directly from their own output pins. To use this feature, EA and/or EB must be programmed " A " or " - "' so that the output buffers may be disabled before loading. As shown in Figure 1, every flip-flop has an OR/ NOR gate the input of which is directly connected to the output pin and the outputs of the OR/NOR are connected to the K and J inputs respectively. This OR/NOR gate inverts the input and feeds it to the flip-flop in a 'wire-OR'' fashion. Therefore, when loading data directly into the flip-flops from the output pins, caution must be exercised to insure that the inputs from the OR array does not interfere with the data being loaded. For example, if the data being loaded is a ' 1 '" on the output
pin, the J input will be a " 0 ' and the K input will be a " 1 ". If, at the same time, a " 1 " is present at the J-input from the OR arra'y, the flip-flop will see " 1 's" in both J and K inputs. It will toggle as a result. The OR/NOR gates are enabled by the Control AND terms LA and LB. LA controls flip-flops F_{0} to F_{3} arid LB controls F_{4} to F_{7}.

All Control AND terms function and are; programmed in the same manner as the other AND terms. The only difference is tha.t the Control AND terms are not connected to the OR array.
The outputs of the flip-flops may be fed back into the AND array as the present state, $Q(P)$. The output of the AND array into the OR array and the inputs to the flip-flops is the next state, $Q(N)$. As an example, Figure 3 is a state machine implemented in a PLS15;9 as shown in Table 5, terms 0 to 6.
PLS159 Primer AN15

Table 5. FPLS Program Table

CODE NO.									FF MODE								REMARKS	E_{B}				$\frac{E_{A}}{0}$			POLARITY			REMARKS		
									\bullet	-1	- $\cdot 1$	\cdots	$1 \cdot$	-	\cdots			-							H\|H	H	H.			
$\begin{array}{\|l\|} \hline T \\ E \\ R \\ M \end{array}$	AND																	(OR)												
	1				B(1)				Q(P)									Q(N)							B(0)					
	3	2	1	0	3	2	1	0	7	6	5	5	3	2	1	0		7	6	5	4	32	21	10	3	21	10			
0 -	H	H	-	-	-	-	-	-	L	L	L	- L	L	L L	L	L		L	L	L	1	L L	L	- H	.	- \cdot	- A			
1 -	-	-	H	L	-	-	-	-	-	L	L	L	L	L	- L	-		L	L	L H	H	L L	LL	L H	-	A	-			
2 -	-	-	-	-	-	-	-	-	L	L	L	H	L	L	L	- H		L	L	H	L H	H L	L H	4 i	A	$\cdot \cdot$	$\cdot \cdot$			
3																														
4 -	H	L	-	-	-	-	-	-	L	L	L	L	L	L	L	L		4	L	LL	L L	LL	L H	HL	-	- A	A			
5 -	-	-	Hi	-	-	-	-	-	L	L	L	L L	L	L	H	L		4	4	L L	L	$L L$	L L	L H	-	A	\cdot			
6 -	-	-	H	L	-	-	-	-	L	L	L	L	L	L	H	L		L	Lᄂ	LL	L	LL	LL	\square	-	A A	A			
7																														
8																														
9																														
10																														
11																														
12																														
13																														
14																														
15																														
16 17																														
17																														
18																														
19																														
20																														
21																														
22																														
23																														
24																														
25																														
26																														
27																														
28																														
29																														
30																														
31																														
FC																														
PB																														
PB																				1	1					1	1			
RB																		11	11					11	11	11	1			
LB																		11	1		1	1		11	11	11 1 1 1	1			
PA																		11	1	1	1	1		1	11	1.1	1			
RA																		11	11	11	1	1	1	11	11	$1 \begin{array}{ll}1 & 1\end{array}$	1			
LA																		11	1	11	1	1				$\begin{array}{l\|l} 1 & 1 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			
D3 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			11	1	1	1				$\begin{array}{l\|l} 1 & 1 \end{array}$	$\binom{1}{1}$			
D2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			11	11	1				11	11	1			
D1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			1	11	1	1	1		1	1	,			
D0 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-												-)		
PIN	5	4	3	2	9	8	7	61	191	18	17	176	15	14	13	12		191	18	171	161	1514	1413	312	9	87	76	18		
	A	B	C	D																					W		$y=$	$\sqrt{8}$		
																												теоо		

Signetics

Application Specific Products

DESCRIPTION

The field-programmable logic sequencer (FPLS) PLS159 has eight edge-triggered flipflops which may be individually programmed to be J/K, D, or toggle flip-flops. The detail logic diagram of the device is shown in Figure 2.

A counter may be constructed by having individual flip-flops toggle when they are at certain states. Implementing such counters requires one toggle flip-flop per bit and an associating AND gate as a decoder for each flip-flop. Such a method allows the PLS159 to be a counter from modulo 2 to 256 or from one bit to 8 bits.

MODULO-8 UP/DOWN COUNTER

The Up-Counter

The PLS159 has an inverting output buffer for each flip-flop. Therefore the counting sequence of the flip-flops is from 7 to 0 so that the outputs will count from 0 to 7 . Table 1 is
the truth table of the internal counting sequence.

Table 1

COUNT	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$
0	1	1	1
1	1	1	0
2	1	0	1
3	1	0	0
4	0	1	1
5	0	1	0
6	0	0	1
7	0	0	0

From Table 1, logic equations for the flip-flops may be generated as the following:

$$
\begin{array}{ll}
Q_{0}: T=1 ; & \left(Q_{0}\right. \text { unconditionally } \\
& \text { toggles) } \\
Q_{1}: T=/ Q_{0} ; & \left(Q_{1}\right. \text { toggles if } \\
Q_{2}: T=/ Q_{0}^{*} / Q_{1} ; & \begin{array}{l}
\left.Q_{0}=0\right) \\
\left(Q_{2}\right. \text { toggles if both } \\
\left.Q_{0} \text { and } Q_{1}=0\right)
\end{array}
\end{array}
$$

The equations are implemented as shown in Table 2, terms 0,1 , and 2. E_{A} is enabled, and the mode for the three flip-flops is set to J/K. All unused flip-flops and outputs (the $\mathrm{B}(0)$'s) associating to AND-terms are 'dashed" or "dotted" out. The event to be counted is connected to the clock input, pin 1 of the device.
The Down-Counter
The down-counter is constructed in the same manner as the up-counter except that the counting sequence is reversed. The downcounter is implemented in Table 2, terms 4 to 6 with the corresponding flip-flop mode set to J / K and E_{B} enabled.

Modulo-16 Counter

Expanding the modulo-8 counter to 4 -bit, the counter becomes modulo-16, Table 3, terms 0 to 3 and the associating F/F MODE and E_{A} implement a modulo-16 up-counter, while terms 5 to 8 and the associating F/F MODE and E_{B} implement the modulo- 16 downcounter.

PLS159 As Modulo Counters

Table 2

CODE NO.								FF MODE							REMARKS	E_{B}				$E_{\text {A }}$		POLARITY				REMARKS
									-1.1	$1 \cdot 1 \cdot$	$\cdot 1$	$\cdot 1 \cdot 1$	$1 \cdot 1 \cdot$	-			\bullet									
$\begin{array}{\|l\|} \hline T \\ \hline \\ \hline R \\ \hline \end{array}$	AND															(OR)										
			1		B(1)			Q(P)								Q(N)						B(0)				
	3	2	21	0	32	211	10	07	76	54	43	32	${ }^{2} 10$	0		7	65	54	43	3	10	3	2	1	0	
0		-	-	-	-	-	-	- -	-	- -	- -	--	- -	-		-	-	--	-	--	- 0	-	-	-	-	
1	-	-	-	-	-	- -	- -	- -	- -	- -	- -	- -	--L	L		-	- -	- -	- -		0	.	-	-	-	
2	-	-	-	-	-	- -	- -	- -	- -	- -	- -	- -	-L	L		-	-	- -	-	0	- -	-	-	,	-	
3																										
4	-	-	-	-	-	- -	- -	- -	---	--	- -	-	-	-		-	- -	- 0	$0-$	- -	-	-	-	-	-	
5	-	-	-	-	-	- -	--	- -	--	$-\mathrm{H}$	H-	--	--	-		-	- 0	$0-$	--	-	--	-	-	-	-	
6		-	-	-	- -	--	- -	- -	-- H	H H	H-	--	-- -	-			0-	--	- -	-	-	-	-	-	-	
7																										
8																										
9																										
10																										
11																										
12																										
13																										
14																										
15																										
16																										
17																										
18																										
19																										
20																										
21																										
22																										
23																										
24																										
25																										
26																										
27																										
28																										
29																										
30																										
31																										
FC																										
PB																										
RB																			1				1	1		
LB																	11	1	1	1		1	11			
PA																	11	1	1	1		1	1			
RA																	11	1	1	1		1	1			
LA																11	11	1	1	11	1	1	1	1		
D3																	1				1	1				
D2																	11	1	11	11	1	1	11			
D1																11	11	1	1	11	1	1	11			
D0																	1		-	+						O)
PIN	5	4	3	2	98	87	76	6191	91817	1716	1615	514	41312	12			181	1716	1615	514	1312	29	8	7	6	$1)$
$\underset{\sim}{\text { ¢ }}$																		1								3

PLS159 As Modulo Counters

Table 3

DECADE COUNTER

The Decade Up-Counter

The truth table of a decade counter is as shown in Table 4.

Table 4

COUNT	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$	\mathbf{Q}_{0}
0	1	1	1	1
1	1	1	1	0
2	1	1	0	1
3	1	1	0	0
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	1	0	0	0
8	0	1	1	1
9	0	1	1	0
0	1	1	1	1

Logic equations may be generated from Table 4 as the following:

$$
\begin{aligned}
Q_{0}: T= & 1 ; \\
Q_{1}: T= & / Q_{0} * Q_{3} ; \\
Q_{2}: T= & / Q_{0} * / Q_{1} * Q_{3} ; \\
Q_{3}: T= & / Q_{0} * / Q_{1} * / Q_{2}^{*} Q_{3}+ \\
& / Q_{0} * Q_{1} * Q_{2}^{*} / Q_{3} ;
\end{aligned}
$$

The equations are implemented as shown in Table 5, terms 0 to 4 and the associating flipflop mode and E_{A} settings.

Decade Down-Counter

The decade down-counter is similar to the decade up-counter except that the counting sequence is reversed from 0 to 9 as shown in Table 5, terms 6 to 11 with the associating F/F MODE set to J / K and E_{B} to ENABLE.

Decade Down Counter

COUNT	$\mathbf{Q}_{\mathbf{7}}$	$\mathbf{Q}_{\mathbf{6}}$	$\mathbf{Q}_{\mathbf{5}}$	$\mathbf{Q}_{\mathbf{4}}$
9	0	1	1	0
8	0	1	1	1
7	1	0	0	0
6	1	0	0	1
5	1	0	1	0
4	1	0	1	1
3	1	1	0	0
2	1	1	0	1
1	1	1	1	0
0	1	1	1	1
9	0	1	1	0

$Q_{4}: T=1 ;$
$Q_{5}: T=Q_{4} * Q_{5}{ }^{*} Q_{6} * / Q_{7}+$ $Q_{4} * / Q_{5}^{*} / Q_{6}^{* *} Q_{7}+$ $Q_{4}{ }^{*} Q_{5}{ }^{*} / Q_{6}{ }^{*} Q_{7}+$ $Q_{4}{ }^{*} / Q_{5}{ }^{*} Q_{6}{ }^{*} Q_{7}$;
$Q_{6}: T=Q_{4}{ }^{*} Q_{5}{ }^{*} Q_{6}{ }^{*} / Q_{7}+$
$Q_{7}: T=\begin{array}{llll}Q_{4} & * & Q_{5}{ }^{*} / Q_{6}{ }^{*} & Q_{7} ; \\ Q_{4} & Q_{5}^{*} & Q_{6}^{*} / & Q_{7}+ \\ Q_{4} & Q_{5}^{*} & Q_{6}{ }^{*} & Q_{7} ;\end{array}$

DIVIDE-BY-N COUNTER

This counter, shown in Figure 1 and Table 6, takes an input (maximum $=8$ bits for each device), complements it, and counts until all flip-flops become 1 , then a terminal count is sent out at $\mathrm{B}(\mathrm{O})_{0}$ (divide-by- N). At the end of the count, where all flip-flops are 1 's, terms LA and LB are activated which causes the flip-flops to load data from F_{0} to F_{7}, and the cycle starts again. Since there are 8 flip-flops, the maximum count is 256 .

Table 5

Table 6

CODE NO.										FF MODE							REMARKS	$\frac{E_{B}}{-}$				$\frac{E_{A}}{-}$			POLARITY			REMARKS
											- \cdot		-														H	
	AND																	(OR)										
C	1				B(1)					Q(P)								Q(N)							$\mathrm{B}(\mathrm{O})$			
	3	2	1	0	03	32	21	10	0	76	65	54	,	2	1	0		7	65	54	43	3	10	03	2	1	0	
0	-	-	-	L	-	-	- -	-L	L	- -	- -	- -	-	-	-	-		-	-	--	- -	-	- 0	$0 \cdot$	-	-	-	
1	-	-	-	L	-	-	- -	- L	L	-	- -	-	-	-	-	H			-	- -	- -	- -	$0-$	-	.	-	-	
2	-		-	L	-	-	-	-	L	-	- -	- -	-	-	H	H		-	-	- -	--	- 0	-	-	.	-	-	
3	-		-	L	-	-	-	-L	L	- -	- -	-	-	H	${ }^{\text {H }}$			-	-	--	-0	0 -	- -	-	-	-	-	
4				L	L			-L	L		-	-	H	H	H	H		-	- -	- 0	$0-$	-	-	-	-	-	-	
5	-	-	-	L	-	-	- -	-L	L-	--	--	H	H	H	H	H		-	- 0	O-	--	- -	--	-	-	-	-	
6	-	-	-	L	-		-	-L	L	--	- H	1 H	H	H	H^{+}	H			0	--	-	--	--	-	-	-	-	
7	-		-	L	-			-L	L	- H	HH	H	H	H	H^{2}	H		0	- -	--	- -	-	- -	-	-	-	-	
8	-	-	-	L	-			- -	- H	H H	H^{H}	H	H	H	H	H		-	- -	--	- -	- -	--	-	-	-	A	
9																												
10																												
11																												
12																												
13 14																												
14																												
15 15																												
16																												
17																												
18																												
19 20																												
20 21																												
21 22																												
23																												
24																												
25																												
26 27																												
27 28																												
28 29																												
30																												
31																												
FC																												
RB																			1									
$\begin{array}{\|l\|} \hline \mathrm{LB} \\ \hline \mathrm{PA} \\ \hline \end{array}$	-		-		-		- -	- -	- H		H	1 H	H						1		,				11			
																		1	11	1	1	1	1	1	1	1		
RA																		11	11	1	1	1	1	1	11			
$\begin{array}{\|l\|l} \hline \text { LA } & - \\ \hline \text { D } 3 \\ \hline \end{array}$	-		-	-	-		- -	--				H	H			H		11	11	1	1	1	11	1	1	1		
																		11	11	1	1	11	11	1		1	1	
D2																		1	1	1	1	11						
D1																		11	11	1	1	11	11	1	11	11		
								-	-	- -	-	- -						1	11	1	1	11	11	1	1			
$\begin{array}{\|c\|c} \hline \text { DO } & - \\ \hline \text { PIN } \\ \hline \end{array}$	5	4	3		29	98	87	76	61	1918		716	15	14		12				1716	1615	1514	1312	129	8		6	
\square				$\underset{\sim}{\text { u }}$	遃																							5

PLS159 As Modulo Counters

NOTES:

1. All OR gate inputs with a blown link float to logic " 0 ".
2. All other gates and control inputs with a blown link float to logic " 1 ".
3. \because denotes WIRE-OR.

Figure 2

Signetics

Electronic Combination Lock

Application Note

Application Specific Products

INTRODUCTION

A combination lock may be opened by entering the correct numbers which match the preset security code that may be of any number of digits. Using a PLS157, an electronic combination lock with user settable security code may be constructed. The security code may be one to five hexadecimal digits that can be preset by the user. The lock takes a 4-bit binary input as the "combination" and a "Data Valid" input, which means that the combination may be five digits long and each digit may be from 0 to F. If the input matches the preset digit of the security code, the lock will wait for the next digit. If the input does not match the corresponding digit of the security code, the lock will reset itself to the first digit position again. The user may use as many as five digits for the combination which may be set by using five DIP switches or other means. The lock may be used in conjunction with a 4-bit binary encoded rotary switch, or an encoded push button key pad, or an optical card reader, or a magnetic strip reader. The design takes advantage of the six JK flip-flops of the PLS157, the bidirectional I/O's, the complement array, and the general architecture of common product terms.

DESCRIPTION

Figure 1 shows an example of an electronic lock which uses five DIP switches to set the security code (hexadecimal 0 to E, F is reserved for reset), a 4-bit binary encoded rotary switch to enter the combination at I_{0} to I_{3}, and a single pole double throw push button switch, "Data Valid', as the clock which is debounced by the associated circuitry of pin B_{5}. The security code is set with five DIP switches which are connected to a four line
input $\left(\mathrm{B}(\mathrm{I})_{0}\right.$ to $\mathrm{B}\left(\mathrm{I}_{3}\right)$. The five DIP switches are multiplexed by the outputs of the flip-flops, F_{0} to F_{4}. In normal operation, one of the F/F outputs is Low (the content of the register being a " 1 ") while the other five are High. The operation is actually a shift register with a zero bit shifting through five one's. Therefore only one DIP switch is pulled Low (selected) at any one time while the rest is deselected. The pin named 'MATCH', $\mathrm{B}(\mathrm{O})_{4}$, is an I/O which outputs a High if the input matches the corresponding digit of the security code, otherwise it outputs a Low. A High output of $\mathrm{B}(\mathrm{O})_{4}$ enables the shift register to shift one position while a Low causes the shift register to reset to the starting position which is a " 1 " in F / F_{0} (flip-flop 0) (F_{0} is Low due the output inverter) and " 0 ' s " in the other five (F_{1} to $F_{5}=$ High). The state diagram of the design is as shown in Figure 2 where the state numbers are expressed in two hexadecimal digits. The least significant digit consists of F_{3}, F_{2}, F_{1}, and F_{0}; whereas the most significant digit consists of F_{5}, and F_{4}. At the top of the state diagram, the power-up and reset state is 00 hex. When the outputs have more than one Low, as sometimes happens during powerup, the circuit automatically resets the registers to 00 hex which causes all outputs to be High in order to prevent more than one DIP switch being enabled. After power-up or reset, pushing the 'Data Valid' button will initialize the circuit to have the first digit of the security code enabled. Subsequently, any false entry will cause the circuit to go back to the initialized state of 01 hex. When the first digit is correctly set and the "Data Valid" button pressed, the circuit goes to 02 hex and the second DIP switch is enabled while the first DIP switch is disabled. The circuit is now ready for the second digit. By repeating the process, the circuit keeps shifting the " 1 " in
the shift register until it reaches $\mathrm{F} / \mathrm{F}_{5}$ at which time the Low output may be used to trigger a solenoid. If at any time of the sequence, an incorrect digit is entered, the circuit reverts back to the initialized state of 01 hex.

Notice that any of the five outputs from F_{1} to F_{5} may be used as an output. Therefore, if, for example, a two digit security code is used, only two DIP switches are needed and the output is taken from F_{2} to trigger a solenoid. After the last digit has been entered, all DIP switches are deselected and the inputs $\mathrm{B}\left(\mathrm{I}_{0}\right.$ to $\mathrm{B}\left(\mathrm{I}_{3}\right.$ become 1111 binary, or F hex. Therefore, the hex number F is not used as a valid code but as an initialization input entered at I_{0} to I_{3}. When the hex number F is entered, the circuit initializes itself to the 01 hex state. After the last digit of the security code has been entered, if the 'Data Valid" button is pressed again, the circuit sees a false entry and reinitializes itself.

The design is implemented using a PLS157 as shown in Table 1, H/L Programming Table of Electronic Lock. P-terms 0 to 14 are programmed as decoders. If. an input matches the corresponding digit of the security code, one of the p-terms will be active which causes $\mathrm{B}(\mathrm{O})_{4}$ to output a High which, in turn, enables the registers to shift to the next digit by terms 16 to 20 . In the event that an incorrect input is entered, $\mathrm{B}(\mathrm{O})_{4}$ outputs a Low which, in turn, causes the registers to be set 000001 binary by term 21 . If an input of F is entered, term 15 causes the registers to be 000001. Terms 22 to 29 and RB ensure that no more than one register is " 1 " at a time. Terms 22 to 28 are connected to the complement array, which in turn, drives terms 29 and RB to set the registers to 000000 when terms 22 to 28 are inactive.

NOTES:

1. All diodes are Philips BAT81 Schottky diodes or equivalent.
2. Single pole double throw momentary switch.

Figure 1. Simple Block Diagram of Electronic Lock

Figure 2. State Diagram of Electronic Lock

Table 1. PLS157 H/L Programming Table

Signetics

Application Specific Products

INTRODUCTION

One of the many features of the PLS153 to 159 series is the availability of individually controlled Tri-state I/O pins. Taking advantage of this feature, a Schmitt trigger may be constructed using one input pin, two bidirectional I/O pins and additional components of three resistors. The two threshold voltages, as well as the hysterisis, are determined by the values of the three resistors and the parameters of the PLS153/159 device, which are 1) input threshold voltage, $V_{T H}, 2$) High output voltage, V_{OH}, and 3) Low output voltage, $\mathrm{V}_{\text {OL }}$. The circuit may be simplified if Schmitt function is needed only on Low going High or High going Low, and if the hysterisis and threshold voltages are not important.

DESCRIPTION

A simplified block diagram of a non-inverting Schmitt trigger is shown in Figure 1 where R_{1}, R_{2}, and R_{1}, R_{3}, form two pairs of voltage dividers one of which get into action at input voltage direction of High going Low and the other Low going High. Assuming that input voltage starts at zero volt, the output voltage is therefore at $V_{O L}$ which causes Q_{2} to pull R_{3} towards ground. As the input voltage increases, only a fraction of the voltage is

AN18
Schmitt Trigger Using PLS153 and PLS159

Application Note

impressed upon the input buffer due to the dividing network R_{1} and R_{3}. As soon as the input voltage reaches a point where $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{TH}}$ ($\mathrm{V}_{\mathrm{TH}}=1.38 \mathrm{~V}$ typical), the output switches to V_{OH} which, in turn, turns off Q_{2} and turns on $Q_{1} . V_{1}$ will jump to a value greater than $V_{T H}$ and Q_{1} then pulls the input pin, through R_{2}, towards V_{OH}, which in turn locks the output to a High state even if the input voltage fluctuates, as long as it does not fluctuate outside of the designed hysterisis. When the input voltage goes from a High to a Low, the Schmitt function repeats itself except that Q_{1} and Q_{2} reverse their roles.
The triggering voltages, V_{H} (Low going High) and V_{L} (High going Low) are:
$V_{H}=V_{\text {TH }}\left[\left(R_{1}+R_{3}\right) / R_{3}\right]-V_{O L}\left(R_{1} / R_{3}\right) ;$
$V_{L}=V_{T H}\left[\left(R_{1}+R_{2}\right) / R_{2}\right]-V_{O H}\left(R_{1} / R_{2}\right) ;$
where, at room temperature, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{l}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}<1 \mathrm{~mA} . \mathrm{V}_{\mathrm{TH}}$ is the threshold voltage of the device, typically $1.38 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}$ is the output Low voltage of the device, typically 0.36 V at $|\mathrm{IOL}|<1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{OH}}$ is the output High voltage of the device, typically 3.8 V at $\mid \mathrm{I}_{\mathrm{OH}}$ | < 1 mA .
The implementation of Figure 1 using PLS153/153A is as shown in Table 1, and Figure 2a. A scope photo of the operation of the circuit is shown in the Appendix. The
implementation using PLS159 is shown in Table 2 and Figure 2b. In Tables $1 \& 2, \mathrm{~V}_{1}$ is the input pin, V_{0} is the output pin, V_{2} is the output which pulls down V_{1} and V_{3} is the output pin that pulls up V_{1}. The Schmitt output is available at pin B_{0} for external use, and is available internally at the input buffers of I_{0} and $\mathrm{B}\left(\mathrm{I}_{0}\right.$. However, there is a propagation delay between the two signals from the I_{0} buffer and the B()$_{0}$ buffer.
An inverting Schmitt triggered buffer may be constructed using the same principle. A simple block diagram of such inverter is shown in Figure 3a. The circuit is implemented using H/L programming table as shown in Table 3 for PLS153 and Table 4 for PLS159. Table 3 is also represented in logic symbols in Figure 3b. If the voltage levels $\left(V_{L}\right.$ and $\left.V_{H}\right)$ and the hysterisis are not critical, one I/O pin may be used to pull the input pin High and Low. Therefore one I/O pin and a resistor may be saved. The drawback is that the range of V_{H} and V_{L} is quite limited. The circuit is as shown in Figure 4.

If Schmitt function is needed only in one direction, one of the resistor/output circuit may be eliminated. The circuit is as shown in Figure 5.

8001700S
Figure 1. Simplified Block Diagram of a Schmitt Trigger

Schmitt Trigger Using PLS153 and PLS159

Table 1. PLS153/153A Programming Table

COIDE NO.																				POLARITY									REMARKS
																			REMARKS										
T \mathbf{E} \mathbf{M}	AND																												
				1					B(1)											B(O)									
		6	5			2	1	0	9	87	6	6		43	32		10			9	8	76	65	4	3			10	
0	-		-		-	-	-	H	-	-	-		-	-	-												\bullet	A	NON-INV. BUFA
1	-	0	0	0,0	0	0	0		0	0,0	0	0	0	0,0	0	0	0	0									A	.	OUTPUT $V_{\text {OL }}$
2	-		-	-	-	-		-	-	-	-		-		-	-		-								A	A.	-	OUTPUT $\mathrm{V}_{\text {OH }}$
3																													
4																													
5																													
6	0	0	0	0,0	0	\bigcirc	0	0	0	0,0	0	0	0	0,0	0	0	-	0					A	A					SAMEAS
7																													TERMS 1 + 2
8										1																			WITH
9																													$B(0) 4=V_{2}$
10																													$B(0) 5=V_{3}$
11																													
12																													
13																													
14																													
15																													
16																													
178																													
18																													
19																													
20																													
21																													
22																													
23																													
24																													
25																													
26				,																									
27																													
28																													
29																													
30																													
31																													
D9																													
D8																							1	1	1		1	1	
D7																				11				1	1		1		,
D6																				11	11	11			1		1		
D5																				11	1	11			1		1		1
D4																				11	1	11	1	1	1		1		
D3																				1	1	11	1	1	1	1	11		,
D2	-		-						-											11	1	11	1	1	1		1		
D1	-		-	=	-	-	-	-	-				-							1	1	11	1	1	1				
DO	-		-			-		-																					
PN	8	7	6	54	43	32	2	1		1817	16		51	413	312	21	19	9			18	1716	615	14	13	12	211		
$\underset{\sim}{\text { a }}$ ¢								5																			5	$>$	$\frac{1}{8}$

NOTE:

Schmitt trigger output may be obtained from both.$_{0}$ and $B(1)_{0}$ to drive the AND-ARRAY.

LDO1530S
a. Using PLS153/153A

L001540S
b. Using PLS159

Figure 2. Schmitt Trigger

Table 2. PLS159 FPLS Programming Table

CODE NO.									FF MODE								REMARKS	E_{B}				$E_{\text {A }}$				POLARITY				REMARKS
																											H H	H	H	
	AND																	(OR)												
	1				B(1)				Q(P)									Q(N)								B(O)				
	3	2	1	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0	3	2	1	0	
0 -	-	-	-	H	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	\bullet	\bullet	\bullet	A	NON-INV. BUFR
10	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0		-	-	-	-	-	-	-	-	-	\bullet	A	-	OUTPUT $V_{O L}$
$2-$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	\bullet	A	\bullet	-	OUTPUT $V_{O H}$
3																														
4																														
5																														
6																														
7																														
8																														
9																														
10																														
11																														
12																														
13																														
14																														
15																														
16																														
17																														
18																														
19																														
20																														
21																														
22																														
23																														
24																														
25																														
26																														
27																														
28																														
29																														
30																														
31																														
FC																														
PB																					1	1				1	1			
RB																					1	1					1	1		
LB																				1		1			1	1	1	1		
PA																			1	1	1	1			1	1	1	1		
RA																			1	1	$1 T$	1			1	1	1	1		
LA																			1	1	1	1			1		1	1	1	
D3																												1	1	
D2 -	-	-	-	-	-	-	- H	H	-	-	-	-	-	-	-					,	1							1	1	
D1 -	-	-	-	-	-	-	-	L	-	-	-	-	-	-	-					1	1									
D0 -	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-														0
PIN	5	4	3	2	9	8	7	61	191	181	171	161	151	14	13	12		19	18	17	161	15	14	13	12	9	8	7	6	4
				7		70		>0																						

BD01710S
a. Simplified Block Diagram

b. Using PLS159

Figure 3. Inverting Schmitt Trigger

Table 3. PLS153/153A Programming Table

Table 4. PLS159 FPLS Program Table

CODE NO.									FF MODE								REMARKS	E_{B}				$\mathbf{E A}_{\mathbf{A}}$				POLARITY				REMARKS
																											H	H	L	
$\begin{array}{\|l\|} \hline \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \hline \mathbf{M} \\ \hline \end{array}$	AND																	(OR)												
	1				B(1)				Q(P)									Q(N)								B(O)				
	3	2	1	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0	3	2	1	0	
0	-	-	-	H	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	\bullet	A	INV. BUFFER
10	0	0	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0		-	-	-	-	-	-	-	-	\bullet	\bullet	A	\bullet	OUTPUT Val
2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	A		\bullet	OUTPUT $\mathrm{V}_{\text {OH }}$
4																														
5																														
6																														
7																														
8																														
9																														
10																														
11																														
12																														
13																														
14																														
15																														
16																														
17																														
18																														
19																														
20																														
21																														
22																														
23																														
24																														
25																														
26																														
27																														
28																														
29																														
30																														
31																														
FC																														
PB																														
RB																														
LB																														
RA																														
D3																														
D2 -	-	-	-	-	-	-	-	L	-	-	-	-	-	-	-	-			11											
D1	-	-	-	-	-	-	-	H	-	-	-	-	-	-	-															
DO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-														-
PIN	5	4	3	2	9	8	7	6	19	18	17	16	15	14	13	12		19	18	17	16	15	14	13	12	9	8	7	6	19
¢				7			${ }^{*}$	5																						

$V_{L}=0.78 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1.6 \mathrm{~V}$
TC01890s
Figure 4. Schmitt Trigger Using One I/O Pin

tcor900s
a. High Going Low Direction

TC01910S

b. Low Going High Direction

Figure 5. Schmitt Trigger

APPENDIX A

Signetics

AN19

Electronic Dice

Application Note

Application Specific Products

DESCRIPTION

A PLS159 is used to implement a pair of dice. Each die is represented by a series of six different state transitions. Two push button switches are used to "roll' the dice; in other words start/stop the state transitions. Each push button controls one die. When the switches are held low, the state transitions take place for each die and the result is displayed when a push button is released.
Each die is made up of seven LED's which are connected to the outputs of the PLS159. The system also contains its own oscillator which generates the clock cycle necessary for the state transitions.

The random release of the push button provides a random output. The high frequency of the internal oscillator and the fact that the switches are not debounced, add more 'randomness' to each event.
The overall system configuration is shown in Figure 3.

LOGIC IMPLEMENTATION

The configuration of each die is shown in Figure 1, with each letter representing an LED.

To represent the numbers one through six the LED's are turned on as shown in Figure 2.
Table 1 is the truth table generated from Figure 2.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
One	0	0	0	1	0	0	0
Two	0	0	1	0	1	0	0
Three	0	0	1	1	1	0	0
Four	1	1	0	0	0	1	1
Five	1	1	0	1	0	1	1
Six	1	1	1	0	1	1	1

The result of Table 1 is the following logic equations:

$$
\begin{aligned}
& \text { A }=\text { Four + Five + Six; } \\
& \text { B }=\text { Four + Five + Six; } \\
& \text { C }=\text { Two }+ \text { Three + Six; } \\
& \text { D }=\text { One + Three + Five; } \\
& \text { E }=\text { Two + Three + Six; } \\
& \text { F }=\text { Four + Five + Six; } \\
& \text { G }=\text { Four + Five + Six; }
\end{aligned}
$$

As can be seen from the above logic equations:

$$
\begin{aligned}
& \mathrm{A} \equiv \mathrm{~B} \equiv \mathrm{~F} \equiv \mathrm{G} ; \\
& \mathrm{C} \equiv \mathrm{E} ;
\end{aligned}
$$

Table 2 is the result of Table 1 and the above common terms.

Table 2. Truth Table for PLS159 Outputs

	$\mathbf{A}, \mathbf{B}, \mathbf{F}$, \mathbf{G}	\mathbf{C}, \mathbf{E}	\mathbf{D}
One	0	0	1
Two	0	1	0
Three	0	1	1
Four	1	0	0
Five	1	0	1
Six	1	1	0

For each die, three outputs of the PLS159 are needed to implement the logic in Table 2. These outputs are connected to the LED's as follows:

F0: A, B, F, G;
F1: C, E;
F2: D;
Similarly for the second die:
F3: $A^{\prime}, B^{\prime}, F^{\prime}, G^{\prime}$;
F4: C', E';
F5: D';

Figure 3. Dice Implementation Using the PLS159

STATE TRANSITIONS

Figure 4 shows two arbitrary state transition sequences which are used to implement each die.

These state transitions are implemented in the program table of the PLS159.

INTERNAL OSCILLATOR

An internal oscillator is also implemented for the system. The internal configuration of the oscillator is shown in Figure 5. For a detailed explanation of the implementation of this oscillator see AN13: Oscillator with the PLS159. B0 is connected externally to the clock input of the PLS159.

EXPLANATION OF PROGRAM
 TABLE

The program table for the two dice is shown in Table 3.

Terms 0-5 and 7-12 represent the state transitions for each die.

Terms 14-15 and 17-18 reset the flip-flops to HLL and HLH if undefined states occur, such as during power up.
Terms 20 and 21 and output controls terms D1 and D2 are used to implement the internal oscillator (see AN13).
Inputs 10 and 11 are connected to the two push button switches which roll the dice. These inputs are programmed to be ActiveLow. When the push button is closed the state transitions take place, and upon release of the push button, the current states are displayed on the outputs.

The outputs of the PLS159 are inverted and this must be taken into consideration when assigning 'H" and 'L"'s to the F0, F1, F2, F3, F4, and F5. These assignments are shown in Table 4. All the flip-flops are set to be of the J-K type.

Table 4. H And L Assignment

	F2, F5	F1, F4	F0, F3
One	H	L	L
Two	L	H	L
Three	H	H	L
Four	L	L	H
Five	H	L	H
Six	L	H	H

AF01730S
Figure 4. Arbitrary State Transitions

Figure 5. Oscillator Configuration

Electronic Dice

Table 3. Program Table for 2 Dice

CODE NO.											FF MODE							REMARKS	EB				E_{A}			POLARITY			REMARKS
												A]							\bullet										
	AND																		(OR)										
		1					B(I)				Q(P)								Q(N)							B(0)			
		3	2	1	0	3		21		0	7	65	54	3	2	1	0		7	65	54	4	2	1	0	3	21	0	
0 -	-	-	-	-	L	L		-	-		-		-		H	L	L	$100 \rightarrow 101$	-	-	- -	-	H	1	H	-	-	-)
1	-	-	-	-	L	L		-	-	-	-	-	- -		H	L	H	101 -110	-	-	-	-	H	H	L	-	- \cdot	\bullet	
2	-	-	-	-	L	L		-	-	-	-	- -	- -		H	H	L	110 $\rightarrow 011$	-	- -	- -	-	2	H	H	\bullet	- \cdot	-	DIE1
3		-		-	L	L				-			-		L	H	H^{2}	O11 $\rightarrow 010$	-	-	- -	-	2	H	L	-	$\bullet \cdot$	\bullet	
4				-	L	L						-	- -		L	H	H L	$010 \rightarrow 001$	-	-	- -	-	L	1	H	-	$\bullet \cdot$	\bullet	
5				-	L	L				-		-			L	L	H	$001 \rightarrow 100$		- -	- -	-	H	1	2	-	-	\bullet	1
6																													
7	-	-	-	L	-	-	-	-	-	-	-	- H	H_{2}	H	-	=	-	$101 \rightarrow 100$	-	- H	H L	L	-	-	-	-	$\bullet \cdot$	-	-
8	-		-	L				-	-	-	-	- H	${ }^{+}$	L			-	$100 \rightarrow 110$	-	- \boldsymbol{H}	H H	H 2	-	-	-	-	-	-	
9			-	L					-			- H	H H	2			-	$110 \rightarrow 011$		-L	L H	H	-	-	-	\bullet	$\bullet \cdot$	\bullet	DIE 2
10	-	-	-	L	-			-	-	-		- L	L H	H	-	-	-	$011 \rightarrow 001$	-	-L	$L 2$	H	-	-	-	\bullet	- \cdot	-)
11	-	-	-	L				-		-		L	L L	H		-	-	$001 \rightarrow 010$	-	-L	L H	H2	-	-	-	-	$\bullet \cdot$	-	
12	-		-	L		-				-		2	2 H	2	-	-	-	$010 \rightarrow 101$	-	- \boldsymbol{H}	4 L	${ }^{\text {H }}$	-	-	-	-	-		V
13																													
14	-		-	-	-	-		-		-	-	-	-	-	L	2	2	Uncefind	-	-			H	L	2	\bullet	-	-	Goto 100
15 18	-			-		-		-			-	-	-		H	H	${ }^{1}$		-	-	-	-	H	L	2	-	-	-	
16																													
17 -	-	-	-	-	-	-		-	-	-	-	L	L L	L	-	-	- -	Undefined	-	-	- H	H 2	H	-	-	\bullet	-	-	cos to 101
18 -	-	-	-	-		-	-	-	-	-	-	- H	H H	H	-	-	-	ststector	-	-	- H	H	H	-	-	\bullet	$\bullet \cdot$	-	
19																													
$20-$	-	-	-		-			-		H	-				-	-	-	Orsillater	-	-	- -	-	-	-	-	\bigcirc	A	-	$B_{0}=B_{1}$
21 -	-	-	-	-		-		-	-	H	-				-		-		-	- -	-	-	-	-		\bullet	- \cdot	A	$B(0)_{1}=$ Low
22																													
23																													
24																													
25																													
26																													
27																													
28																													
29																													
30																													
31																													
FC																													
PB																							1			1	1		,
RB																						11			1	1	1	1	1
LB																			11	1	1	11			1	1	1	1	1
PA																				1	1	11			1	1	1	1	1
RA																				1	1	1	11	1	1		1	1	1
LA																				1	1	1	11	11			1	1	
D3																					1	1	11	1			1	1	1
D2																		Encter 21	11	1	1	1	11					1	
D1 -				-				-		-									11	1	1	1	11	1	1				
DO -		-			-	-		- H	H				- -																
PIN		5	4	3	2	9		87	76	61	191	1817	1716		14	413	12		191	1817	1716	615	14	13	12	9	87	6	

Signetics

Application Specific Products

INTRODUCTION

This application note presents the design of a parity generator using Signetics PLD, 82S153 or 82S153A, which enables the designers to customize their circuits in the form of "sum-of-products". The PLA architecture and the 10 bi-directional I/O's make it possible to implement the 9-bit parity generator/checker in one chip without any external wiring between pins. A logic diagram of the device is shown in Appendix A.

The parity of an 8 -bit word is generated by counting the number of " 1 's" in the word. If the number is odd, the word has odd parity. If the number is even, the word has even parity. Thus, a parity generator designed for even parity, for example, will generate a " 0 " if the parity is even, or a " 1 " if parity is odd. Conversely, an odd parity generator will generate a " 0 " if the parity of the word is odd, or a " 1 " if the parity is even. This bit is then concatinated to the word making it 9 -bits

AN21

9-Bit Parity Generator/Checker With 82S153/153A

Application Note

long. When the word is used elsewhere, its parity may be checked for correctness.

FEATURES

- Generates even and odd parities (SUM E and SUMO)
- $\operatorname{SUM}_{\mathrm{E}}=$ "1" for even parity, " 0 " for odd parity
- SUM $_{0}=$ " 1 " for odd parity, " 0 " for even parity
- Generate parity or check for parity errors
- Cascaded to expand word length

DESCRIPTION

The most straight forward way of implementing the parity generator/checker is to take the 9 -input truth table (8 inputs for the 8 -bit word, and 1 input for cascading the previous stage) and put it in a 256×4 PROM. Since there are 2^{9} combinations and half of them is odd,
the other half is even, the circuit will take 256 terms. An alternative is to divide the 9-bits into 3 groups of 3 -bits as shown in Figure 1. If the sum of the 3 -bits is odd, then the intermediate output SU1, or SU2, or SU3 equals 1. Otherwise it equals 0 . The intermediate results are grouped together and SUM O becomes " 1 " if the sum is odd, otherwise SUM M_{0} equals " 0 ". The circuit is implemented using AMAZE as shown in Figure 3. SU1 is an intermediate output for inputs I_{0}, I_{1} and I_{2}. In the same manner, SU2 and SU3 are intermediate outputs for I_{3}, I_{4}, I_{5} and I_{6}, I_{7}, I_{8}. The design uses up 16 product terms and 5 control terms leaving 16 product terms and 4 bi-directional I/O's to implement other logic designs.

The design is tested by using the logic simulator provided by AMAZE. The input test vector is chosen to exhaustively test for all 8 input combinations at all 4 sections of the circuit.

$\mathbf{I}_{\mathbf{0}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{2}}$	SU1
0	0	0	0
0	0	1	1
0	1	1	0
0	1	0	1
1	0	1	0
1	0	0	1
1	1	0	0
1	1	1	1

$\boldsymbol{I}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{4}}$	$\mathbf{I}_{\mathbf{5}}$	SU2
0	0	0	0
0	1	1	0
0	0	1	1
0	1	0	1
1	0	1	0
1	1	0	0
1	0	0	1
1	1	1	1

I_{6}	I_{7}	I_{8}	SU3
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	0
0	0	1	1
0	1	0	1
1	0	0	1
1	1	1	1

SU1	SU2	SU3	SUM $_{\mathbf{O}}$	SUM $_{\mathbf{E}}$
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

Figure 1. Block Diagram of 9-Bit Parity Generator/Checker

********************* FAFGEN \# F I N L I S T \#										
	**	FNC	**F	IN		FIN	**	FNC	**	LABEL
IO	**	I	**	1-1		1-20	**	+5V	**VCC	
11	**	I	**	2-1		i-19	**	10	**SUME	
I2	**	I	**	S-1		1-18	**	0	**SUMO	
13	**	I	**	4-1	8	1-17	**	B	**N/C	
14		I	**	5-i	2	1-16	**	E	**N/C	
15	**	I	**	6-1	5	1-15	**	B	**N/C	
IS	**	I	**	7-1	1	1-14	**	B	**N/C	
17		I	**	8-1	5	1-13	**	0	**SUS	
18		I	**	9-1	3	1-12	**	0	**SU2	
GND	**	OV	**	10-1		i-11	**	0	**SU1	
TB00590s										
Figure 2. Pin List										

```
********************** PARGEN *********************
@DEVICE TYPE
82S153
@DRAWING
********************************** PARITTY GENERATOR/CHECKER
@REVISION
********************************* REV. -
@DATE
********************************* xx/xx/xxxx
@SYMBOL
********************************** FILE ID: PARGEN
@COMPANY
********************************** SIGNETICS
GNAME
@DESCRIPTION
*************************************************************************
* This circuit is a 9-bit parity generator/checker commonly used
* for error detection in high speed data transmission/retrieval.
* The odd parity output (SUMO) is high when the sum of the data
* bits is odd. Otherwise it is low.
* The even parity output (SUME) is high when the sum of the data *
* The even parity output (SUME) is high when the sum of the data *
* bits is even. It is low otherwise.
***************************************************************************
@COMMON FRODUCT TERM
@I/O DIRECTION
"
#*************************************************************************
* SU1, SU2 and SU3 are outputs which are defined in the PIN LIST *
* and therefore they don't need to be defined here again.
##************************************************************************
"
@OUTFUT FOLARITY
#*************************************************************************
* The output polarities of different outputs are defined in the *
* PIN LIST. They don't have to be defined again here.
****************************************************************************
"
@LOGIC EQUATION
#***************************************************************************
* SU1, SU2, and SuS are intermedi ate terms 
                                    TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Inputs} & \multicolumn{2}{|r|}{OUTFUTS} \\
\hline Su3 & 5 S 2 & SU1 & Sumo & SUME \\
\hline 18 & 17 & 16 & Su3 & \\
\hline 15 & 14 & 13 & SU2 & \\
\hline 12 & 11 & 10 & SU1 & \\
\hline 0 & 0 & \% & \(\bigcirc\) & 1 \\
\hline \(\bigcirc\) & 0 & 1 & 1 & 0 \\
\hline 0 & 1 & \(\bigcirc\) & 1 & \(\bigcirc\) \\
\hline \(\bigcirc\) & 1 & 1 & O & 1 \\
\hline 1 & 0 & \(\bigcirc\) & 1 & \(\bigcirc\) \\
\hline 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 1 & - & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}
SU1 = /I2 * /I1 * 10 +/I2 * 11 * /IO +
```



```
    15 * /14 * /13 + 15 * 14 * 13;
sus = /18 * /17 * 16 + /18 * 17 */16 +
    18*/17*/16 + 18 * 17 * 16;
SUMO = /SU1 * /SU2 * SU3 + /SU1 * SU2 * /SU3 +
    SU1 * /SU2 * /SU3 + SU1 * SU2 * SU3 ;
SUME =/(/SU1 * /SU2 * SU3 + /SU1 * SU2 * /SU3 +
                SU1 * /SU2 * /SU3 + SU1 * SU2 * SU3) ;
```

Figure 3. AMAZE Implementation of the Parity Generator/Checker Circuit

Table 1. Programming Table

9－Bit Parity Generator／Checker With 82S153／153A

```
"
* simulate the logical functior.
\begin{tabular}{lll}
\("\) & SS & \\
\("\) & EXPECTED \\
& UU SSS & OUTPUTS
\end{tabular}
"IIIIIIII MMBEBBUUUI BBEEE
"76543こ10 EO7E54ここ18 983こ1
    LLLLLLLL /////////L
    HLHHLHLL /////////H "LHLLH
    LHHLLHHL /////////H "LHLHL
    HHLHLLHL /////////L "HLLHH
    LLHLHHLH /////////H "LHHLL
    HLLHHLLH /////////L "HLHLH
    LHLLHLHH /////////L "HLHHL
    HHHHHHHH /////////H "LHHHH
QUIT
```

**

* Tinis is a test pattern for the 9 -bit parity gerierator/checker
* circuit. The simulator will use this file as ari iriput to

a．Input Pattern PARGEN．TST

825153 A：pargen．STD
＂This file is the result of logic simulation of the parity generator／checker
＂circuit．The inputs are read from input file FARGEN．TST
＂INPUTS $\langle=\mathrm{E}(\mathrm{I} / 0)=>$ TRACE TERMS
＂ $76543210 \quad 9876543210$
－
00000000 HL．．．．LLLO ；
10110100 LH．．．．LLH1 ；
01100110 LH．．．．LHL1 ；
11010010 HL．．．LHHO ；
00101101 LH．．．．HLL1；
10011001 HL．．．．HLHO ；
01001011 HL．．．．．HHLO；
11111111 LH．．．．．HHH1 ；
＂
＂－－－－－－－－－－－－－－－－－－I／O CONTROL LINES
＂OOIIIIOOOI 001 IIIOOOI designated i／o usage ACTUAL I／O USAGE
＂PIN LIST．．．
$\begin{array}{lllllllllllllllll}\prime \prime & 08 & 07 & 06 & 05 & 04 & 03 & 02 & 01 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12\end{array} 11009 ;$
b．Output File From SIMULATOR
Figure 4．Test Vectors

9-Bit Parity Generator/Checker With 82S153/153A
 AN21

APPENDIX A

NOTES:

1. All programmed "AND" gate locations are pulled to logic "1".
2. All programmed "OR" gate locations are pulled to logic " 0 ".
3. Programmable connection.

Figure A-1. FPLA Logic Diagram

a. Basic Gates Configuration

LABEL	** FNC	**PIN		PIN**	FNC	** LABEL
A	** I	** 1-:		:-20 **	+5V	**VCC
B	** I	** 2-:		1-19 **	0	**A_NOR_B
D	** I	** 3-1		: -18 **	10	**A_OR_B
E	* I	** 4-i	8	:-17 **	10	**D_NAND_E
N/C	** I	** 5-i	2	: -16 **	0	**A_AND_B
N/C	** I	** 6-:	5	1-15**	10	**AB_OR_DE
N/C	**/B	** 7-i	1	: -14 **	0	**AB_NOR_DE
N/C	**/B	** 8-:	5	: -13 **	10	**A_XOR_B
$\mathrm{A}-\mathrm{C}_{-} \mathrm{B}$	* 0	** 9-1	1	: -12 **	0	**A_EQU_B
GND	** OV	** 10-:		:-11 **	0	**A_N_B-

b. Pin List

Figure 1

```
******************* TK1S1-1 ******N**************
QDEVICE TYPE
************ 825151
ODRAWING
************ FIGURE 1. BASIC GATE CONFIGURATIONS
EREVISION
############ TK151-1 REV. O
EDATE
************ JLLY 10, 1985
ESYMBOL
#*********** TK151-1
ecompANY
************ SIGNETICS
ENAME
************ DAVID K. WONG
QDESCRIPTION
This file contains the 6 basic logic gates: AND, NAND, OR, NOR, XOR and EQU.
CCOMMON PRODUCT TERM
EI/O DIRECTION
EOUTPUT POLARITY
EI/D STEERING
QLOGIC EQUATION
QLOGIC EQUATION
A_AND_B = A *B;
D_NAND_E = /(DD*E);
A_OR_B =/(1A*/B;;
A_NO\overline{R_B =/A */B;}
AB_OR_DE = /( /(A_AND_B) * D_NAND_E ) ;
AB_NOR_DE =//(A_AND_B) * D_NAND_E ;
A_\mp@subsup{N}{_}{\prime-}
A-NB = =/A B ;
A_XOR_B = /(/(A_N_B-)*/(A-_N_B));"Equivalent to (A */B) + (/A * B) "
A_EQU_B =/(A_N_B-)*/(A-_N_B); " "Equivalent to (/A */B) + (A * * B *)"
```

Table 1. Program Table of Basic Gate Configurations

R1-
SI-
RR2
SS2
DIN
LE-
N/C
N/C
N/C
GND
** FNC

b. Pin List

Figure 2


```
EDEVICE TYPE
825151
ODRAWING
```



```
*************
EREVISION (
######
```



```
ESYMBOL
**#********* TK151-2
ECONPANY
******###########
ENANE
************ DAVID K. WONG
#DESCRIPTION
This files contains basic configurations of two RS-latches and a D-1atch.
This files contains b
QI/O DIRECTION
QI/O DIRECTION
EI/O STEERING
ELOGIC EQLATION
* ##################################
    #*###############################
```



```
Q1- =/ (/R1- Q1 ) ;
Q1 =/(/S1-*Q1-);
"*********************************
    * CROSS-COUPLED NOR RS-LATCH *
```



```
******##########*************####
Q2- = RR2 * Q2 ;
".##***##############################
    **************NTCH
```



```
D_N_LE = DIN * LE- ;
QS_N_LE- = QS */LE- ;
```


Table 2. Program Table of Basic Latches

a. 4-Bit D-Latch

 *

LABEL	** FNC	**PIN		PIN**	FNC	**	LABEL
DINO	** I	** 1-1		1-20 **	+5V	**VCC	
DIN1	** I	** 2-i		: -19 **	B	***O	
DIN2	** I	** 3-:		:-18 \#*	B	**Q1	
DINJ	** I	** 4-1	8	: -17 **	B	**Q2	
LE-	** I	** 5-i	2	: -16 **	B	**Q3	
N/C	** I	** 6-1	5	:-15 **	B	**FBO	
N/C	**/B	** 7-1	1	:-14 **	B	**FB1	
N/C	**/B	** 8-1	5	:-13 **	B	**FB2	
N/C	**/B	** 9-1	1	:-12**	B	**FB3	
GND	** OV	** 10-1		(-11 **	/B	**N/C	

b. Pin List

Figure 3

```
##*####################
eDEVICE TYPE
82S151
edRAWING
************* FIGURE 3. 4 BIT D-LATCH
EREvISION
************ TK151-3 REV. O
EDATE
************ JULY 10, 1985
esymbol
************ TK151-3
ECOMPANY
************ SIGNETICS
QNAME
************ DAVID K. WONG
@DESCRIPTION
This file contains a 4-bit D-latch. External jumper is required for each latch
between Qn and FBn. When LE- is HIGH, outputs QO, Q1, Q2, and Q3 are active and
outputs FBO, FB1, FB2, and FB3 are tri-stated. On, therefore, equals Dn when
LE- is HIGH. When LE- becomes LOW, Q outputs are tri-stated, and FB outputs are
active. Since FB outputs feedback, to their own inputs, they, are latched to
whatever level the Q outputs were in when LE- goes from HIGH to LOW.
whatever level the ecOMmON PRODUCT TERM
EI/O DIRECTION
DO = /( /LE- );
@OUTPUT POLARITY
@I/O STEERING
@LOGIC EQUATION
QO = DINO
= DIN1
= DIN2;
Q3 = DINS ;
FBO = QO
FB1 = Q1
FB2 = Q2 
FB2 = Q2 ;
```

c. Boolean Equations of 4-Bit D-Latch

Figure 3 (Continued)

Table 3. Program Table of 4-Bit D-Latch

D01310S
Pulse Shaper
a. Single Pin Switch Debouncer and Pulse Shaper

LABEL	** FNC	**P	IN		PIN**	FNC	** L	LAEEL
IN2	** I	**	1-:		: -20 **	+5V	**VCC	
N/C	** I	**	2-:		: -19 **	0	**IN1	
N/C	** I	**	3-1		: -18 **	10	**IN2-	
N/C	** I	**	4-:	8	: -17 **	0	**OUT2	
N/C	** I	**	5-:	2	t-16**	/B	**N/C	
N/C	** I	**	6-:	5	:-15 **	/B	**N/C	
N/C	**/B	**	7-1	1	:-14 **	/B	**N/C	
N/C	**/B	**	8-1	5	: -13 **	/B	**N/C	
N/C	**/B	**	9-1	1	t-12**	/B	**N/C	
GND	** OV	**	10-:		:-11 **	/B	**N/C	


```
|DEVICE TYPE
825151
EDFAWING
************ PLSI5I TOOLKIT FIGURE 4
RREVISION
***####***** tk151-4 REV. O
eDATE
############# JuLY 10, 1985
@SYMBOL
************ TK151-4
ECOMPANY
************ SIGNETICS
ONAME
##*########* DAVID K. WONG
ODESCRIPTION
This file contains a single pin debouncer and a pulse shaper.
This file contains a
ECONHON PRODUCT
GOUTPUT POLARITY
@I/O STEERING
eLOGIC EQUATION
```



```
    * DEBOUNCER -- This circuit uses one bidirectional pin to de-
    * bounce a single pole double throw switch. When
    * the switch is thrown to its opposit polarity,
    * it shorts the output to Vce or ground. One pro-
    * pagation delay later, the output is switched to
```



```
IN1 = IN1;
"******************************************************************
    * PULSE SHAPER -- This circuit creates a LOW-to-HGH glitch
    * PLIN SHAPER -- This Ch has the pulse width of one prop delay.
    * Wider pulse width may be generated with add-
```



```
IN2- = ( IN2 ) ;
OUT2 = IN2- * IN2 ;
```

c. Boolean Equations of Single Pin and Pulse Shaper

Figure 4 (Continued)
Table 4. Program Table of Single Pin Debouncer and Shaper

Signetics

Application Specific Products

INTRODUCTION

THE PLS168/168A is a bipolar Field-Programmable Logic Sequencer as shown in Figure 1, which consists of 12 inputs, a 48 product term PLA and $14 \mathrm{R} / \mathrm{S}$ flip-flops. Out of the 14 flip-flops, six are buried State Registers ($\mathrm{P}_{4}-\mathrm{P}_{9}$), four Output Registers ($F_{0}-F_{3}$), and four Dual-purpose Registers ($P_{0}-P_{3}$), which may be used as Output or State Registers. All flip-flops are positive edge-triggered. They are preset to "1" at power-up, or may be asynchronously set to " 1 " by an optional PR/OE pin, which may be programmed either as a preset pin or as an Output Enable pin. Additional features includes the Complement Array and diagnostics features.

ARCHITECTURE

As shown in Figure 2, the device is organized as a decoding AND-OR network which drives a set of registers some of which, in turn, feedbacks to the AND/OR decoder while the rest serve as outputs. Outputs P_{0} to P_{3} may be programmed to feedback to the AND/OR decoder as State Registers and, at the same time, used as outputs. The user now can design a 10 -bit state machine without external wiring. The AND/OR array is the classical PLA structure in which the outputs of all the AND gates can be programmed to drive all

AN23

PLS168/168A Primer

Application Note

the OR gates. The schematic diagram of the AND-OR array is shown in Figure 3. This structure provides the user a very structured design methodology which can be automated by CAD tools, such as Signetics AMAZE software package. The output of the PLA is in the form of sum-of-products which, together with the RS flip-flops, is the ideal structure for implementation of state machines. (Refer to Appendix A for a brief description of synchronous finite state machines.)

Design Tools

A direct approach to implement a design using the PLS168/168A is the H/L table supplied in the data sheet as shown in Table 1. The table is organized according to input and output of the PLA decoding network. The lefthand side of the table represent the inputs to the AND-array, which includes input from input pins and present state information from the feedback buffers which feedback the contents of the State Register. The righthand side of the table represents the output of the OR-array, which drives the State and Output Registers as the next state and output. Each column in the lefthand side of the table represents an input buffer, which may be inverting, non-inverting, disconnected or unprogrammed. Each column in the righthand side of the table represents a pair of outputs to the flip-flops, which may be set, reset,
disconnected, or unprogrammed. The programming symbols are $\mathrm{H}, \mathrm{L},-$, and 0 . (See Figure 4 for details.) For inputs buffers, " H " means that the non-inverting buffer is connected, " L " means that the inverting buffer is connected, "--" means that both inverting and non-inverting buffers are disconnected, and " 0 " means that both inverting and noninverting buffers are connected which causes that particular AND-term to be unconditionally Low. On the output side of the table, " H ' means that the particular AND-term is connected to the OR-term on the " S ' input of the particular flip-flop, "L" means that the ANDterm is connected to the " R " side, "-" means that the AND-term is not connected to the flip-flop at all, and ' 0 " means that the AND-term is connected to both the "S" and " R " sides. More details of the symbols and their meanings are shown in Appendix B. Each row in the table represents an ANDterm. There are 48 AND-terms in the device. Therefore, there are 48 rows in the table. An example of implementing a transition from one state to another is shown in Figure 4a. The state diagram can be implemented by the PLS168 as shown in Figure 4b. The state diagram is translated into H/L format as shown in Figure 4c. The first column on the lefthand side of the table is for the Complement Array which will be discussed in detail in the next section.

PLS168/168A Primer

PLS168/168A Primer

Table 1. PLS168/168A Programming Table

Figure 2. The Architecture of PLS168/168A

Figure 3. Schematic Diagram of AND-OR Array

a. State Diagram
b. Implementation of State Diagram (a) With PLS168

TBu2010S
c. PLS168 Programming Table

Figure 4. Implementing State Machine with PLS168

LDO2600S
Figure 5. Logic Diagram of Complement Array

Complement Array

An additional feature is tho Complement Array, which is often used to provide escape vectors in case the stato machines get into undefined states during powor-up or a timing violation due to asynchronous inputs. A logic diagram of the Complement Array is shown in Figure 5. The output of the Complement Array is normally Low when one or more ANDterms are High. If all of the AND-terms are Low, then the output of the Complement

Array will be High. In this example, if each AND-term is a decoder for a particular state and input combination, and if the circuit gets into an undefined state, none of the ANDterms will be High. Therefore, the output /C will be High, which will then enable the ANDterm S which in turn may be used to reset all registers to Low or High as predefined. The state machine thus escapes from being in an undefined state by using the Complement Array and one AND-term. Without the Complement Array an alternate way of escaping
from being in an undefined state is by defining all possible states which are not being defined. This method may require quite a few AND-terms depending on the design. Another application for the Complement Array is illustrated by the following example. As shown in Figure 6, when the machine is in state 23, if input vector equals 1001, it will go to next state 24. If the input is 1101, then go to state 25. But if the input is neither 1001 nor 1101, then go to state 03. It takes only two terms to implement the first two transition vectors. To implement the third vector "go to state 03 if input is neither 1001 nor 1101', the Complement Array accepts the outputs of the first two AND-terms as inputs. If the input vector is neither 1001 nor 1101, then both terms will be Low, which causes the output of the Complement Array (/C) to be High. A third AND-term is used to AND state 24 and /C together to set the registers to state 03. The State Diagram is translated into AMAZE syntex as shown in Figure 6b, where all vectors are in square brackets and the Complement Array is represented by the ELSE statement. The State diagram Figure 6 a can also be expressed in the format of a program table as shown in Figure 6c. The complement array may be used to exit from different present states to different next states. It can be used many times in one state machine design as shown in Figures $7 \mathrm{a}, \mathrm{b}$, and c where the state diagram is implemented using the AMAZE state equation syntex and the H / L format.

PLS168/168A Primer

a. State Diagram

WHILE [23]
IF [1001] THEN [24] WITH
[OUT1]
IF [1101] THEN [25] WITH
[OUT2]
ELSE: [03] WITH [OUT9]
b. AMAZE State Equation Syntex

c. H/L Format

Figure 6. Application of Complement Array

a. State Diagram

WHILE [00]
IF [0000] THEN [01] WITH [OUTO]
IF [0001] THEN [02] WITH [OUT1]
ELSE: [3F] WITH [OUT9]
WHILE [01]
IF [0010] THEN [03] WITH [OUT2]
IF [0011] THEN [04] WITH [OUT3]
ELSE: [2F] WITH [OUT6]
WHILE [02]
IF [0100] THEN [05] WITH [OUT4]
IF [0101] THEN [06] WITH [OUT5]
ELSE: [2F] WITH [OUT7]
b. AMAZE State Equation

	AND																		OPTION (PRIOE)											
C	INPUT										PRESENT STATE								NEXT STATE				L					UT	PU	
	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	9	$8 \vdots 7$	6	5	$4 \vdots 3$	2	1	0	9	8:7	6	5	$4 \vdots 3$	2	1	0	9		6	5	$4 \div 3$	2	1	0	3	2	1	0
00 A	L	L	L	L	-	-	-	-	-	-	L	$L \vdots L$	L	L	L	-	-	-	L	$L \vdots L$	L	L	H:-	-	-	-	L	L	L	L
01 A	L	L	L	H:-	-	-	- -	-	-	-	L	$L \vdots L$	L	L	$L \vdots-$	-	-	-	L	$L \vdots L$	L	H	L \vdots -	-	-	-	L	L	L	H
$02 \cdot$	-	-	-	-	-	-	-	-	-	-	L	$L \vdots L$	L	L	L	-	-	-	H	H: H	H	H	H:-	-	-	-	H	L	L	H
03				!			!								?								\vdots							
04 A	L	L	H	L:-	-	-	$-\vdots-$	-	-	-	L	$L \vdots L$	L	L	H:-	-	-	-	L	$L \vdots L$	L	H	H:-	-	-	-	L	L	H	L
05 A	L	L	H	H:-	-	-	-	-	-	-	L	$L \vdots L$	L	L	H:-	-	-	-	L	$L \vdots L$	H	L	L : -	-	-	-	L	L	H	H
06 -	-	-	-	-	-	-	-	-	-	-	L	$L \vdots L$	L	L	H:-	-	-	-	H	$L \vdots H$	H	H	H:-	-	-	-	L	H	H	L
07																														
08 A	L	H	L	L	-	-	-	-	-	-	L	$L \vdots L$	L	H	L	-	-	-	L	$L \vdots L$	H	L	H:	-	-	-	L	H	L	L
09 A	L	H	L	H:	-	-	- -	-	-	-	L	$L \vdots L$	L	H	L \vdots -	-	-	-	L	$L \vdots L$	H	H	L	-	-	-	L	H	L	H
$10 \cdot$	-	-	-	-	-	-	-	-	-	-	L	$L \vdots L$	L	H	L	-	-	-	H	L H	H	H	H:-	-	-	-	L	H	H	H
11				\vdots								\vdots																		
$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	$\begin{array}{\|r\|} \hline 1 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{array}{\|l:l} \hline 2 & \vdots \\ 1 & 2 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 2 \\ \hline \\ \hline \end{array}$	2	$3: 4$	5	6	7													$\begin{aligned} & 1 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 1 \\ \hline \end{array}$	9	8
N A M E	$\stackrel{m}{2}$	ㄴ	§	京																			\vdots				M	N	$\overline{3}$	a

c. PLS168 Programming Table

Figure 7. Applications of Complement Array

Figure 9. Difference in Propagation Delay Due to Different P-Term Loading

Figure 8

Optional Preset/Output Enable

The PR/OE pin provides the user with the option of either using that pin to control the Tri-state output buffers of the Output Registers, or have that pin to asynchronously preset all registers to High. The purpose of the preset function is to provide the system a way to set the PLS168 to a known state, all Highs. The output enable function are sometimes used where the state machine is connected to a bus which is shared by other output circuits. It is also used during power-up sequence to keep the PLS168 from sending power glitches to other circuits which it drives. By programming the PR/OE pin to control the Tri-state output buffers, the preset function is permanently disabled. By programming the PR/OE pin to control the asynchronous preset of the registers, the output buffers are permanently enabled. While using the preset function to asynchronously preset the register, if a rising edge of the clock occurs while the preset input is High, the registers will remain preset. Normal flip-flop operation will resume only after the preset input is Low and the rising edge of the next clock. Setting the registers to a predefined pattern other than all Highs may be accomplished by using a dedicated p-term, which is activated by an input pin which will also inhibit all other p-terms which are being used. The inhibiting of other p-terms eliminates the problem of undetermined state of an RS flip-flop caused by having Highs on both R and S inputs.

Diagnostic Features

In debugging a state machine, sometimes it is necessary to know what is the content of the state register. The buried State Register may be read by applying +10 V on I_{0}, which will cause the contents of register bits P_{4} to P_{5}, P_{6} to P_{9} to be displayed on output pins F_{2} to F_{3} and P_{0} and P_{3} respectively. While the device can handle the +10 V on pin I_{0}, prolonged and continuous use will cause the chip to heat up since more power is being dissipated at +10 V . To facilitate more expedient functional tests, synchronous preset vectors as described above may be used to set the State Register to different states without having to go through the entire sequence.

Timing Requirements

Since the PLS168 is intended to be a synchronous finite state machine, the inputs are expected to be synchronous to the clock and set-up and hold time requirements are expected to be met. In general, the set-up time requirement is measured at its worst case as having the entire AND-array connected to the OR-term being measured and there is only one active AND-term to drive the entire line. The set-up time decreases from there as less p-terms are used. This is due to the capacitance of the unused AND-terms being removed from the line. Figure 8 a shows the typical set-up time requirement of a PLS168A device. Figure 8b shows the normalized setup time as a percentage of the worst case,
which is with 48 terms connected. In a typical state machine design, some flip-flops will change states more frequently than others. Those that change more frequently will have more p-term loading on its OR gates than those that change states less frequently. The different loadings on the OR-terms cause different delay on the inputs of the flip-flops as shown in Figure 9. If an input fails to meet the set-up time specification, it is possible that the resultant of the input change gets to one set of flip-flops before the rising edge of the clock while it gets to other flip-flops during or after the clock's rising edge. The result is that some flip-flops have changed states and some have not, or some get into metastable condition as shown in Figure 10. The state machine is now either out of sequence or is in an undefined state. This problem often occurs with asynchronous inputs which is generated totally independent of the clock on the system. A common remedy for the problem of asynchronous inputs is to use latches or flipflops to catch the input and then synchronously feed it to the state machine. This minimizes the problem with the different propagation delays due to different p-term loading. But there is still a finite probability that the external latches or flip-flops will get into metastable condition, which may be propagated into the state machine. Nevertheless, the window for the flip-flops in state machine to get into undefined states or metastable condition is narrowed by a great extent.

APPENDIX A

INTRODUCTION TO STATE MACHINE

A state machine is a synchronous sequential circuit which interprets inputs and generates outputs in accordance with a predetermined logic sequence. It is analogous to running a computer program with a computer. The state machine, with its sequence coded in hard-
ware, can run much faster than a computer running the sequence in software. Therefore, it is often used in controller applications where speed is important.

Generally, state machines may be classified as Mealy or Moore machines as shown in Figures 1a and 1b. The fundamental difference of the two types are: the output of a Moore machine is a dependent of only the
state of the memory elements whereas the output of a Mealy machine is a dependent of both the state of the memory elements and the inputs to the state machine. The figures also show graphic representations of the logic sequence in the form of state diagram in which the bubbles represent state vectors, and the arrows represent transitions from present states to next states.

Appendix A-2. Mealy Machine Model

APPENDIX B

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Table on the following page.

In this table, the logic state or action of control variables C, I, P, N, and F, associated with each Transition Term T_{n}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:
"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

'COMPLEMENT' ARRAY - (C)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Signetics

人

Application Specific Products

DESCRIPTION

The PLS173 is a 24-pin PLA device which has 10 bidirectional outputs and 12 dedicated inputs. The output of the device is the sum of products of the inputs. The polarity of each output may be individually programmed as Active-High or Active-Low. A logic diagram of the device is shown in Appendix A. A 10-bit comparator similar to the 74LS460 compares two 10-bit data inputs to establish if EQUIVALENCE or NOT EQUIVALENCE exists. The output has True and Complement comparison status outputs. The logic diagram of the comparator is shown in Figure 1.
The truth table is as shown in Table 1 where vectors a and b are 10-bit inputs to A9 to A0 and B 9 to B 0 . If the input to $\mathrm{A} 9-\mathrm{A} 0$ is bit-to-bit equivalent to the input to $\mathrm{B} 9-\mathrm{BO}$, the two input vectors are considered EQUIVALENT, and output EQ goes High and NE goes Low. If the two input vectors are not bit-to-bit equivalent, then EQ goes Low and NE goes High. The circuit is implemented with AMAZE as shown in Figures 2a, 2b and 2c. The result of logic simulation of the circuit is shown in Figure 2d.

AN24
PLS173 as a 10-Bit Comparator, 74LS460

Application Note

Notice that on the OR side of the program table in Figure 5, all the fuses in the OR-term are intact, which means that all the ANDterms are still connected to all the OR-terms. This feature provides for future modification. But if all the unused AND-terms are deleted, the device will run faster. There are also many unused AND-terms which will provide for future modification. But if they are deleted (both on the AND and OR side), it will amount to about $450 \mu \mathrm{~A}$ per term power saving. Figure 3 is the program table with all unused terms deleted.

Table 1. Function Table

$\mathbf{A}_{9}-\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{9}-\mathbf{B}_{\mathbf{0}}$	EQ	NE
a	a	H	L
b	b	H	L
a	b	L	H
b	a	L	H

Figure 1. Logical Equivalent Circuit of 10-Bit Comparator


```
******************** AN24_173 ********************
gDEVICE TYPE
82S173
EDRAWING
............... 10-EIT COMPARATOR USING PLS173
GREVISION
......-............ REV-O
@DATE
.................. OCT-14-85
@SYMEOL
................. AN24_173
@CDMPANY
*................. SIGNETICS
eNAME
.................. DAVID WONG
```

GDESCRIPTION
This circuit compares two 10 -bit inputs. If they are bit-to-bit equivalent,
outputs EQ goes HIGH and NE goes LOW. If the inputs are not bit-to-bit equiv-
alent to each other, outputs EQ goes LOW and NE goes HIGH.
ecommon product term

EI/O DIRECTION
GOUTPUT POLARITY
@LOGIC EQUATION
$E Q=16 T 0+T 1+T 2+T 3+T 4+T 5+T 6+T 7+T B+T 9+$
$T 10+T 11+T 12+T 13+T 14+T 15+T 16+T 17+T 18+T 19) ;$
$N E=T O+T 1+T 2+T 3+T 4+T 5+T 6+T 7+T B+T 9+$
$T 10+T 11+T 12+T 13+T 14+T 15+T 16+T 17+T 18+T 17$;

" AMAZE FILE ID: AN24-173
" LOGIC SIMLLATION OF 10-BIT COMPARATOR
"
" $\langle==$ INPUTS $=\gg<=B(1 / 0) \Rightarrow$ TRACE TERMS
" 11
" 1098765432109876543210
n
000000000000 0000LHOOOO ;
010000000000 0000HLO000
100000000000 0000HL0000
110000000000 0000LHOOOO ;
000100000000 0000HL 0000 ;
001000000000 0000HL 0000 ;
001100000000 0000LHOOOO
000001000000 0000HLOOOO ;
000010000000 0000HL 0000 ;
000011000000 0000LH0000
000000010000 0000HL 0000
000000100000 0000HL 0000 ;
000000110000 0000LHOOOO ;
000000000100 0000HL 0000
000000001000 0000HL0000
000000001100 0000LH0000 ;
000000000001 0000HL0000
000000000010 0000HL 0000
000000000011 0000LHOOOO
000000000000 0100HLL0000;
000000000000 1000HL0000
000000000000 1100LH0000
000000000000 0001HL 0000
000000000000 0010HL0000;
000000000000 0011LHOOOO
000000000000 0000HLL0100
000000000000 0000HL1000;
000000000000 0000LH1 100 ;
000000000000 0000HL 0001 ;
000000000000 0000HL0010 ;
000000000000 0000LH0O11;
"
"
"
IIIIOOIIII
IIIIOOOIIII
DESIGNATED I/O USAGE
ACTUAL I/O USAGE
" PINLIST...
$\begin{array}{llllllllllll}\text { " } & 13 & 11 & 10 & 09 & 08 & 07 & 06 & 05 & 04 & 03 & 02\end{array} 01$
$\begin{array}{lllllllllll}11 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14\end{array} ;$
d. Test Vectors Generated by AMAZE After Logic Simulation

Figure 2 (Continued)

PLS173 as a 10-Bit Comparator, 74LS460

APPENDIX A

FPLA LOGIC DIAGRAM FOR PLS173

Signetics

Application Specific Products

DESCRIPTION

The following is the implementation of a counter/controller using a PLS157. This system counts and controls the number of entries to a certain media. For example, it can be used as a parking-lot controller to keep track of the number of cars entering a parking lot, and restricting any entries when the parking lot is full.

The design utilizes the six registers, six bidirectional I/O lines and the general architecture of the PLS157. In this design, the user can set the maximum number of entries using

AN25
A Simple Entry/Exit Metering Device

Application Note

external switches. Since the six registers in the device are used as a six-bit counter, the maximum number that can be set is 2^{6}. However, the design can be cascaded to increase the number of entries.

SYSTEM OPERATION

The basic system configuration is shown in Figure 1. As can be seen from this figure, the system can be expanded indefinitely. All the devices in cascade are identical to each other. Whenever there is a need for expanding the maximum number of counts, a device

Figure 1. System Configuration

LSO9:30S
Figure 2. /ENAB_CTRL Output Configuration
can be programmed identical to the device(s) already in the system and added in cascade.

There are external switches connected to the bi-directional inputs of the flip-flops. The user sets the maximum count in binary with the switches and loads the value into the registers. If the maximum count necessary exceeds the number available in one device, then another device is cascaded to the existing device. For example, in a system with two devices, the maximum available increases to 2^{12} or 4096.
When the maximum count is set, the control circuitry is used to keep track of the number of entries and exits. In the case of a parking lot, a pressure sensor can be used at the entrance and exit to generate a pulse which triggers the control circuitry. An alternative could be light beam sensors to generate the necessary pulses.
The operation of the system is such that each entry decreases the maximum count stored in the registers by one. When the count is zero, it means that the media is full and the control circuitry generates a signal to disable any further entries to the system. On the other hand, each exit increases the count by one. Since it is assumed that the media is empty when the maximum count is set, it is, therefore, impossible to physically count past the maximum set number. This is due to the fact that there cannot be more exits from the system than the actual number of objects residing in the system. If there are objects in the system when the maximum number is set, these objects should also be taken into consideration when setting the maximum count.

CONTROL SIGNALS

The following is the explanation of the control signals shown in Figure 1.
The /ENTRY and /EXIT inputs signify an entrance or exit to or from the respective media and are triggered from the sensors at the entrance and exit. Each entry causes a count-down from the maximum set number until all the flip-flops are low. This means that the system is full and the count-down should be disabled.

Figure 3. Single Device Configuration

When all the flip-flops are low, the /FULL_N signal which is an Active-Low output is activated. The count-down is enabled by the /ENAB_DN input, which is connected externally to the /ENAB_CTRL line. The /ENAB_CTRL is a Tri-state output which is controlled by the /FULL_N signal. When all the flip-flops are low, the /FULL_N signal deactivates the /ENAB_CTRL output as shown in Figure 2.
All of the /ENAB_CTRL outputs are connected to the /ENAB_CTRL bus as shown in Figure 1. When the media is full, all the /ENAB_CTRL signals are deactivated which cause the count-down to be disabled.

An exit causes a count up. As mentioned before, the total number of exits from the system cannot exceed the total number of entries.

The /ALLHIGH_N signal is an Active-Low output which becomes low when all the flipflops are high. Figure 3 shows the configuration of a single device.

The /FULL_N and /ALLHIGH_N signals are used to activate the /FULL_N-1 and /AL-LHIGH_N-1 of a cascaded device. These

Figure 4. Cascaded Configuration

Table 1. An Up/Down Count Sequence Example

DEV. B		DEV. A		DEV. B		DEV. A	
FOB	F1B	FOA	F1A	FOB	F1B	FOA	F1A
	0	0	1	0	0	0	0
	0	0	0.	0	0	0	1
	1	1	1	0	0	1	0
	1	1	0	0	0	1	1.
	1	0	1	0	1	0	0
	1	0	0	0	1	0	1
0	0	1	1	0	1	1	0
0	0	1	0		1	1	$1)$
0	0	0	1	1	(0)	0	0
0	0	0	0	1	0	0	1
COUNT DOWN					coun	UP	

signals will be explained in detail shortly. The /FULL_N signal is also used to trigger any control circuitry used to restrict any further entries to the system. In the case of a parking lot, the /FULL_N can be used to activate a light or close the entrance gate.
The EXOR output is used to clock the system and is externally connected to the CLK input of the device. The EXOR generates a clock pulse when either an exit or entry take place. This restricts the system from counting if a simultaneous entry and exit takes place.
To set the maximum count, the user can use switches connected to inputs FO-F5 of the device(s). Then by bringing the /LOAD input low and triggering the /ENTRY or /EXIT inputs to generate a clock pulse, the data from these switches can be latched into the registers.

CASCADE DEVICE EXAMPLE

This is an example of two cascaded devices. Figure 4 shows the cascade configuration of devices ' A ' and ' B '. For the sake of simplicity, it is assumed that each device contains only two registers. This assumption gives clarity to the explanation, and can be extended to cover the six registers contained in each device.

As an example, it is assumed that the maximum count to be implemented in this example is 1001 in binary. In other words, the maximum number of entries is set to be 'ten'. FOA and F1A are the registers in device A, and FOB and F1B are the registers in device B. 10 is the input sequence to device B and 01 is input sequence to device A.

The count-up and count-down sequences are shown in Table 1.

Table 2. Count Sequence

A Simple Entry/Exit Metering Device

In the 1001 example, FOB is the MSB (Most Significant Bit) and F1A is the LSB (Least Significant Bit). As can be seen in Table 1, a count-down occurs in device ' B ', when FOA and F1A are both low. When FOA and F1A are low, this means that the /FULL_N signal is active. The /FULL_N-1 input of device ' B ' is connected to the FULL_N output of device ' A '. Therefore, a count down occurs in device 'B' only when the input to /FULL_N-1 goes low. In this manner, the count-down sequence in Table 1 can be implemented.
Similarly, for the count-up sequence, a countup occurs in device ' B ' only when both FOA and F1A are high. At this point, the /ALLHIGH_N signal becomes active. Therefore, a count-up occurs in device ' B ' only when /ALLHIGH_N of device ' A ' is active.

UP/DOWN COUNTERS

An up-down counter is implemented in each device to keep track of the number of entries and exits. To implement these counters the flip-flops are set in the toggle mode. Table 2 shows the count sequence.
The following conditions are true for the count-up sequence:

Table 3a

REGISTER	TRUE CONDITION FOR TOGGLE
F0	Unconditionally Toggle
F1	F0
F2	F0*F1
F3	F0*F1*F2
F4	FO*F1*F2*F3 $^{\text {F5 }}$
F0*F1*F2*F3*F4	

Similarly, for the count-down sequence:
Table 3b

REGISTER	TRUE CONDITION FOR TOGGLE
F0	Unconditionally Toggle
F1	/F0
F2	/F0*/F1
F3	/F0*/F1*/F2*
F4	/F0*/F1*/F2*/F3
F5	/F0*/F1*/F2*/F3*/F4*

Figure 6. System Clock

Figure 7

CONTROL SIGNALS

The following are the control signals used to control the operation of the devices:

The logic diagram for generating the 'CNTUP' and 'CNT-DN' signals is shown in Figure 5.

As can be seen from this figure, a count-up occurs when the following is true:
a) An exit takes place and,
b) the system is not loading in any data and, c) the previous stage has generated the /ALLHIGH_N-1 signal.

A count-down occurs when:
a) An entry takes place and,
b) the system is not loading in any data and, c) the previous stage has generated the /FULL_N-1 signal and,
d) the media is not full, thus /ENAB_DN signal is low.
The system clock is generated using the CNT-UP and CNT-DN signals. The system is
to be clocked only when an exit or entry takes place. In order to prevent the system from being clocked when a simultaneous entry and exit takes place, these two signals are exclu-sive-OR'ed (Figure 6).

The equations shown in (Tables 3a and 3b) are generated using Signetics AMAZE software (Figures 7 and 8). The resulting program table is shown in Table 4.

A Simple Entry/Exit Metering Device

```
@DEVICE TYPE
FLX157
GDRAWING
GREVISION
@DATE
10-31-85
@SYMBOL
ENTR/EXIT METER
gCOMPANY
SIGNETICS
gNAME
ALI GHEISSARI
GDESCRIPTION
*****************************************************************************
* The following is the implementation of a Entry/Exit Meter. A
* application of this device would be in controlling the number of
* entries to a certain media. An example is a parking lot controller
* for restricting the number of cars entering the lot.
* The maximum rumber is programmable and the design can be cacaded to *
* Accomodate an increase in the number of entries.
* The system counts down from the maximum set number to zero
* The number of exits cannot exceed the maximum count set by the
* external switches,therefore the upper limit on the count will never *
* be exceeded.
*************************************************************************
```

@COMMON FRODUCT TEFM
UFCNT $=/$ LOAD * EXIT * ALLHIGH N-1; "UFCNT is the signal generated for "activating the count-up from the ENTRY"
"input and the ALLHIGH signal from any "
"connected devices
DNCNT $=/$ LOAD $*$ ENTFY * FULL N-1; \quad DNCNT is similar to UFCNT except it is "
"generated for the count down
ALL-HIGH $=/ F O * / F 1 * / F 2 * / F 3 * / F 4 * / F S ;$
ALL-LOW $=F O * F 1 * F 2 * F 3 * F 4 * F 5 ;$
aCOMFLEMENT ARFAY
$/ \mathrm{C}=/(\mathrm{O})$;
@I/O DIRECTION
DO $=0$; "/EXIT is an input "
D1 $=0 ; \quad$ "ALLHIGH_N-1 is an input "
$\mathrm{D} 2=/$ FULL $\ldots \mathrm{N}$;
$\mathrm{DS}=1$;
D4 = 1;
"ALLHIGH_N-1 is an input
"When maximum count is reached /FLLLL N
"disables /ENAB-CTRL which in turn disables
"the device(s) from counting down
"/ENAB-CTFL is connected to the ENAB_DN of the
" device(s)
"EXOFi is an output "
DS = 1;
"/ALLHIGH_N is an output "
"/ALLHIGH_N is an output "
"/FULI N is an output.

Figure 8

```
gOUTFUT FOLARITY
X2=0; 
X4 = 0;
x5 = 0;
@FLIF FLOF CONTROL
FC = 1; "All flip flops are J-K
@OUTFUT ENAELE
"NOT USED"
@REGISTER LIAD
LA = LOAD; "Load the registers with the number set "
LB = LOAD; "by the imput switches
@ASYNCHRONOUS FRESET/RESET
"NOT USED"
GFLIF FLOF MODE
"NOT USED"
GLOGIC EQUATION
EXOR = UFCNT*/DNCNT + DNCNT*/UFCNT; "Output count pulse only if there is not "
/FULLL N = /( ALL-LOW * /LOAD); "a simultaneous entry and exit
/ALLHIGH N = /( ALL-HIGH * /LOAD)
/ENAE_CTFL =/(1); "puts low on the ENAE._CTRL. bus
    "indicates when maximum count is reached
    "shows when empty
"The following is the implementation of the counter together with the
"necessary logic."
/FO: T = (ENAE_DN * DNCNT) + UFCNT;
/F1: T = (ENAB_DN * FO * DNCNT) + (/FO * UFCNT);
/F2: T = (ENAB DN * FO * F1 * [DNCNT) + (/FO * /F1 * UFCNT):
/FS: T = (ENAB..DN * FO * F1 * F2 * DNCNT) +
    (/FO * /F1 * /F2 * UPCNT);
/F4: T = (ENAB_DN * FO * F1 * F2 * FS * DNCNT) +
    (/FO * /F1 * /F2 * /FS * UFCNT):
/F5: T = (ENAB_DN * FO * F1 *F2 *FE * F4 * DNCNT) +
    (/FO * /F1 * /F2 * /FS * /F4 * UFCNT);
Figure 8 (Continued)
```

Table 4. Program Table for Entry/Exit Meter

Application Specific Products

FEATURES

- 100% functional replacement for all 20-pin PALs
- I/O propagation delay: 20ns (max)
- Security fuse lock
- 10 inputs
- 8 bidirectional I/O lines
- Tri-state outputs have programmable polarity
- Architecture: 8 groups of nine AND gates. Total of 72 product terms
- Software support on Signetics AMAZE
- Complete TTL compatibility
- Each bidirectional I/O has individually controllable output enable

ARCHITECTURE

The PLHS18P8A is an oxide-isolated, bipolar field-programmable logic array. This device is configured as a decoding two-level AND-OR (sum of products) structure. The PLHS18P8A block diagram is shown in Figure 1. All the AND gates are linked to ten inputs $\left(I_{0}-I_{9}\right)$ and eight bidirectional I/O lines $\left(\mathrm{B}_{(0)}-\mathrm{B}_{(7)}\right)$. These links can be made via the on-chip true/complement buffers. The 72 AND gates are configured in 8 groups which contain 9 AND gates each. In every group, eight AND gates are used for user-defined logic functions and the ninth AND gate is used as a tristate output enable control. This gives the user capability to control the output enable by means of a product term. The outputs of the eight logical product terms are ORed together (see Figure 1). The output polarity of each OR gate is individually programmable via an Ex-clusive-OR gate. The user has a choice of Active-Low or Active-High on each of the eight outputs. Figure 2 shows the logic diagram of the PLHS18P8A.

HOW A DEVICE IS
 PROGRAMMED

There are three main programmable sections on the PLHS18P8A:
A. The AND array.
B. The output polarity.
C. The security fuse.

AN26

PLHS18P8A Primer

Application Note

A. The AND Array - The AND array fuses are back-to-back diode pairs which act as open connections in a virgin device. These open connections are configured as 'Don't Cares' (' - ') in an unprogrammed device. The open connections are pulled to a logic High ('1') (see Figure 3). Consequently, all unprogrammed AND locations are pulled to a logic High ('1') state. This means that in an unprogrammed device, all the product terms are active. During fusing, current is avalanched across individual diode pairs. This essentially short circuits the diode and provides a connection for the associated product term. Figure 3 shows how a typical connection is made to the AND array (see Appendix B for a description of the vertical fuses).

The inputs to the AND array consist of 10 dedicated inputs ($10-19$) and 8 bidirectional I/Os $(B(0)-B(7))$. Initially, all these inputs are configured as 'Don't Cares' (' - '). These inputs can be connected to the AND array through an inverting or non-inverting buffer. The AND gate can be connected to the inverting buffer by programming the inverting fuse. Similarly, a connection can be made to the non-inverting buffer by programming the non-inverting fuse. Disabling an AND term is achieved by implementing a logical Low (' 0 ') on the output of the specified AND gate. When both fuses of an input (e.g. 10 and $\overline{\mathrm{IO}}$) are programmed, both the inverting and noninverting buffers are connected to the inputs of the AND gate. To achieve this a ' 0 ' should be entered on the program table under the specified input. This will in turn create a logical Low (' 0 ') on the output. To avoid any glitches on the output, it is a good practice to program all inputs to force a logical Low ('0').
In each block of nine AND gates, one gate is used as an output enable control for the tristate output (Terms $0,9,18,27,36,45,54$, 63 , designated as D on Table 2). The remaining eight gates are connected to a fixed OR gate. Since in the unprogrammed state the outputs of all the AND gates are at logic High ('1'), the output of the OR gate also acquires a logic High state. Therefore the user is responsible for deactivating any unwanted product terms. This is done by creating a logic

Low ('0') on the outputs of the unwanted product terms as previously explained. Moreover, the output buffer is always enabled since the product term controlling the tri-state output buffer also has a logic High state. If any of the bidirectional pins are to be defined as inputs, the product term controlling the specified bidirectional pin must be disabled. The bidirectional pin can also be configured as a dynamic I/O by defining the required logic for the output-enable-control product term.

The actual programming of the PLHS18P8A is carried out according to JEDEC ${ }^{1}$ standards and the specific programming algorithm developed for the part.
According to JEDEC standards on data preparation for the PLD programmer, a " 1 " specifies a high impedance for the specified fuse and ' 0 " a low impedance for the designated fuse.

For the AND array, the programming algorithm leaves the fuse intact (open-circuited) when a JEDEC " 1 " is specified. Consequently, a JEDEC ' 0 " programs and short circuits the specified fuse. The programming algorithm is different for the output polarity and will be explained in the next paragraph on Special Conditions for the Output Polarity.
B. Special Conditions For The Output Polarity - In an unprogrammed device, all the output polarities are configured as inverting buffers. In this state, the device will have logic Low on all its outputs. The outputs of the PLHS18P8A are configured as tri-state buffers. The two inputs of each Ex-OR gate are connected as follows: one input is connected to the output of the fixed OR gate. The second input is a connection to ground (logic Low) through a fusible link.
As mentioned earlier, an unprogrammed fuse acts as an open connection which is pulled to a logic High. Therefore the output of the ExOR gate acts as an inverting buffer. When the fuse is programmed, there is a connection between ground (logic Low) and the input of the Ex-OR gate. This will cause the Ex-OR gate to act as a non-inverting buffer.

[^18]June 1988

8003121S
Figure 1. Block Diagram of the PLHS18P8A

[^19]Figure 2. Logic Diagram of the PLHS18P8A

FUSE	ANDIOR INPUT	OUTPUT	OUTPUT POLARITY
U	0	1	$-\mathbf{D O}$
U	1	0	
P	0	0	-
P	1	1	

U = UNPROGRAMMED

LD08311S
Figure 4. Output Polarity Definition

Table 1. Programming Algorithm

JEDEC SPECIFICATION	AND ARRAY FUSE PROGRAMMING ALGORITHM	OUTPUT POLARITY FUSE PROGRAMMING ALGORITHM
1 - High impedance	Fuse unprogrammed (open circuit)	Fuse programmed (short circuit)
$0-$ Low impedance	Fuse programmed (short circuit)	Fuse unprogrammed (open circuit)

Figure 4 shows the definition of the output polarity for the PLHS18P8A. As can be seen, the output configuration of the PLHS18P8A is equivalent to an Ex-OR gate.

The programming algorithm for the output polarity section of the PLHS18P8A is different from that of the AND array. For the output polarity a JEDEC ' 1 '" (high impedance) programs (short circuits) the Ex-OR gate fuse, whereas a ' 0 ' (low impedance) leaves the fuse intact (open circuit).

The programming specifications are transparent to the user and do not need to be taken
into consideration when designing with the PLHS18P8A. Table 1 shows the resulting programming algorithm from the JEDEC specification.
C. The Security Fuse - Programming equipment used to program the PLHS18P8A are capable of determining the logic pattern stored in this device (see Appendix A). The security fuse can be blown to disable the programmer from reading the pattern in a programmed device. This feature adds a measure of protection for proprietary designs.

The procedure for programming this fuse depends on the programmer manufacturer and is explained in the manufacturer's operations manual.

DESIGN TOOLS FOR THE

PLHS18P8A

Many CAD tools such as Signetics' AMAZE software ${ }^{2}$ are available to implement designs using the PLHS18P8A. The AMAZE software enables the user to enter the design in the form of Boolean equations or via the program table shown in Table 2. This program table is a one-to-one map of all the programmable links of Figure 2. The following explains the implementation of designs using the program table. Also, an example on using the Boolean Logic Entry program of the AMAZE software is given.
Using PTE (Program Table Entry) - Assume that Z is a typical logic function with the following equation:

$$
Z=P 0+P 1
$$

Where P0 and P1 are product terms with the following equations:

$$
\begin{aligned}
& P 0=A * / B * C \\
& P 1=/ A * B * / D
\end{aligned}
$$

The program table in Table 2 is used to implement this equation. Table 3 shows the implementation of the logic function using the PTE. The first group of AND terms is used to implement this function. $B(7)$ is used for the output, 10,11 , and 12 as inputs.

- Term 0 is the direction control term. It is the tri-state output enable control term. Since Z is configured as an output, leaving Term 0 in its unprogrammed state causes the output to be unconditionally enabled.
- Term 1 is the P-term labeled PO, where $A^{*} / B^{*} C$ is designated by HLH in columns 10,11 , and 12 .
- Term 2 is the P-term labeled P 1 , where $/ A^{*} B^{*} / D$ is designated by LHL in columns 10, 11, and 12 .
-Terms 3, 4, 5, 6, 7. At least one input (or all the inputs) must be set to zero to disconnect these terms from the OR gate.
- The output polarity for $\mathrm{B}(7)$ is H , and this is entered in the 'Polarity' section.

Using BLAST (Boolean Logic And State

 Transfer) - The BLAST module in AMAZE can be used to implement the above equation. Figures 5 and 6 show the pin list and logic equation format. Table 4 is the program table generated from these equations.[^20]June 1988
9-148

Table 2. Program Table

Table 3. Implementation of the Function ' Z '' Using PTE

```
Fil: Name : 18PRIMER
Date : 5/22/1986
Tima: 13:52:54
```


LABE
A
\mathbf{B}
\mathbf{C}
\mathbf{D}
C
D
N/C
N/C
N/C
N/C
N/C
N/C
END
$\begin{array}{lllll}\text { ** } & 1 & \text { ** } & 1-1 & P \\ \text { * } & 1-20 \text { ** }+5 V \text { \#\#VCC }\end{array}$

Figure 5

```
Fil: Name : 1EPRIMER
Date : 5/22/1986
Time: 13:53859
edEvICE TYPE
PLHB1GPBA
CDRAWING
............... PLHB1EPBA PRIMER
erEvISION
.............. PLHBIBPBA REV .-.
edate
.............. May 1986
esymbd
.............. PLHB18PBA
ECOMPANY
.............. sienetics
mNAME
.............. Ali Gheiseari
edEBCRIPTION
```



```
        Thite is an example of implmamenting equations for
        This is in Example of impl
                        *
########################################################################
CCOMHINN PRODULCT TERM
PO =A*/B * C; " PO and P1 are uned to declare common "
P1 =/A */B */D; " product teras.
BI/D DIRECTION 
D7=1: 
```



```
EOUTPUT PQLARITV
X7=0: "Documents the output polarity as active high "
X6 = 1; 隹 "Mocuments the output polarity as active high n
XJ = 1; " Documants the output polarity as active high *
CLOGIC ERUATION
Z = PO + P1;
INNERT = /( INPUT ):
BIDIR = /BDIR * B
/BDIR = /(A*C*D*/Z* INVERT # INPUT * BIDIR ):
```

Figure 6. Boolean Equation File

Table 4. Programming Table Generated by AMAZE

APPENDIX A

Programmers

The PLHS18P8A can be programmed by means of logic programming equipment. With Logic Programming, the AND/Ex-OR gate input connections necessary to implement the desired logic are coded directly from the logic equations using the program table shown in Table 2.

The symbols used in the program table correspond to the fusing pattern of the corresponding link pairs, defined in Figure 6.
To program the device, the address of every fuse to be programmed must be entered in the programmer. This is a tedious and errorprone method of implementing the required logic pattern. Using CAD software, such as Signetics' AMAZE software, enables users to go directly from program table or logic equations to a fuse plot. The fuse plot can be downloaded to a programmer through a serial port. The downloaded fuse plot is in JEDEC format.

APPENDIX B

The vertical fuse is the latest in programmable logic technology. It combines reliability,
low capacitance and testability in an incredibly small space.

The vertical fuse takes advantage of the properties of silicon and aluminum. The virgin fuse is a three-layer device: a shallow layer of N-type silicon on top, a layer of P-type silicon in the middle, and a layer of N-type silicon on the bottom. This forms a pair of PN diodes, back-to-back, which will not allow current to pass under normal circumstances.

There is a cap of aluminum on top of this structure. During programming, high current conditions (50 to 100 times what is seen during normal operation) is induced by avalanche breakdown of the reverse-biased diode. The aluminum will "spike" through the shallow N -type layer. Once the aluminum has spiked through, the top diode in the pair is shorted out. The whole vertical fuse will then look like a pure PN diode. Before programming, the fuse is an excellent blocking element, having current leakages in the order of nanoamps. After programming, the fuse is set as a small, well-defined diode.

QUALITY

Besides the AC and DC parametrics, each and every fuse goes through three tests for forward characteristics, reverse characteris-
tics, and programmability. Extensive on-chip test circuitry ensures full AC parametric testing before and after the part is programmed. This insures that the customer receives the highest possible fusing yield which is made possible by vertical fuses. Vertical fuses also offer the smallest and fastest array structure together with the highest reliability possible.

APPENDIX C

Test Array

The PLHS18P8A may be subjected to AC and DC parametric tests prior to programming via an on-chip test array. Table C1 shows the test columns in the part. The test sequence is as follows.

Test column 1 is connected to $B(0) 0,2,4,6$ while test column 2 is connected to $B(0) 1,3$, 5,7 . Applying 10 V to Pin 11 will put all the outputs in the Active-High mode and tri-state its associated input buffer.
Applying 10 V to Pin 8 will disable $\mathrm{B}(\mathrm{O}) 0-3$, enable $B(O) 4-7$, tri-state $B(I) 4-7$, tri-state its associated input buffer, disable the AND array and enable test columns 1 and 2 . The test columns are defined during programming by the PLD programmer.

Table C1. Test Columns of PLHS18P8A

TEST COLUMN	INPUTS																	
	Is										B(ls)							
	9	8	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
1	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
2	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Application Specific Products

INTRODUCTION

The PLHS473 is a 24 -pin field- programmable logic array (FPLA) which has 11 dedicated inputs, 2 dedicated outputs and 9 bidirectional I/Os. The logic array consists of 24 programmable product terms which are connected to 22 programmable OR terms in the classical PLA architecture. A functional diagram is shown in Figure 1. The shaded areas represent programmable interconnects between vertical and horizontal lines. Eleven dedicated inputs, I_{0} to I_{10}, are located on the upper lefthand corner of the diagram, and the 9 bidirectional I/Os, B_{0} to B_{8} are located on the lower righthand corner. All inputs to the AND array have true and inverting input buffers. The output portion of the 9 bidirectional I/Os and 2 outputs may be programmed to be Active-High or Active-Low by altering fuses X_{0} to X_{8}, X_{A} and X_{B} which are connected to one leg of the Exclusive-OR gates. Each output is connected to two ORterms, one of which provides the logic function OR to the output while the other provides the ENABLE function for the tri-state output buffer. Alternatively, each output may be configured to emulate an open-collector output by programming the output to an unconditional LOW and apply the logic function on the tri-state controlling OR-term as shown in Figure 2. In addition, the PLHS473 has a security fuse which may be programmed to lock out unauthorized access to the fuse map of the design.
This device is fabricated with an oxide-isolation process for the best speed/power performance. The programmable element is a 'vertical fuse' which is actually two PN diodes connected back-to-back (anode-to-anode

AN27
PLHS473 Primer

Application Note

stacked on top of one another) as shown in the insets of Figure 1. The fuses are normally open-circuited. To program a fuse, a sufficiently high voltage is applied across the two diodes such that one diode breaks down which induces metal migration across the PN junction of the avalanched diode. This technology allows smaller chip size and faster speed performance. The guaranteed propagation delay may be tested by using the two factory-programmed test columns and a test row as a test vehicle for speed testing. These test columns are to be deleted automatically in the process of programming.

The vertical fuses of an unprogrammed device, being normally open-circuited, set all AND terms to a High state and disconnected to all OR terms. The OR terms are normally Low when they are not connected to the AND terms. Once an AND term is programmed to make connections with the OR array, it cannot be disconnected. However, AND terms may be disabled by having the true and inverting input buffers (e.g., A */A, B */B, etc.) of all inputs connected to the AND term which is to be disabled.

While even a single input, (A^{*} / A), will hold the AND term to a Low, glitches may develop if the input voltage changes state. Therefore, it is recommended that the complementary buffers of all inputs in the disabled AND term be connected.

Programming the PLHS473

The programming table and symbols of the PLHS473 are shown in Table 1 where there is a place for every function that is shown in Figure 1. The table is divided into two main
sections. The left side of the table, sections A and B, represents the input side of the AND array (section A has all dedicated inputs I_{0} to I_{10}, section B has inputs from the bidirectional I/Os B_{0} to B_{8}), whereas the right side, sections C, D, and E , represents the outputs of the OR array. Section C represents the OR array which controls the tri-state output buffers of the bidirectional I/Os B_{0} to B_{8} and outputs O_{A} and O_{B}, while section D represents the OR array which drives the outputs. Section E controls the output polarity of each output. As shown in Table 1, the program table is very similar to a truth table. Each row represents one of the 24 product terms, while each column in sections A and B represents an input to the 24 product terms and in sections C and D, each column represents an output. The intersection of a column and a row in sections A and B represents four possible fuse configurations, namely, 1) both inverting and non-inverting input buffers are connected to the AND term, 2) only the inverting buffer is connected, 3) only the noninverting input buffer is connected, and 4) both inverting and non-inverting buffers are disconnected. These four configurations are represented as " 0 ", " L ", " H ", and " - ", respectively. Each intersection of a row and a column in sections C and D involves only two fuse configurations, either connected or disconnected. Therefore, the entry there is either " A " or " - ", respectively. In the polarity control section (section E), each square represents the configuration of the fuse connected to the Exclusive-OR, which is connected to a particular output pin. An "H" represents an Active-High or non-inverting output, an " L " represents an Active-Low or inverting output. See Table 1 for further details.

PLHS473 Primer

AN27

NOTES

1. All unprogrammed or virgin "AND" gate locations are pulled to logic "1"
2. All unprogrammed or virgin "OR" gate locations are pulled to logic " 0 ".
3. Programmable connections.

Figure 1. PLHS473 Logic Diagram

PLHS473 Primer

AN27

TC11320S
Figure 2. Emulation of Open-Collector Output

Notice that as shown in Figure 1, all fuses in their unprogrammed state are normally opencircuited. This means that all product terms are initially disconnected to the OR array, all

OR gates are initially at a logic LOW, and all output pins are initially in High-Z state. Therefore, if anys of the outputs are to be enabled, its controlling OR term must be set to a logic

HIGH. An example is shown in Table 2, term 0 where pins $\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}} \mathrm{B}(\mathrm{O})_{8}$ are programmed as dedicated outputs. The input section of term 0 is entirely "dashed out" (this is actually its unprogrammed state) which causes the AND term to be unconditionally HIGH. OR terms E_{A}, E_{B}, and D_{8} are connected to product term 0 by the " A " entries in their respective squares. The rest of the D section and the $B(O)$ section are "dotted out" (left unconnected) since we are not concerned with them for the moment. If more outputs are needed later on, their corresponding squares may be changed to "As" from "dots" as the need arises.

Table 1. PLHS473 Programming Table

PLHS473 Primer

AN27

OUTPUT POLARITY - (0, B)

AND ARRAY - (I, B)

OR ARRAY - ($0, B$)

P_{n} Status	CODE	P_{n} STATUS	CODE
InACTIVE ${ }^{1}$	\bullet	ACTIVE ${ }^{1}$	A
	TCO2S		TC025

NOTES:

1. This is the initial unprogrammed state of all link pairs.
2. Any gate P_{n} will be unconditionally inhibited if any one of its (I, B) link pairs is programmed for a connection.

TC11330s
Figure 3. Emulation of Open-Collector Output

Once we have determined the outputs, we can proceed with defining the logic functions. As an example, the logic function

OUT-0 = INPUT-1*/INPUT-2

is shown in Table 2, term \#2 where in the column labeled 'INPUT-1', an " H ' is entered to represent a connection of the noninverting input buffer of INPUT-1 and the AND term 2. In the column labelled 'INPUT-2', an ' L '" is entered to represent the connection of the inverting input buffer of INPUT-1 and the AND term 2. On the output side of the table, O_{B} in term 0 is programmed " A " to make a connection between term 2 and the OR term which is connected to the output pin O_{B} : The output polarity of O_{B} is arbitrarily set to Active-High by programming an ' H ' in the O_{B} column of the polarity section.
A sum of several product terms (AND-OR) is implemented by connecting multiple AND terms to the same OR term. An example is shown in Table 2, terms 4 and 5, which implement the logic function

OUT-1 = (INPUT-1 */INPUT-2) + (INPUT-3 * INPUT-4)

The logic function

$$
\begin{aligned}
\text { OUT-2 }= & /((\text { INPUT-1 } * \text { INPUT-2 })+ \\
& (\text { INPUT-3 * INPUT-4)) }
\end{aligned}
$$

is shown in terms 9 and 10. The output is Active-Low as programmed " L " in the polarity section of OUT-2. As a rule, the AND function is implemented in a row, whereas the OR function is implemented in a column. Since the AND portions of terms 2 and 4 are the same, they may be combined as shown in term 7, which saves a duplicated term.
Table 2 terms 12 and 13 together emulate an open-collector output as an example. The logic equation

$$
\begin{aligned}
\mathrm{O}-\mathrm{C}= & /((\text { INPUT-1 } * \text { INPUT-2) }+ \\
& (\text { INPUT-3 * INPUT-4)) }
\end{aligned}
$$

is implemented by first programming O-C Active-High in the polarity section. Terms 12 and 13 implement the sum of product func-
tion. Notice that the $B(O)$ of $O-C$ is programmed as a 'dot' in both terms 12 and 13, which, together with the polarity control, causes it to be unconditionally Low, since a disconnected OR term is unconditionally Low. The intersections of column D_{7} and terms 12 and 13 are programmed " A " so that the tristate output buffer of $\mathrm{B}(\mathrm{O})_{7}$ is enabled at input conditions (INPUT-1 * INPUT-2) $=1$ or (INPUT-3 * INPUT-4) $=1$. Terms 10 and 11 may be represented as shown in Figure 3.

Signetics produces a software package, AMAZE, as a design tool which assists implementation of logic design and documentation. For further information on AMAZE software, refer to the AMAZE User's Manual. Two simple circuits shown as examples are implemented using AMAZE. The first circuit is a simple cross-coupled RS latch. The second circuit is a multiplexer/demultiplexer which multiplexes four inputs to one output or demultiplexes one input into four outputs. Both circuits are put into the same PLHS473 device.

Table 2. Examples of Programming PLHS473

File Name: 473 PRIHE
Date: $9 / 4 / 1986$
Date : 9/4/1986
Time : 15:53:28

LABEL	\# FNC	4tPIN		- PINat FNC	\#
15	** 1	tt 1-1		:-24 \#4 +5V	:YCC
/R	**!	4* 2-:		;-23 $1+10$	+48
N/C	41	* 3-1	F	:-22 \# 10	\# $:$ QNOT
N/L	* 1	* 4-1	L	:-21 * / 6	ten/C
N/C	4 1	H 5-i	H	:-20 \# $\mathrm{E}_{\text {B }}$	* 4 F
N/C	* 1	\# 6 -i	5	:-19 \# 0	
N/C	*)!	* 7-1	4	:-18 $\ddagger 0$	\# $5 \mathrm{~N} / \mathrm{C}$
N/C	+41	\# 8-1	7	:-17 + 18	+2W/C
S0	41	4* 9-:	3	:-16 \# 8	* 10
SI	*) I	+1 10-;		:-15 \# 4	$\pm+C$
DIR	* I	* 11-:		1-14 \# 8	48
GND	\#* OV	+4 12-1		$i-13+8$	\#\#A

Figure 4. Pin List

File Nane : 473PRIME	
Date : 9/4/1986	
Tine: 15:54:14	
CDEVICE TYPE	
PLHS473	
edraming	
EREVISION	
EDATE	
CSYHBOL	
	File name $=$ 473PRIME
CCOMPAMY	
CMAME	
EDESCRIPTION	
	ECOMHON PRODUCT TERK
	EI/O DIRECTION

-The $1 / 0$ DIRECTION definition is optional, and eay be defaulted to the PIN LIST unless it is bidirectional and is controlled by a logic equation. *

08	$=1 ;$
07	$=1 ;$

$D 3=$ DIR; * When DIR $=1, B 3, B 2, B 1$, BO becone outputs, Data flows troe F to A, B, C, D. "
$02=01 R$;
$D 1=D I R ;$
$D O=$ DIR;
$D 5=1 D I R$; * when DIR $=0$, B5 becomes an output, output buffers of 80 to $B 3$ are disabled. Data flows from A, B, C, 0 to F. *

gOUTPUT POLARITY

*The definition of output polarity is optional and may be defaulted the FIN LIST.

$x 8, x 7=1 ; \quad$ *OUtputs with the same polarity alay be defined in the same equation. Since the outputs Q and QNOT are detined as active LOK, this equation causes the XOR to function as an inverter. "

$X 5, X 3, X 2, X 1, X 0=0 ;$ "Outputs $B 0,81, B 2, B 3,85$ are active HIGH.

sLOGIC EQUATION

$0=1 \mathrm{i} / \mathrm{S}+$ QNOT $1 ;$ " The equation must used the forat output $=/(\ldots . .$.); since output 0 is defined as active LOM. "
QNOT $=/(1 R \pm 0) ;$


```
F= (A* /50*/5! ) +
    ( B * S0 * /SI) +
    (C*/S0*S1) +
    (D*SO*S!);
A=(F*/50: iS!) ;
B=(F*SO*/SI) ;
C= (F*/S0 # 51 ) ;
D=(F*50*5!);
```

File Nase : 473FRIME Date: 9/4/1986 Tlae: 15:56:24 Cust/Project - Date Rev/1. D. Figure 6. Program Table

Application Note

Application Specific Products

INTRODUCTION

The general technique underlying the operation of this A/D converter is illustrated by the fuctional block diagram in Figure 1. The system consists of a D/A converter, a comparator circuit, and digital logic circuitry. The digital logic circuitry outputs a digital vaue which is converted to analog by the D/A converter.

The comparator senses when the output is greater or less than the input and causes the digital circuit to decrement or increment its digital output respectively. The initial conversion is completed in 13 clock cycles. If tracking mode is used, the A/D converter then tracks the input voltage as it changes by incrementing or decrementing 1 -LSB per clock. The tracking function makes it possible to make an A/D conversion in one clock cycle if the input changes less than the value of 1 -LSB per clock period. The conversion may be halted and the digital output, as well as the converted analog output from DAC, will hold their output constant indefinitely. This feature works well as sample-and-hold since its output voltage will not decay over time whereas the output of an analog sample/hold will decay due to charge leakages.
In order to avoid the violation of setup time by the output of the comparator, its output is latched. There is a built-in 2-phase clock in U2 which may be used to drive the logic circuitry and the latch of the comparator (see Signetics NE5105 data sheet for details on output latches of voltage comparators).

The analog input voltage may be sampled and held by an analog sample/hold circuit to
keep the input to the ADC from changing. The DONE output may be used to control the sample-and-hold if needed.
This paper discusses only the digital circuit which contains the SAR and the Up/Down Counter. The analog circuits are not within the scope of this paper.

SAR

Two PLS179s are connected together to form a 12-bit shift register and up/down counter. The schematic diagram of the A/D converter is shown in Figure 2. U2 contains bits 0 to 4 and U1 contains Bits 5 to 11. Interconnects are made as shown in the diagram. The digital output to the DAC is in natural binary format (e.g. 000000000000 equal zero, and 111111111111 is full scale or 4095). After the/ST input becomes 0 , at the rising edge of the next clock, the SAR is initialized to halfscale (1000 0000 0000) and the DONE flipflop is reset to output 0 which causes the open-collector output /DONE_OC to become high impedance. The digital output is converted by the DAC and is compared to the analog input voltage by the comparator. If the digital output is greater than the analog input, the SAR shifts the 1 to next MSB on the right. The content of the SAR becomes 01000000 0000). If the digital output is still greater than the input, the SAR shifts right one bit again. The content of the SAR then becomes (0010 00000000). The shifting of 1 to the next MSB in equivalent to reducing by half the value of the bit under consideration. If the output is still too large, the SAR reduces it by half again by shifting to the right one more time.

The SAR keeps shifting to the right until the digital output is less than the input. When the output is less than the input, the SAR adds one bit to the next MSB while keeping all the higher order bits unchanged. For example, if the current output is 000100000000 and the output is less than the input, the SAR adds one bit to the right at the next clock. The output becomes 000110000000 . The output is again compared to the input. If the addition of that one bit is too much, it will be shifted to the right until the output becomes less than the input. When that happens, that SAR will again add one bit to the right. The algorithm of the SAR may be summarized as the following: If the output is greater than the input, shift to the right; otherwise add one bit to the right. This process continues until all 12 bits have been operated on. The last bit (Bit 0) is always changed from 0 to 1 , which is used as the condition to set DONE to 1 which, in turn, sets open-collector output, /DONE_OC, to 0.

UP/DOWN COUNTER

After DONE becomes 1, if /ST and /HOLD are 1 and /TRACK is 0 , the SAR turns into a 12-bit up/down counter. If the analog input voltage increases, the counter will increment by 1 at every clock until it matches the input. If the input decreases, the counter will decrement by 1 . When /HOLD becomes 0 , the counter is inhibited and the output is held indefinitely. The counters consist of 12 toggle flip-flops and 2 p-terms per flip-flop for directional control. The counter will operate only

Figure 1. Functional Block Diagram of 12-Bit High-Speed A/D Converter

Figure 2. Schematic Diagram of 12-Bit High-Speed A/D Converter
after the approximation cycle is completed and DONE is 1.

Since the /ST and /HOLD inputs may be asynchronous with the clock, in order to minimize the possibilities of having a metastable condition from happening, these inputs close-up are latched by flip-flops /START of U1 and /HLD of U2 respectively. Once they are latched, subsequent operation begins at the rising-edge of the next clock. The output of the comparator may be latched to prevent setup time violation. (Signetics NE5105 is a high-speed comparator with an output latch. External latch may be used with other comparators.)

CLOCKS

U2 generates an optional 2-phase clock which may be used to control the latch of the comparator. The two clocks are basically 180° out of phase and CLOCK2 has an additional 25 ns propagation delay behind CLOCK1. CLOCK2 is used to drive the clockinputs of the PLS179 devices.
The clock frequency is controlled by R and C. Those who want to use the built-in clock
should experiment with RC time constants for the best value. It is recommended that the capacitance should be less than 1000pF for best results (see Ap Note AN13 for more detail).

DONE AND /DONE_OC
The output DONE is reset to 0 when /ST is 0 . It remains 0 until the approximation cycle is completed. After the least significant bit becomes 1 , the DONE bit becomes 1 at the next clock. It remains 1 until it is reset again by input /ST.

The /DONE_OC output is configured to emulate an open-collector output. The output is programmed to have a logic 0 . When DONE is 0 , the Tri-state output buffer is set to $\mathrm{Hi}-\mathrm{Z}$ condition. As soon as DONE equals 1, the Tristate buffer is enabled and /DONE_OC becomes 0.

In the initial phase of A/D conversion, 13 clock cycles are required. It is essential that the input voltage to the comparator remains unchanged while the SAR is converting. It may be necessary to have a sample/hold at
the front end. The DONE output may be used to control the analog sample/hold circuit.

INPUT LATCHES

Flip-flop /START and 2 p-terms in U1 are configured as a non-inverting D flip-flop. The input, /ST, and the output /START have the same polarities. Flip-flop /HLD and 2 p-terms in U2 also form a non-inverting D flip-flop. The output /HLD and the input /HOLD have the same polarities.

AMAZE INPLEMENTATION

The implementation of the logic circuit using AMAZE is as shown in the appendices. The SAR circuit is first designed as a state machine (file name: ADCS.SEE). It is then partitioned into two PLS179s after proper pin assignments are made. Then the up/down counter, input latches, 2-phase clocks and the open-collector output, are implemented by using Boolean equations in their respective .BEE files (file names: ADCB1:BEE and ADCB2.BEE) in AMAZE. The files are then assembled to produce the fuse-maps of PLS179 (ADCB1.STD and ADCB2.STD).

Figure 3. Timing Diagram of Successive Approximation Cycle

APPENDIX A: STATE EQUATIONS OF SAR

APPENDIX A: STATE EQUATIONS OF SAR (Continued)

GTRANSITIONS

WHILE [INIT]
IF [] THEN [HALFSCALE] "INITIALIZE REGISTER TO HALF SCALE"
WHILE [ST2048]
IF [GREATER] THEN [SH1O24] "IF GREATER THAN, SHIFT 1 BIT"
IF [LESS 3 THEN [ADIO24 $]$ "IF LESS THAN, ADD 1 BIT"
WHILE [ST1024]
IF [GREATER $]$ THEN [SHS12]
IF $[$ LESS $]$ THEN [ADS12 $]$
WHILE [ST512]
IF [GREATER] THEN [SH256]
IF [LESS] THEN [AD256]
WHILE [ST256]
IF [GREATER] THEN [SH128]
IF [LESS] THEN [AD 128]
WHILE [ST128]
IF [GREATER] THEN [SH64]
IF [LESS] THEN [AD64]
WHILE [STG4]
IF [GREATER] THEN [SH32]
WHILE [STB2]
IF [GREATER] THEN [SH16]
IF [LESS $]$ THEN [AD16]
WHILE [ST16]
IF [GREATER] THEN [SHB]
IF [LESS] THEN [ADS]
WHILE [STB]
IF [GREATER] THEN [SH4] IF [LESS] THEN [AD4]
WHILE [ST4]
IF [GREATER] THEN [SH2]
IF [LESS $]$ THEN [AD2 $]$
WHILE [ST2]
IF [GREATER] THEN [SHi] IF [LESS] THEN [AD1]
WHILE [STI]
IF [GREATER] THEN [SHO]
IF [] THEN [END]

APPENDIX B: PIN LISTS

File Name : ADCB1
Date : 10/21/1986
Time : 10:53:7

LABEL.	** FNC	**PIN		PIN**		FNC	**	LABEL
CLOCK	** CK	** 1-1		:-24	**	+5V	**VCC	
/ST	** I	** 2-i		: -23	**	/B	**N/C	
COMPARE	** I	** 3-1		i-22	**	0	**/STA	ART
/HLD	* I	** 4-1	P	i-21	**	0	**BIT1	
/TRACK	* I	** 5-1	L	: -20	**	0	**BIT10	
BIT4	** I	** 6-1	5	i-19	**	0	**BIT9	
BIT3	** I	** 7-:	1	i-18	**	0	**BIT8	
BIT2	* I	** 8-:	7	1-17	**	0	**BIT7	
BIT1	* I	** 9-1	9	:-16	**	0	**BIT6	
BITO	** I	** 10-1		:-15	**	0	**BITS	
DONE	** I	** 11-		i-14	**	/B	**N/C	
GND	**OV	** 12-:		:-13	**	/DE	**N/C	

APPENDIX C: BOOLEAN EQUATIONS OF UP/DOWN COUNTER AND INPUT LATCH

```
File Name : ADCBI
Date : 10/21/1986
Time : 10:54:48
EDEVICE TYPE
PLS179
@DRAWING
EREVISION
@DATE
esymbol
    FILE NAME : ADCB1
GCOMPANY
@NAME
GDESCRIPTION
@COMMON PRODULT TERM
GCOMFLEMENT ARFAY
@I/O DIRECTION
gOUTPUT POLARITY
GFLIF FLOP CONTROL
    FC=1 ; "SET ALL FLIP FLQP TO BE J/K"
gOUTFUT ENABLE
@REGISTER LOAD
GASYNCHRONOUS PRESET/RESET
@FLIF FLOP MODE
GLOGIC EQUATION
    "NON-INVERTING INPUT LATCH: /START = /ST "
    START : J = ST ;
        K = /ST;
    "UF/DOWN COUNTER ROUTINE"
    /EITS : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BIT1 *
    /BIT2 * /BIT3 * /BIT4 +
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BIT1 *
        BIT2 * BITJ * BIT4 ;
    /BITG : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BIT1 *
    /BIT2 * /BITS * /BIT4 * /BITS +
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
        BIT2 * BITS * BIT4 * EIT5 ;
    /BIT7 : T = /START * TRACK * DONE * /HLD * COMPARE *
    /BITO * /BIT1 * /BIT2 * /BIT3 * /BIT4 * /BIT5 * /BITG +
    /START * TRACK * DONE * /HLD * /COMPARE *
        BITO * BIT1 * BIT2 * BIT3 * BIT4 * BITS * BITG;
    /BITB : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BIT1 *
    /BIT2 * /EITS * /BIT4 * /EITS * /BITG * /BITT +
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BIT1 *
        BIT2 * BIT3 * BIT4 * BITS * BIT6 * BIT7 ;
    /BIT9 : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO */BITI *
    /BIT2 * /BIT3 * /BIT4 * /BIT5 * /BIT6 * /BIT7 * /BIT8 +
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BIT1 *
    BIT2 * BIT3 * BIT4 * BITS * BIT6 * BIT7 * BITG;
    /BIT1O : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO */BITI *
    /BIT2 * /BIT3 * /EIT4 * /BIT5 * /BIT6 * /BIT7 * /BITB *
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
        BIT2 * BITS * BIT4 * BIT5 * BIT6 * BIT7 * BITB *
        BIT9 ;
/BIT1I : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO */BIT1 *
    /BIT2 * /BIT3 * /BIT4 * /BITS * /BITG * /BIT7 * /BITE *
    /BIT9 *
    /BIT1O +
    /START * TRACK * DONE * /HLD * /COMPARE * BITO * BIT1 *
        BIT2 * BIT3 * BIT4 * BITS * BIT6 * BIT7 * BIT8 *
        BIT9 * BIT10 ;
```


APPENDIX C: BOOLEAN EQUATIONS OF UP/DOWN COUNTER AND INPUT LATCH (Continued)

```
File Name : ADCB2
Date : 10/21/1986
Time : 10:58:56
```

edevice type
PLS179
edrawing
QREVISION
edATE
esymbol
FILE NAME : ADCB2
ECOMPANY
ename
EDESCRIPTION
ECOMMON PRODUCT TERM
eCOMPLEMENT ARRAY
eI/O DIRECTION
DO $=$ RC ; \quad "RC OSCILLATOR"
EOUTPUT POLARITY
EFLIP FLOP CONTROL
FC $=1$;
@OUTPUT ENABLE
eREGISTER LOAD
EASYNCHRONOUS PRESET/RESET
@FLIP FLOP MODE
"MO, M1, M2, M3, M4, MS = 1 ; SET FO - FS TO J/K FLIF FLOPS."
ELOGIC EQUATION
"NON-INVERTING INPUT LATCH : /HLD = /HOLD "
HLD : J = HOLD ;
$K=/$ HOLD ;
"UP/DOWN COUNTER ROUTINE"
/BITO : T = /START * TRACK * DONE * /HLD ;
/BITI : T = /START * TRACK * DONE * /HLD * /COMPARE * BITO +
/BIT2 : T = /START * TRACK * DONE * /HLD * /COMPARE * BITO * BIT1 +
/BIT3 : $T=/$ START * TRACK * DONE * /HLD * COMPARE * /BITO * /BIT1 ;
BIT2 +
BIT2 ;
BIT2 *

BIT2 *
/START * TRACK * DONE * /HLD * COMPARE * /BITO * /BITI * /
/DONE_OC $=\binom{$ BIT3 }{ (1); }$;$
"RC OSCILLATOR"
RC $=/(1)$;
CLOCK1 $=$ RC ;
CLOCK2 $=/($ CLOCK1 $)$; "BUILT-IN DELAY OF 1 tPD"

APPENDIX D: U1 ADCB1 FUSE MAP

APPENDIX D: U2 ADCB2 FUSE MAP (Continued)

Signetics

Application Specific Products

SUMMARY

The evolution of Programmable Logic Devices (PLD's) has led to the birth of a new generation of programmable devices designated as PML (Programmable Macro Logic). The immense versatility of these devices brings them closer as plausible alternatives to semicustom design approaches in low-tomedium ranges of applications. The following paper begins with a background on PML and a brief description of the PML basic architecture (See Reference 1.) Next, the first PML devices are introduced with a detailed discus-

AN29
 PLHS501 Programmable Macro Logic Primer

Application Note

sion of the PLHS501. The implementation of PML in the AMAZE software package is presented. A system level example intends to demonstrate the capabilities of PML as an eloquent and efficient design alternative.

THE EMERGENCE OF THE THIRD GENERATION PLD ARCHITECTURE

PML was introduced at WESCON '85 by Signetics Corporation. The unique architecture of PML breaks away into a new era of

LD07940S
Figure 1. One of the Latest Registered PALs ${ }^{\text {TM }}$
programmable logic devices. The purpose of the PML architecture is to overcome the two level AND-OR bottleneck and provide the user with a higher level of logic integration. Current PLD's rely on two levels of logic transformation to implement combinational logic in Sum-Of-Products (SOP) form. In addition various PLD's make use of higher level macros such as flip-flops to form sequential logic functions. These macros connect the AND-OR chain to dedicated I/O pins.

Figure 1 show the basic architecture of one of the most recent $P A L^{T M}$ devices. It is clear that this architecture is inefficient in making full use of the available on-chip resources. This is due to the fact that an unused I/O macro will be wasted and remains futile.

For example, if an I/O pin is used as an input, the output macros are all wasted. Obviously, such an architecture cannot provide the user with an increase in the levels of logic integration. The PML device takes advantage of the fundamental architecture shown in Figure 2 to overcome these deficiencies and waste of on-chip resources. As shown in Figure 2, PML incorporates the NAND-NAND gate equivalence to break the AND-OR bottleneck.

The core of the PML is the programmable NAND-NAND network which connects the input and output macros to each other. Thus the inputs, outputs, and function macros are all connected by a single array.

At the present, two devices are under development which employ the above architecture. Both devices are fabricated by the Signetics state-of-the-art oxide isolation process and are packaged in 52-pin PLCC.
The first device available will be the PLHS501. The seemingly simple structure of this device can implement every logic function furnished by the current PAL ${ }^{\mathrm{TM}} / \mathrm{PLA}$ devices. Although the PLHS501 is principally a combinational logic device, its unique architecture makes it an ideal tool for applications involving asynchronous state machines (See Reference 2.)

The PLHS502 is a sequential logic device. It supplements the PLHS501 features with sixteen edge-triggered flip-flops. The device can provide diverse applications encompassing synchronous and asynchronous state machine designs.

[^21]Table 1. Functional Description of PLHS501 I/O Pins

PIN NO.	IDENTIFIER	FUNCTION
$41-45,47-52, ~$ $1-7,9-14$	IO-123	Dedicated inputs
$37-40$	/B0-/B3	Fuse-programmable bidirectional I/Os with Active-Low outputs. Can be configured as open-collector outputs.
$15-18$	B4-B7	Logic controlled bidirectional I/Os with Active-High Tri-state outputs.
$28-29$	X0-X1	P2-X3
$30-31$	X4-X5	X6-X7

Figure 2. PML Fundamental Architecture

THE PLHS501 PML

The PLHS501 architecture in Figure 3 exhibits an exquisite logic tool. The device provides a combination of 72 NAND terms, 24 dedicated inputs ($10-123$), eight bidirectional I/O's (B0-B7), eight exclusive-OR outputs (X0-X7),
and eight dedicated outputs (O0-O7). Figure 4 shows the PLHS501 logic diagram and Table 1 illustrates the functional breakdown of the PLHS501 I/O pins.

Since the output of each NAND term feeds back to the inputs of the NAND array, intri-
cate logic functions can be implemented without wasting valuable I/O pins. For example, in order to implement an internal 'RS' latch in a combinational PAL ${ }^{\text {TM }} / P L D$, at least two inputs and two outputs are required. The same internal latch can be configured by the PLHS501 without using any I/O pins.

Figure 3. PLHS501 Logic Diagram

PLHS501 Programmable Macro Logic Primer

AN29

Figure 4. PLHS501 Pin Assignments

Figure 5. R/S and D Latch Implementation with PML

PLHS501 Programmable Macro Logic Primer

Figure 6. Model of Asynchronous State Machines Using Propagation Delays of the Feedback Path as Memory Elements

PML DEVELOPMENT

SOFTWARE

Programmable logic development software has become an integral part of the PLD design process. Without software tools PLDs become perplexing devices which are inconvenient to use. Development software enables the user to take full advantage of the programmable logic's resources. The complexity of the PML devices makes software an indispensable element in the design process.
The AMAZE PLD design software, as noted in Reference 3, has been developed for Signetics programmable logic devices. PML
design and development will be fully supported by AMAZE. Figure 7 shows the AMAZE configuration for supporting PML. The structure of the software is based on the following modules:
.BLAST (Boolean Logic And State Transfer entry)
.DPI (Device Programmer Interface)
.SIM (PLD functional SIMulator)
.PI (PML Integrator)
The foundation for the above modules is an AMAZE standard fuse file (STD). The STD file is the common means of communication between all the modules. The following para-
graphs briefly explain the implementation of PML in the AMAZE structure.

BLAST

The basic elements of BLAST are:

1. Boolean Equation Entry (BEE).
2. State Equation Entry (SEE).
3. Schematic To Boolean Converter (STBC).
4. BEE accepts user defined logic in the form of boolean equations and produces an AMAZE standard fuse file. The boolean notation in BEE will account for the following PML features.
a. The single array architecture provides an option to specify the number of logic (gate) levels that accommodate a specified function. The number of gate levels dictate the delay between the inputs and outputs. The number of logic levels for each function can be specified using the following notation:
LABEL [number of logic levels] = equation; where LABEL is the user designated name of the output pin.
b. Some outputs have more than one gate associated with them (for exanif, egistered or EXOR outputs). The input SIDE of these outputs can be specifically defined. For example:

$$
\text { Pin Label: } \begin{aligned}
R=e q n ; \\
S=e q n ;
\end{aligned}
$$

c. User definable CLOCK Logic (e.g. as in the PLHS502) can be specified.
d. For PML devices the Sum-of-Products (SOP) can be defined as common terms.

Figure 7. AMAZE Configuration for PML

PLHS501 Programmable Macro Logic Primer

2. SEE accepts state machine definitions and produces the AMAZE standard fuse file. Particularly, SEE will include asynchronous state machine implementations utilizing the PLHS501.
3. STBC converst schematic netlists produced by CAD systems such as Futurenet ${ }^{\top M}$, Daisy, and Mentor into an AMAZE BEE file. STBC will fully embody the PML in the following manner:
a. De Morgan's theorem is applied to produce equations in SOP form. All the functions in SOP form are then converted into their NAND- NAND equivalent.
b. The converter will determine the polarity and the number of levels in each equation and will automatically determine the correct output polarity.

DPI

Device Programmer Interface provides the interface between the AMAZE standard fuse file and a commercial programmer. It allows the transmission of data to and from the device programmer.

SIM

The functional simulator uses the AMAZE standard fuse file in the following manner:
a. An event driven simulator will assess the delays within the PML in order to properly simulate the pattern.
b. Automatically generates test vectors for the pattern simulation.

PI

The PML Integrator is a conversion that transforms various PAL ${ }^{\text {TM }}$ or PLD circuits into a PML device. It will automatically fit multiple PAL ${ }^{\text {TM }} /$ PLD devices into a single PML. It is capable of automatically receiving patterns from a commercial device programmer and downloading it back to the programmer after the PML transformation. The implementation of an 'Integrator' will allow the automatic conversion of numerous PAL ${ }^{\text {TM/PLDs into a }}$ single PML device.

AMAZE will not be the total extent of development software available for the PML devices. The task of implementing PML design software is already underway by a number of different vendors of CAD software.

PLHS501 DESIGN EXAMPLE

The following example intends to manifest the capabilities of the PLHS501. Figure 8 shows a system formed with TTL logic. The system requirements make it imperative only to use discrete asynchronous latches. Thus, none of the 7 latches in the system can be directly replaced by registers. The system diagram is drafted using Futurenet ${ }^{\text {TM }}$ DASH-2 Schematic Designer. The system is partitioned into two PLS173s and one PLS153. In order to convert the system into its targeted PLD's, the PINLIST (see Figures 9a-9c) has to be defined. Using the AMAZE PIN-LIST editor, the specified PLD's are labeled with the same labels as those on the system schematic (Figure 8). After the declaration of labels, AMAZE automatically converts the system to the designated PLDs. The AMAZE
generated boolean equation files are shown in Figures 9a, 9b, and 9c. Figure 10 shows the overall system implemented with PLDs. The logic condensation capabilities of PML makes it feasible to replace the whole system by a single PLHS501 (Figure 11). The PLHS501 in this design will still have ample space for any future additions.

The above example demonstrates only part of the PLHS501 capabilities. The introduction of PML devices and their immense logic power will pave the way for a new generation of efficient and elegant systems.

REFERENCES

1. Cavlan, Napoleone 1985. 'Third Generation PLD Architecture Breaks AND-OR Bottleneck', WESCON 1985 Conference Proceedings.
2. Wong, David K. 'Third Generation PLS Architecture and its Applications", Electro 1986 Conference Proceedings.
3. "1986 PLD Data Manual', Signetics Corporation.

6ZNV 」əm!ld O!001 OIODW Өqロumbibold lOSSH7d

PLHS501 Programmable Macro Logic Primer

AN29

File Nane: F'AFTi
Date: 12/10/1986
Time: 18:25:54

L. I S T \#

INIA
INIB
0130
INID
INIE
OTBAINIF
INIG
INIH
IN1I
IMIJ
OTBEINIK゙ OND
** I
** I ** 2-
** I \quad ** 3 -
** 1 ** $4-1$ F $1-21 * * 0 \quad$ **outig
** I * * 5-1 L. $1-20 * * 0 \quad$ **OT1F
** 1 $\quad * * 6-1 \quad 5 \quad 1-19 * * 0 \quad$ **OTIEIN3B

** $1 \quad * *$ 8-1 $7 \quad 1-17 * * 0 \quad * * 0 T 1 C$
** 1 ** 9-1 $3 \quad 1-16 * * 0 \quad$ **OTIEINBA
** I **10-1
** I \quad ** 11-
** ov

* 12
$1-15 * *$ - **OUT1A
1-14 ** I **OTRCIN1M
$1-1 \pi * * I \quad * * I N I L$
$1-24 * *+5 \mathrm{~V}$ **VCC
$1-23$ ** $0 \quad$ **OUTII
:-22 ** \square **DUTIH
**ouT1G

1--1

File Name: FARTI
Date: 12/10/1986
Time: 18:26:56
@DEVICE TYPE
FLS173
GDRAWING
GFEVISION
eDATE
asYMEAL
ECOMFANY
@NAME
F'ARTI
GDESCRIFTION
GI/O DIFECTION
Blogic equation
OUT1A $=/$ IN1A*/INIE*(IN1J+/OTZAINIF):
OTIBINJA $=/$ INIB*INII:
OT1C =/IN1H+DT2CIN1M+/IN1D*/OTSAIN1F+OTZEIN1K:
OUT1D =IN1B+/IN1J:
OT1EINBE =/IN1E*INIJ+OT2CIN1M+/OTSG*IN1A+/IN1A*/IN1G: OTIF =OT2CINIM*/INIG*/INIL:
OUT1G =OT2CIN1M+/IN1G*INIE+IN1E+/OTSG*IN1A:
OUTIH $=$ /INIH* (INIE) +OTSAINIF+/INIA+INIB+INID:
OUTII $=(/$ INIE $) * O T 3 G:$
Figure 9a. Part 1: PLS173
File Name : FART1
Date : $12 / 10 / 1986$
Time: $18: 27: 40$

Cust/Froject - FARTI

Date

Rev/I. D.

	0	1				0				I	I	0		0	0	0	0	0	0	0	0	0	0	0	0	\square	0	0	0	0	0
N	T	N	N	N	N	T	N	N	T	N	N	U	U	1	T	T	U	T	T	4	T	U	\cup	U	T	T	11	T	T	1	T
1	3	1	1	1	1	3	1	J	3	1	1	T	T	T	1	1	r	1	1	T	7	T	T	T	1	1	T	1	1	T	2
L.	$\begin{gathered} E \\ I \end{gathered}$	J	1	H	G	A I	E	D	G	B	A	$\begin{aligned} & 1 \\ & I \end{aligned}$	1	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	F	$\begin{gathered} E \\ I \end{gathered}$	D	C	E	1	C	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & H \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$		$\underset{I}{E}$	$\begin{aligned} & 1 \\ & \mathrm{D} \end{aligned}$	C	1	1	C
	N					N										N			N		N					N			N		N
	,					1										3			3		1					3			3		1
	k					F										E			A		M					E			A		M

Figure 9a. Part 1: PLS173 (Continued)

PLHS501 Programmable Macro Logic Primer

```
File Name : PAFT?
Date : 12/10/1986
Time : 18:30:42
```

\# F I N L I S T \#

L.ABEL.	**	FiNC.	**FIN			FIN	**	FNC	**	Label.
IN1A	**	I	**	1-1		1-24	**	+5V	**	
TN2B	**	I	**	2-1		1-23	**	B	**N	
IN2C	**	I	**	3-1		1-22	**	B	**N	
INIG	**	I	**	4-1	F	1-21	**	0	**	INSE
INII	**	I	**	$5 \cdots$	L.	1-20	**	0	**	FINSD
rNiJ	**	I	**	- -	5	1-19	**	0	**	INIM
INIE	**	1	**	7-1	1	1-18	**	0	**	
OUTig	**	1	**	8-1	7	1-17	**	0	**	
OUT1H	**	I	**	9-1	3	1-16	**	0	**	
OT1C	**	1	**	10-1		1-15	**	0	**	
OTSAINAF	**	1	**	11-1		1-14	**	10	**	
GND	**	OV	**	12-1		$1-13$	**	1	**	

File Name : FAFT? Date : 12/10/1986 Time : 18:31:49

GDEVICE TYFE
FL.S. 173
©DFAWING
GREVISION
EDATE
ESYMEOL.
ECOMF'ANY
〔NAME
FAFTT2
@DESCRTFTION
©I/C DIFECCTION
GLGGIC EQUIATION
/DUT2A $=/($ (DUT2E*/OLIT IG)) :
OUT2E $=$ OUTIH4OUTT $2 A$
OUT $2 \mathrm{C}=O T 2 C I N 1 M+/ I N 1 G+O T 2 F I N B D:$
OUT2D $=$ OTSAINIF*/INIG+(/OTSAINIF* ((INIB+/INIS)*/INII))*INIE +(OT2FINSD*/OTSG*/IN1A)* ((/IN1A*/IN1E* (IN1J+/GTBAIN1F)) * (/INIE*INIJ)) +/OT2GINSE:

OUT2E =/OT2CIN1M*/IN2C:
OT2CINIM =INIG*/OUTZE:
/OT2FIN3D $=/(($ OUT $2 C *(I N 2 B))):$
OT2GIN3E $=/$ OUT'2D + OT1C:
File Name : FART2
Date: $12 / 10 / 1986$
Time : $18: 32: 35$
Cust/Froject - PART2
Date
Rev/I. D. -

PLS173
FOLARITY

Figure 9b. Part 2: PLS173 (Continued)

PLHS501 Programmable Macro Logic Primer

```
File Mame : FAFils
Date : 12;10/1986
Time : 1&:35:38
```


IABEL **FNC **FJN …………… FIN**FNC ** LABEE
OT1EINSA
OTIEIMSB INSC
OT2MNED
OTCGTNBE
OIIF
$1-20 * *+5 \cup * *$ VOい
** 1 ** $\quad \cdots 1 \quad 1-19 * * 日 \quad * * N / C$

** $1 \quad * * 4 \cdots 11 \quad 1 \cdots 1 \gamma * * 0 \quad * * O T 3 H 1$

IH11 ** $\quad * *$ - \quad -

GND $* *$ OU $* * 10 \cdots 1 \quad: \cdots 11 * * 1 \quad * * \ln 16$

```
File Name : FAFTS
Date : 12/10/1986
Time : 18:36:18
EDEVICE TYFE
FLS15%
EDRAWING
GFEVISION
GDATE
GSYMEOLL
GCOMF'ANY
gNAME
GDESCRIFTION
GCOMMON FFRODUCT TERM
@I/O DIFECTION
GOUTPUT FOLAFITY
GLDGIC EQUIATION
```

Figure 9c. Part 3: PLS153

```
File Name: PARTS
Date: 12/10/1986
Time : 18:36:47
```

Cust/Project -
Date
Rev/I. D. -

IIOOOIOONNO/OOOOI/NNNO/OOOOI/ NNTTTNTT/1, TOUTUUNO/1TGUTUUNG

Figure 9c. Part 3: PLS153 (Continued)

Figure 10. System in Figure 8 Implemented with PLD's

Figure 11. System in Figure 10 Implemented with PLHS501

Signetics

Application Specific Products

INTRODUCTION TO PML DESIGN CONCEPTS

Programmable Macro Logic, an extension of the Programmable Logic Array (PLA) concept combines a programming or fuse array with an array of wide input NAND gates wherein each gate folds back upon itself and all other such NAND gates. This is called a foldback NAND structure and its basic elements have been outlined previously (Cavlan ${ }^{1}$, Wong ${ }^{2}$, Gheissari and Safari ${ }^{3}$).
The choice of an internal NAND logic cell is appropriate because the cell is functionally complete, requiring but a single cell type to generate any Boolean function. A cell within the PLHS501 may be configured to accommodate from one to 32 inputs from the outside world, and up to 72 inputs from within the chip. Because the user can select either direct or inverted input variables, and either a direct or complemented output, the NAND function can generate, with a single pass through the programming array, the basic four logic functions of AND, OR, NAND, NOR. All these basic functions, can be extremely wide, of course (see Figure 1.1). This convenient structure allows efficient exploitation of all widely used minimization techniques (Karnaugh Maps, Quine-McCluskey, Boolean AIgebra, etc.).

Designing with Macro Logic

The obvious extensions to additional combinational functions for decoding, multiplexing and general Boolean functions is straightforward. Adding feedback to the system expands the range of realizeable functions to include sequential as well as combinational functions. Figure 1.2 illustrates the basic arrangement of the PLHS501. Because of the large number of inputs each NAND gate has available, logic functions that require several levels of conventional 4 or 8 input gates may be able to be reduced to 1 or 2 levels. However, it is important to realize that unlike AND-OR PLD architectures, more than 2 levels of logic may be implemented in the PLHS501 without wasting output or input pins. Up to 72 levels of logic may be implemented due to each of the 72 foldback NAND gates.
So far, the concept of a "macro" is still not evident. Two ways for the generation of a macro exist - namely, hard and soft. Borrowing from the concept in computer programming wherein a section of code (called a macro) is repeated every time its use is required, we can establish subfunctions which can be repeated each time required. The user defined or soft macro can be one which will generate a function by fused interconnect. When a fixed design function is provided, it is a hard macro. This may be an optimized structure like a flip-flop or an adder,

LD09220s

Figure 1.1 PML Basic Functions
or some other function which is generated on the foundation, by the manufacturer. Soft macros are seldom optimized or precisely consistent, but hard macros are both optimized and unalterable.

When a user function for a particular use is isolated, defined and repetition of the function is required, special software constructs are provided which will allow it to be defined as a soft macro and efficiently replicated. For higher performance and functional density, an array of choices which contain optimized functions or hard macros will be offered in successor chips. In particular, the PLHS502 (described in Section 4) will include an array of flip-flops for high performance state machine design.

Optimizing combinational functions in PML consists largely in making choices and tradeoffs. For single output logic functions, the choice is obvious from the truth table. If a particular function's truth table has fewer entries that are logical zeroes than logical ones, product of sums should be chosen and the appropriate OR-AND structure generated. Otherwise, the usual sum of products should be chosen, minimizing as usual, before dropping into the two level AND-OR structure (using the NAND-NAND realization). Combining the availability of inversion at the input and output of the chip, the NAND-NAND structure can perform either the OR-AND or the AND-OR rendition of a function with equal ease, using precisely the same number of logic levels. The designer needs only to choose the optimal rendition to suit his needs (see Table 1.1). Truth tables with 50% ones can use either version at the designers whim unless other uses arise.

PERFORMANCE

The PLHS501 (Figure 1.2) is a high speed, oxide isolated, vertically fused PML device containing 72 internal NAND functions which are combined with 24 dedicated inputs, 8 bidirectionals and 16 dedicated outputs. A large collection of applications, both combinational and sequential, may be configured using this part which looks roughly like a small, user definable gate array. For the sake of clarity, worst case passing a signal from an input, making one pass through the NAND array (output terms) and exiting an output takes around 25 nanoseconds with each incremental pass through the NAND foldback array taking about 8 nanoseconds.

TABLE 1.1 EXAMPLE DEMONSTRATION

If we group on the one entries we shall get: $F_{1}=A B^{-}+\overline{B C}+B C$

LS11980S

If we group on the zero entries we get instead: $F_{1}=(B+C)(A+B+C)$

LS1 1990 S

Figure 1.2 PLHS501 Logic Diagram

Designing with Programmable Macro Logic

The data sheet first lists some maximum propagation delays from an input, through a NAND output term and out through various output gates. Secondly, it lists maximum propagation delays from an input, through a NAND foldback term, through a NAND output term and out through the different output gates.

It is intriguing that subtracting one from the other yields a NAND foldback gate delay of 5 to 6 ns when the worst case gate delay of an internal foldback gate is listed as 8 ns . This is due to the fact that a gate has less of a delay when it's output is falling (tPHL) than when it's output is rising (tPLH). When passing a signal through two NAND gates one gate will
have less of a delay than the other, and since the individual rise and fall delays are not specified, this causes the apparent discrepancy between the two delays.
Figure 1.3, Figure 1.4, Figure 1.5 and Figure 1.6 show graphically the timing paths listed in the PLHS501 data sheet.

PLHS501 TIMING

Figure 1.3 tpd3 -22ns Maximum

PLHS501 TIMING (Continued)

PLHS501 TIMING (Continued)

LD09281S

NOTES:

tPD $^{1}=25 \mathrm{~ns}$ maximum.
Input Buffer + 1 NAND gate + XOR gate + Output Buffer.

PLHS501 TIMING INTERNAL

Designing with Programmable Macro Logic

NAND GATE FLIP-FLOPS

Various types of flip-flops and latches may be constructed using the NAND gate building blocks of the PLHS501. A typical 7474 type of edge-triggered D flip-flop requires 6 NAND gates as shown in Figure 1.7.
No additional gates are required to implement asynchronous set and reset functions to the flip-flop. The equations necessary for AMAZE to implement the D flip-flop are shown in Figure 1.8. However, please note that the equations of Figure 1.8 define a D flip-flop configured as a divide by 2 (i.e., QN is connected to the data input) whereas Figure 1.7 shows a general case. Also note that flipflops with some additional features may be constructed without using more than the six NAND gates. This is possible because of the large number of inputs associated with each NAND gate. For instance, a flip- flop may be required to have a clock gated by one or more signals. Using the PLHS501, it may be implemented by adding additional input signal
names to NAND gate equations of gates \#2 and \#3 of Figure 1.7. If the data input is to the AND of several signals, extra inputs to NAND gate \#4 may be used. Or if additional set or reset lines are required, they may be added simply by using more of the inputs of each NAND gate connected to the main set or reset.

Figure 1.10 shows two simulations of the same flip-flop. The first one is at a little less than maximum frequency, for clarity in following the waveforms, and the second is at the maximum toggling frequency. For these simulations each NAND gate has a maximum tpHL or tpLH of 8 nsec (which is the gate delay of a NAND gate in the PLHS501's foldback array). First of all, it can be seen from these simulations that for proper simulation or testing of such a device a set or reset input is mandatory. Both Q and $Q N$ outputs are unknown no matter what the inputs do, until they are put into a known state by either a set or reset input. Secondly, various timing parameters
such as propagation delay, as well as setup and hold times may be determined. For the general case, referring to Figure 1.7:

Tsetup $=$ tpd $4+$ tpd1, Thold $=$ tpd3 + tpd 4 and Clock to $Q=\operatorname{tpd} 3+\operatorname{tpd} 6+\operatorname{tpd} 5$.

Therefore, performance of the flip-flop depends a great deal on which gates in the PLHS501 are used, either NAND gates in the foldback array or output NAND gates, connected to bidirectional pins. As a test of the simulation, a D flip-flop connected as a divide by 2 was constructed using only the foldback NAND terms (see Figure 1.8). An output NAND term was used to invert the QN output and drive an output buffer. The only inputs were the clock and a reset. The data input to the flop was driven internally by the QN output. According to the simulation, it was possible to drive the clock at a frequency of 25 Mhz and this small circuit also functioned at that frequency.

Figure 1.7 Edge Triggered D Flip-Flop

wF23160S

WF23170S
Figure 1.10 Waveforms of Test Flip-Flop

Designing with Programmable Macro Logic

Application Specific Products

FUNCTIONAL FIT

In the late 1960's and early 1970's designers used SSI, MSI and small amounts of early LSI to generate logic solutions. Frustrated by the lack of wide input gates to accommodate a lot of product terms for two level solutions, they turned toward the budding ROM and PROM products. These devices relied on literally realizing a function by generating its truth table in silicon. The logic function had to have each logical one and zero realized distinctly as an entry for a particular combination of input variables, usually supplied on the address lines of the memory. Observing that many such truth tables were dense in ones or zeroes and sparse in the remainder, a cadre of initial manufacturers emerged with focus on supplying a programmable product with a few AND gates and OR gates which were versatile enough to compete against the ROM/PROM parts. The gimmick supplied by these PLA manufacturers was to illustrate the functional equivalency of the PLA to the PROM by comparing the number of product terms (to be shortened to ' p-terms'') the PLA supplied and comparing this to the width and depth of available PROMs. P-terms became the 'currency" of the PLA world and a designer only had to assess the equivalent number of Boolean product terms required by his function to determine whether a particular PLA was a suitable candidate for his design.

Almost in parallel, gate arrays became available. These provided an array of identical, fixed input gates (usually two input NANDs or NORs). These were generated in a regular fashion on a substrate which had a fixed input/output pin arrangement. Also recognizing that all logic functions could be built from the appropriate two input gates, when interconnected correctly, manufacturers offered these devices to customers who required increased density.

The designer's responsibility was to generate what would ultimately be a metal interconnect pattern of his design. Special tools were required to allow an untrained system designer to do this successfully. Flip-flops, decoders, registers, adders, etc., could all be generated from the low level gate building blocks.
The currency of gate arrays became known as gate equivalent functions. That is, with a limited number of available gates on a substrate, the user needed to know precisely how many gates were used up, on a function by function basis, to generate each piece of his design. A D flip-flop requires about six gates, a D latch four, a 3 to 8 decoder takes about 14 gates and so forth. This allowed estimation regarding whether the function could conceivably be fit onto a particular substrate or not. Manufacturers had to offer multiple foundations so that a designer could be assured that his design would result in a working I.C.
The classic method of estimating whether a logic function would fit into a PLA was to determine the number of I/O pads required and the number of product terms required to generate the logical function, then select the PLA. For a gate array, the required measure included the I/O pad arrangement but substituted the number of available gates to generate the logical function (usually by table lookup). In an attempt to reconcile the two measures, Hartman ${ }^{4}$ has evolved a formula for his product line. A calculation using this method and developing an appropriate "exchange rate" is shown in Table 2.1 for the PLHS501 and PLHS502. An alternate method of generating an estimate is to consider the gate equivalent of generating, say for the PLHS501, a gate equivalent of the part in an optimistic functional configuration (72 occurrences of a 32 input NAND gate). Figure 2.1
shows how this will result in over 2000 equivalent gates. Conversely, by stacking the NAND gates into D flip-flops, its least efficient function, the PLHS501 will have a gate equivalent of only about 100 gates.

The most rational method of assessing fit is to isolate functions and identify the correct configuration in terms of gates, to allow direct tally of the gates used, to generate the proposed configuration. Table 2.2 may assist in doing this analysis. Note that all basic gates require precisely one gate to generate the function. Also note the occurrence of functions in the table which could never be generated as standard I.C.'s previously. The procedure is to tally the design against a total budget of 72 multiple input NAND gates.

Table 2.2 is illustrative only, and should by no means be taken as complete. It may be simply expanded by designing the proposed function with disregard to the usual restrictions on the number of inputs to a gate, realize the function as one, two, three, or more levels of interconnected logic and count the number of gate ocurrences required. Special software has been provided to allow pyramided logic structures to be generated under the designer's control. These structures may, however, be no deeper than 72 levels for the PLHS501. Functions should be generated in accord with the guidelines mentioned before, for selecting an optimal 2 level logical solution.
It is an interesting observation that manufacturers of gate arrays and standard cell products which offer embedded PROMS, ROMS or RAMS have not successfully described these embedded functions in terms of equivalent gates, but rather resort to other means (such as divulging their relative area with respect to the area of a basic gate). There is, as yet, no standard in this arena.

TABLE 2.1 EQUIVALENCY RATIO

Hartman's method is based on a CMOS gate array equivalency wherein 4 transistors constitute a 2 input NAND or NOR gate, equal to one gate. Thus, his "exchange rate" is as follows:

```
E.R. = 4 }\times\mathrm{ # inputs
    +9\times # FFs
    +7\times # 3-State outputs
    +(15 to 30) }\times\mathrm{ # OR outputs from the AND/OR array.
```

For the PLHS501: (using CMOS numbers which may be inappropriate)

```
E.R. = 4 < 32
    +9\times0
    +7\times24
    +(15 to 30) }\times50%\mathrm{ of 72 feedbacks=836 to 1376 gates
```

For the PLHS502:

```
E.R. = 4 < 32
    +9\times16
    +7\times12
    +(15 to 30) }\times50%\mathrm{ of 64 feedback =962 to 1502 gates
```

Being for two bipolar I.C.'s, in this case, the method may be inappropriate, but may be taken as an estimating procedure.

TABLE 2.2 PLHS501 GATE COUNT EQUIVALENTS

FUNCTION	PLHS501 INTERNAL NAND EQUIVALENT	COMMENTS
Gates		
NANDs ANDs NORs ORs	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	For 1 to 32 input variables. For 1 to 32 input variables. For 1 to 32 input variables. For 1 to 32 input variables.
Decoders		
3 to 8 4 to 16 5 to 32	$\begin{gathered} \hline 8 \\ 16 \\ 32 \end{gathered}$	Inverted inputs available. Inverted inputs available. Inverted inputs available (24 chip outputs only).
Encoders		
8 to 3 16 to 4 32 to 5	$\begin{aligned} & 15 \\ & 32 \\ & 41 \end{aligned}$	Inverted inputs, 2 logic levels. Inverted inputs, 2 logic levels. Inverted inputs, 2 logic levels, factored solution.
Multiplexers		
4 to 1 8 to 1 16 to 1 27 to 1	$\begin{gathered} \hline 5 \\ 9 \\ 17 \\ 28 \end{gathered}$	Inverted inputs available. Can address only 27 external inputs - more if internal.
Flip-Flops		
D-FF T-FF J-K-FF	$\begin{aligned} & 6 \\ & 6 \\ & 8 \end{aligned}$	With asynch S-R With asynch S-R With asynch S-R
Adders		
8-bit	45	Full carry look-ahead (four levels of logic)
Barrel Shifters		
8-bit	72	2 levels of logic

Signetics

Designing with Programmable Macro Logic

Application Specific Products

DESIGN EXAMPLES

Most designers tend to view a PLD as a mechanism for collecting logical glue within a system. That is, those pieces which tie together the larger LSI microprocessors, controllers, RAMs, ROMs, UARTs, etc. However, there is a tendency of viewing a gate array as an entire system on a chip. PML based products will fit well in either casting as will be demonstrated by a series of small but straightforward examples. For starters, we shall examine how the fusing process embeds functions, progress to glue-like decoding operations and finally demonstrate some
coprocessor like functions as well as homemade 'standard products'.

The method of associating gates within the NAND foldback structure is depicted in Figure 3.1 wherein a simple three to eight decoder is fused into the array. The corresponding inputs are on the left and outputs at the top. This figure shows inputs and their inverse formed in the array resulting in a solution that requires 6 inverting NANDs that would probably be best generated at the input receivers. Hence, this diagram could be trimmed by six gates, down to eight to achieve the function. Figure 3.2 shows two consecutive D-flip-flop
fusing images. Note that asynchronous sets and resets may be achieved for free, in this version. In both Figures 3.1 and 3.2 the gates are numbered in a one-to-one arrangement. As well, the accompanying equations are in the format used by Signetics AMAZE design software. For clarity, consider the gate labeled 2A in Figure 3.1. Schematically, this is shown as a 3 input NAND. However, in the fused depiction, it combines from three intermediate output points with the dot intersect designation. Hence, all gates are drawn as single input NANDs whose inputs span the complete NAND gate foldback structure.

1 OF 8 DECODER/DEMULTIPLEXER

Figure 3.1 Decoder Implementation in NAND Foldback Structure

TWO EDGE-TRIGGERED FLIP-FLOPS

L009300s
Figure 3.2 Two Flip-Flops Implemented in the NAND Foldback Structure

One straightforward example of using a PLHS501 is shown in Figure 3.3. Here, the device is configured to accept the 23 upper address lines generated by a 68000 microprocessor. By selecting the direct and complemented variables, at least 16 distinct address selections can be made using only the dedicated outputs. The designer can combine additional VME bus strobes, or other control signals to qualify the decode or, define 8 additional outputs for expanded selection. As well, the designer could transform the bidirectionals to inputs and decode over a 32 bit
space, selecting combinations off of a 32 bit wide address bus. Because this simple level of design requires only NAND output terms plus 4 NAND gates in the foldback array (for inversion of signals connected to O3.O0), there may be as many as 68 remaining gates to accomplish additional handshaking or logical operations on the input variables.

Figure $\mathbf{3 . 3} \mathbf{6 8 0 0 0}$ Microprocessor Address Decode

Figure 3.4 8-Bit Barrel Shifter Implemented with the PLHS501

An eight bit barrel shifter exploits most of the PLHS501 as depicted in Figure 3.4. This implementation utilizes all 72 internal foldback NANDs in a relatively brute force configuration as well as 8 output NANDs to generate transparent latched and shifted results. The shift position here is generated by the shift 0 , shift 1 and shift 2 inputs which are distinguished and selected from the input cells. Variations on this idea of data manipulation could include direct passing data, mirror
imaged data (bit reversal) or byte swapping to name a few.

Part of an eight bit, look-ahead parallel adder is shown in Figure 3.5. Gates necessary to form the level-0 generate and propagate, as well as the XOR output gates generating the resulting sum are not shown. The reader should be aware that this solution exploits four layers of pyramided gates and only utilizes a total of about 58 gates. Additional
comparison or Boolean operations could still be generated with remaining NAND functions to achieve additional arithmetic operations. This application should make the reader aware of a new class of applications achieveable with third generation PLDs - user defineable I/O coprocessors. The approach of increasing microprocessor performance by designing dedicated task coprocessors is now within the grasp of user defineable single chip solutions.

Designing with Programmable Macro Logic

An example of one of the least efficient structures realizeable on the PLHS501 is shown in Figure 3.6. Here, a cascade of 12 D-flip-flops are formed into a toggle chain that uses all available NAND gates in the main logic array. In the PLHS501 simple cross coupled latches or transparent D latches are preferred over edge triggered flip flops simply because they conserve NAND gates. Applications for structures like this include timing generators, rate multiplication, etc. Additional output gates exist on the output terms as shown in Figure 1.2, which could gate the output in multiple state detection configurations. As well, rearranging Figure 3.6 as a 12-bit shifter, picking off states at the output terms could result in a general purpose sequence recognizer capable of recognizing binary string sequences. These strings could be up to 13 bits long (in a Mealy configuration) and 24 distinct sequences could be sensed and detected.

Figure 3.5 Partial NAND Gate Equivalence of the 8-Bit Look-Ahead Adder

Figure 3.7 shows a 32 to 5 -bit priority encoder. This sort of device could generate encoded vector interrupts for 32 contending devices. Of particular interest is the fact that ordinary encoders are not this wide. The designer is, of course, not constrained to generating combinational functions in even powers of two. Thus, the PLHS501 can easily perform customized functions like a 5 to 27 decoder or a 14 to 4 encoder or, even an 18 to 7 multiplexor. For the sake of optimization, the designer is encouraged to implement precisely the function he needs, no more and no less!
The design examples given are illustrative of some typical operations used in ordinary systems. In each case, the example could be thought of as simply an "off the shelf" standard solution to an every day problem (i.e., a de facto standard product).

Signetics

Designing with Programmable Macro Logic

Application Specific Products

SUCCESSOR ARCHITECTURES

The design examples described and Table 2.2 illustrate the combinational power and the sequential limitations of the PLHS501 - Signetics first PML entry. Clearly, the next family members must address the flip-flop issue, and they do. The PLHS502 (Figure 4.1) shows a similar NAND function array of 64 gates with the vital addition of 8 buried D-flip-flops and 8 buried S-R flipflops. Again, 16 pins are devoted to dedicated outputs, 20 straight inputs, 4 clock or general
inputs and 8 bidirectionals can be configured to expand input or output capabilities. Slated to operate in the middle 30 MHz clocking range, this part greatly expands the sequencer capability beyond the initial PLHS501. The PLHS502 application range will include state machines like CRC generation/detection, Bus handshakers, LAN handshaking, arithmetic coprocessors, single chip systems and a complete bevy of general sequencer operations such as sequence generation and detection. It should be emphasized that the

NAND array is fully connected and circumvents limitations on connectivity as found in other PLD products.

Almost simultaneous with the arrival of the PLHS502 (a bipolar part) will be the first CMOS PML entry. Expanding on the functional capabilities of the PLHS502, the CMOS part will offer 52 flip-flops in a variety of natural configurations with a NAND array near 200 gates. Due to complexity and density, the part will combine a distinctive power-save option and the benefits of scan-design.

Figure 4.1 PLHS502 Diagram

Application Specific Products

SUPPORT ISSUES

The current PML architecture, the PLHS501, is adequately supported by Signetics AMAZE software. Offered free to qualified users, AMAZE can generate the required design files, fusemaps and simulations within the appropriate modules of AMAZE. From a simple menu driven environment on an IBM personal computer (or compatible under MS/ DOS), the user can generate a design with logic equations, state equations or schematic entry (using FutureNet Dash or ORCAD SDT software). Once the design is entered, the user must "assemble" it prior to fusing the PML product. If required, the user may simulate the assembled file to determine the accuracy and functional operation of his design. Iteration between design entry, assembly and simulation may be required, depending on the users expectations and the completeness of design. Automatic test vector generation is a simulation option. Currently,

Designing with Programmable Macro Logic

the designer may fuse his design using either a DATA I/O Unisite programmer, a Stag ZL-30A or a STREBOR fusing system with corresponding configuration modules.
The AMAZE product is fully contained and complete except for the schematic capture program. Although it is used for the complete line of Signetics PLD products (PLAs, Sequencers and PROMs), it has undergone additional modification to support special features required by the nature of the PML products. These include the following:

- Internal Nodes - the ability to define and refer to nodes completely within the array and isolated from direct contact with the device I/O pins.
- Bracket Freezing - the ability to tag (with square brackets) a Boolean subfunction which is not to be optimized by the AMAZE assembler but is to be realized within the design explicitly as described by equation.

Both features are key to the AMAZE approach to macro generation. In particular, "bracket freezing" allows the designer to make tradeoffs between wide and shallow combinational paths and long, narrow combinational paths.
In the current rendition of AMAZE, automatic placement and interconnect of the fused Boolean functions is the recommended approach. Should the user decide to intervene, a special fuse table editor exists for manual alteration of the design file. This is not the recommended approach, but it also serves as a diagnostic tool to review design placement and interconnect.
Future directions for software support include enhanced simulation, exhaustive automatic Boolean optimization, the development of a full library of macros, automatic design partitioning and a wide assortment of bells and whistles.

PLHS501 EXAMPLES USING

AMAZE REVISION 1.6

- Simple gate Implementations
- 8 -bit barrel shifter
- 12-bit comparator with dual 1 of 8 decoders
- 8-bit carry look-ahead adder
- 32 to 5 priority encoder
- 8 -bit shift register with 3 -bit counter and sequence detector
- 4-blt synchronous counter

Following are six example applications for the PLHS501 using AMAZE Rev. 1.6. They should not be viewed as showing all possible capabilities of the device. They have been designed to demonstrate some of the PLHS501 features, syntax of AMAZE, and to give the reader some ideas for possible circuit implementations.

Note that these examples were written using AMAZE Rev. 1.6. Although Signetics will try to keep succeeding versions of AMAZE compatible, it may be necessary to change some syntax rules. Therefore, please refer to your AMAZE manual for any notes on differences, if using a revision later than Rev. 1.6.

SIMPLE GATE
 IMPLEMENTATIONS

In this example six functions were implemented for each of the three major types of output structures. The six functions are AND/ OR, AOI, NAND, AND, OR and NOR. A requirement for the AND/OR and AOI gates was to use only two gates each from the foldback array and to combine these product terms in one NAND output gate. To achieve this result, it was necessary for the $/ B$ and $/ O$ outputs to write equations using internal nodes and brackets around the equation. Refer to Figures 6.1 and 6.2.
For the simulation (Figures 6.3 and 6.4) a binary count of 0 through 15 hex was applied to the input D-A. Each output of the log file was checked against anticipated and other device outputs of the same function for correct operation.

```
File Name : GATES
Date : 9/15/1987
Time : 9:30:16
```

\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#

Left				Right		
LABEL	** FNC	**PIN		PIN** FNC	**	LABEL
VCC	** +5V	** 8-1		\|-46** +5V	**VCC	
A	** I	** 9-1		-45 ** I	**N/C	
B	** I	** 10-1		-44 ** I	**N/C	
C	** I	** 11-1	P	\|-43 ** I	**N/C	
D	** I	** 12-1	L	\|-42 ** I	**N/C	
N/C	** I	** 13-1	H	\|-41 ** I	**N/C	
N/C	* I	** 14-1	S	\|-40 ** 10	**F1	
F2	** 0	** 15-1	5	\|-39 **/0	**F3	
F4	** 0	** 16-1	0	\|-38 **/0	**F5	
F6	** 0	** 17-	1	\|-37 **/0	**N/C	
N/C	** B	** 18-1		\|-36 ** 0	**N/C	
F20	* 0	** 19-1		\|-35** 0	**F7X	
GND	** OV	** 20-1		\|-34** OV	**GND	

Bottom				Top		
IABEL	** FNC	**PIN		PIN** FNC	**	LABEL
F40	** 0	** 21-1		1-7**	**N/C	
F60	** 0	** 22-1		1-6 ** I	**N/C	
N/C	** 0	** 23-		\|-5 **I	**N/C	
F10	** 10	** 24-	P	- 4 ** 1	**N/C	
F30	** 10	** 25-1	I	\|-3 ** I	**N/C	
F50	** 10	** 26-1	H	1-2 ** I	**N/C	
N/C	** 10	** 27-1	S	- 1 ** I	**N/C	
F1X	** 0	** 28-1	5	-52 ** I	**N/C	
F2X	** 0	** 29-1	0	-51 ** I	**N/C	
F3X	** 0	** 30-1	1	-50 ** I	**N/C	
F4X	** 0	** 31-1		-49 ** I	**N/C	
F5X	** 0	** 32-1		-48** I	**N/C	
F6X	** 0	** 33-1		-47 ** I	**N/C	

TBO3e50S

Figure 6.1 Gates Pin List

ile Name ：GATES	
Date ：9／15／1987	
Time ：9：30：35	
＠DEVICE TYPE	＊AND－OR using XOR output＂
PLHS501	$f l x=(a * b)+(c * d) ;$ ＂AND－OR－INVERT using XOR output＊
＠DRAWING	＂AND－OR－INVERT using XOR output＂
＠REVISION	$f 2 x=/[(a * b)+(c * d)]$ ； ＂NAND using XOR output＂
＠DATE	
＠SYMBOL	$f 3 x=/(a * b \star c \star d) ;$
＠COMPANY	
＠NAME	$f 4 x=a * b * c * d ;$
＠DESCRIPTION	＂OR using XOR output $f 5 x=/(/ a * / b * / c * / d) ;$
Various single and two level gate implementations using different output structures	
	$\mathrm{f} 6 \mathrm{x}=/ \mathrm{a} * / \mathrm{b} * / \mathrm{c} * / \mathrm{d} ;$ ＂XOR using XOR output＂
＠INTERNAL NODE	f7x ：xrl $=\mathbf{a}$ ；
＠COMMON PRODUCT TERM ${ }^{\text {ar2 }}$－b；	
＠I／O DIRECTION	
＠I／O STEERING	＂AND－OR using／O output＂ $\mathrm{flo}=/(/[\mathrm{a} * \mathrm{~b}]$＊$/[\mathrm{c} \star \mathrm{d}])$ ； ＂AND－OR－INVERT using O output＂
＠OGIC EQUATION	
＂AND－OR using／B output＂	$f 20=/[(a * b)+(c * d)]$ ； ＂NAND using／O output＂
$\mathrm{fl}=/(/ \mathrm{a}$ ab］＊$/[\mathrm{c} * \mathrm{~d}])$ ；	
＊AND－OR－INVERT using B output＊	$\mathrm{f} 30-1(\mathrm{a} * \mathrm{~b} * \mathrm{c} * \mathrm{~d})$ ；
f2－／［（a＊b）＋（c＊d）］；	＂AND using 0 output＂
＂NAND using／B output＂	$\mathrm{f} 40=\mathrm{a}$＊ $\mathrm{b}^{*} \mathrm{c} * \mathrm{~d}$ ； －OR using 10 output＂
f3－／（a＊b＊c＊d）；	－OR using／O output$f 50=/(/ a * / b * / c * / d) ;$
＊and using B output＊	
f4－a＊${ }^{*} c^{*} d_{\text {；}}$	＂NOR using 0 output ${ }^{-}$ $\mathrm{f} 60=/ \mathrm{a} * / \mathrm{b} * / c^{*} / \mathrm{d}$ ；
	T803870
＂NOR using B output＂	
$\mathrm{f6}$－／ $\mathrm{a}^{*} / \mathrm{b}^{*} / \mathrm{c}^{*} / \mathrm{d}$ ；	

Figure 6．2 Gates Boolean Equations

```
" Simulation input file for GATES
* <-------INPUTS------->> < B,/B \rangle
222211111111111
32109876543210987654321076543210
* DCBA A is MSB, D is LSB
\begin{tabular}{|c|c|}
\hline HНL工LLHННННННННННННННННН & put all 0＇s A－D \\
\hline HННL L HHHHHHНННННННННННН & ＂Input count 1＂ \\
\hline HHLHLLHHHHHHHHHHHHHHHHHH & ＂Through．． \\
\hline HHHHLLHHHHHHHHHHHHHHHHHH & \\
\hline HHLLHLHHHHHHHHHHHHHHHHHH & \\
\hline HHHLHLHHHHHHHHHHHHHHHHHH & \\
\hline HHLHHLHHHHHHHHHHHHHHHHHH & \\
\hline HHHHHLHHHHHHHHHHHHHHHHHH & \\
\hline HHL工LHHHHHHHHHHHHHHHHHHH & \\
\hline HHHL工HHHHHHHHHHHHHHHHHHH & \\
\hline HHLHLHHHHHHHHHHHHHHHHHHH & \\
\hline ННННL HHHHННННННННННННННН \(^{\text {H }}\) & \\
\hline НН工工НННННННННННННННННННН & \\
\hline HHНLHHНННННННННННННННННН & \\
\hline HНL HНННННННННННННННННННН & \\
\hline НННННННННННННННННННННННН & ＂Count 15 hex＂ \\
\hline
\end{tabular}
```

Figure 6．3 Gates Simulation Input File

Figure 6.4 Gates Simulation Log File

8 BIT BARREL SHIFTER

This 8-bit shifter will shift to the right, data applied to $A 7-A O$ with the result appearing on OUT7 - OUTO. Data may be shifted by 1 to 7 places by indicating the desired binary count on pins SHIFT2 - SHIFTO. Data applied to the OUTO position for a shift of 1. For a shift of $0, A 7$ will appear on OUT7.

Also included is a transparent latch for the output bits. The input 'COMPLMTO' will invert all output bits simultaneously and input /OE will 3 -State all outputs.

```
File Name : BRLSHFT
Date : 9/15/1987
Time : 9:31:58
```

\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Left				Right			
IABEL	** FNC	**PIN		PIN**	FNC	**	LABEL
VCC	** +5V	** 8-1		\|-46 **	+5V	**VCC	
A2	** I	** 9-1		-45 **	I	**N/C	
A3	** I	** 10-		-44 **	I	**N/C	
A4	** I	** 11-	p	-43 **	I	**N/C	
A5	** I	** 12-	L	-42 **	I	**N/C	
A6	** I	** 13-1	H	-41 **	I	**N/C	
A7	** I	** 14-	S	-40 **	10	**LO	
L4	** 0	** 15-1	5	-39 **	10	**L1	
L5	** 0	** 16-	0	-38 **	10	**L2	
L6	** 0	** 17-1	1	\|-37 **	10	**L3	
L7	** 0	** 18-		\|-36 **	0	**OUT7	
N/C	** 0	** 19-1		-35 **	0	**OUT6	
GND	** OV	** 20-1		\|-34 **	OV	**GND	

Bottom				Top	
LABEL	** FNC	**PIN		PIN** FNC	** LABEL
N/C	** 0	** 21-1		\|-7 ** I	**A1
N/C	** 0	** 22-1		-6 ** I	**A0
N/C	** 0	** 23-1		- 5 ** I	**SHIFT2
N/C	** 10	** 24-	P	- 4 ** I	**SHIFTl
N/C	* $/ 0$	** 25-	L	- 3 ** I	**SHIFTO
N/C	* $/ 0$	** 26-	H	-2 ** I	**COMPLMTO
N/C	* 10	** 27-	S	- 1 ** I	**/LE
OUTO	* 0	** 28-	5	-52 ** I	**/OE
OUT1	* 0	** 29-	0	-51 ** I	**N/C
OUT2	** 0	** 30-	1	-50 ** I	**N/C
OUT3	** 0	** 31-1		-49 ** I	**N/C
OUT4	** 0	** 32-1		-48 ** I	**N/C
OUT5	** 0	** 33-1		-47 ** I	**N/C

TB03700S

Figure 6.5 Barrel Shifter Pin List


```
File Name : BRLSHFT
Date : 9/15/1987
Time : 9:32:14
@DEVICE TYPE
PLHS5O1
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION
8 Bit Barrel Shifter
with 3-state latched outputs
@INTERNAL NODE
nod1,nod2, nod3, nod4, nod5,nod6,nod7, nod8;
nod9,nodl0,nodl1, nodl2,nodl3, nodl4, nodl5, nodl6;
nodl7, nod18, nod19, nod20,nod21,nod22,nod23,nod24;
nod25, nod26, nod27, nod28, nod29, nod30, nod31, nod32;
i3,12,i1,10;
@COMMON PRODUCT TERM
rot0 = /shift2 * /shiftl * /shift0;
rotl = /shift2 * /shiftl * shift0;
rot2 - /shift2 * shiftl */shift0;
rot3 - /shift2 * shiftl * shift0;
rot4 = shift2 * /shiftl * /shift0;
rot5 = shift2 * /shiftl * shift0;
rot6 = shift2 * shiftl * /shift0;
rot7 = shift2 * shiftl * shift0;
@I/O DIRECTION
xe0 = - ;
xel - oe;
xe2 = oe;
xe3 - oe;
@I/O STEERING
@LOGIC EQUATION
17 = /la7 * rot0 * /le +
a6 * rotl * /le +
a5 * rot2 * /le +
a4 * rot3 * /le +
a3 * rot4 * /le +
a2 * rot5 * /le +
al * rot6 * /le +
```

Figure 6.7 Barrel Shifter Boolean Equations

```
        a0 * rot7 * /le +
        le */17];
    16 - /la6 * roto * /le +
        a5 * rotl * /le +
        a4 * rot2 * lle +
        a3 * rot3 * /le +
        a2 * rot4 * /le +
        al * rot5 * /le +
        a0 * rots * /le +
        a7 * rot7 * /le +
        le */16];
    15 = /[a5 * rot0 * /le +
        a4 * rotl * /le +
        a3 * rot2 * lle +
        a2 * rot3 * /le +
    al * rot4 * /le +
    a0 * rot5 * /le +
    a7 * rot6 * /le +
    a6 * rot7 * /le +
    le */15];
14 = /[a4 * roto * /le +
    a3 * rotl * lle +
    a2 * rot2 * /le +
    al * rot3 * /le +
    a0 * rot4 * /le +
    a7 * rot5 * /le +
    a6 * rot6 * /le +
    a5 * rot7 * /le +
    le */14];
    nodl - [a3 * roto * /le];
    nod2 - [a2 * rotl * /le];
    nod3 - [al * rot2 * /le];
    nod4 = [aO * rot3 * /le];
    nod5 = [a7 * rot4 * /le];
    nod6 - [a6 * rot5 * /le];
    nod7 - [a5 * rot6 * /le];
    nod8 = [a4 * rot7 * /le]
    i3 = [le * 13];
    13 - /([/nodl*/nod2*/nod3*/nod4*/nod5*/nod6*/nod7*/nod8*/i3]);
nod9 = {a2 * rot0 * /le];
nodlo= [al * rotl * /le];
```

Figure 6.7 Barrel Shifter Boolean Equations (Continued)

```
nodll- [aO * rot2 * /le];
nodl2- [a7 * rot3 */le];
nodl3- [a6 * rot4 * /le];
nodl4- [a5 * rot5 */le];
nodl5= [a4.* rot6 * Ne];
nodl6= [a3 * rot7 * /le];
12-[1e * 12];
```

12 - /([/nod9*/nodlo*/nodll*/nod12*/nodl3*/nod14*/nodl5*/nod16*/i2]);

11 = /([/nod17*/nod18*/nod19*/nod20*/nod21*/nod22*/nod23*/nod24*/il]);
nod25= [a0 * roto */he];
nod26= [a7 * rotl */le]
nod27- [a6 * rot2 */le];
nod28- [a5 * rot3 */le];
nod29- [a4 * rot4 */le];
nod 30 - [a3 * rot5 * Me];
nod3l- [a2 * rot6 */le];
nod32- [al * rot7 */le]i
10 - [le * 10];
$10=/([/$ nod25*/nod26*/nod27*/nod28*/nod29*/nod30*/nod31*/nod32*/i0]);
out7 : xrl - /17;
xr2 = complmto;
out6 : xrl = 16 ;
xr2 $=$ complmto;
out5 : xrl $=115$;
out4 : xr2 $=$ complmto;
out4 : xrl $=114$;
xr2 = complmto;
out3 : xrl - 13;
xr2 $=$ complmto;
out2 : xrl = 12;
xr2 $=$ complmto;
outl : xrl = 11;
outo x x2 $=$ complimto:
xrl $=10$;
xr2 = complmto;
tBo3740S
Figure 6.7 Barrel Shifter Boolean Equations (Continued)

Designing with Programmable Macro Logic

```
Simulation input for BRLSHFT
* <--------INPUTS------->> < B,/B
    111111111111hlhhhhhhhhhh --Shift0 - Input 00*
    hhhhhhhhllllhlhhhhhhhhhh ---------- * FF*
    hlhlhlhlllllhlhhhhhhhhhh --------- AA*
    lhlhlhihllllhlhhhhhhhhhh ------- * 55*
    lllllllhllllhlhhhhhhhhhh ------- "Shift0 - Input 01"
```



```
    1111111hlhhlhlhhhhhhhhhh
    1l1111lhhll1hlhhhhhhhhhh
    M
    ll111llhhhhlhlhhhhhhhhhh -------- "Shift4 - Input 0F"
     1lllhhhhhlllhlhhhhhhhhhh ----------- "Shift4 - Input OF"
    111111111111hlhhhhhhhhhh ------- "Shift0 - Input 00*
    11111111111hhlhhhhhhhhhh
        "Complement output"
    1lllhhhhllllhlhhhhhhhhhh ------- "Shift0 - Input OF"
    hlhlhlhlllllllhhhhhhhhhhh --.----- "start latch test"
    Illllllhllllllhhhhhhhhhh
        "continue...
    111111hll11111hhhhhhhhhh
    11111hl1111111hhhhhhhhhh
    1111hl11111111hhhhhhhhhh
    111hl111111111hhhhhhhhhh
    11h11111111111hhhhhhhhhh
    1h111111111111hhhhhhhhhh
    hl111111111111hhhhhhhhhh
    111111111111h1hhhhhhhhhh --m----- "un-latch output"
    111111111111hhhhhhhhhhhh --m-------- "3-state outputs"
QUIT
```

```
PLHS501 BRLSHFT Time - 14:12:36 Date = 9/14/1987
" <---_----INPUTS-------> \langle B,/B\rangle\langle XOR \rangle < / O,O \rangle TRACE TERMS
* 2222111111111111
" 321098765432109876543210 76543210 7654321076543210
0000000000001011111111111 HHHHLLLL LLLCLLLL LLLLHHHH ;
```



```
101010100000101111111111 LHLHLHLH HLHLHLHL LLLLHHHH ;
010101010000101111111111 HLHLHLHL LHLHLHLH LLLLHHHH ;
0000000100001011111111111 HННННLLL LLLNLLLL LLLLHHHH ;
0000000100101011111111111 HHHHLHLL LILNLLHL LLLLHHHH ;
0000000101001011111111111 HHHHLLHL LLLLLHLL LLLLHHHH ;
0000000101101011111111111 HHHHLLLH LLLLHLLL LLLLHHHH ;
0000000110001011111111111 HHHLLLLL ILLHLLLL LLLLHHHH ;
0000000110101011111111111 HHLHLLLL LLHLLLLL LLLLHHHH ;
0000000111001011111111111 HLHHLLLL LHLLLLLL LLLLHHHH ;
0000000111101011111111111 LHHHLLLL HLLLLLL LLLLHHHH ;
0000111110001011111111111 LLLLLLLL HHHHLTLL LLLLHHHH ;
1010101000101011111111111 HLHLHLHL LHLHLHLH LLILHHHH ;
0000000000001011111111111 HHHHLLLL LILTLLL ILLLHHHH ;
000000000001101111111111 HHHHLLLL нНнннННН LLLLHНнH ;
0000111100001011111111111 HННННННН LLLLHHHH LLLLHHHH ;
1010101000000011111111111 нНнННННН L工LLHHHH LLLLHHHH ;
0000000100000011111111111 нНнннннН LІLLHННН LLLLHHHH ;
0000001000000011111111111 нННнНнНН LLLLHHHH LLLLHHHH ;
```



```
0000100000000011111111111 HHHHHHHH LLLLHHHH LLLLHHHH ;
```



```
0100000000000001111111111 нННННННН LІLLHННН L工LLHHHH ;
1000000000000001111111111 НННННННН LLLLHHHH LLLLHННН ;
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 ~ H H H H L L L L ~ L L L L L L L L ~ L L L L H H H H ~ ; ~
00000000000001111111111111 HHHHLLLL ........ LॉLLНнНн ;
-
" -------------------------------- I/O CONTROL LINES
.* 00000000 DESIGNATED I/O USAGE
*
* pINLIST...
- 14 13 12 11 10 09 07 06 05 04 03 02 01 52 51 50 49 48 47 45 44 43 42 41
- 18 17 16 15 40 39 38 37 36 35 33 32 31 30 29 28
-27 26 25 24 23 22 21 19 ;
```

Figure 6.9 Barrel Shifter Simulation Log File

```
File Name : 12BITCMP
Date : 9/15/1987
Time : 9:36:0
```


Bottom				Top		
Label	** FNC	**PIN		PIN** FNC	**	LABEL
W1	** 0	** 21-1		1-7** I	**B5	
W2	**0	** 22-		1-6 ** I	**B4	
W3	** 0	** 23-		- 5 ** I	**B3	
W4	** 10	** 24-1	- P	1-4 ** I	**B2	
W5	** 10	** 25-	L	1-3 ** I	**B1	
W6	** 10	** 26-	H	1-2 ** I	**BO	
W7	** 10	** 27-	S	1-1** I	**A11	
RO	** 0	** 28-	5	-52 ** I	**A10	
R1	** 0	** 29-	0	-51 ** I	**A9	
R2	** 0	** 30-	1	-50 ** I	**A8	
R3	** 0	** 31-1		-49 ** I	**A7	
R4	** 0	** 32-1		-48 ** I	**A6	
R5	** 0	**33-1		1-47 ** I	**A5	

TB03770S
Figure 6.10 12-Bit Comparator Pin List

12 BIT COMPARATOR WITH

DUAL 1 OF 8 DECODERS

Two functions that are very often associated with controlling I/O parts are address comparison and address decoding. In this example, both functions are programmed into a PLHS501 using 52 out of the 72 foldback NAND terms.

The comparator compares 12 bits on inputs A11-A0 to inputs B11-B0 when the input 'ENCMP' is High. Output 'CMPOUT' will become active-Low when all 12 bits of the A input match the B. Selection between the two decoders is done with input 'R/W'. Only one output may be active (Low) at a time. Although currently separate functions, the decoder enable may be derived internally from 'CMPOUT' freeing 2 bidirectional pins which together with available foldback NAND terms, may be used to incorporate a third function.

B010380s
Figure 6.11 12-Bit Comparator with Dual 1-8 Decoders Block Diagram

Designing with Programmable Macro Logic

File Name : 12BITCMP
 Date : 9/15/1987

Time : 9:36:17
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
QDESCRIPTION
12-bit address comparator and dual 1 of 8 decoders
@INTERNAL NODE
axb0, axbl, axb2, axb3, axb4, axb5 , axb6;
axb7, axb8, axb9, axbl0, axbll;
@COMMON PRODUCT TERM
ado-/da2*/dal*/da0*dcdren;
adl-/da2*/dal* da0*dcdren;
ad2-/da2* dal*/da0*dcdren;
ad3-/da2* dal* da0*dcdren;
ad4= da2*/dal*/da0*dcdren;
ad5- da2*/dal* da0*dcdren;
ad6- da2* dal*/da0*dcdren;
ad7- da2* dal* da0*dcdren;
aI/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
"12-Bit Address Comparator"

```
axb0 =a0*/b0 + /a0*b0;
axbl - al*/bl + /al*bl;
axb2 =a2*/b2 +/a2*b2;
axb3 =a3*/b3 +//a3*b3;
axb4 = a4*/b4 + /a4*b4;
axb5 = a5*/b5 + /a5*b5;
axb6 = a6*/b6 +/a6*b6;
axb7 = a7*/b7 +/a7*b7;
axb8 = a8*/b8 + /a8*b8;
axb9 = a9*/b9 + /a9*b9;
axbl0 = al0*/bl0+/al0*bl0;
axbll = all*/bll + /all*bll;
```

TBo3780s
cmpout $=/(/ a x b 0 * / a x b 1 * / a x b 2 * / a x b 3 * / a x b 4 * / a x b 5 * / a x b 6 * / a x b 7 * / a x b 8 * / a x b 9 *$ /axbl0*/axbll*encomp);
"Dual 1 of 8 decoders

- da2-da0 are address inputs
- dcdren is an enable input
- Iw selects which group of 8 outputs $r 7-r 0$ or $w 7-w 0$ will have the decoded active low output"
w7 $=/(\mathrm{ad} 7 * / \mathrm{rw})$;
w6 $=/($ ad6*/rw);
w5 $=/(\mathrm{ad} 5 * / \mathrm{rw})$; $\mathrm{w} 4=/(\mathrm{ad} 4 * / \mathrm{Fw})$; w3 $=/(\mathrm{ad} 3 * / \mathrm{rw})$; w2 $=/(\mathrm{ad2} 2 / \mathrm{rw})$; wl = /(adl*/rw); $\mathrm{w} 0=/(\mathrm{adO} / \mathrm{rw})$;
r7 $=/($ ad7* $r w)$; r6 = /(ad6* rw); $r 5=/(a d 5 * r w) ;$ $r 4=/(\operatorname{ad4} 4 \mathrm{rw})$; r3 $=/($ ad3* rw); r2 = /(ad2* rw); $r l=/($ adl* rw) ; r0 = /(ad0* rw);

Figure 6.12 12-Bit Comparator Boolean Equations

```
* Simulation inputs for 12BITCMP
* <------INPUTS------> < B,/B >
- 2222ннннннннннн
- 32HL98765432HL98765432HL 765432HL
```



```
    HLHLHLHLHLHLHLHLHLHLHLLHL -LIH-ILL "comp AA"
    LHLHLHLHLHIHLHIHLHLHLHLHH -LNH-LLL "comp 55"
    нННННННННННННННННННННННН -L工H-工工" "comp EF"
```



```
QUIT
```

TBoseoos
Figure 6.13 12－Bit Comparator Simulation Input File

Figure 6.14 12－Bit Comparator Simulation Log File

8-BIT CARRY LOOK-AHEAD ADDER

This function may be used as part of an ALU design or simply to off-load a microprocessor. Figure 6.16 is a block diagram showing the individual components needed for each bit.
A carry input (CO) is provided along with a carry output (C8). The result of an addition between the inputs $\mathrm{A} 7-\mathrm{A} 0$ and $\mathrm{B7}-\mathrm{BO}$ occurs on outputs SUM7-SUMO.
File Name : 8BITADDR
Date : 9/15/1987
Time : 9:37:21

Left				Right		
LABEL	** FNC	**PIN		PIN** FNC	**	LABEL
VCC	** + 5V	** 8-1		\|-46 ** +5V	**VCC	
A2	** I	** 9-1		-45 ** I	**N/C	
A3	** I	** 10-1		\|-44 ** I	**N/C	
A4	** I	** 11-1	P	\|-43 ** I	**N/C	
A5	** I	** 12-1	L	\|-42 ** I	**N/C	
A6	** I	** 13-1	H	-41 ** I	**N/C	
A7	** I	** 14-1	S	-40 **/0	**N/C	
N/C	** B	** 15-1	5	-39 ** 10	**N/C	
N/C	** B	** 16-1	0	\|-38 ** 10	**N/C	
N/C	** B	** 17-1	1	\|-37 **/0	**N/C	
N/C	** B	** 18-1		-36 ** 0	**SUM7	
C8	** 0	** 19-1		\|-35 ** 0	**SUM6	
GND	** OV	** 20-1		\|-34 ** OV	**GND	

Figure 6.15 8-Bit Adder Pin List

BD10370S

NOTES:

G1 $=\mathrm{G} 4+\mathrm{P} 4$ * G3 + P4 * P3 * G2 + P4 * P3 * P2 * G1; $\mathrm{P}_{1}^{\prime}=\mathrm{P}_{4}$ * $\mathrm{P}_{3} * \mathrm{P}_{2} * \mathrm{P}_{1}$
G2' $=\mathbf{G} 8+P 8 * G 7+P 8 * P 7$ * $G 6+P 8$ * P7 * P6 *G5; $P 2^{\prime}=P 8$ * P7 * P6 *P5

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 \text { * } \mathrm{C} 0 ; \\
& \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 * \mathrm{G} 1+\mathrm{P} 2 * \mathrm{P}_{1} * \mathrm{C} 0 \text {; } \\
& \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 \text { * } \mathrm{G} 2+\mathrm{P} 3 * \mathrm{P} 2 * \mathrm{G} 1+\mathrm{P} 3 * \mathrm{P} 2 * \mathrm{P}_{1} * \mathrm{C} 0 \text {; } \\
& \mathrm{C} 4=\mathrm{G} 1^{\prime}+\mathrm{P} 1^{\prime} \text { * } \mathrm{C} 0 \text {; } \\
& \mathrm{C} 5=\mathrm{G} 5+\mathrm{P} 5 \text { * } \mathrm{G} 1{ }^{\prime}+\mathrm{P} 5 \text { * P1' * } \mathrm{C} \text {; } \\
& \mathrm{C} 6=\mathrm{G} 6+\mathrm{P} 6 \text { * } \mathrm{G} 5+\mathrm{P} 6 \text { * P5 * } \mathrm{G} 1 \text { ' + P6 * P5 * P1' * C0; } \\
& \mathrm{C} 7=\mathrm{G} 7+\mathrm{P} 7 \text { * } \mathrm{G} 6+\mathrm{P} 7 \text { * } \mathrm{P} 6 * \mathrm{G} 5+\mathrm{P} 7 \text { * } \mathrm{P} 6 \text { * } \mathrm{P} 5 * \mathrm{G} 1 \text { ' }+\mathrm{P} 7 \text { * P6 *P5 *P1' * } \mathrm{C} \text {; } \\
& \mathrm{C} 8=\mathrm{G} 2^{\prime}+\mathrm{P} 2^{\prime} \text { * G1' + P2' * P1' * } \mathrm{C} \text {; }
\end{aligned}
$$

Figure 6.16 8-Bit Carry Look-Ahead Adder Block Diagram and Equations

```
File Name : 8BITADDR
Date : 9/15/1987
Time : 9:37:36
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@mATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION
8 Bit Carry Look-Ahead Adder
@INTERNAL NODE
    g8, g1, g2, g3, g4, g5, g6, g7;
    p8, pl, p2, p3, p4, p5, p6, p7;
    gn8,gnl,gn2,gn3,gn4,gn5,gn6,gn7;
cl,c2,c3,c4,c5,c6,c7;
g1_1,g2_1;
@COMMON PRODUCT TERM
@I/O DIRECTION
@I/O STEERING
@OGIC EQUATION
"level-0 functions"
gnl - /(a0*b0),
pl = /(/a0*/b0);
g1 - /gnl;
gn2 - /(al*bl)s
p2 = /(/al*/bl);
g2 = /gn2;
gn3 - /(a2*b2);
p3 = /(/a2*/b2);
g3 = /gn3;
gn4 - /(a3*b3);
p4 = /(/a3*/b3);
g4 =/gn4;
gn5 = /(a4*b4);
p5 = /(/a4*/b4);
g5 - /gn5;
gn6 - /(a5*b5);

Figure 6．17 8－Bit Adder Boolean Equations
```

p6 = /(/a5*/b5);
g6 = /gn6;
gn7 = /(a6*b6);
p7 = /(/a6*/b6);
g7 = /gn7;
gn8 = /(a7*b7);
p8 = /(/a7*/b7);
g8 =/gn8;
"level-1 functions*
gl_1 = g4 + p4*g3 + p4*p3*g2 + p4*p3*p2*g1;
g2_1 - g8 + p8*g7 + p8*p7*g6 + p8*p7*p6*g5;
"carry information*
cl - gl + pl*c0;
c2 - g2 + p2*gl + p2*pl*c0;
c3 - g3 + p3*g2 + p3*p2*gl + p3*p2*p1*c0;
c4 = gl_l + p4*p3*p2*pl*c0;
c5 = g5 + p5*gl_1 + p5*p4*p3*p2*pl*c0;
c6 = g6 + p6*g5 + p6*p5*g1_1 + p6*p5*p4*p3*p2*pl*c0;
c7 = g7 + p7*g6 + p7*p6*g5 + p7*p6*p5*g1_1 +
p7*p6*p5*p4*p3*p2*pl*c0;
c8 = g2_1 + p8*p7*p6*p5*g1_1 + p8*p7*p6*p5*p4*p3*p2*pl*c0;
"addition functions"
sum0 : xrl = cO;
xr2 = pl * gnl;
suml : xrl = cl;
xr2 - p2 * gn2;
sum2 : xrl - c2;
xr2 - p3 * gn3;
sum3 : xrl = c3;
xr2-p4 * gn4;
sum4 : xrl - c4;
xr2 - p5 * gn5;
sum5 : xrl = c5;
xr2 = p6 * gn6;
sum6 : xrl - c6;
xr2 - p7 * gn7;
sum7 : xrl = c7;
xr2 - p8 * gn8;

```

Figure 6.17 8－Bit Adder Boolean Equations（Continued）
```

- 8 Bit Adder Simulation input
" <--------INPUTS--------> < B,/B >
- 2222HHнннннннHI
" 321098765432109876543210 76543210

```




```

 HLHLHLHLLHLHLHLHLHHHHHHH
 HLHLHLHLLLHLHLHLHHHHHHHHH
 L工HHHHHHL工工HHHHHLHHHHHHH
 QUIT
 TB03840S
    ```

Figure 6.18 8－Bit Adder Simulation Input File

\section*{Designing with Programmable Macro Logic}


Figure 6.19 8-Bit Adder Simulation Log File


\section*{32- to 5-BIT PRIORITY ENCODER}

This relatively simple example demonstrates the capability of the PLHS501 to be programmed with functions that are not available in 'standard' device libraries. The equations may look difficult at first glance. However, there is a pattern to the encoding. Referring to Figure 6.21 Lab4 - Lab1 are terms that are common to several outputs (A4n-A0n). Separating them from the main equations allows a total reduction in the numbers of gates used.


Figure 6.2132 to 5 Priority Encoder Block Diagram

\section*{Designing with Programmable Macro Logic}
```

File Name : ENCODER
Date : 9/15/1987
Time : 9:39:1
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@DATE
@SymbOL
@COMPANY
@NAME
@DESCRIPTION
32 TO 5 PRIORITY ENCODER
@COMMON PRODUCT TERM
cptl = i26n*i27n*i28n*i29n*i30n*i31n;
cpt2 = i20n*i2ln*i22n*i23n*i24n*i25n;
cpt3 = i14n*il5n*il6n*il7n*118n*il9n;
cpt4 = i8n*i9n*ilOn*illn*il2n*il3n;
@Internal node
eo labl lab2 lab3 lab4
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
labl - (/i3ln
+[/127n*i28n*i29n*i30n*i31n]
+ [/123n*i24n*i25n*cptl]
+ [/il9n*cpt2*cptl]
+ [/115n*il6n*il7n*il8n*il9n*cpt2*cptl]
+[/illn*il2n*il3n*cpt3*cpt2*cptl]
+ [/i7n*cpt4*cpt3*cpt2*cptl]
+ [/13n*14n*i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]);
lab2 = ([/i23n*i24n*i25n*cptl]
+ [/i22n*i23n*i24n*i25n*cptl]
+ [/i2ln*i22n*i23n*i24n*125n*cptl]
+ [/i20n*i2ln*i22n*i23n*i24n*i25n*cptl]);
lab3 = ([/il5n*il6n*il7n*i18n*il9n*cpt2*cptl]
+[/i14n*il5n*i16n*il7n*il8n*il9n*cpt2*cptl]
+ [/il3n*cpt3*cpt2*cptl]
+ [/il2n*il3n*cpt3*cpt2*cptl]);
lab4 = (/i31n
+ [/i30n*i31n]
+[/129n*i30n*i3ln]
+ [/128n*i29n*i30n*i31n]

```
```

 +[/i27n*i28n*i29n*i30n*i31n]
 +[/i26n*i27n*i28n*i29n*i30n*i3ln]
 + [/i25n*cptl]
 +[/i24n*i25n*Cptl]);
 eo - /(iOn*iln*i2n*i3n*i4n*i5n*i6n*i7n
*i8n*i9n*ilOn*illn*il2n*il3n*il4n*il5n
*il6n*il7n*il8n*il9n*i20n*i2ln*i22n*i23n
*i24n*i25n*cptl);
gsn = /eo;
eon = eo;
aOn = /(labl
+[/i29n*i30n*i3ln]
+ [/i25n*cptl]
+ [/i2ln*i22n*i23n*i24n*i25n*cptl]
+ [/117nn*il8n*il9n*cpt2*cptl]
+ [/il3n*cpt3*cpt2*cptl]
+[/i9n*ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]
+[/i5n*i6n*i7n*cpt4*cpt3*cpt2*cpt1]
+[/iln*i2n*i3n*i4n*i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]);
aln - // labl
+[/i30n*i31n]
+[/i26n*i27n*i28n*i29n*i30n*i31n]
+[/i22n*i23n*i24n*i25n*cptl]
+ [/i18n*119n*cpt2*cptl]
+ [/i14n*il5n*il6n*il7n*il8n*il9n*cpt2*cptl]
+ [/110n*illn*il2n*il3n*cpt3*cpt2*cptl]
+ [/16n*i7n*cpt4*cpt3*cpt2*cpt1]
+(/12n*13n*14n*i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]);
a2n - /c /13ln
+ [/130n*i31n]
+ [/129n*i30n*i3ln]
+[/128n*129n*i30n*i31n]
+ lab2
+ lab3
+ [/17n*cpt4*cpt3*cpt2*cpt1]
+ [/16n*17n*cpt4*cpt3*cpt2*cptl]
+[/15n*16n*i7n*cpt4*cpt3*cpt2*cptl]
+ (/14n*15n*i6n*i7n*cpt4*cpt3*cpt2*cptl]);
a3n - /(lab4
+ lab3
+ [/111n*112n*il3n*cpt3*cpt2*cptl]
+ [/il0n*illn*il2n*il3n*cpt3*cpt2*cptl]
+ [/i9n*il0n*illn*il2n*il3n*cpt3*cpt2*cptl]
+(/18n*i9n*ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]);
a4n = /l lab4
+ lab2
+ [/119n*cpt2*cptl]
+ [/il8n*i19n*cpt2*cptl]
+ [/117n*il8n*il9n*cpt2*cptl]
+[/116n*il7n*il8n*il9n*cpt2*cptl]);

```
                                    tboss90s

Figure 6.22 Encoder Boolean Equations (Continued)

\section*{Designing with Programmable Macro Logic}
```

* 32 to 5 Priority Encoder Simulation Input
ннннннннннннннннннНнННнН нннннннн "Inputs all high"
нннннннннннннннннннннннн ннннгцнн "I31 - LSB low"
нннннннннннннннннннннннL нннннннн "IO - MSB low"
нннннннннннннннннннннннн нннннцнн "IзO low"
ННнннннннннннннннннннннн нНннннLН "I29"
ннннннннннннннннннннннннн нннннннц "I28"
нннннннннннннннннннннннн LнНннннн -I27*
ннннннннннннннннннннннннн нLНннннн "I26"
ннннннннннннннннннннннннн нНL_нннн " I25"
нннннннннннннннннннннннн нннднннн "I24*
Іннннннннннннннннннннннн нннннннн - I23*
нLнннннннннннннннннннннн нннннннн "I22"
нНLННННННННнНнннннннннннн нннннннн "I21"
нннLнннннннннннннннннннн нннннннн - I20` нНнНLНнннннннннннннннНнН нннннннн "Il9" нннннцннннннннннннннннннн нннннннн -Il8- НнНННнLННннннннннннннннн нннннннн "I17" НннннннLНннннннНнннннннн нннннннн - I16`
нНннннннLНннНннннНННННнН нннннннн "Il5"
ннННнннннццнннннннннннннн нннннннн "I14"
ннНннннннНнLннннннннннннн нннннннн "Il3"
нннннннннннLнннннннннннн нннннннн - Il2-
ннннннннннннцннннннннннн нннннннн - Il1`
нннннннннннннцнннннннннн нннннннн "I10"
ннНнннннннннннL_Ннннннннн нннннннн "I9"
нннннннннннннннцнннннннн нннннннн "I8"
ннннннннннннннннLНнНнннН нннннннн "I7"
нннннннннннннннннLнннннН нннннннн "I6"
ннннннннннннннннннLНнннн нннннннн "I5"
нннннннннннннннннннцнннн нннннннн "I4"

```

```

нннннннннннннннннннннL\&н нннннннн "I2*
НнННнНннннннннннннНнннLн нннннннн "Il"

```

```

нннннннннннннннннннннннн нннНнннн "ALL HIGH

```

```

HHHLHHHLHHHHLHHHHLHHHLHH HHHLHHLH "Several simultaneously"
QUIT

```
\begin{tabular}{|c|c|c|}
\hline PLHS501 & ENCODER & Time - 15:50:28 Date - 9/14/1987 \\
\hline & & \\
\hline & & S \\
\hline
\end{tabular}
- 222211111111111
- 321098765432109876543210765432107654321076543210

1111111111111111111111111111111 LHHHHHLH LLLLHHH ; 1111111111111111111111111110111 LLLLLHL LLLLHHH ;
 1111111111111111111111111111011 LLLLLHHL LLLLHHHH 11111111111111111111111111111101 LLLLHLHL LLLLHHHH ;
 11111111111111111111111101111111 LLLHLLHL LLLLHHHH ; 11111111111111111111111110111111 LLLHLHHL LLLLHHHH 1111111111111111111111111011111 LLLHHLHL LLLLHHHH ; 1111111111111111111111111101111 LLLHHHHL LLLLHHHH ; 01111111111111111111111111111111 LLHLLLHL LLLLHHHH ; 1011111111111111111111111111111 LLHLLHHL LLLLHHHH ; 1101111111111111111111111111111 LLLLLHLHL LLLLHHHH ; 11101111111111111111111111111111 LLHLHHHL LLLLHHHH ; 11110111111111111111111111111111 LLHHLLHL LLLLHHHH ; 1111101111111111111111111111111 LLHHLHHL LLLLHHHH ; 1111110111111111111111111111111 LLHHHLLLL LLLLHHHH ; 11111110111111111111111111111111 LLHHHHHL L工LLHHHH ; 11111111011111111111111111111111 LHLLLLHL LLLLHHHH ; 1111111110111111111111111111111 LHLLLHHL LLLLHHHH ; 11111111110111111111111111111111 LHLLLHLHL LLLLHHHH ; 111111111110111111111111111111111 LHLLHHHL LTKLHHHH ; 1111111111110111111111111111111 LHLHLLHL LLLLHHHH ; 1111111111111011111111111111111 LHLHLHHL LLLLHHHH ; 11111111111111011111111111111111 LHLHHLHL LLLLHHHH ; 11111111111111101111111111111111 LHLHHHHL L工LLHHHH ; 11111111111111110111111111111111 LHHLLLHL LLLLHHHH ; 11111111111111111011111111111111 LHHLLHHL LILLHHHH ; 11111111111111111101111111111111 LHHLHLHL LULLHHH ; 11111111111111111110111111111111 LHHLHHHL LLLLHHHH ; 11111111111111111111011111111111 LHHHLLHL LLLLHHHH ; 1111111111111111111101111111111 LHHHLHHL ILLLHHHH ; 11111111111111111111110111111111 LHHHHLHL LLLLHHHH ; 11111111111111111111111011111111 LHHHHHHL LLLLHHHH; 111111111111111111111111111111 LHHHHHLH LLLLHHHH 00000000000000000000000000000000 LULULHL LLLLHHH ; 11101110111101111011101111101101 LILLHLHL LJLLHHHH ;
-


:. IIIIIIII ACTUAL I/O USAGE
- PINLIST.

TB03910S
- 141312111009070605040302015251504948474544434241
- \(\begin{array}{llllllllllllll}18 & 17 & 16 & 15 & 40 & 39 & 38 & 37 & 36 & 35 & 33 & 32 & 31 & 30 \\ 29 & 28\end{array}\)
- \(\begin{array}{llllllll}27 & 26 & 25 & 24 & 23 & 22 & 21 & 19 \text {; }\end{array}\)

Figure 6.24 Encoder Simulation Log File

\section*{8-BIT SHIFT REGISTER WITH SEQUENCE DETECTOR}

This example demonstrates an application using \(D\) type edge-triggered flip-flops. Six NAND gates are used for each flip-flop (Figure 3.2). Note that to add an asynchronous reset and/or set to any flip-flop requires no additional gates. Also, every flip-flop must have a reset or set line to initialize it. Without being initialized, the simulator will not be able to determine the output states as it could power-up in either a set or reset condition. An uninitialized flip-flop will cause AMAZE 1.6 to display a message indicating the outputs are not stabilized within a certain time period.

As can be seen from the block diagram (Figure 6.26) this design consists of an 8 -bit shift register, 3 -bit ripple counter and 2 flipflops that are set only upon detection of specific patterns. The patterns are read from the Q and QN outputs of the shift register. Since the input to the second flip-flop has the output of the first flip-flop as a product term, detection of the first pattern is a requirement for the detection of the second.
File Name : BBTSHFT
Date : 9/15/1987
Time : 9:41:16

\section*{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Left} & & \multicolumn{3}{|c|}{Right} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline vCC & ** +5V & ** 8-1 & & -46 ** +5v & **VCC & \\
\hline N/C & ** I & ** 9- & & 1-45 ** I & **N/C & \\
\hline N/C & I & ** 10-1 & & -44 ** I & **N/C & \\
\hline N/C & ** I & ** 11- & P & -43 ** I & **N/C & \\
\hline DATA & ** & ** 12- & L & 1-42 ** I & **N/C & \\
\hline CLK & * I & ** 13- & H & 1-41 ** I & **N/C & \\
\hline RST & ** I & ** 14- & S & 1-40 ** 10 & **N/C & \\
\hline DETI & ** 0 & ** 15- & 5 & -39 ** / 0 & **CQ2 & \\
\hline DETIN & ** 0 & ** 16- & 0 & 1-38 ** / 0 & **CQ1 & \\
\hline DET2 & ** 0 & ** 17-1 & 1 & |-37 ** /0 & **CQO & \\
\hline DET2N & ** 0 & ** 18- & & 1-36 ** 0 & **07 & \\
\hline N/C & * 0 & ** 19-1 & & -35 ** 0 & **06 & \\
\hline GND & ** 0 V & ** 20-1 & & -34 ** OV & **GND & \\
\hline \multicolumn{3}{|c|}{Bottom} & & \multicolumn{3}{|c|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline N/C & ** 0 & ** 21-1 & & - \(\mathbf{7}^{\text {*** }}\) I & **N/C & \\
\hline N/C & ** 0 & ** 22-1 & & 1-6 ** I & **N/C & \\
\hline N/C & ** 0 & ** 23-1 & & - 5 ** I & **N/C & \\
\hline N/C & ** 10 & ** 24-1 & P & -4** I & **N/C & \\
\hline N/C & ** 10 & ** 25-1 & L & - 3 ** I & **N/C & \\
\hline N/C & ** 10 & ** 26-1 & H & - 2 ** I & **N/C & \\
\hline N/C & ** 10 & ** 27-1 & S & -1** 1 & **N/C & \\
\hline 00 & ** 0 & ** 28-1 & 5 & |-52 ** I & **N/C & \\
\hline 01 & ** 0 & ** 29-1 & 0 & |-51 ** I & **N/C & \\
\hline 02 & ** 0 & ** 30-1 & 1 & -50 ** I & **N/C & \\
\hline 03 & ** 0 & ** 31-1 & & |-49 ** I & **N/C & \\
\hline 04 & ** 0 & ** 32-1 & & |-48** I & **N/C & \\
\hline 05 & ** 0 & ** 33-1 & & |-47 ** I & **N/C & \\
\hline
\end{tabular}

TBO3930S

Figure \(\mathbf{6 . 2 5}\) 8-Bit Shifter Pin List


Figure 6.26 Shift Register with Sequence Detector Block Diagram
```

File Name : 8BTSHFT
Date : 9/15/1987
Time : 9:41:35
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION
8 Bit Shift Register with }16\mathrm{ bit Sequence Detector
@INTERNAL NODE
SNO,RNO,QO;
SN1,RN1,Q1;
SN2,RN2,Q2;
SN3,RN3,Q3;
SN4,RN4,Q4;
SN5,RN5,Q5;
SN6,RN6,Q6;
SN7,RN7,Q7;
CSNO,CRNO,CQNO;
CSN1,CRN1,CQN1;
CSN2,CRN2,CON2;
PSNO,PRNO;
PSN1,PRN1;
@COMMON PRODUCT TERM
PAT1 = Q7*Q6*Q5*Q4*Q3*Q2*Q1*QO;
PAT2 = Q7*Q6*Q5*Q4*Q3*Q2*Ql*QO;
@I/O DIRECTION
@I/O STEERING
@OGIC EQUATION
8 D-TYPE FLIP FLOPS CONNECTED AS SHIFT REGISTER
SNO = /(CLK*RST*(/(SNO*(/[DATA*RST*RNO]))));
RNO = /(SNO*CLK*(/[DATA*RST*RNO]));
QO = /(SNO*(/[RNO*Q0*RST]));
SN1 - /(CLK*RST*(/(SN1*(/{O0*RST*RN1]))));
RN1 = /(SN1*CLK*(/[Q0*RST*RN1]));
Q1 - /(SN1*(/[RN1*Q1*RST]));

```
```

SN2 = /(CLK*RST*(/(SN2*(/[Ql*RST*RN2]))));
RN2 = /(SN2*CLK*(/[Q1*RST*RN2]));
Q2 = /(SN2*(/[RN2*Q2*RST]));
SN3 = /(CLK*RST*(/(SN3*(/[Q2*RST*RN3]))));
RN3 = /(SN3*CLK*(/[Q2*RST*RN3]));
Q3 = /(SN3*(/[RN3*Q3*RST]));
SN4 = /(CLK*RST*(/(SN4*(/[Q3*RST*RN4]))));
RN4 = /(SN4*CLK*(/[Q3*RST*RN4]));
Q4 = /(SN4*(/[RN4*Q4*RST]));
SN5 = /(CLK*RST*(/(SN5*(/[Q4*RST*RN5]))));
RN5 = /(SN5*CLK*(/[Q4*RST*RN5]));
Q5 = /(SN5*(/[RN5*Q5*RST]));
SN6 = /(CLK*RST*(/(SN6*(/[Q5*RST*RN6]))));
RN6 =/(SN6*CLK*(/[Q5*RST*RN6]));
Q6 = /(SN6*(/[RN6*Q6*RST]));
SN7 = /(CLK*RST*(/(SN7*(/[Q6*RST*RN7]))));
RN7 = /(SN7*CLK*(/[Q6*RST*RN7]));
Q7 - /(SN7*(/[RN7*Q7*RST]));
OO=QO;
O1 - Q1;
O2-02;
O3 - Q3;
O4 = Q4;
05 = Q5;
06 = Q6;
07 - Q7;
"3 D-TYPE FLIP FLOPS CONNECTED AS A RIPPLE COUNTER"
CSNO = /(CLK*RST*(/(CSNO*(/[CQNO*RST*CRNO]))));
CRNO = /(CSNO*CLK*(/[CQNO*RST*CRNO]));
CQO =/(CSNO*CQNO);
CQNO = /(CRNO*CQO*RST);
CSN1 = /(CQNO*RST*(/(CSNl*(/[CQNl*RST*CRN1]))));
CRNI = /(CSNl*CQNO*(/[CQNl*RST*CRNl]));
CQ1 = /(CSNl*CQNl);
CQNI = /(CRNl*CQl*RST);
CSN2 = /(CQN1*RST*(/(CSN2*(/[CQN2*RST*CRN2]))));
CRN2 = /(CSN2*CQN1* (/[CQN2*RST*CRN2])); tвоз95о穴
CQ2 = /(CSN2*CQN2);
TB03950S
CQN2 = /(CRN2*CO2*RST

```
*2 D-TYPE FLIP FLOPS USED FOR PATTERN SEQUENCE DETECTION.
Sequence to be detected is 16 bits - 55AA Hex.
When the pattern is detected, pin det2 will go high.
In this example, both pattern 1 and pattern 2 are set to \(F F\) hex. To change the pattern to 55AA, the STD file (P68 and P70) was edited using FTE. This was necessary because AMAZE 1.6 only allows 40 internal labels, so it was not possible to reference the \(Q N\) nodes of the shift register flip-flops."
```

PSNO = /(CQN2*RST*(/<PSNO*(/[PATl*RST*PRNO]))));
PRNO = /(PSNO*CQN2*(/[PATI*RST*PRNO]));
DETIN = (PSNO*/DET1);
DETl = (PRNO*/DETlN*RST);
PSN1 = /(CQN2*RST*(/(PSN1*(/[PAT2*DETl*RST*PRN1]))));
PRN1 = /(PSN1*CQN2*(/[PAT2*DETl*RST*PRN1]));
DET2N = (PSN1*/DET2);
DET2 - (PRNI*/DET2N*RST);

```

Figure 6.27 8-Bit Shifter Boolean Equations (Continued)


Original STD file showing P 68 and P 70



Figure 6.29 8-Bit Shifter Simulation Input File

\section*{Designing with Programmable Macro Logic}


Figure 6.30 8-Bit Shifter Simulation Log File

\section*{4-BIT SYNCHRONOUS}

\section*{COUNTER}

This counter produces a binary count on outputs Count3-Count0. Note the required reset (RST) input to initialize all of the flipflops. The inputs for each flip-flop were first determined by drawing the desired output waveforms. Next, Karnaugh maps were used to reduce the number of terms and determine the logic equations for the input to each flipflop. This technique could be used to construct a counter whose outputs produce some count other than binary.
The simulation only consists of a reset, followed by a number of clocks to count from 0 through 15 and back to 0 .

File Name : 4BTCOUNT
Date : 9/15/1987
Time : 9:57:5
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N 工 I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Left} & & \multicolumn{3}{|c|}{Right} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline vcc & ** +5V & ** 8-1 & & -46 ** +5V & **VCC & \\
\hline CLK & ** I & ** 9- & & -45 ** I & **N/C & \\
\hline RST & ** I & ** 10-1 & & -44 ** I & **N/C & \\
\hline N/C & ** I & ** 11- & P & 1-43 ** I & **N/C & \\
\hline N/C & I & ** 12- & L & -42 ** I & **N/C & \\
\hline N/C & ** I & ** 13- & H & |-41 ** I & **N/C & \\
\hline N/C & ** & ** 14- & S & 1-40 ** / 0 & **N/C & \\
\hline counto & ** 0 & ** 15-1 & 5 & 1-39 ** / 0 & **N/C & \\
\hline COUNT1 & ** 0 & ** 16- & 0 & |-38 ** / 10 & **N/C & \\
\hline COUNT2 & ** 0 & ** 17- & 1 & 1-37 ** / 0 & **N/C & \\
\hline COUNT3 & ** 0 & ** 18- & & |-36 ** 0 & **N/C & \\
\hline TC & ** 0 & ** 19-1 & & 1-35 ** 0 & **N/C & \\
\hline GND & ** OV & ** 20-1 & & --34 ** OV & **GND & \\
\hline \multicolumn{3}{|c|}{Bottom} & & \multicolumn{3}{|c|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline N/C & ** 0 & ** 21-1 & & - -7 ** I & **N/C & \\
\hline N/C & ** 0 & ** 22-1 & & 1-6** I & **N/C & \\
\hline N/C & 0 & ** 23-1 & & 1-5 ** I & **N/C & \\
\hline N/C & ** 10 & ** 24-1 & P & 1-4** I & **N/C & \\
\hline N/C & ** 10 & ** 25-1 & L & - 3 ** I & **N/C & \\
\hline N/C & ** 10 & ** 26-1 & H & - 2 ** I & **N/C & \\
\hline N/C & ** 10 & ** 27-1 & S & -1 ** I & **N/C & \\
\hline N/C & ** 0 & ** 28-1 & 5 & -52 ** I & **N/C & \\
\hline N/C & ** 0 & ** 29-1 & 0 & |-51 ** I & **N/C & \\
\hline N/C & ** 0 & ** 30-1 & 1 & -50 ** I & **N/C & \\
\hline N/C & 0 & ** 31-1 & & -49 ** I & **N/C & \\
\hline N/C & ** 0 & ** 32-1 & & -48 ** I & **N/C & \\
\hline N/C & ** 0 & ** 33-1 & & |-47 ** I & **N/C & \\
\hline
\end{tabular}

TBO4010S

Figure 6.31 4-Bit Counter Pin List
File Name : 4 BTCOUNT
Date : 9/15/1987
Time : 9:57:28

@DEVICE TYPE
PLHS5OI
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION

4 bit synchronous counter
@internal node
datal,data2,data3;
csn0, crno, cq0, cqno;
csnl,crnl,cql,cqnl;
csn2,crn2,cq2,cqn2;
csn3,crn3,cq3,cqn3;
@COMMON PRODUCT TERM
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
"INPUTS FOR EACH FLIP-FLOP"
DATAL - [(CQI*CQNO) +(CQN1*CQO)];
DATA2 \(=[(\mathrm{CQO} * \mathrm{CQ} 1 * \mathrm{CQN} 2)+(\mathrm{CQNO} * \mathrm{CQ} 2)+(\mathrm{CQN1} * \mathrm{CQ} 2)]\);
DATA3 \(=[(\mathrm{CQN} 2 * \mathrm{CQ} 3)+(\mathrm{CQNO} * \mathrm{CQ} 3)+(\mathrm{CQO} * \mathrm{CQ1*CQ2*CQN3})+(\mathrm{CQN} 1 * \mathrm{CQ3})]\);
" 4 D-TYPE FLIP FLOPS CONNECTED AS A SYNCHRONOUS COUNTER"
CSNO = /(CLK*RST*(/(CSNO*(/[CQNO*RST*CRNO])))) ;
CRNO - /(CSNO*CLK* (/[CQNO*RST*CRNO]));
CQO \(=/(\) CSNO*CQNO) ;
CQNO \(=/(\) CRNO*CQO*RST) ;
CSN1 \(=/(\) CLK*RST*(/(CSN1*(/[DATA1*RST*CRNL]))));
CRN1 \(=/(\) CSN \(1 *\) CLK* \((/[\) DATAl*RST*CRN1] \())\);
\(\mathrm{CQ1}=/(\operatorname{CSN} 1 * \operatorname{CQN} 1)\);
CQN1 \(=/(\) CRN1*CQ1*RST \()\);
CSN2 \(=/(\) CLK*RST* \((/(\operatorname{CSN} 2 *(/[\) DATA2*RST*CRN2] \()))) ;\) TBo4020s
CRN2 \(=/(\) CSN2*CLK* \((/[\) DATA2*RST*CRN2] \()) ;\)
CQ2 \(=/(\operatorname{CSN} 2 * \operatorname{CQN} 2) ;\)
CQN2 \(=/(\) CRN2*CQ2*RST \() ;\)
CSN3- /(CLK*RST*(/(CSN3*(/[DATA3*RST*CRN3]))));
CRN3 \(=/(\operatorname{CSN} 3 * C L K *(/[D A T A 3 * R S T * C R N 3])) ;\)
CQ3 \(=/(\operatorname{CSN} 3 * \operatorname{CQN} 3)\);
CQN3 \(=/(\) CRN3*CQ3*RST \()\);
"Connection to output pins"
count0-cq0;
countl-cql;
count2-cq2;
count3-cq3;
"TERMINAL COUNT PIN"
TC=(CQ0*CQ1*CQ2*CQ3);

\section*{Designing with Programmable Macro Logic}


Figure 6.33 4-Bit Counter Simulation Input File


Figure 6.34 4-Bit Counter Simulation Log File

\section*{Bibliography}
1. Cavalan, N., 1984, Third Generation PLD Architecture Breaks AND-OR Bottlenecks. Proceedings of WESCON.
2. Wong, D., 1985, New Developments in Programmable Logic Devices. MIDCON Session 19. Chicago
3. Gheissari, A and Safari, B., 1987, High Speed, High Complexity PLDs and Applications. ELECTRO-87 Session 35.
4. Hartman, Robert, May 1984, Estimating Gate Complexity of Programmable Logic Devices. VLSI Design. PP 100-103
5. Minnick, R.C., Dec. 1964, Cutpoint Cellular Logic, I.E.E.E. Transactions on Electronic Computers, PP 685-698.
6. Minnick, R.C., 1965, Cobweb Cellular Arrays, Proceedings of the Fall Joint Computer Conference, PP 327-341. Las Vegas, NV.
7. Canaday, R., 1965, Two-Dimensional Iterative Logic, Proceedings of the Fall Joint Computer Conference, PP 343-353. Las Vegas, NV.
8. Gardner, P.L., Dec. 1970, Functional Memory and Its Microprogramming Implications, Technical Report TR.12. 091, IBM United Kingdom Laboratories Limited. Hursley Park, Winchester Hampshire.
9. Roth Jr., C.H. Fundamentals of Logic Design, Second Edition, West Publishing Co., 1979, PP: 136.144. St. Paul, MN.

\section*{Signetics}

\section*{Section 10 Package Outlines}

\section*{Application Specific Products}

\section*{INDEX}
A PLASTIC: Leaded Chip Carrier ..... 10-3
F CERAMIC: Dual-In-Line ..... 10-6
FA CERAMIC: Dual-In-Line With Quartz Window ..... 10-8
N PLASTIC: Dual-In-Line ..... 10-10

\section*{Package Outlines}

\section*{PLASTIC PLCC}
1. Package dimensions conform to JEDEC specifications for standard Leaded Chip Carrier outline (PLCC) package.
2. Controlling dimensions are given in inches with dimensions in millimeters contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. "D-E" and "F-G" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or
protrusions shall not exceed 0.15 mm (0.006") on any side.
5. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
6. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
7. Body material: Plastic (Epoxy).
8. Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the
forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application. Test condition for these values follow:
Test Ambient - Still Air
Test Fixture - \(\theta_{\mathrm{JA}}\) - Glass epoxy test board (2.24" \(\times\) \(2.24^{\prime \prime} \times 0.062^{\prime \prime}\).)
\(\theta_{\mathrm{JC}}\)-Water cooled heat sink

\section*{PLASTIC LEADED CHIP CARRIER (PLCC)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline NO. OF LEADS & PACKAGE CODE & DESCRIPTION & \multicolumn{4}{|c|}{TYPICAL \(\theta_{\text {JA }} / \theta_{\mathrm{Jc}}\) VALUES ( \({ }^{\circ} \mathrm{C} / \mathrm{W}\) )} \\
\hline \[
\begin{aligned}
& 20 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~A}
\end{aligned}
\] & \multirow[t]{3}{*}{350mil-wide 450mil-wide 750mil-wide 950mil-wide} & \[
\begin{gathered}
\text { Die } \\
\text { Size }
\end{gathered}
\] & Power Dissipation (W) & Average \(\theta_{\mathrm{JA}}\) & Average \(\theta_{\mathrm{Jc}}\) \\
\hline 52 & A & & 20K & . 75 & 70 & 30 \\
\hline 68 & A & & 25K & 1.0 & 61 & 23 \\
\hline & & & 50K & 1.0 & 42 & 15 \\
\hline
\end{tabular}

\section*{20-PIN PLASTIC PLCC (A PACKAGE)}


\section*{Package Outlines}

\section*{28-PIN PLASTIC PLCC (A PACKAGE)}


\section*{52-PIN PLASTIC PLCC (A PACKAGE)}


\section*{Package Outlines}

\section*{68-PIN PLASTIC LEADED CHIP CARRIER}


\section*{Package Outlines}

\section*{HERMETIC CERDIP}
1. Package dimensions conform to JEDEC specifications for standard Ceramic Dual Inline (Cerdip) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
5. These dimensions measured with the leads constrained to be perpendicular to plane T .
6. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
7. Body Material: Ceramic with glass seal at leads.
8. Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the
forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application. Test condition for these values follow:
Test Ambient - Still Air
Test Fixture - \(\theta_{\text {JA }}-\) Textool ZIF socket with 0.04 " standoff
\(\theta_{\mathrm{JC}}-\) Water cooled heat sink

\section*{hermetic dual-in-line packages}
\begin{tabular}{|c|c|c|}
\hline NO. OF LEADS & PACKAGE CODE & DESCRIPTION \\
\hline 20 & F & 300 mil-wide \\
24 & F & 300 mil-wide \\
28 & F & 600 mil-wide \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TYPICAL \(\theta_{\text {JA }} / \theta_{\text {JC }}\) VALUES \(\left({ }^{\circ} \mathrm{C} /\right.\) W) } \\
\hline Die & \begin{tabular}{c} 
Power \\
Dissipation \((\mathbf{W})\)
\end{tabular} & \begin{tabular}{c} 
Average \\
\(\theta_{\text {JA }}\)
\end{tabular} & \begin{tabular}{c} 
Average \\
\(\theta_{\text {JC }}\)
\end{tabular} \\
\hline 20 K & .75 & 70 & 7.8 \\
25 K & 1.0 & 62 & 6.9 \\
30 K & 1.0 & 48 & 6.3 \\
\hline
\end{tabular}

\section*{20-PIN CERAMIC DIP (F PACKAGE)}


\section*{Package Outlines}

\section*{24-PIN CERAMIC DIP (F PACKAGE)}


\section*{28-PIN CERAMIC DIP (F PACKAGE)}


\section*{HERMETIC CERDIP WITH QUARTZ WINDOW}
1. Package dimensions conform to JEDEC specifications for standard Ceramic Dual Inline (Cerdip) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
5. These dimensions measured with the leads constrained to be perpendicular to plane T .
6. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
7. Body Material: Ceramic with glass seal at leads.
8. Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the
forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application. Test condition for these values follow:
Test Ambient - Still Air
Test Fixture - \(\boldsymbol{\theta}_{\mathrm{JA}}\) - Textool ZIF socket with \(0.04^{\prime \prime}\) standoff
\(\theta_{\mathrm{Jc}}\) - Water cooled heat sink

HERMETIC DUAL-IN-LINE PACKAGES WITH QUARTZ WINDOW
\begin{tabular}{|c|c|c|}
\hline NO. OF LEADS & PACKAGE CODE & DESCRIPTION \\
\hline 20 & FA & 300 mil-wide \\
24 & FA & 300 mil-wide \\
28 & FA & 600 mil-wide \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TYPICAL \(\theta_{\text {JA }} / \theta_{\text {JC }}\) VALUES \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)} \\
\hline Die & Power & Average & Average \\
Size & Dissipation (W) & \(\theta_{\text {JA }}\) & \(\theta_{\text {JC }}\) \\
\hline 25 K & .5 & 67 & 7.8 \\
30 K & .5 & 52 & 7.0 \\
\hline
\end{tabular}

\section*{20-PIN CERAMIC DIP WITH QUARTZ WINDOW (FA PACKAGE)}


\section*{Package Outlines}

\section*{24-PIN CERAMIC DIP WITH QUARTZ WINDOW (FA PACKAGE)}


28-PIN CERAMIC DIP WITH QUARTZ WINDOW (FA PACKAGE)


\section*{Package Outlines}

\section*{PLASTIC DIP}
1. Package dimensions conform to JEDEC specification MS-001-AA for standard Plastic Dual Inline (DIP) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. "T", "D" and " \(E\) " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.01 inch ( 0.25 mm ) on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
7. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
8. Body material: Plastic (Epoxy)
9. Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the
forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application. Test condition for these values follow:
Test Ambient - Still Air
Test Fixture - \(\theta_{\mathrm{JA}}-\) Textool ZIF socket with \(0.04^{\prime \prime}\) standoff
\(\theta_{\mathrm{Jc}}\)-Water cooled heat sink

\section*{PLASTIC DUAL-IN-LINE PACKAGES}
\begin{tabular}{|c|c|c|}
\hline NO. OF LEADS & PACKAGE CODE & DESCRIPTION \\
\hline 20 & N & \begin{tabular}{c} 
Cu. Lead Frame \\
300mil-wide \\
Cu. Lead Frame \\
300 mil-wide \\
Cu. Lead Frame \\
600 mil-wide
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TYPICAL \(\theta_{\text {JA }} / \theta_{\text {JC }}\) VALUES ( \({ }^{\circ} \mathrm{C} / \mathrm{W}\) ) } \\
\hline Die & \begin{tabular}{c} 
Power \\
Size
\end{tabular} & \begin{tabular}{c} 
Average \\
\(\theta_{\text {JA }}\)
\end{tabular} & \begin{tabular}{c} 
Average \\
\(\theta_{\text {JC }}\)
\end{tabular} \\
\hline 20 K & .75 & 61 & 25 \\
25 K & 1.0 & 55 & 25 \\
50 K & 1.0 & 46 & 18 \\
\hline
\end{tabular}

\section*{20-PIN PLASTIC (N PACKAGE)}


\section*{Package Outlines}

\section*{24-PIN PLASTIC (N PACKAGE)}


\section*{28-PIN PLASTIC (N PACKAGE)}


Application Specific Products

\section*{SIGNETICS \\ HEADQUARTERS}

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA. 94088-3409 Phone: (408) 991-2000

\section*{ALABAMA}

Huntsville
Phone: (205) 830-4001

\section*{ARIZONA}

Phoenix
Phone: (602) 265-4444
CALIFORNIA
Canoga Park
Phone: (818) 340-1431
Irvine
Phone: (714) 833-8980
(213) 588-3281

Los Angeles
Phone: (213) 670-1101
San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5011
FLORIDA
Clearwater
Phone: (813) 796-7086
Ft. Lauderdale
Phone: (305) 486-6300
GEORGIA
Atlanta
Phone: (404) 594-1392

\section*{ILLINOIS}

Itasca
Phone: (312) 250-0050
INDIANA
Kokomo
Phone: (317) 459-5355

\section*{KANSAS}

Overland Park
Phone: (913) 469-4005

\section*{MASSACHUSETTS}

Littleton
Phone: (617) 486-8411

\section*{MICHIGAN}

Farmington Hills
Phone: (313) 533-6070

\section*{minnesota}

Edina
Phone: (612) 835-7455
NEW JERSEY
Parsippany
Phone: (201) 334-4405
June 1988

\section*{NEW YORK}

\section*{Hauppauge}

Phone: (516) 348-7877
Wappingers Falls
Phone: (914) 297-4074
NORTH CAROLINA
Raleigh
Phone: (919) 781-1900
OHIO
Columbus
Phone: (614) 888-7143
OREGON
Beaverton
Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
tennessee
Greeneville Phone: (615) 639-0251

\section*{TEXAS}

Austin
Phone: (512) 339-9944
Houston
Phone: (713) 668-1989
Richardson
Phone: (214) 644-3500
CANADA
SIGNETICS CANADA, LTD.
Etobicoke, Ontario
Phone: (416) 626-6676
Nepean, Ontario
Signetics, Canada, Ltd.
Phone: (613) 225-5467
REPRESENTATIVES
ARIZONA
Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 941-1901
CONNECTICUT
Brookfield
M \& M Associates
Phone: (203) 775-6888
FLORIDA
Clearwater
Sigma Technical Associates Phone: (813) 791-0271

Ft. Lauderdale Sigma Technical Associates Phone: (305) 731-5995
ILLINOIS
Hoffman Estates Micro-Tex, Inc. Phone: (312) 382-3001

INDIANA
Indianapolis
Mohrfield Marketing, Inc.
Phone: (317) 546-6969
IOWA
Cedar Rapids
J.R. Sales

Phone: (319) 393-2232

\section*{MARYLAND}

Glen Burnie
Third Wave Solutions, Inc. Phone: (301) 787-0220

MASSACHUSETTS
Needham Heights
Kanan Associates
Phone: (617) 449-7400

\section*{miChigan}

Bloomfield Hills
Enco Marketing
Phone: (313) 642-0203
MINNESOTA
Eden Prairie
High Technology Sales
Phone: (612) 944-7274
MISSOURI
Bridgeton Centech, Inc. Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW HAMPSHIRE
Hookset
Kanan Associates
Phone: (603) 645-0209
NEW JERSEY
East Hanover
Emtec Sales, Inc. Phone: (201) 428-0600
NEW MEXICO
Albuquerque
F.P. Sales

Phone: (505) 345-5553
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
OHIO
Centerville
Bear Marketing, Inc. Phone: (513) 436-2061
Richfield
Bear Marketing, Inc.
Phone: (216) 659-3131

\section*{OKLAHOMA}

Tulsa
Jerry Robinson and
Associates
Phone: (918) 665-3562

OREGON
Beaverton
Western Technical Sales
Phone: (503) 644-8860

\section*{PENNSYLVANIA}

Pittsburgh
Bear Marketing, Inc.
Phone: (412) 531-2002
Willow Grove
Delta Technical Sales Inc.
Phone: (215) 657-7250
UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050

\section*{WASHINGTON}

Bellevue
Western Technical Sales
Phone: (206) 641-3900

\section*{Spokane}

Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, inc. Phone: (414) 542-5352

CANADA
Burnaby, British Columbia Tech-Trek, Ltd. Phone: (604) 439-1373
Mississauga, Ontario Tech-Trek, Ltd. Phone: (416) 238-0366
Nepean, Ontario Tech-Trek, Ltd. Phone: (613) 225-5161
Ville St. Laurent, Quebec Tech-Trek, Ltd. Phone: (514) 337-7540

\section*{DISTRIBUTORS}

Contact one of our
local distributors:
Anthem Electronics
Arrow Electronics
Avnet Electronics
Hamilton/Avnet Electronics
Marshall Industries
Schweber Electronics
Quality Components
Wyle/LEMG
Zentronics, Ltd.

\section*{Sales Offices}

\section*{FOR SIGNETICS \\ PRODUCTS \\ WORLDWIDE: \\ ARGENTINA \\ Philips Argentina S.A. \\ Buenos Aires \\ Phone: 54-1-541-7141}

AUSTRALIA
Philips Electronic
Components and Materials, Ltd.
Artarmon, N.S.W.
Phone: 61-2-439-3322
AUSTRIA
Osterrichische Phillps
Wien
Phone: 43-222-60-101-820

\section*{BELGIUM}
N.V. Philips \& MBLE

Brussels
Phone: 32-2-5-23-00-00

\section*{BRAZIL}

Phillps Do Brasil, Ltda.
Sao Paulo
Phone: 55-11-211-2600
CHILE
Phillips Chilena S.A.
Santiago
Phone: 56-02-077-3816

\section*{COLOMBIA}

Iprelenso, Ltda.
Bogota
Phone: 57-1-2497624
DENMARK
Miniwatt A/S
Copenhagen S
Phone: 45-1-54-11-22
FINLAND
Oy Philips Ab
Helsinki
Phone: 358-0-172-71

FRANCE
R.T.C. Issy-les-Moulineaux

Cedex
Phone: 33-1-40-93-80-00
GERMANY
Valvo
Hamburg
Phone: 49-40-3-296-0
GREECE
Philips S.A. Hellenique
Athens
Phone: 30-1-4894-339
HONG KONG
Phillps Hong Kong, Ltd.
Kwai Chung, Kowloon
Phone: 852-0-245-121
INDIA
Peico Electronics \& Elect.
Ltd.
Bombay
Phone: 91-22-493-8721
INDONESIA
P.T. Philips-Ralin Electronics Jakarta Selatan
Phone: 62-21-512-572
IRELAND
Philips Electrical Ltd.
Dublin
Phone: 353-1-69-33-55
ISRAEL
Rapac Electronics, Ltd.
Tel Aviv
Phone: 972-3-477115
ITALY
Philips S.p.A.
Milano
Phone: 39-2-67-52-1
JAPAN
Signetics Japan Ltd.
Osaka
Phone: 81-6-304-6071
Signetics Japan Ltd.
Tokyo
Phone: 81-3-230-1521/2

KOREA
Philips Industries, Ltd.
Seoul
Phone: 82-2-794-5011
/12/13/14/15
MALAYSIA
Philips Malaysia SDN Bernhad
Pulau Penang
Phone: 60-4-870055
MEXICO
Panamtek
Guadalajara, Jal
Phone: 52-36-30-30-29
NETHERLANDS
Philips Nederland
Eindhoven
Phone: 31-40-444-755
NEW ZEALAND
Phillps New Zealand Ltd.
Auckland
Phone: 64-9-605914
NORWAY
Norsk A/S Philips
Osio
Phone: 47-2-68-02-00
PERU
Cadesa
San Isidro
Phone: 51-70-7080
PHILIPPINES
Philips Industrial Dev., Inc.
Makati Metro Manila
Phone: 63-2-868951-9
PORTUGAL
Philips Portuguesa SARL
Lisbon
Phone: 351-1-68-31-21
SINGAPORE
Phillps Project Dev. Pte., Ltd.
Singapore
Phone: 65-350-2000
SOUTH AFRICA
E.D.A.C. (PTY), Ltd.

Joubert Park
Phone: 27-11-617-9111

SPAIN
Miniwatt S.A.
Barcelona
Phone: 34-3-301-63-12
SWEDEN
Philips Komponenter A.B.
Stockholm
Phone: 46-8-782-10-00
SWITZERLAND
Phillps A.G.
Zurich
Phone: 41-1-488-2211
TAIWAN
Phillips Taiwan, Ltd.
Taipei
Phone: 886-2-712-0500
THAILAND
Philips Electrical Co.
of Thailand Ltd.
Bangkok
Phone: 66-2-233-6330/9
TURKEY
Turk Philips
Ticaret A.S.
Istanbul
Phone: 90-11-43-59-10
UNITED KINGDOM
Philips Componets London
Phone: 44-1-580-6633
UNITED STATES
Signetics International Corp.
Sunnyvale, California
Phone: (408) 991-2000
URUGUAY
Luzilectron, S.A.
Montevideo
Phone: 598-91-56-41
/42/43/44
VENEZUELA
Magnetica, S.A.
Caracas
Phone: 58-2-241-7509

\section*{Signetics \\ a division of North American Philips Corporation}

Signetics Company 811 E. Arques Avenue P. O. Box 3409

Sunnyvale, California 94088-3409 Telephone 408/991-2000```


[^0]:    ${ }^{〔}$ PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

[^1]:    ${ }^{\circledR}$ PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Inc.

[^2]:    ${ }^{\circledR}$ PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Inc.

[^3]:    ${ }^{\circledR}$ PAL is a registered trademark of Monolithic Memories, inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

[^4]:    NOTES:

    1. All unprogrammed or virgin "AND" gate locations are pulled to logic "1".
    2. Programmable connections.
[^5]:    ${ }^{〔}$ PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

[^6]:    Notes on following page.

[^7]:    Notes on following page.

[^8]:    Notes on following page.

[^9]:    Notes on following page.

[^10]:    Notes on following page.

[^11]:    Notos on following page.

[^12]:    Notes on following page.

[^13]:    Notes on following page.

[^14]:    Notes on following page.

[^15]:    Notes on following page.

[^16]:    Notes on following page.

[^17]:    Notes on following page.

[^18]:    1. For more information on standard data transfer format between the data preparation system and PLD programmer, refer to JEDEC - Solid State Engineering Council publications.
[^19]:    NOTES
    . All unprogrammed or virgin "AND" gate locations are pulled to logic "1"
    2. All unprogrammed or virgin "OR" gate locations are pulled to logic " 1 "
    3. Programmable corrections

[^20]:    2. Refer to Signetics Programmable Logic Data Manual for a complete description of the AMAZE programmable logic development software.
[^21]:    PAL ${ }^{\text {TM }}$ is a Trademark of Monolithic Memories, Inc.

