Signetics
FAST
Data
Manual

Signetics

FAST Products

Data Manual 1987

FAST:
 The World's Leading
 High-Performance
 TTL Family

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Signetics' Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics' customers using or selling Signetics' Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting in such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.
(c) Copyright 1987 Signetics Corporation

All rights reserved.

Signetics would like to thank you for your interest in our FAST product line. Because of its wide customer acceptance, FAST has become the world's leading high-performance logic family. We are proud to participate in and contribute to the dynamic growth of this product family. With over 150 part types released to production, Signetics now offers the broadest selection of FAST products.
Each data sheet contained in this manual is designed to stand alone and reflect the latest DC and AC specifications for a particular product. Several changes differentiate these data sheets from previous ones. First, all reference to military product has been deleted, specifically, to reflect recent government requirements imposed by Revision C of MIL-STD 883, including the general provisions of Paragraph 1.2. Specifications for military-grade FAST products are available in the latest Military Products Data Manual available from your nearest Signetics Sales Office, sales representative, or authorized distributor. Second, each commercial 74F product is specified over a $10 \% V_{C C}$ range, for both $A C$ and DC parameters. Additionally, DC specifications for $V_{O H}$ and $V_{O L}$ are provided over the $5 \% V_{C C}$ range.
This 1987 FAST Data Manual updates a large number of data sheets which were "prelıminary" in the 1986 Manual, and adds other newly defined products.
Features of this data manual include:

- Updated Availability and Functional Cross-Reference Guides
- An expanded Circuit Characteristics Section
- A User's Guide
- Selected Application Notes
- An expanded chapter on Surface Mounted Devices (SMD) and an Application Note on Thermal Considerations in SMD
- An expanded section on package outlines

New FAST part types are being released continuously. As you see new product announcements, please contact your nearest Signetics Sales Office, sales representative, or authorized distributor for the latest technical information.

In addition to FAST, Signetics Standard Products Division offers the industry's broadest line of commercially available Logic Products, spanning a wide speed/power spectrum from ECL (100K/10K) to TTL ($74,74 \mathrm{LS}, 74 \mathrm{~S}, 74 \mathrm{ALS}, 8 \mathrm{~T}$, and 8200) to CMOS (4000 Series, $74 \mathrm{HC} / \mathrm{HCT}$, 74AC/ACT). Information on these product lines is also available from your nearest Signetics Sales Office, sales representative, or authorized distributor.

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specilication	Formative or In Design	This data sheet contans the design target or goal specifications for product development Specifications may change in any manner without notice
Prellminary Specilication	Preproduction Product	This data sheet contanss prellminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications Signetics reserves the nght to make changes at any time without notice in order to improve design and supply the best possible product.

Contents

FAST Products

Preface iii
Product Status iv
Introduction x
Ordering Information xii
Section 1 - Indices
Avallablity Guide 1-3
Function Selection Guide 1-7
Section 2 - Quality And Reliability
Quality And Reliability 2-3
Section 3 - Circult Characteristics
Circuit Characteristics 3-3
Section 4 - FAST User's Guide
Data Sheet Specification Guide 4-3
Design Considerations. 4-12
Section 5 - Millitary Information Military Information 5-3
Section 6 - 74F Series Data Sheets
74F00 Quad 2-Input NAND Gate 6-3
74F02 Quad 2-Input NOR Gate 6-6
74F04 Hex Inverter 6-9
74F08 Quad 2-Input AND Gate 6-12
74F10 Triple 3-Input NAND Gate 6-15
74F11 Triple 3-Input AND Gate 6-15
74F13 Dual 4-Input NAND Schmitt Trigger 6-18
74F14 Hex Inverter Schmitt Trigger 6-22
74F20 Dual 4-Input NAND Gate 6-25
74F27 Triple 3-Input NOR Gate 6-28
74F30 8 -Input NAND Gate 6-31
74F32 Quad 2-Input OR Gate 6-34
74F37 Quad 2-Input NAND Buffer 6-37
74F38 Quad 2-Input NAND Buffer (Open-Collector) 6-40
74F40 Dual 4-Input NAND Buffer 6-43
74F51 Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate 6-46
74F64 4-2-3-2 Input AND-OR-Invert Gate 6-4974F74
Dual D-Type Flip-Flop 6-52
74F83 4-Bit Binary Adder With Fast Carry 6-57
74F85 4-Bit Magnitude Comparator 6-63
74F86 Quad 2-Input Exclusive-OR Gate 6-69
74F109 Dual J-K Positive Edge-Triggered Flip-Flop 6-72
74F112 Dual J-K Negative Edge-Triggered Flip-Flop 6-77
74F113 Dual J-K Negative Edge-Triggered Flip-Flop Without Reset 6-82
74F114 Dual J-K Negative Edge-Triggered Flip-Flop With Common Clock and Reset 6-87
74F125 Quad Buffer (3-State) 6-92
74F126 Quad Buffer (3-State) 6-92
74F132 Quad 2-Input NAND Schmitt Trigger 6-96
74F133 13-Input NAND Gate 6-100
74F138 1-of-8 Decoder/Demultiplexer 6-104
74F139 Dual 1-of-4 Decoder/Demultiplexer 6-109
74F148 8 -Input Priority Encoder 6-113
74F151 8 -Input Multiplexer 6-118
74F151A 8 -Input Multiplexer 6-123

Contents

74F153 74F154 74F157A 74F158A 74F160A 74F161A 74F162A 74F163A 74F164
74F166
74F168
74F169
74F173
74F174
74F175
74F181
74F182
74F189A
74F190
74F191
74F192
74F193
74F194
74F195
74F198
74F199
74F240
74F241
74F242
74F243
74F244
74F245
74F251
74F253
74F256
74F257A
74F258A
74F259
74F260
74F269
74F273
74F280A
74F280B
74F283
74F298
74F299
74F322
74F323
74F350
74F352
74F353
74F365
74F366
74F367
74F368
74F373
74F374
74F377
74F378
74F379
74F381
74F382
74F384
74F385
74F393
Dual 4-Line to 1-Line Multiplexer 6-128
1-of-16 Decoder/Demultiplexer 6-128
Quad 2-Input Data Selector/Multiplexer, NINV 6-132
Quad 2-Input Data Selector/Multiplexer, INV 6-132
BCD Decade Counter 6-137
4-Bit Binary Counter 6-137 6-137
BCD Decade Counter
BCD Decade Counter
4-Bit Binary Counter 6-137
8-Bit Serial-In, Parallel-Out Shift Register 6-147
8-Bit Serial-/Parallel-In, Serial-Out Shift Register 6-152
4-Bit Up/Down BCD Decade Synchronous Counter 6-157
4-Bit Up/Down Binary Synchronous Counter 6-157
Quad D Flip-Flop (3-State) 6-166
Hex D Flip-Flop 6-173
Quad D Flip-Flop 6-177
4-Bit Arithmetic Logic Unit. 6-182
Carry Look-Ahead Generator 6-192
64-Bit TTL Bipolar RAM 6-197
Asynchronous Presettable BCD/Decade Up/Down Counter 6-201
Asynchronous Presettable 4-Bit Binary Up/Down Counter 6-201
Synchronous Presettable BCD/Decade Up/Down Counter 6-212
Synchronous Presettable 4-Bit Binary Down Counter 6-212
4-Bit Bidirectional Universal Shift Register 6-222
4-Bit Parallel-Access Shift Register 6-229
8 -Bit Bidirectional Universal Shift Register 6-234
8-Bit Parallel-Access Shift Register 6-241
Octal Inverter Buffer (3-State) 6-249
Octal Buffer (3-State) 6-249
Quad Transceiver, INV (3-State) 6-254
Quad Transceiver (3-State) 6-254
Octal Buffer (3-State) 6-259
Octal Transceiver (3-State) 6-263
8 -Input Multiplexer (3-State) 6-267
Dual 4-Input Multiplexer (3-State) 6-272
Dual 4-Bit Addressable Latch 6-276
Quad 2-Line to 1-Line Data Selector/Multiplexer (3-State) 6-282
Quad 2-Line to 1-Line Data Selector/Multiplexer (3-State) 6-287
8-Bit Addressable Latch 6-291
Dual 5-Input NOR Gate 6-297
8-Bit Bidirectional Binary Counter 6-300
Octal D Flip-Flop 6-307
9-Bit Odd/Even Parity Generator/Checker 6-312
9-Bit Odd/Even Parity Generator/Checker 6-312
4-Bit Binary Full Adder With Fast Carry 6-316
Quad 2-Input Multiplexer With Storage 6-321
8 -Input Universal Shift/Storage Register (3-State) 6-326
8-Bit Serial/Parallel Register With Sign Extend (3-State) 6-332
8 -Bit Universal Shift/Storage Register With Synchronous Reset and Common I/O Pins (3-State) 6-340
4-Bit Shifter (3-State) 6-346
Dual 4-Line to 1-Line Multiplexer 6-353
Dual 4-Input Multiplexer (3-State) 6-357
Hex Buffer/Driver (3-State) 6-361
Hex Inverter Buffer (3-State) 6-361
Hex Buffer/Driver (3-State) 6-361
Hex Inverter Buffer (3-State) 6-361
Octal Transparent Latch (3-State) 6-366
Octal D Flip-Flop (3-State) 6-366
Octal D Flip-Flop With Enable 6-373
Hex D Flip-Flop With Enable 6-378
Quad Parallel Register With Enable 6-383
4-Bit Arithmetic Logic Unit 6-387
4-Bit Arithmetic Logic Unit 6-394
8-Bit Serial/Parallel Two's Complement Multiplier 6-401
Quad Serial Adder/Subtractor. 6-408
Dual 4-Bit Binary Ripple Counter 6-413

Contents

74F395 4-Bit Cascadable Shift Register (3-State) 6-418
74F398 Quad 2-Port Register With True and Complementary Outputs 6-42574F399
Quad 2-Port Register 6-425
74F412 Multi-Mode Buffered Latch, NINV (3-State) 6-430
74F432 Multi-Mode Buffered Latch, INV (3-State) 6-430
74F455 Octal Buffer/Line Driver With Parity, INV (3-State) 6-441
74F456
74F521
Octal Buffer/Line Driver With Parity, INV (3-State) 6-441
8-Bit Identity Comparator 6-447
74F524 8 -Bit Register Comparator (Open-Collector, 3-State) 6-452
74F533 Octal Transparent Latch (3-State) 6-459
74F534 Octal D Flip-Flop (3-State) 6-459
74F537 1-of-10 Decoder (3-State) 6-466
74F538 1-of-8 Decoder (3-State) 6-472
74F539 Dual 1-of-4 Decoder (3-State) 6-478
74F540 Octal Inverter Buffer (3-State) 6-483
74F54174F543
74F54474F545
74F547
74F548
74F550
74F55174F552
74F56374F564
74F568
74F569
74F573
74F574
74F579
74F58274F583
74F588
74F595
74F597
74F598
74F604
74F60574F620
74F621
74F622
74F623
74F630
74F631
74F640
74F641
74F642
74F646
74F647
74F648
74F649
74F65174F652
74F653
74F654
74F655A
74F656A74F657
74F67074F673A
74F674
74F675
74F67674F711
Octal Buffer (3-State) 6-483
Octal Registered Transceiver, NINV (3-State) 6-487
Octal Registered Transceiver, INV (3-State) 6-487
Octal Bidirectional Transceiver (With 3-State Inputs/Outputs) 6-497
Octal Decoder/Demultiplexer With Address Latches and Acknowledge 6-502
Octal Decoder/Demultiplexer With Acknowledge 6-508
Octal Registered Transceiver With Status Flags, NINV (3-State) 6-513
Octal Registered Transceiver With Status Flags, INV (3-State) 6-513
Octal Registered Transceiver With Parity and Status Flags (3-State) 6-521
Octal Transparent Latch (3-State) 6-530
Octal D Flip-Flop (3-State) 6-530
4-Bit Bidirectional Decade Counter (3-State) 6-537
4-Bit Bidirectional Binary Counter (3-State) 6-537
Octal Transparent Latch (3-State) 6-548
Octal D Flip-Flop (3-State) 6-548
8-Bit Bidirectional Binary Counter (3-State) 6-555
4-Bit BCD Arithmetic Logic Unit 6-563
4-Bit BCD Adder 6-570
Octal Bidirectional Transceiver With IEEE-488 Termination Resistors (3-State Inputs and Outputs) 6-575
8 -Bit Shift Registers With Output Latches (3-State) 6-581
8 -Bit Shift Registers With Input Latches (3-State) 6-588
8 -Bit Shift Registers With Input Latches (3-State) 6-588
Dual Octal Register (3-State) 6-600
Dual Octal Register (Open-Collector) 6-606
Octal Bus Transceiver, INV (3-State) 6-611
Octal Bus Transceiver, NINV (3-State) 6-616
Octal Bus Transceiver, INV (Open-Collector) 6-616
Octal Bus Transceiver, NINV (3-State) 6-611
16-Bit Parallel Error Detection and Correction Circuit (3-State) 6-621
16-Bit Parallel Error Detection and Correction Circuit (Open-Collector) 6-621
Octal Bus Transceiver, INV (3-State) 6-629
Octal Bus Transceiver With Common Output Enable, NINV (Open-Collector) 6-633
Octal Bus Transceiver With Common Output Enable, INV (Open-Collector) 6-633
Octal Transceiver/Register, NINV (3-State) 6-638
Octal Transceiver/Register, NINV (Open-Collector) 6-647
Octal Transceiver/Register, INV (3-State) 6-638
Octal Transceiver/Register, INV (Open-Collector) 6-647
Octal Transceiver/Register, INV (3-State) 6-653
Octal Transceiver/Register, NINV (3-State) 6-653
Octal Transceiver/Register, INV (Open-Collector) 6-661
Octal Transceiver/Register, NINV (Open-Collector) 6-661
Octal Buffer/Line Driver With Parity, INV (3-State). 6-669
Octal Buffer/Line Driver With Parity, NINV (3-State) 6-669
Octal Bidirectional Transceiver With 8-Bit Parity Generator/Checker (3-State) 6-675
4×4 Register File (3-State) 6-682
16-Bit Serial-In, Serial/Parallel-Out Shift Register (3-State) 6-690
16-Bit Serial/Parallel-In, Serial-Out Shift Register (3-State) 6-697
16-Bit Serial-In, Serial/Parallel-Out Shift Register (3-State) 6-702
16-Bit Serial/Parallel-In, Serial-Out Shift Register (3-State) 6-707
Quint 2-to-1 Data Selector Multiplexer (3-State) 6-712

Contents

74F712 Quint 3-to-1 Data Selector Multiplexer 6-712
74F723 Quad 3-to-1 Data Selector Multiplexer (3-State) 6-719
74F725 Quad 4-to-1 Data Selector Multiplexer 6-719
74F732 Quad Data Multiplexer, INV (3-State) 6-726
74F733 Quad Data Multiplexer, NINV (3-State) 6-726
74F76474F764A
DRAM Dual-Ported Controller With Latch 6-73174F764-1DRAM Dual-Ported Controller With Latch (150 MHz)6-731
74F765
74F765ADRAM Dual Ported Controller With Latch6-731
DRAM Dual Ported Controller Without Latch (150 MHz) 6-73174F765-1DRAM Dual-Ported Controller Without Latch6-731
74F779 8-Bit Bidirectional Binary Counter (3-State) 6-760DRAM Dual Ported Controller Without Latch6-731
74F784 8-Bit Serial/Parallel Multiplier (With Adder/Subtractor) 6-767
74F786 4-Input Asynchronous Bus Arbiter 6-772
74F821 6-773
74F822 10-Bit Bus Interface Register, INV (3-State) 6-773
74F823 9 -Bit Bus Interface Regıster, NINV (3-State)
74F824 9 -Bit Bus Interface Register, INV (3-State) 6-773
74F825 8 -Bit Bus Interface Register, NINV (3-State) 6-773
74F826 8 -Bit Bus Interface Register, INV (3-State) 6-773
74F827 10-Bit Buffer/Line Driver, NINV (3-State) 6-783
74F828 10-Bit Buffer/Line Driver, INV (3-State) 6-783
74F838 Microprogram Sequence Controller 7-789
74F841 10-Bit Bus Interface Latches, NINV (3-State) 6-790
74F842 10-Bit Bus Interface Latches, INV (3-State) 6-790
74F843 9-Bit Bus Interface Latches, NINV (3-State) 6-790
74F844 9 -Bit Bus Interface Latches, INV (3-State) 6-790
74F845 8 -Bit Bus Interface Latches, NINV (3-State) 6-790
74F846 8 -Bit Bus Interface Latches, INV (3-State) 6-790
74F861 10-Bit Bus Transceiver, NINV (3-State) 6-803
74F862 10-Bit Bus Transceiver, INV (3-State) 6-803
74F863 9 -Bit Bus Transceiver, NINV (3-State) 6-803
74F864 9-Bit Bus Transceiver, INV (3-State) 6-803
74F881 Arithmetic Logic Unit/Function Generator 6-809
74F882 32-Bit Look-Ahead Carry Generator 6-822
74F1240 Octal Inverter Buffer (3-State) 6-829
74F1241 Octal Buffer (3-State) 6-829
74F1242 Quad INV Transceiver (3-State) 6-834
74F1243 Quad Transceiver (3-State) 6-834
74F1244 Octal Buffer (3-State) 6-839
74F1245 Octal Transceiver (3-State) 6-843
74F1761 DRAM and Interrupt Vector Controller 6-847
74F1762 4 MBit Memory Address Controller 6-849
74F1763 1 MBit Intelligent Dram Controller 6-851
74F1764 1 MBit DRAM Dual Ported Controller With Latch 6-853
74F1764-1 1 MBit DRAM Dual Ported Controller With Latch 6-853
74F1765 1 MBit DRAM Dual Ported Controller Without Latch 6-853
74F1765-1 1 MBit DRAM Dual Ported Controller Without Latch 6-853
74 F2952 8-Bit Registered Transceiver, NINV (3-State) 6-881
74F2953 6-881
8 -Bit Registered Transceiver, INV (3-State)
74F3037 6-888
Quad 2-Input NAND 30Ω Line Drive
74F3038 6-892
Quad 2-Input NAND 30Ω Line Driver (Open-Collector)
74 F3040 6-896
Dual 4-Input 30Ω Transmission Line Driver
74F30240 6-900
Octal 30Ω Transmission Line/Backplane Driver, INV (Open-Collector)
74F30244 6-900
74F30245 Octal 30Ω Transmission Line/Backplane Transceiver, NINV 6-905
74F30640 Octal 30Ω Transmission Line/Backplane Transceiver, INV 6-905
Section 7 - FAST Application Notes
AN2O2 Testing and Specifying FAST Logic 7-3
AN203 Test Fixtures for High-Speed Logic 7-8
AN205 Using FAST ICs for $\mu \mathrm{P}$-to-Memory Interfaces 7-20
AN206 Using $\mu \mathrm{P}$ I/O Ports With FAST Logic 7-31
AN207 Multiple μ P Interfacing With FAST ICs 7-40
AN208 Interrupt Control Logic Using FAST ICs 7-53

Contents

AN212 Package Lead Inductance Considerations in High-Speed Applications 7-61
Section 8 - Surface Mounted ICs
Surface Mounted ICs 8-3
Section 9 - Package Outlines
Package Outlines for Plastic Packages 9-3
A Plastic Leaded Chip Carrier 9-4
D Plastic Small Outline 9-8
N Plastic Standard Dual-In-Line 9-11
Package Outlines for Hermetic CERDIP 9-15
F Hermetic CERDIP 9-16
Section 10 - Sales Offices
Sales Offices 10-3

Signetics

FAST Products

74F FAST TL Introduction

THE HIGH-SPEED LOGIC OF THE '80s

Product Description

Signetics has combined advanced ox-ide-isolated fabrication techniques with standard TTL functions to create a new family designed for the '80s. The high operating speeds of FAST can push system operating speeds into areas previously reserved for 10K ECL, but with simple TTL design rules and single 5 V power supplies. Low input loading allows the user to mix LS, ALS, and HCMOS in the same system without the need for translators and restrictive fanout requirements.

FAST circuits are pin-for-pin replacements for 74 S types, but offer dissipation 3-4 times lower and higher operating speeds. Existing systems can achieve much lower power and improved perfor-
mance by replacing the 74 S types with the corresponding FAST devices.

The input structure provides better noise immunity because of higher thresholds, while the oxide-isolation and new circuit techniques create devices that have less variation with temperature or supply voltage than existing TTL logic families. Signetics guarantees all AC parameters under realistic system conditionsacross the supply voltage spread and the temperature range, and with heavy 50 pF output loads.

The use of high-capacitance PNP inputs has been avoided, and clamping diodes have been added to both the inputs and outputs to prevent negative overshoots. High input breakdown voltages allow unused inputs to be tied directly to V_{CC} without pull-up resistors.

Multiple sources and a complete family of powerful circuits combine to make Signetics FAST the logic choice of the '80s.

FEATURES

- 3ns propagation delays
- 4m w/gate power dissipation
- Guaranteed AC performance over temperature and extended V_{CC} Range: 5V $\pm 10 \%$
- High-impedance NPN base input structure on many types for reduced bus loading in Low state ($\mathrm{I}_{\mathrm{IL}}=20 \mu \mathrm{~A}$)
- Standard TTL functions and pinouts
- Replacement for 'S' types...1/4 the power
- Designer's choice for new system designs

Figure 1. The Speed/Power Spectrum

TCO3730S
Figure 2. Basic FAST Gate

Figure 3. Transfer Functions At Room Temperature

'F00
Figure 4. Propagation Delay VS Load Capacitance

'F00
Figure 6. Fall Time VS Load Capacitance

'F00
Figure 5. Output LOW Characteristics

'F00
Figure 7. Output HIGH Characteristics

Signetics

FAST Products

Ordering Information

Signetics commercial FAST products are generally available in both standard dual-in-line and surface mounted options. The ordering code specifies temperature range, device number, and package style as shown below. For commercial product, the standard temperature range is 0 $70^{\circ} \mathrm{C}$. Available package options are shown on individual data sheets in the "Ordering Code" block. For surface mounted devices the S.O. plastic dual-in-line package is supplied up to and including 28 pins. Above 28 pins, the plastic leaded chip carrier is utilized.

A wide variety of functions and package options is available for military products. Information on military products is available from the nearest Signetics sales office, sales representative, or authorized distributor. The Signetics Military Products Data Manual contains specifications, package, and ordering information for all military-grade products.

ORDERING CODE EXAMPLES

TEMPERATURE RANGE	DEVICE NUMBER	PACKAGE STYLE
Commercial Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	74FXXX	$\mathrm{N}=$ Plastic DIP $\mathrm{D}=$Plastic S.O. DIP (surface mounted) (Military Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Signetics

Section 1

Indices

FAST Products

INDEX
Availability Guide ... 1-7

FAST Products

DEVICE	DESCRIPTION	AVAILABILITY
74F00	Quad 2-Input NAND Gate	A
74F02	Quad 2-Input NOR Gate	A
74F04	Hex Inverter	A
74F08	Quad 2-Input AND Gate	A
74F10	Triple 3-Input NAND Gate	A
74F11	Triple 3-Input AND Gate	A
74F13	Dual 4-Input NAND Schmitt Trigger	A
74F14	Hex Inverter Schmitt Trigger	A
74F20	Dual 4-Input NAND Gate	A
74F27	Triple 3-Input NOR Gate	A
74F30	8 -Input NAND Gate	A
74F32	Quad 2-Input OR Gate	A
74F37	Quad 2-Input NAND Buffer	A
74F38	Quad 2-Input NAND Buffer (O.C.)	A
74F40	Dual 4-Input NAND Buffer	A
74F51	Dual 2-Wide 3-Input, 2-Wide 2-Input AND-OR-INVERT Gate	A
74F64	4-2-3-2 Input AND/OR Invert Gate	A
74F74	Dual D-Type Flip-Flop	A
74F83	4-Bit Binary Adder with Fast Carry (Center Power 'F283)	A
74F85	4-Bit Magnitude Comparator	A
74F86	Quad 2-Input Exclusive-OR Gate	A
74F109	Dual $\mathrm{J} \overline{\mathrm{K}}$ Positive Edge Triggered Flip-Flop	A
74F112	Dual JK Negative Edge Triggered Flip-Flop	A
74F113	Dual JK Negative Edge Triggered Flip-Flop Without Reset	A
74F114	Dual JK Negative Edge Triggered Flip-Flop	A
74F125	Quad Buffer (3-State)	A
74F126	Quad Buffer (3-State)	A
74F132	Quad 2-Input NAND Schmitt Trigger	A
74F133	13-Input NAND Gate	A
74F138	1-of-8 Decoder/Demultiplexer	A
74F139	Dual 1-of-4 Decoder/Demultiplexer	A
74F148	8-Line to 3-Line Priority Encoder	A

DEVICE	DESCRIPTION	AVAILABILITY
74F151	8-Input Multiplexer	A
74F151A	8-Input Multiplexer	A
74F153	Dual 4-Input Multiplexer	A
74F154	1-of-16 Decoder/Demultiplexer	A
74F157	Quad 2-Input Multiplexer, NINV	A
74F157A	Quad 2-Input Multiplexer, NINV	A
74F158	Quad 2-Input Multiplexer, INV	A
74F158A	Quad 2-Input Multiplexer, INV	A
74F161A	4-Bit Binary Counter, Asynch Reset	A
74F162A	BCD Decade Counter, Synch Reset	A
74F163A	4-Bit Binary Counter, Synch Reset	A
74F164	8-Bit Serial-In Parallel-Out Shift Register	A
74F166	8-Bit Serial/Parallel-In, Serial Out Shift Register	A
74F168	4-Bit Up/Down BCD Decade Synch Counter (3-State)	A
74F169	4-Bit Up/Down Binary Synch Counter (3-State)	A
74F173	Quad D Flip-Flop (3-State)	A
74F174	Hex D Flip-Flop with Master Reset	A
74F175	Quad D Flip-Flop with Master Reset	A
74F181	4-Bit Arithmetic Logic Unit	A
74F182	Carry Look-Ahead Generator	A
74F189	64-Bit Random Access Memory (3-State)	2 H 87
74F190	Asynch Presettable Up/Down BCD Decade Counter	A
74F191	Asynch Presettable 4-Bit Binary Up/Down Counter	A
74F192	Synch Presettable BCD Decade Up/Down Counter	A
74F193	Synch Presettable 4-Bit Binary Up/Down Counter	A
74F194	4-Bit Bidirectional Universal Shift Register	A
74F195	4-Bit Parallel Access Shift Register	A
74F198	8-Bit Bidirectional Universal Shift Register	A
74F199	8-Bit Parallel Access Shift Register	A
74F240	Octal Bus/Line Driver, INV (3-State)	A

Availability Guide

DEVICE	DESCRIPTION	AVAILABILITY
74F241	Octal Bus/Line Driver, NINV (3-State)	A
74F242	Quad Bus Transceiver, INV (3-State)	A
74F243	Quad Bus Transceiver, NINV (3-State)	A
74F244	Octal Bus/Line Driver, NINV (3-State)	A
74F245	Octal Bus Transceiver (3-State)	A
74F251	8-Input Multiplexer (3-State)	A
74F251A	8-Input Multiplexer (3-State)	A
74F253	Dual 4-Input Multiplexer (3-State)	A
74F256	Dual 4-Bit Addressable Latch	A
74F257	Quad 2-Input Multiplexer, NINV (3-State)	A
74F257A	Quad 2-Input Multiplexer, NINV (3-State)	A
74F258	Quad 2-Input Multiplexer, INV (3-State)	A
74F258A	Quad 2-Input Multiplexer, INV (3-State)	A
74F259	8-Bit Addressable Latch	A
74F260	Dual 5-Input NOR Gate	A
74F269	8-Bit Bidirectional Binary Counter (3-State)	A
74F273	Octal D Flip-Flop	A
74F280A	9-Bit Odd/Even Parity Generator/ Checker	A
74F280B	9-Bit Odd/Even Parity Generator/ Checker	A
74F283	4-Bit Binary Adder with Fast Carry	A
74F298	Quad 2-Input Multiplexer with Storage	A
74F299	Octal Shift/Storage Register (3-State)	A
74F322	Octal Shift/Storage Register (3-State)	A
74F323	Octal Shift/Storage Register (3-State)	A
74F350	4-Bit Shifter (3-State)	A
74F352	Dual 4-Input Multiplexer (Inverted '153)	A
74F353	Dual 4-Input Multiplexer (Inverted '253) (3-state)	A
74F365	Hex Buffer with Common Enable (3-State)	A
74F366	Hex Inverter with Common Enable (3-State)	A
74F367	Hex Buffer, 4-Bit and 2-Bit (3-State)	A
74F368	Hex Inverter, 4-Bit and 2-Bit (3-State)	A
74F373	Octal D Latch (3-State)	A
74F374	Octal D Flip-Flop (3-State)	A
74F377	Octal D-Type Flip-Flop with Enable	A
74F378	Hex D Flip-Flop with Enable	A
74F379	Quad D Flip-Flop with Enable	A
74F381	4-Bit Arithmetic Logic Unit	A

DEVICE	DESCRIPTION	AVAILABILITY
74F382	4-Bit Arithmetic Logic Unit	A
74F385	Quad Serial Adder/Subtractor	A
74F393	Dual 4-Bit Binary Ripple Counter	A
74F395	4-Bit Cascadable Shift Register (3-State)	A
74F398	Quad 2-Port Register with Complementary Outputs	A
74F399	Quad 2-Port Register with True Outputs	A
74F412	Octal Multi-Mode Buffered Latch	A
74F432	Octal Multi-Mode Buffered Latch	A
74F455	Octal Buffer w/Parity Generator Checker, INV (3-State)	A
74F456	Octal Buffer w/Parity Generator Checker, NINV (3-State)	A
74F521	Octal Comparator	A
74F524	8-Bit Register Comparator (O.C.)	A
74F533	Octal Inverting D Latch (3-State)	A
74F534	Octal Inverting D Flip-Flop (3-State)	A
74F537	1-of-10 Decoder (3-State)	A
74F538	1-of-8 Decoder (3-State)	A
74F539	Dual 1-of-4 Decoder (3-State)	A
74F540	Octal Inverting Buffer (3-State) Broadside Pinout 'F240	A
74F541	Octal Buffer (3-State) Broadside Pinout 'F244	A
74F543	Octal Transparent Bidirectional Latch, NINV (3-State)	A
74F544	Octal Transparent Bidirectional Latch, INV (3-State)	A
74F545	Octal Bus Transceiver (3-State)	A
74F547	Octal Decoder/MUX w/Addr Latches and Acknowledge	A
74F548	Octal Decoder/Multiplexer with Acknowledge	A
74F550	Octal Registered Transceiver with Status Flags, NINV (3-State)	2H 87
74F551	Octal Registered Transceiver with Status Flags, INV (3-State)	2H 87
74F552	Octal Registered Transceiver with Parity and Status flags (3-State)	2 H 87
74F563	Octal D Latch (3-State) Broadside Pinout 'F533	2H 87
74F564	Octal D Flip-Flop (3-State) Broadside Pinout 'F534	2H 87
74F568	4-Bit Decade Up/Down Counter (3-State)	A
74F569	4-Bit Binary Up/Down Counter (3-State)	A

Availability Guide

DEVICE	DESCRIPTION	AVAILABILITY
74F573	Octal D Latch (3-State) Broadside Pinout 'F373	2H 87
74F574	Octal D Flip-Flop (3-State) Broadside Pinout 'F374	2H 87
74F579	8-Bit Up/Down Counter, Common I/O (3-State)	A
74F582	4-Bit BCD Arithmetic Logic Unit	A
74F583	4-Bit BCD Adder	A
74F588	GPIB Compatible Octal Transceiver	A
74F595	8-Bit Shift Register with Output Latch	2H 87
74F597	8-Bit Shift Register with Input Latch	2 H 87
74F598	8-Bit Shift Register with Input Latch	2 H 87
74F604	Dual 8-Bit Latch (3-State)	A
74F605	Dual 8-Bit Latch (O.C.)	A
74F620	Octal Bus Transceiver, INV (3-State)	A
74F621	Octal Bus Transceiver, NINV (O.C.)	A
74F622	Octal Bus Transceiver, INV (O.C.)	A
74F623	Octal Bus Transceiver, NINV (3-State)	A
74F630	Memory Error Detector/Corrector (3-State)	2 H 87
74F631	Memory Error Detector/Corrector (O.C.)	2H 87
74F640	Octal Bus Transceiver, Inverting (3-State)	A
74F641	Octal Bus Transceiver (O.C.)	A
74F642	Octal Bus Transceiver, Inverting (O.C.)	A
74F646	Octal Bus Transceiver and Register, NINV (3-State)	A
74F647	Octal Bus Transceiver and Register, NINV (O.C.)	A
74F648	Octal Bus Transceiver and Register, INV (3-State)	A
74F649	Octal Bus Transceiver and Register, INV (O.C.)	A
74F651	Octal Bus Transceiver and Register, INV (3-State)	A
74F652	Octal Bus Transceiver and Register, NINV (3-State)	A
74F653	Octal Bus Transceiver and Register, INV (O.C.)	A
74F654	Octal Bus Transceiver and Register, NINV (O.C.)	A
74F655A	Octal Inverting Buffer w/Parity Gen-Chk. (3-State)	A
74F656A	Octal Buffer w/Parity Generator-Checker (3-State)	A
74F657	Octal Bus Transceiver w/Parity Gen-Chk. (3-State)	A

DEVICE	DESCRIPTION	AVAILABILITY
74F670	4×4 Register File (3-State)	2 H 87
74F673A	16-Bit Serial-In, Serial/Parallel-Out Shift Register (3-State)	2 H 87
74F674	16-Bit Serial/Parallel-In, Serial-Out Shift Register (3-State)	2 H 87
74F675	16-Bit Serial-In, Serial/Parallel-Out Shift Register (3-State)	2 H 87
74F676	16-Bit Serial/Parallel-In, Serial-Out Shift Register (3-State)	A
74F711	Quint 2-Input Multiplexer	2H 87
74F712	Quint 3-Input Multiplexer	2 H 87
74F723	Quad 3-Input Multiplexer	2H 87
74F725	Quad 3-Input Multiplexer	2H 87
74F732	Quad Data Multiplexer, NINV	2H 87
74F733	Quad Data Multiplexer, INV	2H 87
74F764	DRAM Dual Ported Controller with Latch (100 MHz)	A
74F764A	DRAM Dual Ported Controller with Latch (150 MHz)	A
74F764-1	DRAM Dual Ported Controller with Latch	A
74F765	DRAM Dual Ported Controller without Latch (100 MHz)	A
74F765A	DRAM Dual Ported Controller without Latch (150 MHz)	A
74F765-1	DRAM Dual Ported Controller without Latch	A
74F779	8-Bit Up/Down Counter, Common I/O (3-State)	A
74F786	4-Input Asynchronous Bus Arbiter	A
74F804	Hex 2-Input NAND Driver	2H 87
74F805	Hex 2-Input NOR Driver	2H 87
74F808	Hex 2-Input AND Driver	2H 87
74F821	10-Bit Register, NINV (3-State)	2H 87
74F822	10-Bit Register, INV (3-State)	2 H 87
74F823	9-Bit Register, NINV (3-State)	2 H 87
74F824	9-Bit Register, INV (3-State)	2H 87
74F825	8-Bit Register, NINV (3-State)	2H 87
74F826	8-Bit Register, INV (3-State)	2 H 87
74F827	10-Bit Buffer, NINV (3-State)	A
74F828	10-Bit Buffer, INV (3-State)	A
74F832	Hex 2-Input OR Driver	2 H 87
74F835	Microprogram Sequence Controller	2H 87
74F841	10-Bit Latch, NINV (3-State)	A
74F842	10-Bit Latch, INV (3-State)	A

Availability Guide

DEVICE	DESCRIPTION	AVAILABILITY
74F843	9-Bit Latch, NINV (3-State)	A
74F844	9-Bit Latch, INV (3-State)	A
74F845	8-Bit Latch, NINV (3-State)	A
74F846	8-Bit Latch, INV (3-State)	A
74F861	10-Bit Transceiver, NINV (3-State)	A
74F862	10-Bit Transceiver, INV (3-State)	A
74F863	9-Bit Transceiver, NINV (3-State)	A
74F864	9-Bit Transceiver, INV (3-State)	A
74F881	4-Bit Arithmetic Logic Unit/Function Generator	A
74F882	32 Bit Look-Ahead Carry Generator	A
74F1240	Octal Buffer (3-State) Light Load 'F240	A
74 F 1241	Octal Buffer (3-State) Light Load 'F241	A
74F1242	Quad Transceiver, Inverting (3-State) Light Load 'F242	A
74F1243	Quad Transceiver (3-State) Light Load 'F243	A
74F1244	Octal Buffer (3-State) Light Load 'F244	A
74F1245	Octal Bus Transceiver (3-State) Light Load 'F245	A
74F1761	DRAM and Interrupt Vector Controller	2H 87
74F1762	1 MBit Memory Address Controller	2 H 87
74F1763	1 MBit Intelligent DRAM Controller	2H 87

DEVICE	DESCRIPTION	AVAILABILITY
74F1764	1 MBit DRAM Dual Ported Controller w/Latch	2H 87
74F1764A	1 MBit DRAM Dual Ported Controller w/Latch	2 H 87
74F1765	1 MBit DRAM Dual Ported Controller w/o Latch	2 H 87
74F1765A	1 MBit DRAM Dual Ported Controller w/o Latch	2H 87
74F2952	Octal Registered Transceiver, NINV (3-State)	2 H 87
74F2953	Octal Registered Transceiver, INV (3-State)	2H 87
74F3037	Quad 2-Input 30Ω Transmission Line Driver, NINV	A
74F3038	Quad 2-Input 30Ω Transmission Line Driver, NINV (O.C.)	A
74F3040	Dual 4-Input 30Ω Transmission Line Driver, NINV	A
74F30240	Octal 30Ω Transmission Line/Backplane Driver, INV (O.C.)	A
74F30244	Octal 30Ω Transmission Line/Backplane Driver, NINV (O.C.)	A
74F30245	Octal 30Ω Xmission Line/Backplane Transceiver, NINV Transceiver, NINV (O.C.)	A
74F30640	Octal 30Ω Xmission Line/Backplane Transceiver, NINV Transceiver, INV (O.C.)	A

FAST Products

GATES

FUNCTION	DEVICE NUMBER
Inverters Hex Inverter Hex Inverter Schmitt Trigger	$\begin{aligned} & \text { 74FO4 } \\ & \text { 74F14 } \end{aligned}$
NAND Quad 2-Input Triple 3-Input Dual 4-Input, Schmitt Trigger Dual 4-Input 8 -Input Quad 2-Input, Schmitt Trigger 13-Input	74F00 74F10 74F13 74F20 74F30 74F132 74F133
AND Quad 2-Input Triple 3-Input	$\begin{aligned} & \text { 74F08 } \\ & \text { 74F11 } \end{aligned}$
NOR Quad 2-Input Triple 3-Input Dual 5-Input	$\begin{aligned} & \text { 74F02 } \\ & \text { 74F27 } \\ & \text { 74F260 } \end{aligned}$
OR Quad 2-Input	74F32
Exclusive-OR Quad	74F86
Combination Gates Dual 2-Wide, 2-Input AND-OR-Invert 4-2-3-2 Input AND-OR-Invert	$\begin{aligned} & 74 \text { F51 } \\ & 74 \mathrm{~F} 64 \end{aligned}$

DUAL FLIP-FLOPS

FUNCTION	DEVICE NUMBER	CLOCK EDGE	SET	CLEAR
D	$74 F 74$	\checkmark	LOW	LOW
JK	74F109	5	Low	LOW
JK	74 F 112	2	LOW	LOW
JK	$74 F 113$ $74 F 114$	乙	LOW	
			Low	Low

MULTIPLE FLIP-FLOPS

FUNCTION	DEVICE NUMBER	RESET LEVEL	CLOCK EDGE	OUTPUT
Quad D	74F175	LOW	」	NINV INV
Quad D with Enable	74F379		5	NINV INV
Hex D	74F174	LOW	5	NINV
Hex D with Enable	74F378		5	NINV
Quad D	74F173	HIGH	5	NINV
Octal D	74F273	LOW	5	NINV
Octal D, 3-State	74F374		5	NINV
Octal D, 3-State	74F534		5	INV
Octal D with Enable	74F377		5	NINV
Octal D, 3-State	74F564		5	INV
Octal D, 3-State	74F574		5	NINV

Function Selection Guide

OTHER REGISTERS, REGISTER FILES

FUNCTION	DEVICE NUMBER	BITS	SERIAL ENTRY	PARALLEL ENTRY	CLOCK
Quad 2 Port	74F398	4×2		2D (mux)	」
Quad 2 Port	74F399	4×2		2 D (mux)	Γ
Dual Octal Register	74F604	8		8D	5
Dual Octal Register	74F605	8		8D	5
Register file	74F670	4×4		4D	
10-Bit, Non-Inverting	74F821	10		2D	5
10-Bit, Inverting	74F822	10		2D	5
$9-B i t$, Non-Inverting	74F823	9		2D	5
$9-\mathrm{Bit}$, Inverting	74F824	9		2D	5
8 -Bit, Non-Inverting	74F825	8		2D	5
8 -Bit, Inverting	74F826	8		2D	5

LATCHES

FUNCTION	DEVICE NUMBER	COMMON CLEAR (LEVEL)	ENABLE INPUT (LEVEL)	OUTPUT
Dual 4-Bit Addressable	74F256	LOW	1(L)	NINV
Dual 4-Bit Addressable	74F259	LOW	1(H)	NINV
Octal, 3-State	74F373		1(H)	NINV
Octal Inverting, 3-State	74F533		1(H)	INV
Octal Transparent, Inverting, 3-State	74F563		1(H)	INV
Octal Transparent, 3-State	74F573		1(H)	NINV
Multi-Mode Buffered, 3-State	74F412	LOW	1(L), 2(H)	NINV
Multimode Buffered	74F432	LOW		INV
10-Bit, Non-Inverting	74F841		1(H)	NINV
10-Bit, Inverting	74F842		1(H)	INV
9 -Bit, Non-Inverting	74F843	LOW	1(H)	NINV
$9-$ Bit, Inverting	74F844	LOW	1(H)	INV
8-Bit, Non-Inverting	74F845	LOW	1(H)	NINV
8-Bit, Inverting	74F846	LOW	1(H)	INV

MULTIPLEXERS

FUNCTION	DEVICE NUMBER	ENABLE INPUT (LEVEL)	SELECT INPUTS	OUTPUT
Quad 2-Input	74F157	1(L)	1	NINV
Quad 2-Input	74F158	1(L)	1	NINV
Quint 2-Input	74F711	1	1	NINV
Quad 2-Input, 3-State	74F257		1	NINV
Quad 2-Input, 3-State	74F258		1	INV
Quad 2-Input	74F298		1	NINV
Quad 3-Input	74F732		3	INV
Quad 3-Input	74F733		3	NINV
Quint 3-Input	74F712		2	NINV
Quad 3-Input	74F723	1	2	NINV
Quad 3-Input	74F723	1	2	NINV
Quad 3-Input	74F132		3	INV
Quad 3-Input	74F133		3	NINV
Quad 4-Input	74F725		1	NINV
Quad 4-Input	74F725		1	NINV
Dual 4-Input	74F153	2(L)	2	NINV INV
Dual 4-Input	74F352	2	2	INV
Dual 4-Input, 3-State	74F253		2	NINV
Dual 4-Input, 3-State	74F353	2		INV
Quint 2-Input Multiplexer	$74 F 711$	1	1	NINV
Quint 3-Input Multiplexer	$74 F 712$		2	NINV
8 -Input	74F151	1(L)	3	NINV INV
8-Input, 3-State	74F251		1	NINV INV

DECODER/DEMULTIPLEXERS

FUNCTION	DEVICE NUMBER	ADDRESS INPUTS	ENABLE LEVEL	OUTPUT LEVEL
Dual 1-of-4	74F139	$2+2$	$1(L)+1(L)$	4(L) + 4(L)
Dual 1-of-4	74F539	$2+2$	$1(L)+1(L)$	4(H) + 4(H)
1-of-8	74F138	3	2(L), 1(H)	8(L)
1-of-8	74F538	3	2(L), 2(H)	8(H)
1-of-10	74F537	4	1(L), 1(H)	10(H)
1-of-16	74F154	4	2(L)	16(L)
Octal, with Address Latches and Acknowledge	74F547	3	1(L), 2(H)	8(L)
Octal with Acknowledge	74F548	3	2(L), 2(H)	8(L)

BUFFERS, DRIVERS AND TRANSCEIVERS

FUNCTION	DEVICE NUMBER	OUTPUT
Quad 2-Input NAND Buffer	$74 F 37$	INV
Quad 2-Input NAND Buffer, OC	$74 F 38$	INV
Dual 4-Input NAND Buffer	$74 F 40$	INV
Quad 2-Input NAND Transmission Line Driver	$74 F 3037$	INV
Quad 2-Input Transmission Line Driver	$74 F 3038$	NINV
Dual 4-Input NAND Transmission Line Driver	$74 F 3040$	INV
Octal 30Ω Transmission Line/Backplane Driver, OC	74F30240	INV
Octal 30 Transmission Line/Backplane Driver, OC	74F30244	NINV
Octal 30 Transmission Line/Backplane Transceiver	$74 F 30245$	NINV
Octal 30 Transmission Line/Backplane Transceiver	$74 F 30640$	INV
Octal Transceiver	$74 F 621$	NINV
Octal Transceiver	$74 F 623$	NINV
Octal Transceiver	$74 F 641$	NINV
Octal Transceiver	$74 F 642$	INV
Octal Transceiver and Registers	$74 F 647$	NINV
Octal Transceiver and Registers	$74 F 649$	INV
Octal Transceiver and Registers	74F653	INV
Octal Transceiver and Registers	74F654	NINV

SHIFT REGISTERS

FUNCTION	DEVICE NUMBER	BITS	SERIAL ENTRY	PARALLEL ENTRY	CLOCK
Serial-In/Parallel-Out	74F164	8	$\mathrm{D}_{\text {sa }}, \mathrm{D}_{\text {sb }}$		5
Serial-In/Parallel-Out Output Latch, 3-State	74F595	8	D_{s}		5
Serial-In/Serial-Out/Parallel-Out, 3-State	74F673	16	SIIO		7
Serial-In/Serial-Out/Parallel-Out	74F675	16	D		\checkmark
Serial-In/Parallet-In/Serial-Out, Parallel-Out	74F195	4	J,K	4D	5
Serial-In/Parallel-In/Parallel-Out, Shift Right	74F199		J,K	8 D	5
Serial-In/Parallel-In/Serial-Out, Parallel-Out	74F598	8	$\mathrm{D}_{\mathrm{s} 0}, \mathrm{D}_{\text {s } 1}$	$81 / 0$	5
Serial-In/Parallel-In/Serial-Out	74F674	16	SI/O	SI/O, 16D	L
Serial-In/Parallel-In/Serial-Out	74F676	16	SI	16D	5
Serial-In/Parallel-In/Parallel-Out Shift Right, 3-State	74F395	4	$\mathrm{D}_{\text {s }}$	4D	5
Serial-In/Parallel-In/Serial-Out, Parallel-Out, 3-State	74F322	8	$\mathrm{D}_{0}, \mathrm{D}_{1}$	$81 / 0$	5
Serial-In/Parallel-In/Parallel-Out	74F194	4	$\mathrm{D}_{\text {sr }}, \mathrm{D}_{\text {sl }}$	4D	5
Serial-In/Parallel-In/Parallel-Out, Shift Right	74F199	8	J, $\overline{\mathrm{K}}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	5
Serial-In/Parallel-In/Serial-Out	74F166	8	D_{s}	$\mathrm{D}_{0}-\mathrm{D}_{7}$	5
Serial-In/Parallel-In/Parallel-Out, Bidirectional	74F198	8	$\mathrm{D}_{\text {sr }}, \mathrm{D}_{\text {st }}$	8D	5
Serial-In/Parallel-In/Serial-Out, Parallel-Out, 3-State	74F299	8	$\mathrm{D}_{\text {s0 }}, \mathrm{D}_{\text {s7 }}$	$81 / 0$	5
Serial-In/Parallel-In/Serial-Out, Parallel-Out, 3-State	74F323		$\mathrm{D}_{\mathrm{s} 0}, \mathrm{D}_{\text {s7 }}$	$81 / 0$	5
Parallel-In/Serial-Out Input Latch	74F597	8	$\mathrm{D}_{\text {s }}$	8D	ζ
Parallel-In/Parallel-Out, 3-State	74F350	4	$\mathrm{I}_{-3}-\mathrm{I}_{+3}$	4 Y	
Parallel-In/Parallel-Out, 3-State	74F604	16		$A_{1}-A_{8}, B_{1}-B_{8}$	5
Parallel-In/Parallel-Out, OC	74F605	16		$A_{1}-A_{8}, B_{1}-B_{8}$	5
Parallel-In/Parallel-Out, True and Complement Output	74F398	8	S	$\mathrm{l}_{0 \mathrm{a}}-\mathrm{l}_{0 d}, \mathrm{I}_{1 \mathrm{a}}-\mathrm{I}_{1 \mathrm{~d}}$	5
Parallel-In/Parallel-Out	74F399	8	S	$\mathrm{l}_{0 a}-I_{0 d}, I_{1 a}-I_{1 d}$	5

Function Selection Guide

COUNTERS

FUNCTION	DEVICE NUMBER	MODULUS	PARALLEL ENTRY	PRESETTABLE	CLOCK EDGE
Synchronous	74F160A	10	S	X	5
Synchronous	74F161A	16	S	X	5
Synchronous	74F162A	10	S	X	5
Synchronous	74F163A	16	S	X	5
Up/Down	74F168	10	S	X	J
Up/Down	74F169	16	S	X	5
Up/Down	74F190	10	A	X	5
Up/Down	74F191	16	A	X	5
Up/Down	74F192	10	A	X	5
Up/Down	74F193	16	A	X	5
Up/Down	74F269	256	S	X	5
Up/Down, 3-State	74F568	10	S	x	5
Up/Down, 3-State	74F569	16	S	X	5
Up/Down	74F579	256	S (I/O)	X	5
Up/Down, 3-State Multiplexed	74F779	256	S (I/O)	X	5
Ripple	74F393	16			L

THREE-STATE BUFFERS, DRIVERS AND TRANSCEIVERS

FUNCTION	DEVICE NUMBER	OUTPUT
Quad Buffer	74F125	NINV
Quad Buffer	74F126	NINV
Quad Bus Transceiver	74F242	INV
Quad Bus Transceiver	74F243	NINV
Quad Bus Transceiver	74F1242	INV
Quad Bus Transceiver	74 F 1243	NINV
Hex Buffer	74F365	NINV
Hex Inverter	74F366	INV
Hex Buffer, 4-Bit and 2-Bit	74F367	NINV
Hex Inverter, 4-Bit and 2-Bit	74F368	INV
Octal Buffer	74F240	INV
Octal Buffer	74F241	NINV
Octal Buffer	74F244	NINV
Octal Buffer	74F1240	INV
Octal Buffer	74F1241	NINV
Octal Buffer	74F1244	NINV
Octal Buffer with Parity	74F455	INV
Octal Buffer with Parity	74F456	NINV
Octal Buffer with Parity	74F655A	INV
Octal Buffer with Parity	74F656A	NINV
Octal Driver	74F540	INV
Octal Driver	74F541	NINV
Octal Transceiver	74F245	NINV
Octal Transceiver	74F545	NINV
Octal Transceiver with IEEE-488 Termination Resistors	74F588	NINV
Octal Transceiver	74F620	INV
Octal Transceiver	74F622	INV
Octal Transceiver	74F640	INV
Octal Transceiver	74F651	INV
Octal Transceiver	74F652	NINV
Octal Transceiver with Parity	74F657	NINV
Octal Transceiver/Register	74F646	NINV
Octal Transceiver/Register	74 F 648	INV
Octal Transceiver	74F1245	NINV
10-Bit Buffer	74F827	NINV
10-Bit Buffer	74F828	INV
10-Bit Transceiver	74F861	NINV
10-Bit Transceiver	74F862	INV
9-Bit Tranceiver	74F863	NINV
$9-\mathrm{Brt}$ Tranceiver	74F864	INV
Octal Registered Transceiver	74F543	NINV
Octal Registered Transceiver	74F544	INV
8-Bit Registered Transceiver	74F2952	NINV
8 -Bit Registered Transceiver	74F2953	INV
Octal Registered Transceiver with Status Flags	74F550	NINV
Octal Registered Transceiver with Status Flags	74F551	INV
Octal Registered Transceiver with Parity and Status Flags	74F552	INV

PRIORITY ENCODERS

FUNCTION	DEVICE NUMBER	INPUT ENABLE (LEVEL)	INPUT/OUTPUT (LEVEL)
8 -to-3	$74 F 148$	LOW	Active-Low

Function Selection Guide

ARITHMETIC FUNCTIONS

FUNCTION	DEVICE NUMBER
4-Bit ALU	$74 F 181$
4-Bit ALU	$74 F 381$
4-Bit ALU with Overflow Output for Two's Complement	$74 F 382$
ALU/Function Generator	$74 F 881$
4-Bit Binary Full Adder with Ripple Carry	$74 F 83$
4-Bit Binary Full Adder with FAST Carry	74F283
Look-ahead Carry Generator	74F182
Look-ahead Carry Generator	74F882
Quad Serial Adder/Subtractor	74F385
4-Bit BCD Arithmetic Logic Unit	74F582
4-Bit BCD Adder	74F583

COMPARATORS

FUNCTION	DEVICE NUMBER
4-Bit Comparator	74F85
8-Bit Comparator	74F521
8-Bit Register Comparator	74F524

PARITY

FUNCTION	DEVICE NUMBER
$9-B i t$ Odd/Even Party Generator/Checker	74F280A/280B

SPECIAL FUNCTIONS

| | FUNCTION |
| :--- | :---: | DEVICE NUMBER

FAST Products
Quality
And Reliability

SIGNETICS LOGIC PRODUCTS QUALITY

Signetics has put together a winning process for manufacturing Logic Products. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.
The products produced in the Standard Products Division must meet rigid criteria as defined by our design rules and evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corpo-rate-wide QA05 data base system. The SURE (Systematic And Uniform Reliability Evaluation) Program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed $2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to ensure that the distribution of parameters resulting from lot-to-lot variations is well within specified
limits. Such extensive characterization data also provides a basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and at $\pm 10 \%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes, and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05-QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available on request.

THE SURE PROGRAM

The SURE (Systematic And Uniform Reliability Evaluation) Program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.
The SURE Program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Logic products, sam-
ples are selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life:
$T_{j}=150^{\circ} \mathrm{C}, 1000$ hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, 1000 hours
- Temperature Humidity Biased Life: $85^{\circ} \mathrm{C}$, 85% relative humidity, 1000 hours, static biased
- Temperature Cycling (Air-to-Air): $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 1000$ cycles

THE SHORT-TERM MONITOR

Every other week a 50 -piece sample from each generic family is run to 168 hours of pressure pot $\left(15 p s i g, 121^{\circ} \mathrm{C}, 100 \%\right.$ saturated steam) and 300 cycles of thermal shock $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$
In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fiftypiece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms, and an estimated failure rate resulting from each stress. This data is published quarterly and is available to customers upon request.
Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

Quality And Reliability

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the corporate SURE Program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

The engineering process includes:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors.
- Device or generic group failure rate studies.
- Advanced environmental stress development.
- Failure mechanism characterization and corrective action/prevention reporting.
The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cy-cle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional, and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support and, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits derived from quality products can best be summed up in the words, lower cost of ownership.

Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times, and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues.
In 1980 we recognized that in order to achieve outgoing levels on the order of 100PPM (parts per million), down from an industry practice of 10,000 PPM, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedented low defect levels could only be achieved by contributions from all employees; from the R and D laboratory to the shipping dock. In
short, we needed a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Signetics' high quality levels have allowed us a "ship-to-stock" program where many major customers no longer need to perform incoming inspection. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these cost-saving practices.
We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers have reported a significant improvement in overall quality (see Figure 1).

Quality And Reliability

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed upon price (see Figure 2).

ONGOING QUALITY PROGRAM

The Quality Improvement Program at Signetics is based on "Do it Right the First Time'". The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared equally by all technical and administrative functions.
This program extends into every area of the company and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.

Key components of the program are the Quality College, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.
The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.
2. The system to achieve quality improvement is prevention.
3. The performance standard is zero defects.
4. The measurement system is the cost of quality.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

'MAKING CERTAIN" ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" Program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.

This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing problems.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.

Quality And Reliability

Figure 3. Lot Acceptance Rate From Signetics Vendors

Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated.

MATERIAL WAIVERS

1986- 0
1985- 0
1984- 0
1983- 0
1982- 2
1981-134
Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing prod-
uct. A separate corporate-level group provides direction and common facilities.
Quality and Reliability Functions

- Manufacturing quality control
- Product assurance testing
- Laboratory facilities - fallure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testıng
- Quality and reliability engıneering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letter-head directly to the corporate director of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to
know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence levels.
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Line-pull information and field fallure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sample of the devices in question can start us on the problem resolution before physical return of shipment.

This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the Quality Improvement Program. During the development of the program many profound changes were made. Figure 4, Logic Products Generic Process Flow, shows the result. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.
The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of Logic products. These achievements have also led to our participation in several Ship-toStock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

Quality And Reliability

NOTE: The items on this flowchart do not all happen in the same sequence for all products.
Figure 4. Logic Products Generic Process Flow

Quality And Reliability

As time goes on, the drive for a product line that has zero defects will grow in intensity. These efforts will provide both Signetics and their customers with the ability to achieve the mutual goal of improved product quality.

The Logic Products Quality Assurance department has monitored PPM progress, which can be seen in Figure 5. We are pleased with the progress that has been made, and expect to achieve even more impressive results as the procedures for accomplishing these tasks are fine tuned.

The real measure of any quality improvement program is the result that the customer sees. The meaning of Quality is more than just working circuits. It means commitment to OnTime Delivery to the Right Place, of the Right Quantity, of the Right Product, at the Agreed Upon Price.

Figure 5. Logic Products EPQ

Signetics

FAST Products

Section 3
Circuit Characteristics

INPUT STRUCTURES

There are three types of input structures used in FAST circuits: diffusion diode, PNP vertıcal transistor, and NPN transistor. Each of these are discussed below.

The diffusion diode input is most often used with FAST circuits. The input diode is labeled as D1 in Figure 1. There can be more than one if NAND logic is to be performed. In the oxide-Isolated processes these are base-collector diffusions. Each input pin also has a Schottky clamp diode D2. This diode is standard for most TTL circuits, and is included to limit negative input voltage excursions that are generally the result of inductive undershoot.

Figure 1. Diode Input
The static diode input function of voltage versus current is shown in Figure 2. If the pin voltage is negative, most of the relatively high negative current flows through the clamp Schottky D2. At OV the current flows from $V_{C C}$ through R1 and D1 to the pin. Switching from a logic Low level to a logic High level occurs when the input pin voltage rises high enough to force the current from the D1 path to the Q3-Q2-Q1 path. This happens when the base voltage of transistor Q3 is at three base-emitter drops ($3 \mathrm{~V}_{\mathrm{BE}}$), and the pin is at $2 \mathrm{~V}_{\mathrm{BE}}$, which is the standard FAST threshold switching voltage. At this voltage the input current is very small, just the leakage currents of diodes D1, D3, and clamp diode D2. The current remains at this small, positive value untll breakdown voltage is reached.
Transistor Q3 and resistor R2 provide a current gain by increasing the amount of current available to Q2 and Q1 when the pin voltage is high. R3 bleeds current off the base of Q2 to pull it low when the pin voltage is low. D3 speeds up this process during the

High-to-Low pin transition. When the switching transients are over, D3 is reverse biased.

Static Diode Input Function of Voltage VS Current

The current of Figure 2 is scaled for the case where the pin is required to pull down a single $10 \mathrm{~K} \Omega$ resistor R1 $(20 \mu \mathrm{~A}$ maximum in the High state and 0.6 mA maximum in the Low state), which is defined as a standard FAST Unit Load (UL). For some parts, pin current can exceed a UL, especially in the logic Low state. This will happen if the pin must sink the current from more than one R1 resistor, or if the value of R1 is less than 10K Ω, which will be the case if the capacitance at the base of the transistor Q3 is too large for the required switching speed. In this event, the actual number of ULs is listed for each input in the specification sheet for the part. Note: UL, as defined here, is less than the normally defined Schottky TTL Unit Load. The correlation is one Schottky Unit Load $=1.67$ ULs. This is an important point to remember for fan-in and fan-out calculations in systems that mix FAST with other TTL families.
The PNP vertical transistor has found wide acceptance in its various forms in low power Schottky logic because it provides a highimpedance input which is usually desirable. It was not used with early FAST circuits because the original oxide-isolated processes did not provide a fully suitable PNP vertical structure. It is now frequently the input of choice for new parts built with improved processes. The PNP transistor Q3 is fabricated with the P -type substrate as the grounded collector, the N-type Epi as the base, and the P-type normal base diffusion as the emitter. The process must be tailored to provide a suitable current gain for this vertical structure
and must have provision to remove the considerable substrate current without an appreciable rise in substrate voltage. Referring to Figure 3, Q3 functions as an emitter follower for pin voltages low enough to provide an emitter-base forward bias. This occurs at an emitter voltage below the $3 \mathrm{~V}_{\mathrm{BE}}$ value provided by the D3-Q2-Q1 stack, and gives the desired $2 \mathrm{~V}_{\mathrm{BE}}$ pin threshold. At pin voltages above this value, Q3 turns off and the current through R1 is directed to Q2-Q1 through D3. The Schottky diode D2 speeds up the High to Low transition if the pin voltage falls more rapidly than the base of Q2; otherwise, D2 is off. The PNP input characteristics are shown in Figure 4. If the input voltage is negative with respect to ground, a large clamp current flows through D_{1}. As the voltage rises, D_{1} turns off and the input current falls to the base current of Q3; for the usual values of R_{1}, this is in the range of about $10 \mu \mathrm{~A}$. This decreases as the lead voltage rises. At threshold, Q3 turns off and the input current drops to a low value determined by the leakage of D_{1}, D_{2}, and Q3. The current remains at this low value until the onset of breakdown. Since all PNP inputs are protected with ESD structures, the breakdown current is set by this, and not the actual PNP device.

Figure 3. PNP Input

The NPN input is shown with two variations in Figures 5 and 6. It has limited use in standard TTL circuits, and is used in selected FAST devices, especially where its superior highimpedance input characteristics are useful. A typical plot of static input current versus input voltage is shown in Figure 7. There are some significant differences between this function and that of the diffusion diode input shown in Figure 2, the most important being the much lower input current in the region from OV to

Circuit Characteristics

threshold and the controlled increase of input current above V_{Cc}.

Figure 4. PNP Input Characteristics

Figure 5. NPN Input

Figure 6. NPN Input
When the pin voltage is negative, the large negative clamp current is supplied through the clamp Schottky diode D3. For positive voltages, from OV to the switching threshold of $2 \mathrm{~V}_{\mathrm{BE}}$, Q1 is off, and the input current I_{LL} is very small, just the leakage current of Q1, D2, and D3 with low reverse bias. As the input
voltage rises above $2 \mathrm{~V}_{\mathrm{BE}}$, Q1 turns on, and the current that had been flowing through D4 now flows through Q1, blocking Schottky diode D1 to V_{Cc}. The value of this current is determined by the current source transistor Q2 with its base connected to voltage reference V_{CS}, and by the size of the emitter resistor R2. The current is nearly constant within the normal operating range of input voltages and has a typical value of 0.1 mA to 1.0 mA . The pin must supply only a small fraction of this bias current, the ratio of Q1 collector current to base current being the bipolar β factor. Typically, $l_{I H}$ base input current is less than $20 \mu \mathrm{~A}$ in the voltage range from OV to V_{CC}. This value is the specification for a standard FAST NPN Unit Load. As in the diode input case, if larger currents are needed to reduce delay times or to provide for multiple-input transistors connected to the same pin, the specification sheet for the particular device will identify the input pins which have NPN ULs larger than one, and will list their values.

Figure 7. NPN Input Characteristics (Not to Scale)

In normal operation, the pin voltage will be limited in the negative direction by the diode clamp D3, and will be less than $V_{C C}$ in the positive direction. The actual input voltage may exceed V_{CC} for three reasons: there may be inductive overshoot in badly terminated systems; the $V_{C C}$ pin may be floating or grounded; or the input pin may be forced high by electrostatic discharge or incoming inspection testing.
For the inductive overshoot case, when the pin voltage exceeds V_{CC}, part of the Q1 collector current begins to flow from the pin through limiting resistor R1 and Schottky diode D2. The current from V_{CC} through D1 decreases by exactly this amount, since Q2 is a constant current source. As the voltage continues to rise, D1 becomes reverse biased and prevents high currents flowing from the pin into V_{cc}. All the Q 2 current flows into the pin through the R1-D2-Q1-Q2-R2 path to ground. As stated before, this current is typically small, in the range of 0.1 mA to 1.0 mA , and nearly independent of pin volt-
age, as shown by the I_{1} plateau in Figure 7. II provides a clamping action to ground for pin voltages in excess of V_{CC}, which is usually desirable to reduce overshoot.
For the case where V_{CC} is grounded or floating, the input current is nearly zero for positive voltages between zero and approximately 7V. The conducting path through R1-D2-Q1 is available, but the current source Q2 will be shut off because, without V_{CC} drive, the Q 2 base reference V_{CS} will be at OV . This is the specified standard setup for incoming inspection. For the incoming inspection testing case where V_{CC} is connected to a 5 V source, the response is shown in Figure 7. The current remains on the Q2-limited plateau until the pin voltage is high enough to cause non-destructive collector-emitter reach-through of Q2. At this point, input current increases as the pin voltage rises, and R1 functions to limit this current and prevent damage to Q2.
The electrostatic discharge case is similar to the incoming inspection case except that Q2 may be off if the V_{CC} pad is floating, in which case it breaks down at a slightly higher voltage. The NPN input produces reachthrough at a relatively low voltage compared with the diode input. The effect of this nondestructive reach-through is to greatly increase the ability of the device to survive electrostatic discharge. The discharge current is passed through the chip at a relatively low power dissipation, and this is shared by elements R1, D2, Q1, Q2 and R2, so that none of them dissipate enough power to do damage. By way of contrast, with a diode input, the clamp Schottky diode breaks down at high voltage with high dissipation in a localized area, and may suffer damage.
Another advantage of the NPN input is its ability to interface on the chip to either a conventional TTL interior design, or to the increasingly popular current-mode interior logic. The conventional TTL interface is shown in Figure 6. In this case the Q2 current source is designed to provide sufficient current to insure that in the Low state, with current flowing through the R3-D4-Q2 path, the base-emitter stack of Q3-Q4 is shut off. The $2 V_{B E}$ input threshold is set by the forward drops of Q1, D4, Q4 and Q3.
The current-mode logic interface is shown in Figure 5. The output voltage is the drop across R3, and is referenced to V_{CC} (or some on-chip regulated voltage lower than V_{CC}) as is required for current-mode logic. For this case, voltage reference REF2 is normally fixed at $2 \mathrm{~V}_{\mathrm{BE}}+1$ Schottky drop to provide a pin threshold voltage of $2 \mathrm{~V}_{\mathrm{BE}}$. In fact, REF2 can be tailored to set the switching threshold voltage to any desirable level; it can be set to something other than an integral number of

Circuit Characteristics

base emitter drops, or it can be designed to reduce the sometimes undesirable temperature variations of input threshold.

INPUT CONSIDERATIONS

Static Input Current

A comparison of input current for various input voltage ranges for each of the three types of inputs is shown in Figure 8.

The majority of FAST devices available to date have diode inputs and supply current to their drivers that may be as large as $600 \mu \mathrm{~A}$ at V_{IN} of 0.5 V for a single unit load input. If a driver cannot sink the necessary current for a particular number of loads, the system designer must either add a buffer circuit designed to drive with higher current, or switch to devices that have high-impedance inputs. These are available on many Signetics FAST designs, and are specified to have input current less than $20 \mu \mathrm{~A}$ over the full switching range from $O V$ to $V_{C C}$. Typical input current for the NPN structure at room temperature is less than $1 \mu \mathrm{~A}$ below switching threshold voltage and $3 \mu \mathrm{~A}$ above threshold. Typical PNP input current is less than $10 \mu \mathrm{~A}$ below threshold voltage and $1 \mu \mathrm{~A}$ above threshold.

Input Capacitance

Input capacitance, measured using a smallsignal variation about a static DC operating point, is usually the least for the NPN. When one includes the added capacitance of the elements common to each input, such as the pin, pad, bond wire, and clamp Schottky diode, the percentage difference for total static input capacitance for any of the three types of inputs is not very large.

Dynamic Input Current

In many applications the total current an input pin draws during a switching transition is a more important consideration than its input capacitance. This dynamic input current is often larger than the value of static capacitance would predict because each of the three types of input structure normally includes some sort of speed-up mechanism, usually a 'kicker' Schottky diode, connected to an internal node of the circuit. The kickers deliver current, related in a non-linear way to input edge-rates. High-dynamic input current does not always equate to fast circuit switching. NPN inputs are usually faster than diode or PNP inputs, but in general have the lowest total dynamic current. The percentage differences for dynamic current tend to be larger than the respective differences for static capacitance.

Switching Threshold Voltage

The FAST input switching threshold voltage is set quite high for TTL at two base-emitter junction forward-bias drops. FAST input structures have enough gain that the voltage June 1987

INPUT VOLTAGE RANGE	INPUT CURRENT		
	Diode	PNP	NPN
Below Ground	Schottky Clamp	Schottky Clamp	Schottky Clamp
Ground to V_{T}	High (to $600 \mu \mathrm{~A}$)	Low (to $20 \mu \mathrm{~A}$)	Leakage
V_{T} to V_{CC}	Leakage	Leakage	Low (to $20 \mu \mathrm{~A}$)
Above V_{CC}	Leakage	Leakage	Clamp 100 to $1000 \mu \mathrm{~A}$

Figure 8. Input Current for Input Voltage Ranges
range in which they switch from one state to the other, as shown by a static DC transfer function curve, is completed within about 100 mV of the $2 \mathrm{~V}_{\mathrm{BE}}$ threshold. For a typical part at room temperature, V_{BE} is about 800 mV , and the switching threshold is nominally at 1.6 V ; the static transfer range uncertainty of about 100 mV gives a nominal threshold for solid Lows and Highs of about 1.55 V and 1.65 V respectively. The FAST threshold voltage was chosen higher than other TTL families to give a larger noise margin with respect to ground, and to be more nearly centered in the region where a FAST output driver stage switches with maximum edge rates, which occurs between about 0.6 V and 2.6 V .

Because the FAST threshold is set by the base-emitter junction voltage, it is dependent on junction temperature and current density. $V_{B E}$ increases by about 1.2 mV for each degree C drop in junction temperature; current density changes by about a decade for a 60 mV change in $V_{B E}$. The total variation due to processing differences, temperature, and current density is about 150 mV per junction, or 300 mV total change in input threshold to give limits of 1.25 V Low and 1.95 V High. The FAST $V_{I L}$ and $V_{I H}$ limits are 0.8 V and 2.0 V respectively, a tight spec for V_{IH}.

HYSTERESIS CONSIDERATIONS

Hysteresis has frequently been added to the inputs of TTL circuits in the past. The purpose is to increase noise immunity, which is accomplished by adjusting threshold voltages in a direction to reinforce an input level once a critical value has been reached. The procedure works well for slow circuits where the likelihood of slow, noisy inputs is high. It does not accomplish what is intended for FAST parts. There are several reasons: FAST threshold is already high and well centered so noise problems are automatically minimized. Inductive ground bounce, which is discussed at length later, causes problems with fast edge rates that completely swamp the typical benefits of hysteresis. It thus becomes a further complication in an already complicated picture and is more apt to hurt noise margin than to help it. Because of this, the
two major supplies of FAST have eliminated hysteresis from all circuits except those specifically designed as Schmidt triggers; the 'F13, 'F14, and 'F132.

ELECTRO-STATIC DISCHARGE (ESD) CONSIDERATIONS

It is universally true that no bipolar integrated circuit process can provide devices with such high breakdown voltages that they are able to withstand ESD without some structure punching through or breaking down. The necessary condition for survival when this occurs is that the energy dissipation in any volume of the chip must be kept low enough so that neither the silicon nor the interconnecting metal can melt. This can be accomplished in two ways: the breakdown voltage should be as low as practical, consistent with normal circuit operation, and the energy should be dissipated in as large a volume as is possible. Circuit components that are particularly sensitive to charge damage must be protected by structures that are less fragile. All Signetics FAST parts are designed with these requirements in mind, and although, as a rule of thumb, a sophisticated oxide isolated process used to fabricate these parts tends to be more ESD damage-prone than a junction isolated process, FAST is about as rugged as other TTL families in general. If FAST parts are handled with the same care afforded any other hightechnology parts, they will not be damaged.
ESD sources usually fit into one of two categories: people or other objects that have accumulated static charge and touch the parts; or, they generate their own charge, as is the case when a circuit makes sliding contact with an insulator. In the first instance, static voltages tend to be high, over 10000V, and discharge is usually limited by relatively high series resistance. In the second case, voltages are lower, around 200 V , but there is very little series resistance to limit discharge current. Both possibilities are simulated with discharge models that are used in the majority of the test setups, and parts are designed in a way to improve survival for both ESD conditions.

Circuit Characteristics

Experience has shown that inputs of TTL circuits are much more likely to suffer ESD damage than outputs. Since negative voltages are discharged through clamp ground diodes with low chip dissipation, only voltages positive with respect to substrate ground are apt to produce input damage.

Circuits with diode inputs have a positive voltage breakdown in the relatively high range of from 15 V to 25 V . Schottky diodes connected to an input pin usually break down before junction diodes, and if they are stressed beyond their limits the Schottky diodes usually sustain damage in the corners. A diffusion guard-ring around the diode increases the uniformity of the breakdown, and as a result maximizes the dissipation volume at breakdown and increases the ability of the device to survive ESD. All Signetics FAST circuits have guard-rings on Schottky diodes that connect to input or output pins.

NPN inputs are designed to have low holdoff voltage for positive voltages in excess of $V_{C C}$. Under static discharge the input structure forward biases, and the current-source transistor conducts the ESD current to substrate with a relatively low collector-emitter reachthrough voltage. The input current for normal operation is low enough that a series limiting resistor can be added; this limits ESD current, especially for the case where the ESD source has no appreciable series resistance itself.

As processes improve, it is often possible to improve ESD protection. Most new releases and many parts that have been recently redesigned onto new processes have specific ESD structures included which protect up to 2000V for the standard resistance limited case - the human body model.

FLOATING INPUTS

FAST inputs should not be allowed to float. All unused inputs, even those on unused gates, should be tied to a voltage source of relatively low impedance that will get them out of the logic picture and out of trouble. For a Low input this can be ground, or the output of a permanently low driver. For a High input this can be V_{Cc}, protected by a series resistor if circuit damaging voltage spikes are possible in the system, or a permanently high driver.

Properly tied High or Low inputs will not pick up enough spurious noise to cause problems. If they are allowed to float, the results can be disastrous. Floating diode inputs usually pull to within a few Mv of $3 \mathrm{~V}_{\mathrm{BE}}$ above ground, a V_{BE} above threshold. The input voltage will fall about 1 V per 0.1 mA of current that is capacitively coupled from an adjacent Lowgoing pin. Since pin-to-pin input capacitance is in the order of one pF for an IC in a PC environment, an adjacent pin falling at $1.0 \mathrm{~V} /$
ns couples in about 1.0 mA of current, enough to switch the input to a Low state for as long as the current lasts. The normal FAST circuit response will be to switch or oscillate. The problem is even worse for high-impedance low-capacitance NPN or PNP inputs. In this case the static voltage to which they float is determined in part by leakage, and is not predictable.

To reiterate, FAST inputs must not be allowed to float. To do so is to invite serious system problems.

OUTPUT CONSIDERATIONS

The purpose of the output stage is to supply current to a load to force it to a High state or to sink current from the load to force it to a Low state. The speed at which the load can be switched from one state to the other depends on how much supply current or sink current is available from the output driver. There must be an amount in excess of that which is required to maintain the static load voltage, and it is the excess current that is available to charge or discharge the load capacitance. Most FAST circuits are designed to fit into one of those categories, based on output drive capability; the normal output stage, the buffer driver which can supply approximately twice as much current, and the high current drivers designed to drive low-impedance terminations.
Both normal drivers and buffers may be 3State, which means that, in addition to Low and High states, they can be forced to a highimpedance OFF state as a third possible choice. This allows multiple components to be connected to a bus simultaneously, with only the single-selected device providing actual drive capability.

The basic components of an output stage are shown in Figure 9.

The pull-down driver components sink load currents to force a Low state at the output pin; the pull-up driver components supply current to force a High state. The control components turn on the selected driver and turn off the nonselected driver in response to the logic input signal. For 3-State parts, the control components turn off both drivers if the 3 -State control signal is active. The output Schottky clamp is included to suppress inductive undershoots, and is a part of every FAST circuit. The load requires a static current to keep it in either a logic High or Low state. The drivers must also charge and discharge the load capacitance C_{L}, which is generally one of the major factors that influence switching speed.
Since, to a large extent, they function independently of each other, the pull-up driver,
pull-down driver, and control blocks are discussed independently.

PULL-UP DRIVERS

Open-Collector

The simplest pull-up driver consists of no more than a fixed pull-up resistor tied to $V_{C C}$. For this case, the control stage interacts only with the pull-down driver. In the Low state, this must sink the current from both the pullup resistor and load. In the High state, the pull-up resistor must supply all of the load current. Most often, the pull-up resistor is not physically part of the integrated circuit chip itself, but is added externally. In this case the only circuit element connected to the output pad (in addition to the ever-present Schottky clamp) is the collector of the pull-down driver transistor, hence the name "Open-Collector." Parts with this output stage can be tied together for bus applications. If any of the connected pull-down stages is active, it will pull the bus Low; only if all of them are off can the external resistor pull the bus High. This action provides a 'wired' logical function that is free in the sense that no additional components are required to achieve it. Some OpenCollector FAST parts also have 3-State inputs that serve to disable output pull-down stages regardless of the action of the normal logic function.
The Open-Collector output voltage depends on the load, the value of the pull-up resistor, and the voltage to which this is connected. If the resistor value is low, the output will rise to nearly the full value of the pull-up source voltage; in particular, the Open-Collector output can rise to V_{CC}, a voltage higher than that obtainable with a standard Darlington totempole pull-up.
High-drive Open-Collector parts are ideal as drivers for terminated transmission lines. In this application the line is terminated at the receiving end with a resistor network that provides the proper impedance and an equivalent source voltage of about 3V. The circuit pull-down drive sinks the termination current through the line at relatively low chip power dissipation when it is on. When it is turned off, the line pulls the output high, charging the stray capacitance from an impedance equal to the line characteristic impedance. Since the current is supplied by the line, the chip power dissipation falls. Very fast rise times approaching 1 ns can be obtained with this scheme. Rise times, in general, for opencollector outputs are determined by the RC product of the pull-up resistor and the stray capacitance, and are limited only by the ability of the chip to pull the load low.
Signetics has a new family of parts designed specifically for driving heavy loads in termi-

Circuit Characteristics

TC04161S
Figure 9. Output Stage Basic Components
nated or unterminated environments. The majority of these are Open-Collector functions. They are discussed in detail later.

Standard Darlington

Most FAST pull-up drivers use dual transistors, connected as shown in Figure 10, with the emitter of the first device Q_{b} delivering current to the base of the driver Q_{a}. This configuration is called a Darlington circuit and provides a composite current gain nearly as large as the product of the current gains of Q_{b} and Q_{a}.
The major advantage of the Darlington pullup, as compared to the Open-Collector, is that the pin is actively pulled high by the emitter-follower action of Q_{a} which is capable of supplying large currents to quickly charge output capacitance. Despite the large output current that is available, the drive requirements of Q_{b} are low, so that the voltage drop across R_{c} is small, and the pad will pull up to a voltage nearly as high as $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}_{\mathrm{BE}}$.

For the case where the output pin voltage is High, the phase-splitter transistor Q_{c} is off, and the base of Q_{b} is pulled high by resistor R_{c}. The current which flows through R_{c} is just sufficient to provide base drive to Q_{b}. The base voltage of Q_{b} will be just slightly below V_{CC}, and the output pin voltage will be less

Figure 10. Basic Darlington Pull-Up
than this by the sum of the V_{BE} drops of Q_{b} and Q_{a}, both of which are on. Most of the base current for Q_{a} and the current through pull-down resistor R_{b} is supplied from $V_{c c}$ through R_{a} and Q_{b}. Q_{b} has a Schottky clamp to prevent saturation when the current through R_{a} is large. Resistor R_{a} limits the amount of current flowing from V_{CC} through Q_{a} to a value small enough that Q_{a} will not be damaged if the output pin is accidentally grounded for a short period of time. This short circuit output current is called los, and its value is approximately the maximum current available to charge the output capacitance at the beginning of a Low-to-High transition. The minimum current available when the pin has reached the minimum guaranteed high voltage V_{OH} is called output high current (I_{OH}), and is specified to be either 1 mA or 3 mA , depending on the type of driver. The maximum output voltage that the pull-up driver can achieve occurs at maximum V_{CC}, and at high temperatures with corresponding low values of transistor V_{BE} and high current gain. Conversely, the minimum high voltage occurs at low V_{CC} and low temperatures.

In the Low state, the pull-down driver Q_{d} is on and the pin voltage is the Q_{d} saturation voltage $V_{\text {SAT }} . Q_{c}$ is on and its collector resistor R_{C} is pulled down to $V_{B E}+V_{S A T}$; the $V_{B E}$ of $Q_{d}, V_{S A T}$ of $Q_{c} . Q_{b}$ is also on, with its emitter at $V_{S A T}$, and the current through R_{b} is low. The base-emitter voltage of Q_{a} is nearly zero and Q_{a} is off.

The rate at which the pull-up driver can force a Low-to-High transition depends on a number of factors. The first, and obvious, consideration is that the control components must turn off the pull-down driver very quickly. During the short time that both pull-up and pull-down are on, there is a large feedthrough current spike that is wasted as far as switching the load is concerned; it also increases chip power dissipation and produces undesirable voltage spikes in V_{CC} and ground. Assuming the pull-down is off, the Low-to-High transition speed is governed by:

1) the rate at which R_{c} can pull-up the base of Q_{b}; 2) the amount of pin current required to drive the load and charge the load capacitance; 3) the value of R_{a}; 4) the physical size and current gain of Q_{a}; and 5) the amount of Q_{a} base drive current that is lost through R_{b} to ground. The amount of R_{b} drive current lost can be reduced by connecting R_{b} to the output pin instead of ground, and this is done in a number of FAST parts. For this case, the static current through R_{b} with the pin high is less than if R_{b} is grounded, but switching feed-through current spike for a High-to-Low transition may be increased because R_{b} cannot effectively pull-down the base of Q_{a} until after the pin voltage falls.
The pin can be driven above its maximum high value by an external pull-up or by positive reflections from a transmission line. When this happens, Q_{a} and Q_{b} do not have sufficient base-emitter drive to keep them on. If the pin voltage rises significantly above $\mathrm{V}_{\mathrm{cc}}, \mathrm{Q}_{\mathrm{a}}$ will begin to leak current into V_{cc}. For the case where R_{b} is tied to the pin instead of ground, the reverse transistor action of Q_{a} allows a high pin-to- V_{CC} current. This is not usually a problem in normal operation, but should be avoided in system applications where the V_{CC} pin may be intentionally grounded.

3-State

For all 3-State FAST parts, the leakage paths to a grounded V_{CC} pin are blocked with Schottky diodes. A typical 3-State pull-up is shown in Figure 11. S_{a} is the series Schottky blocking diode. 3-State Schottkys $\mathrm{S}_{\mathrm{t} 1}$ and $\mathrm{S}_{\mathrm{t} 2}$ serve to simultaneously turn off the pull-up and pull-down drivers. The 3-State control is active when it is pulled low to within $\mathrm{V}_{\mathrm{SAT}}$ of ground. In this state it sinks all the available drive current for Q_{b} and Q_{c}, and pulls their bases down to ($\left.V_{S A T}+V_{\text {Schottky }}\right)$, which is essentially one V_{BE}. The voltage drop across R_{c} is large and 3-State power dissipation is typically high. Q_{a} and Q_{b} are off for normal TTL voltage ranges of the output pin; a negative undershoot large enough to drive the pin about one $V_{B E}$ below ground will allow them to turn on and supply current from V_{CC}; this action aids the clamping Schottky diode in preventing the pin voltage from falling lower.

Circuit Characteristics

Figure 11. Basic 3-State Pull-Up

PULL-DOWN DRIVERS

The basic FAST pull-down driver is shown in Figure 12. Q_{d} is the pull-down driver transistor, a big Schottky-clamped device capable of sinking large currents. C_{d} is the stray basecollector capacitance of Q_{d}, and its unavoidable presence has an important effect on the performance of the pull-down driver. Q_{c} is the Schottky-clamped phase splitter. It functions as a current-limited, low-impedance driver for Q_{d} when the logic input voltage $V_{\mathbb{I N}}$ is high, and as an inverting driver for pull-up Q_{b} by virtue of the current through R_{c} when $V_{I N}$ is low and Q_{C} is off. Z_{d} is the pull-down impedance network which insures that Q_{d} is off when $V_{I N}$ is low.

TC04130S
Figure 12. Basic FAST Pull-Down
Switching to the logic Low state occurs when $V_{I N}$ is larger than the $V_{B E}$ drops of Q_{c} plus Q_{d}, both of which are initially on. Part of the total emitter current available from Q_{c} comes from R_{C}, which has a voltage drop of $V_{C C}-$ $\mathrm{V}_{\mathrm{BE}}-\mathrm{V}_{\mathrm{SAT}}$. The remainder of the Q_{c} emitter current is supplied through its base Schottky clamp or by other components not shown in Figure 12 but discussed in the section on
control components. A portion of the total Q_{c} emitter current is lost in the pull-down network Z_{d}; the remainder is available as base current for pull-down driver Q_{d}. The amount of current Q_{d} can sink depends on its base drive, its current gain, and its collector voltage. This current is specified on a per-part basis in the data sheets at output low voltage $\left(\mathrm{V}_{\mathrm{OL}}\right)$ of 0.5 V . The current which Q_{d} can sink in the switching range with the pin voltage at 2.5 V is called available current (l_{AVL}), and is usually at least 70 mA for FAST. The manner in which this current varies as the pin voltage decreases from 2.5 V to V_{OL} is not specified as a FAST family parameter, since it is critically dependent on circuit design for a particular part, but is included as a specification for selected parts, especially those tailored to drive transmission lines. Several innovative circuit improvements that increase $l_{\text {AVL }}$ by increasing the drive current for Q_{d} are shown in Figures 19a and 19b. Speed-up Schottky diodes $\mathrm{S}_{\mathrm{s} 1}$ and $\mathrm{S}_{\mathrm{s} 2}$ have been added to the standard pull-down circuit as shown in Figure 13a. Both are reverse-biased and off in the High state, since R_{c} pulls the collector of Q_{c} nearly to $V_{C C}$. Both connect the collector of Q_{c} to nodes that need to be discharged during a High-to-Low transition. $S_{s 1}$ to the base of $Q_{a}, S_{s 2}$ to the pin. They will conduct if these node voltages are higher than $\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{SAT}}+\mathrm{V}_{\text {Schottky }}$, or approximately $2 \mathrm{~V}_{\mathrm{BE}}$; they are quite effective above $2 \mathrm{~V}_{\mathrm{BE}}$. Other networks are available which function down to lower voltages; these are especially useful for transmission line drivers. Figure 13b shows a dynamic kicker that gives an impulse of current which is especially useful in discharging high capacitive loads.
The network of elements labeled Z_{d} in Figure 12 is the pull-down impedance which insures that Q_{d} is off when the value of $V_{I N}$ falls below $2 \mathrm{~V}_{\mathrm{BE}}$. When the voltage at the base of Q_{d} is being pulled high by Q_{c} or low by Z_{d}, the output pin voltage responds by moving in the opposite direction. This produces a change in voltage across C_{d}, which is the sum of the base voltage change and the collector voltage change, so the amount of charge required by C_{d} is magnified by a factor which is larger than unity.

This well-known Miller-effect causes the apparent value of C_{d}, as perceived by the drivers, to be a factor of about five times larger than the already large physical junction capacitance, all of which means that the drivers Q_{c} and Z_{d} need to supply or sink much more current during an output transition than is necessary to maintain static conditions. When static conditions do exist internally in the circuit, noise voltage spikes on the output pin, V_{CC}, or ground can momentarily force the base of Q_{d} in the direction to produce a serious output glitch, and the

drivers must respond quickly to counter this coupled noise.

The simplest Z_{d} element is a resistor $R_{z 1}$ tied to ground, as shown in Figure 14. It will pull the base of Q_{d} all the way down to $O V$ if $V_{I N}$ is less than one V_{BE}. This provides good immunity to coupled noise, but slows down the High-to-Low pad transition somewhat because the base of Q_{d} must rise a full $V_{B E}$ before the output can begin to change. The value of $R_{Z 1}$ needs to be relatively large to prevent a serious loss of base drive current when Q_{d} is on, which makes it easier to

Circuit Characteristics

capacitively couple voltage spikes to the base of Q_{d} and, in part, nullifies the good noise immunity the full $V_{B E}$ swing provides.

The addition of a series Schottky diode solves most of the problems. This is shown in Figure 15. The Q_{d} base voltage cannot pull below a Schottky drop, so the switching speed is unimpaired. The value of $R_{Z 2}$ can be less than R_{Z1} for the same current when the base is high, so the effect of coupled charge is less and the noise margin is acceptable.

The circuit of Figure 16 is standard with many TTL families. It pulls the base of Q_{d} down even less than does $R_{Z 2}-S_{d 2}$, but it has a relatively high dynamic impedance and is somewhat noise sensitive. It has the advantage that it tends to "square up" the input voltage-to-output voltage transfer function, hence its popular name "squaring circuit." It is frequently used in simple gates where the shape of the transfer function may be important. For more complicated circuits, where there are one or more stages of logic with gain between input and output pins, the squaring ability is pretty much lost; in fact, it is likely that high-gain, multiple-logic-level FAST circuits will oscillate if the input voltage is held at near threshold for any length of time.

Figure 17 shows a popular dynamıc circuit that is used in conjunction with a resistor or squaring circuit pull-down, and which insures that C_{d} cannot couple enough charge to the base of Q_{d} to slow down a Low-to-High transition. In operation, as the emitter of Q_{b} rises, charge is coupled through C_{Z4} into the
base of $Q_{Z 4}$ which turns on and shunts the Miller current flowing through C_{d} to ground. When the transition is finished, the current through $C_{Z 4}$ stops and $Q_{Z 4}$ turns off. When the High-to-Low transition of Q_{b} occurs, $C_{Z 4}$ discharges through $S_{d 4}$. Because $Q_{Z 4}$ reduces the problems associated with Miller current, the circuit is called a "Miller Killer."

Figure 18 shows an active pull-down for the base of Q_{d}. The drive for $Q_{Z 5}$ (not shown) must be generated from the same signal that drives the base of Q_{c}. When Q_{c} is on, $Q_{Z 5}$ must be off, and when Q_{c} is off, $Q_{Z 5}$ turns on to hold the base of Q_{d} low. The impedance is very low, elimınating the capacitive-coupling noise problem.

Figure 18

CONTROL COMPONENTS

This section covers 3-State control drivers, special 3-State problems, and V_{CC} turn-on current and 3-State glitches during power-up.

3-State Control Drivers

The normal TTL 3-State scheme is shown in Figure 11. The 3-State control voltage in the OFF state is high enough that $S_{\mathrm{t} 1}$ and $\mathrm{S}_{\mathrm{t} 2}$ are reverse-biased; in the active state the control voltage is low, usually $V_{\text {sat }}$, so that the $Q_{a}-Q_{b}$ base emitter stack is off, as is the $Q_{c}-Q_{d}$ stack. In the 3-State mode, R_{c} is dissıpating maximum power. Blockıng Schottky diode S_{a} prevents current from flowing backwards through Q_{a} if the $V_{C C}$ pin is grounded; the output pin high voltage can be
about 4.5 V before there is any significant 3 State leakage current. The only exception to this general rule with FAST is for the diode input transceiver function, where the same pin acts as an input or an output. In this case, the pin supplies one or more normal FAST unit loads of current if it is Low, and tends to pull to $2 \mathrm{~V}_{B E}$ if it is floating. NPN and PNP input transceivers have normal low 3-State leakage.

There are several innovative improvements to the basic 3-State circuit, as shown in Figure 19. The addition of inverter $\mathrm{Q}_{\mathrm{c} 2}-\mathrm{R}_{\mathrm{c} 2}$ with a blocking Schottky $\mathrm{S}_{\mathrm{c} 2}$ allows the addition of feedback diodes $S_{s 1}$ and $S_{s 2}$ to increase $I_{A V L}$; $\mathrm{S}_{\mathrm{c} 2}$ cannot be included in series with $\mathrm{R}_{\mathrm{c} 1}$ because its forward voltage drop would lower V_{OH}. 3-State power is not increased, since only one $R_{c 1}$ is pulled low. The current through $Q_{c 2}$ is available as added base drive to Q_{d}, so nothing is wasted. An additional transistor may be paralleled with $Q_{c 1}$ and $Q_{c 2}$ to control an active pull-down version of impedance Z_{d} which, discussed in a previous section, elimınates the Miller turn-on problem of Q_{d}.

Icc Considerations

There is no formal family specification that limits the amount of $V_{C C}$ current a FAST circuit may draw during turn-on as $V_{C C}$ rises from zero to 4.5 V . However, for most new designs, and especially for circuits that have high $I_{C C}$ requirements, an effort has been made to limit maxımum turn-on $I_{C C}$ to 110% of ICCmax. This precaution prevents an undesirable system situation where the $V_{C C}$ power supply is large enough to drive the devices, but can't power them up. The major component of turn-on current is V_{CC} to ground feedthrough of output stages. Unless specific steps are taken to prevent it, the pull-up Darlington turns on if $V_{C C}$ is greater than $2 V_{B E}$, and remains on untıl the on-chip voltage is high enough to set the phase splitter solidly in one or the other of its two states. The solution is to incorporate extra circuit components that will set the phase splitter at voltages nearly as low as $2 \mathrm{~V}_{\mathrm{BE}}$, or turn off the top device with a separate 3-State type structure which activates at low V_{CC} voltages and becomes inoperative when V_{CC} is high.

The amount of current that can be fed from an output pin back into a grounded $V_{C C}$ pin, or through the chip to ground for an open $V_{C C}$ pin, depends on the design. Generally, 3State feedback current is specifically limited to low values which are leakage or breakdown related. Other parts have medium to high current. Those with Darlington pulldowns connected to the output pin conduct the most.
Some 3-State parts, especially selected buffer functions, have additional circuit elements

Circuit Characteristics

to insure that as they power on they source or sink no appreciable output current, provided that the 3-State control pins are in the active state as $V_{C C}$ rises. This means that $V_{C C}$ can be turned on or off at will in the system to conserve power, and bus voltages will not be affected. Parts with this capability are identified in the specific data sheets.

GROUND VOLTAGE AND OTHER NOISE PROBLEMS

Ground Voltage As A Serious Problem

Excessive ground noise voltage in a system usually produces serious degradation of switching speed. It may also produce unwanted glitches on outputs, or spurious clocks which cause flip-flops to lose data, or relaxation oscillations that completely disrupt a system. It is, without doubt, one of the major causes of logic systems failure ... difficult to accommodate, and difficult to eliminate.
The problem is not unique with FAST, but is greatly aggravated by the high transition rates and large currents for which FAST is designed. Because of this, FAST can optimally replace other TTL families only in systems that have been carefully designed at the PC board level. Well planned layout is vital, and multilayer boards with ground and V_{CC} planes are often necessary. Great care must be taken to insure adequate bypassing for V_{CC}. The problems are not trivial, but they can be solved satisfactorily to yield systems whose performance is not exceeded in the TTL world.

Sources Of Ground Noise

Ground lead inductance is the source of most ground noise voltage; it causes a voltage drop proportional to the rate at which the current through it changes.
Inductance is a measure of the amount of energy stored in the magnetic field associated with a current. Low values of inductance imply low energy, which means low voltage required to affect a change in current. As a general rule, inductance decreases as current is allowed to spread out in space, and current interactions decrease. The inductance of a thin wire far removed from the return current path is high; that of a large conductor coaxially encircled by the return path is low. Inductance tends to increase faster than linearly with conductor length, but only approximately logarithmically with decreasing cross-section dimensions. From a logic system viewpoint, ground planes are better than ground traces; wide lines are better than narrow lines; close spacing to planes is good; loops that allow magnetic flux linkages are bad; wire lengths of fractions of inches count; and sockets with long pins add significant inductance to a PC card.
Ground noise voltage is increased by feedthrough current spikes. These occur when both top and bottom devices of the output totem-pole driver are on simultaneously, and heavy currents are allowed to flow directly from $V_{C C}$ to ground. They can be minimized in one of two ways: drive the devices such that one is turned off before the other can turn on, or more commonly, drive them together, but very fast, so the feed-through current can flow for only a short time.

Although most ground noise results from ground inductance, resistance also contributes. Static ground offsets unrelated to rates of current change occur, and add to the total ground voltage. Generally speaking, those measures which reduce ground inductance also reduce ground resistance.

Estimating The Magnitude Of

 Ground NoiseThe accurate modeling of ground noise-related problems in logic design is a complex procedure that requires numerical analysis to determine system currents and voltages as a function of time. This can only be accomplished in a satisfactory manner if one has reasonable electrical models, especially for input stages and output drivers of the integrated circuits used in the system. These data are available on request for many of the FAST logic functions. Signetics is prepared to assist customers in solving the sometimes formidable problems associated with large system simulation.
The following discussion derives the minimum peak-value of ground noise that will occur as an integrated circuit discharges a capacitor through ground lead inductance. It points out the minimum problems that will exist. In the real world, the peak ground voltage will always be larger than the simple derivation predicts.
The load capacitor C and its discharge path are shown in Figure 20. The capacitor has been previously charged to a positive voltage, and is discharging through pull-down transistor Q_{d} and lead ground inductance L_{g}. As the current changes, it develops a ground voltage V_{g} across L_{g} that is equal to the product of L_{g} times the rate at which it changes.

The discharge current I_{d} will vary with time; starting from zero, it will increase to a maximum value, and then eventually return to zero. There are an infinite number of ways I_{d} can vary, depending on how the transistor allows charge to flow at any instant in time, but each of the possible current-vs-time discharge curves must define the same area, equal in value to the total charge Q that is removed from the capacitor as its voltage falls by an amount V.

The voltage drop V_{g} across the inductor at any instant in time will be determined by the

Circuit Characteristics

slope of the current-vs-time curve, that is, by the rate at which current is changing. The unique curve that has the required area and minimum slope is triangular, as shown in Figure 21. The ground voltage for this case is a square wave as shown in Figure 22. It will be positive while the current is increasing, and negative when the current is decreasing.

The equations of interest in estimating V_{g} are:

$$
\begin{aligned}
& \text { Charge }=Q=C V=I_{M A X} \frac{T}{2}=\text { triangle area } \\
& \begin{aligned}
\text { Ground voltage }= & V_{g}=(\text { triangle slope })(L) \\
& =\frac{2 I_{\mathrm{MAX}} L}{T}
\end{aligned}
\end{aligned}
$$

Combining the two equations to eliminate $I_{\text {max }}$ gives:

$$
V_{g}=\frac{4 C V L}{T^{2}}
$$

This lower limit of peak ground voltage will always be exceeded in the real world, where ground voltages are usually spikes, not square waves. If a spike is large enough and long enough, the chip will erroneously recognize it as a valid input, and respond either by glitching, slowing down, clocking incorrectly, or oscillating.

An example using values typical for a FAST circuit in a 16 -pin DIP illustrates the potential for trouble. If the circuit discharges one standard FAST load of 50 pF in 2 ns with a voltage change of 3 V through a ground inductance of 10 nH , the minimum ground voltage will be:

$$
\begin{aligned}
V_{g} & =\frac{4 \times 50 \times 10^{-12} \times 3 \times 10 \times 10^{-9}}{\left(2 \times 10^{-9}\right)^{2}} \\
& =1.5 \mathrm{~V}
\end{aligned}
$$

This value is high, and suggests that if transition times are not to be seriously degraded, inductances must be kept as small as possible, and loads must be minimized.

Effects Of Ground Noise On Input Stages

FAST TTL input voltages are referenced to system ground as illustrated in Figure 23 which shows an equivalent input and output stage. The equivalent input circuit is represented by R_{IN} and the four diodes D1 through D4. These components establish an input switching threshold voltage of $2 \mathrm{~V}_{B E}$ relative to chip ground. The on-chip voltage $\mathrm{V}_{\mathbb{I N}}$ must be different from this value by a margin large enough to guarantee a static Low or High with sufficient overdrive to insure switching speed. The on-chip voltage $\mathrm{V}_{\mathbb{I N}}$ that is actually available is the difference between the input pin voltage $\mathrm{V}_{\text {PIN }}$ and the total ground voltage noise $\mathrm{V}_{\mathrm{g}} . \mathrm{V}_{\mathrm{g}}$ is the sum of the steady state voltage due to ground current flowing through R_{g}, and the inductive voltage drop across L_{g}. The inductive voltage is usually the larger of
the two, and since it depends on current changes, it will have both positive and negative polarities for each switching cycle. This means that either Low or High input voltages which are too close to switching threshold will allow the noise margin to be exceeded, and if the ground voltage noise persists long enough, the input will switch erroneously. The result of this depends on the chip function. Combinatorial logic usually slows down or produces output glitches. Latches and flipflops may be clocked inadvertently, and stored data will be lost. Complex circuits that have multiple outputs may oscillate, particularly if one polarity of ground noise results in a rapid change of ground current that produces the opposite polarity ground noise.

Ground noise adds a dimension of difficulty in measuring input threshold voltage. FAST parts are guaranteed to have input thresholds between the limits 0.8 V and 2.0 V . A typical method of verifying this is to determine the voltage at which the input actually switches. This requires some care, since the true threshold voltage is masked by any noise voltage contributed by the test system or ground inductance. For accurate results, the input pin voltage should approach the switching threshold slowly and smoothly. At threshold the input will switch. Sensing this point is easy for those circuits where an output also switches, glitches, or oscillates. It is much harder to sense this point for those circuits where an input change produces no output change, for example, with flip-flops which change state only when clocked. The input switch point for these devices can be inferred by measuring the input current as a function of input voltage. Clocking the part may produce enough ground noise to distort the
measurement, even if the output doesn't switch.

Figure 21

Figure 22

Effects Of Ground Noise On Output Stages

The most obvious effect that ground noise has on output stages is to directly change the voltage available to force discharge current through the pull-down device. If the only source of ground voltage is from the particular output of interest, the ground and output pin inductances will always slow down a High-to-Low transition. They produce a voltage in opposition to the output pin voltage at the

Figure 23. Equivalent Input and Output Stage

Circuit Characteristics

beginning of the discharge when currents tend to be high and voltage changes rapidly As discharge contınues, the available drive decreases, and currents increase less rapidly. Eventually the current begins to fall, and the ground voltage reverses polarity, which tends to limit the rate at which the current decreases. If currents have been high, and the inductances are large, there may be substantial undershoot at the end of the switching cycle which can drive the output pin below ground.

If multiple outputs are switching simultaneously, the total ground noise needs to be considered to determine the result for a particular output. For this case, it can happen that ground noise will, in fact, speed up an output; on the other hand, it may introduce delays that are much larger than those possible with single output switchıng. This behavior makes it difficult to predict, except on a case by case basis, what the actual effects of multiple output switching will be. Curves of delay vs multiple switching have been published, but these serve only as rough guides to indicate potential problems, and need to be backed up with actual analysis for any particular application.

TC04030s
Figure 24

In addition to the direct influence on discharge voltage, excessive ground noise can affect the operation of the control components, and alter both rise and fall times by driving pull-up or pull-down stages incorrectly. One example of this can be understood with reference to Figure 24. The scenario is that the output pin is Low, but on the verge of switching High, with $V_{I N}$ falling and Q_{C} ready to turn off. A problem occurs if, at the instant before the pull-up transistor Q_{a} turns on to pull the output pin high, the voltage from output pin to chip ground falls. This can happen as a result of inductive undershoot driving the output pin down, or by a rise in ground voltage caused by currents complete-
ly unrelated to the output of interest. The low output-pin-to-chip-ground voltage pulls down the emitter of Q_{c} through Schottky clamp diode S_{d}, and if $V_{I N}$ is not low enough to counteract this, Q_{c} will not turn off. The net result is that R_{c} cannot rise, and the transition is delayed until the noise voltage from output to ground disappears.

Vcc Noise As An Additional Problem

Inductance in the V_{CC} lead produces noise in the on-chip $V_{C C}$ voltage that is entirely analogous to ground voltage. The effects of $V_{C C}$ noise can be nearly as harmful as those produced by ground noise, the only significant difference being the fact that TTL input voltages are referenced to ground instead of $V_{C C}$

The first symptom of excessive V_{CC} inductive voltage drop is a change in the edge rate for a Low-to-Hıgh transition. This will decrease if the on-chip $V_{C C}$ falls, and increase if it rises. If the ground to $V_{C C}$ voltage falls below a mınimum value, internal circuit delays or glitches can occur, and functions with flipflops or other storage elements may lose data. As is the case with excessive ground noise, FAST circuits may break into relaxation oscillation.

Because $V_{C C}$ to ground voltage must remain above a minimum value to avoid logic errors and glitches, it is absolutely vital that $V_{C C}$ to ground bypassing is adequate. This requires low inductance $V_{C C}$ and ground PC traces, and low inductance bypass capacitors. FAST parts are guaranteed to function properly for low $V_{C C}$ of 4.5 V . This means that pin voltages must not fall below this value for any appreclable time: fractions of nanoseconds. $V_{C C}$ system voltage should be close to the maximum guaranteed value for safe system design.

Designing To Reduce The Effects Of Ground Noise

The typical 1.5 V mınımum value for ground noise, calculated in the preceeding example, points out the possibility of noise-related problems when only one standard 50 pF load is being driven by an output stage. Simultaneous switching of more than one such load obviously increases the risk of trouble, and raises the question of how an octal part can work at all. Fortunately, the real world, with careful PC layout, is not usually so grim.
The standard 50 pF load is a lot of capacitance, chosen so one can estimate the chip response for a single output switching under conditions that approach worst case. On a modern PC board a wire trace that has 50pF stray capacitance is several feet long and looks like a resistive delay line instead of a lumped capacitor.

Traces on a PC card must be short to behave like lumped capacitance for an output stage. For this case, a major contributor to driver current is the load presented by the input stages of the driven circuits, and the associated stray capacitance. As previously mentıoned, the input current for FAST parts is related to edge rates, and is generally larger than the measured static value of input capacitance would predict. Because of this, the useful fan-out of FAST circuits may be more dependent on ground noise of drivers with heavy capacitive loads than on the amount of current available to a statıc DC load, which is the guaranteed data sheet value.
Most of Signetics' FAST parts are available in surface mount packages, and these have lower ground inductance than the standard DIP parts.

Inductance of output signal pins reduces the rate at which associated ground current can change, and this reduces ground noise voltage without a corresponding reduction of static output voltage. This inductance may be intentionally increased by adding trace length on the PC board; one needs to be careful, and anticipate the increase in output ringing during switching transitions.

In summary, there are many potential problems that one can anticıpate in logic systems with fast edge rates. Some of these are dependent on the available components and their respective packages, and the system designer must be certain that the demands made of them are not more than they can handle. A second major consideration is the system layout, especially from the standpoint of ground, V_{CC}, and signal lead inductance. If one is careful with PC design and layout, and chooses components wisely, FAST systems deliver performance second to none in the TTL world.

Heavy Current Drivers

Signetics has a new family of parts defined that are capable of driving currents much larger than those achieved with standard FAST parts.
The parts presently available are:

F3037	Quad 2-Input NAND F3038 Quad 2-Input NAND F3040 Open-Collector F30240
F30al 4-Input NAND	
Octal Line Drıver,	
Open-Collector	
F30245	Octal Line Drıver, Open-Collector Octal Transceiver, Open-Collector F30640 Octal Transceiver, Open-Collector

Others are in the planning stage.

Circuit Characteristics

The drivers are husky enough to assure incident wave-switching driving transmission lines with impedance levels as low as 30Ω. They are the best choice available for applications that need the ultimate in speed and drive capability.

All the parts use multiple center ground and $V_{C C}$ pins. Special precautions have been taken to insure minimum feed-through current during switching, and this, coupled with the low $V_{C C}$ and ground inductance, results in minimum $V_{C C}$ and ground noise, and allows maximum edge-rate and speed.

The parts are available on several different packages, including ceramic. Because the power dissipation is application dependent, the user needs to choose a package and an environment carefully to be sure the maximum temperature ratings are not exceeded. These maximum ratings are part of the individual data sheets.

Signetics

FAST Products

Section 4
FAST User's Guide

INDEX

Data Sheet Specification Guide

FAST Products

INTRODUCTION

Signetics' FAST data sheets have been configured for quick usability.

They are self-contained and should require minimum reference to other sections for amplifying information.

All references to military products have been deleted from this manual, specifically to reflect recent government requirements imposed via Revision C of MIL-STD-883, including the general provisions of Paragraph 1.2. Specifications for military-grade FAST products are included in the Military Products Data Manual available from the nearest Signetics Sales Office or Sales Representative.

TYPICAL PROPAGATION DELAY AND SUPPLY CURRENT

The typical propagation delays listed at the top of the data sheets are the average between $t_{\text {PLH }}$ and $t_{\text {PHL }}$ for the most significant data path through the part.

In the case of clocked products, this is sometimes the maximum frequency of operation. In any event, this number is under the operating conditions of $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

The typical ICC current shown in that same specification block is the average current (in the case of gates, this will be the average of the $\mathrm{I}_{\mathrm{CCH}}$ and $\mathrm{I}_{\mathrm{CCL}}$ currents) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$. It represents the total current through the package, not the current through the individual functions.

LOGIC SYMBOLS

There are two types of logic symbols. The conventional one, "Logic Symbol," explictly shows the internal logic (except for complex logic). The other is "Logic Symbol (IEEE/ IEC)" as developed by the IEC and IEEE. The Internatıonal Electrotechnical Commission (IEC) has developed a very powerful symbolic language than can show the relationship of each input of a digital logic circuit to each output without explicitly showing the internal logic. Internationally, Working Group 2 of IEC Technical Committee TC-3 is preparing a new document (Publication 817-12) that will consolidate the original work started in the mid1960's and published in 1972 (Publication 117-15), and the amendments and supplements that have followed. Similarly, for the U.S.A., IEEE Committee SCC 11 has revised the publication IEEE Std 91/ANSI Y32.141973.

The updated version IEEE Standard Graphic Symbols for Logic Functions ANSI/IEEE Std 91-1984 (Revision of ANSI/IEEE Std 91-1973 [ANSI Y32.14-1973]) can be ordered through:

```
IEEE Service Center
445 Hoes Lane
Piscataway, New Jersey 08854
Phone (201) 981-0060
```


ABSOLUTE MAXIMUM RATINGS

The Absolute Maximum Ratings table carries the maximum limits to which the part can be subjected without damaging it. There is no implication that the part will function at these extreme conditions. Thus, specifications such as the most negative voltage that may be applied to the outputs only guarantees that if
less than -0.5 V is applied to the output pin, after that voltage is removed, the part will still be functional and its useful life will not have been shortened.

Input and output voltage specifications in this table reflect the device breakdown voltages in the positive direction (+7.0 V) and the effect of the clamping diodes in the negative direction (-0.5 V).
Absolute maximum ratings imply that any transient voltages, currents, and temperatures will not exceed the maximum ratings. Absolute maximum ratings are shown in Table 1.

RECOMMENDED OPERATING CONDITIONS

The Recommended Operating Conditions table has a dual purpose. It sets environmental conditions (operating free-air temperature), and it sets the conditions under which the limits set forth in the DC Electrical Characteristics table and AC Electrical Characteristics table will be met. Another way of looking at this table is to think of it not as a set of limits guaranteed by Signetics, but as the conditions Signetics uses to test the parts and guarantee that they will then meet the limits set forth in the DC and AC Electrical Characteristics tables.

Some care must be used in interpreting the numbers in these tables. Signetics feels strongly that the specifications set forth in a data sheet should reflect as accurately as possible the operation of the part in an actual system. In particular, the input threshold values of V_{IH} and V_{IL} can be tested by the user with parametric test equipment ... if $\mathrm{V}_{\mathbb{H}}$ and V_{IL} are applied to the inputs, the outputs will

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		74F	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	\checkmark
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	Standard outputs	40	mA
		3-State outputs	48	mA
		All buffer outputs	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

Data Sheet Specification Guide
be at the voltages guaranteed by DC Electrical Characteristics table. There is a tendency on the part of some users to use V_{IH} and V_{IL} as conditions applied to the inputs to test the part for functionality in a 'truth-table exerciser" mode. This frequently causes problems because of the noise present at the test head of automated test equipment. Parametric tests, such as those used for the output levels under the V_{IH} and V_{IL} conditions are done fairly slowly, on the order of milliseconds, and any noise present at the inputs has settled out before the outputs are measured. But in functionality testing, the outputs are examined much faster, before the noise on the inputs has settled out and the part has assumed its final and correct output state. Thus, V_{IH} and V_{IL} should never be used in testing the functionality of any FAST part type. For these types of tests, input voltages of +4.5 V and 0.0 V should be used for the High and Low states, respectively.
In no way does this imply that the devices are noise sensitive in the final system. The use of 'hard' Highs and Lows during functional testing is done primarily to reduce the effects of the large amounts of noise typically present at the test heads of automated test equipment with cables that may at times reach several feet. The situation in a system on a PC board is less severe than in a noisy production environment. Typical recommended operating conditions are shown in Table 2.

DC ELECTRICAL
 CHARACTERISTICS

This table reflects the DC limits used by Signetics during their testıng operations conducted under the conditions set forth in the

Recommended Operating Conditions table. V_{OH}, for example, is guaranteed to be no less than 2.7 V when tested with $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}$ across the temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, and with an output current of $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$. In this table, one sees the heritage of the original junction-isolated Schottky family ... $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ at $\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$. This gives the user a guaranteed worst-case Low-state noise immunity of 0.3 V . In the High state the noise immunity is 0.7 V worst case. Although at first glance it would seem onesided to have greater noise immunity in the High state than in the Low, this is a useful state of affairs. Because the impedance of an output in the High state is generally much higher than in the Low state, more noise immunity in the High state is needed. This is because the noise source couples noise onto the output connection of the device. That output tries to pull the noise source down by sinking the energy to ground or to $V_{C C}$, depending on the state. The ability of the output to do that is determined by its output impedance. The lower half of the output stage is a very low-impedance transistor which can effectively pull the noise source down. Because of the higher impedance of the upper stage of the output, it is not as effective in shunting the noise energy to $V_{C C}$, so that an extra 0.4 V of noise immunity in the High state compensates for the higher impedance. The result is a nice balance of sink-anddrive current capabilities with the optimum amount of noise immunity in both states.
V_{OH} and V_{OL} values may vary depending on whether 5% or $10 \% V_{C C}$ swings are specified. The type of output structure, standard: 3State, or buffer will also affect the value of V_{OH} and V_{OL}. Generally, as the output current and V_{CC} variations increase, the guaranteed
minimum V_{OH} decreases and the maximum V_{OL} increases. Signetics specifies and tests V_{OH} and V_{OL} for both 5% and $10 \% \mathrm{~V}_{\mathrm{CC}}$ swings.
l_{1}, the maximum input current at maximum input voltage, is a measure of the input leakage current at a guaranteed minimum input breakdown voltage. The test conditions for I_{1} vary according to the type of input structure being tested. Diode inputs are tested with $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ and 7.0 V at the input. NPN inputs are tested with $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}$ and 7.0 V at the input. It is necessary to turn V_{CC} off for the NPN input test to measure leakage. Otherwise, the current source is on and the leakage is undetectable. When I_{l} is being measured on transceiver I/O pins, both V_{CC} and the input voltage are 5.5 V . The reduced input voltage is necessary because of the output structure connected to the input structure. Output structures break down sooner than input structures and it is impossible to test the input without testing the output also.
$I_{I H}$ for both Diode and NPN input structures is less than $20 \mu \mathrm{~A}$ typically. I_{IL} is less than $20 \mu \mathrm{~A}$ for NPN inputs and less than $600 \mu \mathrm{~A}$ for Diode inputs. If multiple input structures are tied together in the design, then the input current values also multiply. The fan-out for devices with NPN inputs is 30 tımes greater than those with Diode inputs. This means the output current sinking ability of the device driving the input to the Low state could be 30 times less when driving NPN devices.

For transceiver I/O pins the outputs are in the High-impedance state when the inputs are tested. Therefore, a maximum of $50 \mu \mathrm{~A}$ extra leakage is allowed and combined with the $I_{I H}$ and $I_{I L}$ values. These tests are called

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
V_{OH}	High-level output voltage	Open-Collector			4.5	V
IOH	High-level output current	Standard			-1	mA
		3-State			-3	mA
		Buffers			-15	mA
lOL	Low-level output current	Standard			20	mA
		3-State			24	mA
		Buffers			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{IL}}+\mathrm{l}_{\mathrm{OZL}}$ to more accurately describe the true measurement being made.
$\mathrm{l}_{\mathrm{OzH}}$ is tested with setup conditions that would put the output in the High state if it were not in the 3-State High-impedance condition. lozL is similar except the setup condition is for the Low state.
l_{OH} is tested only on Open-Collector outputs as a leakage test for the lower output transistor structure. Both V_{CC} and V_{OH} are at the same value so that there is not a current path to or from V_{CC} that would mask the leakage.

Short-circuit output current is a parameter that has appeared on digital data sheets since the inception of integrated circuit logic devices, but the meaning and implications of that specification has totally changed. Originally, los was an attempt to reassure the user that if a stray oscilloscope probe accidentally shorted an output to ground, the device would not be damaged. In this manner, an extremely long time was associated with the los test. However, thermally-induced malfunctions could occur after several seconds of sustained test.

Over a period of time, los became a measure of the ability of an output to charge line capacitance. Assume a device is driving a long line and is in the Low state. When the output is switched High, the rise time of the output waveform is limited by the rate at which the line capacitance can be charged to its new state of V_{OH}. At the instant the output switches, the line capacitance looks like a short to ground. los is the current demanded
by the capacitive load as the voltage begins to rise and the demand decreases. We now reach the critical point in our discussion. The full value of los need only be supplied for a few hundred microseconds at most, even with $1.0 \mu \mathrm{Fd}$ of line capacitance tied to the output; a load that is unrealistically high by several orders of magnitude.

The effect of a large los surge through the relatively small transistors that make up the upper part of the output stage is not serious - AS LONG AS THAT CURRENT IS LIMITED TO A SHORT DURATION. If the hard short is allowed to remain, the full los current will flow through that output state and may cause functional failure or damage to the structure. A test-induced failure may occur if the los test time is excessive. As long as the los condition is very brief, typically 50 ms or less with ATE equipment, the local heating does not reach the point where damage or functional failures might occur. As we have already seen, this is considerably longer than the time of the effective current surge that must be supplied by the device in the case of charging line capacitance. The Signetics data sheet limits for los reflect the conditions that the part will see in the system - full los spikes for extremely short periods of time. Problems could occur if slow test equipment or test methods ground an output for too long a time, causing functional failure or damage. DC electrical characteristics are shown in Table 3.

AC ELECTRICAL CHARACTERISTICS

The AC Electrical Characteristics table (see Table 4) contains the guaranteed limits when tested under the conditions set forth in the AC Test Circuits and Waveforms section. In some cases, the test conditions are further defined by the AC setup requirements (see Table 5) - this is generally the case with counters and flip-flops where setup and hold times are involved.
All of the AC characteristics are guaranteed with 50 pF load capacitance. The reason for choosing 50 pF over 15 pF as load capacitance is that it allows more leeway in dealing with stray capacitance, and also loads the device during rising or falling output transitions, which more closely resembles the loading to be expected in average applications, thus giving the designer more useful delay figures.

Although the 50 pF load capacitance will increase the propagation delay by an average of about 1 ns for FAST devices, it will increase several ns for standard Schottky devices.

The load resistor of 500Ω is conveniently specified as both a pull-up and pull-down load resistor.
FAST products are being released in the surface-mounted SO package as a commercial option. Because of the reduced inductance inherent in this package, minimum propagation delays are being derated by 0.2 ns . This is reflected by a note at the bottom of Table 4.

Data Sheet Specification Guide

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER ${ }^{1}$			CONDITIONS ${ }^{2}$	LIMITs ${ }^{2}$			UNITS	$\mathrm{V}_{\mathrm{cc}}{ }^{4}$	
				Min	Typ ${ }^{3}$	Max				
V_{IH}	Input High voltage				Recognized as a High signal over recommended $V_{C C}$ and T_{A} range	2.0			V	
$\mathrm{V}_{\text {IL }}$	Input Low voltage			Recognized as a Low signal over recommended $V_{C C}$ and T_{A} range			0.8	V		
$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{K}} \\ \left(\mathrm{~V}_{\mathrm{CD}}\right) \end{array} \end{aligned}$	Input clamp diode voltage			$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-1.2	V	MIN	
V_{OH}	Output High voltage	Std. ${ }^{5}$	$\pm 10 \%$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4		V	MIN	
			$\pm 5 \%$	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.7	3.4		V	MIN	
		3-State	$\pm 10 \%$	$\mathrm{lOH}^{\text {a }}=-3 \mathrm{~mA}$	2.4	3.3		V	MIN	
			$\pm 5 \%$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.7	3.3		V	MIN	
		Buffers	$\pm 10 \%$	$\mathrm{l}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.0	3.1		V	MIN	
			$\pm 5 \%$	$\mathrm{IOH}=-15 \mathrm{~mA}$	2.0	3.1		V	MIN	
$\mathrm{V}_{\text {OL }}$	Output Low voltage	Std. ${ }^{5}$	$\pm 10 \%$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.35	0.5	V	MIN	
			$\pm 5 \%$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$		0.35	0.5	V	MIN	
		3-State	$\pm 10 \%$	$\mathrm{lOL}^{2}=24 \mathrm{~mA}$		0.35	0.5	V	MIN	
			$\pm 5 \%$	$\mathrm{lOL}=24 \mathrm{~mA}$		0.35	0.5	V	MIN	
		Buffers	$\pm 10 \%$	$\mathrm{lOL}^{\prime}=64 \mathrm{~mA}$		0.35	0.5	V	MIN	
			$\pm 5 \%$	$\mathrm{l}^{\mathrm{OL}}=64 \mathrm{~mA}$		0.40	0.55	V	MIN	
1	Input High current breakdown test	Diode inputs		$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	MAX	
		NPN inputs		$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	0.0 V	
		Transceiver I/O pins		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA	5.5 V	
I_{H}	Input High current			$\begin{aligned} & \mathrm{V}_{1 H}=2.7 \mathrm{~V} \\ & (20 \mu \mathrm{~A} \times \mathrm{n} \text { High U.L. }) \end{aligned}$			n (20)	$\mu \mathrm{A}$	MAX	
$I_{1 / 2}$	Input Low current	Diode inputs		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\ & (-0.6 \mathrm{~mA} \times \mathrm{n} \text { Low U.L. }) \end{aligned}$			$n(-0.6)$	mA	MAX	
		NPN inputs		$\begin{aligned} & \mathrm{V}_{1 \mathrm{~L}}=0.5 \mathrm{~V} \\ & (-20 \mu \mathrm{~A} \times \mathrm{n} \text { Low U.L. }) \end{aligned}$			$\mathrm{n}(-20)$	$\mu \mathrm{A}$	MAX	
$\begin{aligned} & \mathrm{IH}^{+} \\ & \mathrm{I}_{\mathrm{OZH}} \\ & \hline \end{aligned}$	Input High current (I/O pins)			$\begin{aligned} & V_{\mathrm{IH}}=2.7 \mathrm{~V} \\ & (20 \mu \mathrm{~A} \times \mathrm{n} \text { High U.L. }) \end{aligned}$			$\begin{aligned} & \mathrm{n}(20) \\ & +50 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	MAX	
$\begin{aligned} & \mathrm{I}_{\mathrm{LL}}+ \\ & \mathrm{l}_{\mathrm{OZL}} \end{aligned}$	Input Low current (I/O pins)	Diode inputs		$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\ (-0.6 \mathrm{~mA} \times \mathrm{n} \text { Low U.L. }) \end{array} \end{aligned}$			$\mathrm{n}(-0.6)$	mA	MAX	
		NPN inputs		$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\ & (-20 \mu \mathrm{~A} \times \mathrm{n} \text { Low U.L. }) \end{aligned}$			$\begin{gathered} \mathrm{n}(-20) \\ -50 \end{gathered}$	$\mu \mathrm{A}$	MAX	
lozh	3-State OFF current High			$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$	MAX	
lozL	3-State OFF current Low			$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$	MAX	
${ }^{\mathrm{IOH}}$	Open-Collector output leakage			$\mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$			250	$\mu \mathrm{A}$	MIN	
$10{ }^{6}$	Output short-circuit current	Std. ${ }^{5}$ 3-State		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-60		-150	mA	MAX	
			Buffer driver	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-100		-225	mA	MAX	

NOTES:

1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages.
2. Unless otherwise stated on individual data sheets.
3. Typical characteristics refer to $T_{A}=+25^{\circ} \mathrm{C}$ and $V_{C C}=+5.0 \mathrm{~V}$.
4. $M I N$ and $M A X$ refer to the values listed in the data sheet table of recommended operating conditions.
5. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-State outputs.
6. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operation values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los test should be performed last.

Data Sheet Specification Guide

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F373, 74F374					UNIT
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
				Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ t_{PH}	Propagation delay D_{n} to Q_{n}	'F373	Waveform 3	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay E to \bar{Q}_{n}		Waveform 2	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 11.5 \\ 7.0 \end{array}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 8.0 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$	$\begin{array}{r} 11.0 \\ 7.5 \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 8.5 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable time High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	ns
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	'F374	Waveform 1	100			70		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to \bar{Q}_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.3 \end{aligned}$	$\begin{array}{r} 11.5 \\ 7.5 \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 8.5 \end{array}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tplz } \\ & \hline \end{aligned}$	Output Disable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F373, 74F374					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to E	'F373		Waveform 4	2.0 2.0			2.0 2.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, D_{n} to E			Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	E pulse width, High or Low		Waveform 2	6.0			6.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to CP	'F374	Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, D_{n} to CP		Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{H}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	7.0 6.0			7.0 6.0		ns	

Data Sheet Specification Guide

AC WAVEFORMS

WF06112S
Waveform 1. Clock to Output Delays and Pulse Width
D_{n}

Waveform 3. Propagation Delay Data to Q Outputs

WF06325s
Waveform 5. Data Setup and Hold Times

Waveform 2. Latch Enable to Output Delays and Latch Enable Pulse Width

Waveform 4. Data Setup and Hold Times

wFo609BS

Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance
Figure 3. AC Waveforms for FAST 74F373, 74F374

Data Sheet Specification Guide

TEST CIRCUITS AND WAVEFORMS

The 500Ω load resistor, R_{L} to ground, as described in Figure 1, acts as a ballast to slightly load the totem-pole pull-up and limit the quiescent High state voltage to about +3.5 V . Otherwise, an output would rise quickly to about +3.5 V , but then continue to rise very slowly up to about +4.4 V . On the subsequent High-to-Low transition, the observed $t_{\text {PHL }}$ would vary slightly with duty cycle, depending on how long the output voltage was allowed to rise before switching to the Low state. Perhaps, more importantly, the 500Ω resistor to ground can be a high-frequency, passive probe for a sampling scope, which costs much less than the equivalent highimpedance probe. Alternatively, the 500Ω load to ground can simply be a 450Ω resistor feeding into a 50Ω coaxial cable leading to a sampling scope input connector, with the internal 50Ω termination of the scope completing the path to ground. Note that with this scheme there should be a matching cable from the device input pin to the other input of the sampling scope; this also serves as a 50Ω termination for the pulse generator that supplies the input signal.

Figure 2, Test Circuit for 3-State Outputs, shows a second 500Ω resistor from the device output to a switch. For most measurements this switch is open; it is closed for measuring a device with Open-Collector outputs and for measuring one set of the Enable/Disable parameters (Low-to-OFF and OFF-to-Low) of a 3-State output. With the switch closed, the pair of 500Ω resistors and the +7.0 V supply establish a quiescent High level of +3.5 V , which correlates with the High level discussed in the preceding paragraph.
As shown in Figure 3, AC Waveforms for FAST 74F373, 74F374, the disable times are measured at the point where the output voltage has risen or fallen by 0.3 V from the quiescent level (i.e., Low for tpLH ${ }^{2}$ or High for $\mathrm{t}_{\mathrm{PHL}}{ }^{2}$).

Since the rising or falling waveform is RCcontrolled, the 0.3 V of change is more linear and is less susceptible to external influences.
More importantly, from the system designer's point of view, 0.3 V is adequate to ensure that a device output has turned OFF. It also gives system designers more realistic delay times to use in calculating minimum cycle times.

TCOt860S

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance,
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

Figure 1. Test Circuit for Totem-Pole Outputs, 74F00

Good, high-frequency wiring practices should be used in constructing test jigs. Leads on the load capacitor should be as short as possible to minimize ripples on the output waveform transitions and to minimize undershoot. Generous ground metal (preferably a ground plane) should be used for the same reasons. A $V_{\text {cc }}$ bypass capacitor should be provided at the test socket, also with minimum lead
lengths. Input signals should have rise and fall times of 2.5 ns , and signal swing of 0 V to $+3.0 \mathrm{~V}, 1.0 \mathrm{MHz}$ square wave is recommended for most propagation delay tests. The repetition rate must necessarily be increased for testing $\mathrm{f}_{\text {MAX }}$. Two pulse generators are usually required for testing such parameters as setup time, hold time, recovery time, etc.

Data Sheet Specification Guide

DC SYMBOLS AND DEFINITIONS

Voltages - All voltages are referenced to ground. Negative-voltage limits are specified as absolute values (i.e., -10 V is greater than -1.0 V).
$\mathrm{V}_{\mathrm{CC}} \quad$ Supply voltage: The range of power supply voltage over which the device is guaranteed to operate within the specified limits.
$V_{\text {IKMax }}$ Input clamp diode voltage: The most negative voltage at an input when the specified current is forced out of that input terminal. This parameter guarantees the integrity of the input diode intended to clamp negative ringing at the input terminal.
$\mathrm{V}_{I H} \quad$ Input High voltage: The range of input voltages recognized by the device as a logic High
$\mathrm{V}_{1 \mathrm{HMin}} \quad$ Minimum input High voltage: This value is the guaranteed input High threshold for the device. The minimum allowed input High in a logic system.
$\mathrm{V}_{\mathrm{IL}} \quad$ Input Low voltage: The range of input voltages recognized by the device as a logic Low.
$V_{\text {ILMax }} \quad$ Maximum input Low voltage: This value is the guaranteed input Low threshold for the device. The maximum allowed input Low in a logic system.
$\mathrm{V}_{\mathrm{M}} \quad$ Measurement voltage: The reference voltage level on AC waveforms for determining $A C$ performance. Usually specified as 1.5 V for the FAST family.
$V_{\text {OHMin }}$ Output High voltage: The minimum guaranteed High voltage at an output terminal for the specified output current I_{OH} and at the minimum V_{CC} value.
Volmax Output Low voltage: The maximum guaranteed Low voltage at an output terminal sinking the specified load current lol.
$\mathrm{V}_{\mathrm{T}+} \quad$ Positive-going threshold voltage: The input voltage of a variable threshold device which causes operation according to specification as the input transition rises from below $\mathrm{V}_{\mathrm{T}_{-}}$(Min).
$\mathrm{V}_{\mathrm{T}-} \quad$ Negative-going threshold voltage: The input voltage of a variable threshold device which causes op-
eration according to specificatıon as the input transition falls from above $\mathrm{V}_{\mathrm{T}+}$ (Max).
Currents - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specified as absolute values.
ICC Supply current: The current flowing into the $V_{C C}$ supply terminal of the circuit with specified input conditions and open outputs. Input conditions are chosen to guarantee worst-case operation unless specified.
II Input leakage current: The current flowing into an input when the maximum allowed voltage is applied to the input. This parameter guarantees the minimum breakdown voltage for the input.
$I_{\mathrm{IH}} \quad$ Input High current: The current flowing into an input when a specified High-level voltage is applied to that input.

IIL Input Low current: The current flowing out of an input when a specified Low-level voltage is applied to that input.
Io Output current: The output current that is approximately one half of the true short-circuit output current (los).
$\mathrm{I}_{\mathrm{OH}} \quad$ Output High current: The leakage current flowing into a turned off Open-Collector output with a specified High output voltage applied. For devices with a pull-up circuit, the I_{OH} is the current flowing out of an output which is in the High state.
$\mathrm{I}_{\mathrm{OH} 1}$ Output High current: The current necessary to guarantee the Low to High transition in a 30Ω transmission line on the incident wave.

IoL Output Low current: The current flowing into an output which is the Low state.

IOL1 Output Low current: The current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.
los Output short-circuit current: The current flowing out of an output which is in the High state when that output is short circuit to ground.
lozH Output off current High: The current flowing into a disabled 3 -State
output with a specified High output voltage applied.
lozl Output off current Low: The current flowing out of a disabled 3State output with a specified Low output voltage applied.

AC SYMBOLS AND DEFINITIONS

$f_{\text {MAX }}$ Maximum clock frequency: The maximum input frequency at a Clock input for predictable performance. Above this frequency the device may cease to function.
tpLH Propagation delay time: The time between the specified reference points on the input and output waveforms with the output changing from the defined Low level to the defined High level.
$t_{\text {PHL }} \quad$ Propagation delay time: The time between the specified reference points on the input and output waveforms with the output changing from the defined High level to the defined Low level.
$t_{\text {PHZ }}$ Output disable time from High level of a 3-State output: The delay time between the specified reference points on the input and output voltage waveforms with the 3 -State output changing from the High level to a high-impedance "OFF" state.
tpLz Output disable time from Low level of a 3-State output: The delay time between the specified reference points on the input and output voltage waveforms with the 3 -State output changing from the Low level to a high-impedance "OFF" state.
$t_{\text {PZH }}$ Output enable time to a High level of a 3-State output: The delay time between the specified reference points on the input and output voltage waveforms with the 3 -State output changing from a high-impedance "OFF" state to High level.
$t_{\text {pZL }} \quad$ Output enable time to a Low level of a 3-State output: The delay time between the specified reference points on the input and output voltage waveforms with the 3 -State output changing from a high-impedance "OFF" state to Low level.

Data Sheet Specification Guide

Hold time: The interval immediately following the active transition of the timing pulse (usually the Clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its contınued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
t_{s}

Setup time: The interval immediately preceding the active transition of the timing pulse (usually the Clock pulse) or preceding the tran-
sition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the tıming pulse and still be recognized.
$t_{W} \quad$ Pulse width: The time between the specified reference points on the leading and trailing edges of a pulse.
$t_{\text {REC }}$
Recovery time: The time between the reference point on the trailing edge of an asynchronous input control pulse and the reference
point on the actıvating edge of a synchronous (Clock) pulse input such that the device will respond to the synchronous input.
$t_{\text {TLH }}$ Transition time, Low-to-High: The time between two specified reference points on a waveform, normally 10% and 90% points, that is changing from Low to High.
$t_{\text {THL }} \quad$ Transition time, High-to-Low: The time between two specified reference points on a waveform, normally 90% and 10% points, that is changing from High to Low.
$t_{r}, t_{f} \quad$ Clock input rise and fall times: 10% to 90% value.

FAST Products

INTRODUCTION

The properties of high-speed FAST logic circuits dictate that care be taken in the design and layout of a system.

Some general design considerations are included in this section. This is not intended to be a thorough guideline for designing FAST systems, but a reference for some of the constraints and technıques to be considered when designing a high-speed system.

HANDLING PRECAUTIONS

As described in the Circuit Characteristics section, FAST devices are susceptible to damage from electrostatic discharge (ESD).

- Signetics FAST devices are shipped in conducting foam or anti-static tubes and foil-lined boxes to minimize ESD during shipment and unloading.
- Before opening the shipment of FAST devices, make sure that the individual is grounded and all handling means (such as tools, fixtures, and benches) are grounded.
- After removal from the shipping material, the leads of the FAST devices should always be grounded. In other words, FAST devices should be placed leads-down on a grounded surface, since ungrounded leads will attract static charge.
- Do not insert or remove devices in sockets with power applied. Ensure that power supply transients, such as occur during power turn on-off, do not exceed absolute maximum ratings.
- After assembly on PC boards, ensure that ESD is minimized during handling, storage or maintenance.
- FAST inputs should never be left floatıng on a PC board. This precaution applies to any TTL family. As a temporary measure, a resistor with a resistance greater than $10 \mathrm{k} \Omega$ should be soldered on the open input. The resistor will limit accidental damage if the PC board is removed and brought into contact with static-generating materials.

INPUT CLAMPING

FAST circuits are provided with clamp diodes on the device inputs to minimize negative ringing effects. These diodes should not be used to clamp negative DC voltages or longduratıon, negative pulses. Certain FAST part
types with the NPN base input structure also provide clamping of positive overshoots.

UNUSED INPUTS

Proper digital design rules dictate that all unused inputs on TTL devices be tied either High or Low. This is especially important with FAST logic.

Electrically-open inputs can degrade AC noise immunity as well as the switching speed of the device. Small geometries make FAST more susceptible to damage by electrostatic discharge than other TTL families. Tying inputs to V_{CC} or GND, directly or through a resistor, protects the device from in-circuit electrostatic damage. Additionally, while most unconnected TTL inputs float High, FAST devices with NPN inputs float Low.
FAST devices do not require an input resistor to tie the input High. Inputs can be connected directly to V_{CC} as well as ground.

Possible ways of handling unused inputs are:

1. Unused active-High NAND or AND inputs to V_{CC}. The inputs should be maintained at a voltage greater than 2.7 V , but should not exceed the absolute maximum rating.
2. Connect unused active-High NOR or OR inputs to ground.
3. Tie unused active-High NAND or AND inputs to a used input of the same gate, provided that the High-level fanout of the driving circuit is not impaired.
4. Connect the unused active-High NAND or AND inputs to the output of an unused gate that is forced High.

MIXING FAST WITH OTHER TTL FAMILIES

Mixing the slower TTL families such as 74 and 74LS with the higher speed families such as 74 F is possible but must be done with caution. Each family of TTL devices has unique input and output characteristics optimized to achieve the desired speed or power features.
The unique speed/power characteristics of the FAST devices are achieved partially by the internal fast rise and fall times, as well as those at input and output nodes. These fast transitions can cause noise of various types in a system. Power and ground line noise are generated by the faster transitions of the current in the output load capacitance. Signal
line noise can also be generated by the fast output transitions.

The noise generated by 74F devices can be minimized in systems designed with shorter signal lines, good ground planes, well-bypassed power distribution networks, layouts that minimize adjacent signal lines that run parallel, and improved impedance matching in signal lines to reduce transmission linetype reflections.

INPUT LOADING AND OUTPUT DRIVE COMPARISON

The logic levels of all TTL products are fully compatible with each other. However, the input loading and output drive characteristics of each family are different and must be taken into consideration when mixing them in a system. Table 1 shows the relative drive capabilities of each family for commercial temperature and voltage ranges.

INPUT-OUTPUT LOADING AND FAN-OUT TABLE

For convenience in system design, the inputoutput loading and fan-out characteristics of each circuit are specified in terms of unit loads and actual load value. One FAST Unit Load (U.L.) in the High state is defined as $20 \mu \mathrm{~A}$; thus both the input High leakage current, $I_{\mathbb{H}}$, and output High current-sourcing capability, I_{OH}, are normalized to $20 \mu \mathrm{~A}$.
Similarly, one FAST Unit Load (U.L.) in the Low state is defined as 0.6 mA and both the input Low current, I_{L}, and input Low current/ TL, and the output Low current-sinking capability, I_{OL}, are normalized to 0.6 mA .

For added convenience, the actual load value in amperes is listed in the column adjacent to U.L.

On some FAST devices, high-impedance NPN base input structure has been utilized.

With this structure, the Low level input current, I_{L}, has been reduced to $20 \mu \mathrm{~A}$. This characteristic is 30 times lower than the requirement of devices using the conventional input structure. This feature improves fanout in the Low state and can help reduce part count in system design by eliminating buffers in some applications.

Design Considerations

Table 1. Loading Comparisons

DRIVEN DEVICE FAMILY		74F	74F (NPN)	74LS	74	74S	8200/9300	82S00
Driving Device Family	IOL (Min)	$I_{\text {IL }}$ (Max)						
		0.6 mA	$20 \mu \mathrm{~A}$	0.4 mA	1.6 mA	2.0 mA	1.6 mA	0.4 mA
74F	20 mA	Maximum Number of Loads Driven						
		33	1,000	50	12.5	10	12	50
74F (NPN)	64 mA	106	3,200	160	40	32	40	160
74LS	8 mA	13	400	20	5	4	5	20
74LS Buffer	24 mA	40	1,200	60	15	12	15	60
74	16 mA	26	800	40	10	8	10	40
74 Buffer	40 mA	78	2,400	120	30	24	30	120
74S	20 mA	33	1,000	50	12.5	10	12	50
74 S Buffer	60 mA	100	3,000	150	37.5	30	37	150
8200/9300	16 mA	26	800	40	10	8	10	40
82S00	20 mA	33	1,000	50	12	10	12	50

CLOCK PULSE REQUIREMENTS

All FAST Clock inputs are buffered to increase their tolerance of slow positive-clock edges and heavy ground noise. Nevertheless, the rise time on positive-edge-triggered devices should be less than the nominal clock-to-output delay time measured between 0.8 V to 2.0 V levels of the clock driver for added safety margin against heavy ground noise. Not only a fast rising, clean Clock pulse is required, but the path between the clock drive and clock input of the device should be wellshielded from electromagnetic noise.

FAST OUTPUTS TIED TOGETHER

The only FAST outputs that are designed to be tied together are Open-Collector and 3State outputs. Standard FAST outputs should not be tied together unless their logic levels will always be the same; either all High or all Low. When connecting Open-Collector or 3State outputs together, some general guidelines must be observed.

Open-Collector Outputs

These devices must be used whenever two or more OR-tied outputs will be at opposite logic levels at the same time. These devices must have a pull-up resistor (or resistors) added between the OR-tie connector and $V_{\text {CC }}$ to establish an active-High level. Only special high-voltage buffers can be tied to a higher voltage than $V_{C C}$. The minimum and maximum size of the pull-up resistor is determıned as follows:
$R(\operatorname{Min})=\frac{V_{C C}(\operatorname{Max})-V_{O L}}{I_{O L}-N_{2}\left(I_{L L}\right)}$

$$
\begin{aligned}
& R(\mathrm{Max})=\frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{~N}_{1}\left(I_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(I_{\mathrm{IH}}\right)} \\
& \text { where: } \mathrm{I}_{\mathrm{OL}} \quad \begin{array}{l}
\text { Mınımum IOL guarantee } \\
\\
\text { or OR-tied elements. }
\end{array} \\
& \mathrm{N}_{2}\left(I_{\mathrm{IL}}\right)= \begin{array}{l}
\text { Cumulative maximum in- } \\
\text { put Low current for all } \\
\text { inputs tied to OR-tie }
\end{array} \\
& \text { connection. }
\end{aligned}
$$

If a resistor divider network is used to provide the High level, the R (Max) must be decreased enough to provide the required [$\left(\mathrm{V}_{\mathrm{OH}} / \mathrm{R}\right.$ (pull-down)] current.

3-State Outputs

3-State outputs are designed to be tied together, but are not designed to be active simultaneously. In order to minimize noise and protect the outputs from excessive power dissipation, only one 3-State output should be active at any time. This generally requires that the output enable signals be non-overlapping. When TTL decoders are used to enable 3State outputs, the decoder should be disabled while the address is being changed. Since all TTL decoder outputs are subject to decodıng spıkes, non-overlapping signals cannot normally guarantee when the address is changing.

Since most 3-State output enable signals are actıve-Low, shift registers or edge-triggered storage registers provide good output enable
buffers. Shift registers with one circulating Low bit, such as the 'F164 or 'F194, are ideal for sequential enable signals. The 'F174 or 'F273 can be used to buffer enable signals from TTL decoders or microcode (ROM) devices. Since the outputs of these registers will change from Low-to-High faster than from High-to-Low, the selection of one device at a tıme is assured.

GND

Good system design starts with a well thought out ground layout. Try to use ground plane if possible. This will save headaches later on. If ground strip is used, try to reduce ground path in order to minimize ground inductance. This prevents crosstalk problems. Quite often, jumper wire is used for connecting to ground at the breadboarding stage, but a solid ground must be used even at the breadboarding stage.

V cc

Typical dynamic impedance of un-bypassed $V_{C C}$ runs from 50Ω to 100Ω, depending on $V_{C C}$ and GND configuration. This is why a sudden current demand, due to an IC output switching, can cause momentary reduction in $V_{C C}$ unless a bypass (decoupling) capacitor is located near $V_{C C}$.

Not only is there a sudden current demand due to output switching transient, there is also a heavy current demand by the buffer driver. Assuming the buffer output sees a 50Ω dynamic load and the buffer Low-to-High transition is 2.5 V , the current demand is 50 mA per buffer. If it is an octal buffer, the

Design Considerations

current demand could be 0.4 mA per package in 3ns time!

The next step is to figure out the capacitance requirement for each bypass capacitor. Using the previously-mentioned octal buffer and assuming the V_{CC} droop is 0.1 V , then C is:

$$
\begin{aligned}
C & =\frac{0.4 \mathrm{~A} \times 3 \times 10^{-9} \mathrm{sec}}{0.1 \mathrm{~V}}=12 \times 10 \mathrm{~F}^{-9} \\
& =0.012 \mu \mathrm{~F}
\end{aligned}
$$

This formula is derived as follows:

$$
c Q=C V
$$

by differentiation:
$\frac{\Delta Q}{\Delta t}=C \frac{\Delta V}{\Delta t}$
Since $\frac{\Delta Q}{\Delta t}=1$
the equation becomes $I=C \frac{\Delta t}{\Delta t}$
hence, $C=\frac{I \Delta t}{\Delta V}$
Select the C bypass $\geqslant 0.02 \mu \mathrm{~F}$ and try to use a high-quality RF capacitor. Place one bypass capacitor for each buffer and one bypass capacitor every two other types of IC packages. Make sure that the leads are cut as short as possible.

In addition, place bypass capacitors on a board to take care of board-level current transients.

CROSS-TALK

The best way to handle cross-talk is to prevent it from occurring in the first place; quick-fixes are troublesome and costly. To prevent cross-talk, maximize spacing between signal lines and minimize spacing between signal lines and ground lines. Preferably, place ground lines between signal lines. For added precaution, add a ground trace
alongside either the potential cross-talker or the cross-listener.

For backplane or wire-wrap, use twisted pair for sensitive functions such as clocks, asynchronous set or reset, or asynchronous parallel load. In flat cable, make every other conductor ground.
For multilayer P.C. boards, run signal lines in adjacent planes perpendicular to prevent magnetic coupling, and limit capacitive coupling. Use power shield (VCc or ground plane) in between signal planes.

Since any voltage change, noise or otherwise, arriving at the unterminated end of transmission lines double in amplitude, even a partially terminated line reduces the amplitude of the signal (noise or otherwise) appearing at the end of the line; therefore, using a terminating resistor whose value is equal to the line characteristics impedance will help reduce cross-talk.

Signetics
 FAST Products

FAST Products

Effective January 1, 1985, this section has been superseded by the 1985 Military Products Data Manual. Information regarding this manual can be obtained from the Military Division in Sacramento. (916) 925-6700.

MILITARY STANDARD
 PRODUCTS

The Signetics Military product line offering includes JAN Qualified Class S and B, and Class B vendor standard products. These products are designed to offer our customers the optimum of quality, reliability, delivery and cost. The benefits of these products provide our customers:

- Industry-wide standardization.
- Fewer custom specifications.
- Cost savings associated with larger lots.
- Better lead times by reducing specification negotiation time and allowing off-the-shelf procurement.
- Industry standard marking.

JAN QUALIFIED PRODUCT

JAN Qualified products are offered to give our customers the highest quality and reliability. The JAN processing levels (Class S and B) are a result of the Governments product standardization programs, and our JAN production lines are certified by the qualifying activity, the Defense Electronics Supply Center (DESC). Signetics strongly recommends the use of JAN products, which are listed on the MIL-M-38510 Qualified Products List (QPL).
JAN qualified products are fabricated, assembled, tested, and inspected in U.S. Government certified facilities in Sunnyvale, California (wafer fab); Orem, Utah (wafer fab, assembly); and in Sacramento, California (burnin, test, quality conformance inspection).

Testing and inspection to MIL-M-38510 is monitored by resident Government Source Inspection (GSI) personnel representing the Defense Contract Administration Services (DCAS).
DESC prohibits any customer imposed additions, deviations, omissions, or waivers on procurement of JAN products. Products must conform completely to Government specifications prior to shipment and are verified by Signetics Quality Control. A Certificate of

Conformance and Procurement Traceability is supplied with each lot shipped.
JAN Qualified products are listed in QPL38510, issued periodically by DESC. For current QPL information, customers may contact their local sales representative, Military Marketing in Sacramento, or directly with DESCEQM at (513) 296-6355. The JAN products listed herein should be considered valid only on its date of publication.
These categories of product conform to Quality Levels A and B of MIL-HDBK-217 ($\pi_{\mathrm{Q}}=0.5$ Class S, 1.0 for Class B).
The example at the bottom of this page illustrates the part numbering system for JAN products, the part number is per MIL-M38510.

SIGNETICS CLASS B STANDARD PRODUCT (RB)

Signetics Class B Standard product is offered for use when no JAN product is qualified on the QPL, DESC Drawing product is not available, or when program requirements allow the use of vendor standard product.
Class B standard product conforms to MIL-STD-883, general provisions Paragraph 1.2.1 (and its sub-paragraphs), except where noted. (See Product Noncompliance Section of Military Data Book and/or Hand Book). No other claims, expressed or implied, are made of equivalence to JAN product or to MIL-M38510. Signetics compliant product also conforms with JEDEC Publication 101, except for marking content.

Electrical test requirements are as stated in the most current Signetics Military Data Manual only.

- 100% final electrical tests include all Data Manual parameter limits, test conditions, and temperatures applicable to Subgroups 1, 2, 3, 7, and 9 of MIL-STD-883, Method 5004 for digital products, or to Subgroups 1, 2, 3, 4, and 9 for Linear Products.
- Group A sample electrical inspection tests include all final electrical subgroups as well as all other Data Manual parameters with specified minimum or maximum limits.
- End point electrical tests used for QCI inspection sampling (Groups C and D) are those Data Manual parameter limits, test conditions, and temperatures applicable to Group A Subgroups 1, 2, and 3 per MIL-STD-883, Method 5005, or to Subgroup 1 for Linear Products.
Data Manual parameters which have no specified minımum or maximum limits (typical performance only) are not tested. Parameters which have limits specified at $25^{\circ} \mathrm{C}$ only, are tested only at that temperature. Detailed parameter assignment to subgroups and other test detail are contained in documented Signetics internal Product Electrical specifications, and are available upon request. Actual test program symbolics are avalable for customer review at the factory, but are considered proprietary and will not be copied or otherwise distributed outside of Signetics.
QCI Groups A and B testing are performed on all products and packages per MIL-M-38510

Military Information

and MIL-STD-883, Method 5005. Signetics utilizes inline Group A and alternate Group B for all lines. QCI Groups C and D are routınely performed on all compliant families and package types.

Waivers, deviations, or exceptions of any kind deemed necessary in the course of the contracts must be issued in accordance with DOD-STD-480. Should Signetics have knowledge of the need for waivers at the time of response to quote (RFQ) or order entry, that information will be transmitted prior to order entry.

Package types which do not have case outlines letters assigned in MIL-M-38510, Appendix C, will be assigned case outline letters per JEDEC Publication 101.

The Signetics standard Product Assurance Plan documentation is available for customer review at the factory, and is considered proprietary.

This category of product conforms to quality level B-2 of MIL-HDBK-217 ($\pi_{Q}=6.5$).

For Class B Standard Product, the part number is listed as follows:

Section 6 74 Series Data Sheets

Signetics

FAST 74FOO

Gate

Quad Two-Input NAND Gate

Product Specification

FAST Products

FUNCTION TABLE

INPUT		OUTPUT
A	B	$\overline{\mathbf{Y}}$
L	L	H
L	H	H
H	L	H
H	H	L

H = High voltage level $L=$ Low voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 00	3.4 ns	4.4 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V c c}_{\mathbf{c c}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74FOON
14-Pin Plastic SO	N74FO0D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Gate

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.

 Unless otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $V_{\text {CC }}$ | Supply voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\text {IN }}$ | Input voltage | -0.5 to +7.0 | V |
| I_{N} | Input current | -30 to +5 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in High output state | -0.5 to $+\mathrm{V}_{\text {CC }}$ | V |
| $\mathrm{l}_{\mathrm{OUT}}$ | Current applied to output in Low output state | 40 | mA |
| $\mathrm{~T}_{\text {A }}$ | Operating free-air temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \quad I_{O L}=M A X \\ & V_{\mathrm{HH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
VIK	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
I_{CC}	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		1.9	2.8	mA		
		$\mathrm{I}_{\text {ccl }}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		6.8	10.2	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	2.4 2.0	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value
$C_{L}=$ Load capacitance includes lig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	$\overline{\mathbf{Y}}$
L	L	H
L	H	L
H	L	L
H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 02	3.4 ns	4.4 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{}{ }^{\circ} \mathbf{C}$
14-Pin Plastic DIP	N74F02N
14-Pin Plastic SO	N74F02D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
\bar{Y}	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$V_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	Parameten	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{LL}}=M A X, I_{O H}=\operatorname{MAX} \\ & V_{I H}=\text { MIN, } \end{aligned}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=\operatorname{MAX} \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% V_{c c}$		0.35	0.50	V		
			$\pm 5 \% V_{c c}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$V_{C C}=$ MAX, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 H}$	High-level input current		$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=$ MAX			3.0	5.6	mA		
		ICCL				7.0	13	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs open.

Gate

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F02					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.3 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Puise Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t TLH 2	t THL
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

INPUT	OUTPUT
A	$\overline{\mathbf{Y}}$
L	\mathbf{H}
H	L

$H=$ High voltage level
$L=$ Low voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 04$	3.5 ns	6.9 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F04N
14-Pin Plastic SO	N74F04D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A	Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O H}=M A X \\ & V_{H H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{H}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	v		
			$\pm 5 \% V_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{\text {IK }}$			-0.73	-1.2	V	
$!$	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		2.8	4.2	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		10.2	15.3	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F04					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
tpLH tpHL	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	3.7 3.2	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	2.4 1.5	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns

AC WAVEFORM

wfoeorics
NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FAST 74F08 Gate

Quad Two-Input AND Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{F08}$	4.1 ns	7.1 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F08N
14-Pin Plastic SO	N74F08D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
Vor	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=\text { MAX } \\ & V_{\mathrm{HH}}=\text { MIN }, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 / \mathrm{K}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		5.5	8.3	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		8.6	12.9	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F08					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay A, B to Y	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.3 \end{aligned}$	3.0 2.5	6.6 6.3	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FAST 74F10, 74F11
Gates
Triple Three-Input NAND ('F10), AND ('F11) Gates Product Specification

FUNCTION TABLE

INPUTS			OUTPUTS	
A	B	C	$\overline{\mathrm{Y}}$ ('F10)	Y('F11)
L	L	L	H	L
L	L	H	H	L
L	H	L	H	L
L	H	H	H	L
H	L	L	H	L
H	L	H	H	L
H	H	L	H	L
H	H	H	L	H

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 10	3.5 ns	3.3 mA
74 F 11	4.2 ns	5.3 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F10N, N74F11N
14-Pin Plastic SO	N74F10D, N74F11D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A-C	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}, \overline{\mathrm{Y}}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
І OH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		74F10, 11			UNIT		
				Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
				$\pm 5 \% \mathrm{Vcc}$	2.7		3.4		V		
Vol	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{HH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V			
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \mathrm{l}_{\mathrm{I}}=I_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage			$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / H}$	High-level input current			$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current			$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$			$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	'F10	ICCH	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		1.8	2.1	mA		
			$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		6.0	7.7	mA		
		'F11	ICCH		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		4.7	6.2	mA		
			$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		7.2	9.7	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F10, 11					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A, B, C to \bar{Y}	Waveform 1 'F10	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	2.4 1.5	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B, C to Y	Waveform 2 'F11	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.5 \end{aligned}$	3.0 2.5	$\begin{aligned} & 6.6 \\ & 6.5 \end{aligned}$	ns

AC WAVEFORMS

*

'F10
Waveform 1. For Inverting Outputs

A, B, C

'F11
Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F13
Schmitt Trigger
Dual 4-Input NAND Schmitt Trigger Product Specification

FAST Products

DESCRIPTION

The F13 contains two 4-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates.

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	$\overline{\mathbf{Y}}$
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 13	7.8 ns	5.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
14-Pin Plastic DIP	N74F13N
14-Pin Plastic SO	N74F13D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{Y}	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
1 One (10) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LS03441S

LOGIC SYMBOL (IEEE/IEC)

Each circuit contains a 4-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold
voltages for positive and negative-going transitions. This hysteresis between the positivegoing and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as
three inputs remain at a more positive voltage than $V_{T}+m A x$, the gate will respond in the transitions of the other input as shown in Waveform 1.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voitage	4.5	5.0	5.5	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F13			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold				$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.5	1.7	2.0	V
$V_{\text {T- }}$	Negative-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.7	0.9	1.1	V		
$\Delta \mathrm{V}_{\text {T }}$	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}_{-}}$)		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.4	0.8		V		
V_{OH}	High-level output voltage		$\begin{aligned} & \mathrm{V}_{C C}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{T-M I N}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V			
VoL	Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{1}=V_{T}+\mathrm{MAX}, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$. 35	. 50	V	
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$. 35	. 50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
$\mathrm{I}_{\text {T }+}$	Input current at positive-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\text {T+ }}$			0		$\mu \mathrm{A}$		
I_{T}	Input current at negative-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}-}$			-350		$\mu \mathrm{A}$		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$\mathrm{V}_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		4.5	8.5	mA		
		ICCL		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		7.0	10.0	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74 F 13					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay A, B, C, D to \bar{Y}	Waveform 1	$\begin{aligned} & 4.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 11.0 \end{gathered}$	$\begin{gathered} \hline 7.0 \\ 13.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 13.5 \end{gathered}$	ns

AC WAVEFORM

A, B, C, D

NOTE: For all wavetorms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circult for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REOUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	tTLH $^{\text {t }}$ THL	
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST 74F14
Schmitt Trigger
Hex Inverter Schmitt Trigger
Product Specification

FAST Products

DESCRIPTION

The 'F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and ne-gative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

FUNCTION TABLE

INPUT	OUTPUT
A	\bar{Y}
0	1
1	0

PIN CONFIGURATION

February 2, 1987

ORDERING INFORMATION

NOTE:

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 14	5.0 ns	18 mA

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F14N
14-Pin Plastic SO	N74F14D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A	Input	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
\bar{Y}	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

6-22
853-0331 87420

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$V_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	Parameter	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	\checkmark
lik^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	Parameter		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold				$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$		1.4	1.7	2.0	V
V_{T-}	Negative-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.7	0.9	1.1	V		
$\Delta \mathrm{V}_{\mathrm{T}}$	Hysteresis ($\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{T-} \text {) }}$		$V_{C C}=5.0 \mathrm{~V}$		0.4	0.8		V		
V_{OH}	High-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{1}=V_{T-M I N}, I_{O H}=\operatorname{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V			
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{1}=V_{T}+M A X, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V	
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$			0.35	0.50	V		
V_{IK}	Input clamp voltage		$V_{C C}=$ MIN, $I_{1}=l_{\text {IK }}$			-0.73	-1.2	V		
I_{T+}	Input current at positive-going threshold		$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			0.0		$\mu \mathrm{A}$		
I_{T}	Input current at negative-going threshold		$V_{C C}=5.0 \mathrm{~V}, V_{1}=V_{T-}$			175		$\mu \mathrm{A}$		
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IH}_{\mathbf{H}}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	$\mathrm{V}_{1 \times}=\mathrm{GND}$		13	22	mA		
		ICCL		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		23	32	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

SYMBOL	PARAMETER	TEST CONDITIONS	74F14					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphl	Propagation delay A to \bar{Y}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	6.5 5.0	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	4.0 3.5	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST 74F20

Gate

Dual Four-Input NAND Gate Product Specification

FAST Products

FUNCTION TABLE

InPUTS				OUTPUT	
A	B	C	D	\bar{Y}	
L	X	X	X	H	
X	L	X	X	H	
X	X	L	X	H	
X	X	X	L	H	
H	H	H	H	L	

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 20	3.5 ns	2.2 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{~}} \mathbf{5 V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F20N
14-Pin Plastic SO	N74F20D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l O	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O H}=\operatorname{MAX} \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		v		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I O L=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	v		
			$\pm 5 \% V_{c c}$		0.35	0.50	v			
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IH_{H}	High-level input current		$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 1$	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	${ }^{\text {c CCH }}$	$V_{C C}=$ MAX	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		0.9	1.4	mA		
		ICCL		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		3.4	5.1	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Gate

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F20					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ ${ }^{\text {tphL }}$	Propagation delay A, B, C, D to \bar{Y}	Waveform 1	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	3.7 3.2	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	2.4 2.0	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns

AC WAVEFORM

A, B, C, D

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes if and probe capacitance;
see AC CHARACTERISTICS for value. $R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t TLH	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F27

Gate

Triple Three-Input NOR Gate
Product Specification

FAST Products

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	Y
L	L	L	H
X	X	H	L
X	H	X	L
H	X	X	L

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 27	3.0 ns	6.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F27N
14-Pin Plastic SO	N74F27D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}, \mathrm{B}, \mathrm{C}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data output	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

February 2, 1987

LOGIC SYMBOL

6-28

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
OUT	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
lOH	High-level output current			-1	mA
lOL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathrm{H}}=\text { MIN }, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		v		
VoL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{VCc}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		4.0	5.5	mA		
		l CCL		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		8.5	12.0	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74 F 27					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B, C to \bar{Y}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	1.5 1.0	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	ns

AC WAVEFORM

A, B, C

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FUNCTION TABLE

INPUTS							OUTPUT	
A	B	C	D	E	F	G	H	Y
L	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	H
X	X	L	X	X	X	X	X	H
X	X	X	L	X	X	X	X	H
X	X	X	X	L	X	X	X	H
X	X	X	X	X	L	X	X	H
X	X	X	X	X	X	L	X	H
X	X	X	X	X	X	X	L	H
H	H	H	H	H	H	H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

FAST 74F30
Gate
Eight-Input NAND Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 30	3.2 ns	1.7 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{v}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{0}^{\circ} \mathbf{C}$
14-Pın Plastic DIP	N74F30N
14-Pın Plastic SO	N74F30D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}-\mathrm{H}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
1 One (10) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 06 mA in the Low state

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lOL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=\mathrm{MAX} \\ & V_{\mathrm{HH}}=\text { MIN }, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{IH}}=M I N, \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		0.6	1.5	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		2.8	4.0	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F30					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLL }}$ $t_{\text {phL }}$	Propagation delay A, B, C, D, E, F, G, H to \bar{Y}	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

wF06450S
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t THL
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	L
L	H	H
H	L	H
H	H	H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 32	4.1 ns	8.2 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
14-Pin Plastic DIP	N74F32N
14-Pin Plastic SO	N74F32D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load (U.L.) is defined as: $20 \mu \mathrm{~A}$ in the High state and 06 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		v		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 /}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				0.60	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		6.1	9.2	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		10.3	15.5	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Gate

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74 F 32					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay A, B to Y	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.3 \end{aligned}$	3.0 3.0	$\begin{aligned} & 6.6 \\ & 6.3 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Non-Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$

WFO6450S
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	$\overline{\mathbf{Y}}$
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X $=$ Don't care

FAST 74F37
Buffer
Quad Two-Input NAND Buffer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 37	3.5 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}} \mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F37N
14-Pin Plastic SO	N74F37D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data output	$750 / 106.6$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

Buffer

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
lik	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathbb{H}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$V_{C C}=$ MIN, $I_{1}=I_{1 K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-1.2	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}$			100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		3	6	mA			
		ICCL			$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		23	33	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F37					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	2.0 1.5	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Puise Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

INPUTS		OUTPUT
A	B	$\overline{\mathbf{Y}}$
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 38	7.0 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE (VC $5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F38N
14-Pin Plastic SO	N74F38D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$\mathrm{OC}^{*} / 106.7$	$\mathrm{OC} * / 64 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. ${ }^{*} \mathrm{OC}=$ Open-Collector.

PIN CONFIGURATION

February 2, 1987

LOGIC SYMBOL

6-40

LOGIC SYMBOL (IEEE/IEC)

853-0052 87420

Buffer

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			4.5	mV
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
IOH	High-level output current					$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{HH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
			$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.2	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$		4	7	mA			
		$\mathrm{I}_{\mathrm{CCL}}$			$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		22	30	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditons for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F38					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 5.0 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 13 \\ 5.5 \end{gathered}$	ns

NOTE:

1 When using open-collector parts, the value of the pull-up resistor greatly affects the value of the $t_{\text {PLH. }}$. For example, changing the specified pull-up resistor value from 500Ω will improve the $t_{\text {PLH }}$ up to 50% with only a slight increase in the $t_{\text {PHL }}$. However, if the value of the pull-up resistor is changed, the user must make certain that the total lol current through the resistor, plus the total IIL s of the receivers does not exceed the lol maximum specification

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Open-Collector Outputs

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS
for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F40
 Buffer

Dual Four-Input NAND Buffer Product Specification

FAST Products

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	$\overline{\mathbf{Y}}$
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	X	H
H	H	H	H	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 40	3.5 ns	6 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F40N
14-Pin Plastic SO	N74F40D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

February 2, 1987

LOGIC SYMBOL

6-43

LOGIC SYMBOL (IEEE/IEC)

853-0053 87420

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbb{I}}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-15	mA
I_{OL}	Low-level output current			64	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature				

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.0				V				
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V		
			$\mathrm{lOL}^{2}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
IH_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.2	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$		$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$		1.75	4	mA			
		$\mathrm{I}_{\mathrm{CCL}}$			$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		11	17	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F40					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A, B, C, D to \bar{Y}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	1.5 1.0	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	ns

AC WAVEFORM

A, B, C, D

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.
Waveform 1. Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {THL }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FUNCTION TABLE

For 3-Input Gates

INPUTS						OUTPUT
A	B	C	D	E	F	$\mathbf{1} \overline{\mathbf{Y}}$
H	H	H	X	X	X	L
X	X	X	H	H	H	L
All other combinations						

FUNCTION TABLE

For 2-Input Gates

INPUTS				OUTPUT
A	B	C	D	$\mathbf{2 \overline { Y }}$
H	H	X	X	L
X	X	H	H	L
All other combinations				H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

FAST 74F51
Gate
Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-Invert Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 51$	3.0 ns	3.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V$ $10 \% ; \mathbf{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F51N
14-Pin Plastic SO	N74F51D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D, E, F	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$1 \bar{Y}, 2 \bar{Y}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

February 2, 1987

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Gate

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.

 Unless otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | Supply voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\text {IN }}$ | Input voltage | -0.5 to +7.0 | V |
| $\mathrm{I}_{\text {IN }}$ | Input current | -30 to +5 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in High output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{I}_{\text {OUT }}$ | Current applied to output in Low output state | 40 | mA |
| $\mathrm{~T}_{\text {A }}$ | Operating free-air temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-1	mA
$\mathrm{lOL}^{\text {l }}$	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \quad I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.5	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.5	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		1.8	3.0	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		5.5	7.5	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F51					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PPHL }} \end{aligned}$	Propagation delay $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ to $\mathrm{n} \overline{\mathrm{Y}}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	1.5	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 64	4.0 ns	2.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F64N
14-Pin Plastic SO	N74F64D

FUNCTION TABLE

INPUTS											OUTPUT
A	B	C	D	E	F	G	H	J	K	L	$\overline{\mathbf{Y}}$
H	H	X	X	X	X	X	X	X	X	X	L
X	X	H	H	H	H	X	X	X	X	X	L
X	X	X	X	X	X	H	H	H	X	X	L
X	X	X	X	X	X	X	X	X	H	H	L
All other combinations											H

$H=H i g h$ voltage level
L= Low voltage level
$X=$ Don't care
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}-\mathrm{L}$	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
l OH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		v		
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / H}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		1.9	2.8	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		3.1	4.7	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditıons for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F64					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay $A-L$ to \bar{Y}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	4.6 3.2	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	2.5 2.0	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
$t_{T L H}, t_{T H L}$ Values should be less than or equal to the table entries.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F74

Flip-Flop

Dual D-Type Flip-Flop
 Product Specification

FAST Products

DESCRIPTION

The 'F74 is a dual-positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs, and complementary Q and \bar{Q} outputs.

Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$) are asynchronous active-Low inputs and operate independently of the Clock input. Information on the Data (D) input is transferred to the Q output on the Low-to-High transition of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. The D inputs must be stable one set-up time prior to the Low-to-High clock transition for predictable operation.

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 74$	125 MHz	11.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F74N
14-Pin Plastic SO	N74F74D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock pulse inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{R}}_{\mathrm{D} 1}, \overline{\mathrm{R}}_{\mathrm{D} 2}$	Reset inputs (active-Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\overline{\mathrm{~S}}_{\mathrm{D} 1}, \bar{S}_{\mathrm{D} 2}$	Set inputs (active-Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{Q}_{1}, \bar{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

February 2, 1987

LOGIC SYMBOL

6-52

LOGIC SYMBOL (IEEE/IEC)

853-0335 87420

LOGIC DIAGRAM

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\bar{R}_{\text {D }}$	CP	D	Q	$\overline{\mathbf{Q}}$
Asynchronous Set	L	H	X	X	H	L
Asynchronous Reset (Clear)	H	L	X	X	L	H
Undetermined ${ }^{(1)}$	L	L	x	x	H	H
Load "1" (Set)	H	H	\uparrow	h	H	L
Load "0' (Reset)	H	H	\dagger	1	L	H

$H=$ High voltage level steady state.
$\mathrm{h}=$ High voltage level one set-up time prior to the Low-to-High clock transition.
$\mathrm{L}=$ Low voltage level steady state.
I = Low voltage level one set-up time prior to the Low-to-High clock
transition.
X = Don't care.
$\dagger=$ Low-to-High clock transition.
NOTE:
(1) Both outputs will be High if both \bar{S}_{D} and $\overline{\mathrm{R}}_{\mathrm{D}}$ go Low simultaneously.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l L	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74 F74			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V OL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cC }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	D, CP inputs	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		$\overline{\mathrm{R}}_{\mathrm{D}}, \overline{\mathrm{S}}_{\mathrm{D}}$ inputs					-1.8	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$V_{C C}=$ MAX			11.5	16	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure $I_{C C}$ with the Clock inputs grounded and all outputs open, with the Q and \bar{Q} outputs High in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F74					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	125		100		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $C P$ to Q_{n}, \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 9.2 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{S D}_{n}$ or $\overline{R D}_{n}$ to Q_{n}, \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 7.1 \\ 10.5 \end{gathered}$	ns

Flip-Flop

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F74					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time High or Low, $D_{n} \text { to } C P$	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$			2.0 3.0		ns
$\begin{aligned} & \operatorname{th}_{\mathrm{n}}(H) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time High or Low, D_{n} to CP	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}} \end{aligned}$	Clock pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.0		ns
t_{w} (L)	$\overline{\mathrm{R}}_{\mathrm{D}}$ or $\overline{\mathrm{S}}_{\mathrm{D}}$ pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{trec}^{\text {c }}$	Recovery time, \bar{R}_{D} or \bar{S}_{D} to $C P$	Waveform 3	2.0			2.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jg and probe capactance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F83
 4-Bit Adder

Product Specification

FAST Products

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Functionally equivalent to 'F283 but with center power pins

DESCRIPTION

The 'F83 adds two 4-bit binary words (A_{n} plus B_{n}) plus the incoming carry. The binary sum appears on the Sum outputs ($\Sigma 1-\Sigma 4$) and the outgoing carry (COUT) according to the equation:
$C_{I N}+\left(A_{1}+B_{1}\right)+2\left(A_{2}+B_{2}\right)$
$+4\left(A_{3}+B_{3}\right)+B\left(A_{4}+B_{4}\right)$
$=\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 \mathrm{C}_{\text {OUT }}$
where $(+)=$ plus.
Due to the symmetry of the binary add function, the 'F83 can be used with either all active-High operands (positive logic) or with all active-Low operands (negative logic). See Function Table. With active-High inputs, $\mathrm{C}_{\mathbb{I N}}$ cannot be left open; it must be held Low when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{\mathbf{N}}$ can arbitrarily be assigned to pins 10, 11, 13, etc.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 83	7.0 ns	36 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastıc DIP	N74F83N
16-Pin Plastic SO	N74F83D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{4}$	A operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{4}$	B operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{C}_{\text {IN }}$	Carry input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\Sigma_{1}-\Sigma_{4}$	Sum outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{C}_{\text {OUT }}$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
$G N D=\operatorname{Pin} 8$
$\mathrm{GND}=\operatorname{Pin} 8$
()$=\operatorname{Pin}$ numbers

FUNCTION TABLE

PINS	$\mathrm{C}_{\text {IN }}$	A_{1}	\mathbf{A}_{2}	A_{3}	A_{4}	B_{1}	B_{2}	B_{3}	B_{4}	Σ_{1}	Σ_{2}	Σ_{3}	Σ_{4}	Cout	$\begin{aligned} & \text { Example: } \\ & 1001 \\ & 1010 \\ & \hline \end{aligned}$
Logic levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H	
Actıve High	0	0	1	0	1	1	0	0	1	1	1	0	0	1	10011
Active Low	1	1	0	1	0	0	1	1	0	0	0	1	1	0	$(\text { Carry }+5+6=12)$

Due to pin limitations, the intermediate carries of the 'F83 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage.

Figure 1a shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder (A_{4}, B_{4}) Low makes Σ_{4} dependent only on, and equal to, the carry from the third adder.

Using somewhat the same principle, Figure 1b shows a way of dividing the 'F83 into a 2bit and a 1-bit adder. The third stage adder (A_{3}, B_{3}, Σ_{3}) is used merely as a means of getting a carry $\left(C_{10}\right)$ signal into the fourth stage (via A_{3} and B_{3}) and bringing out the carry from the second stage on Σ_{3}. Note that as long as A_{3} and B_{3} are the same, whether High or Low, they do not influence Σ_{3}. Similarly, when A_{3} and B_{3} are the same, the
carry into the third stage does not influence the carry out of the third stage. Figure 1c shows a method of implementing a 5 -input encoder where the inputs are equally weighted. The outputs Σ_{1}, Σ_{2}, and Σ_{3} present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure 1d shows one method of implementing a 5 -input majority gate. When three or more of the inputs $I_{1}-I_{5}$ are true, the output M_{5} is true.

4-Bit Adder

ABSOLUTE MAXIMUM RATINGS (Operating beyond the limits set forth in this table may impair th useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	V
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% V_{\text {CC }}$	2.5			V
			$\pm 5 \% V_{C C}$	2.7		3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{A}_{1}-\mathrm{A}_{4}, \mathrm{~B}_{1}-\mathrm{B}_{4}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		$\mathrm{C}_{\text {IN }}$					-0.6	mA		
los	Short-circuit output current ${ }^{3}$				-60		-150	mA		
Icc	Supply current		$\mathrm{V}_{C C}=\mathrm{MAX}$			36	55	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimıze internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

4-Bit Adder

FAST 74F83

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay C_{IN} to $\Sigma_{\text {I }}$	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay A_{1} or B_{i} to Σ_{1}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\mathrm{C}_{\text {IN }}$ to $\mathrm{C}_{\text {OUT }}$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{1} or B_{1} to Cout	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	3.0 2.5	8.5 8.0	ns

AC WAVEFORMS

Waveform 1. Propagation Delay Operands and Carry Inputs to Outputs

Waveform 2. Propagation Delay Operands and Carry Inputs to Outputs

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F85
 Comparator

4-Bit Magnitude Comparator Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Magnitude comparison of any binary words
- Serial or parallel expansion without extra gating

DESCRIPTION

The 'F85 is a 4-bit magnitude comparator that can be expanded to almost any length. It compares two 4-bit binary, $B C D$, or other monotonic codes and presents the three possible magnitude results at the outputs. The 4-bit inputs are weighted $\left(A_{0} \rightarrow A_{3}\right)$ and $\left(B_{0} \rightarrow B_{3}\right)$, where A_{3} and B_{3} are the most significant bits.
The operation of the 'F85 is described in the Function Table, showing all possible logic conditions. The upper part of the table describes the normal operation under all conditions that will occur in a single device or in a series expansion scheme. In the upper part of the table the three outputs are mutually exclusive. In the lower part of the table, the outputs reflect the feed-forward conditions that exist in the parallel expansion scheme.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 85	7.0 ns	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F85N
16-Pin Plastic SOL	N74F85D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L$.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{3}$	Comparing Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	Comparing Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$I_{\mathrm{A}}<\mathrm{B}, \mathrm{I}_{\mathrm{A}}=\mathrm{B}$ $\mathrm{I}_{\mathrm{A}}>\mathrm{B}$	Expansion Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}$ $\mathrm{A}<\mathrm{B}$	Data Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

The expansion inputs $\mathrm{I}_{\mathrm{A}}>\mathrm{B}, \mathrm{I}_{\mathrm{A}=\mathrm{B}}$, and $\mathrm{I}_{\mathrm{A}}<\mathrm{B}$ are the least significant bit positions. When used for series expansion, the $A>B, A=B$ and $A<B$ outputs of the least significant word are connected to the corresponding $I_{A>B}, I_{A=B}$, and $I_{A<B}$ inputs of the next higher stage. Stages can be added in this manner to any length, but a propagation delay penalty of about 15 ns is added with each additional stage. For proper operation the expansion inputs of the least significant word should be tied as follows: $I_{A>B}=$ Low, $I_{A=B}=$ High, and $I_{A<B}=$ Low.

LOGIC DIAGRAM

FUNCTION TABLE

COMPARING INPUTS				EXPANSION INPUTS			OUTPUTS		
A_{3}, B_{3}	$\mathrm{A}_{2}, \mathrm{~B}_{2}$	A_{1}, B_{1}	A_{0}, B_{0}	$I_{A}>B$	$\mathrm{I}_{\mathbf{A}<\mathrm{B}}$	$\mathrm{I}_{\mathrm{A}}=\mathbf{B}$	A $>$ B	A $<$ B	A $=\mathrm{B}$
$\begin{aligned} & A_{3}>B_{3} \\ & A_{3}<B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{gathered} x \\ x \\ \mathrm{~A}_{2}>\mathrm{B}_{2} \\ \mathrm{~A}_{2}<\mathrm{B}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}>B_{1} \\ & A_{1}<B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$	$\begin{gathered} x \\ x \\ A_{0}>B_{0} \\ A_{0}<B_{0} \\ \hline \end{gathered}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$
$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$	$\begin{aligned} & A_{0}=B_{0} \\ & A_{0}=B_{0} \\ & A_{0}=B_{0} \end{aligned}$	$\begin{aligned} & H \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$
$\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$	$\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$	$\begin{aligned} & A_{0}=B_{0} \\ & A_{0}=B_{0} \\ & A_{0}=B_{0} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} H \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$

[^0]

AF02001s
Figure 1. Comparison Of Two 24-Bit Words

Table 1

WORD LENGTH	NUMBER OF PACKAGES	TYPICAL SPEEDS
$1-4$ Bits	1	12 ns
$5-25$ Bits	$2-6$	22 ns
$25-120$ Bits	$8-31$	34 ns

The parallel expansion scheme shown in Figure 1 demonstrates the most efficient general use of these comparators. In the parallel expansion scheme, the expansion inputs can be used as a fifth input bit position except on the least significant device which must be connected as in the serial scheme. The expansion inputs are used by labeling $I_{A>B}$ as an " A " input, $I_{A<B}$ as a " B " input and setting $\mathrm{I}_{\mathrm{A}=\mathrm{B}}$ Low. The 'F85 can be used as a 5 -bit comparator only when the outputs are used to drive the $\left(A_{0}-A_{3}\right)$ and ($B_{0}-B_{3}$) inputs of another ' F 85 device. The parallel technique can be expanded to any number of bits as shown in Table 1.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			+0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F85			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=\text { MAX } \\ & V_{I H}=M I N, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			v
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7	3.4				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	v					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$1 / 1$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	mA			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$			36	50	mA			
		ICCL		$\begin{aligned} & A_{n}=B_{n}=I_{A-B}=G N D, \\ & I_{A}>B=I_{A}<B=4.5 \mathrm{~V} \end{aligned}$			40	54	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invatid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F85					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A or B input to $A<B, A>B$ output	Waveform 1 3 logic levels	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	5.5 6.5	$\begin{aligned} & 13.0 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tplH}_{\mathrm{tpH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay A or B input to $A=B$ output	Waveform 1 4 logic levels	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \end{aligned}$	6.0 6.5	$\begin{aligned} & 14.0 \\ & 14.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {tPLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $I_{A<B}$ and $I_{A=B}$ input to $A>B$ output	Waveform 1 1 logic level	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	2.5 2.5	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{tplH}^{\text {tph }} \\ & \mathrm{t}_{\mathrm{PPH}} \end{aligned}$	Propagation delay $I_{A=B}$ input to $A=B$ output	Waveform 1 2 logic levels	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	2.0 2.5	$\begin{gathered} 9.0 \\ 12.0 \end{gathered}$	ns
$\begin{aligned} & t_{\text {tpL }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $I_{A>B}$ and $I_{A=B}$ input to $A<B$ output	Waveform 1 1 logic level	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	5.0 6.0	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	3.0 2.0	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns

Comparator

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST Products

FUNCTION TABLE

INPUTS		OUTPUT	
A	B	Y	
L	L	L	
L	H	H	
H	L	H	
H	H	L	

$H=$ High voltage level $\mathrm{L}=$ Low voltage level

FAST 74F86
Gate
Quad Two-Input Exclusive-OR Gate Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 86	4.3 ns	16.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
14-Pin Plastic DIP	N74F86N
14-Pin Plastic SO	N74F86D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	05.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current			-1	mA
l OL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% V_{C C}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{HH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{VCc}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{1}=l_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IH_{H}	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$	$\begin{aligned} & \mathrm{A}=\mathrm{GND} \\ & \mathrm{~B}=4.5 \mathrm{~V} \end{aligned}$		15	23	mA		
		ICCL		$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		18	28	mA		

NOTES:

1. For conditions shown as $M I N$ or $M A X$, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F86					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
tpLH tpHL	Propagation delay A or B to Y	Other input Low Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A or B to Y	Other input High Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	3.5 3.0	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Inverting Outputs
NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Signetics

FAST 74F109

Flip-Flop

Dual J- $\overline{\mathbf{K}}$ Positive Edge-Triggered Flip-Flop Product Specification

FAST Products

DESCRIPTION

The 'F109 is a dual positive edge-triggered $J \bar{K}$-type flip-flop featuring individual J, K, Clock, Set and Reset inputs, and complementary \bar{Q} outputs.
Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$) are asynchronous active-Low inputs and operate independently of the Clock input.
The J and \bar{K} are edge-triggered inputs which control the state changes of the flip-flops as described in the Function Table. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition of the positive-going pulse.
The J and \bar{K} inputs must be stable just one set-up time prior to the Low-to-High transition of the Clock for predictable operation. The $\sqrt{\mathrm{K}}$ design allows operation as a D flip-flop by tying the J and $\overline{\mathrm{K}}$ inputs together.
Although the Clock input is level sensitive, the positive transition of the Clock pulse between the 0.8 V and 2.0 V levels should be equal to or less than the Clock to output delay time for reliable operation.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\bar{R}_{\text {d }}$	CP	J	$\overline{\mathrm{K}}$	Q	$\overline{\mathbf{Q}}$
Asynchronous Set	L	H	x	X	x	H	L
Asynchronous Reset (Clear)	H	L	X	X	X	L	H
Undetermined (Note)	L	L	X	X	X	H	H
Toggle	H	H	\uparrow	h	1	व	9
Load "0" (Reset)	H	H	\uparrow	1	1	L	H
Load "1" (Set)	H	H	\uparrow	h	h	H	\underline{L}
Hold 'no change"	H	H	\dagger	1	h	q	$\overline{\mathrm{a}}$

$H=$ High voltage level steady state.
$\mathrm{L}=$ Low voltage level steady state.
$h=$ High voltage level one set-up time prior to the Low-to-High Clock transition. $\mathrm{I}=$ Low voltage level one set-up time prior to the Low-to-High Clock transition.
$X=$ Don't care.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-
to-High Clock transition.
$\uparrow=$ Low-to-High Clock transition.
NOTE:
Both outputs will be High if both \bar{S}_{D} and \bar{R}_{D} go Low simultaneously.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{IIK}_{\mathrm{K}}$	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F109			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & V_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		\checkmark		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	\checkmark			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	\checkmark	
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current	J, \bar{K}, CP inputs	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\bar{S}_{\mathrm{D}}, \overline{\mathrm{R}}_{\mathrm{D}}$ inputs					20	$\mu \mathrm{A}$		
ILL	Low-level input current	$J, \bar{K}, C P$ inputs	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				-0.6	mA		
		\bar{S}_{D}, \bar{R}_{D} inputs					-1.8	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$V_{C C}=M A X$			12.3	17	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open, Icc is measured with the Q and \bar{Q} outputs High in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F109					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	90	125		90		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $C P$ to Q_{n}, \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.2 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\bar{S}_{D n}$ or $\bar{R}_{D n}$ to Q_{n}, \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F109					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time High or Low, J or \bar{K} to CP	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low, J or \bar{K} to $C P$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{w}(\mathrm{~L}) \end{aligned}$	Clock pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.0		ns
${ }_{\text {tw }}(\mathrm{L})$	Set or Reset pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{trac}^{\text {coser }}$	Recovery time, Set or Reset to clock	Waveform 3	2.0			2.0		ns

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Data Set-up and Hold Times, Clock Pulse Width

Waveform 2. Set and Reset to Output Delays, Set and Reset Pulse Widths

Waveform 3. Recovery Time
NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORM

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

DESCRIPTION

The 'F112 is a dual J-K negative edgetriggered flip-flop featuring individual J , K , Clock, Set and Reset inputs. The Set $\left(\bar{S}_{\mathrm{D}}\right)$ and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$) inputs, when Low, set or reset the outputs as shown in the Function Table regardless of the levels at the other inputs.
A High level on the Clock ($\overline{\mathrm{CP}}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the $\overline{\mathrm{CP}}$ is High and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output state changes are initiated by the High-to-Low transition of $\overline{C P}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

note:

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{C P}_{0}, \overline{C P}_{1}$	Clock inputs (Active falling edge)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\overline{\mathrm{~S}}_{\mathrm{D} 0}, \overline{\mathrm{~S}}_{\mathrm{D} 1}$	Set inputs (active-Low)	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\overline{\mathrm{R}}_{\mathrm{D} 0}, \overline{\mathrm{R}}_{\mathrm{D} 1}$	Reset inputs (active-Low)	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{~J}_{0}, J_{1}$	J inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~K}_{0}, \mathrm{~K}_{1}$	K inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}, \overline{\mathrm{Q}}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\bar{R}_{\text {d }}$	$\overline{\mathbf{C P}}$	J	K	Q	$\overline{\mathbf{Q}}$
Asynchronous set	L	H	X	X	X	H	L
Asynchronous reset (clear)	H	L	X	X	X	L	H
Undetermined*	L	L	X	X	X	H^{*}	H^{*}
Toggle	H	H	,	h	h	$\overline{\mathrm{q}}$	9
Load "0" (reset)	H	H	\downarrow	1	h	L	H
Load "1" (set)	H	H	\downarrow	h	1	H	\underline{L}
Hold "no change"	H	H	\downarrow	1	1	q	$\overline{\mathrm{q}}$
Hold "no change"	H	H	H	X	X	Q	Q

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the High-to-Low Clock transition.
$\mathrm{L}=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the High-to-Low Clock transition.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output one setup time
prior to the High-to-Low Clock transition.
$X=$ Don't care.
$\downarrow=$ High-to-Low Clock transition.
Undetermined* $=$ Both outputs will be High while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{R}}_{\mathrm{D}}$ are Low, but the output states are unpredictable if \bar{S}_{D} and $\overline{\mathrm{R}}_{\mathrm{D}}$ go High simultaneously.
Asynchronous inputs: Low input to \bar{S}_{D} sets Q to High level Low input to \bar{R}_{D} sets Q to Low level Reset and Set are independent of clock Simultaneous Low on both \bar{S}_{D} and $\overline{\mathrm{R}}_{\mathrm{D}}$ makes both Q and \bar{Q} High.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1.0	mA
lOL	Low-level output current			20	mA
TA	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		$74 F 112$			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			v
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	v			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
					100	$\mu \mathrm{A}$				
					100	$\mu \mathrm{A}$				
$\mathrm{IIH}^{\text {H }}$	High-level input current				$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
							20	$\mu \mathrm{A}$		
							20	$\mu \mathrm{A}$		
ILL	Low-level input current	J_{n}, K_{n}			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
		$\overline{\text { CP }}$					-2.4	mA		
		$\bar{S}_{\text {Dn }}, \overline{\mathrm{R}}_{\mathrm{Dn}}$					-3.0	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$V_{C C}=$ MAX			15	21	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests in any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open, Icc is measured with the Q and \bar{Q} outputs High in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F112					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	85	100		80		MHz
$t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\overline{C P}_{n}$ to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {phL }}$	Propagation delay $S_{D n}$ or $R_{D n}$ to Q_{n}, \bar{Q}_{n}	Waveform 2, 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 112$					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low J_{n} or K_{n} to $\overline{C P}_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low J_{n} or K_{n} to $\overline{C P}_{n}$	Waveform 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	$\overline{C P}_{\mathrm{n}}$ pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			5.0 5.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\bar{S}_{\text {Dn }}$ or $\overline{\mathrm{R}}_{\mathrm{Dn}}$ pulse width Low	Waveform 2, 3	4.5			5.0		ns
trec	Recovery time $\bar{S}_{D n}$ or $\bar{R}_{D n}$ to $\overline{C P}$	Waveform 2, 3	4.0			5.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output, Data Setup Time and Hold Times, and Clock Widths

AC WAVEFORMS

Waveform 2. Propagation Delay for Set to Output, Set Pulse Width, and Recovery Time for Set to Clock

Waveform 3. Propagation Delay for Reset to Output, Reset Pulse Width, and Recovery Time for Reset to Clock

NOTE: $V_{M}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST 74F113
Flip-Flop

Dual J-K Negative Edge-Triggered Flip-Flop Without Reset Product Specification

FAST Products

DESCRIPTION

The 'F113 is a dual J-K negative edgetriggered flip-flop featuring individual J, K , Set and Clock inputs. The asynchronous Set (\bar{S}_{D}) input, when Low, forces the outputs to the steady state levels as shown in the Function Table regardless of the levels at the other inputs.
A High level on the Clock ($\overline{\mathrm{CP}}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the $\overline{C P}$ is High and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output state changes are intitiated by the High-to-Low transition of $\overline{C P}$.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 113	100 MHz	15 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F113N
14-Pin Plastic SO	N74F113D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
J_{0}, J_{1}	J inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~K}_{0}, \mathrm{~K}_{1}$	K Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1}$	Clock inputs (active falling edge)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\bar{S}_{\mathrm{D}}, \overline{\mathrm{S}}_{\mathrm{D} 1}$	Direct set inputs (active-Low)	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{Q}_{0}, \overline{\mathrm{Q}}_{0}$, $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}$	Data Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{C P}}$	\mathbf{J}	\mathbf{K}	\mathbf{Q}	$\overline{\mathbf{Q}}$
Asynchronous Set	L	\mathbf{X}	\mathbf{X}	X	H	L
Toggle	H	\downarrow	h	h	$\overline{\mathrm{q}}$	q
Load "0" (Reset)	H	\downarrow	l	h	L	H
Load "1" (Set)	H	\downarrow	h	l	H	L
Hold "no change"	H	\downarrow	I	I	q	$\overline{\mathrm{q}}$

$\mathrm{H}=$ High voltage level steady state.
$\mathrm{h}=$ High voltage level one setup time prior to the High-to-Low Clock transition.
$\mathrm{L}=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the High-to-Low Clock transition.
$q=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low Clock transition.
$X=$ Don't care.
$\downarrow=$ High-to-Low Clock transition.
Asynchronous input:
Low input to \bar{S}_{D} sets Q to High level Set is independent of clock

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbb{I}}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			$+0.8$	V
IIK	Input clamp current			-18	mA
l_{OH}	High-level output current			-1	mA
lOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \quad \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{VCC}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \quad{ }^{\text {OL }}= \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
					100	$\mu \mathrm{A}$				
					100	$\mu \mathrm{A}$				
${ }_{1 / H}$	High-level input current				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
							20	$\mu \mathrm{A}$		
							20	$\mu \mathrm{A}$		
ILL	Low-level input current	J, K			$V_{C C}=M A X, V_{1}=0.5 V$				-0.6	mA
		$\overline{C_{P}}$					-2.4	mA		
		$\bar{S}_{\text {Dn }}$					-3.0	mA		
los	Short-circuit output current ${ }^{3}$				-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\text {CC }}=$ MAX			15	21	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With the Clock input grounded and all outputs open, Icc is measured with the Q and \bar{Q} outputs High in turn.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	110	125		100		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\overline{C P}_{n}$ to Q_{n}, \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
t_{PLLH} t_{PHL}	Propagation delay $S_{D n}$ to Q_{n}, \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low J_{n} or K_{n} to $\overline{\mathrm{CP}}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low J_{n} or K_{n} to CP_{n}	Waveform 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{C P}_{\mathrm{n}}$ pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$t_{w}(\mathrm{~L})$	SD_{n} pulse width	Waveform 2	4.5			5.0		ns
trec	$\overline{S D}_{n}$ to $\overline{\mathrm{CP}}_{n}$	Waveform 2	4.5			5.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

DESCRIPTION

The 'F114 is a Dual JK Negative EdgeTriggered Flip-Flop featuring individual J , K , and Set inputs and common Clock and Reset inputs. The Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset (\bar{R}_{D}) inputs, when Low, set or reset the outputs as shown in the Function Table, regardless of the levels at the other inputs.
A High level on the Clock ($\overline{\mathrm{CP}}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the $\overline{\mathrm{CP}}$ is High and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output state changes are initiated by the High-to-Low transition of $\overline{C P}$.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\bar{R}_{\text {d }}$	$\overline{\mathbf{C P}}$	J	K	Q	$\overline{\mathbf{Q}}$
Asynchronous Set	L	H	X	X	X	H	L
Asynchronous Reset (Clear)	H	L	X	X	X	L	H
Undetermined	L	L	X	X	X	H	H
Toggle	H	H	\downarrow	h	h	$\overline{\text { a }}$	q
Load "0" (Reset)	H	H	\downarrow	1	h	L	H
Load "1" (Set)	H	H	\downarrow	h	1	H	\underline{L}
Hold 'no change'	H	H	\downarrow	1	1	q	\bar{q}

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the High-to-Low Clock transition. L = Low voltage level steady state.
I = Low voltage level one setup time prior to the High-to-Low Clock transition.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low Clock transition.
X = Don't care.
Asynchronous inputs:
Low input to \bar{S}_{D} sets Q to High level
Low input to \bar{C}_{D} sets Q to Low level
Clear and Set are independent of clock
Simultaneous Low on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and $\overline{\mathbf{Q}}$ High
Undetermined* : Both outputs will be High while both \bar{S}_{D} and R_{D} are Low, but the output states are unpredictable if \bar{S}_{D} and R_{D} go High simultaneously.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \quad I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			\checkmark
			$\pm 5 \% V_{C C}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \quad I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, I_{1}=I_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maxımum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	J, K	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		$\overline{\mathrm{CP}}$					-4.8	mA		
		$\bar{S}_{\text {D }}$					-3.0	mA		
		\bar{R}_{D}					-6.0	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$V_{C C}=M A X$			15	21	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

3 Not more than one output should be shorted at a time For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last
4. With the Clock input grounded and all outputs open, ICC is measured with the Q and \bar{Q} outputs High in turn

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	110	125		90		MHz
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\overline{\mathrm{CP}}$ to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay $S D_{n}$ or $R D_{n}$ to Q_{n}, \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	3.0 3.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup tıme, High or Low J_{n} or K_{n} to $\overline{C P}_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low J_{n} or K_{n} to $\overline{C P}_{n}$	Waveform 1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}_{\mathrm{n}}$ pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$t_{w}(\mathrm{~L})$	SD_{n} or RD pulse width	Waveform 2	4.5			5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\bar{S}_{D n}$ or \bar{R}_{D} to $\overline{C P}$	Waveform 2, 3	4.5			5.0		ns

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Data Setup and Hold Times, Clock Pulse Width

Waveform 2. Propagation Delay for Set to Output, Set Pulse Width, and Recovery time for Set to Clock

Waveform 3. Propagation Delay for Reset to Output, Reset Pulse Width, and Recovery Time for Reset to Clock NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value. $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t THL
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST 74F125, 74F126

Buffer

Quad Buffers (3-State)
Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)

FUNCTION TABLE 'F125

InPUTS		OUTPUT
$\overline{\mathbf{C}}$	\mathbf{A}	\mathbf{Y}
L	L	L
L	H	H
H	X	(Z)

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{5V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F125N, N74F126N
14-Pin Plastic SO	N74F125D, N74F126D

FUNCTION TABLE 'F126

INPUTS		OUTPUT
C	A	\mathbf{Y}
H	L	L
H	H	H
L	X	Z

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 125	5.0 ns	23 mA
74 F 126	5.0 ns	26 mA

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$1 \mathrm{~A}-4 \mathrm{~A}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{1 \mathrm{C}}-\overline{4 \mathrm{C}}$	3-State output enable input (active-Low) 'F125	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$1 \mathrm{C}-4 \mathrm{C}$	3-State output enable input (active-High) 'F126	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$1 \mathrm{Y}-4 \mathrm{Y}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION
(F125

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Buffer

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F125, 74F126			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
Vol	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{LC}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
				$\mathrm{lOL}^{2}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
II	Input current at maximum input voltage			$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {I }}$	High-level input current			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozH	Off-state output current, High-level voltage applied			$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Off-state output current, Low-level voltage applied			$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$V_{C C}=M A X$			-100		-225	mA			
Icc	Supply current (total)	'F125	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$	$\overline{\mathrm{nC}}=\mathrm{GND}, \mathrm{nA}$	$=4.5 \mathrm{~V}$		17	24	mA			
			$\mathrm{I}_{\text {CCL }}$		$\overline{\mathrm{nC}}=\mathrm{nA}=\mathrm{GN}$			28	40	mA			
			ICCz		$\overline{\mathrm{nC}}=\mathrm{nA}=4.5$			25	35	mA			
		'F126	$\mathrm{I}_{\mathrm{CCH}}$		$\mathrm{nC}=\mathrm{nA}=4.5$			20	30	mA			
			$\mathrm{I}_{\text {CCL }}$		$\mathrm{nC}=4.5 \mathrm{~V}, \mathrm{nA}$	= GND		32	48	mA			
			$\mathrm{I}_{\mathrm{CCz}}$		$\mathrm{nC}=\mathrm{GND}, \mathrm{n} \mathrm{A}$	$=4.5 \mathrm{~V}$		26	39	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time. For testıng los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F125, 74F126					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay nA to nY	'F125		Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{pPLL}} \end{aligned}$	Output enable time to High and Low level			Waveform 2 Waveform 3	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHZ}}$	Output disable time from High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay nA to nY	'F126	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	2.0 3.0	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output enable time to High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	3.5 3.5	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output disable time from High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	2.0 3.0	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 1. Propagation Delay
For Input To Output

WF08103s
Waveform 2. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

DESCRIPTION

The 'F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates.
Each circuit contains a 2-input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the posi-tive-going and negative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as three inputs remain at a more positive voltage than $V_{T+M A X}$, the gate will respond in the transitions of the other input as shown in Waveform 1.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 132	6.3 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F132N
14-Pin Plastic SO	N74F132D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

853-0342 87420

FUNCTION TABLE

INPUTS		OUTPUT
A	B	$\overline{\mathbf{Y}}$
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
I_{IK}	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F132			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold				$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.5	1.7	2.0	V
$\mathrm{V}_{\text {T- }}$	Negative-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.7	0.9	1.1	V		
ΔV_{T}			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		0.4	0.8		V		
VOH	High-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{1}=V_{T-M I N}, \\ & I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, V_{1}=V_{T}+\text { MAX }, \\ & I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V	
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$			0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
$\mathrm{I}_{\text {T }+}$	Input current at positive-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\text {T+ }}$			0.0		$\mu \mathrm{A}$		
$\mathrm{I}_{\text {T- }}$	Input current at negative-going threshold		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{T-}$			-350		$\mu \mathrm{A}$		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$\mathrm{V}_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		8.5	12	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		13.0	19.5	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Waveform 1. For Inverting Outputs

TEST CIRCUIT AND WAVEFORM

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TL }}$	$\mathbf{t}_{\text {TH }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance, see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAST 74F133

13-Input NAND Gate

Product Specification

FAST Products

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 133	4 ns	2 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathbf{V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
16-Pin Plastic DIP	74 F 133 N
16-Pin Plastic SOL	74 F 133 D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{14}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}$	Data output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OUTPUT	INPUTS												
\bar{Q}	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}
L	H	H	H	H	H	H	H	H	H	H	H	H	H
H	Any one input $=\mathrm{L}$												

NOTES:

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lot	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7	3.4				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$			0.35	0.50	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$\mathrm{V}_{C C}=\mathrm{MAX}$				1.0	2.0	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					2.5	4.0	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F133					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to \bar{Q}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	1.5 2.0	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns

AC WAVEFORMS

WF07542S
Waveform 1. Propagation Delay for Data to Output NOTE: $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- High-speed replacement for Intel 3205

DESCRIPTION

The 'F138 decoder accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and when enabled, provides eight mutually exclusive, active-Low outputs ($\bar{Q}_{0}-\bar{Q}_{7}$). The device features three Enable inputs; two active-Low (\bar{E}_{1}, \bar{E}_{2}) and one active-High $\left(E_{3}\right)$. Every output will be High unless \bar{E}_{1} and E_{2} are Low and E_{3} is High. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 'F138's and one inverter.
The device can be used as an eight output demultiplexer by using one of the active-Low Enable inputs as the Data input and the remaining Enable inputs as strobes. Enable inputs not used must be permanently tied to their appropriate active-High or active-Low state.

FAST 74F138
 Decoder/Demultiplexer

1-Of-8 Decoder/Demultiplexer Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 138	5.8 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F138N
16 -Pin Plastic SO	N74F138D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{1}-\overline{\mathrm{E}}_{2}$	Enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{3}	Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{7}$	Outputs (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS						OUTPUTS							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	A_{0}	A_{1}	A_{2}	$\overline{\mathbf{Q}_{0}}$	$\overline{\mathbf{a}_{1}}$	$\overline{\mathbf{Q}_{2}}$	$\overline{\mathbf{Q}_{3}}$	$\overline{\mathbf{O}_{4}}$	$\overline{\mathbf{Q}_{5}}$	$\overline{\mathbf{Q}_{6}}$	$\overline{Q_{7}}$
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

NOTES:
$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
VOH	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60		-150	mA
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			13	20	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last
4. To measure $I_{C C}$, outputs must be open, $V_{\text {IN }}$ on all inputs $=4.5 \mathrm{~V}$.

APPLICATION

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F138					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Address to output A_{n} to \bar{Q}_{n}	Waveforms 1 and 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{E}_{1} or \bar{E}_{2} to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay E_{3} to \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F139
Decoder/Demultiplexer

Dual 1-of-4 Decoder/Demultiplexer Product Specification

FAST Products

FEATURES

- Demultiplexing capability
- Two independent 1-of-4 decoders
- Multifunction capability

DESCRIPTION

The 'F139 is a high-speed, dual 1-of-4 decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs (A_{0}, A_{1}) and providing four mutually exclusive active-Low outputs ($\bar{Q}_{0 n}-\bar{Q}_{3 n}$). Each decoder has an active-Low Enable ($\overline{\mathrm{E}}$). When \bar{E} is High, every output is forced High. The Enable can be used as the Data input for a 1-of-4 demultiplexer application.

FUNCTION TABLE

INPUTS				OUTPUTS			
E	\mathbf{A}_{0}	\mathbf{A}_{1}	$\overline{\mathbf{Q}}_{0}$	$\overline{\mathbf{Q}}_{1}$	$\overline{\mathbf{Q}}_{2}$	$\overline{\mathbf{Q}}_{3}$	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	H	L	H	L	H	H	
L	L	H	H	H	L	H	
L	H	H	H	H	H	L	

$H=$ High voltage level
L = Low voltage level
X = Don't care

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 139	5.3 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F139N
16-Pin Plastic SO	N74F139D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{n a}, \mathrm{~A}_{\mathrm{nb}}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$	Enable Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0 \mathrm{a}}-\overline{\mathrm{Q}}_{3 \mathrm{a}}, \overline{\mathrm{Q}}_{0 \mathrm{~b}}-\overline{\mathrm{Q}}_{3 \mathrm{~b}}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F139			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V
I	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
${ }_{1 / H}$	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
ICC	Supply current ${ }^{4}$ (total)	$V_{C C}=\mathrm{MAX}$			13	20	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimıze internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. To measure I_{CC}, outputs must be open, V_{IN} on all inputs $=4.5 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F139					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ t_{PHL}	Propagation delay A_{0} or A_{1} to $\bar{Q}_{n a}, \bar{Q}_{n b}$	Waveforms 1 and 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{E}_{n} to $\bar{Q}_{n a}, \bar{Q}_{n b}$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of puise generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplltude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Code conversions
- Multi-channel D/A converter
- Decimal-to-BCD converter
- Cascading for priority encoding of 'N" bits
- Input enable capability
- Priority encoding - automatic selection of highest priority input line
- Output enable - active-Low when all inputs High
- Group signal output - active when any input is Low

DESCRIPTION

The 'F148 8-input priority encoder accepts data from eight active-Low inputs and provides a binary representation on the three active-Low outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line \bar{I}_{7} having the highest priority.
A High on the Enable Input (EI) will force all outputs to the inactive (High) state and allow new data to settle without producing erroneous information at the outputs.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 148	6.0 ns	23 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \boldsymbol{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$
16-Pin Plastic DIP	N74F148N
16-Pin Plastic SO	N74F148D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\bar{I}_{1}-\bar{I}_{7}$	Priority inputs (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
\bar{I}_{0}	Priority input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{EI}}$	Enable input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{EO}}$	Enable output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{GS}}$	Group select output (active- Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{2}$	Address outputs (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

A Group Signal ($\overline{\mathrm{GS}}$) output and an Enable Output (EO) are provided with the three data outputs. The $\overline{\mathrm{GS}}$ is active-Low when any input is Low; this indicates when any input is active. The $\overline{E O}$ is active-Low when all inputs are High. Using the Enable Output along with the Enable Input allows priority encoding of N input signals. Both $\overline{E O}$ and $\overline{G S}$ are activeHigh when the Enable Input is High.

FUNCTION TABLE

INPUTS									OUTPUTS				
El	I_{0}	\bar{i}_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	GS	\bar{A}_{0}	\bar{A}_{1}	\bar{A}_{2}	EO
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	X	L	H	L	H	L	L	H
L	x	X	X	X	X	L	H	H	L	L	H	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	L	L	L	H	H
L	X	X	L	H	H	H	H	H	L	H	L	H	H
L	X	L	H	H	H	H	H	H	L	L	H	H	H
L	L	H	H	H	H	H	H	H	L	H	H	H	H

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 16$
GND $=P$ in 8

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F148			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	İO, El	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		$\bar{I}_{1}-\bar{I}_{7}$					-1.2			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=\mathrm{MAX}$			23	35	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests in any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F148					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{P} P \mathrm{LL}} \end{aligned}$	Propagation delay \bar{I}_{n} to \bar{A}_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{I}_{n} to EO	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{i}_{n} to $\overline{G S}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay El to \bar{A}_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	3.5 3.0	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	Propagation delay El to GS	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	2.5 3.0	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay El to EO	Waveform 2	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	ns

APPLICATION

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Multiplexer

8-Input Multiplexer Product Specification

FAST Products

FEATURES

- Multifunction capability
- Complementary outputs
- See 'F251 for 3-state version

DESCRIPTION

The ' F 151 is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs: $\mathrm{S}_{0}, \mathrm{~S}_{1}$, and S_{2}. True (Y) and Complement (\bar{Y}) outputs are both provided. The Enable input ($\overline{\mathrm{E}}$) is active-Low. When \bar{E} is High, the \bar{Y} output is High and the Y output is Low, regardless of all other inputs.
In one package the 'F151 provides the ability to select from eight sources of data or control information. The device can provide any logic function of four variables and its negation with correct manipulation.

PIN CONFIGURATION

LOGIC SYMBOL

6-118

LOGIC SYMBOL (IEEE/IEC)

853-0099 87420

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}, \overline{\mathrm{Y}}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
16-Pin Plastic DIP	N74F151N
16-Pin Plastic SO	N74F151D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

偖

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					OUTPUTS	
S_{2}	S_{1}	S_{0}	$\overline{O E}$	Y	\bar{Y}	
X	X	X	H	L	H	
L	L	L	L	I_{0}	\bar{I}_{0}	
L	L	H	L	I_{1}	I_{1}	
L	H	L	L	I_{2}	\bar{I}_{2}	
L	H	H	L	I_{3}	\bar{I}_{3}	
H	L	L	L	I_{4}	I_{4}	
H	L	H	L	I_{5}	\bar{I}_{5}	
H	H	L	L	I_{6}	$I_{I_{6}}$	
H	H	H	L	I_{7}	\bar{I}_{7}	

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

Multiplexer

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C c}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		$74 F 151$			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & \mathrm{~V}_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			12	16	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				15	20	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F151					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay I_{n} to Y	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.5 3.0	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	ns
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay I_{n} to \bar{Y}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	2.0 1.0	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay S_{n} to Y	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{n} to \bar{Y}	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{tPLL}} \\ & \hline \end{aligned}$	Propagation delay \bar{E}_{n} to Y	Waveform 1	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay \bar{E}_{n} to \bar{Y}	Waveform 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns

NOTE:

1. Subtract $0.2 n$ s from minimum values for $S O$ package.

AC WAVEFORMS

Waveform 1. Inverting

WF06069s

Waveform 2. Non-Inverting

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes Ig and probe capacitance;
see AC CHARACTERISTICS for value
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Multifunction capability
- Complementary outputs
- See 'F251A for 3-State version

DESCRIPTION

The 'F151A is a logic implementation of a single-pole, 8 -position switch with the switch position controlled by the state of three Select inputs: $\mathrm{S}_{0}, \mathrm{~S}_{1}$, and S_{2}. True (Y) and complementary (Y) outputs are both provided. The Enable input (\bar{E}) is active-Low. When \bar{E} is High, the \bar{Y} output is High and the Y output is Low, regardless of all other inputs. In one package the 'F151A provides the ability to select from eight sources of data or control information. The device can provide any logic function of four variables and its negation with correct manipulation.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 151 A	4.5 ns	17.0 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F151AN
16-Pin Plastic SO	N74F151AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}, \overline{\mathrm{Y}}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

8-Input Multiplexer

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	
S_{2}	S_{1}	S_{0}	E	Y	$\overline{\mathbf{Y}}$
X	X	X	H	L	H
L	L	L	L	I_{0}	İo
L	L	H	L	I_{1}	I_{1}
L	H	L	L	I_{2}	I_{2}
L	H	H	L	l_{3}	\bar{I}_{3}
H	L	L	L	I_{4}	I_{4}
H	L	H	L	I_{5}	I_{5}
H	H	L	L	I_{6}	I_{6}
H	H	H	L	17	I_{7}

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{CuT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=M A X \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$			0.35	0.50	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$				18	25	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					17	25	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

8-Input Multiplexer

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay I_{n} to Y	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to \bar{Y}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PPHL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to Y	Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PPL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to \bar{Y}	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay \bar{E}_{n} to Y	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	3.5 3.0	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay \bar{E}_{n} to \bar{Y}	Waveform 2	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	2.5 2.0	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F153
 Multiplexer

Dual 4-Line to 1-Line Multiplexer Product Specification

FAST Products

FEATURES

- Non-inverting outputs
- Separate enable for each section
- Common select inputs
- See 'F253 for 3-State version

DESCRIPTION

The 'F153 is a dual 4-input multiplexer that can select 2 bits of data from up to four sources under control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4input multiplexer circuits have individual active-Low Enables (\bar{E}_{a}, \bar{E}_{b}) which can be used to strobe the outputs independently. Outputs ($\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}$) are forced Low when the corresponding Enables (\bar{E}_{a}, \bar{E}_{b}) are High.

The device is the logical implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.
$Y_{a}=\bar{E}_{a} \cdot\left(l_{0 \mathrm{a}} \cdot \overline{\mathrm{S}}_{1} \cdot \cdot \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \cdot \overline{\mathrm{S}}_{1} \cdot \mathrm{~S}_{0}\right.$ $\left.+I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right)$
$Y_{b}=\bar{E}_{b} \cdot\left(l_{0 b} \cdot \bar{S}_{1} \cdot \cdot \cdot \bar{S}_{0}+l_{1 b} \cdot \bar{S}_{1} \cdot S_{0}\right.$ $\left.+\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)$

TYPE	TYPICAL PROGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 153	7.0 ns	12 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0} \% \boldsymbol{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F153N
16-Pin Plastic SO	N74F153D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{O}}-\mathrm{I}_{3 \mathrm{a}}$	Side A data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{Ob}}-\mathrm{I}_{3 \mathrm{~b}}$	Side B data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Common select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{a}}$	Side A Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{b}}$	Side B Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y_{a}	Side A output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
Y_{b}	Side B output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The '153 can be used to move data to a common output bus from a group of registers. The state of the Select inputs would determine the particular register from which the data came. An alternative application is as a function generator. The device can generate two functions or three variables. This is useful for implementing highly irregular random logic.

LOGIC DIAGRAM

FUNCTION TABLE

SELECTS INPUTS		INPUTS (a or b)					
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	E	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	YUTPUT
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

Multiplexer
FAST 74F153

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, \quad \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \quad I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$	$\bar{E}_{n}=G N D ; S_{n}=I_{n}=4.5 \mathrm{~V}$			12	20	mA			
		$\mathrm{I}_{\mathrm{CCL}}$		$\bar{E}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}=\mathrm{GND}$			12	20	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F153					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathbf{V}_{\mathrm{CC}} & =+5.5 .0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{FFF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay S_{n} to Y_{n}	Waveform 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
${ }^{\text {tPLH }}$ t_{PHL}	Propagation delay \bar{E} to Y_{n}	Waveform 2	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \end{array}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay Data $\left(I_{n}\right)$ to Output $\left(Y_{n}\right)$

Waveform 2. Propagation Delay Select $\left(S_{n}\right)$ or Enable (\mathbf{E}) to Output (Y_{n})

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

DESCRIPTION

The ' F 157 A is a high-speed quad 2 -input multiplexer which selects 4 bits of data from two sources under the control of a common Select input (S). The Enable input (\bar{E}) is active-Low. When \bar{E} is High, all of the outputs (Y) are forced Low regardless of all other input conditions.
Moving data from two groups of registers to four common output busses is a common use of the 'F157A. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator. The device is useful for implementing highly irregular logic by generating any four of the 16 different functions of two variables with one variable common.
The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. Logic equations for the outputs are shown below:

$$
\begin{aligned}
& Y_{a}=\bar{E} \cdot\left(l_{1 a} \cdot \mathbf{S}+1_{0 a} \cdot \overline{\mathbf{S}}\right) \\
& Y_{b}=E \cdot\left(l_{1 b} \cdot S+l_{0 b} \cdot S\right) \\
& Y_{c}=E \cdot\left(l_{1 c} \cdot S+l_{0 c} \cdot S\right) \\
& Y_{d}=E \cdot\left(l_{1 d} \cdot S+l_{o d} \cdot \bar{S}\right)
\end{aligned}
$$

The 'F158A is similar but has inverting outputs:

$$
\begin{aligned}
& \bar{Y}_{\mathrm{a}}=\bar{E} \cdot\left(l_{1 \mathrm{a}} \cdot \mathbf{S}+l_{0 \mathrm{a}} \cdot \overline{\mathbf{S}}\right) \\
& \bar{Y}_{b}=\bar{E} \cdot\left(l_{1 b} \cdot S+l_{0 b} \cdot \bar{S}\right) \\
& \begin{array}{l}
\bar{Y}_{c}=\bar{E} \cdot\left(I_{1 c} \cdot S+l_{o c} \cdot \bar{S}\right) \\
\bar{Y}_{d}=\bar{E} \cdot\left(1_{1 d} \cdot S+l_{0 d} \cdot \bar{S}\right)
\end{array}
\end{aligned}
$$

PIN CONFIGURATION

FAST 74F157A, 74F158A Data Selectors/Multiplexers

'157A Quad 2-Input Data Selector/Multiplexer (Non-Inverted) '158A Quad 2-Input Data Selector/Multiplexer (Inverted) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 157 A	4.6 ns	15 mA
74 F 158 A	3.7 ns	10 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{0}^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F157AN, N74F158AN
16-Pin Plastic SO	N74F157AD, N74F158AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
All	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}, \overline{\mathrm{Y}}_{\mathrm{a}}-\bar{Y}_{\mathrm{d}}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM, '157A

LDO2080S
$V_{C C}=\operatorname{Pin} 16$
$G N D=\operatorname{Pin} 8$
FUNCTION TABLE, '157A

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
\bar{E}	\mathbf{S}	$\mathbf{I}_{\mathbf{0}}$	$\mathbf{l}_{\mathbf{1}}$	\mathbf{Y}
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
LOGIC DIAGRAM, '158A

LD02090s
$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
FUNCTION TABLE, '158A

ENABLE	SELECT INPUT	DATA INPUTS		OUTPUT
\bar{E}	\mathbf{S}	$\mathbf{I}_{\mathbf{0}}$	$\mathbf{I}_{\mathbf{1}}$	$\overline{\mathbf{Y}}$
H	X	X	X	H
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F157A, 74F158A			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		v		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	v		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{1+}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	'F157A	$V_{C C}=\mathrm{MAX}$			15.0	23.0	mA		
		'F158A				14.0	19.0	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. I_{CC} is measured with 4.5 V applied to all inputs and all outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	'F157A, 'F158A					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y	'F157A		Waveform 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{E} to Y			Waveform 1	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 7.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay S to Y		Waveform 2	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y	'F158A	Waveform 3	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	ns	
${ }^{\text {tpLH }}$ tphl	Propagation delay E to \bar{Y}		Waveform 4	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns	
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay S to \bar{Y}		Waveform 3	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	ns	

AC WAVEFORMS

WF0754MS
Waveform 1. For Inverting Outputs

WF0754NS
Waveform 3. For Inverting Outputs

WF0606xS

WFO605NS
Waveform 4. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Synchronous counting and loading
- Two Count Enable inputs for n-bit cascading
- Positive edge-triggered Clock
- Asynchronous Reset ('F160A, 'F161A)
- Synchronous Reset ('F162A, 'F163A)
- High-speed synchronous expansion
- Typical count rate of 120 MHz

DESCRIPTION

Synchronous presettable decade ('F160A, 'F162A) and 4-bit ('F161A, 'F163A) counters feature an internal carry look-ahead and can be used for highspeed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positivegoing edge of the clock. The Clock input is buffered.

PIN CONFIGURATION

FAST 74F160A, 74F161A,

 74F162A, 74F163A Counters
'F160A, 'F162A BCD Decade Counter 'F161A, 'F163A 4-Bit Binary Counter Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 160 A	130 MHz	46 mA
74 F 161 A	130 MHz	46 mA
74 F 162 A	130 MHz	46 mA
74 F 163 A	130 MHz	46 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F160AN, N74F161AN
	N74F162AN, N74F163AN
16-Pin Plastic SO	N74F160AD, N74F161AD
	N74F162AD, N74F163AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
CEP	Count Enable Parallel input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count Enable Trickle input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous Reset input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
TC	Terminal Count output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FAST 74F160A, 74F161A, 74F162A, 74F163A

'F161A	
\qquad $\overline{M R}$ CP 2 D_{0} D_{1} $\mathrm{D}_{2} 5$ D_{3} \square CEP \qquad and \square	16 Vcc $1{ }^{15} \mathrm{rc}$ ${ }^{16} a_{0}$ 13 a_{1} (12 a_{2} i1) a_{3} 10 CET 9 $\overline{\mathrm{PE}}$ c000770s

LOGIC SYMBOL

PIN CONFIGURATION

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL

The outputs of the counters may be preset to High or Low level. A Low level at the Parallel Enable ($\overline{P E}$) input disables the counting action and causes the data at the $D_{0}-D_{3}$ inputs to be loaded into the counter on the positivegoing edge of the clock (providing that the setup and hold requirements for $\overline{\text { PE }}$ are met). Preset takes place regardless of the levels at Count Enable (CEP, CET) inputs.

A Low level at the Master Reset (MR) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ in 'F160A and 'F161A to Low levels, regardless of the levels at CP, $\overline{\text { PE }}$, CET and CEP
inputs (thus providing an asynchronous clear function).
For the 'F162A and 'F163A, the clear function is synchronous. A Low level at the Reset (SR) input sets all four outputs of the flip-flops $\left(Q_{0}-Q_{3}\right)$ to Low levels after the next positivegoing transition on the Clock (CP) input (providing that the setup and hold requirements for $\overline{M R}$ are met). This action occurs regardless of the levels at PE, CET, and CEP inputs. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate (see Figure A).

The carry look-ahead simplifies serial cascading of the counters. Both Count Enable inputs (CEP and CET) must be High to count. The CET input is fed forward to enable the TC output. The TC output thus enabled will produce a High output pulse of a duration approximately equal to the High level output of Q_{0}. This puise can be used to enable the next cascaded stage (see Figure B).

The TC output is subject to decoding spikes due to internal race conditions. Therefore, it is not recommended for use as clock or asynchronous reset for flip-flops, registers, or counters.

STATE DIAGRAMS

LOGIC DIAGRAM, 'F160A, 'F162A

LOGIC DIAGRAM, 'F161A, 'F163A

Counters

MODE SELECT - FUNCTION TABLE, 'F160A, 'F161A

OPERATING MODE	INPUTS						OUTPUTS	
	$\overline{\mathrm{MR}}$	CP	CEP	CET	$\overline{\text { PE }}$	D_{n}	$\mathbf{Q}_{\mathbf{n}}$	TC
Reset (clear)	L	X	X	X	X	X	L	L
Parallel load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ (1) \end{gathered}$
Count	H	\uparrow	h	h	h	X	count	(1)
Hold (do nothing)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 1 \\ & x \end{aligned}$	$\underset{1^{(2)}}{X}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	$\stackrel{(1)}{\mathrm{L}}$

MODE SELECT - FUNCTION TABLE, 'F162A, 'F163A

OPERATING MODE	INPUTS						OUTPUTS	
	$\overline{\mathbf{S R}}$	CP	CEP	CET	$\overline{\text { PE }}$	D_{n}	$\mathbf{Q}_{\mathbf{n}}$	TC
Reset (clear)	1	\uparrow	X	X	X	X	L	L
Parallel load	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \text { (2) } \end{aligned}$
Count	h	\uparrow	h	h	h	X	count	(2)
Hold (do nothing)	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} x \\ 1 \end{gathered}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	(2)

$H=$ High voltage level steady state.
$\mathrm{L}=$ Low voltage level steady state.
$h=$ High voltage level one setup time prior to the Low-to-High clock transition.
$\mathrm{I}=$ Low voltage level one setup time prior to Low-to-High clock transition.
X = Don't care.
$q=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition.
$\uparrow=$ Low-to-High clock transition.
NOTES:
(1) The TC output is High when CET is High and the counter is at Terminal Count (HHHH for 'F161A and HLLH for 'F160A).
(2) The TC output is High when CET is High and the counter is at Terminal Count (HLLH for 'F162A and HHHH for 'F163A).

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.50	5.0	5.50	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
$\mathrm{IOL}_{\mathrm{O}}$	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \quad I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \quad \mathrm{IOL}_{2}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{l}_{\text {IK }}$			-0.73	-1.2	V	
II	Input current at maximum input voltage		$V_{C C}=M A X, \quad V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current	$\overline{\mathrm{CET}}, \overline{\mathrm{SR}}, \overline{\mathrm{PE}}$	$V_{C C}=M A X, \quad V_{1}=2.7 V$				40	$\mu \mathrm{A}$		
		Other inputs					20	$\mu \mathrm{A}$		
ILL	Low-level input current	$\overline{\mathrm{CET}}, \overline{\mathrm{SR}}, \overline{\mathrm{PE}}$	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		Other inputs				-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$			42	55	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				49	65	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditons for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hoid techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. $\mathrm{I}_{\mathrm{CCH}}$ is measured with $\overline{\mathrm{PE}}$ input High, again with $\overline{P E}$ input Low, all other inputs High and outputs open. ICCL is measured with Clock input High, again with Clock input Low all other inputs Low, and outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F160A, 74F162A					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum clock fre			Waveform 1	100	130		90		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to Q_{n}			$\begin{aligned} & \text { Waveform } 1 \\ & \overline{\mathrm{PE}}=\text { High } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n}		Waveform 1 $\overline{\mathrm{PE}}=\mathrm{Low}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to TC		Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	
$t_{\text {pLH }}$ tpHL	Propagation delay CET to TC		Waveform 2	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	
$t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{MR}}$ to Q_{n}	'F160A	Waveform 3	6.5	9.0	12	6.5	13	ns	
${ }^{\text {tPHL }}$	Propagation delay $\overline{M R}$ to TC	'F160A	Waveform 3	6.0	8.0	10.0	5.5	11.0	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F160A, 74F162A					UNIT	
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or D_{n} to CP			Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or D_{n} to CP			Waveform 5	0			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP		Waveform 5 or 6	$\begin{aligned} & 11 \\ & 7.0 \end{aligned}$			$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP		Waveform 5 or 6	0 0			0 0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or CEP or CET to CP		Waveform 4	$\begin{gathered} 11.0 \\ 6.0 \\ \hline \end{gathered}$			$\begin{gathered} 11.0 \\ 7.5 \\ \hline \end{gathered}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or L CEP or CET to CP		Waveform 4	0 0			0 0		ns	
$t_{W}(H)$ $t_{w}(\mathrm{~L})$	Clock pulse width (lo High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 6.5 \\ & \hline \end{aligned}$		ns	
$\begin{aligned} & t_{W}(\mathrm{H}) \\ & t_{W}(\mathrm{~L}) \end{aligned}$	Clock pulse width (c High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		ns	
$t_{W}(L)$	$\overline{\mathrm{MR}}$ pulse width Low	'F160A	Waveform 3	5.0			5.0		ns	
$\mathrm{t}_{\text {rec }}$	Recovery time, $\overline{M R}$ to CP	'F160A	Waveform 3	5.0			6.0		ns	

Counters

FAST 74F160A, 74F161A, 74F162A, 74F163A

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F161A, 74F163A					UNIT	
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathbf{V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum clock fre			Waveform 1	100	130		90		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay CP to Q_{n}			Waveform 1 $\overline{P E}=\text { High }$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 6.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay CP to Q_{n}		Waveform 1 $\overline{P E}=$ Low	$\begin{aligned} & 2.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CP to TC		Waveform 1	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay CET to TC		Waveform 2	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	
${ }_{\text {tPHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	'F161A	Waveform 3	6.5	8.5	12.5	5.5	13	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to TC	'F161A	Waveform 3	6.0	8.5	11.0	5.0	12.0	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F161A, 74F163A					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathbf{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathbf{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or D_{n} to CP			Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{n}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP			Waveform 5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP		Waveform 5 or 6	9.0 6.5			9.5 7.0		ns	
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or $\overline{P E}$ or $\overline{S R}$ to CP		Waveform 5 or 6	0			0 0		ns	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or CEP or CET to CP		Waveform 4	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$			$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low CEP or CET to CP		Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock pulse width (lo High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.5		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock pulse width (co High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$			4.0 7.0		ns	
$t_{W}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ pulse width Low	'F161A	Waveform 3	4.5			4.5		ns	
trec	Recovery time, $\overline{\mathrm{MR}}$ to CP	'F161A	Waveform 3	6.0			6.5		ns	

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Maximum Clock Frequency, and Clock Pulse Width

Waveform 3. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset
to Clock Recovery Time ('F160A, 'F161A)

Waveform 5. Synchronous Reset Setup and Hold Times

Waveform 2. Propagation Delays CET Input to TC Output

Waveform 4. CEP and CET Setup and Hold Times

Waveform 6. Parallel Data and Parallel Enable Setup and Hold Times

APPLICATION

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F164 Shift Register

8-Bit Serial-In Parallel-Out Shift Register Preliminary Specification

FAST Products

FEATURES

- Gated serial data inputs
- Typical shift frequency of 100 MHz
- Asynchronous Master Reset
- Fully buffered Clock and Data inputs
- Fully synchronous data transfers

DESCRIPTION

The ' F 164 is an 8-bit edge-triggered shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs ($\mathrm{D}_{\mathrm{sa}} \cdot \mathrm{D}_{\mathrm{sb}}$); either input can be used as an active-High enable for data entry though the other input. Both inputs must be connected together or an unused input must be tied High.
Data shifts one place to the right on each Low-to-High transition of the Clock (CP) input, and enters into Q_{0} the logical AND of the two Data inputs ($\mathrm{D}_{\mathrm{sa}} \cdot \mathrm{D}_{\mathrm{sb}}$) that existed one setup time before the rising clock edge. A Low level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs Low.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 164	100 MHz	33 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{0} \mathbf{C}$
14-Pin Plastic DIP	N74F164N
14-Pin Plastic SO	N74F164D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{\text {sa, }}, \mathrm{D}_{\text {sb }}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
1 One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

[^1]MODE SELECT-TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS			
	$\overline{\text { MR }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{s a}}$	$\mathbf{D}_{\mathbf{s b}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	-	$\mathbf{Q}_{\mathbf{7}}$
Reset (clear)	L	X	X	X	L	L	-	L
Shift	H	\uparrow	I	I	L	q_{0}	-	q_{6}
	H	\uparrow	l	h	L	q_{0}	-	q_{6}
	H	\uparrow	h	I	L	q_{0}	-	q_{6}
	H	\uparrow	h	h	H	q_{0}	-	q_{6}

$H=$ High voltage level.
$h=$ High voltage level one set-up time prior to the Low-to-High Clock transition.
$\mathrm{L}=$ Low voltage level.
I = Low voltage level one set-up time prior to the Low-to-High Clock transition.
$q=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the Low-
to-High Clock transition.
X = Don't care.
$\uparrow=$ Low-to-High Clock transition.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{HH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
VIK	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{V}_{C C}=\mathrm{MAX}$			33	55	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure loc with the serial inputs grounded, the clock input at 2.4 V , and a momentary ground, then 4.5 V applied to Master Reset, and all outputs open.

APPLICATION

NOTES:

The 'F164 can be cascaded to form synchronous shift registers of longer length. Here, two devices are combined to form a 16-bit shift register.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F164					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum shift frequency	Waveform 1	80	100		80		MHz
$t_{\text {PLH }}$ tphl	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 11 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 2	4.0	7.5	10.5	4.0	11.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F164					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A or B to CP	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			7.0 7.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A or B to CP		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$			4.0 7.0		ns
$t_{w}(L)$	$\overline{\text { MR }}$ pulse width Low	Waveform 2	7.0			7.0		ns
$\mathrm{trec}^{\text {rem }}$	Recovery time $\overline{M R}$ to CP	Waveform 2	7.0			7.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

WF06450S
$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F166
 Shiff Register

8-Bit Serial/Parallel-In, Serial Out Shift Register Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Synchronous parallel to serial applications
- Synchronous serial data input for easy expansion
- Clock enable for 'do nothing" mode
- Asynchronous Master Reset
- Exandable to $\mathbf{1 6}$-bits in 8-bit increments

DESCRIPTION

The 166 is a high-speed 8-bit shift register that has fully synchronous serial parallel data entry selected by an activeLow Parallel Enable ($\overline{\mathrm{PE}}$) input. When the $\overline{\mathrm{PE}}$ is Low one setup time before the Low-to-High clock transistion, parallel data is entered into the register. When $\overline{\mathrm{PE}}$ is High, data is entered into internal bit position Q_{0} from Serial Data Input $\left(D_{s}\right)$, and the remaining bits are shifted one place to the right $\left(Q_{0}-Q_{1}-Q_{2}\right.$, etc.), with each positive-going clock transition.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 166	175 MHz	41 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F166N
16-Pin Plastic SO	N74F166D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{PE}}$	Parallel enable input	$1 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{CE}}$	Clock enable input	$1 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock input (active rising edge)	$1 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
D_{s}	Serial data input	$2 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Parallel data input	$1 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$2 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
Q_{7}	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

For expansion of the register in parallel to serial converters, the Q_{7} output is connected to the D_{s} input of the succeeding stage. The clock input is a gated OR structure which allows one input to be used as an active-Low Clock Enable ($\overline{\mathrm{CE}}$) input. The pin assignment for the CP and $\overline{C E}$ inputs is arbitrary and can be reversed for layout convenience. The Low-to-High transition of $\overline{C E}$ input should only take place while the CP is High for predictable operation. A Low on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all bit positions to a Low state.

MODE SELECT — FUNCTION TABLE

OPERATING MODES						$\mathbf{Q}_{\mathbf{n}}$ REGISTER		
	$\overline{\mathbf{P E}}$	$\overline{\mathbf{C E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{s}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{7}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}-\mathbf{Q}_{\mathbf{6}}$	$\mathbf{Q}_{\mathbf{7}}$
Parallel load	I	I	\uparrow	X	$\mathrm{I}-1$	L	$\mathrm{~L}-\mathrm{L}$	L
	I	I	\uparrow	X	$\mathrm{h}-\mathrm{h}$	H	$\mathrm{H}-\mathrm{H}$	H
Serial shift	h	I	\uparrow	I	$\mathrm{X}-\mathrm{X}$	L	$\mathrm{q}_{0}-\mathrm{q}_{5}$	q_{6}
	h	I	\uparrow	h	$\mathrm{X}-\mathrm{X}$	H	$\mathrm{q}_{0}-\mathrm{q}_{5}$	q_{6}
Hold (do nothing)	X	h	X	X	$\mathrm{X}-\mathrm{X}$	q_{0}	$\mathrm{q}_{1}-\mathrm{q}_{6}$	q_{7}

$H=$ High voltage level.
$h=$ High voltage level one setup time prior to the Low-to-High Clock transition.
$L=$ Low voltage level.
I = Low voltage level one setup time prior to the Low-to-High Clock transition.
$\mathrm{a}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High Clock transition.
$\mathrm{X}=$ Don't care.
$\uparrow=$ Low-to-High Clock transitıon.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in HIgh output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l L	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{L L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.5	V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.5	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 / \mathrm{K}}$			-0.73	-1.2	V		
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$\overline{\mathrm{CE}}, \mathrm{CP}{ }^{3}$					100	$\mu \mathrm{A}$		
I_{H}	High-level input current	Others	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\overline{\mathrm{MR}}$, D_{S}					40	$\mu \mathrm{A}$		
ILL	Low-level input current	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		$\overline{\text { MR, }} \mathrm{D}_{\mathrm{s}}$					-40	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{4}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \overline{M R}=\mathrm{D}_{\mathrm{S}}=4.5 \mathrm{~V} ; \\ & \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{PE}}=\overline{\mathrm{CE}}=\mathrm{GND}, \mathrm{CP}=\uparrow \end{aligned}$			41	60	mA		

NOTES:

1. For conditoons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. When testing $C P, \overline{C E}$ must remain in High state, whereas $C P$ must remain in High state when testing $\overline{C E}$.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minumize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F166					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum shift frequency	Waveform 1	135	175		110		MHz
$t_{\text {PLH }}$ tphL	Propagation delay CP to Q_{7}	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.0 \end{array}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 14.0 \\ 9.0 \end{array}$	ns
$t_{\text {PLH }}$ tphe $^{\text {P }}$	Propagation delay $\overline{\text { MR }}$ to Q_{7}	Waveform 2	4.0	6.5	8.5	4.0	9.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F166					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $D_{n}, D_{s} \text { to } C P$	Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n}, D_{s} to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time, High or Low CE to CP	Waveform 3	5.0			6.0		ns
$t_{h}(\mathrm{H})$	Hold time, High or Low $\overline{C E}$ to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low PE to CP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{\text { PE }}$ to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 6.5 \end{aligned}$		ns
$\mathrm{tw}_{\text {w }}(\mathrm{L})$	$\overline{\text { MR }}$ pulse width Low	Waveform 2	4.0			4.0		ns
trec	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 2	4.0			4.5		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor, see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Synchronous counting and loading
- Up/Down counting
- Modulo 16 binary counter — 'F169
- BCD decade counter - 'F168
- Two Count Enable Inputs for n-bit cascading
- Positive edge-triggered Clock
- Built-in look-ahead carry capability
- Presettable for programmable operation

DESCRIPTION

The 'F168 is a synchronous, presettable $B C D$ decade up/down counter featuring an internal Carry look-ahead for applications in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the Count Enable inputs and internal gating. This mode of operation eliminates the output spikes which are normally associated with asynchronous (ripple clock) counters. A buffered Clock input triggers the flip-flops on the Low-to-High transition of the clock.

PIN CONFIGRATION

FAST 74F168, 74F169
 Counters

'F168 - 4-Bit Up/Down BCD Decade Synchronous Counter Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
(TOTAL)		

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F168N, N74F169N
16-Pin Plastic SO	N74F168D, N74F169D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
CEP	Count enable parallel input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CET	Count enable trickle input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up/down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{T C}$	Terminal count output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The counter is fully programmable; that is, the outputs may be preset to either level.
Presetting is synchronous with the clock and takes place regardless of the levels of the Count Enable inputs. A Low level on the Parallel Enable ($\overline{\mathrm{PE}}$) input dısables the counter and causes the data at the D_{n} input to be loaded into the counter on the next Low-toHigh transition of the clock.
The direction of counting is controlled by the Up/Down (U/D) input; a High will cause the count to increase, a Low will cause the count to decrease.

The Carry look-ahead circuitry provides for cascadıng counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two Count Enable inputs ($\overline{\mathrm{CET}} \cdot \overline{\mathrm{CEP}}$) and a Terminal Count ($\overline{\mathrm{TC}}$) output. Both Count Enable inputs must be Low to count. The $\overline{\mathrm{CET}}$ input is fed forward to enable the $\overline{T C}$ output. The $\overline{T C}$ output thus enabled will produce a Low output pulse with a duration approximately equal to the High level portion of the Q_{0} output. This Low level TC pulse is used to enable successive cascaded stages. See Figure 1 for the fast synchronous multi-stage counting connections.

The 'F169A is identical except that it is a Modulo 16 counter.

FUNCTIONAL DESCRIPTION

The 'F168 and 'F169 use edge-triggered J-Ktype flip-flops and have no constraints on changing the control or data input signals in elther state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the Clock and remain valid for the recommended hold time thereafter The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When $\overline{\mathrm{PE}}$ is Low, the data on the $D_{0}-D_{3}$ inputs enter the flip-flops on the next rising edge of the Clock. In order for counting to occur, both $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ must be Low and $\overline{P E}$ must be High; the U/ \bar{D} input then determines the direction of counting. The Terminal Count ($\overline{\mathrm{TC}}$) output is normally High and goes Low, provided that CET is Low, when a counter reaches zero in the Count Down mode or reaches 9 (15 for the 'F169) in the Count Up mode. The TC output state is not a function of the Count Enable Parallel ($\overline{\mathrm{CEP}}$) input level. The $\overline{\mathrm{TC}}$ output of the 'F168 decade counter can also be Low in the illegal states 11,13 and 15 ,
which can occur when power is turned on or via parallel loading. If an illegal state occurs, the 'F168 will return to the legitımate sequence within two counts. Since the $\overline{T C}$ signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on $\overline{T C}$. For this reason the use of TC as a clock signal is not recommended (see logic equations below).

1) Count Enable $=\overline{\mathrm{CEP}} \cdot \overline{\mathrm{CET}} \cdot \overline{\mathrm{PE}}$
2) $U p \cdot \overline{T C}=Q_{0} \cdot Q_{3} \cdot(U / \bar{D}) \cdot \overline{C E T}$
3) Down: $\begin{gathered}\overline{\mathrm{TC}}=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot(U / \overline{\mathrm{D}}) \\ \cdot \overline{\mathrm{CET}}\end{gathered}$

MODE SELECT TABLE

$\overline{\text { PE }}$	CEP	CET	U/D	ACTION ON RISING CLOCK EDGE
L	X	X	X	Load ($\mathrm{D}_{n} \rightarrow \mathrm{Q}_{n}$)
H	L	L	H	Count Up (Increment)
H	L	L	L	Count Down (Decrement)
H	H	X	X	No Change (Hold)
H	x	H	X	No Change (Hold)

$H=$ High Voltage Level
$\mathrm{L}=$ Low Voltage Level
X = Don't care

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	CP	U/D	CEP	$\overline{\text { CET }}$	$\overline{\text { PE }}$	D_{n}	Q_{n}	$\overline{\mathrm{TC}}$
Parallel load	\uparrow	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	I	$\begin{aligned} & \text { I } \\ & \text { h } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	(1) (1)
Count up	\uparrow	h	1	I	h	X	Count Up	(1)
Count down	\uparrow	I	1	1	h	X	Count Down	(1)
Hold (do nothing)	\uparrow	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	(1) H

[^2]STATE DIAGRAMS
(

LOGIC DIAGRAM, 'F168

LOGIC DIAGRAM, 'F169

APPLICATIONS

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F168, 'F169			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOH}_{\mathrm{C}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voitage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
II	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 H}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	CET input	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		Other inputs					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			35	52	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. Icc is measured after applying a momentary 4.5 V , then ground to the clock input with all other inputs grounded and outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F168, 'F169					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum clock			Waveform 1	100	115		90		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP to Q_{n} ($\overline{\mathrm{PE}}$, Hig			Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP to TC		Waveform 1	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$		Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay U/D to TC	'F168	Waveform 3	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \end{gathered}$	$\begin{gathered} 11.0 \\ 16 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay U/D to $\overline{T C}$	'F169	Waveform 3	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 12.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F168, 'F169					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP			Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP			Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CEP or CET to CP		Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.5 5.5		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{C E P}$ or CET to CP		Waveform 5	0			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low PE to CP		Waveform 4	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 9.0		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{\text { PE to CP }}$		Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low U/D to CP	'F168	Waveform 6	$\begin{aligned} & 11.0 \\ & 16.5 \end{aligned}$			$\begin{aligned} & 12.5 \\ & 18.0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low U/D to CP	'F169	Waveform 6	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$			$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low U/D to CP		Waveform 6	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns	
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP pulse width, High or Low		Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.5 5.5		ns	

WAVEFORM (Typical Load, Count, and Inhibit Sequences)

Illustrated below is the following sequence for the 'F168. The operation of the 'F169 is similar.

1. Load (preset) to BCD seven
2. Count up to eight, nine (maximum), zero, one, and two
3. Inhibit
4. Count down to one, zero (minimum), nine, eight, and seven

AC WAVEFORMS

Counters

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$
of pulse generators.

wF06450S
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Edge-triggered D-type register
- Gated clock enable for hold "do nothing' mode
- 3-State output buffers
- Gated output enable control
- Speed upgrade of N8T10 and current sink upgrade
- Controlled output edges to minimize ground bounce
- 48mA sinking capability

DESCRIPTION

The 'F173 is a High-speed 4-bit parallel load register with clock enable control, 3-state buffered outputs, and Master Reset (MR). When the two clock Enable ($\overline{E_{0}}$ and $\overline{E_{1}}$) inputs are Low, the data on the D inputs is loaded into the register simultaneously with Low-to-High Clock (CP) transition. When one or both \bar{E} inputs are High one setup time before the Low-to-High clock transition, the register retains the previous data. Data inputs and clock Enable inputs are fully edge-triggered and must be stable only one setup time before the Low-to-High clock transition.

PIN CONFIGURATION

Product Specification

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 173	100 MHz	23 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	74 F 173 N
16 -Pin Plastic SOL	74 F 173 D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{0}, \overline{\mathrm{E}}_{1}$	Clock Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Master Reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	Output Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{4}$	Data outputs	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Quad D-Type Flip-Flop (3-State)

DESCRIPTION (Continued)

The Master Reset (MR) is an active-High asynchronous input. When the MR is High, all four flip-flops are reset (cleared) independently of any other input condition.

The 3-State output buffers are controlled by a 2 -input NOR gate. When both Output Enable ($\overline{\mathrm{OE}}_{0}$ and $\overline{\mathrm{O}}_{1}$) inputs are Low, the data in the register is presented at the Q output. When one or both $\overline{\mathrm{OE}}$ inputs are High, the outputs
are forced to a High-impedance "OFF' state. The 3-State output buffers are completely independent of the register operation; the $\overline{\mathrm{OE}}$ transition does not affect the clock and reset operations.

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS
	MR	CP	\bar{E}_{0}	\bar{E}_{1}	D_{n}	\mathbf{a}_{n} (Register)
Reset (clear)	H	X	X	X	X	L
Parallel load	$\begin{aligned} & L \\ & L \end{aligned}$	\uparrow	1	1	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Hold (do nothing)	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	X	h \times	X	X X	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$

H = High voltage level

$h=$ High voltage level one setup time prior to Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
= Low voltage level one setup tıme prior to Low-to-High clock transition
$\mathrm{a}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced input (or output) on setup time prior to
the Low-to-High clock transition
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition

Quad D-Type Flip-Flop (3-State)

FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	$\mathbf{Q}_{\mathbf{n}}$ (Register)	$\overline{\mathrm{OE}}_{\mathbf{0}}$	$\mathrm{OE}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{n}}$
Read	L	L	L	L
	H	L	L	H
Disabled	X	H	X	Z
	X	X	H	Z

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High-impedance 'OFF' state
ABSOLUTE MAXIMUM RATINGS (Operating beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	96	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-15	mA
I_{OL}	Low-level output current			48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7					V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
Vol	Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & V_{\mathrm{IL}}=M A X \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{lOL}_{\text {L }}=\mathrm{MAX}$	$\pm 10 \% V_{C C}$		0.38	0.55	V		
			$\pm 5 \% V_{\text {cc }}$				0.38	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	OFF-state output current, High-level voltage applied		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
lozl	OFF-state output current, High-level voltage applied		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
I_{cc}	Supply current (total)	ICCH	$V_{C C}=M A X$				19	26	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					27	37	mA			
		ICCz					23	32	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100	125		90		MHz
t_{PLLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 2	6.5	8.5	11.5	6.0	12.5	ns
$\begin{aligned} & \mathbf{t}_{\text {PZH }} \\ & \mathbf{t}_{\text {PZLL }} \end{aligned}$	Output Enable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{TZL}} \\ & \mathrm{t}_{\mathrm{THZ}} \\ & \hline \end{aligned}$	Transition Time 10% to $90 \%, 90 \%$ to 10%	Waveform 4 Waveform 5	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	4.0 2.0	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to CP	Waveform 3	2.5 2.5			3.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time D_{n} to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time \bar{E}_{n} to CP	Waveform 3	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$			5.0 8.5		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, E_{n} to CP	Waveform 3	0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$			3.0 6.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR Pulse width High	Waveform 2	3.5			3.5		ns
$t_{\text {rec }}$	Recovery time, MR to CP	Waveform 2	4.5			5.5		ns

Quad D-Type Flip-Flop (3-State)

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock and Enable Inputs to Outputs, Clock and Enable Widths and Maximum Clock Frequency

Waveform 3. Data and Select Setup and Hold Times

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 4. 3-state Output Enable Time to High Level and Output Disable Time From High Level

Waveform 5. 3-state Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=15 \mathrm{~V}$
The Shaded Area Indicates When the Output is Permitted to Change for Predictable Output Performance.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- Six edge-triggered D-type flipflops.
- Buffered common Clock
- Buffered, asynchronous Master Reset

DESCRIPTION

The 'F174 has six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flipflop's Q output.
All Q outputs will be forced Low independent of Clock or Data inputs by a Low voltage level on the $\overline{M R}$ input. The device is useful for applications where true outputs only are required, and the Clock and Master Reset are common to all storage elements.

FAST 74F174
Flip-Flop
Hex D Flip-Flops
Product Specification

TYPE	TYPICAL f max	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 174	100 MHz	35 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F174N
16-Pin Plastic SO	N74F174D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING 	INPUTS			OUTPUTS
	$\overline{\text { MR }}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L
Load "1"	H	\uparrow	h	H
Load "0"	H	\uparrow	I	L

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
L = Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
X = Don't care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbf{I N}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature			70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F174			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{I H}}$	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
${ }_{1 / 2}$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-crrcuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$			35	45	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F174					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	80	100		80		MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay $C P$ to Q_{n} or \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 9.0 \\ 11.0 \end{array}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 3	5.0	8.5	14.0	5.0	15.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F174					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{w}(\mathrm{~L})$	$\overline{\text { MR pulse width Low }}$	Waveform 3	5.0			5.0		ns
$t_{\text {rec }}$	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 3	5.0			5.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Flip-Flop

AC WAVEFORMS

cp

Dn
cP

Waveform 1. Clock to Output Delays, Clock Pulse Width, and Maximum Clock Frequency

Waveform 3. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F175
Quad D Flip-Flop

Quad D Flip-Flop

Product Specification

FAST Products

FEATURES

- Four edge-triggered D flip-flops
- Buffered common Clock
- Buffered, asynchronous Master Reset
- True and complementary output

DESCRIPTION

The 'F175 is a quad, edge-triggered Dtype flip-flop with individual D inputs and both Q and \bar{Q} outputs. The common buffered Clock (CP) and Master Reset ($\overline{\mathrm{MR}}$) inputs load and reset (clear) all flipflops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flipflop's Q output.
All Q outputs will be forced Low independantly of Clock or Data inputs by a Low voltage level on the $\overline{M R}$ input. The device is useful for applications where both true and complement outputs are required, and the Clock and Master Re set are common to all storage elements.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 175	140 MHz	25 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F175N
$16-$ Pin Plastic SO	N74F175D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	True outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\bar{Q}_{3}$	Complementary outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Quad D Flip-Flop

LOGIC DIAGRAM

LD01921S
$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$
MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	$\overline{\mathbf{M R}}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L	H
Load "1"	H	\uparrow	h	H	L
Load "0"	H	\uparrow	I	L	H

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
OH	High-level output current			-1	mA
IOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F175			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V
11	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$			25	34	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F175					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	140		100		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $C P$ to Q_{n} or \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 3	4.5	9.0	11.5	4.5	13	ns
$t_{\text {PLH }}$	Propagation delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{\mathrm{n}}$	Waveform 3	4.0	6.5	8.0	4.0	9.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F175					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Puise width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$t_{w}(L)$	$\overline{\text { MR Pulse width Low }}$	Waveform 3	5.0			5.0		ns
trec	Recovery time $\overline{M R}$ to CP	Waveform 3	5.0			5.0		ns

AC WAVEFORMS

Waveform 1. Clock to Output Delays

WF06263s

Waveform 2. Data Setup and Hold Times

Waveform 3. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

$$
\text { NOTE: For all waveforms, } V_{M}=1.5 \mathrm{~V} \text {. }
$$

The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to Zout of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

4-Bit Arithmetic Logic Unit Product Specification

FAST Products

FEATURES

- Provides 16 arithmetic operations: add, subtract, compare, and double; plus 12 other arithmetic operations
- Provides all 16 logic operations of two variables: Exclusive-OR, Compare, AND, NAND, NOR, OR, plus 10 other logic operations
- Full look-ahead Carry for Highspeed arithmetic operation on long words
- 40\% faster than 'S181 with only 30\% 'S181 power consumption
- Available in 300 mil -wide 24 -pin Slim DIP package

DESCRIPTION

The 'F181 is a 4-bit High-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs $\left(S_{0}-S_{3}\right)$ and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active-High or activeLow operands. The Function Table lists these operations.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 181	7.3 ns	43 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE VCC $=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
24-Pin Plastic DIP	N74F181N
24-Pin Plastic SOL	N74F181D

NOTE:

1. For information regarding devices processed to Milltary Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
M	Mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3}$	Operand inputs	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Function select inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
C_{n}	Carry input	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{n}}+4$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}=\mathrm{B}$	Compare output	${ }^{*} \mathrm{OC} / 33$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$
$\overline{\mathrm{~F}}_{0}-\overline{\mathrm{F}}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{G}}$	Carry generate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry propagate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. *OC = Open-Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

When the Mode Control input (M) is High, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is Low, the carries are enabled and the device performs arithmetic operations on the two 4bit words. The device incorporates full internal carry look-ahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}}+4$ output, or for carry look-ahead between packages using the signals \bar{P} (Carry Propagate) and \bar{G} (Carry Generate). \bar{P} and \bar{G} are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output $\left(C_{n+4}\right)$ signal to the Carry input $\left(C_{n}\right)$ of the next unit. For High-speed operation the device is used in conjunction with the
'182 carry look-ahead circuit. One carry lookahead package is required for each group of four '181 devices. Carry look-ahead can be provided at various levels and offers Highspeed capability over extremely long word lengths.
The $A=B$ output from the device goes High when all four \bar{F} outputs are High and can be used to indicate logic equivalence over 4 bits when the unit is in the subtract mode. The $A=B$ output is open-collector and can be wired - AND with other $A=B$ outputs to give a comparison for more than 4 bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.
The Function Table lists the arithmetıc operations that are performed without a carry in. An
incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (two's complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (one's complement), a carry out means borrow; thus, a carry is generated when there is no underflow and no carry is generated when there is underflow.

As indicated, this device can be used with either active-Low inputs producing active-Low outputs or with active-High inputs producing active-High outputs. For either case, the table lists the operations that are performed to the operands labeled inside the logic symbol.

MODE SELECT-FUNCTION TABLE

MODE SELECT INPUTS				ACTIVE HIGH INPUTS \& OUTPUTS	
\mathbf{S}_{3}	$\mathbf{S}_{\mathbf{2}}$	\mathbf{S}_{1}	S_{0}	$\begin{aligned} & \text { Logic } \\ & (M=H) \end{aligned}$	$\begin{gathered} \text { Arithmetic** } \\ (M=L)\left(C_{n}=H\right) \end{gathered}$
L	L	L	L	$\overline{\text { A }}$	A
L	L	L	H	$\overline{A+B}$	$A+B$
L	L	H	L	$\overline{\text { AB }}$	$A+\bar{B}$
L	L	H	H	Logical 0	minus 1
L	H	L	L	$\stackrel{\overline{A B}}{ }$	A plus $A \bar{B}$
L	H	L	H	$\overline{\text { B }}$	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$A \oplus B$	A minus B minus 1
L	H	H	H	$A \bar{B}$	$A B$ minus 1
H	L	L	L	$\bar{A}+B$	A plus $A B$
H	L	L	H	$\overline{A \oplus B}$	A plus B
H	L	H	L	B	$(A+\bar{B})$ plus $A B$
H	L	H	H	$A B$	$A B$ minus 1
H	H	L	L	Logical 1	A plus A^{*}
H	H	L	H	$A+\bar{B}$	($A+B$) plus A
H	H	H	L	$A+B$	($A+\bar{B}$) plus A
H	H	H	H	A	A minus 1

MODE SELECT INPUTS				ACTIVE LOW INPUTS \& OUTPUTS	
S_{3}	\mathbf{S}_{2}	S_{1}	\mathbf{S}_{0}	$\begin{aligned} & \text { LOGIC } \\ & (M=H) \end{aligned}$	$\begin{aligned} & \text { ARITHMETIC** } \\ & (M=L)\left(C_{n}=L\right) \end{aligned}$
L	L	L	L	$\overline{\text { A }}$	A minus 1
L	L	L	H	$\overline{\mathrm{AB}}$	$A B$ minus 1
L	L	H	L	$\bar{A}+B$	$A \bar{B}$ minus 1
L	L	H	H	Logical 1	minus 1
L	H	L	L	$\overline{\mathrm{A}+\mathrm{B}}$	A plus ($A+\bar{B}$)
L	H	L	H	$\overline{\text { B }}$	$A B$ plus ($A+\bar{B}$)
L	H	H	L	$\bar{A} \oplus \bar{B}$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$A+\bar{B}$
H	L	L	L	$\bar{A} B$	A plus ($A+B$)
H	L	L	H	$A \oplus B$	A plus B
H	L	H	L	B	$A \bar{B}$ plus ($A+B$)
H	L	H	H	A + B	$A+B$
H	H	L	L	Logical 0	A plus A^{*}
H	H	L	H	$A \bar{B}$	$A B$ plus A
H	H	H	L	$A B$	$A \bar{B}$ plus A
H	H	H	H	A	A

[^3]
Arithmetic Logic Unit

LOGIC DIAGRAM

SUM MODE TEST TABLE I
FUNCTION INPUTS: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	Remaining \bar{A} and \bar{B}	C_{n}	\bar{F}_{1}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	$\overline{B_{1}}$	\bar{A}_{1}	None	Remaining \bar{A} and \bar{B}	C_{n}	\bar{F}_{1}
tpLH $\mathrm{t}_{\mathrm{PHL}}$	\bar{A}_{i}	\bar{B}_{1}	None	None	$\stackrel{R}{\mathrm{~A} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{n}}$	$\overline{\text { P }}$
$t_{\text {PLL }}$ tphL	\bar{B}_{i}	\bar{A}_{1}	None	None	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{n} \end{gathered}$	$\overline{\mathbf{P}}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{\bar{A}_{i}}$	None	\bar{B}_{1}	$\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	\bar{G}
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{1}	None	\bar{A}_{1}	Remaining \bar{B}	$\begin{aligned} & \text { Remaining } \bar{A}, \\ & C_{n} \end{aligned}$	$\overline{\mathrm{G}}$
tpLH tphl	\bar{A}_{1}	None	\bar{B}_{1}	Remaining \bar{B}	Remaining \bar{A}, C_{n}	C_{n+4}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{B}_{i}	None	\bar{A}_{1}	Remaining \bar{B}	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	C_{n+4}
$t_{\text {PLH }}$ tphL	C_{n}	None	None	$\overline{\text { All }}$	$\begin{aligned} & \text { All } \\ & \bar{B} \end{aligned}$	Any \bar{F} or $\mathrm{C}_{\mathrm{n}+4}$

DIFF MODE TEST TABLE II

FUNCTION INPUTS: $S_{1}=S_{2}=4.5 \mathrm{~V}, S_{0}=S_{3}=M=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{1}	$\underset{\bar{A}}{R_{i}}$	Remaining \bar{B}, C_{n}	\bar{F}_{1}
tpLH $t_{\text {PHL }}$	\bar{B}_{i}	\bar{A}_{1}	None	$\operatorname{Remaining~}_{\bar{A}}$	Remaining \bar{B}, C_{n}	\bar{F}_{1}
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{1}	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\overline{\text { P }}$
tpLH tphL	\bar{B}_{1}	\bar{A}_{1}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	$\overline{\mathrm{P}}$
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	None	$\begin{gathered} \text { Remaining } \\ \bar{A} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	$\overline{\mathrm{G}}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{B}_{i}	None	\bar{A}_{1}	None	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{n} \end{gathered}$	$\overline{\mathrm{G}}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{1}	$\underset{\bar{A}}{R_{i}}$	Remaining \bar{B}, C_{n}	$A=B$
$t_{\text {PLH }}$ tphi	\bar{B}_{1}	\bar{A}_{1}	None	$\underset{\bar{A}}{\text { Remaining }}$	Remaining \bar{B}, C_{n}	$A=B$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	C_{n+4}
$t_{\text {PLH }}$ tphL	\bar{B}_{1}	None	\bar{A}_{1}	None	Remaining \bar{A} and \bar{B}, C_{n}	C_{n+4}
$t_{\text {PLH }}$ $t_{\text {PHL }}$	C_{n}	None	None	All $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	None	Any \bar{F} or $\mathrm{C}_{\mathrm{n}+4}$

LOGIC MODE TEST TABLE III

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST	FUNCTION INPUTS
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND		
$t_{\text {PLH }}$ $t_{\text {phL }}$	\bar{A}_{1}	\bar{B}_{1}	None	None	$\overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{i}	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 V \end{gathered}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{1}	\bar{A}_{1}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{1}	$\begin{gathered} \mathrm{S}_{1}=\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V} \\ \mathrm{~S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} \end{gathered}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.50	5.0	5.50	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
V_{OH}	High-level output current	$A=B$			4.5	V
IOH	High-level output current	Any output except $A=B$			-1	mA
lOL	Low-level output current				20	mA
TA	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	Any output except $A=B$				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX }, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$			
IIL	Low-level input current	M	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		$\begin{aligned} & \bar{A}_{0}-\bar{A}_{3} \\ & \bar{B}_{0}-\bar{B}_{3} \end{aligned}$						-1.8	mA			
		$\mathrm{S}_{0}-\mathrm{S}_{3}$						-2.4	mA			
		C_{n}						-3.0	mA			
IOH	High-level output current	A $=B$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{M} / \mathrm{N}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$					250	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	Any output except $A=B$	$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current ${ }^{4}$ (total)	ІсСН	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\begin{aligned} & S_{0}-S_{3}=M=\bar{A}_{0}-\bar{A}_{3}=4.5 \mathrm{~V} \\ & \bar{B}_{0}-\bar{B}_{3}=C_{n}=G N D \end{aligned}$			43	65	mA			
		${ }^{\text {c ClL }}$		$\begin{aligned} & S_{0}-S_{3}=M=4.5 V \\ & \bar{B}_{0}-\bar{B}_{3}=C_{n}=\bar{A}_{0}-\bar{A}_{3}=G N D \end{aligned}$			43	65	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure ICC with all outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS				74F181					UNIT
						$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
		Mode	Table	Wave form	Conditions	Min	Typ	Max	Min	Max	
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay C_{n} to C_{n+4}	Sum Diff	$\begin{aligned} & \text { I } \\ & \text { II } \end{aligned}$	2	$\mathrm{M}=0 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to C_{n+4}	Sum	1	1	$\begin{gathered} M=S_{1}=S_{2}=0 \mathrm{~V}, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.4 \end{gathered}$	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to C_{n+4}	Diff	11	4	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay C_{n} to \bar{F}_{n}	Diff Sum	II	2	$\mathrm{M}=0 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\overline{\mathrm{A}}$ or \bar{B}_{n} to $\overline{\mathrm{G}}$	Sum	1	2	$\begin{gathered} M=S_{1}=S_{2}=0 \mathrm{~V}, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to $\overline{\mathrm{G}}$	Diff	11	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{P}	Sum	1	2	$\begin{gathered} M=S_{1}=S_{2}=0 \mathrm{~V}, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns
tpLH ${ }^{\text {thHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{P}	Diff	11	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{1} or \bar{B}_{1} to \bar{F}_{1}	Sum	1	2	$\begin{gathered} M=S_{1}=S_{2}=0 \mathrm{~V}, \\ S_{0}=S_{3}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.2 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{A}_{1} or \bar{B}_{1} to \bar{F}_{1}	Diff	11	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{F}_{n}	Sum		1, 2		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{F}_{n}	Diff		1, 2		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 9.4 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{1} or \bar{B}_{1} to \bar{F}_{1}	Logic	III	3	$\mathrm{M}=4.5 \mathrm{~V}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to $A=B$	Diff	II	3	$\begin{gathered} M=S_{0}=S_{3}=0 \mathrm{~V}, \\ S_{1}=S_{2}=4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 18.5 \\ 9.8 \end{gathered}$	$\begin{aligned} & 27.0 \\ & 12.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 29.0 \\ & 13.5 \end{aligned}$	ns

Arithmetic Logic Unit

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS					UNIT
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
		Mode	Waveform	Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphi	Propagation delay S_{1} to \bar{F}_{i} (Inv)		1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{i} to F_{1} (Non-Inv)		2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay S_{1} to $\mathrm{A}=\mathrm{B}$ (Inv)		1	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 7.5 \\ 14.0 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 18.0 \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 20.0 \end{aligned}$	ns
tpLH tphL	Propagation delay S_{1} to $A=B$ (Non-Inv)		2	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 19.5 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay S , to $\mathrm{C}_{\mathrm{n}+4}$ (inv)		1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S , to $\overline{\mathrm{G}}$ (Non-Inv)		2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay S , to $\overline{\mathrm{P}}$ (Non-Inv)		2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay M to \bar{F}_{1} (Inv)	Sum	1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay M to \bar{F}_{i} (Non-Inv)	Sum	2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay M to \bar{F}_{1} (Inv)	Diff	1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay M to F_{1} (Non-Inv)	Diff	2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay M to $\mathrm{A}=\mathrm{B}$ (Inv)	Sum	1	$\begin{gathered} \hline 5.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.0 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & 10.5 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 11.0 \\ & 18.5 \\ & \hline \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay M to $\mathrm{A}=\mathrm{B}$ (Non-Inv)	Sum	2	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 12.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 13.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay M to $\mathrm{A}=\mathrm{B}$ (Inv)	Diff	1	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 7.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & 10.5 \\ & 16.5 \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 19.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay M to $\mathrm{A}=\mathrm{B}$ (Non-Inv)	Diff	2	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 16.5 \\ & 12.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 14.0 \end{aligned}$	ns

AC WAVEFORMS

WF07540S
Waveform 1. Propagation Delay for Operands to Carry Output and Outputs

WF06201s

Waveform 3. Propagation Delay for Operands to Carry Generate and Propagate Outputs, Operands to $\mathbf{A}=\mathrm{B}$ Output, and Outputs

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUITS AND WAVEFORMS

Test Circult for Open-Collector Outputs

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

FAST Products

FEATURES

- Provides carry look-ahead across a group of four ALU's
- Multi-level look-ahead for highspeed arithmetic operation over long word lengths

DESCRIPTION

The 'F182 Carry look-ahead generator accepts up to four pairs of active-Low Carry Propagate ($\bar{P}_{0}, \bar{P}_{1}, \bar{P}_{2}, \bar{P}_{3}$) and Carry Generate ($\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}, \overline{\mathrm{G}}_{2}, \overline{\mathrm{G}}_{3}$) signals and an active-High Carry input (C_{n}) and provides anticipated active-High carries ($C_{n+x}, C_{n+y}, C_{n+z}$) across four groups of binary adders. The 'F182 also has ac-tive-Low Carry Propagate (\bar{P}) and Carry Generate ($\overline{\mathrm{G}}$) outputs which may be used for further levels of look-ahead.
The logic equations provided at the outputs are:

$$
\begin{aligned}
& C_{n+x}=G_{0}+P_{0} C_{n} \\
& C_{n+y}=G_{1}+P_{1} G_{0}=P_{1} P_{0} C_{n} \\
& C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{2} G_{0} \\
& \quad \quad+P_{2} P_{1} P_{0} C_{n} \\
& \bar{G}=\frac{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}}{\bar{P}=\overline{P_{3} P_{2} P_{1} P_{0}}}
\end{aligned}
$$

The ' F 182 can also be used with binary ALU's in an active-Low or active-High input operand mode. The connections to and from the ALU to the Carry lookahead generator are identical in both cases.

PIN CONFIGURATION

FAST 74F182
 Carry Look-Ahead Generator

Carry Look-Ahead Generator Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT
(TOTAL)		

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE RCC $5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F182N
16-Pin Plastic SO	N74F182D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 \mathrm{~F}(\mathrm{U} . \mathrm{L})$. HIGH/LOW	LOAD VALUE HIGH/LOW
C_{n}	Carry input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}$	Cary generate inputs (active-Low)	$1.0 / 14.0$	$20 \mu \mathrm{~A} / 8.4 \mathrm{~mA}$
$\overline{\mathrm{G}}_{1}$	Cary generate input (active-Low)	$1.0 / 16.0$	$20 \mu \mathrm{~A} / 9.6 \mathrm{~mA}$
$\overline{\mathrm{G}}_{3}$	Cary generate input (active-Low)	$1.0 / 8.0$	$20 \mu \mathrm{~A} / 4.8 \mathrm{~mA}$
$\overline{\mathrm{P}}_{0}, \overline{\mathrm{P}}_{1}$	Cary propagate inputs (active-Low)	$1.0 / 8.0$	$20 \mu \mathrm{~A} / 4.8 \mathrm{~mA}$
$\overline{\mathrm{P}}_{2}$	Cary propagate input (active-Low)	$1.0 / 6.0$	$20 \mu \mathrm{~A} / 3.6 \mathrm{~mA}$
$\overline{\mathrm{P}}_{3}$	Cary propagate input (active-Low)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{n}}+\mathrm{x}-\mathrm{C}_{\mathrm{n}+\mathrm{z}}$	Carry outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{G}}$	Carry generate output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry propagate output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

[^4]LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS									OUTPUTS				
C_{n}	\bar{G}_{0}	\bar{P}_{0}	\bar{G}_{1}	$\overline{\mathbf{P}}_{\mathbf{1}}$	\bar{G}_{2}	$\overline{\mathbf{P}}_{2}$	$\overline{\mathbf{G}}_{3}$	$\overline{\mathbf{P}}_{3}$	C_{n+x}	C_{n+y}	$\mathrm{C}_{\mathrm{n}+\mathrm{z}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
$\begin{aligned} & X \\ & X \\ & L \\ & X \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$							$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$				
$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$						$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$			
$\begin{aligned} & \hline X \\ & X \\ & X \\ & X \\ & L \\ & X \\ & X \\ & X \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline X \\ & H \\ & H \\ & H \\ & X \\ & L \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$					$\begin{aligned} & \text { L } \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$		
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \hline X \\ & X \\ & X \\ & H \\ & H \\ & X \\ & X \\ & L \\ & X \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { X } \\ & \text { H } \\ & \text { X } \\ & \text { X } \\ & \text { X } \\ & \text { X } \\ & \text { L } \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline H \\ & X \\ & X \\ & X \\ & X \\ & X \\ & L \\ & L \\ & L \end{aligned}$				$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	
		H X X X L		$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$		X X X H L					H H H H L

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

APPLICATION

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I OH	High-level output current			-1	mA
lol	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F182			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \quad I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		v		
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, I_{\text {I }}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V	
$!$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	C_{n}	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}$					-8.4	mA		
		$\overline{\mathrm{G}}_{1}$					-9.6	mA		
		$\bar{G}_{3}, \bar{P}_{0}, \bar{P}_{1}$					-4.8	mA		
		\bar{P}_{2}					-3.6	mA		
		\bar{P}_{3}					-2.4	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=\mathrm{MAX}$			18.0	28	mA		
		$\mathrm{I}_{\text {cle }}$				24.0	36	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testıng los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operatıonal values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. I_{CC} is measured with $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}$, and $\overline{\mathrm{G}}_{2}$ inputs at 4.5 V ; all other inputs grounded and all outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F182					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay C_{n} to $C_{n+x}, C_{n+y}, C_{n+z}$	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	$\begin{aligned} & \text { Propagation delay } \\ & \bar{P}_{0}, \bar{P}_{1} \text { or } \bar{P}_{2}, \text { to } C_{n+x}, \\ & C_{n+y}, C_{n+z} \end{aligned}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}$ or $\overline{\mathrm{G}}_{2}$ to $\mathrm{C}_{\mathrm{n}+\mathrm{x}}$, C_{n+y}, C_{n+z}	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{P}_{1}, \bar{P}_{2} or \bar{P}_{3} to \bar{G}	Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{G}}_{\mathrm{n}}$ to $\overline{\mathrm{G}}$	Waveform 2	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{P}_{n} to \bar{P}	Waveform 2	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	ns

Carry Look-Ahead Generator

AC WAVEFORMS

Waveform 1. For Inverting Outputs

WF06056S
Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$
of pulse generators.

wF06450s
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Objective Specification

FAST Products

DESCRIPTION

The 74F189 is a high-speed, 64-bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-State and are in the High-impedance state whenever the Chip Select ($\overline{\mathrm{CE}}$) input is High. The outputs are active only in the Read mode and the output data is the complement of the stored data.

Ordering information can be found on the following page.

BLOCK DIAGRAM

FEATURES

- Address access time: 15ns max
- Power dissipation: 4.3mW/bit typ
- Schottky clamped TTL
- One chip enable input
- I/O
- Inputs: PNP Buffered
- Outputs: 3-State

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

PIN CONFIGURATION

[^5]
ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-Pin Plastic Dual-In-Line 300mil-wide	N74F189N
16-Pin Plastic Small Outline 300mil-wide	N74F189D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	$V_{D C}$
$V_{I N}$	Input voltage	-0.5 to +7.0	
$\mathrm{~V}_{\mathrm{OH}}$	Output voltage High	-0.5 to +5.5	
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	V_{DC}	
$\mathrm{T}_{\text {STG }}$	Storage temperature range	V_{DC}	

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{3}$	Max	
Input voltage ${ }^{2}$						
$V_{1 C}{ }^{7}$	Clamp	$V_{C C}=5.25 \mathrm{~V}, \mathrm{l}_{1}=-18 \mathrm{~mA}$			-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}}{ }^{2,3} \\ & \hline \end{aligned}$	High Low	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{l}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{gathered}$	2.4	0.35	0.5	V
Input current						
$\begin{aligned} & I_{H} \\ & I_{I L} \end{aligned}$	High Low	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =0.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 40 \\ & 0.6 \end{aligned}$	$\mu \mathrm{A}$
Output current						
$\begin{aligned} & \text { loz } \\ & \text { los } \end{aligned}$	Off-state Short circuit	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, 2.4 \mathrm{~V} \geqslant \mathrm{~V}_{\mathrm{OUT}} \geqslant 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{gathered}$	-60		$\begin{gathered} \pm 50 \\ -150 \end{gathered}$	$\mu \mathrm{A}$ mA
Supply current ${ }^{6}$						
Icc		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \overline{\mathrm{WE}}, \overline{\mathrm{CE}}=\mathrm{GND}$			70	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		5 8		pF

TRUTH TABLE

MODE	$\overline{\text { CE }}$	$\overline{\text { WE }}$	DIN	DATA OUT
Read	0	1	X	Stored $\overline{\text { Data }}$
Write " 0 "	0	0	0	Hi-Z
Write "1"	0	0	1	Hi-Z
Disable	1	X	X	Hi-Z

X = Don't care

AC ELECTRICAL CHARACTERISTICS $R_{L}=500 \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	то	FROM	LIMITS			UNIT
				Min	Typ	Max	
Access time							
$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & \mathrm{t}_{\mathrm{CE}} \end{aligned}$	Address Chip enable					$\begin{aligned} & 15 \\ & 13 \end{aligned}$	ns
Disable time ${ }^{8}$							
${ }^{\text {c }}$ CD		Output	Chip enable			9	ns
Response time ${ }^{8}$							
two		Output	Write enable			9	ns
Write recovery time							
$t_{\text {Wr }}$		Output	Write enable			13	ns
Setup and hold time							
$\begin{aligned} & \mathrm{t}_{\mathrm{WSA}}{ }^{9} \\ & \mathrm{t}_{\mathrm{WHA}} \end{aligned}$	Setup time Hold time	Write enable	Address	3 2			
$t_{\text {wsD }}$ ${ }^{t}$ WHD	Setup time Hold time	Write enable	Data in	13 2			ns
${ }^{t}$ wsc $t_{\text {WHC }}$	Setup time Hold time	Write enable	$\overline{\mathrm{CE}}$	3 2			
Pulse width							
$t_{W P}{ }^{1} 0$	Write enable			10			ns

NOTES:

1 All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2 Output sink current is supplied through a resistor to V_{CC}.
3 All sense outputs in Low state.
4 To guarantee a Write into the slowest bit
5 Positive current is defined as into the terminal referenced.
$6 \mathrm{I}_{\mathrm{IC}}$ is measured with the Write enable and memory enable inputs grounded, all other inputs at 0.45 V , and the output open.
7 Test each input one at a time.
8 Measured at a delta of 0.5 V from the logic level with $R_{1}=750 \Omega, R_{2}=750 \Omega$ and $C_{L}=5 p F$.
9 Measured with minımum twp.
10 Measured with minimum twSA

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

MEASUREMENTS:
All circuit delays are measured at the +15 V level of inputs and output.

Input Pulses

TIMING DIAGRAMS

Signetics

FAST Products

FEATURES

- High-speed - 125MHz typical $f_{\text {MAX }}$
- Synchronous, reversible counting
- BCD/decade - 'F190 4-bit binary - 'F191
- Asynchronous Parallel Load capability
- Cascadable without external logic
- Single up/down control input

DESCRIPTION

The ' F 190 is an asynchronously presettable up/down BCD decade counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. The 'F191 is similar, but is a 4-bit binary counter.

Asynchronous Parallel Load capability permits the counter to be preset to any desired number. Information present on the parallel Data inputs $\left(D_{0}-D_{3}\right)$ is loaded into the counter and appears on the outputs when the Parallel Load ($\overline{\mathrm{PL}}$) input is Low. As indicated in the Mode Select Table, this operation overrides the counting function.

FAST 74F190, 74F191
 Counters

'F190 Asynchronous Presettable BCD/Decade Up/Down Counter
'F191 Asynchronous Presettable 4-Bit Binary Up/Down Counter
Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
(TOTAL)		

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
$16-\mathrm{Pin}$ Plastic DIP	N74F190N, N74F191N
$16-$ Pin Plastic SO	N74F190D, N74F191D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Count enable input (active-Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{U} / \mathrm{D}}$	Up/down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{RC}}$	Ripple clock output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
TC	Terminal count output (active-High)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

Counting is inhibited by a High level on the Count Enable ($\overline{\mathrm{CE}}$) input. When $\overline{\mathrm{CE}}$ is Low, internal state changes are initiated.
Overflow/underflow indications are provided by two types of outputs, the Terminal Count (TC) and Ripple Clock ($\overline{\mathrm{RC}}$). The TC output is normally Low and goes High when: 1) the count reaches zero in the count-down mode or 2) reaches " 9 " for 'F190 or " 15 ' for 'F191 in the count-up mode. The TC output will remain High until a state change occurs, either by counting or presetting, or until $\overline{\mathrm{U}} / \mathrm{D}$ is changed. TC output should not be used as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the $\overline{\mathrm{RC}}$ output. When TC is High and $\overline{\text { CE }}$ is Low, the RC follows the Clock Pulse. The $\overline{\mathrm{RC}}$ output essentially duplicates the Low clock pulse width, although delayed in time by two gate delays. The 'F190/'F191 simplifies

LOGIC SYMBOL

the design of multistage counters, as indicated in Figures 1a and 1b.

In Figure 1a, each $\overline{\mathrm{RC}}$ output is used as the Clock input for the next higher stage. When the Clock input source has limited drive capability this configuration is particularly advantageous, since the clock source drives only the first stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a High signal on $\overline{C E}$ inhibits the $\overline{\mathrm{RC}}$ output pulse as indicated in the Mode Select Table. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This is a disadvantage of the configuration in some applications.
Figure 1b shows a method of causing state changes to occur simultaneously in all stages. The $\overline{R C}$ outputs propagate the carry/borrow

LOGIC SYMBOL (IEEE/IEC)

signals in ripple fashion and all Clock inputs are driven in parallel. The Low state duration of the clock in this configuration must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes High. Since the $\overline{R C}$ output of any package goes High shortly after its CP input goes High, there is no such restriction on the High state duration of the clock.
In Figure 1c, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the $\overline{C E}$ input signal for a given stage. An enable signal must be included in each carry gate in order to inhibit counting. The TC output of a given stage is not affected by its own CE, therefore, the simple inhibit scheme of Figure 1a and 1b does not apply.

b. Synchronous N-Stage Counter With Common Clock Using Ripple Clock

* Carry Gate
c. Synchronous N-Stage Counter With Common Clock and Parallel Gated Terminal Count

Figure 1

Counters

FAST 74F190, 74F191

LOGIC DIAGRAM

LOGIC DIAGRAM

'F191

MODE SELECT — FUNCTION TABLE, 'F190, 'F191

OPERATING MODE	INPUTS					OUTPUTS
	$\overline{\text { PL }}$	$\overline{\mathbf{U} / D}$	$\overline{\mathbf{C E}}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Parallel load	L	X	X	X	L	L
	L	X	X	X	H	H
Count up	H	L	I	\uparrow	X	count up
Count down	H	H	I	\uparrow	X	count down
Hold 'do nothing"	H	X	H	X	X	no change

TC AND $\overline{\operatorname{RC}}$ FUNCTION TABLE, 'F190

INPUTS			TERMINAL COUNT StATE				OUTPUTS	
U/D	$\overline{C E}$	CP	Q_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}	TC	$\overline{\mathrm{RC}}$
H	H	X	H	X	X	H	L	H
L	H	x	H	X	X	H	H	H
L	L	凹	H	X	X	H	\downarrow	U
L	H	x	L	L	L	L	L	H
H	H	x	L	L	L		H	H
H	L	U	L	L	L	L	\downarrow	U

TC AND $\overline{\mathrm{RC}}$ FUNCTION TABLE, 'F191

INPUTS			TERMINAL COUNT STATE				OUTPUTS	
U/D	$\overline{C E}$	CP	\mathbf{Q}_{0}	Q_{1}	Q_{2}	Q_{3}	TC	$\overline{\mathrm{RC}}$
H	H	X	H	H	H	H	L	H
L	H	x	H	H	H	H	H	H
L	L	U	H	H	H	H	\downarrow	U
L	H	x	L	L	L	L	L	H
H	H	x	L	L	L	L	H	H
H	L	い	L	L	L	L	\downarrow	U

$H=$ High voltage level steady state.
$\mathrm{L}=$ Low voltage level steady state.
$\mathrm{I}=$ Low voltage level one setup time prior to the Low-to-High clock transition.
X = Don't care.
$\uparrow=$ Low-to-High clock transition.
$\Psi=$ Low pulse.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
IOUT	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l L	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F190, 191			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathrm{IH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-073	-1.2	\checkmark	
1	Input current at maximum input voltage		$V_{C C}=$ MAX, $V_{1}=7.0$				0.1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	$\overline{C E}$ input	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.8	mA		
		Other inputs					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
ICC	Supply current ${ }^{4}$ (total)		$V_{C C}=M A X$			40	55	mA		

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2 All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3 Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second
4 Measure $I_{\text {CC }}$ with all inputs grounded and all outputs open

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F190, 74F191					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{aligned} & T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$						
			Min	Typ	Max	Min	Max			
	Maximum clock	D_{n} to Q_{n}		Waveform 1	100	125		90		MHz
	frequency	D_{n} to $\overline{R C}$			85	95		75		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n}		Waveform 1	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \end{gathered}$	ns	
$t_{\text {PLH }}$ tphe	Propagation delay CP to TC		Waveform 1	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to $\overline{\mathrm{RC}}$		Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{C E}$ to $\overline{R C}$		Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$		Waveform 2	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay U/D to TC		Waveform 4	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D_{n} to Q_{n}		Waveform 3	$\begin{aligned} & 2.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 6.5 \\ \hline \end{array}$	$\begin{gathered} 7.5 \\ 13.0 \\ \hline \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D_{n} to TC		Waveform 3 Waveform 4	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \\ & \hline \end{aligned}$	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to $\overline{R C}$		Waveform 3 Waveform 4	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 15.0 \end{aligned}$	ns	
${ }^{\text {tpLH }}$ tphL	Propagation delay $\overline{\text { LL }}$ to Q_{n}		Waveform 5	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation delay $\overline{\text { LL to TC }}$		Waveform 5	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	ns	
$\begin{aligned} & t_{\text {PLLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $\overline{\mathrm{PL}}$ to $\overline{\mathrm{RC}}$		Waveform 5	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.0 \end{aligned}$	8.5 7.0	$\begin{aligned} & 21.0 \\ & 13.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F190, 74F191					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to $\overline{\mathrm{PL}}$	Waveform 6	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $\overline{\mathrm{PL}}$	Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\mathrm{t}_{\mathbf{s}}(\mathrm{L})$	Setup time, High or Low CE to CP	Waveform 6	10.0			10.0		ns
$t_{n}(L)$	Hold time, High or Low $\overline{C E}$ to CP	Waveform 6	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$t_{w}(L)$	$\overline{\text { PL }}$ pulse width, Low	Waveform 5	6.0			6.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low	Waveform 1	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, $\overline{\mathrm{PL}}$ to CP	Waveform 5	6.0			6.0		ns

Counters

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths, and Maximum Clock Frequency

Waveform 3. Propagation Delay, Non-inverting Path

Waveform 5. Parallel Load Pulse Width, Parallel Load to Output Delay and Parallel Load to Clock Recovery Time

Waveform 2. Propagation Delay, Clock or Clock Enable to Ripple Clock Output

WF0601xs
Waveform 4. Propagation Delay, Inverting Path

Waveform 6. Setup Time and Hold Time for D_{n} to $\overline{\mathrm{PL}}$, U/D to CP and CE to CP

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$$
V_{M}=15 \mathrm{~V}
$$

Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset (clear)
- Cascadable without external logic

DESCRIPTION

The 'F192 and 'F193 are 4-bit synchronous up/down counters - the 'F192 counts in BCD mode and the 'F193 counts in the binary mode. Separate up/ down clocks, $C P_{U}$ and $C P_{D}$ respectively, simplify operation. The outputs change state synchronously with the Low-toHigh transition of either Clock input. If the $C P_{U}$ clock is pulsed while $C P_{D}$ is held High, the device will count up . . . if $C P_{D}$ is pulsed while $C P_{U}$ is held High, the device will count down. Only one Clock input can be held High at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous reset pin - it may also be loaded in parallel by activating the asynchronous parallel load pin.

FAST 74F192, 74F193 Counters

'F192 - Synchronous Presettable BCD Decade
Up/Down Counter
'F193 - Synchronous Presettable 4-Bit Binary
Down Counter
Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 192	125 MHz	32 mA
74 F 193	125 MHz	32 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F192N, N74F193N
16-Pin Plastic SO	N74F192D, N74F193D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L$. HIGH/LOW	LOAD VALUE HIGH/LOW		
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$		
CP_{U}	Count up clock input (active rising edge)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$		
CP_{D}	Count down clock input (active rising edge)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$		
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load control input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$		
MR	Asynchronous Master Reset input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$		
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$		
TC_{U}	Terminal count up (carry) output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$		
$\overline{T C}_{D}$	Terminal count down (borrow) output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$		NOTE:
:---					
1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.					

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Counters

Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, preset load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master such that a Low-to-High
transition on the $C P_{D}$ input will decrease the count by one, while a similar transition on the $C P_{U}$ input will advance the count by one.

One clock should be held High while counting with the other, because the circuit will either count by two's or not at all depending on the
state of the first flip-flop, which cannot toggle as long as either clock input is Low. Applications requiring reversible operation must make the reversing decision while the activating clock is High to avoid erroneous counts.

LOGIC DIAGRAM, 'F192

STATE DIAGRAM, 'F192

MODE SELECT — FUNCTION TABLE, 'F192

OPERATING MODE	INPUTS								OUTPUTS		
	MR	PL	CP_{u}	CPD	D_{0}	D_{1}	D_{2}	D_{3}	$Q_{0} Q_{1} Q_{2} Q_{3}$	TC_{u}	$\mathbf{T C}_{\text {d }}$
Reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{llll} L & L & L & L \\ L & L & L & L \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Parallel load	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{array}{\|c} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{X} \\ \mathrm{X} \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{llll} \hline L & L & L & L \\ L & L & L & L \\ & Q_{n}= & D_{n} \\ Q_{n} & =D_{n} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Count up	L	H	\uparrow	H	X	X	X	X	Count up	$\mathrm{H}^{(1)}$	H
Count down	L	H	H	\uparrow	X	X	X	X	Count down	H	$\mathrm{H}^{(2)}$

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$\uparrow=$ Low-to-High clock transition

NOTES:

1. $\overline{T C}_{U}=C P_{U}$ at terminal count up (HLLH).
2. $\overline{T C}_{D}=C P_{D}$ at terminal count down (LLLL).

The Terminal Count Up $\left(\overline{T C}_{U}\right)$ and Termınal Count Down ($\overline{\mathrm{TC}}_{\mathrm{D}}$) outputs are normally High. When the circuit has reached the maximum count state of 9 (for the 'F192 and 15 for the 'F193), the next High-to-Low transition of CPU will cause $\overline{\mathrm{TC}}_{U}$ to go Low $\overline{\mathrm{TC}}_{U}$ will stay Low untıl CP_{u} goes High again, duplicating the count up clock, although delayed by two gate delays. Likewise, the TC_{D} output will go Low when the circuit is in the zero state and the CP_{D} goes Low The $\overline{\mathrm{TC}}$ outputs can be used
as the Clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a two-gate delay time difference added for each stage that is added.

The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel Data inputs $\left(D_{0}-D_{3}\right)$ is loaded into the counter and
appears on the outputs regardless of the conditions of the Clock inputs when the Parallel Load ($\overline{\mathrm{PL}}$) input is Low. A High level on the Master Reset (MR) input will disable the parallel load gates, override both Clock inputs, and set all Q outputs Low. If one of the Clock inputs is Low during and after a reset or load operation, the next Low-to-High transition of that clock will be interpreted as a legitimate signal and will be counted.

LOGIC DIAGRAM 'F193

STATE DIAGRAM, 'F193

MODE SELECT - FUNCTION TABLE, 'F193

OPERATING MODE	INPUTS								OUTPUTS			
	MR	PL	$\mathrm{CP}_{\mathbf{u}}$	CP_{D}	D_{0}	D_{1}	D_{2}	D_{3}		$Q_{1} Q_{2} Q_{3}$	$\overline{T C}_{U}$	$\overline{T C}_{\text {d }}$
Reset (clear)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	\bar{L}	$\begin{aligned} & \hline x \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \hline \mathbf{x} \\ & \mathrm{x} \end{aligned}$		$\begin{array}{lll} \hline L & L & L \\ L & L & L \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L
Parallel load	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$		L L L L L H L H H L H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Count up	L	H	\uparrow	H	X	X	X	X		Count up	$H^{(1)}$	H
Count down	L	H	H	\uparrow	X	X	X	X		Count down	H	$\mathrm{H}^{(2)}$

$\mathrm{H}=$ High voitage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
NOTES:

1. $\mathrm{TC}_{U}=C P_{U}$ at terminal count up (HHHH).
2. $T C_{D}=C P_{D}$ at terminal count down (LLLL).

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
lik	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current			-1	mA
lOL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F192, 'F193			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathbb{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.5	V		
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.5	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$I_{1 H}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
ILL	Low-level input current	$\mathrm{CP}_{\mathrm{U}}, \mathrm{CP}_{\text {D }}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.8	mA		
		Other inputs					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}$		-60		-150	mA		
I_{CC}	Supply current ${ }^{4}$ (total)		$V_{C C}=M A X$			32	50	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I_{CC} with parallel load and Master Reset inputs grounded, all other inputs at 4.5 V , and all outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F192, 'F193					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	125		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP_{U} or CP_{D} to $\overline{\mathrm{TC}}_{U}$ or $\overline{T C}_{D}$	Waveform 1, 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $C P_{u}$ or $C P_{D}$ to Q_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 13.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	Waveform 4	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 9.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 13.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 15.0 \end{gathered}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $\overline{\text { PL to }} \mathrm{Q}_{\mathrm{n}}$	Waveform 3	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 130 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Q_{n}	Waveform 5	5.0	7.5	11.0	5.0	12.0	ns
${ }_{\text {tPLH }}$	Propagation delay MR to $\overline{T C}_{U}$	Waveform 5	6.0	8.5	12.0	5.5	13.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to $\overline{T C}_{D}$	Waveform 5	5.0	7.5	11.0	5.0	12.0	ns
$t_{\text {PLLH }}$ tphL	Propagation delay $\overline{\mathrm{PL}}$ to $\overline{\mathrm{TC}}_{U}$ or $\overline{T C}_{D}$	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D_{n} to $\overline{T C}_{U}$ or $\overline{T C}_{D}$	Waveform 4	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F192, 'F193					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to $\overline{P L}$	Waveform 6	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $\overline{P L}$	Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { PL pulse width Low }}$	Waveform 3	6.0			6.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CPu or CP_{D} pulse width High or Low	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$		ns
$\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$	CPu or CP_{D} pulse width Low (change of direction)	Waveform 1	10.0			10.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR pulse width High	Waveform 5	6.0			6.0		ns
$\mathrm{trec}_{\text {re }}$	Recovery time $\overline{\mathrm{PL}}$ to CP u or CP_{D}	Waveform 3	6.0			6.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CPu or CP_{D}	Waveform 5	4.0			4.0		ns

FUNCTIONAL WAVEFORMS (Typical clear, load, and count sequences)

a. 'F192 Decade Counter

WF06710s
b. 'F193 Binary Counter

NOTES:

1. Clear overrides load data and count inputs.
2. When counting up, count-down input must be High, when counting down, count-up input must be High.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F194

Shift Register

4-Bit Bidirectional Universal Shift Register Product Specification

FEATURES

- Shift left and shift right capability
- Synchronous Parallel and Serial data transfers
- Easily expanded for both Serial and Parallel operation
- Asynchronous Master Reset
- Hold (do nothing) mode

DESCRIPTION

The functional characteristics of the 'F194 4-Bit Bidirectional Shift Register are indicated in the Logic Diagram and Function Table. The register is fully synchronous, with all operations taking place in less than 9ns (typical) for 74F, making the device especially useful for implementing very high-speed CPUs, or for memory buffer registers.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 194	150 MHz	33 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}=5 \mathrm{~V} \pm \mathbf{1 0 \%} \% \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
16-Pin Plastic DIP	N74F194N
16-Pin Plastic SO	N74F194D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode control inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SR}	Serial data input (shift right)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SL}	Serial data input (shift left)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{P}	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{M R}$	Asynchronous Master Reset (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The 'F194 design has special logic features which increase the range of application. The synchronous operation of the device is determined by two Mode Select inputs, S_{0} and S_{1}. As shown in the Mode Select Table, data can be entered and shifted from left to right (shift right, $Q_{0} \rightarrow Q_{1}$, etc.), or right to left (shift left, $Q_{3} \rightarrow Q_{2}$, etc.), or parallel data can be entered, loading all 4 bits of the register simultaneously. When both S_{0} and S_{1} are Low, existing data is retained in a hold (do nothing) mode. The first and last stages provide D-type Serial Data inputs ($\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$)
to allow multistage shift right or shift left data transfers without interfering with parallel load operation.
Mode Select and Data inputs on the 'F194 are edge-triggered, responding only to the Low-to-High transition of the Clock (CP). Therefore, the only timing restriction is that the Mode Control and selected Data inputs must be stable one setup time prior to the positive transition of the clock pulse. Signals on the Select, Parallel Data ($D_{0}-D_{3}$) and Serial Data ($\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$) inputs can change
when the clock is in either state, provided only the recommended setup and hoid times, with respect to the clock rising edge, are observed.
The four Parallel Data inputs $\left(D_{0}-D_{3}\right)$ are D type inputs. Data appearing on $D_{0}-D_{3}$ inputs when S_{0} and S_{1} are High is transferred to the $Q_{0}-Q_{3}$ outputs respectively, following the next Low-to-High transition of the clock. When Low, the asynchronous Master Reset ($\overline{\mathrm{MR}}$) overrides all other input conditions and forces the Q outputs Low.

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS							OUTPUTS			
	CP	$\overline{\text { MR }}$	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	D_{n}	\mathbf{Q}_{0}	\mathbf{Q}_{1}	Q_{2}	\boldsymbol{Q}_{3}
Reset (clear)	X	L	X	X	X	X	X	L	L	L	L
Hold (do nothing)	X	H	1	1	X	X	X	q_{0}	q_{1}	q_{2}	q_{3}
Shift left	\dagger	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	I	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathbf{q}_{1} \\ & \mathbf{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift right	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	1	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & q_{1} \\ & q_{1} \end{aligned}$	$\begin{aligned} & \mathbf{q}_{2} \\ & \mathbf{q}_{2} \end{aligned}$
Parallel load	\dagger	H	h	h	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}

$\mathrm{H}=$ High voltage level.
$h=$ High voltage level one setup time prior to the Low-to-High clock transition.
$L=$ Low voltage level.
I = Low voltage level one setup time prior to the Low-to-High clock transition.
$d_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition. $X=$ Don't care.
$\dagger=$ Low-to-High clock transition.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F194			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage ${ }^{3}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, V_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
VoL	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IH}}=\mathrm{MIN}, V_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{IOL}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.5	V
			$\pm 5 \% \mathrm{~V}_{\text {cC }}$		0.35	0.5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$1 / 2$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{4}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-60		-150	mA
Icc	Supply current ${ }^{5}$ (total)	$V_{C C}=$ MAX			33	46	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Output High state will change to Low state if an external voltage of less than 0.0 V is applied.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
5. With all outputs open, D_{1} inputs grounded and 4.5 V applied to $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{MR}$ and the serial inputs, I_{CC} is tested with a momentary ground, then 4.5 V applied to CP .

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F194					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \pm 10 \% \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	105	150		90		MHz
$t_{\text {PLH }}$ tphL	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 2	4.5	8.6	12	4.5	14	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F194					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{w}(H)$	Clock pulse width, High	Waveform 1	5.0			5.5		ns
$t_{w}(\mathrm{~L})$	MR pulse width, Low	Waveform 3	5.0			5.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, $D_{0}-D_{3}$, $\mathrm{D}_{\text {SR }}, \mathrm{D}_{\text {SL }}$ to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low, $D_{0}-D_{3}$, DSR, DSL to CP		0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low, S_{n} to CP	Waveform 4	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low, S_{n} to CP		0			0		ns
trec	Recovery time, $\overline{\mathrm{MR}}$ to CP	Waveform 3	7.0			8.0		ns

AC WAVEFORMS

Shift Register

TIMING DIAGRAM

(Typical Clear, Load, Right-Shift, Left-Shift, Inhibit and Clear Sequences)

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

wF06450s
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST 74F195
 Shift Register

4-Bit Parallel Access Shift Register Product Specification

FAST Products

FEATURES

- High-Impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Shift right and parallel load capability
- J- \bar{K} (D) inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset

DESCRIPTION

The functional characteristics of the 'F195 4-Bit Parallel Access Shift Register are indicated in the Logic Diagram and Function Table. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-toserial data transfers at very high speeds.
The 'F195 operates on two primary modes: shift right $\left(Q_{0}-Q_{1}\right)$ and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. Serial data enters the first flip-flop $\left(Q_{0}\right)$ via the J and \bar{K} inputs when the $\overline{P E}$ input is High, and is shifted 1 bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2} \rightarrow Q_{3}$ following each Low-to-High clock transition.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 195	115 MHz	45 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F195N
16-Pin Plastic SO	N74F195D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
CP	Clock Pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{PE}}$	Parallel Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~J}, \overline{\mathrm{~K}}$	$\mathrm{~J}-\overline{\mathrm{K}}$ or D type serial inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}, \bar{Q}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The J and \bar{K} inputs provide the flexibility of the JK type input for special applications and by tying the two pins together, the simple D type input for general applications. The device appears as four common clocked D flipflops when the PE input is Low. After the Low-to-High clock transition, data on the parallel inputs ($D_{0}-D_{3}$) is transferred to the respec-
tive $Q_{0}-Q_{3}$ outputs. Shift left operation $\left(Q_{3}-Q_{2}\right)$ can be achieved by tying the Q_{n} outputs to the D_{n-1} inputs and holding the PE input low.
All parallel and serial data transfers are synchronous, occuring after each Low-to-High clock transition. The 'F195 utilizes edge-
triggering, therefore, there is no restriction on the activity of the J, \bar{K}, D_{n}, and $\overline{P E}$ inputs for logic operation, other than the setup and release time requirements.

A Low on the asynchronous Master Reset ($\overline{\mathrm{MR}}$) input sets all Q outputs Low, independent of any other input condition.

MODE SELECT - FUNCTION TABLE

OPERATING MODES	INPUTS						OUTPUTS				
	$\overline{\text { MR }}$	CP	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	D_{n}	\mathbf{Q}_{0}	Q_{1}	Q_{2}	\mathbf{Q}_{3}	$\overline{\mathbf{Q}}_{3}$
Asynchronous reset	L	X	X	X	X	X	L	L	L	L	H
Shift, set first stage	H	\uparrow	h	h	h	X	H	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, reset first stage	H	\uparrow	h	1	1	X	\underline{L}	90	q_{1}	q_{2}	$\underline{\bar{q}}_{2}$
Shift, toggle first stage	H	,	h	h	1	X	\bar{q}_{0}	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Shift, retain first stage	H	\uparrow	h	1	h	X	9_{0}	90	q_{1}	q_{2}	$\overline{\mathrm{q}}_{2}$
Parallel load	H	\uparrow	1	X	X	d_{n}	d_{0}	d_{1}	d_{2}	d_{3}	\bar{d}_{3}

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
X $=$ Don't care
$I=$ Low voltage level one setup time prior to the Low-to-High clock transition
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$d_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition $\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voitage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l OL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=M I N, V_{\mathrm{IL}}=M A X, \\ & \mathrm{IOH}_{\mathrm{H}}=M A X, V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=\text { MIN, } V_{I L}=\text { MAX, }, \\ & I_{O L}=M A X, V_{I H}=\text { MIN } \end{aligned}$	$\pm 10 \% V_{c c}$		0.35	0.5	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.5	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\overline{\mathrm{MR}}$					40	$\mu \mathrm{A}$		
ILL	Low-level input current	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		$\overline{\text { MR }}$					-40	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			45	58	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. With all outputs open, $\overline{\mathrm{PE}}$ grounded, and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and Data inputs, Icc is measured by applying a momentary ground, followed by 4.5 V to $\overline{\mathrm{MR}}$, and then a momentary ground followed by 4.5 V to clock.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F195					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{aligned} T_{A} & =0 \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	$\overline{\text { PE mode }}$		Waveform 1	120	130		110		MHz
		Toggle mode			100	115		90		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay CP to Q_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to \bar{Q}_{3}		Waveform 1	7.0	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n}		Waveform 2	5.0	7.5	10.5	5.0	11.0	ns	
tplh	Propagation delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{3}$		Waveform 2	7.0	10.0	13.5	7.0	14.0	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F195					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low J, \bar{K} and D_{n} to CP	Waveform 3	$\begin{aligned} & 4 \\ & 4 \end{aligned}$			4 4		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low J, \bar{K} and D_{n} to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{P E}$ to CP	Waveform 4	$\begin{aligned} & 3 \\ & 4 \end{aligned}$			3 5		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{\text { PE }}$ to CP	Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$t_{w}(\mathrm{H})$	CP pulse width, High	Waveform 1	6			6		ns
$t_{\text {w }}(\mathrm{L})$	$\overline{\mathrm{MR}}$ pulse width, Low	Waveform 2	5			5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 2	6			6		ns

AC WAVEFORMS

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORM

FAST 74F198 Shift Register

8-Bit Bidirectional Universal Shift Register Preliminary Specification

FAST Products

DESCRIPTION

The 'F198 bidirectional register is designed to incorporate virtually all of the features a system designer may want in a shift register. This circuit contains 87 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating mode control inputs, and a direct overriding clear line. The register has four distinct modes of operation:

- Parallel (broadside) Load
- Shift Right (in the direction Q_{A} toward Q_{H})
- Shift Left (in the direction Q_{H} toward Q_{A})
- Inhibit Clock (do nothing)

Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_{0} and S_{1}, High. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the Clock input. During loading, serial data flow is inhibited.

PIN CONFIGURATION

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 198	110 MHz	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE VOC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F198N
24-Pin Plastic SOL	N74F198D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{1}$	Mode control inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SR}	Serial data input (shift right)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{SL}	Serial data input (shift left)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Parallel outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_{0} is High and S_{1} is Low. Serial data for this mode is entered at the shift-right data input. When S_{0} is Low and S_{1} is High, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the flip-flop is inhibited when both mode control inputs are Low. The mode controls should be changed only while the Clock input is High.

BLOCK DIAGRAM

FUNCTION TABLE

INPUTS							OUTPUTS				
$\overline{\text { MR }}$	Mode		CP	Serial		Parallel	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	...	$\mathbf{Q}_{\mathbf{G}}$	Q_{H}
	S_{1}	S_{0}		Left	Right	A...H					
L	X	X	X	X	X	X	L	L		L	L
H	X	X	L	X	X	X	$Q_{A 0}$	Q_{BO}		Q_{GO}	Q ${ }_{\text {но }}$
H	H	H	\uparrow	x	X	a...h	a	b		g	h
H	L	H	\uparrow	X	H	X	H	$Q_{\text {An }}$		$Q_{\text {F }}$	$Q_{G n}$
H	L	H	\uparrow	X	L	X	L	$Q_{\text {An }}$		$Q_{\text {F }}$	$Q_{G n}$
H	H	L	\uparrow	H	X	X	$Q_{B n}$	$Q_{C n}$		Q_{Hn}	H
H	H	L	\uparrow	L	x	X	Q_{Bn}	Q_{Cn}		Q_{Hn}	L
H	L	L	X	X	X	x	$Q_{A 0}$	Q_{BO}		$Q_{\text {Go }}$	$Q_{\text {Ho }}$

$\mathrm{H}=$ High level (steady state)
$\mathrm{L}=$ Low level (steady state)
$X=$ Irrelevant (any input, including transition)
$\dagger=$ Transition from Low-to-High level
a...h $=$ The level of steady-state input at inputs A through H, respectively.
$Q_{A 0}, Q_{B 0}, Q_{G 0}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, Q_{G} or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{B n}$, etc. $=$ The level of Q_{A}, Q_{B}, etc., respectively, before the most recent \uparrow transition of the clock.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Shift Register

TIMING DIAGRAM

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F198			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7		3.4		V		
V OL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$			40	95	mA		
		ICCL				40	95	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F198					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{aligned} T_{A} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	90	110		80		MHz
$t_{\text {PLH }}$ tphL	Propagation delay $C P$ to Q_{n} or \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay, MR to Q_{n}	Waveform 3	4.5		12	4.5	14	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F198					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			6.0 6.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low, D_{n} to CP	Waveform 2	0			$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{SR}, D_{SL} to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			6.0 6.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low, $\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$ to CP	Waveform 2	0			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP	Waveform 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 8.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S_{n} to CP	Waveform 2	0			0 0		ns
$t_{w}(\mathrm{H})$	CP pulse width	Waveform 1	6.0			6.0		ns
$t_{w}(L)$	$\overline{\mathrm{MR}}$ pulse width	Waveform 3	5.0			5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, $\overline{\mathrm{MR}}$ to CP	Waveform 3	6.0			6.0		ns

AC WAVEFORMS

WF06112S
Waveform 1. Propagation Delay, Clock Input to Output,

Waveform 2. Setup Time and Hold Time

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

8-Bit Parallel-Access Shift Register Preliminary Specification

FAST Products

FEATURES

- Buffered clock and control inputs
- Shift right and parallel load capability
- Fully synchronous data transfers
- J- $\bar{K}(D)$ Inputs to first stage
- Clock enable for hold (do nothing) mode
- Asynchronous Master Reset

DESCRIPTION

The 'F199 is an 8-bit Parallel Access Shift Register and its functional characteristics are indicated in the Logic Diagram and Function Table. The device is useful in a variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.
The 'F199 operates in two primary modes: shift right $\left(Q_{0} \rightarrow Q_{1}\right)$ and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}}$) input. Serial data enters the first flip-flop (Q_{0}) via the J and \bar{K} inputs when the $\overline{P E}$ input is High, and is shifted one bit in the direction $Q_{0} \rightarrow Q_{1} \rightarrow Q_{2}$ following each Low-to-High clock transition.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 199$	110 MHz	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE V CC $\mathbf{5 V} \pm \mathbf{1 0 \% ; ~} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{o}^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F199N
24-Pin Plastic SOL	N74F199D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~J}, \overline{\mathrm{~K}}$	J and K inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Clock Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Parallel outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The J and \bar{K} inputs provide the flexibility of the $\mathrm{J}-\overline{\mathrm{K}}$ type input for special applications and, by tying the two pins together, the simple D-type input for general applications.
The device appears as eight common clocked D flip-flops when the $\overline{P E}$ input is Low. After the Low-to-High clock transition, data
on the parallel inputs $\left(D_{0}-D_{7}\right)$ is transferred to the respective $Q_{0}-Q_{7}$ outputs.
All parallel and serial data transfers are synchronous, occurring after each Low-to-High clock transition. The 'F199 utilizes edgetriggered, therefore, there is no restriction on the activity of the J, \bar{K}, D_{n}, and $\overline{P E}$ inputs for
logic operation, other than the setup and release time requirements.
A Low on the Master Reset ($\overline{\mathrm{MR}}$) input overrides all other inputs and clears the register asynchronously forcing all bit positions to a Low state.

LOGIC DIAGRAM

MODE SELECT-FUNCTION TABLE

OPERATING MODES	INPUTS							OUTPUTS
	$\overline{\text { MS }}$	CP	$\overline{C E}$	$\overline{\text { PE }}$	J	$\overline{\mathbf{K}}$	D_{n}	$\mathbf{Q}_{0} \mathbf{Q}_{1} \ldots \mathbf{Q}_{6} \mathbf{Q}_{7}$
Reset (clear)	L	X	X	X	X	X	X	L L ... L L
Shift, Set First Stage	H	\uparrow	1	h	h	h	X	$\mathrm{H} \mathrm{q}_{0} \ldots \mathrm{q}_{5} \mathrm{q}_{6}$
Shift, Reset First Stage	H	\uparrow	1	h	1	1	X	$L q_{0} \ldots q_{5} q_{6}$
Shift, Toggle First Stage	H	\uparrow	1	h	h	1	X	$\bar{q}_{0} q_{0} \ldots q_{5} q_{6}$
Shift, Retain First Stage	H	\uparrow	1	h	1	h	X	$\mathrm{q}_{0} 9_{0} \ldots \mathrm{q}_{5} \mathrm{q}_{6}$
Parallel Load	H	\uparrow	1	1	X	X	d_{n}	$\mathrm{d}_{0} \mathrm{~d}_{1} \ldots \mathrm{~d}_{6} \mathrm{~d}_{7}$
Hold (do nothing)	H	\uparrow	$h^{(1)}$	X	X	X	X	$q_{0} q_{1} \ldots . . q_{6} q_{7}$

$H=$ High voltage level steady state.
$h=$ High voltage level one setup time prior to the Low-to-High clock transition.
$\mathrm{L}=$ Low voltage level steady state.
I = Low voltage level one setup time prior to the Low-to-High clock transition.
X = Don't care.
$d_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition.
$\uparrow=$ Low-to-High clock transition.
NOTE:

1. The Low-to-High transition of $\overline{C E}$ should only occur while $C P$ is High for conventional operation.

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
Vol	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
${ }_{1 / \mathrm{H}}$	High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 IL.	Low-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current (total)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~J}=\overline{\mathrm{K}}=\mathrm{D}_{\mathrm{n}}=4.5 \mathrm{~V}, \\ & \mathrm{CP}=\overline{\mathrm{CE}}=\overline{\mathrm{MR}}=\overline{\mathrm{PE}}=\mathrm{GND} \end{aligned}$			40	95	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F199					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	Waveform 1	105	114		90		MHz
$t_{\text {PLH }}$ tphL	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
tpHL	Propagation delay $\overline{\mathrm{MR}}$ to Q_{n}	Waveform 2	4.5		12	4.5	14	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F199					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			6.0 6.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 3	0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{J}, \overline{\mathrm{K}}$ to CP	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			6.0 6.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low J, \bar{K} to CP	Waveform 3	0			1.0 1.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\mathrm{CE}}$ to CP	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 8.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{C E}$ to CP	Waveform 3	0 0			0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\text { PE to }} \mathrm{CP}$	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 8.0		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{\text { PE to } C P ~}$	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
$t_{w}(\mathrm{H})$	CP Pulse Width,	Waveform 1	5.0			5.5		ns
$t_{w}(\mathrm{~L})$	MR Pulse Width Low	Waveform 2	5.0			5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{M R}$ to CP	Waveform 2	7.0			8.0		ns

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Clock Pulse Width,

 and Maximum Clock Frequency

WF06641S

Condition: MR = High
Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

WF06394s

NOTE:

1 The number of clock pulses required between the $t_{\text {PLH }}$ and $t_{P H L}$ measurements can be determined from the appropriate Truth Table 2. The shaded areas indicate when the input is permitted to change for predictable performance
3. The changing output assumes internal Q_{6} opposite state from Q_{7}

Waveform 3. Setup and Hold Time for $\overline{P E}, D_{n}, D_{s}$, and $\overline{C E}$ to $C P$ NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t TLH	t THL
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jıg and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$
of pulse generators.

Signetics

FAST Products

FEATURES

- Octal bus interface
- 3-State buffer outputs sink 64mA
- 15mA source current

DESCRIPTION

The 'F240 and 'F241 are octal buffers that are ideal for driving bus lines or buffer memory address registers. The outputs are all capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features two Output Enables, $\overline{\mathrm{OE}}$, each controlling four of the 3-State outputs.

FAST 74F240, 74F241
 Buffers

'F240 Octal Inverter Buffer (3-State)
'F241 Octal Buffer (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 240	4.3 ns	37 mA
74 F 241	5.0 ns	53 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0} \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
$20-$ Pin Plastic DIP	N74F240N, N74F241N
$20-$ Pin SOL	N74F240D, N74F241D

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{O E}_{a}, \overline{O E}_{b}$	3-State output enable input (active-High)	1.0/1.67	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
OE_{b}	3-State output enable input (active-Low)	1.0/1.67	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{a} 0}-l_{\mathrm{a} 3}, l_{\mathrm{b} 0}-l_{\mathrm{b} 3}$	Data inputs ('F240)	1.0/1.67	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{la}_{\mathrm{a} 0}-l_{\mathrm{a} 3}, l_{\mathrm{b} 0}-l_{\mathrm{b} 3}$	Data inputs ('F241)	1.0/2.67	$20 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$\begin{aligned} & \bar{Y}_{a}, \bar{Y}_{b} \text { ('F240) } \\ & Y_{a}, Y_{b} \text { ('F241) } \end{aligned}$	Data outputs	750/106.7	15mA/64mA

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE, 'F240

INPUTS				OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{a}}$	$\mathbf{l}_{\mathbf{a}}$	$\overline{\mathbf{O E}}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\overline{\mathbf{Y}}_{\mathbf{a}}$	$\overline{\mathbf{Y}}_{\mathbf{b}}$
L	L	L	L	H	H
L	H	L	H	L	L
H	X	H	X	Z	Z

FUNCTION TABLE, 'F241

INPUTS					OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{a}}$	$\mathbf{l}_{\mathbf{a}}$	$\mathbf{O E}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\mathbf{Y}_{\mathbf{a}}$	$\mathbf{Y}_{\mathbf{b}}$	
L	L	H	L	L	L	
L	H	H	H	H	H	
H	X	L	X	Z	Z	

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High-impedance (OFF) state
ABSOLUTE MAXIMUM RATINGS Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{OUT}}$	Current appled to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-arr temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
l OL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F240, 241			UNIT			
				Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage							$1{ }^{\text {a }}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$	$\mathrm{IOH}^{\text {H }}=-3 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V			
				$V_{I H}=M I N$		$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0			V			
					$\mathrm{IOH}^{\text {O }}=-15 \mathrm{ma}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V			
				$V_{C C}=\mathrm{MIN}$,	$\mathrm{loL}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
OL	Low-level outp			$V_{I H}=M I N$	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
V_{IK}	Input clamp volt			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				-0.73	-1.2	V			
1	Input current at input voltage	mum		$V_{C C}=M A X$,	7.0 V				100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H}}$	High-level input			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	2.7 V				20	$\mu \mathrm{A}$			
		'F240	nputs						-1.0	mA			
111	Low-level	'F241	OE_{b}	$V_{C C}=\mathrm{MAX}$					-1.0	mA			
	input current	$\begin{aligned} & \text { 'F241 } \\ & I_{b 0}-I_{b 3} \end{aligned}$							-1.6	mA			
lozh	Off-state output High-level voltag	plied		$V_{C C}=\mathrm{MAX}$,	$\mathrm{T}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$			
lozl	Off-state output Low-level voltag	lied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{T}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$			
los	Short-circuit outp	rrent ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current ${ }^{4}$ (total)	'F240	ICCH	$V_{C C}=M A X$				12	18	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					50	70	mA			
			$\mathrm{I}_{\text {ccz }}$					35	45	mA			
		'F241	$\mathrm{I}_{\mathrm{CCH}}$					40	60	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					60	90	mA			
			Iccz					65	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold technıques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last
4. Icc is measured with outputs open.

Buffers

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F240, 241					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	'F240		Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable time to High and Low level			Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time from High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	'F241	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable time to High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tpHZ }^{\text {tPLZ }} \\ & \hline \end{aligned}$	Output disable time from High and Low level		Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FAST 74F242, 74F243
Transceivers
'F242 Quad Transceiver, Inverting (3-State)
'F243 Quad Transceiver (3-State)
Product Specification

FUNCTION TABLE, 'F242

INPUTS		INPUT/OUTPUT	
$\overline{\mathbf{O E}}_{\mathbf{A}}$	$\mathbf{O} \mathbf{E}_{\mathbf{B}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	INPUT	$\mathrm{B}=\overline{\mathrm{A}}$
H	L	Z	Z
L	H	a	a
H	H	$\mathrm{a}=\overline{\mathrm{B}}$	INPUT

FUNCTION TABLE, 'F243

INPUTS		INPUT/OUTPUT	
$\overline{\mathbf{O E}}_{\mathbf{A}}$	$\mathrm{OE}_{\mathbf{B}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	INPUT	$\mathrm{B}=\mathrm{A}$
H	L	Z	Z
L	H	a	a
H	H	$A=\mathrm{B}$	INPUT

$H=$ High voltage level
L = Low voltage level
$Z=$ High-impedance (OFF) state
$a=$ This condition is not allowed due to excessive currents.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 242	4.3 ns	31.2 mA
74 F 243	4.0 ns	66 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F242N, N74F243N
14-Pin Plastic SO	N74F242D, N74F243D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{OE}}_{\mathrm{A}}$	Enable input (active-Low)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1 \mathrm{~mA}$
OE_{B}	Enable input (active-High)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Inputs ('F242)	$3.5 / 1.67$	$70 \mu \mathrm{~A} / 1 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Inputs ('F243)	$3.5 / 2.67$	$70 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voitage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F242, 74F243			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4	3.4		V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0		3.0		V			
				$\pm 5 \% \mathrm{VCC}$	2.0	3.0			V				
V_{OL}	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$1 \mathrm{OL}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.40	0.50	V		
				$\mathrm{IOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{C C}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$A_{0}-A_{3}, B_{0}-B_{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$\overline{\mathrm{OE}}_{\mathrm{A}}, \mathrm{OE}_{B}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$I_{1 H}$	High-level input current for OE_{A} and OE_{B} inputs only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current for OE_{A} and OE_{B} inputs only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1	mA			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{HH}} \end{aligned}$	Off-state output current High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	2.7 V				70	$\mu \mathrm{A}$			
$\begin{aligned} & \text { IOZL } \\ & +I_{\text {IL }} \end{aligned}$	Off-state output current, Low-level voltage applied		'F242	$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-1.0	mA			
			'F243						-1.6	mA			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	'F242	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				22	35	mA			
			l CLL					40	55	mA			
			Iccz					32	45	mA			
		'F243	$\mathrm{I}_{\mathrm{CCH}}$					64	80	mA			
			ICCL					64	90	mA			
			$\mathrm{I}_{\mathrm{CCz}}$					71	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs open and transceivers enabled in one direction only, or with all transceivers disabled.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F242, 'F243					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ V_{c c}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
${ }^{\text {tpLH }}$ tphL	Propagation delay A_{n}, B_{n} to B_{n}, A_{n}	'F242		Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time to High or Low level			Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{tpLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level		Waveform 3	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.0 \end{gathered}$	ns	
$\overline{t_{P L H}}$ $t_{\text {PHL }}$	Propagation delay A_{n}, B_{n} to B_{n}, A_{n}	'F243	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \end{aligned}$	ns	
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time to High or Low level		Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \text { tpHZ } \\ & t_{\text {tpLZ }} \\ & \hline \end{aligned}$	Output disable time from High or Low level		Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- Octal bus interface
- 3-State buffer outputs sink 64 mA
- 15mA source current

DESCRIPTION

The 'F244 is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The outputs are all capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features two Output Enables, $\overline{O E}$, each controlling four of the 3-State outputs.

FUNCTION TABLE

INPUTS				OUTPUTS	
$\overline{\mathbf{O}}_{\mathbf{a}}$	$\mathbf{l}_{\mathbf{a}}$	$\overline{\mathbf{O}}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\mathbf{Y}_{\mathbf{a}}$	$\mathbf{Y}_{\mathbf{b}}$
L	L	L	L	L	L
L	H	L	H	H	H
H	X	H	X	Z	Z

$H=$ High voltage level

L = Low voltage level
$\mathrm{X}=$ Don't care
$Z=$ High-ımpedance (OFF) state

FAST 74F244
Buffer
Octal Buffer (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 244	4.0 ns	53 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
20 -Pin Plastic DIP	N74F244N
20 -Pin Plastic SOL	N74F244D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{O E}_{a}$	3-State output enable input (active-Low)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\overline{O E}_{b}$	3-State output enable input (active-Low)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{a} 0}-\mathrm{I}_{\mathrm{a} 3}, I_{\mathrm{b} 0}-I_{b 3}$	Data inputs	$1.0 / 2.67$	$20 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$Y_{\mathrm{a} 0}-Y_{a 3}, Y_{b 0}-Y_{b 3}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (10) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High-output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low-output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	\checkmark
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Buffer

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F244			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$+10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$+5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$+10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
			$+5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
V_{OL}	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}^{2}=48 \mathrm{~mA}$	$+10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$		$+5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.0	mA			
					-1.6	mA						
IOZH	Off-state output current, High-level voltage applied					$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
lozl	Off-state output current, Low-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply Current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX				40	60	mA			
		$\mathrm{I}_{\text {CCL }}$					60	90	mA			
		Iccz					60	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. ICC is measured with outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F244					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0 \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time to High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tpHz}} \\ & \mathrm{t}_{\mathrm{pLz}} \\ & \hline \end{aligned}$	Output Disable Time from High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Non-Inverting Outputs

wF06093s
Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

WF06073s
Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ	closed
tpzL	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$
of pulse generators.

FAST Products

FEATURES

- Octal bidirectional bus interface
- 3-State buffer outputs sink 64 mA
- 15mA source current
- Outputs are placed in Hi-Z state during power-off conditions

DESCRIPTION

The 'F245 is an octal transceiver featuring noninverting 3 -State bus compatible outputs in both send and receive directions. The B side outputs are all capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features an Output Enable ($\overline{\mathrm{OE}}$) input for easy cascading and a Send/Receive (T/ $\overline{\mathrm{R}})$ input for direction control. The 3State outputs, $\mathrm{B}_{0}-\mathrm{B}_{7}$, have been designed to prevent output bus loading if the power is removed from the device.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 245	4.0 ns	100 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{5V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

NOTE:

1. Thermal mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface-mounted device.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A Port data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B Port data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$2.0 / 2.0$	$40 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/Receive input	$2.0 / 2.0$	$40 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A Port data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B Port data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

6-263

Transceiver

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
$\overline{\mathbf{O E}}$	$\mathbf{S} / \overline{\mathbf{R}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	$A=B$	INPUTS
L	H	INPUT	$B=A$
H	X	Z	Z

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{Cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
V OUT	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	48	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
IOH	High-level output current	$A_{0}-A_{7}$			-3	mA
		$B_{0}-B_{7}$			-15	mA
lol	High-level output current	$A_{0}-A_{7}$			24	mA
		$B_{0}-B_{7}$			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F245			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$A_{0}-A_{7}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V				
			$B_{0}-B_{7}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		20				V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$A_{0}-A_{7}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\mathrm{IOL}=48 \mathrm{~mA}$			$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	055	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$\overline{O E}, T / \bar{R}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}, B_{0}-B_{7}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{IIH}^{\text {H }}$	High-level input current $\overline{O E}$ and T / \bar{R} only			$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
I/L	Low-level input current $\overline{O E}$ and T / \bar{R} only			$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-1.2	mA			
$\begin{aligned} & \mathrm{l}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{H}} \\ & \hline \end{aligned}$	Off-state current High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZL}} \\ & +\mathrm{I}_{1 \mathrm{~L}} \end{aligned}$	Off-state current Low-level voltage applied			$V_{C C}=M A X$,	0.5 V				-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$				-100		-225	mA			
Icc	Supply current (total)		${ }^{\text {cCH }}$	$V_{C C}=$ MAX		$=4.5 \mathrm{~V}$		85	114	mA			
			$\mathrm{I}_{\mathrm{CCL}}$			= GND		100	125	mA			
			ICCz			$=\overline{\mathrm{OE}}=4.5 \mathrm{~V}$		90	120	mA			

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

3 Not more than one output should be shorted at a time For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests in any sequence of parameter tests, los tests should be performed last

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	ns
$t_{P Z H}$ $t_{P Z L}$	Output enable time to High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High and Low level	Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 7.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- High-speed 8-to-1 multiplexing
- True and complement outputs
- Both outputs are 3-State for further multiplexer expansion

DESCRIPTION

The 'F251 is a logical implementation of a single-pole, 8-position switch with the state of three Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}\right)$ controlling the switch position. Assertion (Y) and Negation $(\overline{\mathrm{Y}})$ outputs are both provided. The Output Enable input ($\overline{\mathrm{OE}}$) is active-Low.
Both outputs are in the High-impedance ($\mathrm{Hi}-\mathrm{Z}$) state when the output enable is High, allowing multiplexer expansion by tying the outputs of up to 128 devices together. All but one device must be in the High-impedance state to avoid high currents that would exceed the maximum ratings when the outputs of the 3State devices are tied together. Design of the Output Enable signals must ensure there is no overlap in the activeLow portion of the enable voltages.

FAST 74F251
 Multiplexer

8-Input Multiplexer (3-State)

 Preliminary Specification| TYPE | TYPICAL PROPAGATION
 DELAY | TYPICAL SUPPLY CURRENT
 (TOTAL) |
| :---: | :---: | :---: |
| 74 F 251 | 5.5 ns | 15 mA |

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F251N
16-Pin Plastic SO	N74F251D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	3-State output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}, \overline{\mathrm{Y}}$	3-State output 3-State output inverted	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	
S_{2}	S_{1}	S_{0}	$\overline{O E}$	Y	$\overline{\mathbf{Y}}$
X	X	X	H	Z	Z
L	L	L	L	I_{0}	I_{0}
L	L	H	L	I_{1}	I_{1}
L	H	L	L	I_{2}	I_{2}
L	H	H	L	1_{3}	I_{3}
H	L	L	L	I_{4}	I_{4}
H	L	H	L	1_{5}	I_{5}
H	H	L	L	I_{6}	I_{6}
H	H	H	L	17	I_{7}

[^6]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-3.0	mA
l O	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F251			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage					$V_{C C}=M I N,$	M	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$V_{I H}=M I N$	Ioh Max	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.3		V			
V_{OL}	Low-level output voltage		$V_{C C}=M I N$,		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\begin{aligned} & V_{\mathrm{IL}}=\mathrm{MAX}, \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
I_{1}	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {I }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	OFF-state output current, High-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$			-60		-150	mA			
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				14	22	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					14	22	mA			
		$\mathrm{I}_{\mathrm{CCz}}$					16	24	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. ICC is meaured with $V_{C C}=M A X$, Select and Data inputs at 4.5 V , and $\overline{\mathrm{OE}}$ ground for output High and Low conditions; $\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, Data inputs and the $\overline{\mathrm{OE}}$ at 4.5 V for outputs OFF condition.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F251					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay I_{n} to Y	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{n} to Y	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{n} to $\bar{\gamma}$	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.5 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable time $\overline{O E}$ to Y	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.0 \end{array}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 11.0 \\ 9.0 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tpzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time $\overline{O E}$ to \bar{Y}	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLz}} \end{aligned}$	Output disable time $\overline{O E}$ to Y	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{pLL}} \\ & \hline \end{aligned}$	Output disable time $\overline{O E}$ to \bar{Y}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- 3-State outputs for bus interface and multiplex expansion
- Common Select inputs
- Separate Output Enable inputs

DESCRIPTION

The 'F253 has two identical 4-input multiplexers with 3-State outputs which select two bits from four sources selected by common Select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. When the individual Output Enable ($\bar{E}_{0 a}, \bar{E}_{0 b}$) inputs of the 4-input multiplexers are High, the outputs are forced to a Highimpedance ($\mathrm{Hi}-\mathrm{Z}$) state.

The 'F253 is the logic implementation of a 2-pole, 4-position switch; the position of the switch being determined by the logic levels supplied to the two Select inputs.
To avoid exceeding maximum current ratings when the outputs of the 3-State devices are tied together, all but one device must be in the High-impedance state. Therefore, only one Output Enable must be active at a time.

FAST 74F253

Multiplexer
Dual 4-Input Multiplexer (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 253	7.0 ns	12 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathbf{C}$
16 -Pin Plastic DIP	N74F253N
$16-$-Pin Plastic SO	N74F253D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$	Port A data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{3 \mathrm{~b}}$	Port B data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Common select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{\mathrm{a}}$	Port A output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{b}}$	Port B output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}$	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						OUTPUT	
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\overline{\text { OE }}$	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	X	X	X	L	X	L	L
H	H	X	X	X	X	L	H
H	H	X	X	X	H	L	L

$H=$ High voltage level
L = Low voltage level
X = Don't care
Z $=$ High-impedence (OFF) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current			-3	mA
loL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F253					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay Data to output	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay Select to output	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	ns
${ }_{\text {tPZH }}$	Output enable time to High level	Waveform 2	3.0	6.5	8.0	3.0	9.0	ns
${ }_{\text {tpzL }}$	Output enable time to Low level	Waveform 3	3.0	6.5	8.0	3.0	9.0	ns
$t_{\text {PHZ }}$	Output disable time from High level	Waveform 2, Waveform 3	2.5	3.5	5.0	2.0	6.0	ns
tplz	Output disable time from Low level	Waveform 3, Waveform 4	2.0	3.0	5.0	1.5	6.0	ns

Multiplexer

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- Combines dual demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common Clear input
- Useful as dual 1-of-4 active-High decoder

DESCRIPTION

The 'F256 dual addressable latch has four distinct modes of operation which are selectable by controlling the Master Reset and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 256	7.0 ns	28 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{+ 7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F256N
16-Pin Plastic SO	N74F256D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}$	Port A, side B data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}, \mathrm{~A}_{1}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}, ~ \overline{M R}}$	Enable, Master Reset inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{aa}}-\mathrm{Q}_{3 \mathrm{a}}$	Port A outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0 \mathrm{~b}}-\mathrm{Q}_{3 \mathrm{~b}}$	Port B outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS					OUTPUTS			
	$\overline{\text { MR }}$	E	D	A_{0}	A_{1}	\mathbf{Q}_{0}	Q_{1}	Q_{2}	Q_{3}
Master reset	L	H	X	X	X	L	L	L	L
Demultiplex (active-High decoder when $D=H$)	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} Q=D \\ L \\ L \\ L \end{gathered}$	$\begin{gathered} \mathrm{L} \\ Q=d \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} L \\ Q=d \\ L \end{gathered}$	$\begin{gathered} L \\ L \\ L \\ Q=D \end{gathered}$
Store (do nothing)	H	H	X	X	X	qo	q_{1}	q_{2}	वз
Addressable latch	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L L	d d d D	L H L H	L L H H	$\begin{gathered} Q=d \\ \mathrm{q}_{0} \\ \mathrm{q}_{0} \\ \mathrm{Q}_{0} \end{gathered}$	$\begin{gathered} q_{1} \\ Q=d \\ q_{1} \\ Q_{1} \end{gathered}$	$\begin{gathered} \mathrm{q}_{2} \\ \mathrm{q}_{2} \\ \mathrm{Q}=\mathrm{d} \\ \mathrm{Q}_{2} \end{gathered}$	$\begin{gathered} \mathrm{q}_{3} \\ \mathrm{q}_{3} \\ \mathrm{q}_{3} \\ \mathrm{Q}=\mathrm{D} \end{gathered}$

$H=$ High voltage level steady state.
$\mathrm{L}=$ Low voltage level steady state.
X = Don't care
$\mathrm{d}=$ High or Low data one setup tıme prior to the Low-to-High Enable transition.
$q=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

To eliminate the possibility of entering erroneous data in the latches, the enable should be held High (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ($\overline{\mathrm{MR}}=\overline{\mathrm{E}}=$ Low), addressed outputs will follow the level of the D inputs, with all other outputs Low. In the Master Reset mode, all outputs are Low and unaffected by the Address and Data inputs.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F256			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
$I_{\text {cc }}$	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$			21	42	mA		
		$\mathrm{I}_{\text {CCL }}$				33	60	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequences of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F256					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	ns
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{E} to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	4.5 3.0	$\begin{gathered} 12.0 \\ 7.5 \end{gathered}$	ns
$t_{\text {PLH }}$ tpHL	Propagation delay A_{n} to Q_{n}	Waveform 3	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	ns
tPHL	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 4	5.0	7.0	9.0	4.5	10.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F256					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to \bar{E}	Waveform 5	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$			3.0 7.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to \bar{E}	Waveform 5	0			0		ns
t_{s}	Setup time, High or Low A_{n} to E^{1}	Waveform 6	2.0			2.0		ns
t_{g}	Hold time, High or Low A_{n} to \bar{E}^{2}	Waveform 6	0			0		ns
t_{w}	\bar{E} pulse width	Waveform 1	7.5			8.0		ns
t_{w}	$\overline{M R}$ pulse width	Waveform 4	3.0			3.0		ns

NOTES:

1. The Address to Enable setup time is the time before the High-to-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
2. The Address to Enable hold time is the time before the Low-to-High Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

AC WAVEFORMS

Waveform 1. Propagation Delay Enable to Output and Enable Pulse Width

Waveform 3. Propagation Delay Address to Output

Waveform 5. Data Setup and Hold Times

Waveform 2. Propagation Delay Data to Output

Waveform 4. Master Reset to Output Delay and Master Reset Pulse Width

Waveform 6. Address Setup and Hold Times

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F257A
Data Selector/Multiplexer
Quad 2-Line To 1-Line Data Selector Multiplexer (3-State) Product Specification

FAST Products

FEATURES

- Multifunction capability
- Non-inverting data path
- 3-State outputs
- See 'F258A for inverting version

DESCRIPTION

The 'F257A has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is Low and the I_{1} inputs are selected when the Select input is High. Data appears at the outputs in true (non-inverted) form from the selected outputs.
The 'F257A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.
Outputs are forced to a High-impedance 'OFF' state when the Output Enable input ($\overline{\mathrm{OE}}$) is High. All but one device must be in the High-impedance state to avoid currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3-State devices are tied together.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 257 A	4.3 ns	12 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F257N
16-Pın Plastic SO	N74F257D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{o} \cdot} \cdot \mathrm{I}_{\mathrm{n}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Common select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Enable input (Active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				
$\overline{\mathbf{O E}}$	\mathbf{S}	$\mathbf{I}_{\mathbf{0}}$	$\mathbf{I}_{\mathbf{1}}$	\mathbf{Y}
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
Z = High-impedance (OFF) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	
$V_{I N}$	Input voltage	-0.5 to +7.0	
I_{N}	Input current	-30 to +5	V
$V_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	mA
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	V	
T_{A}	Operating free-air temperature range	0 to +70	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
1 IK	Input clamp current			-18	mA
lOH	High-level output current			-3.0	mA
lOL	Low-level output current			24	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F257A			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4			V
			$\pm 5 \% \mathrm{VCc}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{HH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
II	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	Off-state output current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			9.0	15.0	mA		
		$\mathrm{I}_{\text {CCL }}$				14.5	22.0	mA		
		$\mathrm{I}_{\mathrm{CCz}}$				15.0	23.0	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure I ICC with all outputs open and inputs grounded.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F257A					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $I_{n a}, I_{n b}$ to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S to Y_{n}	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time from High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns

APPLICATIONS

AC WAVEFORMS

Waveform 1. Propagation Delay Data and Select to Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 3. 3-State Enable Time to Low Level and Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

SWITCH POSITION
Test Circuit for 3-State Outputs

TEST	SWITCH
$\mathrm{t}_{\text {PZH }}$	open
$\mathrm{t}_{\text {PZL }}$	closed
$\mathrm{t}_{\mathrm{tHZ}}$	open
$\mathrm{t}_{\mathrm{PLZ}}$	closed

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAST 74F258A
 Data Selector/Multiplexer

Quad 2-Line To 1-Line Data Selector/Multiplexer (3-State) Product Specification

FAST Products

FEATURES

- Multifunction capability
- Inverting data path
- 3-State outputs
- See 'F257A for non-inverting version

DESCRIPTION

The 'F258A has four identical 2-input multiplexers with 3-State outputs which select 4 bits of data from two sources under control of a common Select input (S). The $I_{0 n}$ inputs are selected when the Select input is Low and the $I_{1 n}$ inputs are selected when the Select input is High. Data appears at the outputs in inverted form from the selected outputs.

The 'F258A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic level supplied to the Select input. Outputs are forced to a Highimpedance "OFF" state when the Output Enable input $(\overline{\mathrm{OE}})$ is High. All but one device must be in the High-impedance state to avoid currents exceeding the maximum ratings if outputs are tied together.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 258 A	3.5 ns	14 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 5 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F258AN
16-Pin Plastic SO	N74F258AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{On}}, \mathrm{I}_{\text {in }}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Common select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Ya}-\bar{Y} d}$	Data outputs	$50 / 40$	$1.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Design of the output signals must outputs of 3 -State devices are ensure that there is no overlap when tied together.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

LOO2180S

$$
\begin{aligned}
& V_{C C}=\operatorname{Pin} 16 \\
& G N D=\operatorname{Pin} 8
\end{aligned}
$$

FUNCTION TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS
$\overline{\mathbf{O E}}$	\mathbf{S}	$\mathbf{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\overline{\mathbf{Y}}$
H	X	X	X	\mathbf{Z}
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
1 IK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
IOL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F258A			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=\operatorname{MIN}, I_{O H}=\text { MAX } \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			v
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX }, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% V_{c c}$		0.35	0.5	V			
					$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.5	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$				-0.73	-1.2	v			
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl.	Off-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	$\mathrm{I}_{1 \mathrm{n}}=4.5 \mathrm{~V}, \overline{O E}=\mathrm{I}_{\mathrm{On}}=S=$ GND			8.5	11.5	mA			
		$\mathrm{I}_{\text {CCL }}$		$\mathrm{l}_{1 \mathrm{n}}=S=$	$\mathrm{I}_{0 \mathrm{n}}=\mathrm{GND}$		17.0	23.0	mA			
		Iccz		$\mathrm{I}_{1 \mathrm{n}}=\overline{\mathrm{O}} \mathrm{E}$	= S = GND		16.0	22.0	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F258A					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphl $^{\text {then }}$	Propagation delay I_{n} to \bar{Y}_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	2.5 1.0	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S to \bar{Y}_{n}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{pLLZ}} \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay Data $\left(I_{n}\right)$ to Output $\left(\bar{Y}_{n}\right)$

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay Select (S) to Output ($\overline{\mathbf{Y}}_{\mathrm{n}}$)

WF0607DS
Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

Signetics

FAST 74F259

Latch

8-Bit Addressable Latch Product Specification

FAST Products

FEATURES

- Combines demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common Clear input
- Useful as a 1-of-8 active-High decoder

DESCRIPTION

The 'F259 addressable latch has four distinct modes of operation that are selectable by controlling the Master Reset and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states. In the store mode, all latches remain in their previous states and are unaffected by the Data or Address inputs.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 259	7.5 ns	31 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} \boldsymbol{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F259N
16-Pin Plastic SO	N74F259D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{M R}, \bar{E}$	Master Reset, Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}, A_{2}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D	Data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

To eliminate the possibility of entering erroneous data in the latches, the enable should be held High (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode
($\overline{\mathrm{MR}}=\overline{\mathrm{E}}=$ Low), addressed outputs will follow the level of the D inputs, with all other outputs Low. In the Master Reset mode, all outputs are Low and unaffected by the Address and Data inputs.

LOGIC SYMBOL

Latch

LOGIC DIAGRAM

MODE SELECT - FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS							
	$\overline{\text { MR }}$	\bar{E}	D	A_{0}	A_{1}	A_{2}	Q_{0}	Q_{1}	Q_{2}	\mathbf{Q}_{3}	\mathbf{Q}_{4}	Q_{5}	\mathbf{Q}_{6}	Q_{7}
Master Reset	L	H	X	X	X	X	L	L	L	L	L	L	L	L
Demultiplex (active-High decoder when $D=H$)	$\begin{gathered} \hline \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \vdots \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \vdots \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \vdots \\ & \mathrm{~d} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \vdots \\ \mathrm{H} \end{gathered}$	L L H \vdots H	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \vdots \\ \mathrm{H} \end{gathered}$	$\begin{gathered} Q=d \\ L \\ L \\ \vdots \\ L \end{gathered}$	$\begin{gathered} \mathrm{L} \\ Q=d \\ \mathrm{~L} \\ \vdots \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} L \\ Q \stackrel{L}{=} d \\ \vdots \\ L \end{gathered}$	$\begin{aligned} & L \\ & L \\ & L \\ & \vdots \\ & L \end{aligned}$	L L L \vdots L	L L L \vdots	L L \vdots L	$\begin{gathered} L \\ L \\ L \\ \vdots \\ Q=d \end{gathered}$
Store (do nothing)	H	H	X	X	X	X	90	q_{1}	q_{2}	q_{3}	q_{4}	95	q_{6}	q_{7}
Addressable latch	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \vdots \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \vdots \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~d} \\ & \mathrm{~d} \\ & \vdots \\ & \mathrm{~d} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \vdots \\ \mathrm{H} \end{gathered}$	L L H \vdots H	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{~L} \\ \vdots \\ \mathrm{H} \end{gathered}$	$\begin{gathered} Q=d \\ \mathrm{q}_{0} \\ \mathrm{q}_{0} \\ \vdots \\ \mathrm{q}_{0} \end{gathered}$	$\begin{gathered} \mathrm{Q}_{1} \\ =\mathrm{d} \\ \mathrm{q}_{1} \\ \vdots \\ \mathrm{q}_{1} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{q}_{2} \\ \mathrm{Q} \mathrm{q}_{2} \\ =\mathrm{d} \\ \vdots \\ \mathrm{q}_{2} \end{gathered}$	$\begin{gathered} \mathrm{q}_{3} \\ \mathrm{q}_{3} \\ \mathrm{q}_{3} \\ \vdots \\ \vdots \\ \mathrm{q}_{3} \end{gathered}$	$\begin{gathered} \mathrm{q}_{4} \\ \mathrm{q}_{4} \\ \mathrm{q}_{4} \\ \vdots \\ \mathrm{q}_{4} \end{gathered}$	$\begin{gathered} \mathrm{q}_{5} \\ \mathrm{q}_{5} \\ \mathrm{q}_{5} \\ \vdots \\ \vdots \\ \mathrm{q}_{5} \end{gathered}$	$\begin{gathered} \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \mathrm{q}_{6} \\ \vdots \\ \mathrm{q}_{6} \end{gathered}$	$\begin{gathered} q_{7} \\ q_{7} \\ q_{7} \\ \vdots \\ Q=d \end{gathered}$

[^7]$\mathrm{L}=$ Low voltage level steady state.
X = Don't care.
d = High or Low data one setup time prior to the Low-to-High Enable transition.
$\mathrm{q}=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$I_{\text {IK }}$	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F259			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$. 35	. 50	V		
			$\pm 5 \% \mathrm{VCC}$. 35	. 50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / 4}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{\text {CC }}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$			24	46	mA		
		$\mathrm{I}_{\mathrm{CLL}}$				37	75	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditoons for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may rase the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Latch

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F259					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay D to Q_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{E} to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	4.5 3.0	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to Q_{n}	Waveform 3	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	5.0 4.0	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 4	5.0	7.0	9.0	4.5	10.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F259					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D to \bar{E}	Waveform 5	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$			3.0 7.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D to \bar{E}	Waveform 5	0			0		ns
t_{s}	Setup time, High or Low A_{n} to \bar{E}^{1}	Waveform 6	2.0			2.0		ns
tg_{g}	Hold time, High or Low A_{n} to \bar{E}^{2}	Waveform 6	0			0		ns
t_{w}	\bar{E} pulse width	Waveform 1	7.5			8.0		ns
t_{w}	$\overline{\mathrm{MR}}$ pulse width	Waveform 4	3.0			3.0		ns

NOTES:

1. The Address to Enable setup time is the time before the High-to-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
2. The Address to Enable hold time is the time after the Low-to-High Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

AC WAVEFORMS

Waveform 1. Propagation Delay Enable to Output and Enable Pulse Width

Waveform 2. Propagation Delay Data to Output

Waveform 4. Master Reset to Output Delay and Master Reset Pulse Width

Waveform 6. Address Setup and Hold Times

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value. $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS					
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$	
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns	

Signetics

FAST Products

FUNCTION TABLE

INPUTS					OUTPUT
A	B	C	D	E	$\overline{\mathbf{Y}}$
H	X	X	X	X	L
X	H	X	X	X	L
X	X	H	X	X	L
X	X	X	H	X	L
X	X	X	X	H	L
L	L	L	L	L	H

$\mathrm{H}=$ High voltage level
L = Low voltage level
$X=$ Don't care

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 260	3.5 ns	6 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
14-Pin Plastic DIP	N74F260N
14-Pin Plastic SO	N74F260D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}-\mathrm{E}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

Gate

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	v
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX, } \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {c }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\text {CCH }}$	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		4.6	6.5	mA		
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		7.3	9.5	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F260					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A, B, C, D, E to \bar{Y}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	2.0 1.0	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.
Waveform 1. Propagation Delay Input to Output

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST 74F269 8-Bit Counter

8-Bit Bidirectional Binary Counter Product Specification

FAST Products

FEATURES

- Synchronous counting and loading
- Built-in look-ahead Carry capability
- Count frequency 115MHz typ
- Supply current 95mA typ
- 24-Pin plastic Slim DIP (300mil) package

DESCRIPTION

The 'F269 is a fully synchronous 8-stage up/down counter featuring a preset capability for programmable operation, Carry look-ahead for easy cascading and a U / \bar{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 269	115 MHz	95 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP	N74F269N
24-Pin Plastic SOL	N74F269D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up-Down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count enable parallel input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count enable trickle input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count output (active-Low)	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Flip-flop outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

OPERATING MODE	INPUTS						OUTPUTS	
	CP	U/D	$\overline{C E P}$	CET	$\overline{\text { PE }}$	P_{n}	Q_{n}	$\overline{T C}$
Parallel Load	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	1	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	(a) (a)
Count Up	\uparrow	h	1	1	h	X	Count Up	(a)
Count Down	\uparrow	1	1	1	h	X	Count Down	(a)
Hold (do nothing)	$\uparrow \uparrow$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & h \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	$\begin{aligned} & \text { (a) } \\ & \mathrm{H} \end{aligned}$

$\mathrm{H}=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
X = Don't care
$q_{\text {}}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$\uparrow=$ Low-to-High clock transition
(a) = The TC is Low when CET is Low and the counter is at Terminal Count. Terminal Count Up is with all Q_{n} outputs High and Terminal Count Down is with all Q_{n} outputs Low.

TIMING DIAGRAM

8-Bit Counter

Abstract

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.50	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lOL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{\mathbf{2}}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=\mathrm{MIN}, V_{I L}=\text { MAX }, \\ & V_{I H}=M I N, I_{O H}=\text { MAX } \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=\operatorname{MAX}, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=I_{\text {IK }}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$1 / 2$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX	$\begin{aligned} & \overline{\mathrm{PE}}=\overline{\mathrm{CET}}=\overline{\mathrm{CEP}}=\mathrm{U} / \overline{\mathrm{D}}=\mathrm{GND}, \\ & \mathrm{P}_{\mathrm{n}}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow \end{aligned}$			93	120	mA			
		$\mathrm{I}_{\text {ccL }}$		$\begin{aligned} & \overline{\mathrm{PE}}=\overline{\mathrm{CET}}=\overline{\mathrm{CEP}}=\mathrm{U} / \overline{\mathrm{D}}=\mathrm{GND} \\ & \mathrm{CP}=\uparrow \end{aligned}$			98	125	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to mınımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

8-Bit Counter

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F269					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		85		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to Q_{n} (Load)	Waveform 1 $\overline{P E}=\mathrm{LOW}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n} (Count)	Waveform 1 $\overline{P E}=\mathrm{High}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLLH }}$ $t_{\text {PHL }}$	Propagation delay CET to TC	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay U / \bar{D} to $\overline{T C}$	Waveform 3	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F269					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low P_{n} to CP	Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \hline t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low P_{n} to CP	Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{P E}$ to CP	Waveform 4	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{P E}$ to CP	Waveform 4	0 0			0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $\overline{C E T}, \overline{C E P}$ to CP	Waveform 5	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CET, CEP to CP	Waveform 5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low U/D to CP	Waveform 6	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\mathrm{U} / \overline{\mathrm{D}}$ to CP	Waveform 6	0 0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns

AC WAVEFORMS

Waveform 3. Propagation Delays U/D Control to Terminal Count Output

Waveform 4. Parallel Data and Parallel Enable Setup and Hold Times

Waveform 5. Count Enable Setup and Hold Times

8-Bit Counter

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed
$t_{\text {PZL }}$	closed
All other	open

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST 74F273
 Flip-Flop

Octal D Flip-Flop
Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D-type flipflops
- Buffered common Clock
- Buffered, asynchronous Master Reset
- See 'F377 for Clock Enable version
- See 'F373 for transparent latch version
- See 'F374 for 3-State version

DESCRIPTION

The 'F273 has eight edge-triggered Dtype flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 273	145 MHz	66 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0}{ }^{\circ} \mathbf{C}$
20 -Pin PlastıC DIP	N74F273N
20 -Pin Plastic SOL	N74F273D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock Pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-Q_{7}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced Low independently of Clock or Data inputs by a Low voltage level on the $\overline{\mathrm{MR}}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	$\overline{\text { MR }}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Reset (clear)	L	X	X	L
Load "1"	H	\uparrow	h	H
Load " 0 "	H	\uparrow	I	L

$H=$ High voltage level steady state.
$\mathrm{h}=$ High voltage level one setup time prior to the Low-to-High clock transition.
L = Low voltage level steady state.
I = Low voltage level one setup time prior to the Low-to-High clock transition.
X = Don't care.
$\uparrow=$ Low-to-High clock transition.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$I_{\text {IK }}$	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operatıng free-aır temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage	$\overline{M R}$ \& $C P$ inputs ${ }^{3}$			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	25			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
		Other inputs	$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX, } \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7			V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=00 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{4}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{5}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			65	85	mA		
		$\mathrm{I}_{\text {CCL }}$				68	88	mA		

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2 All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3 To reduce the effect of external noise durung test
4 Not more than one output should be shorted at a time For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests in any sequence of parameter tests, los tests should be performed last.
5. Measure I_{CC} after a momentary ground, then 45 V is applied to clock with all outputs open and 45 V applied to clock with all outputs open and 45 V applied to the Master Reset input, all data inputs and the Master Reset input

Flip-Flop

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F273					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	130	145		120		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 2	4.5	7.0	9.5	3.5	10.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F273					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{C} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(H) \\ & \mathbf{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 3	0			0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 2	8.0			8.5		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.0		ns
$t_{w}(L)$	Master Reset pulse width	Waveform 2	3.5			4.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor, see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance,
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termunation resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Puise Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\mathbf{T L H}}$	$\mathbf{t}_{\mathbf{T H L}}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Buffered inputs - one normalized load
- Word length easily expanded by cascading

DESCRIPTION

The 'F280A is a 9-bit parity generator or checker commonly used to detect errors in high-speed data transmission or data retrieval systems. Both Even and Odd parity outputs are available for generating or checking even or odd parity on up to 9 bits.
The Even parity output (Σ_{E}) is High when an even number of Data inputs ($I_{0}-I_{8}$) are High. The Odd parity output (Σ_{0}) is High when an odd number of Data inputs are High.

Expansion to larger word sizes is accomplished by tying the Even outputs (Σ_{E}) of up to nine parallel devices to the Data inputs of the final stage. This expansion scheme allows an 81-bit data word to be checked in less than 25 ns with the 'F280A. 'F280B is a faster version of 'F280A.

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

853-0048 76480

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS	OUTPUTS	
Number of High Data Inputs $\left(l_{0}-l_{8}\right)$	Σ_{E}	Σ_{O}
Even - 0, 2, 4, 6, 8	H	L
Odd - 1, 3, 5, 7, 9	L	H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK_{1}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lol	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F280A			UNIT
				Min	Typ ${ }^{2}$	Max	
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX, }, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 / \mathrm{K}}$			-0.73	-1.2	V
I	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current (total)	$V_{C C}=M A X$			26	35	mA

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F280A, 74F280B					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $I_{0}-I_{B}$ to Σ_{E}	'F280A		Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 11.1 \end{gathered}$	$\begin{gathered} \hline 9.0 \\ 13.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay $I_{0}-I_{8}$ to Σ_{C}			Waveform 1, 2	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	ns
t_{PLH} $\mathrm{t}_{\text {PHL }}$	Propagation delay $\mathrm{I}_{0}-\mathrm{I}_{8}$ to Σ_{E}	'F280B	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns	
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagatıon delay $I_{0}-I_{8}$ to Σ_{O}		Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	3.5 3.5	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns	

AC WAVEFORMS

WF0601ss

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal Carry look-ahead

DESCRIPTION

The 'F283 adds two 4-bit binary words (A_{n} plus B_{n}) plus the incoming Carry. The binary sum appears on the Sum outputs ($\Sigma_{1}-\Sigma_{4}$) and the outgoing Carry ($\mathrm{C}_{\mathrm{OUT}}$) according to the equation:

$$
\begin{aligned}
& \mathrm{C}_{\mathbb{I N}}+\left(A_{1}+B_{1}\right)+2\left(A_{2}+B_{2}\right) \\
& =1 p 4\left(A_{3}+B_{3}\right)+8\left(A_{4}+B_{4}\right) \\
& =\Sigma_{1}+2 \Sigma_{2}+4 \Sigma_{3}+8 \Sigma_{4}+16 C_{\text {OUT }}
\end{aligned}
$$

where $(+)=$ plus.
Due to the symmetry of the binary add function, the 'F283 can be used with either all active-High operands (positive logic) or all active-Low operands (negative logic) - see Function Table. In case of all active-Low operands the results $\Sigma_{1}-\Sigma_{4}$ and $\mathrm{C}_{\text {OUT }}$ should be interpreted also as active-Low. With active-High inputs, C_{IN} cannot be left open; it must be held Low when no "Carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus C_{IN}, A_{1}, B_{1} can arbitrarily be assigned to pins $5,6,7$, etc.

PIN CONFIGURATION

FAST 74F283
 4-Bit Adder

4-Bit Binary Full Adder With Fast Carry Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 283	6.5 ns	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F283N
16-Pin Plastic SO	N74F283D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{4}$	A operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{4}$	B operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{C}_{\text {IN }}$	Carry input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\Sigma_{1}-\Sigma_{4}$	Sum outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{C}_{\text {OUT }}$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

PINS	$\mathbf{C}_{\mathbf{I N}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{4}}$	$\mathbf{\Sigma}_{\mathbf{1}}$	$\mathrm{\Sigma}_{\mathbf{2}}$	$\mathrm{\Sigma}_{\mathbf{3}}$	$\mathbf{\Sigma}_{\mathbf{4}}$	$\mathrm{C}_{\text {OUT }}$
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active-High	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active-Low	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Example:
1001
$\frac{1010}{10011}$
$(10+9=19)$
(carry $+5+6=12$)
$H=$ High voltage level
$\mathrm{L}=$ Low voltage level

Due to pin limitations, the intermediate carries of the 'F283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a Carry into, or bring a Carry out from, an intermediate stage. Figure a shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder ($\mathrm{A}_{3}, \mathrm{~B}_{3}$) Low makes S_{3} dependent only on, and equal to, the Carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the 'F283 into a 2-bit and a 1-bit adder. The third stage adder (A_{2}, $\left.B_{2}, S_{2}\right)$ is used merely as a means of getting a carry (C_{10}) signal into the fourth stage (via A_{2} and B_{2}) and bringing out the Carry from the second stage on S_{2}. Note that as long as A_{2} and B_{2} are the same, whether High or Low, they do not influence S_{2}. Similarly, when A_{2} and B_{2} are the same the Carry into the third stage does not influence the Carry out of the third stage. Figure c shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs S_{0}, S_{1} and S_{2} present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure d shows one method of implementing a 5 -input majority gate. When three or more of the inputs $I_{1}-I_{5}$ are true, the output M_{5} is true.

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F283			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		v		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{VCc}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V	
1	input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\begin{aligned} & A_{1}-A_{4}, \\ & B_{1}-B_{4} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-1.2	mA		
		C_{IN}					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			40	55	mA		

NOTES:

1. For conditions shown as $M I N$ or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operatonal values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. ICC should be measured with all outputs open and the following conditions: Condition 1: all inputs grounded
Condition 2: all B inputs Low, other inputs at 4.5 V
Condition 3: all inputs at 4.5 V .
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F283					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C_{IN} to Σ_{i}	Waveforms 1 and 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A_{i} or B_{i} to Σ_{i}	Waveforms 1 and 2	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\mathrm{C}_{\text {IN }}$ to $\mathrm{C}_{\text {OUt }}$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A_{i} or B_{i} to Cout	Waveforms 1 and 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	3.5 3.0	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F298
Multiplexer
Quad 2-Input Multiplexer With Storage Product Specification

FAST Products

FEATURES

- Fully synchronous operation
- Select from two data sources
- Buffered, negative edge triggered Clock
- Provides the equivalent of function capabilities of two separate MSI functions (74F157 and 74F175)

DESCRIPTION

The 'F298 is a High-speed Multiplexer with storage. It selects 4 bits of data from two sources (Ports) under the control of a common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the High-to-Low transition of the Clock input ($\overline{\mathrm{CP}}$). The 4-bit register is fully edge triggered. The Data inputs (I_{0} and I_{1}) and Select input (S) must be stable only one setup time prior to the High-to-Low transition of the clock for predictable operation.

PIN CONFIGURATION

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 298	115 MHz	30 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F298N
16-Pin Plastic SOL	N74F298D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{1 \mathrm{a}}, I_{1 \mathrm{~b}}, I_{1 \mathrm{c}}, I_{1 \mathrm{~d}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{Oa}}, \mathrm{I}_{\mathrm{lb}}, \mathrm{I}_{\mathrm{Oc}}, \mathrm{I}_{\mathrm{Od}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{a}}, \mathrm{Q}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{c}}, \mathrm{Q}_{\mathrm{d}}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

LD02210s
() = Pin Numbers

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS
	$\mathbf{C P}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Q}_{n}
Load Source "0"	\downarrow	I	l	X	L
	\downarrow	l	h	X	H
Load Source "1"	\downarrow	h	X	I	L
	\downarrow	h	X	h	H

$H=$ High voltage level
$\mathrm{h}=$ High voltage level one setup time prior to the High-to-Low Clock transition
L = Low voltage level
I = Low voltage level one setup tıme prior to the High-to-Low Clock transition
$X=$ Don't care
$\downarrow=$ High-to-Low clock transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	\checkmark
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$	2.5			V
			$\pm 5 \% V_{C C}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX }, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% V_{\text {cC }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)	${ }^{\text {ICCH }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			30	40	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				32	40	mA		

NOTES:

1. For conditoons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable conditions.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Multiplexer

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	110	115		150		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{CP}}$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Ion, $I_{\text {in }}$ to $\overline{C P}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low Ion, $I_{1 n}$ to $\overline{C P}$	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S to $\overline{C P}$	Waveform 2	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$			7.0 6.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low S to $\overline{C P}$	Waveform 2	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}$ pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.0 7.0		ns

AC WAVEFORMS

Waveform 2. Data Setup and Hold Times

Waveform 1. Clock to Output Delays and Clock Pulse Width

TEST CIRCUIT AND WAVEFORMS

Test Circult for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OuT }}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Common parallel I/O for reduced pin count
- Additional Serial inputs and outputs for expansion
- Four operating modes: Shift Left, Shift Right, Load, and Store
- 3-State outputs for bus-oriented applications

DESCRIPTION

The 'F299 is an 8-bit universal shift/ storage register with 3 -state outputs. Four modes of operation are possible: hold (store), shift left, shift right, and load data. The parallel load inputs and flipflop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy serial cascading. A separate active-Low Master Reset is used to reset the register.

PIN CONFIGURATION

FAST 74F299
Register

8-Input Universal Shift/Storage Register (3-State) Product Specification

TYPE	TYPICAL	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 299	115 MHz	58 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{0}^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F299N
20-Pin Plastic SOL 1	N74F299D

NOTE:

1. Thermal Mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Parallel data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS	Serial data input for right shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS_{7}	Serial data input for left shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode select inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	Output Enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3-state parallel outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The 'F299 contains eight edge-triggered Dtype flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Mode Select Table. All flipflop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0}
and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.

A Low signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP , are observed.

A High signal on either $\overline{O E}_{1}$ or $\overline{O E}_{2}$ disables the 3 -state buffers and puts the $1 / O$ pins in the high-impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by High signals on both S_{0} and S_{1} in preparation for a parallel load operation.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OPERATING MODE
$\overline{M R}$	S_{1}	\mathbf{S}_{0}	CP	
L	X	X	X	Asynchronous Reset; $Q_{0}-Q_{7}=$ Low
H	H	H	\uparrow	Parallel Load; $1 / O_{n \rightarrow Q_{n}}$
H	L	H	\uparrow	Shift Right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0 \rightarrow \mathrm{Q}_{1} \text {, etc. }}$
H	H	L	\uparrow	Shift Left; $\mathrm{DS}_{7} \rightarrow \mathrm{Q}_{7}, Q_{7} \rightarrow Q_{6}$, etc.
H	L	L	X	Hold

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
V_{IN}	Input voltage		-0.5 to +7.0	V
IN	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{\text {cc }}$	V
lout	Current applied to output in Low output state	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	40	mA
		$1 / O_{n}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	v
I_{K}	Input clamp current				-18	mA
	High-level output curren	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			-1	mA
Ion	High-level output current	$1 / O_{n}$			-3	mA
Io	Low-level output current	Q_{0}, Q_{7}			20	mA
lol	Low-level output current	$1 / O_{n}$			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	Q_{0}, Q_{7}				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOH}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$1 / O_{n}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}_{\text {L }}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$			0.35	0.50	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$1 / \mathrm{O}_{\mathrm{n}}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
IIH	High-level input current		$V_{C C}=$ MAX,					20	$\mu \mathrm{A}$			
IIL	Low-level input current	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.2	mA			
		Others						-0.6	mA			
$\mathrm{lOZH}^{+} \mathrm{I}_{\mathrm{IH}}$	OFF-state output current, High-level voltage applied	I/On only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{0}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
Iozl + IIL	OFF-state output current Low-level voltage applied	I/On only	$V_{C C}=M A X, V_{0}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX				50	65	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					64	85	mA			
		$I_{\text {ccz }}$					60	65	mA			

NOTES:

1. For conditıons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F299					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency (I/O pins)	Waveform 1	70	100		70		MHz
$f_{\text {MAX }}$	Maximum clock frequency (Q_{n} pins)	Waveform 1	85	115		85		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay $C P$ to Q_{0} or Q_{7}	Waveform 1	$\begin{aligned} & \hline 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{MR}}$ to Q_{0} or Q_{7}	Waveform 2	5.5	7.5	9.5	5.5	10.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{M R}$ to I / O_{n}	Waveform 2	5.5	7.5	10.0	5.5	10.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time S_{n}, $\overline{O E}$ to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output disable time $S_{n}, \overline{O E}$ to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F299					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{0} or S_{1} to CP	Waveform 3	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold time, High or Low S_{0} or S_{1} to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$		ns
$t_{w}(L)$	$\overline{\mathrm{MR}}$ pulse width Low	Waveform 2	4.5			4.5		ns
trec	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 2	4.0			4.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

WF21540S
Waveform 3. Data and Select Setup and Hold Times

WF21530S
Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: $V_{M}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- Multiplexed parallel I/O ports
- Separate Serial input and output
- Sign extend function
- 3-State outputs for bus applications

DESCRIPTION

The 'F322 is an 8-bit shift register with provision for either serial or parallel loading and with 3-State parallel outputs plus a bi-state Serial output. Parallel Data inputs and outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store), shift right with serial entry, shift right with sign extend, and parallel load. An asynchronous Master Reset ($\overline{\mathrm{MR}}$) input overrides clocked operation and clears the register.

PIN CONFIGURATION

FAST 74F322
Register

8-Bit Serial/Parallel Register With Sign Extend (3-State) Preliminary Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 322	90 MHz	60 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F322N
20 -Pin Plastic SOL	N74F322D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Serial data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Serial data select input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
SE	Sign Extend input	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S} / \overline{\mathrm{P}}$	Serial (High) or Parallel (Low) mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{RE}}$	Register Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q_{0}	Bi-state serial output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$/ \mathrm{O}_{\mathrm{n}}$	Multiplexed parallel data inputs or	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	3-State parallel outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

6-332

LOGIC SYMBOL (IEEE/IEC)

The 'F322 contains eight D-type edge-triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A Low signal on $\overline{R E}$ enables shifting or parallel loading, while a High signal enables the hold mode. A

High signal on S / \bar{P} enables shift right, while a Low signal disables the 3-State output buffers and enables parallel loading. In the shift right mode a High signal on $\overline{\mathrm{SE}}$ enables serial entry from either D_{0} or D_{1}, as determined by the S input. A Low signal on $\overline{S E}$ enables shift right but Q_{7} reloads its contents, thus per-
forming the sign extend function required for the F384 Two's Complement Multiplier. A High signal on $\overline{O E}$ disables the 3-State output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

LOGIC DIAGRAM

FUNCTION TABLE

MODE	INPUTS							OUTPUTS								
	$\overline{\text { MR }}$	RE	$\mathbf{S} / \overline{\mathbf{P}}$	$\overline{\text { SE }}$	S	$\overline{\mathbf{O E}}{ }^{6}$	CP	$1 / 0_{7}$	$1 / \mathrm{O}_{6}$	$1 / \mathrm{O}_{5}$	$1 / \mathrm{O}_{4}$	$1 / \mathrm{O}_{3}$	$1 / \mathrm{O}_{2}$	1/0 ${ }_{1}$	$1 / O_{0}$	\mathbf{Q}_{0}
Clear	\bar{L}	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\frac{L}{Z}$	\bar{L}	$\frac{L}{Z}$	\bar{L}	$\frac{L}{Z}$	\bar{L}	\bar{L}	\bar{L}	L
Parallel Load	H	L	L	X	X	X	\uparrow	17	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	10	I_{0}
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\bar{L}	\uparrow	$\begin{aligned} & D_{0} \\ & D_{1} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{7} \\ & \mathrm{O}_{7} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{6} \\ & \mathrm{O}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{5} \\ & \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{4} \\ & \mathrm{O}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{3} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{1} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{1} \\ & \mathrm{O}_{1} \end{aligned}$
Sign Extend	H	L	H	L	X	L	\uparrow	O_{7}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Hold	H	H	X	X	X	L	\uparrow	NC	NC	NC	NC	NC	NC	NC	NC	NC

$H=$ High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition
$N C=$ No change
$I_{0}-I_{7}=$ The level of the steady state input at the respective I / O terminal is loaded into the flip-flop while the flip-flop outputs (except Q_{0}) are isolated from the I/O termınal.
$D_{0}-D_{7}=$ The level of the steady-state inputs to the serial multiplexer input
$\mathrm{O}_{0}-\mathrm{O}_{7}=$ The level of the respective Q_{n} flip-flop prior to the last clock Low-to-High clock transition.
NOTE:
When the $\overline{O E}$ input is High, all I / O_{n} terminals are at the High-impedance state, sequential operation or clearing of the register is not affected
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
IN	Input current		-30 to +5	mA
V OUT	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	\checkmark
lout	Current applied to output in Low output state	Q_{0}	40	mA
		$1 / O_{n}$	48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IK	Input clamp current				-18	mA
Іон	High-level output current	Q_{0}			-1	mA
		$1 / O_{n}$			-3	mA
IOL	Low-level output current	Q_{0}			20	mA
		$1 / O_{n}$			24	mA

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F322			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	Q_{0}				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$1 / O_{n}$	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.3		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$1 / \mathrm{O}_{\mathrm{n}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{IIH}^{\text {H}}$	High-level input current		$V_{C C}=$ MAX,	.7V				20	$\mu \mathrm{A}$			
ILL	Low-level input current	SE	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.8	mA			
		S						-1.2	mA			
		Others						-0.6	mA			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	OFF-state output current, High-level voltage applied	I/On only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & I_{\text {OZL }} \\ & +I_{\text {IL }} \end{aligned}$	OFF-state output current, Low-level voltage applied	I/On only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$						mA			
		$\mathrm{I}_{\mathrm{CCL}}$					60		mA			
		Iccz							mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F322					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	70	90		70		MHz
${ }^{\text {tpLH }}$ tphL	Propagation delay CP to I / O_{n}	Waveform 1	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 7 \\ 8.5 \end{gathered}$	$\begin{gathered} 9 \\ 11 \end{gathered}$	4 5	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to Q_{0}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	3.5 3.5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{M R}$ to I / O_{n}	Waveform 3	6	10	13	6	14	ns
$t_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{0}	Waveform 3	5.5	9.5	12.0	5.5	13	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output enable time $\overline{O E}$ to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9 \\ 11 \end{gathered}$	3 4	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time $\overline{O E}$ to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 4.5 \\ 5 \end{gathered}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	2 2	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output enable time S / \bar{P} to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{gathered} 10.5 \\ 14 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 15 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{tPLZ}} \\ & \hline \end{aligned}$	Output disable time S / \bar{P} to I / O_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{gathered} 9 \\ 12 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 15.5 \end{aligned}$	5 6	$\begin{aligned} & 12.5 \\ & 16.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F322					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low RE to CP	Waveform 2	$\begin{aligned} & 12 \\ & 12 \end{aligned}$			13 13		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{R E}$ to CP	Waveform 2	0			0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{0}, D_{1} or I / O_{n} to CP	Waveform 2	8			9 9		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{0}, D_{1} or I / O_{n} to CP	Waveform 2	2 2			3 3		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low SE to CP	Waveform 2	7 7			8		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low SE to CP	Waveform 2	2			2		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S/P to CP	Waveform 2	$\begin{aligned} & 12 \\ & 12 \end{aligned}$			13 13		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time, High or Low S to CP	Waveform 2	8			9 9		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S or S / \bar{P} to $C P$	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$t_{w}(\mathrm{H})$	CP pulse width High	Waveform 1	7			7		ns
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ pulse width Low	Waveform 3	7			7		ns
$\mathrm{trec}^{\text {c }}$	Recovery time, $\overline{M R}$ to CP	Waveform 3	8			8		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FAST 74F323
Register
8-Bit Universal Shift/Storage Register With Synchronous Reset and Common I/O Pins (3-State) Product Specification

FEATURES

- Common parallel I/O for reduced pin count
- Additional Serial inputs and outputs for expansion
- Four operating modes: shift left, shift right, load, and store
- 3-State outputs for bus-oriented applications

DESCRIPTION

The 'F323 is an 8-bit universal shift/ storage register with 3-State outputs. Its function is similar to the 'F299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate serial inputs and outputs are provided for Q_{0} and Q_{7} to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right, and parallel load.
The 'F323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Mode Select table.

TYPE	TYPICAL fmax	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 323$	100 MHz	68 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{C C}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F323N
20-Pin Plastic SOL	N74F323D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS_{0}	Serial data input for right shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS_{7}	Serial data input for left shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode select inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	3-State output enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3-State parallel data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

All flip-flop outputs are brought out through 3State buffers to separate I/O pins that also serve as data inputs in the paraliel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A Low signal on $\overline{\mathbf{S R}}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the Low-to-High CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP , are observed.

A High signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3 -State buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold, and reset operations can still occur. The 3-State buffers are also disabled by High signals on both S_{0} and S_{1} in preparation for a parallel load operation.

FUNCTION TABLE

INPUTS					OPERATING MODE
$\overline{\mathbf{S R}}$	$\overline{\mathbf{O}} \mathrm{E}_{\mathrm{n}}$	S_{1}	S_{0}	CP	
L	L	X	X	X	Synchronous Reset; $Q_{0}-Q_{7}=$ Low
H	L	H	H	\uparrow	Parallel Load; $/ / O_{n \rightarrow Q_{n}}$
H	L	L	H	\uparrow	
H	L	H	L	\uparrow	
H	L	L	L	X	Hold
X	H	X	X	X	Outputs Disabled

$\mathrm{H}=$ High Voltage Level
L = Low Voltage Level
$X=$ Don't care
$\begin{aligned} X & =\text { Don't care } \\ \uparrow & =\text { Low-to-High Clock Transition }\end{aligned}$

Register

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
	Operating free-air temperature range	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	I_{n}
$\mathrm{T}_{\text {STG }}$	Storage temperature	48	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
I'r	High-level output current	Q_{0}, Q_{7}			-1	mA
Ior	High-level output current	$1 / O_{n}$			-3	mA
b	Low-level output current	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			20	mA
lot	Low-level output curent	$1 / O_{n}$			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F323			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	$Q_{0}-Q_{7}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
		$1 / O_{n}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\mathrm{I}} \mathrm{K}$				-0.73	-1.2	V	
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$1 / \mathrm{O}_{\mathrm{n}}$	$V_{C C}=5.5, V_{1}=5.5 \mathrm{~V}$					1.0	$\mu \mathrm{A}$			
1 IH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IL	Low-level input current	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.2	mA			
		Others						-0.6	mA			
$\begin{aligned} & \mathrm{l}_{\mathrm{OZH}}+ \\ & \mathrm{l}_{\mathrm{IH}} \\ & \hline \end{aligned}$	Off-state output current, Highlevel voltage applied	$\begin{aligned} & 1 / O_{n} \\ & \text { Only } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \text { lozL }+ \\ & \text { liL. } \\ & \hline \end{aligned}$	Off-state output current, Low-level voltage applied	$\begin{aligned} & 1 / O_{n} \\ & \text { Only } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-0.6	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$						mA			
		$\mathrm{I}_{\mathrm{CCL}}$					68	92	mA			
		Iccz							mA			

NOTES:

2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F323					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum input frequency	Waveform 1	70			70		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to Q_{0} or Q_{7}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 9 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PZH }} \\ & t_{\text {PZL }} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 11 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PPZ}} \\ & \mathrm{t}_{\mathrm{pLz}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	2.5 2.0	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F323					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{0} or S_{1} to CP	Waveform 2	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$					ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low S_{0} or S_{1} to CP	Waveform 2	0					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	Waveform 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$					ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$					ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $\overline{S R}$ to CP	Waveform 2	$\begin{aligned} & 10 \\ & 10 \end{aligned}$					ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\overline{\mathrm{SR}}$ to CP	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low	Waveform 1	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$					ns

Register

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed
$t_{\text {PZL }}$	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST 74F350
 Shifter

4-Bit Shifter (3-State) Product Specification

FAST Products

FEATURES

- Shifts 4 bits of data to 0, 1, 2, 3 places under control of two select lines
- 3-State outputs for bus organized systems

DESCRIPTION

The 'F350 is a combination logic circuit that shifts a 4-bit word from 0 to 3 places. No clocking is required as with shift registers.
The 'F350 can be used to shift any number of bits any number of places up or down by suitable interconnection. Shifting can be:

1. Logical - with logic zeros filled in at either end of the shifting field.
2. Arithmetic - where the sign bit is extended during a shift down.
3. End around - where the data word forms a continuous loop.
The 3-State outputs are useful for bus interface applications or expansion to a larger number of shift positions in end around shifting. The active-Low Output Enable ($\overline{\mathrm{OE}}$) input controls the state of the outputs. The outputs are in the Highimpedance "OFF" state when $\overline{\mathrm{OE}}$ is High, and they are active when $\overline{\mathrm{OE}}$ is Low.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 350	5.2 ns	24 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F350N
16-Pın Plastic SO	N74F350D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{I}_{3}-\mathrm{I}_{3}$	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{Y}_{0}-\mathrm{Y}_{3}$	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

$\overline{O E}$	S_{1}	\mathbf{S}_{0}	l_{3}	I_{2}	I_{1}	I_{0}	L_{-1}	\mathbf{L}_{2}	l-3	\mathbf{Y}_{3}	\mathbf{Y}_{2}	Y_{1}	Y_{0}
H	X	X	X	X	X	X	X	X	X	Z	Z	Z	Z
L	L	L	D_{3}	D_{2}	D_{1}	D_{0}	X	X	X	D_{3}	D_{2}	D_{1}	D_{0}
L	L	H	X	D_{2}	D_{1}	D_{0}	D-1	X	X	D_{2}	D_{1}	D_{0}	D-1
L	H	L	x	X	D_{1}	D_{0}	D_{-1}	D_{-2}	X	D_{1}	D_{0}	D_{-1}	D-2
L	H	H	X	X	X	D_{0}	D-1	D_{-2}	D_{-3}	D_{0}	D-1	D-2	D-3

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state
$D_{n}=$ High or Low state of referenced I_{n} input

LOGIC EQUATIONS

$$
\begin{aligned}
& Y_{0}=\bar{S}_{0} \cdot \bar{S}_{1} \cdot l_{0}+S_{0} \cdot \bar{S}_{1} \cdot I_{-1}+\bar{S}_{0} \cdot S_{1} \cdot I_{-2}+S_{0} \cdot S_{1} \cdot I_{-3} \\
& Y_{1}=\bar{S}_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot \bar{S}_{1} \cdot I_{0}+\bar{S}_{0} \cdot S_{1} \cdot I_{-1}+S_{0} \cdot S_{1} \cdot I_{-2} \\
& \mathrm{Y}_{2}=\overline{\mathrm{S}}_{0} \cdot \bar{S}_{1} \cdot 1_{2}+\mathrm{S}_{0} \cdot \overline{\mathrm{~S}}_{1} \cdot I_{1}+\overline{\mathrm{S}}_{0} \cdot \mathrm{~S}_{1} \cdot I_{0}+\mathrm{S}_{0} \cdot \mathrm{~S}_{1} \cdot I_{-1} \\
& Y_{3}=\bar{S}_{0} \cdot \cdot_{1} \cdot \iota_{3}+S_{0} \cdot \bar{S}_{1} \cdot I_{2}+\bar{S}_{0} \cdot S_{1} \cdot I_{1}+S_{0} \cdot S_{1} \cdot I_{0}
\end{aligned}
$$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
loL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F350			UNIT		
			Min	Typ ${ }^{2}$	Max					
V OH	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\pm 5 \% V_{\text {cc }}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN, $I_{I}=I_{\text {IK }}$			-0.73	-1.2	V		
II	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIH	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-1.2	mA		
lozh	Off-state output current, High-level voltage applied		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	Off-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX			22	35	mA		
		ICCL				26	41	mA		
		Iccz				26	42	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately refiect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F350					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{n} to γ_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {pZH }} \\ & \mathrm{t}_{\text {pZL }} \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	2.5	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns

APPLICATIONS

BDO2040S
$\mathrm{S}_{2} \quad \mathrm{~S}_{1} \mathrm{~S}_{0}$
L L No shift
L H Shift end around 1
HL Shift end around 2
HH Shift end around 3
L L Shift end around 4
L H Shift end around 5
HL Shift end around 6
HH Shift end around 7

BD02050S

S_{1}	S_{0}	Scale
L	$L \div 8$	$1 / 8$
L	$H \div 4$	$1 / 4$
H	$L \div 2$	$1 / 2$
H	H No change	1

APPLICATIONS (Continued)

S_{0}
L L No shift
L H Shift 1 place
H L Shift 2 places
H H Shift 3 places
16-Bit Shift Up 0, 1, 2, or 3 Places
AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- Inverting version of 'F153
- Separate Enable for each multiplexer section
- Common Select inputs
- See 'F353 for 3-State version

DESCRIPTION

The 'F352 has a dual 4-input multiplexer that can select 2 bits of data from up to eight sources under control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4input multiplexer circuits have individual active-Low Enables (\bar{E}_{a}, \bar{E}_{b}) which can be used to strobe the outputs independently. Outputs $\left(\bar{Y}_{a}, \bar{Y}_{b}\right)$ are forced High when the corresponding Enables (\bar{E}_{a}, \bar{E}_{b}) are High.
The device is the logical implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs.

The 'F352 can be used to move data to a common output bus from a group of registers. The state of the Select inputs would determine the particular register from which the data came. An alternative application is as a function generator. The device can generate two functions or three variables. This is useful for implementing highly irregular random logic.

PIN CONFIGURATION

ORDERING INFORMATION

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

NOTE:

LOGIC SYMBOL

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 352	5.5 ns	10 mA

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}} \mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F352N
16-Pin Plastic SO	N74F352D

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0 \mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$	Port A data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{~b}}-\mathrm{I}_{3 \mathrm{~b}}$	Port B data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Common select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$	Port A, B enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}_{\mathrm{a}}, \overline{\mathrm{Y}}_{\mathrm{b}}$	Multiplexer outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

LDO2490S

FUNCTION TABLE

INPUTS							OUTPUT
$\mathrm{S}_{\mathbf{0}}$	S_{1}	\bar{E}	Ion	$\mathrm{I}_{1 \mathrm{n}}$	$\mathrm{I}_{2 \mathrm{n}}$	I_{3}	\bar{Y}_{n}
X	X	H	X	X	X	X	H
L	L	L	L	X	x	x	H
L	L	L	H	X	x	X	L
H	L	L	X	L	x	x	H
H	L	L	X	H	X	X	L
L	H	L	X	X	L	X	H
L	H	L	X	X	H	x	L
H	H	L	x	X	X	L	H
H	H	L	X	X	X	H	L

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
І OH	High-level output current			-1	mA
lol	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F352			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, V_{O H}=\text { MAX } \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
$V_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% V_{C C}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 /}$				-0.73	-1.2	V	
I,	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{IH}	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$1 / 2$	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-60		-150	mA			
I_{cc}	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$	$\mathrm{E}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}=$ GND			8	14	mA			
		l CCL		$\bar{E}_{\mathrm{n}}=\mathrm{GND}, \mathrm{S}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}=4.5 \mathrm{~V}$			12	20	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F352					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay Ion to \bar{Y}_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to \bar{Y}_{n}	Waveform 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{E}_{n} to \bar{Y}_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	2.0 3.0	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output

Waveform 2. Propagation Delay for Select or Enable to Output

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORM

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor, see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to Z ZOUT
of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Inverting version of 'F253
- 3-State outputs for bus interface and multiplex expansion
- Common Select inputs
- Separate Output Enable Inputs

DESCRIPTION

The 'F353 has two identical 4-input multiplexers with 3-State outputs which select two bits from eight sources selected by common Select inputs $\left(S_{0}, S_{1}\right)$. When the individual Output Enable ($\bar{E}_{0 \mathrm{a}}, \overline{\mathrm{E}}_{0 \mathrm{~b}}$) inputs of the 4 -input multiplexers are High, the outputs are forced to a Highimpedance ($\mathrm{Hi}-\mathrm{Z}$) state.
The 'F353 is the logic implementation of a 2 -pole, 4 -position switch; the position of the switch being determined by the logic levels supplied to the two Select inputs.
Logic equations for the outputs are shown below:
$\bar{Y}_{a}=\overline{O E}_{a} \cdot\left(l_{0 \mathrm{a}} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0}\right.$ $\left.+I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right)$
$\bar{Y}_{\mathrm{b}}=\overline{O E}_{\mathrm{b}} \cdot\left(\mathrm{l}_{0 \mathrm{~b}} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+\mathrm{l}_{1 \mathrm{~b}} \cdot \bar{S}_{1} \cdot \mathrm{~S}_{0}\right.$
$\left.+\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \bar{S}_{0}+\mathrm{I}_{3 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)$

FAST 74F353
Multiplexer
Dual 4-Input Multiplexer (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 353$	6.0 ns	11 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F353N
16-Pin Plastic SO	N74F353D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{Oa}}-\mathrm{I}_{3 \mathrm{a}}$	Port A data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{Ob}}-\mathrm{I}_{1 \mathrm{~b}}$	Port B data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Common select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{O E}_{\mathrm{a}}, \overline{O E}_{\mathrm{b}}$	Port A, B output enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{Y}_{\mathrm{a}}, \bar{Y}_{\mathrm{b}}$	3-State outputs (inverted)	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS							OUTPUT
$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{3}}$	$\overline{\text { OE }}$	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	H
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	H
H	L	X	H	X	X	L	L
L	H	X	X	L	X	L	H
H	H	X	X	X	X	L	L
H	H	X	X	X	H	L	H

$\mathrm{H}=$ High voltage level
L = Low voltage level
X = Don't care
$Z=$ High-impedance (OFF) state
All but one device must be in the Highimpedance state to avoid high currents exceeding the maximum ratings, if the outputs of the 3-State devices are tied together. Design of the Output Enable signals must ensure that there is no overlap.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathbb{I N}}$	Input voltage	-0.5 to +7.0	
I_{N}	Input current	-30 to +5	V
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	mA
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	V	
T_{A}	Operating free-air temperature range	48	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK_{1}	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
lOL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F353			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=\text { MIN, } V_{I L}=\text { MAX, } \\ & V_{I H}=\text { MIN, } I_{O H}=\text { MAX } \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=\text { MAX, } \\ & V_{I H}=\text { MIN, } I_{\mathrm{OL}}=\text { MAX } \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	Off-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Off-state output current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\text {CCH }}$	$V_{C C}=$ MAX	$\overline{O E}_{n}=S_{n}=l_{n}=$ GND			9	14	mA			
		$\mathrm{I}_{\text {cle }}$		$\mathrm{S}_{\mathrm{n}}=\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{GND} ; \mathrm{I}_{\mathrm{n}}=4.5$			11	20	mA			
		Iccz		$\overline{\mathrm{O}} \mathrm{E}_{\mathrm{n}}=4.5 \mathrm{~V} ; \mathrm{S}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}=$ GND			13	23	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F353					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{n} to \bar{Y}_{n}	Waveform 2	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{p} \text { PLL }} \end{aligned}$	Output enable time to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	2.0 1.5	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- 3-State buffer outputs sink 64mA
- High-speed
- Bus-oriented

FUNCTION TABLE, 'F365, 'F366

INPUTS			OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	\mathbf{I}	$\mathbf{Y}_{\mathbf{n}}$	$\overline{\mathbf{Y}}_{\boldsymbol{n}}$
L	L	L	L	H
L	L	H	H	L
X	H	X	Z	Z
H	X	X	Z	Z

FUNCTION TABLE, 'F367, 'F368

INPUTS		OUTPUTS	
$\overline{\mathbf{O E}}_{\boldsymbol{n}}$	\mathbf{I}	$\mathbf{Y}_{\boldsymbol{n}}$	$\overline{\mathbf{Y}}_{\boldsymbol{n}}$
L	L	L	H
L	H	H	L
H	X	Z	Z

L = Low voltage level
H = High voltage level
$\mathrm{X}=$ Don't care
$Z=$ High-impedance (OFF) state

FAST 74F365, F366, F367, F368 Buffers/Drivers

'F365, 'F367 Hex Buffer/Driver (3-State) 'F366, 'F368 Hex Inverter Buffer (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 365	5.0 ns	36 mA
74 F 366	5.0 ns	33 mA
74 F 367	5.0 ns	36 mA
74 F 368	5.0 ns	33 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C c}}=5 \mathrm{5} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F365N, N74F366N N74F367N, N74F368N
	N74F365D, N74F366D
	N74F367D, N74F368D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{O E}_{1}, \overline{\mathrm{OE}}_{2}$	3-State output enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I}_{0}-\mathrm{I}_{5}$	Inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{0}-\mathrm{Y}_{5}, \bar{Y}_{0}-\bar{Y}_{5}$	Outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

'F365	'F366	'F367	'F368

LOGIC SYMBOL (IEEE/IEC)

Buffers/Drivers

FAST 74F365, F366, F367, F368

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK^{\prime}	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			$\begin{gathered} \text { 74F365, 'F366 } \\ \text { 'F367, 'F368 } \\ \hline \end{gathered}$			UNIT			
				Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
				$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% V_{c c}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0				V				
VoL	Low-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=M A X, \\ & \mathrm{~V}_{1 H}=\mathrm{MIN} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% V_{c c}$		0.35	0.50	V		
				$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=$ MIN, $\mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
I	Input current at maximum input voltage			$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
IIH	High-level input current			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	Off-state current High-level voltage applied			$V_{C C}=M A X, V_{0}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Off-state current Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$V_{C C}=$ MAX			-100		-225	mA			
lcc	Supply current (total)		ICCH	$V_{C C}=$ MAX				25	35	mA			
		'F365, 'F367	ICCL					47	62	mA			
			ICCz					35	48	mA			
		'F366, 'F368	ICCH					18	25	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					47	62	mA			
			ICCz					35	48	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F365, 'F366, 'F367, 'F368					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation delay I_{n} to \bar{Y}_{n}	'F366, 'F368		Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay I_{n} to Y_{n}	$\begin{aligned} & \text { 'F365, } \\ & \text { 'F367 } \end{aligned}$		Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathbf{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level	$\begin{aligned} & \text { 'F365, } \\ & \text { 'F366 } \end{aligned}$	Waveform 3 \& 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathbf{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level	$\begin{aligned} & \text { 'F367, } \\ & \text { 'F368 } \end{aligned}$	Waveform 3 \& 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns	
${ }^{\text {tPHZ }}$ tplZ	Output disable time from High or Low level		Waveform 3 \& 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	

AC WAVEFORMS

WF0601Z
Waveform 1. For Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. For Non-Inverting Outputs

WF06075s

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed $t_{\text {PZL }}$ All other

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

Signetics

FAST 74F373, 74F374 Latches/Flip-Flops

'F373 Octal Transparent Latch (3-State)
'F374 Octal D Flip-Flop (3-State)
Product Specification

FAST Products

FEATURES

- 8-bit transparent latch - 'F373
- 8-bit positive, edge-triggered register - 'F374
- 3-State output buffers
- Common 3-State Output Enable
- Independent register and 3-State buffer operation

DESCRIPTION

The 'F373 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The data on the D inputs are transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.
The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3 -State buffers independent of the latch operation.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 373	4.5 ns	35 mA
74 F 374	6.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}=14 \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F373N, N74F374N
20 -Pin Plastic SOL	N74F373D, N74F374D

input and output loading and fan-out table

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E ('F373)	Latch enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F374)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

	720 vcc
	190 0_{7}
	$18 \mathrm{D} \mathrm{D}_{7}$
	17 D 6
	$16 a_{6}$
	$15 a_{5}$
	(14) O_{5}
	(13) D_{4}
	12] a_{4}
	(11) CP
	coosios

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM, 'F373

LOGIC DIAGRAM, 'F374

$\begin{aligned} V_{C C} & =\operatorname{Pin} 20 \\ G N D & =\operatorname{Pin} 10\end{aligned}$

When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

The 'F374 is an 8-bit, edge-triggered register coupled to eight 3 -State output buffers. The two sections of the device are controlled
independently by the Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates. The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS
memories, or MOS microprocessors. The ac-tive-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the register operation. When $\overline{O E}$ is Low, the data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

MODE SELECT — FUNCTION TABLE, 'F373

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS$Q_{0}-Q_{7}$
	OE	E	D_{n}		
Enable and read register	\bar{L}	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Latch and read register	L	\downarrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Hold	L	L	X	NC	NC
Disable outputs	H	X	X	X	z

$\mathrm{NC}=$ No change
MODE SELECT - FUNCTION TABLE, 'F374

OPERATING MODES	INPUTS			INTERNAL REGISTER	$\frac{\text { OUTPUTS }}{Q_{0}-Q_{7}}$
	$\overline{O E}$	CP	D_{n}		
Load and read register	$\begin{aligned} & L \\ & L \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Disable outputs	H	X	X	X	Z

$H=$ High voltage level
$h=$ High voltage level one setup time prior to the Low-to-High clock transition or High-to-Low E transition
$\mathrm{L}=$ Low voltage level
X $=$ Don't care
I = Low voltage level one setup time prior to the Low-to-High clock transition or High-to-Low E transition
$Z=$ High-impedance "OFF" state
$\uparrow=$ Low-to-High clock transition
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{IIK}_{\text {K }}$	Input clamp current			-18	mA
lOH	High-level output current			-3	mA
loL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F373, 'F374			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O L}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN}, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voitage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	OFF-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	'F373	$V_{C C}=$ MAX	Iccz	$\begin{aligned} & \overline{\mathrm{OE}}=4.5 \mathrm{~V} \\ & \mathrm{D} \text { inputs }=\mathrm{E}=\mathrm{GND} \end{aligned}$		35	55	mA			
		'F374			$\begin{aligned} & C P=\overline{O E}=4.5 \mathrm{~V} \\ & \mathrm{D} \text { inputs }=\mathrm{GND} \end{aligned}$		57	86	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F373, 74F374					UNIT
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
				Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to Q_{n}	'F373	Waveform 3	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay E to \bar{Q}_{n}		Waveform 2	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns
$t_{P Z H}$ $t_{P Z L}$	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	ns
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	'F374	Waveform 1	100			70		MHz
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CP to \bar{Q}_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.3 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F373, 74F374					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to E	'F373		Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, D_{n} to E			Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\mathrm{tw}_{\text {(}}(\mathrm{H})$	E pulse width, High or Low		Waveform 2	6.0			6.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to CP	'F374	Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns	
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, D_{n} to CP		Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$			7.0 6.0		ns	

AC WAVEFORMS

Waveform 3. Propagation Delay Data to Q Outputs

Waveform 4. Data Setup and Hold Times

WF06325s
Waveform 5. Data Setup and Hold Times

wF0609BS

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN Base Inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal for addressable register applications
- Enable for address and data synchronization applications
- Eight edge-triggered D flip-flops
- Buffered common Clock
- See 'F273 for Master Reset version
- See 'F373 for transparent latch version
- See 'F374 for 3-State version

DESCRIPTION

The 'F377 has eight edge-triggered, Dtype flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously when the Enable (\bar{E}) is Low.
The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flipflop's Q output. The \bar{E} input must be stable one setup time prior to the Low-to-High clock transition for predictable operation.

PIN CONFIGURATION

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 377	120 MHz	65 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{0}^{\circ} \mathbf{C}$
20 -Pin Plastic DIP	N74F377N
20 -PIn Plastic SOL	N74F377D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{E}}$	Enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Flip-Flop

MODE SELECT — FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	$\mathbf{C P}$	$\overline{\mathbf{E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
Load "1"	\uparrow	I	h	H
Load "0"	\uparrow	I	I	L
Hold (do nothing)	\uparrow	h	X	no change
no change				

$\mathrm{H}=$ High voltage level steady state
$\mathrm{h}=$ High voltage level one setup time prior to the Low-to-High Clock transition
$L=$ Low voltage level steady state
$I=$ Low voltage level one setup time prior to the Low-to-High Clock transition
X = Don't care
$\uparrow=$ Low-to-High clock transition
LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\mathbf{N}}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output vol	$\bar{E} \& C P$ inputs ${ }^{3}$				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		other inputs	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V			
					$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4		V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{4}$		$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{D}_{\mathrm{n}}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow, \mathrm{E}=\mathrm{GND}$			55	72	mA			
		ICCL		$\mathrm{D}_{\mathrm{n}}=\overline{\mathrm{E}}=\mathrm{GND}, \mathrm{CP}=\uparrow$			70	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. To reduce the effect of external noise during test.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last

Flip-Flop

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F377					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	110	120		100		MHz
tpLH tpHL	Propagation delay $C P$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F377					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.5 2.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	0			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low \bar{E} to CP	Waveform 2	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$			2.5 4.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low \bar{E} to CP	Waveform 2	0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value. $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F378

Flip-Flop

Hex D Flip-Flop With Enable

 Product Specification
FAST Products

FEATURES

- 6-bit high-speed Parallel Register
- Positive edge-triggered D-type inputs
- Fully buffered common Clock and Enable inputs
- Input clamp diodes limit highspeed termination effects
- Fully TTL and CMOS compatible

DESCRIPTION

The 'F378 has six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously when the Enable ($\overline{\mathrm{E}}$) is Low.
The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High Clock transition is transferred to the corresponding flipflop's Q output. The \bar{E} input must be stable only one setup time prior to the Low-to-High Clock transition for predictable operation.

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 378	100 MHz	35 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16 -Pin Plastic DIP	N74F378N
16 -Pin Plastic SO	N74F378D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{5}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

MODE SELECT FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUTS
	CP	\bar{E}	D_{n}	Q_{n}
Load "1"	\uparrow	1	h	H
Load "0"	\uparrow	1	1	L
Hold (do nothing)	$\begin{array}{\|l} \hline \uparrow \\ X \end{array}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{\|l} \hline x \\ x \end{array}$	no change no change

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the h Low-to-High clock transition
$\mathrm{L}=$ Low voltage steady state
1 Low voltage level one setup time prior to the Low-to-High clock transition
X = Don't care
$\begin{aligned} & \\ & \uparrow=\text { Low-to-High clock transition }\end{aligned}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	\checkmark
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
lOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F378			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=$ MIN, $I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$			32	45	mA		
		ICCL				35	45	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	Parameter	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock frequency	Waveform 1	80	100		80		MHz
${ }^{\text {tpLH }}$ ${ }_{\text {tphL }}$	Propagation delay CP to Q_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	3.0 3.5	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{8}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low E to CP	Waveform 2	$\begin{gathered} \hline 4.0 \\ 10.0 \end{gathered}$			$\begin{gathered} 4.0 \\ 10.0 \end{gathered}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low \bar{E} to CP	Waveform 2	0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low	Waveform 1	4.0 6.0			4.0 6.0		ns

Flip-Flop

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Clock Pulse Width, and Maximum Clock Frequency

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Edge-triggered D-type inputs
- Buffered positive edge-triggered Clock
- Buffered common Enable input
- True and complementary outputs

DESCRIPTION

The 'F379 is a 4-bit register with buffered common Enable. This device is similar to the 'F175 but features the common Enable rather than common Master Reset.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUTS	
$\overline{\mathbf{E}}$	$\mathbf{C P}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
H	\uparrow	X	NC	NC
L	\uparrow	h	H	L
L	\uparrow	I	L	H

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level steady state
I = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
$\mathrm{NC}=$ No Change

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
IOL^{2}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Quad Register

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F379			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \quad \mathrm{IOL}^{2}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
I_{H}	High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=$ MAX		-60		-150	mA
Icc	Supply current (total)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$			28	40	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operatıonal values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F379					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	Waveform 1	100	120		90		MHz
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay CP to $Q_{n}, \overline{Q_{n}}$	Waveform 1	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F379					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & \hline t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to CP	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low \bar{E} to CP	Waveform 2	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$			6.0 6.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low \bar{E} to CP	Waveform 2	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP pulse width, High or Low	Waveform 1	4.0 5.0			4.0 5.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$
of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Low-input loading minimizes drive requirements
- Performs six arithmetic and logic functions
- Selectable Low (clear) and High (preset) functions
- Carry Generate and Propagate outputs for use with Carry lookahead generator

DESCRIPTION

The 'F381 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select $\left(\mathrm{S}_{0}-\mathrm{S}_{2}\right)$ input codes force the Function outputs Low or High. Carry Propagate (\bar{P}) and Generate (\bar{G}) outputs are provided for use with the 'F182 Carry Lookahead Generator for high-speed expansion to longer word lengths. For ripple expansion, refer to the 'F382 ALU data sheet.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 381	6.5 ns	59 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
20 -Pin Plastic DIP	74 F 381 N
20 -Pin Plastic SOL	74 F 381 D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Function select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{n}	Carry input	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{G}}$	Carry generate output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry propagate output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Function Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

Signals applied to the Select inputs $\mathrm{S}_{0}-\mathrm{S}_{2}$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output function levels is shown in the Function Table. The circuit performs the arithmetic functions for either active-High or active-Low operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a Carry (High for active-High operands, Low for active-Low operands) into the C_{n} input of the least significant package.

The Carry Generate ($\overline{\mathrm{G}}$) and Carry Propagate (\bar{P}) outputs supply input signals to the 'F182 Carry look-ahead generator for expansion to longer word length, as shown in Figure 1. Note that an 'F382 ALU is used for the most significant package. Typical delays for Figure 1 are given in Table 1.

FUNCTION SELECT TABLE

SELECT			OPERATION
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{2}}$	
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	A B
H	L	H	A + B
L	H	H	AB
H	H	H	Preset

$H=$ High voltage level
L = Low voltage level

Figure 1. 16-Bit Look-Ahead Carry ALU Expansion
Table 1. 16-Bit Delay Tabulation

PATH SEGMENT	TOWARD F	OUTPUT $C_{n}+4$, OVR
A_{i} or B_{1} to \bar{P}	7.2 ss	7.2 ns
\bar{P}_{i} to $C_{n}+1$ ('F182)	$6.2 n \mathrm{~s}$	6.2 ns
C_{n} to F	$8.1 n \mathrm{~s}$	-
C_{n} to $C_{n+4, ~ O V R ~}$	-	8.0 ns
Total delay	21.5 ns	21.4 ns

Arithmetic Logic Unit

FUNCTION TABLE

	INPUTS						OUTPUTS					
Function	S_{0}	\mathbf{S}_{1}	\mathbf{S}_{2}	C_{n}	A_{n}	B_{n}	F0	F_{1}	F_{2}	F_{3}	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
Clear	0	0	0	X	X	X	0	0	0	0	0	0
B Minus A	1	0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$
A Minus B	0	1	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$
A Plus B	1	1	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$A \oplus B$	0	0	1	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$
$A+B$	1	0	1	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$
AB	0	1	1	$\begin{aligned} & X \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	0 1 0 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$
Preset	1	1	1	X X X X X	0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	1 1 1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1	1 1 1 1	1 1 1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$

$1=$ High voltage level
$0=$ Low voltage level
$X=$ Don't care

Arithmetic Logic Unit

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.

 Unless otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | RATING | UNIT |
| :--- | :--- | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | Supply voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\mathbf{I N}}$ | Input voltage | -0.5 to +7.0 | V |
| I_{I} | Input current | -30 to +1 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in High output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{l}_{\mathrm{OUT}}$ | Current applied to output in Low output state | 40 | mA |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.50	5.0	5.50	V
V_{H}	High-level input voltage	2.0			V
$V_{\text {IL }}$	Low-level input voltage			0.8	V
1 IK	Input clamp current			-18	mA
lOH^{\prime}	High-level output current			-1	mA
lOL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 /}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	$A_{0}-A_{3}, B_{0}-B_{3}, C_{n}$	$V_{C C}=M A X, V_{1}=0.5 V$				-2.4	mA		
		$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$					-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=M A X$			59	89	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational value's. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Arithmetic Logic Unit

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F381					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{C} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay C_{n} to F_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 11.0 \\ 6.5 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 12.5 \\ 7.5 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay Any A or B to any F	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.0 \end{array}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay S_{n} to F_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {tpL }}$ tphL	Propagation delay A_{n} or B_{n} to \bar{G}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 9.0 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay A_{n} or B_{n} to \bar{P}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tphL	Propagation delay S_{n} to \bar{G} or \bar{P}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay for Carry Input $\left(C_{n}\right)$ to Function Output (F_{n}) A Or B Operand Input (A_{n} Or B_{n}) to Function Outputs (F_{n}) Function Select Inputs $\left(S_{n}\right)$ to Function Outputs (F_{n}) A Or B Operand Input (A_{n} Or B_{n}) to Carry Generate (G) and Propagate (\mathbf{P}) Output Function Select Inputs (S_{n}) to Carry Generate (G) and Propagate (P) Output.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST Products

FEATURES

- Performs six arithmetic logic functions
- Selectable Low (clear) and High (preset) functions
- Low input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for Two's Complement arithmetic

DESCRIPTION

The 'F382 performs three arithmetic and three logic operations on two 4-bit words: A and B. Two additional Select ($\mathrm{S}_{0}-\mathrm{S}_{2}$) input codes force the Function outputs Low or High. An Overflow output is provided for convenience in Two's Complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry look-ahead generator, refer to the 'F381 data sheet.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 382	7.0 ns	54 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F382N
20 -Pin Plastic SOL	N74F382D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B operand inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Function select inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C_{n}	Carry input	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3 \mathrm{~mA}$
C_{n}	Carry output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
OVR	Overflow output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Outputs	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Arithmetic Logic Unit (ALU)

LOGIC DIAGRAM

6

LD03890S

FUNCTIONAL DESCRIPTION
Signals applied to the Select inputs SO-S2 determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the

FUNCTION SELECT TABLE

SELECT		OPERATION	
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$		
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	A \oplus B
H	L	H	A + B
L	H	H	AB
H	H	H	Preset

$H=$ High Voltage Level
$L=$ Low Voltage Level
arithmetic functions for either active-High or active-Low operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (High for active-High operands, Low for active-Low operands) into the C_{n} input of the least
significant package. Ripple expansion is illustrated in Figure 1. The overflow output OVR is the Exclusive-OR of $\mathrm{C}_{\mathrm{n}+3}$ and $\mathrm{C}_{\mathrm{n}+4}$; a High signal on OVR indicates overflow in Two's complement operation. Typical delays for Figure 1 are given in Table 1.

Table 1. 16 Bit-Delay Tabulation

PATH SEGMENT	TOWARD F	OUTPUT $C_{n}+4$, OVR
A_{1} or B_{i} to C_{n+4}	6.5 ns	6.5 ns
C_{n} to C_{n+4}	6.3 ns	6.3 ns
C_{n} to C_{n+4}	6.3 ns	6.3 ns
C_{n} to F	8.1 ns	$8 . \overline{\mathrm{ns}}$
C_{n} to $\mathrm{C}_{\mathrm{n}+4}$, OVR	-	27.1 ns
Total Delay	27.2 ns	

Figure 1. 16-Bit Ripple Carry ALU Expansion

FUNCTION TABLE

FUNCTION	INPUTS						OUTPUTS					
	$\mathbf{S}_{\mathbf{0}}$	\mathbf{S}_{1}	\mathbf{S}_{2}	C_{n}	A_{n}	B_{n}	F_{0}	F_{1}	F_{2}	F_{3}	OVR	C_{n+4}
CLEAR	0	0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
B MINUS A	1	0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$
A MINUS B	0	1	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
A PLUS B	1	1	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
$A \oplus B$	0	0	1	X X 0 0 X 1	0 0 1 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	0 1 1 0 1	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
$A+B$	1	0	1	$\begin{aligned} & X \\ & X \\ & X \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
AB	0	1	1	X X X X 0 1	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$
PRESET	1	1	1	X X X X 0 1	0 0 1 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {O}}$	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F382			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IL	Low-level input current	C_{n}	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-3.0	mA		
		$A_{0}-A_{3}, B_{0}-B_{3}$					-2.4	mA		
		$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$					-0.6	mA		
los	Short-crrcuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=$ MAX			54	81	mA		

NOTES:

1. For conditıons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F382					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay C_{n} to F_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 6.5 \end{gathered}$	2.5 2.5	$\begin{gathered} 13.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpLH $t_{\text {PHL }}$	Propagation delay Any A or B to any F	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	3.5 2.5	$\begin{aligned} & 17.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tphi.	Propagation delay S_{1} to F_{1}	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A_{1} or B_{1} to C_{n+4}	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay S_{1} to OVR or $\mathrm{C}_{\mathrm{n}+4}$	Waveform 1	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay C_{n} to C_{n+4}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay C_{n} to OVR	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{1} or B_{1} to OVR	Waveform 1	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	5.5 3.5	$\begin{aligned} & 16.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC WAVEFORM

Waveform 1. Propagation Delay for Carry Input $\left(C_{n}\right)$ to Function Output $\left(F_{n}\right)$ A or B Operand Input $\left(A_{n}\right.$ or $\left.B_{n}\right)$ to Function Outputs (F_{n}) Function Select Inputs $\left(S_{n}\right)$ to Overflow Output (OVR) or Carry Output $\left(C_{n+4}\right)$ A or B Operand Input (A_{n} or B_{n}) to Carry Output (C_{n+4}) and Overflow Output (OVR)

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- 8-bit by 1-bit sequential logic element
- Multiplies two numbers represented in Two's Complement
- Parallel inputs accept and store an 8-bit multiplicand ($\mathrm{X}_{0}-\mathrm{X}_{7}$)
- K input is used for expansion to longer words
- Mode Control (M) is used to establish the most significant device
- Asynchronous Parallel Load (PL) input clears the internal flip-flop to the start condition and enables the X latches to accept new multiplicand data

DESCRIPTION

The 'F384 is an 8-bit sequential logic element that multiplies two numbers represented in Two's Complement notation. The device implements Booth's algorithm internally to produce a Two's Complement product that needs no subsequent correction. Parallel inputs accept and store an 8-bit multiplicand ($\mathrm{X}_{0}-\mathrm{X}_{7}$). The multiplier word is applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the SP output, least significant bit first.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 384	100 MHz	60 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F384N
16 -Pin Plastic SOL	N74F384D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{X}_{0}-\mathrm{X}_{7}$	Multiplicand data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
K	Serial expansion input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Serial multiplier inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SP	Serial X,Y product output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The K input is used for expansion to longer X words, using two or more 'F384 devices. The Mode Control (M) input is used to establish the most significant device. An asynchronous Parallel Load (PL) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data.

Referring to the Logic Diagram, the multiplicand ($X_{0}-X_{7}$) latches are enabled to receive new data when PL is Low. Data that meets the setup time requirements is latched and stored when PL goes High. The Low signal on $\overline{\text { PL }}$ also clears the $\mathrm{Y}_{\mathrm{a}-1}$ flip-flop as well as the Carry-save flip-flops and the partial product register in the arithmetic section. Figure 1 is a conceptual logic diagram of a typical cell in the arithmetic section, except for the first $\left(X_{7}\right)$ cell, in which K is the B_{i} input and M is incorporated into the Carry logic. The cells use the Carry-save technique to avoid the complexity and delays inherent in look-ahead Carry schemes for longer words.
Figure 2 is a timing diagram for an 8×8 multiplication process. New multiplicand data enters the X latches during bit time T_{0}. It is assumed that PL goes Low shortly after the CP rising edge that marks the beginning of T_{0} and goes High again shortly after the beginning of T_{1}. The LSB $\left(Y_{0}\right)$ of the multiplier is applied to the Y input during T_{1} and combines with X_{0} in the least significant cell to form the appropriate D input $\left(\mathrm{X}_{0} \mathrm{Y}_{0}\right)$ to the sum flip-flop. This is clocked into the sum flip-flop by the CP rising edge at the beginning of T_{2} and this LSB $\left(\mathrm{S}_{0}\right)$ of the product is available shortly thereafter at the SP output of the package.

FUNCTION TABLE

INPUTS						INTERNAL	OUTPUT	FUNCTION
PL	CP	K	M	X_{1}	Y	$\mathrm{Ya}_{\text {- } 1}$	SP	
X	X	L	L	X	X	X	X	Most significant multiplier device
X	X	CS	H	X	X	X	X	Device cascaded in multiplier string
L	X	X	X	OP	X	L	L	Load new multiplicand and clear internal sum and carry registers
H	X	X	X	X	X	X	X	Device enabled
H	\uparrow	X	X	X	L	L	AR	Shift sum register
H	\uparrow	X	X	X	L	H	AR	Add multiplicand to sum register and shift
H	\uparrow	X	X	X	H	L	AR	Subtract multiplicand from sum register and shift
H	\uparrow	X	X	X	H	H	AR	Shift sum register

$H=$ High voltage leve
$L=$ Low voltage level
$\uparrow=$ Low-to-High Transition
CS = Connected to SP output of high-order device
$\mathrm{OP}=\mathrm{X}_{1}$ latches open for new data ($1=0-7$)
$A R=$ Output as required per Booth's algorithm
X = Don't care

The next-least bit $\left(Y_{1}\right)$ of the multiplier is also applied during T_{2}. The detailed logic design of the cell is such that during T_{2} the D input to the sum flip-flop of the least significant cell contains not only $X_{0} Y_{1}$ but also, the $X_{1} Y_{0}$ product. Thus the term $\left(X_{1} Y_{0}+X_{0} Y_{1}\right)$ is formed at the D input of the least significant sum flip-flop during T_{2} and this next-least term S_{1} of the product is available at the SP output shortly after the CP rising edge at the
beginning of T_{3}. Due to storage in the two preceding cells and in its own Carry flip-flop, the D input to the least significant sum flipflop during T_{3} will contain the products $X_{2} Y_{0}$ and $X_{1} Y_{1}$ as well as $X_{0} Y_{2}$. During each succeeding bit time the SP output contains information formed one stage further upstream. For example, the SP output during T_{9} contains $\mathrm{X}_{7} \mathrm{Y}_{0}$, which was actually formed during T_{1}.

LOGIC DIAGRAM

Figure 1. Conceptual Carry Save Adder Cell

Figure 2. Timing Diagram Showing 18 Clock Cycle Operation of $\mathbf{8} \times \mathbf{8}$ Multiplication

The MSB Y_{7} (the sign bit Y_{S}) of the multiplier is first applied to the Y input during T_{8} and must also be applied during bit times T_{9} through T_{16}. This extension of the sign bit is a necessary adjunct to the implementation of Booth's algorithm and is a built-in feature of
the 'F322 Shift Register. Figure 3 shows the method of using two 'F384s to perform a $12 \times \mathrm{n}$ bit multiplication. Notice that the sign of X is effectively extended by connecting X_{11} to $X_{4}-X_{7}$ of the most significant package. Whereas the 8×8 multiplication required 18
clock periods ($m+n$ to form the product terms plus T_{0} to clear the multiplier plus T_{17} to recognize and store S_{15}), the arrangement of Figure 3 requires $12+n$ bits to form the product terms plus the bit times to clear the multiplier and to recognize and store $\mathrm{SP}_{\mathrm{n}+11}$.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature				

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		74F384			UNIT
				Min	Typ ${ }^{2}$	Max	
V OH	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=\text { MAX } \\ & V_{I H}=\text { MIN } \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{VCC}$	2.7	3.4		V
Vol	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$V_{C C}=\mathrm{MIN}, I_{1}=I_{\text {IK }}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$		-75		-250	mA
Icc	Supply current (total)	$V_{C C}=$ MAX			60	90	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a tıme. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F384					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{y} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	80	100		70		MHz
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay CP to SP	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{\text { PL to }} \mathrm{SP}$	Waveform 2	6.0	10.0	13.0	6.0	14.0	ns

Multiplier

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F384					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low K to CP	Waveform 3	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$			$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low K to CP	Waveform 3	2.0 2.0			2.0 2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Y to CP	Waveform 3	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$			15.0 15.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Y to CP	Waveform 3	2.0 2.0			2.0 2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low X_{n} to $\overline{\mathrm{PL}}$	Waveform 3	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$			6.5 6.5		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low X_{n} to $\overline{\mathrm{PL}}$	Waveform 3	2.0 2.0			2.0 2.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP pulse width High or Low	Waveform 1	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { PL pulse width Low }}$	Waveform 2	6.5			7.0		ns
trec	Recovery time $\overline{\mathrm{PL}}$ to CP	Waveform 2	5.5			6.0		ns

ac waveforms

Waveform 1. Clock to Output Delays, Clock Pulse Width and Maximum Clock Frequency

WF06234S
Waveform 2. Master Reset Pulse Width, Master to Output Delay and Master Reset to Clock Recovery Time $V_{M}=1.5 \mathrm{~V}$.

AC WAVEFORMS (Continued)

TEST CIRCUIT AND WAVEFORMS

Test Circult for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F385 Adder/Subtracter

Quad Serial Adder/Subtracter Product Specification

FAST Products

FEATURES

- Four independent adder/ subtracters
- Two's Complement arithmetic
- Synchronous operation
- Common Clear and Clock
- One's Complement or magnitudeonly capability
- 'F385 is designed for use with serial multipliers in implementing digital filters and butterfly networks in fast Fourier transforms

DESCRIPTION

The 'F385 contains four serial adder/ subtracters with common Clock and Master Reset, but independent Operand and Select inputs.

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 385	140 MHz	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0} \mathbf{}{ }^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F385N
20 -Pin Plastic SOL	N74F385D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{4}$	A operand inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{4}$	B operand inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{1}-\mathrm{S}_{4}$	Function select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~F}_{1}-\mathrm{F}_{4}$	Sum or difference outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Each adder contains two edge-triggered flipflops to store the sum and carry, as shown in the Logic Diagram. Flip-flop state changes occur on the rising edge of the Clock Pulse (CP) input signal. The Select (S) input should be Low for the Add (A plus B) mode and High for the Subtract (A minus B) mode. A Low signal on the asynchronous Master Reset (MR) input clears the sum flip-flop and resets the Carry flip-flop to zero in the Add mode or presets it to one in the Subtract mode.
In the Subtract mode, the B operand is internally complemented. Presetting the Carry flip-flop to one completes the Two's Complement transformation by adding one to "A plus $\mathrm{B}^{\prime \prime}$ during the first (LSB) operation after $\overline{M R}$ is released. For One's Complement subtraction, the Carry flip-flop can be set to zero by making S Low during the reset, then making S High after the reset but before the next Clock.

TRUTH TABLE

INPUTS*				INTERNAL CARRY		$\frac{\text { OUTPUT* }}{\mathrm{F}}$	FUNCTION
$\overline{\text { MR }}$	S	A	B	c	C_{1}		
$\begin{aligned} & L \\ & L \end{aligned}$	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	X X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	Clear
H H H H H H H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	L L L L H H H H	L L H H L L H H	$\begin{aligned} & \text { L } \\ & H \\ & L \\ & H \\ & H \\ & L \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \\ & L \\ & H \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & H \\ & H \\ & H \\ & H \\ & L \\ & L \\ & H \end{aligned}$	Add
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H H H H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L H H L L H H	$\begin{aligned} & L \\ & H \\ & L \\ & H \\ & H \\ & H \\ & H \\ & L \\ & H \end{aligned}$	L H L L H H L H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Subtract

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
X = Don't care

* = Inputs before CP transition, output after C
$\mathrm{C}_{1}=$ Carry flip-flop state before (C) and after $\left(\mathrm{C}_{1}\right)$ Clock transition

LOGIC DIAGRAM (One Adder/Subtracter shown)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Store temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
IOL	Low-level output current			20	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature				

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F384, 74F385			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maxımum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$			5	100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$			1	20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$			-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)	'F385	$V_{C C}=$ MAX			55	80	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımıze internal heatıng and more accurately reflect operatıonal values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F385					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=++25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100	140		90		MHz
tpLH tphL	Propagation delay CP to F_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 10 \end{aligned}$	ns
$\mathrm{tpLH}^{\text {l }}$	Propagation delay $\overline{M R}$ to F_{n}	Waveform 2	4.0	6.5	9.5	4.0	10.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F385					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n}, B_{n} or S_{n} to CP	Waveform 3	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$			12.0 12.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n}, B_{n} or S_{n} to CP	Waveform 3	0			0 0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse width, High or Low	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns
$t_{\text {w }}(L)$	$\overline{\mathrm{MR}}$ Pulse width Low	Waveform 2	6.0			6.0		ns
trec	Recovery time, $\overline{\mathrm{MR}}$ to CP	Waveform 2	8.5			9.5		ns

AC WAVEFORMS

WF06118S
Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths, and Maximum Clock Frequency

WF06233s
Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay, and Master Reset to Clock Recovery Time

WF06267S

Waveform 3. Data and Select Setup and Hold Times

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

WF06450s
$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Two 4-bit binary counters
- Two Master Resets to clear each 4-blt counter individually

DESCRIPTION

The 'F393 is a Dual Binary Ripple Counter with separate Clock ($\overline{C P}_{n}$) and Master Reset (MR) inputs to each counter. The two counters are identified by the " a " and " b " suffixes in the pin configuration. The operation of each half of the 'F393 is the same. The counters are triggered by a High-to-Low transition of the Clock ($\overline{C P}_{a}$ and $\overline{C P}_{b}$) inputs. The counter outputs are internally connected to provide Clock inputs to succeeding stages. The outputs of the ripple counter do not change synchronously and should not be used for High-speed address decoding. The Master Resets (MR ${ }_{\mathrm{a}}$ and MR_{b}) are active-High asynchronous inputs; one for each 4-bit counter. A High level on the MR input overrides the clock and sets the outputs Low.

Dual 4-Bit Binary Ripple Counter

Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 393	125 MHz	mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm \mathbf{1 0 \% ;} \boldsymbol{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
14-Pin Plastic DIP	74 F 393 N
14-Pin Plastic SO	74 F 393 D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{CP}}_{\mathrm{a}}, \overline{\mathrm{CP}}_{\mathrm{b}}$	Clock inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{MR}_{\mathrm{a}}, \mathrm{MR}_{\mathrm{b}}$	Master Reset inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{na}}, \mathrm{Q}_{\mathrm{nb}}$	Data outputs	$50 / 33.3$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 14$
$G N D=\operatorname{PIn} 7$
COUNT SEQUENCE FOR EACH COUNTER

count	OUTPUTS			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

[^8]ABSOLUTE MAXIMUM RATINGS (Operating beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% V_{C C}$	2.5			V
			$\pm 5 \% \mathrm{VCC}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=\text { MIN }, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOL}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{VCC}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$1 / 2$	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{\text {cc }}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			25	36	mA		
		$\mathrm{I}_{\mathrm{CCL}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			42	58	mA		

NOTES:

1. For conditons shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			
			Min	Typ	Max	Min	Typ	Max	
$f_{\text {max }}$	Maximum Clock frequency	Waveform 1	100	130		100			MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\overline{C P}$ to Q_{0}	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$		$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{C P}$ to Q_{1}	Waveform 1	$\begin{aligned} & 5.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
t_{pLH} $t_{\text {PHL }}$	Propagation delay $\overline{C P}$ to Q_{2}	Waveform 1	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 15.0 \\ & 15.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay $\overline{C P}$ to Q_{3}	Waveform 1	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$		$\begin{aligned} & 17.0 \\ & 17.5 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation delay MR to Q_{n}	Waveform 2	4.0	6.0	9.0	4.0		9.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=5000 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{CL}=50 \mathrm{FPF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			
			Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	$\overline{\mathrm{CP}}$ pulse width	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR pulse width	Waveform 2	3.5			4.5			ns
$\mathrm{t}_{\text {fec }}$	Recovery time, MR to $\overline{\mathrm{CP}}$	Waveform 2	2.5			3.0			ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed
$t_{\text {PZL }}$	closed
All other	open

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST Products

FEATURES

- 4-bit parallel load shift register
- Independent 3-State buffer outputs, $\mathbf{Q}_{0}-\mathbf{Q}_{\mathbf{3}}$
- Separate $\mathbf{Q}_{\mathbf{S}}$ output for serial expansion
- Asynchronous Master Reset

DESCRIPTION

The 'F395 is a 4-Bit Shift Register with serial and parallel synchronous operating modes and four 3-State buffer outputs. The shifting and loading operations are controlled by the state of the Parallel Enable (PE) input. When PE is High, data is loaded from the Parallel Data inputs $\left(D_{0}-D_{3}\right)$ into the register synchronous with the High-to-Low transition of the Clock input ($\overline{\mathrm{CP}}$). When PE is Low, the data at the Serial Data input (D_{S}) is loaded into the Q_{0} flip-flop, and the data in the register is shifted one bit to the right in the direction $\left(Q_{0} \rightarrow Q_{1} \rightarrow\right.$ $Q_{2} \rightarrow Q_{3}$) synchronous with the negative clock transition. The PE and Data inputs are fully edge-triggered and must be stable only one setup prior to the High-to-Low transition of the clock.

PIN CONFIGURATION

	$16 \mathrm{vcc}_{\mathrm{cc}}$ ${ }^{15} a_{0}$ ${ }^{24} Q_{1}$ [13] a_{2} (12) a_{3} (11) a_{s} 10 CP 9] $\overline{O E}$ CDO5241S

FAST 74F395
Shift Register
4-Bit Cascadable Shift Register (3-State) Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 395	120 MHz	32 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F395N
16-Pin Plastic SO	N74F395D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{S}	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PE	Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q_{S}	Serial expansion output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs (3-States)	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

The Master Reset ($\overline{\mathrm{MR}}$) is an asynchronous active-Low input. When Low, the $\overline{M R}$ overrides the clock and all other inputs and clears the register.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, or large
capacitive loads. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all four 3-State buffers independent of the register operation. The data in the register appears at the outputs when $\overline{\mathrm{OE}}$ is Low. The outputs are in the Highimpedance "OFF" state, which means they will neither drive nor load the bus when $\overline{\mathrm{OE}}$ is

High. The output from the last stage is brought out separately. This output $\left(Q_{S}\right)$ is tied to the Serial Data input $\left(D_{\mathrm{S}}\right)$ of the next register for serial expansion applications. The Q_{S} output is not affected by the 3-State buffer operation.

LOGIC DIAGRAM

MODE SELECT-FUNCTION TABLE

REGISTER OPERATING MODES	INPUTS					OUTPUTS			
	$\overline{\text { MR }}$	$\overline{\mathbf{C P}}$	PE	$\mathbf{D}_{\mathbf{S}}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
Reset (clear)	L	X	X	X	X	L	L	L	L
Shift right	H	\downarrow	l	I	X	L	q_{0}	q_{1}	q_{2}
Parallel load	H	\downarrow	l	h	X	H	q_{0}	Q_{1}	q_{2}

3-STATE BUFFER OPERATING MODES	INPUTS			OUTPUTS	
	$\overline{\mathbf{O E}}$	\mathbf{Q}_{n} (Register)	$\mathbf{Q}_{\mathbf{0}}, \mathbf{Q}_{\mathbf{1}}, \mathbf{Q}_{\mathbf{2}}, \mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{s}}$	
Read	L	L	L	L	
	L	H	H	H	
Disable buffers	H	L	\mathbf{Z}	L	
	H	H	Z	H	

[^9]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
V OUT	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	Q_{s}	40	mA
		$Q_{0}-Q_{3}$	48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IK	Input clamp current				-18	mA
IOH	High-level output current	Q_{S}			-1	mA
		$Q_{0}-Q_{3}$			-3	mA
lol	Low-level output current	Q_{S}			20	mA
		$Q_{0}-Q_{3}$			24	mA
TA	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F395			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	Q_{S}				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{H}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$Q_{0}-Q_{3}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% V_{c c}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.3		V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 / 4}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozh	OFF-state current Highlevel voltage applied	$\begin{aligned} & Q_{0}-Q_{3} \\ & \text { only } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state current Lowlevel voltage applied	$Q_{0}-Q_{3}$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	${ }^{\text {ICCH }}$	$V_{C C}=$ MAX	$\begin{aligned} & \overline{M R}=P E=D_{n}=D_{s}=4.5 \mathrm{~V}, \\ & \overline{O E}=G N D, \overline{C P}=\downarrow \end{aligned}$			33	48	mA			
		${ }^{\text {ICCL }}$		$\begin{aligned} & \mathrm{PE}=4.5 \mathrm{~V}, \\ & \overline{M R}=\overline{O E}=D_{n}=D_{s}=G N D, \\ & \overline{C P}=\downarrow \end{aligned}$			35	50	mA			
		ICCz		$\begin{aligned} \overline{\mathrm{OE}} & =4.5 \mathrm{~V}, \\ \mathrm{MR} & =\mathrm{D}_{\mathrm{n}}=\mathrm{D}_{\mathrm{s}}=\mathrm{GND} \end{aligned}$			32	46	mA			

NOTES:

1. For conditıons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F395					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+\mathbf{7 0 ^ { \circ } \mathrm { C }} \\ \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	105	120		95		MHz
$t_{\text {PLH }}$ tphL	Propagation delay $\overline{\mathrm{CP}}$ to Q_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 8.5 \\ 11.0 \end{array}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 9.5 \\ 11.5 \end{array}$	ns
tpLH tphL	Propagation delay $\overline{C P}$ to Q_{s}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	4.5 5.0	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay, $\overline{M R}$ to Q_{n}	Waveform 2	5.0	7.5	10.0	5.0	10.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay, $\overline{M R}$ to Q_{s}	Waveform 2	4.5	6.5	8.5	4.5	9.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.5 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F395					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to $\overline{C P}$	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $\overline{C P}$	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low PE to $\overline{C P}$	Waveform 3	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low PE to $\overline{\mathrm{CP}}$	Waveform 3	0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}$ pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$		ns
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ pulse width Low	Waveform 2	2.5			3.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{M R}$ to $\overline{\mathrm{CP}}$	Waveform 2	6.0			7.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs and Totem-Pole Output ($\mathbf{Q}_{\mathbf{s}}$)

SWITCH POSITION

TEST	SWITCH
$t_{\text {PZH }}$	open
$t_{\text {PZL }}$	closed
$t_{\text {PHZ }}$	open
$t_{\text {PLZ }}$	closed

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST Products

FEATURES

- Select inputs from two data sources
- Fully positive edge-triggered
- Both True and Complementary outputs - 'F398

DESCRIPTION

The 'F398 and 'F399 are the logical equivalent of a quad 2 -input multiplexer feeding into four edge-triggered flipflops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flops on the rising edge of the clock. The 'F399 is the 16-pin version of the 'F398, with only the Q outputs of the flipflops available.

PIN CONFIGURATION

FAST 74F398, F399
Registers
'F398 - Quad 2-Port Register With True \& Complementary Outputs
'F399-Quad 2-Port Register
Product Specification

TYPE	TYPICAL f max	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 398	120 MHz	25 mA
74 F 399	120 MHz	22 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}$ $\mathbf{5 V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
Plastic DIP	N74F398N, N74F399N
20-Pin Plastic SOL	N74F398D
$16-$ Pin Plastic SO	N74F399D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I}_{\mathrm{Oa}}-\mathrm{I}_{\text {od }}$	Data inputs from source 0	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I}_{1 \mathrm{a}}-\mathrm{I}_{1 \mathrm{~d}}$	Data inputs from source 1	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Common select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Register true outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{\mathrm{a}}-\overline{\mathrm{Q}}_{\mathrm{d}}$	Register complementary outputs ('F398)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

'F399	
0.2	${ }^{15} Q_{d}$
1023	14 lod
11.4	13] l_{10}
115	12] i_{19}
1006	11) oc
$\mathrm{Ob}_{5} 7$	$10 \mathbf{a c}_{\mathbf{c}}$
GND 8	9] CP
	c005280s

The 'F398 and 'F399 are high-speed quad 2 port registers. They select 4 bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the Low-to-High transition of the Clock input (CP). The 4-bit D-type output register is fully edge-triggered. The Data inputs ($l_{0 x}, I_{1 x}$) and Select input (S) must be stable only a setup time prior to and hold time after the Low-to-High transition of the Clock input for predictable operation. The 'F398 has both Q and \bar{Q} outputs.

LOGIC SYMBOL

FUNCTION TABLE

INPUTS			OUTPUTS	
\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Q}	$\overline{\mathbf{Q}}^{*}$
I	I	X	L	H
I	h	X	H	L
h	X	I	L	H
h	X	h	H	L

LOGIC SYMBOL (IEEE/IEC)

*F398 only
I = Low voltage level one setup time prior to the Low-to-High clock transition
$h=$ High voltage level one setup time prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
$H=$ High voltage level
$X=$ Don't care

LOGIC DIAGRAM

Registers

FAST 74F398, F399

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F398, 74F399			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & I_{O H}=M A X, V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & I_{O L}=M A X, V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	'F398	$V_{C C}=$ MAX			25	38			
		'F399				22	34	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. $I_{\mathrm{CCH}} \mathrm{V}_{\mathrm{IN}}=G N D ; I_{\mathrm{CCL}}=$ Open

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F398, 74F399					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	120		90		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to Q or $\overline{\mathrm{Q}}$	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F398, 'F399					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{I}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low I_{n} to CP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low I_{n} to CP	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S to CP	Waveform 2	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$			8.5 8.5		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S to CP	Waveform 2	0			0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP pulse width, High or Low	Waveform 1	4.0 6.0			4.0 6.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

Signetics

FAST Products

FEATURES

- Status flip-flop for interrupt commands
- Asynchronous or latched Receiver modes
- 'F412 Non-inverting 'F432 Inverting
- 3-State outputs
- 300mil-wide Slim DIP package
- Functional equivalent to Intel 8212 except that 'F432 has inverting outputs

DESCRIPTION

The 'F412/'F432 are 8-bit latch with 3State output buffers. Also included is a status flip-flop for providing device-busy or request-interrupt commands.

Separate Mode (M) and Select ($\bar{S}_{0}, \mathrm{~S}_{1}$) inputs allow data to be stored with the outputs enabled or disabled. The devices can be also be operated in a fully transparent mode.
Both 'F412 and 'F432 are functional equivalent to the Intel 8212 except that 'F432 has the inverting outputs.

PIN CONFIGURATION

| | |
| :--- | :--- | :--- |

FAST 74F412, 74F432

 Multi-Mode Buffered Latches'F412 Multi-Mode Buffered Latch, Non-Inverting (3-State) 'F432 Multi-Mode Buffered Latch, Inverting (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 412	8.0 ns	45 mA
74 F 432	9.0 ns	50 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F412N, N74F432N
24-Pin Plastic SOL	N74F412D, N74F432D

NOTE:

1. For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{~S}}_{0}, \mathrm{~S}_{1}$	Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
STB	Strobe Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{NT}}$	Interrupt Output	$50 / 40$	$1 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data Latched Outputs	$50 / 40$	$1 \mathrm{~mA} / 24 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

'F432	

FUNCTIONAL DESCRIPTION

This high-performance eight-bit parallel expandable buffer register incorporates package and mode selection inputs and an edgetriggered status flip-flop designed specifically for implementing bus-organized input/output ports. The 3-State data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data. An integral status flip-flop provides busy or request interrupt commands.

LOGIC SYMBOL

The eight data latches are fully transparent when the internal gate enable, G, input is High and the outputs are enabled. Latch transparency is selected by the mode control (M), select (S_{0} and S_{1}), and the strobe (STB) inputs and during transparency each data output $\left(Q_{n}\right)$ follows its respective data input $\left(D_{n}\right)$. This mode of operation can be terminated by clearing, de-selecting, or holding the data latches.

An input mode or an output mode is selectable from the M input. In the input mode,

FUNCTION TABLE
(for Data Latches)

INPUTS					DATA IN	DATA OUT		OPERATING MODE
$\overline{\text { MR }}$	M	$\mathbf{S}_{\mathbf{0}}$	S_{1}	STB		'F412	'F432	
$\begin{aligned} & L \\ & L \end{aligned}$	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Clear
$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	De-select
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{0} \end{aligned}$	$\begin{aligned} & \bar{Q}_{0} \\ & \mathbf{Q}_{0} \end{aligned}$	Hold
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Data Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Data Bus

LOGIC SYMBOL (IEEE/IEC)

$M=L$, the eight data latch inputs are enabled when the strobe is High regardless of device selection. If selected during an input mode, the outputs will follow the data inputs. When the strobe input is taken Low, the latches will store the most-recently setup data.

In the output mode, $M=H$, the output buffers are enabled regardless of any other control input. During the output mode the content of the register is under control of the select (\bar{S}_{0} and S_{1}) inputs.

FUNCTION TABLE

(for Status Flip-flop)

INPUTS				INT
$\overline{M R}$	$\bar{S}_{\mathbf{0}}$	S_{1}	STB	
L	H	X	X	H
L	X	L	x	H
H	X	X	\uparrow	L
H	L	H	X	L

NOTES:

$H=$ High voltage level
L = Low voltage level
X = Don't care
$\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM for 'F412

LOGIC DIAGRAM for 'F432

DATA LATCHES FUNCTION TABLE

INPUTS					DATA IN	DATA OUT		OPERATING MODE
WR	M	\bar{S}_{0}	S_{1}	STB		'F412	'F432	
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{gathered} H \\ L \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Clear
$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & x \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	Z Z	De-select
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathbf{Q}_{0} \\ & \mathbf{Q}_{0} \end{aligned}$	$\begin{aligned} & \bar{Q}_{0} \\ & \bar{Q}_{0} \end{aligned}$	Hold
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Data Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & H \\ & L \end{aligned}$	Data Bus

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$Z=$ High-impedance
STATUS FLIP-FLOP
FUNCTION TABLE

NPPUTS				OUTPUT
MR	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	STB	NT
L	H	X	X	H
L	X	L	X	H
H	X	X	\downarrow	L
H	H	H	X	L

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$\downarrow=$ High-to-Low clock transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5.0	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output sate	$\overline{\text { INT }}$	40	mA
		$Q_{0}-Q_{7}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voitage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
Ion	High-level output current	INT			-1.0	mA
		$Q_{0}-Q_{7}$			-3.0	mA
lol	Low-level output current	INT			20	mA
		$\mathrm{Q}_{0}-\mathrm{Q}_{7}$			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F412, 74F532			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{H}}=M I N \end{aligned}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\pm 10 \% V_{c c}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4				V			
				$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4			V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$				0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
IozH	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	0.0V		-60		-150	mA			
Icc	Supply current (total)	'F412	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$				35	50	mA			
			ICCL					45	60	mA			
			l Ccz					45	60	mA			
		'F432	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX				40	55	mA			
			ICCL					50	70	mA			
			Iccz					50	65	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 412$					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to Q_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{0}, S_{1} or STB to Q_{n}	Waveform 1, 2	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 15.0 \end{aligned}$	ns
tple $t_{\text {PHL }}$	Propagation delay \bar{S}_{0} or S_{1} to INT	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 1	6.0	8.0	12.0	5.5	13.0	ns
$t_{\text {PHL }}$	Propagation delay STB to INT	Waveform 2	6.5	10.0	13.0	5.5	15.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level \bar{S}_{0} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \text { tphZ }^{\text {tpLZ }} \end{aligned}$	Output Disable time from High or Low level \bar{S}_{0} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 12.0 \end{gathered}$	$\begin{aligned} & 10.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHZ}}$ $t_{P L Z}$	Output disable time from High or Low level S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 9.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output disable time from High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F412					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time, High or Low D_{n} to \bar{S}_{0}, S_{1} or STB	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to $\bar{S}_{0}, S_{1}, S T B$, or M	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		ns
$t_{w}(H)$ $t_{w}(\mathrm{~L})$	\bar{S}_{0}, S_{1}, M, or STB pulse Pulse width, High or Low	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		ns
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ pulse width	Waveform 4	8.0			9.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{M R}$ to STB	Waveform 4	0			0		ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 432$					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay D_{n} to Q_{n}	Waveform 2	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{S}_{0}, S_{1} or STB to Q_{n}	Waveform 1, 2	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 14.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{S}_{0} or S_{1} to $\overline{\text { INT }}$	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
tpli	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 2	8.0	12.0	16.0	7.5	17.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay STB to $\overline{N T}$	Waveform 2	7.0	10.0	13.5	6.5	14.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable time to High or Low level \bar{S}_{0} or S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output Disable time from High or Low level \bar{S}_{0} or S_{1} to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output enable time to High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time from High or Low level M to Q_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 10.0 \end{gathered}$	$\begin{gathered} 9.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 13.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F432					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to \bar{S}_{0}, S_{1} or STB or M	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$ or STB or M	Waveform 3	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	\bar{S}_{0}, S_{1}, M or STB Pulse width, High or Low	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 9.0		ns
$t_{\text {w }}(L)$	$\overline{M R}$ pulse width Low	Waveform 4	8.0			9.0		ns
$t_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to STB	Waveform 4	0			0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs

Waveform 3. Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay for Inverting Outputs

Waveform 4. Recovery Times

WF21620S
Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 'F455 combines 'F240 and 'F280A functions in one package
- 'F456 combines 'F244 and 'F280A functions in one package
- 'F455A and 'F456A are center pin versions of the 'F655A and 'F656A respectively
- 'F455 Inverting 'F456 Non-inverting
- 3-State outputs sink 64mA and source 15mA
- 24-pin plastic Slim DIP (300mil) package
- Broadside pinout simplifies PC board layout

DESCRIPTION

The 'F455 and 'F456 are octal buffers and line drivers with parity generation/ checking designed to be employed as memory address drivers, clock drivers, and bus-oriented transmitters/receivers. These parts include parity generator/ checker to improve PC board density.

FAST 74F455, 74F456 Buffers/Drivers

'F455 Octal Buffer/Line Driver with Parity, Inverting (3-State) 'F456 Octal Buffer/Line Driver with Parity, Non-Inverting (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 455	6.5 ns	64 mA
74 F 456	7.5 ns	64 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP	N74F455N, N74F456N
24-Pin Plastic SOL	N74F455D, N74F456D

NOTE:

1. For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
I_{n}	Data input	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
PI	Parity input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	3-State output enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
\bar{Y}_{n}	Data output ('F455)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
Y_{n}	Data output ('F456)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\Sigma_{\mathrm{E}, \Sigma_{\mathrm{O}}}$	Parity outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS			DATA OUTPUTS	
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	I_{n}	'F455	'F456
L	L	L	H	L
L	L	H	L	H
H	X	X	Z	Z
X	H	X	Z	Z

INPUTS	PARITY OUTPUTS	
Number of inputs High $\left(\mathrm{PI}, \mathrm{I}_{0}-1_{7}\right)$	Σ_{E}	Σ_{O}
Even - 0, 2, 4, 6, 8	H	L
Odd - 1, 3, 5, 7, 9	L	H
Any $\overline{\mathrm{OE}}=$ High	Z	Z

[^10]L = Low voltage level
X = Don't care
$Z=$ High-impedance level

Buffers/Drivers

LOGIC DIAGRAM FOR 'F456 (*outputs are inverted for 'F455)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	v
lik	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
lOL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F455, 74F456			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.0				V				
V_{OL}	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{VCc}_{\text {c }}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=I_{\text {IK }}$				-0.73	-1.2	V			
$\\|$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H}}$	High-level input current	In	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
		PI, OE, OE 2						20	$\mu \mathrm{A}$			
ILL	Low-level input current	In	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
		PI, OE, OE 2						-20	$\mu \mathrm{A}$			
lozh	Off-state current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Off-state current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	$\mathrm{ICCH}^{\text {cher }}$	$V_{C C}=\operatorname{MAX}$				50	80	mA			
		ICCL					78	110	mA			
		Iccz					63	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F455, 74F456					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay I_{n} to \bar{Y}_{n}	'F455		Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Y_{n}	'F456		Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	2.0 2.5	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay I_{n} to Σ_{E}, Σ_{0}		Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \end{aligned}$	ns	
$\begin{aligned} & \mathbf{t}_{\text {pzH }} \\ & \mathbf{t}^{2} \end{aligned}$	Enable Time to High level Enable Time to Low level		Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & t_{\mathrm{tPLZ}} \\ & \hline \end{aligned}$	Disable Time from High level Disable Time from Low level		Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	1.5 2.0	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns	

AC WAVEFORMS

test circuit and waveforms

Signetics

FAST Products

FEATURES

- Compares two 8-bit words in 6.5ns typical
- Expandable to any word length
- High-Speed version of ALS688

DESCRIPTION

The 'F521 is an expandable 8-bit comparator. It compares two words of up to 8 bits each and provides a Low output when the two words match bit for bit. The expansion input $\bar{I}_{A}=B$ also serves as an active-Low enable input.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC DIAGRAM

TRUTH TABLE

INPUTS		OUTPUT
$\bar{I}_{A=B}$	\mathbf{A}, \mathbf{B}	$\overline{\mathbf{Q}}_{\mathbf{A}=\mathbf{B}}$
L	$A=B^{*}$	L
L	$\mathrm{~A} \neq \mathrm{B}$	H
H	$A=B^{*}$	H
H	$A \neq B$	H

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
${ }^{*} A_{0}=B_{0}, A_{1}=B_{1}, A_{2}=B_{2}$, etc.
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V OH	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=\text { MAX } \\ & V_{\mathrm{IH}}=\text { MIN }, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V_{OL}	High-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{Vcc}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\mathrm{I}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$			24	36	mA		
		$\mathrm{I}_{\mathrm{CCL}}$				15.5	23	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. For $\mathrm{I}_{\mathrm{CCH}}$ all inputs are grounded except B_{0} can be any one input, which is at 4.5 V . For $\mathrm{I}_{\mathrm{CCL}}$ all inputs are grounded.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F521					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay A_{n} or B_{n} to $\bar{Q}_{A=B}$	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $\bar{T}_{A}=B$ to $\bar{Q}_{A=B}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns

APPLICATION DIAGRAMS

Ripple Expansion

Parallel Expansion

AC WAVEFORMS

Waveform 1. For Inverting Outputs

Waveform 2. For Non-Inverting Outputs NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t TLLH	t THL
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- 8-bit bidirectional register with bus-oriented input-output
- Independent serial input-output to register
- Register bus comparator with 'equal to', 'greater than' and 'less than' outputs
- Cascadable in groups of 8 bits
- Open-Collector comparator outputs for AND-wired expansion
- Two's Complement or magnitude compare

DESCRIPTION

The 'F524 is an 8-bit bidirectional register with parallel input and output plus serial input and output progressing from LSB to MSB. All data inputs, serial and parallel, are loaded by the rising edge of the input clock. The device functions are controlled by two control lines ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) to execute shift, load, hold and read out.

PIN CONFIGURATION

FAST 74F524
 Comparator

8-Bit Register Comparator (Open-Collector +3 -State) Product Specification

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 524	65 MHz	110 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$; $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F524N
20-Pin Plastic SOL	N74F524D

NOTE:

1. Thermal mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C / SI	Status priority or Serial data Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{SE}}$	Status enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Compare mode select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	3-State parallel data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
C / SO	Status priority or Serial data Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
LT	Register less than bus output	$\mathrm{OC} * / 33$	$\mathrm{OC} * / 20 \mathrm{~mA}$
EQ	Register equal to bus output	$\mathrm{OC} * / 33$	$\mathrm{OC} / 20 \mathrm{~mA}$
GT	Register greater than bus output	$\mathrm{OC} * / 33$	$\mathrm{OC} * / 20 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. *OC = Open Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

An 8-bit comparator examines the data stored in the registers and on the data bus. Three true-High, Open-Collector outputs representing 'register equal to bus', 'register greater than bus' and 'register less than bus' are provided. These outputs can be disabled to the OFF state by the use of Status Enable ($\overline{\mathrm{SE}}$). A mode control has also been provided to allow Two's Complement as well as magnitude compare. Linking inputs are provided for expansion to longer words.

FUNCTIONAL DESCRIPTION

The 'F524 contains eight D-type flip-flops connected as a shift register with provision for either parallel or serial loading. Parallel data may be read from or loaded into the registers via the data bus $1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$. Serial data is entered from the C / SI input and may be shifted into the register and out through the C/SO output. Both parallel and serial data entry occurs on the rising edge of the input clock (CP). The operation of the shift register is controlled by two signals, S_{0} and S_{1}, according to the Select Truth Table. The 3State parallel output buffers are enabled only in the Read mode.

SELECT TRUTH TABLE

$\mathrm{S}_{\mathbf{0}}$	$\mathrm{S}_{\mathbf{1}}$	OPERATION
L	L	HOLD - Retains data in shift register
L	H	LEAD - Read contents in register onto data bus
H	HLHIFT - Allows serial shifting on next rising clock edge	
LOAD - Load data on bus into		
register.		

$\mathrm{H}=$ High Voltage Level
L = Low Voltage Level
One port of an 8-bit comparator is attached to the data bus while the other port is tied to the outputs of the internal register. Three activeOFF, Open-Collector outputs indicate whether the contents held in the shift register are 'greater than' (GT), 'less than' (LT), or 'equal to (EQ) the data on the input bus. A High signal on the Status Enable ($\overline{\mathrm{SE}}$) input disables these outputs to the OFF state. A Mode control input (M) allows selection between a straightforward magnitude compare or a comparison between Two's Complement numbers.

NUMBER REPRESENTATION SELECT TABLE

M	OPERATION
L	Magnitude compare
H	Two's Complement compare

$H=$ High Voltage Level
L=Low Voltage Level
For 'greater than' or 'less than' detection, the C/SI input must be held High, as indicated in the Status Truth Table. The internal logic is arranged such that a Low signal on the C/SI input disables the 'greater than' and 'less than' outputs. The C/SO output will be forced High if the 'equal to' status condition exists, otherwise C/SO will be held Low. These facilities enable the 'F524 to be cascaded for word lengths greater than 8 bits.

STATUS TRUTH TABLE (Hold Mode)

INPUTS			OUTPUTS			
$\overline{\text { SE }}$	C/SI	Data Comparison	EQ	GT	LT	C/SO
H	H	X	H	H	H	(1)
H	L	X	H	H	H	L
L	L	$\begin{aligned} & \mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}} \\ > & 1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7} \end{aligned}$	L	H	H	L
L	L	$\begin{aligned} & \mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}} \\ = & I / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7} \end{aligned}$	H	H	H	L
L	L	$\begin{gathered} \mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}} \\ <\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7} \end{gathered}$	L	H	H	L
L	H	$\begin{aligned} & \mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}} \\ > & 1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7} \end{aligned}$	L	H	L	L
L	H	$\begin{aligned} & O_{A}-O_{H} \\ = & 1 / O_{0}-1 / O_{7} \end{aligned}$	H	L	L	H
L	H	$\begin{gathered} \mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}} \\ <\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7} \end{gathered}$	L	L	H	L

(1) $=$ High if data are not equal, otherwise Low
$\mathrm{H}=$ High Voltage Level
L = Low Voltage Level
$X=$ Don't Care

Word length expansion (in groups of 8 bits) can be achieved by connecting the C/SO output of the more significant byte to the C/SI input of the next less significant byte and also to its own $\overline{\mathrm{SE}}$ input (see Figure 1). The C/SI input of the most significant device is held High while the $\overline{\text { SE }}$ input of the least significant device is held Low. The corresponding status outputs are AND-wired together. In the case of two's complement number compare, only the Mode input to the most significant device should be High. The Mode inputs to all other cascaded devices are held Low.

Suppose that an inequality condition is detected in the most significant device. Assuming that the byte stored in the register is greater than the byte on the data bus, then the EQ and LT outputs will be pulled Low, whereas the GT output will float High. Also, the C/SO output of the most significant device will be forced Low, disabling the subsequent devices but enabling its own status outputs. The correct status condition is thus indicated. The same applies if the registered byte is less than the data byte, only in this case the EQ and GT outputs go Low, whereas LT output floats High.

If an equality condition is detected in the most significant device, its C/SO output is forced High. This enables the next less significant device and also disables its own status outputs. In this way, the status output priority is handed down to the next less significant device which now effectively becomes the most significant byte. The worst case propagation delay for a compare operation involving ' n ' cascaded 'F524s will be when an equality condition is detected in all but the least significant byte. In this case, the status priority has to ripple all the way down the chain before the correct status output is established. Typically, this will take $35+6$ ($\mathrm{n}-\mathrm{s}$) ns.

Figure 1. Cascading 'F524s for Comparing Longer Words

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
V IN	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+V_{C C}$	V
lout	Current applied to output in Low output state	40	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Comparator

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74F524			UNIT
			Min	Nom	Max	
V_{Cc}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
V_{OH}	High-level output current	LT, EQ, GT			4.5	V
IOH	High-level output current	Not LT, EQ, GT, C/SO			-3	mA
		C/SO only			-1	mA
lol	Low-level output current	All except I/O			20	mA
		I/O only			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F524			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current	LT, EQ, GT only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$				250	$\mu \mathrm{A}$
VOH	High-level output voltage	C/SO only	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
				$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=M A X, \quad I_{O L}=M A X \\ & V_{\mathrm{IH}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input voltage	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$				1	mA		
		Except I/On	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current	Except $1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
$\begin{aligned} & \mathrm{l}_{\mathrm{IH}} \\ & +\mathrm{l}_{\mathrm{OZH}} \end{aligned}$	OFF-state output current High-level voltage applied	I/On only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{aligned} & \text { ILL } \\ & + \text { lozL }^{2} \end{aligned}$	OFF-state output current Low-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$	Except LT, EQ, GT	$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			110	150	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F524					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 4	50	65		45		MHz
$t_{\text {PLH }}$ tphL	Propagation delay $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to EQ	Waveform 2	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to GT	Waveform 2	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 17.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay I/O O_{n} to LT	Waveform 2	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$	ns
tPLH tphL	Propagation delay I/O O_{n} to C/SO	Waveform 2	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 17.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay CP to EQ	Waveform 4	$\begin{gathered} 10.0 \\ 4.0 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 16.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 4.0 \end{gathered}$	$\begin{aligned} & 26.0 \\ & 17.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay CP to GT	Waveform 4	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 22.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 22.0 \\ & 23.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to LT	Waveform 4	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 19.0 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to C/SO (compare)	Waveform 4	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 22.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay CP to C/SO (serial shift)	Waveform 4	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.5 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay C/SI to GT	Waveform 1	$\begin{aligned} & 9.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 4.5 \end{gathered}$	$\begin{gathered} 19.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 20.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C/SI to LT	Waveform 1	$\begin{aligned} & 8.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 6.0 \end{gathered}$	$\begin{gathered} 20.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 21.0 \\ 9.5 \end{gathered}$	ns
tpLH $t_{\text {PHL }}$	Propagation delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to C/SO	Waveform 2	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 19.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\text { SE }}$ to EQ	Waveform 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 6.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Propagation delay SE to GT	Waveform 2	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 16.0 \\ 6.0 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 17.0 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{S E}$ to LT	Waveform 2	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C/SI to C/SO	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay M to GT	Waveform 2	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay M to LT	Waveform 2	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 15.0 \\ 0.0 \end{gathered}$	$\begin{aligned} & 22.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable time S_{0}, S_{1} to I / O_{n}	Waveform 5, 6	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 5, 6	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \end{aligned}$	ns

Comparator

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F524					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}} & =500 \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / O_{n}$ to CP	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$			6.0 6.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ or CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to CP	Waveform 3	$\begin{aligned} & 13.5 \\ & 10.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low S_{0} or S_{1} to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L} \end{aligned}$	Setup time, High or Low C/SI to CP	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low C/SI to CP	Waveform 3	0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Clock Pulse width High CP Clock Pulse width Low	Waveform 4	$\begin{aligned} & \hline 5.0 \\ & 9.5 \end{aligned}$			$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$		ns

AC WAVEFORMS

Comparator

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- 8-bit transparent latch — 'F533
- 8-bit positive edge-triggered register - 'F534
- 3-State inverting output buffers
- Common 3-State Output Enable
- Independent register and 3-State buffer operation

DESCRIPTION

The 'F533 is an octal transparent latch coupled to eight 3-State inverting output buffers. The two sections of the device are controlled independently by latch Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The data on the D inputs are transferred to the latch outputs when the latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data present one setup time before the High-to-Low enable transition.

PIN CONFIGURATION

'F533	
	$20 \mathrm{v}_{\mathrm{cc}}$ (19) σ_{7} 18) D_{7} [17) D_{6} 16 \bar{a}_{6} 15) $\bar{\alpha}_{5}$ $14 D_{5}$ ${ }^{13} \mathrm{D}_{4}$ 12] $\bar{\alpha}_{4}$ 11 E CD05420S

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM, 'F533

LOGIC DIAGRAM, 'F534

MODE SELECT - FUNCTION TABLE, 'F533

OPERATING MODES	INPUTS			INTERNAL REGISTER	$\begin{gathered} \hline \text { OUTPUTS } \\ \bar{\alpha}_{0}-\bar{\alpha}_{7} \\ \hline \end{gathered}$
	$\overline{O E}$	E	D_{n}		
Enable and read register	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Latch and read register	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Hold	L	L	X	NC	NC
Disable outputs	H	X	X	X	Z

NC $=$ No change
MODE SELECT - FUNCTION TABLE, 'F534

OPERATING MODES	INPUTS			INTERNAL REGISTER	OUTPUTS
	$\overline{\mathbf{O E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$		
Load and read register	L	\uparrow	L	L	$\overline{\mathbf{Q}}_{\mathbf{0}}-\overline{\mathbf{Q}}_{\mathbf{7}}$
	L	\uparrow	h	H	H

$H=$ High voltage level
$h=$ High voltage level one setup tume prior to the Low-to-High clock transition or High-to-Low $\overline{O E}$ transition
$\mathrm{L}=$ Low voltage level
X = Don't care
$I=$ Low voltage level one setup time prior to the Low-to-High clock transtion or High-to-Low \bar{E} transition
$Z_{\text {I }}=$ High-impedance "OFF" state
$\downarrow=$ High-to-Low clock transition

The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the latch operation. When $\overline{\mathrm{OE}}$ is Low, the latched or transparent data appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High impedance 'OFF' state, which means they will neither drive nor load the bus.
The 'F534 is an 8-bit edge-triggered register coupled to eight 3 -State inverting output buf-
fers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, transferred to the corresponding flip-flop's Q output. The clock buffer has about 400 mV of hysteresis built in to help minimize problems that signal and ground noise can cause the clocking operation.

The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the register operation. When $\overline{\mathrm{CE}}$ is Low, data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High impedance "OFF" state, which means they will neither drive nor load the bus.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-3	mA
I_{OL}	Low-level output current			24	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F533, 'F534			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O H}=M A X \\ & V_{I H}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V		
1	input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
lozH	OFF-stage output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	OFF-state output current, Low-level voltage applied		$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$		-60		-150	mA		
Icc	Supply current ${ }^{4}$ (total)	'F533	$\mathrm{V}_{C C}=\mathrm{MAX}$			41	61	mA		
		'F534				55	86	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operatıonal values. Otherwise, prolonged shorting of a High output may rase the chip temperature well above normal and thereby cause invalıd readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. 'F533 measure I_{ccz} with $\overline{O E}$ input at $4.5 \mathrm{~V}, \mathrm{D}_{\mathrm{n}}$ and E inputs at ground and all outputs open.
'F534 measure $I_{C C z}$ with $\overline{O E}$ inputs at 4.5 V and D_{n} inputs at ground and all outputs open.

FAST 74F533, 74F534

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F533, 74F534					UNIT
				$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	'F533	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay E to \bar{Q}_{n}		Waveform 3	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.6 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 5.1 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{p} H Z} \\ & \mathrm{t}_{\mathrm{tpLZ}} \\ & \hline \end{aligned}$	Output Disable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$f_{\text {max }}$	Maximum clock frequency	'F534	Waveform 1	100			70		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to \bar{Q}_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
tpzH	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.8 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F533, 'F534					UNIT	
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, D_{n} to E	'F533		Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, D_{n} to E			Waveform 5	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$t_{w}(\mathrm{H})$	E pulse width High or Low		Waveform 3	6.0			6.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, D_{n} to CP	'F534	Waveform 4	2.0 2.0			2.0 2.0		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time D_{n} to CP		Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low		Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			7.0 6.0		ns	

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

DESCRIPTION

The 'F537 is one-of-ten decoder/demultiplexer with four active-High BCD inputs and ten mutually exclusive outputs. A Polarity control (P) input determines whether the outputs are active-Low or active-High. The 'F537 has 3-State outputs, and a High signal on the Output Enable ($\overline{\mathrm{OE}}$) input forces all outputs to the high-impedance state. Two input Enables, active-High (E_{1}) and active Low (\bar{E}_{0}), are available for demultiplexing data to the selected output in either noninverted or inverted form. Input codes greater than BCD nine cause all outputs to go to the inactive state (i.e., same polarity as the P input).

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 537	9 ns	44 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE \mathbf{V} V $\pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F537N
20 -Pin Plastic SOL	N74F537D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{0}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E_{1}	Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
P	Polarity control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{9}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS							OUTPUTS										OPERATING MODE
$\overline{O E}$	E_{0}	E_{1}	A_{3}	A_{2}	A_{1}	A_{0}	\mathbf{Q}_{0}	Q_{1}	Q_{2}	\mathbf{Q}_{3}	Q_{4}	Q_{5}	\mathbf{Q}_{6}	Q_{7}	\mathbf{Q}_{8}	Q_{9}	
H	X	X	X	X	X	X	z	z	Z	Z	Z	Z	Z	Z	Z	Z	High-impedance
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Outputs equal P input										Disable			
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	Active-High output$(P=L)$
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	L L H L	L L L H	L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & X \\ & L \end{aligned}$	$\begin{aligned} & \hline L \\ & L \\ & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	L L L L	H L L L	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H	H H H H H	H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Active-Low output$(\mathrm{P}=\mathrm{H})$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H L H	H H H H L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	
L L L	L L L	H H H H	H H H H	L L X H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H	H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H	H H H H	L H H H	H H H H	

[^11]
Abstract

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
louT	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {H}}$	High-level output current			-3	mA
loL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
VOH	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, V_{\mathrm{IL}}=\mathrm{MAX}, \\ & V_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V
I	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H}}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
lozh	OFF-state current High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
lozl	OFF-state current Low-level voltage applied	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA
Icc	Supply current (total)	$V_{C C}=$ MAX			44	66	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to mınımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

1-Of-10 Decoder (3-State)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F537					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay A_{n} to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay \bar{E}_{0} to Q_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{E}_{1} to Q_{n}	Waveform 2	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay P to Q_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	2.5 4.0	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	1.0 2.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs

WF0609DS and Output Disable Time From High Level

Waveform 2. Propagation Delay for Inverting Outputs

> WFo607LS

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: $V_{M}=15 \mathrm{~V}$

1-Of-10 Decoder (3-State)

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tplz	closed
tpzL	closed
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

1-Of-8 Decoder (3-State)
Product Specification

FAST Products

DESCRIPTION

The 'F538 decoder/demultiplexer accepts three Address ($\mathrm{A}_{0}-\mathrm{A}_{3}$) input signals and decodes them to select one of eight mutually exclusive outputs. A Polarity control (P) input determines whether the outputs are active-Low or activeHigh. The 'F538 has 3-State outputs, and a High signal on the Output Enables (OEn) will force all outputs to the Highimpedance state. Two active-High and two active-Low Enable inputs are available for easy expansion to 1-of-32 decoding with four packages, or for data demultiplexing to 1 -of- 8 or 1-of-16 destinations.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 538$	8.5 ns	35 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F538N
20 -Pin Plastic SOL	N74F538

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{E}_{0}, \bar{E}_{1}	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}_{2}, \mathrm{E}_{3}$	Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
P	Polarity control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}, \overline{\mathrm{O}}_{1}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{9}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (10) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS									OUTPUTS								OPERATING MODE
$\overline{O E}_{0}$	OE_{1}	\bar{E}_{0}	\bar{E}_{1}	E_{2}	E_{3}	A_{2}	A_{1}	A_{0}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	\mathbf{Q}_{6}	Q_{7}	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X	X X	X X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	Z	$\begin{aligned} & z \\ & z \end{aligned}$	Z	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	Z	$\begin{aligned} & \mathrm{z} \\ & \mathrm{Z} \end{aligned}$	High-impedance
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Outputs equal P input								Disable
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L H L L	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	L L L H	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	L L L L	L L L L	L L L L	Active-High output$(P=L)$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { L } \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	L L L L	H L L L	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	L L H L	L L L H	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L L	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H L H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	H H H L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H H H H	H H H H	Active-Low output$(\mathrm{P}=\mathrm{H})$
L L L L	L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	H H H H	H H H H	H H H H H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L H L H	H H H H	H H H H H	H H H H	H H H H H	L H H H	H H L H H	H H L H	H H H H L	

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current			-3	mA
loL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F538			UNIT		
			Min	Typ ${ }^{2}$	Max					
VOH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
VoL	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & V_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{IOL}_{\mathrm{L}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% V_{c c}$		0.35	0.50	v		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / H}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
lozH	OFF-state current High-Level voltage applied		$V_{C C}=M A X, V_{0}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	OFF-state current Low-Level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{0}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	$\mathrm{I}_{\text {ch }}$	$V_{C C}=$ MAX			30	40	mA		
		$\mathrm{I}_{\text {CCL }}$				35	50	mA		
		$\mathrm{I}_{\text {ccz }}$				35	50	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a tume. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F538					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLL }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay A_{n} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{E}_{0} or \bar{E}_{1} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E_{2} or E_{3} to Q_{n}	Waveform 1, 2	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay P to Q_{n}	Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {tPZ }} \\ & t_{\text {tpZL }} \end{aligned}$	Output enable time $\overline{O E}_{0}$ or $\overline{O E}_{1}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output Disable time $\overline{\mathrm{O}}_{0}$ or $\overline{\mathrm{O}}_{1}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

WF0754SS
Waveform 2. Propagation Delay for Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=15 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Signetics

Dual 1-Of-4 Decoder (3-State)
Product Specification

FAST Products

DESCRIPTION

The 'F539 contains two independent decoders. Each accepts two Address (AO, A1) input signals and decodes them to select one of four mutually exclusive outputs. A Polarity control (P) input determines whether the outputs are activeLow ($P=H$) or active-High ($P=L$). An active-Low Enable (\bar{E}) is available for data demultiplexing. Data is routed to the selected output in non-inverted or inverted form in the active-Low mode or in inverted form in the active-High mode. A High signal on the active-Low Output Enable ($\overline{\mathrm{OE}}$) input forces the 3 -State outputs to the High-impedance state.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 539$	7.5 ns	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F537N
20-Pin Plastic SOL	N74F537D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0 \mathrm{a}}, \mathrm{A}_{1 \mathrm{a}}$	Decoder A Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0 \mathrm{~b}}, \mathrm{~A}_{1 \mathrm{~b}}$	Decoder B Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{E}_{\mathrm{a}}, \bar{E}_{\mathrm{b}}$	Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{E}_{a}, \bar{E}_{\mathrm{b}}$	Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{OE}_{\mathrm{a}}, \mathrm{OE}_{\mathrm{b}}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{P}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}$	Polarity control inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0 \mathrm{a}}-\mathrm{Q}_{3 \mathrm{a}}$	Decoder A Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{Q}_{0 \mathrm{~b}}-\mathrm{Q}_{3 \mathrm{~b}}$	Decoder B Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS				OPERATING MODE
$\overline{O E}_{0}$	\bar{E}	A_{1}	A_{0}	Q_{0}	Q_{1}	\mathbf{Q}_{2}	\mathbf{Q}_{3}	
H	X	X	X	Z	Z	Z	Z	High-impedance
L	H	X	X	$\mathrm{Q}_{\mathrm{n}}=\mathrm{P}$				Disable
$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \text { L } \\ & H \\ & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { L } \\ & \text { L } \\ & H \end{aligned}$	Active-High Output $(\mathrm{P}=\mathrm{L})$
L L L L	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	L H H H	H L H H	H H L H	H H H H L	Active-Low Output $(\mathrm{P}=\mathrm{H})$

$H=$ High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
$Z=$ High-impedance

Dual 1-Of-4 Decoder (3-State)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{I}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
loL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$. 35	. 50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$. 35	. 50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
lozh	OFF-state current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	OFF-state current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$			35	50	mA		
		$\mathrm{I}_{\text {CLL }}$				40	55	mA		
		ICCz				40	60	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hoid techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Dual 1-Of-4 Decoder (3-State)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F539					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay D_{n} to Q_{n}	Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	4.0 3.0	$\begin{aligned} & 13.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay E to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.5 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { tPLH } \\ t_{\text {PHL }} \end{array} \\ \hline \end{array}$	Propagation delay P_{n} to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{array}{\|l} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation delay P_{n} to Q_{n} (INV)	Waveform 2	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 6.0 \end{gathered}$	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable time $\overline{O E}_{n}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{t} 1} 7 \end{aligned}$	Output Disable time $\overline{O E}_{n}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	ns

AC WAVEFORMS

WF0754AS
Waveform 1. Propagation Delay for Non-Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay for Inverting Outputs

wF0607vs
Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

Dual 1-Of-4 Decoder (3-State)

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- High-impedance npn base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Low power, light bus loading
- Functionally similar to the 'F240 and 'F244
- Provides ideal interface and increases fanout of MOS Microprocessors
- Efficient pinout to facilitate PC board layout
- Octal bus interface
- 3-State buffer outputs sink 64 mA
- 15mA source current

DESCRIPTION

The 'F540 and 'F541 are octal buffers that are ideal for driving bus lines or buffer memory address registers. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The devices feature input and outputs on opposite sides of the package to facilitate printed circuit board layout.

FAST 74F540, 74F541

Buffers

'540 Octal Inverter Buffer (3-State)
'541 Octal Buffer (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 540	3.5 ns	58 mA
74 F 541	5.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{5} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F540N, N74F541N
$20-$ Pin Plastic SOL	N74F540D, N74F541D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	3-State output enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\bar{Y}_{0}-\bar{Y}_{7}$	Data outputs, 'F540	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{Y}_{0}-\mathrm{Y}_{7}$	Data outputs, 'F541		

NOTE:
1 One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION
(20)

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS			OUTPUTS		
$\overline{O E}_{\mathbf{0}}$	$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{n}}$	$\mathbf{Y}_{\mathbf{n}}$	$\overline{\mathbf{Y}}_{\mathbf{n}}$	
L	L	L	L	H	
L	L	H	H	L	
X	H	X	Z	Z^{2}	
H	X	X	Z	Z	

$H=$ High voltage level
$L=$ Low voltage level
$\mathrm{L}=$ Low voitag
$\mathrm{X}=$ Don't care
$x=$ Dont care
$z=$ Hightimpedance (OFF) state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F540, 74F541			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\text {cC }}$	2.7	3.4				V			
				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{c c}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.35	. 50	V		
				$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	. 55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{1}=I_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 / H}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$V_{C C}=M A X$			-100		-225	mA			
Icc	Supply current (total)	ICCH	'F540	$V_{C C}=\mathrm{MAX}$	$\mathrm{I}_{\mathrm{n}}=\mathrm{OE}_{\mathrm{n}}=\mathrm{GN}$			22	30	mA			
		$\mathrm{I}_{\mathrm{CCL}}$			$\mathrm{I}_{\mathrm{n}}=4.5 \mathrm{~V}, \overline{\mathrm{O}}_{\mathrm{n}}$	= GND		58	75	mA			
		$\mathrm{I}_{\text {ccz }}$			$\mathrm{I}_{\mathrm{n}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{n}}$	= 4.5 V		40	55	mA			
		$\mathrm{I}_{\mathrm{CCH}}$	'F541		$\mathrm{I}_{\mathrm{n}}=4.5 \mathrm{~V}, \overline{O E}_{\mathrm{n}}$	= GND		30	40	mA			
		$\mathrm{I}_{\mathrm{CCL}}$			$\mathrm{I}_{\mathrm{n}}=\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{GN}$			55	72	mA			
		$\mathrm{I}_{\text {ccz }}$			$\mathrm{I}_{\mathrm{n}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{n}}$	= 4.5 V		45	58	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may rase the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F540, 75F541					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay I_{n} to Y_{n}	'F540		Waveform 1	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPzH}} \\ & \mathrm{t}_{\mathrm{tPLL}} \end{aligned}$	Output enable time to High or Low			Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	2.0	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay I_{n} to Y_{n}	'F541	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	5.0 6.0	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	2.5 3.0	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{tpzH}_{\mathrm{t}_{\mathrm{pl}}} \end{aligned}$	Output enable time to High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	3.0 3.0	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpHz}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	7.0 7.0	2.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	

Buffers

AC WAVEFORMS

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay Data to Output for 'F540

WF06072S
Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORM

FAST Products

FEATURES

- Combines F245 and F373 type functions in one chip
- 8-bit Octal Transceiver with D type latch
- 'F543 Non-Inverting 'F544 Inverting
- Back-to-Back Registers for storage
- Separate controls for Data flow In each direction
- A outputs sink 24mA and source 15 mA
- B outputs sink 64 mA and source 3 mA
- 24-pin plastic SIIm DIP (300mil) package
- 3-State outputs for bus oriented applications

DESCRIPTION

The 'F543 and 'F544 Octal Registered Transceivers contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$) and Enable ($\overline{O E A B}, \overline{O E B A}$) inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. While the 'F543 has non-inverting data path, the 'F544 inverts data in both direction. The A outputs are guaranteed to sink 24 mA while the B outputs are rated for 64 mA .

FAST 74F543, 74F544 Transceivers

Octal Registered Transceiver, Non-Inverting (3-State) Octal Registered Transceiver, Inverting (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 543$	6.0 ns	80 mA
745544	6.5 ns	95 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP	N74F543N, N74F544N
24-Pin Plastic SOL	N74F543D, N74F544D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{7}$ ('F543)	Port A, 3-State inputs	3.5/1.08	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ ('F543)	Port B, 3-State inputs	3.5/1.08	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\bar{A}_{0}-\bar{A}_{7}$ ('F544)	Port $\overline{\mathrm{A}}$, 3-State inputs	3.5/1.08	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\bar{B}_{0}-\overline{\mathrm{B}}_{7}$ ('F544)	Port $\overline{\mathrm{B}}, 3$-State inputs	3.5/1.08	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
OEAB	A-to-B output enable input (active-Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OEBA	B-to-A output enable input (active-Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
EAB	A-to-B enable input (active-Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
EBA	B-to-A enable input (active-Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
LEAB	A-to-B latch enable input (active-Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
LEBA	B-to-A latch enable input (active-Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$ ('F543)	Port A, 3-State outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$ ('F543)	Port B, 3-State outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\bar{A}_{0}-\bar{A}_{7}$ ('F544)	Port $\bar{A}, 3$-State outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{\mathrm{B}}_{0}-\overline{\mathrm{B}}_{7}$ ('F544)	Port \bar{B}, 3-State outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

FUNCTIONAL DESCRIPTION

The 'F543 and 'F544 contains two sets of eight D-type latches, with separate input and controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{\mathrm{EAB}}$) Input must be Low in order to enter data from $A_{0}-A_{7}$ or take data from $B_{0}-B_{7}$, as indicated in the Function Table. With $\overline{E A B}$ Low, a Low signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent Low-to-High transition fof the $\overline{L E A B}$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{E A B}$ and $\overline{O E A B}$ both Low, the 3-State B output buffers are active and reflects the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{E B A}$, $\overline{L E B A}$, and $\overline{O E B A}$ inputs.

PIN CONFIGURATION

'F543	
LEBA 1	${ }_{24} \mathrm{v}_{\text {cc }}$
CEBA 2	$23]$
$\mathrm{A}_{0} \square$	22) B_{0}
A 4	$21{ }^{1}$
$\mathrm{A}_{2}{ }^{5}$	${ }^{20} \mathrm{~B}_{2}$
$A_{3}{ }^{6}$	$19 \mathrm{~B}_{3}$
$\mathrm{A}_{4}{ }^{7}$	$18 \mathrm{~B}_{4}$
$\mathrm{A}_{5}{ }_{8}$	$17{ }^{\text {B }}$
$\mathrm{A}_{6} 9$	${ }^{16} \mathrm{~B}_{6}$
$A_{7} 10$	$15 \mathrm{~B}_{7}$
EBA 11	14] $\overline{L E A B}$
GND 12	13 OEAB
	cD07660s
'F544	
LEBA 1	24 ${ }^{\text {cc }}$
OEBA 2	23 EBA
	$22 \bar{B}_{0}$
	21] ${ }^{\text {E }}$
$\bar{A}_{2} \square$	20) \bar{B}_{2}
\bar{A}_{3} [6]	198 \bar{B}_{3}
$\bar{A}_{4} \square$	18) \bar{B}_{4}
$\mathrm{A}_{5}-8$	$17 \bar{B}_{5}$
$\mathrm{A}_{6} \square$	16] \bar{B}_{6}
$\bar{A}_{7} 10$	${ }^{15} \bar{B}_{7}$
$\begin{aligned} & \overline{E A B}-11 \\ & \text { GND } 12 \end{aligned}$	14) $\overline{\text { LEAB }}$
	13 OEAB
	coor670s

FUNCTION TABLE for 'F543 and 'F544

INPUTS				OUTPUTS		STATUS
OEXX	EXX	LEXX	Data	'F543	'F544	
H	X	X	X	Z	Z	Outputs disabled
L	H	L	I	Z	Z	Outputs disabled
L	H	L	h	Z	Z	Data latched
L	L	H	I	L	H	Data latched
L	L	H	h	H	L	
L	L	L	L	L	H	Transparent
L	L	L	H	H	L	

$H=$ High voltage level
$\mathrm{h}=$ High state must be present one setup time before the Low-to-High transition of LEXX or EXX ($X X=A B$ or $B A$)
$\mathrm{L}=$ Low voltage level
I = Low state must be present one setup time before the Low-to-High transition of $\overline{\text { LEXX }}$ or $\overline{\mathrm{EXX}}$ ($X X=A B$ or $B A$)
$X=$ Don't care
$Z=$ High-impedance state
LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM FOR 'F543

NOTE:
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

LOGIC DIAGRAM FOR 'F544

NOTE:
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-ar temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}, \overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{7}$	48
		ma	
T_{A}	Operating free-air temperature range	128	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.50	5.0	5.50	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
IOH	High-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}, \bar{A}_{0}-\bar{A}_{7}$			-3	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{7}$			-15	mA
lol	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}, \bar{A}_{0}-\bar{A}_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{7}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$\begin{aligned} & A_{0}-A_{7} \\ & \bar{A}_{0}-\bar{A}_{7} \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V				
			$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7} \\ & \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{7} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		2.0				V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & A_{0}-A_{7} \\ & \bar{A}_{0}-\bar{A}_{7} \end{aligned}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{\prime}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$					0.35	0.50	V			
			$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7} \\ & \overline{\mathrm{~B}}_{0}-\mathrm{B}_{7} \end{aligned}$	$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
			$\mathrm{loL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$			0.40	0.55	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	OEAB, $\overline{O E B A}$ $\overline{E A B}, \overline{E B A}$ $\overline{\text { LEAB }}, \overline{\text { LEBA }}$		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		Others		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
$\mathrm{IH}^{\text {H}}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					20	$\mu \mathrm{A}$			
ILL	Low-level input current	Others		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		$\overline{E A B}$, EBA							-1.2	mA			
$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & +\mathrm{I}_{\mathrm{OZH}} \end{aligned}$	OFF-state current High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \text { IIL }^{\prime} \\ & +\mathrm{l}_{\text {OZL }} \\ & \hline \end{aligned}$	OFF-state current Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	.5V				-600	$\mu \mathrm{A}$			
los	Short circuit output current ${ }^{3}$	$\mathrm{A}_{0}-\mathrm{A}_{7}, \bar{A}_{0}-\bar{A}_{7}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}, \bar{B}_{0}-\bar{B}_{7}$					-100		-225	mA			
Icc	Supply current (total)	'F543		ICCH	$V_{C C}=M A X$				70	105	mA		
			$\mathrm{I}_{\mathrm{CCL}}$					95	135	mA			
			ICCz					95	135	mA			
Icc	Supply current (total)	'F544	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX				80	110	mA			
			ICCL					105	140	mA			
			ICCz					100	135	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	747543					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{c C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLL }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLL }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay LEBA to A_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $t_{\text {PHL }}$	Propagation delay LEAB to B_{n}	Waveform 1, 2	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Output disable time OEBA or OEAB to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZZ}} \end{aligned}$	Output disable time $\overline{E B A}$ or $\overline{E A B}$ to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PPZZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time $\overline{E B A}$ or $\overline{E A B}$ to A_{n} or B_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F543					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to $\overline{L E A B}$ or $\overline{\text { LEBA }}$ A_{n} or B_{n} to $\overline{E A B}$ or $\overline{E B A}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to LEAB or LEBA A_{n} or B_{n} to $\overline{E A B}$ or EBA	Waveform 3	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		ns
$t_{\text {w }}(L)$	Latch enable pulse width	Waveform 3	4.0			4.5		ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F544					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }_{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} to B_{n} or \bar{B}_{n} to \bar{A}_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\text { LEBA }}$ to \bar{A}_{n}	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $\overline{\text { LEAB }}$ to \bar{B}_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output enable time $\overline{\text { OEBA }}$ or $\overline{O E A B}$ to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time $\overline{O E B A}$ or $\overline{O E A B}$ to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output disable time $\overline{E B A}$ or $\overline{E A B}$ to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PPZZ}} \\ & \mathrm{t}_{\mathrm{tpLz}} \end{aligned}$	Output disable time $\overline{E B A}$ or $\overline{E A B}$ to \bar{A}_{n} or \bar{B}_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F544					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to LEAB or LEBA	Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			2.5 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to $\overline{L E A B}$ or $\overline{L E B A}$	Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			3.0 4.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Pulse width latch enable	Waveform 3	4.0			4.5		ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Inverting Outputs

wFoboses
Waveform 2. Propagation Delay for Non-Inverting Outputs

WFOB32Fs
Waveform 3. Data and Select Setup and Hold Times
Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 5. 3-State Output Enable Time to Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to changed for predicatable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ	closed
tpzL	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$
of pulse generators.

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading $(70 \mu \mathrm{~A}$ in High and Low states)
- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package count
- 3-State inputs/outputs for interfacing with bus-oriented systems
- 20 mA and 64 mA bus drive capability on A and B ports, respectively
- Transmit/Receive and Output Enable simplify control logic
- Pin for pin replacement for Intel 8286

DESCRIPTION

The 'F545 is an 8-bit, 3-State, highspeed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 20 mA bus drive capability on the A ports and 64mA bus drive capability on the B ports.

Octal Bidirectional Transceiver
(With 3-State Inputs/Outputs)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 545	4.0 ns	87 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F545N
20 -Pin Plastic SOL	N74F545D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$, $\mathrm{B}_{0}-\mathrm{B}_{7}$	Data inputs	$3.50 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/Receive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Port A 3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Port B 3-State outputs	$750 / 107$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

One input, Transmit/Receive (T/信) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Output Enable input disables both A and B ports by placing them in a 3-State condition.
The 'F545 performs the same function as the 'F245, the only difference being package pin assignments.

FUNCTION TABLE

InPUTS		OUTPUTS	
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$		
L	L	Bus B Data to Bus A	
L	H	Bus A Data to Bus B	
H	X	Hi Z	

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Immaterial
$Z=$ High-impedance

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-ar temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
V_{IN}	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
Iout	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	48	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
ІО	High-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			-3	mA
		$B_{0}-B_{7}$			-15	mA
lol	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F545			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	$\mathrm{A}_{0}-\mathrm{A}_{7}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$B_{0}-B_{7}$	${ }^{\prime} \mathrm{OH}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{C C}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
V_{OL}	Low-level output voltage	$A_{0}-A_{7}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
		$B_{0}-B_{7}$		$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
				$\mathrm{lOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input voltage at maximum input voltage	$\begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{7}, \\ & \mathrm{~B}_{0}-\mathrm{B}_{7} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
		$\overline{O E}, \mathrm{~T} / \overline{\mathrm{R}}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
ILL	Low-level input current	$\overline{O E}, T / \bar{R}$ only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	Off-state current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & I_{\text {OZL }} \\ & +I_{I H} \end{aligned}$	Off-state current Low-level voltage applied		$V_{C C}=\mathrm{MAX}$,					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$				-100		-225	mA			
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=$ MAX	$\mathrm{T} / \overline{\mathrm{R}}=\mathrm{A}_{0}-\mathrm{A}_{7}=4.5 \mathrm{~V} ; \overline{\mathrm{OE}}=\mathrm{GND}$			77	90	mA			
		$\mathrm{I}_{\text {CCL }}$		$\overline{O E}=T / \bar{R}=B_{0}-B_{7}=G N D$			96	120	mA			
		l ccz		$\mathrm{OE}=4.5 \mathrm{~V} ; \mathrm{T} / \mathrm{R}=\mathrm{B}_{0}-\mathrm{B}_{7}=\mathrm{GND}$			89	110	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

3 Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure ICC with outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F545					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PPLL}} \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 1 Waveform 1	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{tPZL}} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Non-Inverting Outputs

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

WF06471S

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tplZ $^{\text {tPZL }}$	closed
closed	
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FAST 74F547

Decoder/Demultiplexer

Octal Decoder/Demultiplexer With Address Latches And Acknowledge Preliminary Specification

FEATURES

- 3- to 8-line address decoder
- Address storage latches
- Multiple enables for address extension
- Open-Collector Acknowledge output

DESCRIPTION

The 'F547 is a 3 - to 8 -line address decoder with latches for address storage. Designed primarily to simplify multi-ple-chip selection in a microprocessor system, it contains one active-Low and two active-High Enables to conserve address space. Also included is an ac-tive-Low Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

PIN CONFIGURATION

\bar{Q}_{2}	
$\square_{1}{ }^{2}$	(19) $\overline{\mathrm{a}}_{3}$
$\overline{\text { ACK }} 3$	${ }^{18} \overline{\mathrm{a}}_{4}$
WR 4	$17 A_{2}$
$\overline{\mathrm{RD}} 5$	16 LE
$\mathrm{A}_{0} 6$	$15 \bar{E}_{0}$
$A_{1} 7$	(14) E_{1}
$\square_{5}{ }_{5}$	${ }^{13} \mathrm{E}_{2}$
$\bar{Q}_{6}[8]$	12] \bar{Q}_{0}
OND 10	(11) \bar{a}_{7}
	coozsts

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 547	8.0 ns	17 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F547N
20-Pin Plastic SOL	N74F547D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Output select address input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{0}$	Chip enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}_{1}, \mathrm{E}_{2}$	Chip enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
LE	Latch enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{RD}}$	Read acknowledge input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{WR}}$	Write acknowledge input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{7}$	Decoder outputs (active-Low)	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{ACK}}$	Open-Collector acknowledge output (active-Low)	OC*/33.3	$\mathrm{OC*} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. *OC = Open-Collector.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

For applications in which the separation of latch enable and chip enable functions is not required, $L E$ and \bar{E}_{1} can be tied together such that when High the outputs are OFF and the latches are transparent, and when Low the
latches are storing and the selected output is enabled.

The Open-Collector Acknowiedge ($\overline{\mathrm{ACK}}$) output is normally High (i.e. OFF) and goes Low

FUNCTION TABLE (Decoder*)

INPUTS						OUTPUTS							
\bar{E}_{0}	E_{1}	E_{2}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	$\overline{\mathbf{Q}}_{\mathbf{0}}$	$\overline{\mathbf{Q}}_{1}$	$\overline{\mathbf{Q}}_{\mathbf{2}}$	$\overline{\mathbf{Q}}_{3}$	$\overline{\mathbf{Q}}_{\mathbf{4}}$	$\overline{\mathbf{Q}}_{5}$	$\overline{\mathbf{Q}}_{6}$	\bar{Q}_{7}
L	H	H	L	L	L	L	H	H	H	H	H	H	H
L	H	H	L	L	H	H	L	H	H	H	H	H	H
L	H	H	L	H	L	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	L	H	H	H	H
L	H	H	H	L	L	H	H	H	H	L	H	H	H
L	H	H	H	L	H	H	H	H	H	H	L	H	H
L	H	H	H	H	L	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L

* Assuming $\mathrm{E}_{1}=$ Low and $\mathrm{E}_{2}=\mathrm{E}_{3}=$ High
when \bar{E}_{0}, E_{1} and E_{2} are all active and either the READ ($\overline{\mathrm{RD}}$) or Write ($\overline{\mathrm{WR}}$) input is Low, as indicated in the Acknowledge Function Table.

FUNCTION TABLE (Acknowledge)

INPUTS					OUTPUT
$\bar{E}_{\mathbf{0}}$	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{2}}$	$\overline{\mathbf{R D}}$	$\overline{\text { WR }}$	$\overline{\mathbf{A C K}}$
H	X	X	X	X	H
X	L	X	X	X	H
X	X	L	X	X	H
L	H	H	H	H	H
L	H	H	L	X	L
L	H	H	X	L	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

FUNCTION TABLE (Latch and Output Status)

INPUTS				LATCH STATUS	DECODER OUTPUTS
\bar{E}_{0}	E_{1}	E_{2}	LE		
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \downarrow \end{gathered}$	Transparent Storing	Address inputs decoded Latched address decoded
L	X	X	X	Storing hold	No Change
H X X	X L X	X	$\begin{aligned} & X \\ & X \\ & \text { X } \end{aligned}$	Transparent Storing Transparent	Outputs disabled

$H=$ High voltage level
L = Low voltage level
X = Don't care
$\downarrow=$ High to Low transition. A_{n} data must be stable one setup time before transition.

LOGIC DIAGRAM

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
() = Pin numbers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
V_{OH}	High-level output voltage	$\overline{\text { ACK only }}$			4.5	V
IOH	High-level output current	Except $\overline{\text { ACK }}$			-1	mA
loL	Low-level output current				20	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F547			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current	$\overline{\text { ACK }}$ only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
VOH	High-level output voltage	Except $\overline{\text { ACK }}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V		
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, V_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{c c}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=$ MIN, $I_{\text {I }}=I_{I K}$			-0.73	-1.2	V	
11	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$	Except $\overline{\text { ACK }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			17	25	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F547					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay A_{n} to σ_{n}	Waveform 3	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ tphL	Propagation delay \bar{E}_{1} to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{p} H \mathrm{~L}} \end{aligned}$	Propagation delay LE to \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {tpLH }}$ tphL	Propagation delay E_{2} or E_{3} to \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {tpL }}$ $t_{\text {PHL }}$	Propagation delay $\bar{E}_{1}, \overline{\mathrm{RD}}$, or $\overline{\mathrm{WR}}$ to $\overline{\mathrm{ACK}}$	Waveform 2	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$ tphi	Propagation delay E_{2} or E_{3} to $\overline{A C K}$	Waveform 1	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F547					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} to LE	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low A_{n} to LE	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE pulse width, High	Waveform 2	6.0			6.0		ns

AC WAVEFORMS

$L E, E_{1}, E_{2}$
$\overline{\mathbf{A C K}}, \overline{\mathbf{a}}_{\mathbf{n}}$

WF0754PS
Waveform 1. Propagation Delay for Chip Enable Inputs $\left(E_{2}, E_{3}\right)$ and Latch Enable Input (LE) to Write Acknowledge (ACK) and Decoder $\left(\mathbf{Q}_{n}\right)$ Outputs
$\overline{\mathbf{W R}}, \overline{\mathbf{R D}}, \mathbf{E}_{\mathbf{0}}$

WF0605LS
Waveform 2. Propagation Delay for Chip Enable Input $\left(E_{1}\right)$ to Decoder Outputs $\left(\bar{Q}_{n}\right)$ and Write Acknowledge Inputs (WR, RD) to Acknowledge Output (ACK)

Waveform 3. Propagation Delay for Output Select Address Input (A_{n}) to Decoder Outputs (\bar{Q}_{n})

Waveform 4. Data Setup and Hold Times for Output Select Address Inputs (A_{n}) to Latch Enable Inputs
(LE) and Chip Enable Inputs (E_{1}, E_{2}, E_{3})

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- 3- to 8-line address decoder
- Multiple enables for address extension
- Open-Collector Acknowledge output
- Active-Low Decoder outputs

DESCRIPTION

The 'F548 is a 3 - to 8 -line address decoder with four Enable inputs. Two of the Enables are active-Low and two are active-High for maximum addressing versatility. Also provided is an activeLow Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

When enabled, the 'F548 accepts the $\mathrm{A}_{0}-\mathrm{A}_{2}$ address inputs and decodes them to select one of eight active-Low mutually exclusive outputs, as shown in the Decoder Function Table. When one or more Enables is active, all decoder outputs are High. Thus, the 'F548 can be used as a demultiplexer by applying data to one of the Enables.
The Open-Collector Acknowledge ($\overline{\mathrm{ACK}}$) output is normally High (i.e. OFF) and goes Low when the Enables are all active and either the READ ($\overline{\mathrm{RD}}$) or Write ($\overline{\mathrm{WR}}$) input is Low, as indicated in the Acknowledge Function Table.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 548	6.5 ns	14 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F548N
20 -Pin Plastic SOL	N74F548D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Output select address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{0}, \overline{\mathrm{E}}_{1}$	Chip enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}_{2}, \mathrm{E}_{3}$	Chip enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{RD}}$	Read acknowledge input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{WR}}$	Write acknowledge input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{Q}_{0}-\overline{\mathrm{Q}}_{7}$	Decoder outputs (active-Low)	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
ACK	Open-collector acknowledge output (active-Low)	$\mathrm{OC} / 33$	$\mathrm{OC} * / 20 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. $* O C=$ Open-Collector.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE (Decoder)

INPUTS							OUTPUTS							
\bar{E}_{0}	\bar{E}_{1}	E_{2}	E_{3}	A_{2}	A_{1}	A_{0}	$\bar{\alpha}_{0}$	$\overline{\mathbf{a}}_{1}$	$\overline{\mathrm{a}}_{2}$	$\overline{\mathbf{a}}_{3}$	$\overline{0}_{4}$	\bar{Q}_{5}	$\overline{\mathbf{O}}_{6}$	\bar{Q}_{7}
H	X	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	X	H	H	H	H	H	H	H	H
X	X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	H	L	H	H	H	H	H	H
L	L	H	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	L	H	H	H	H
L	L	H	H	H	L	L	H	H	H	H	L	H	H	H
L	L	H	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	L	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	L

$H=$ High voitage level
$L=$ Low voltage level
$X=$ Don't care

FUNCTION TABLE (Acknowledge)

						OUTPUT
$\bar{E}_{\mathbf{0}}$	$\bar{E}_{\mathbf{1}}$	$E_{\mathbf{2}}$	E $_{\mathbf{3}}$	$\overline{\text { RD }}$	$\overline{\text { WR }}$	$\overline{\text { ACK }}$
H	X	X	X	X	X	H
X	H	X	X	X	X	H
X	X	L	X	X	X	H
X	X	X	L	X	X	H
L	L	H	H	H	H	H
L	L	H	H	L	X	L
L	L	H	H	X	L	L

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK^{\prime}	Input clamp current				-18	mA
V_{OH}	High-level output voltage	$\overline{\text { ACK only }}$			4.5	V
IOH	High-level output current	Except $\overline{\text { ACK }}$			-1	mA
loL	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-arr temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current	$\overline{\text { ACK only }}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IL }}=\mathrm{MAX}$,	, $\mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	Except $\overline{\text { ACK }}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V		
Vol	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$	Except $\overline{\text { ACK }}$	$V_{C C}=M A X$		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=$ MAX			14	21	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to mınimıze internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F548					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagatıon delay A_{n} to \bar{Q}_{n}	Waveform 3	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{E}_{0} or \bar{E}_{1} to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay E_{2} or E_{3} to \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay \bar{E}_{0} or \bar{E}_{1} to $\overline{\text { ACK }}$	Waveform 1	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay E_{2} or E_{3} to $\overline{\mathrm{ACK}}$	Waveform 1	$\begin{aligned} & \hline 8.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to $\overline{\mathrm{ACK}}$	Waveform 2	$\begin{aligned} & 5.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Chip Enable Inputs $\left(E_{3}, E_{4}\right)$ to Write Acknowledge ($\overline{A C K}$) and Decoder $\left(\mathbf{Q}_{n}\right)$ Outputs

WF0605ss
Waveform 2. Propagation Delay for Chip Enable Inputs (\bar{E}_{1}, \bar{E}_{2}) to Decoder Outputs $\left(\bar{Q}_{n}\right)$ and Write Acknowledge Output $(\overline{A C K})$

Waveform 3. Propagation Delays for Output Select Address Input (\mathbf{A}_{n}) to Decoder Outputs $\left(\overline{\mathbf{Q}}_{n}\right)$ NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

PULSE

Test Circuit for Open-Collector and Totem-Pole Outputs

SWITCH POSITION

TEST	SWITCH
Open-Collector Totem-pole	closed open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST Products

FEATURES

- 8-bit bidirectional I/O port with handshake
- Back-to-back registers for storage
- Register status flag flip-flops
- Separate edge-detecting clears for flags
- 'F550 non-inverting 'F551 inverting
- B outputs sink 64mA

DESCRIPTION

The 'F550 and 'F551 octal transceivers contain two 8-bit registers for temporary storage of data flowing in either direction. Each register has its own Clock (CPA, CPB) and Clock Enable ($\overline{\mathrm{CEA}}$, $\overline{C E B}$) inputs as well as a flag flip-flop that is set automatically as the register is loaded. Each flag flip-flop is provided with a clear input, and each register has a separate Output Enable ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$) for its 3-State buffers. The separate Clocks, Flags and Enables provide considerable flexibility as I/O ports for de-mand-response data transfer. The 'F550 is non-inverting; the 'F551 inverts data in both directions.

'F550 Octal Registered Transceiver With Status Flags, Non-Inverting
 'F551 Octal Registered Transcelver With Status Flags, Inverting
 Preliminary Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 550	6.3 ns	130 mA
74 F 551	6.3 ns	130 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{5}} \mathbf{5 V} \pm \mathbf{1 0 \%} ; \boldsymbol{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
28-Pin Plastic DIP	N74F550N, N74F551N
28-Pin Plastic SOL	N74F550D, N74F551D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F$ (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B-to-A Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPA	A-to-B Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPB	B-to-A Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEA}}$	A-to-B Clock Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEB}}$	B-to-A Clock Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OEA}}$	A-to-B Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OEB}}$	B-to-A Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CFAB	A-to-B Flag Clear input (active rising edge)	$1.0 / 1.33$	$20 \mu \mathrm{~A} / 0.8 \mathrm{~mA}$
CFBA	B-to-A Flag Clear input (active rising edge)	$1.0 / 1.33$	$20 \mu \mathrm{~A} / 0.8 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A-to-B Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B-to-A Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
FAB	A-to-B Status Flag output (active-High)	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
FBA	B-to-A Output Enable input (active-High)	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

SYMBOL (IEEE/IEC)

LOGIC SYMBOL

FAST 74F550, 74F551

LOGIC DIAGRAM for 'F550

FUNCTIONAL DESCRIPTION

Data applied to the A inputs are entered and stored on the rising edge of the A Clock (CPA), provided that the A Clock Enable ($\overline{C E A}$) is Low; simultaneously, the status flipflop is set and the A-to-B Flag (FAB) output goes High. Data entered from the A inputs is present at the inputs to the B output buffers,
but only appears on the BI/O pins when the B Output Enable ($\overline{\mathrm{OEB}})$ signal is made Low. After the B output data is assimilated, the receiving system clears the A-to-B Flag flipflop by applying a Low-to-High transition to the CFAB input. Optionally, the OEA and CFAB pins can be tied together and operated by one function from the receiving system.

Data flow from B-to-A proceeds in the same manner described for A-to-B flow. Inputs $\overline{C E B}$ and CPB enter the B input data and set the B-to-A Flag (FBA) output High. A Low signal on $\overline{O E A}$ enables the A output buffers and a Low-to-High transition on CFBA clears the FBA Flag.

FUNCTION TABLE

OPERATING MODE	INPUTS			INTERNAL Q
	A or B	$\mathbf{C P}$	$\mathbf{C E}$	
Hold data	X	X	H	No change
Load data	L	\uparrow	L	L
	H	\uparrow	L	H

FLAG FUNCTION TABLE

OPERATING MODE	INPUTS			FLAG OUTPUT
	$\mathbf{C F}$	$\mathbf{C P}$	$\mathbf{C E}$	
Hold Flag	\uparrow	\mathbf{X}	H	No change
Clear Flag	\uparrow	X	X	L
Set Flag	\uparrow	\uparrow	L	H

OUTPUT CONTROL TABLE

OPERATING MODE	$\mathbf{~} \mathbf{~ O E ~}$	INTERNAL Q	OUTPUT	
			'F550	'F551
Disable outputs	H	X	Z	Z
Enable outputs	L	L	L	H
	L	H	H	L

$H=$ High Voltage Level
$\mathrm{L}=$ Low Voltage Level
$X=$ Don't care
Z = High-Impedance
$\uparrow=$ Low-to-High Transition
$\ddagger=$ Doesn't allow Low-to-High Transition

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	UNIT
V_{Cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	\checkmark
In	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{cc}}$	V
lout	Current applied to output in Low output state	FAB, FBA	40	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	48	
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

FAST 74F550, 74F551

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IK	Input clamp current				-18	V
Іон	High-level output current	FAB, FBA			-1	mA
		$A_{0}-A_{7}, B_{0}-B_{7}$			-3	
lol	Low-level output current	FAB, FBA			20	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$			24	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F550, 74F551			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			v
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOL}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp volta			$V_{C C}=M I N, I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$				1.0	mA		
IIH	High-level input current	$\begin{aligned} & \text { except } \\ & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$		
$\mathrm{liH}^{+}+\mathrm{l}_{\text {OZH }}$	High-level input current	$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {LL }}+\mathrm{I}_{\text {OzL }}$	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			130	190	mA		

NOTES:

1. For conditoons shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F550, 74F551					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum operating frequency	Waveform 1	60	70		50		MHz
$t_{\text {PLL }}$ tphL	Propagation delay CPA or CPB to B_{n} or A_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.0 \end{gathered}$	ns
${ }_{\text {tPLH }}$	Propagation delay CPA or CPB to FAB or FBA	Waveform 1	3.5	6.0	6.0	3.0	9.0	ns
${ }_{\text {tPHL }}$	Propagation delay CFAB or CFBA to FAB or FBA	Waveform 2	5.0	9.0	11.5	4.5	13.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output enable time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	Waveform 4, 5	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	Waveform 4, 5	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	2.5 2.0	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F550, 74F551					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPA or CPB	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPA or CPB	Waveform 3	2.0 2.0			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $\overline{\text { CEA }}$ or CEB to CPA or CPB	Waveform 3	4.0 4.0			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CEA or CEB to CPA or CPB	Waveform 3	2.0 2.0			2.5 2.5		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPA or CPB	Waveform 3	3.0 3.0			3.5 3.5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Pulse width, High CFAB or CFBA	Waveform 2	3.0			3.5		ns
$\mathrm{trec}^{\text {c }}$	Recovery time CFAB or CFBA to CPA or CPB	Waveform 2	9.0			10.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output

WF22020S
Waveform 3. Data Setup Time and Hold Times, and Clock Pulse Widths

Waveform 2. Propagation Delay, Flag Clear Input to Status Flag Output, Recovery Time Flag Clear Input to Clock Output

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=15 \mathrm{~V}$
The shaded area indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLz	closed
tpzL	closed
All other	open

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes mg and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $Z_{\text {Out }}$ of pulse generators.

FAST 74F552

Octal Registered Transceiver
With Parity and Flags (3-State)
Preliminary Specification

FAST Products

FEATURES

- 8-bit bidirectional I/O port with handshake
- Register status flag flip-flops
- Separate Clock Enable and Output Enable
- Parity Generation and Parity Check
- B outputs and Parity output sink 64 mA

DESCRIPTION

The 'F552 octal transceiver contains two 8-bit registers for temporary storage of data flowing in either direction. Each register has its own Clock (CPR, CPS) and Clock Enable ($\overline{\mathrm{CER}}, \overline{\mathrm{CES}}$) inputs, as well as a flag flip-flop that is set automatically as the register is loaded. The flag output will be reset when the Output Enable returns to High after reading the output port. Each register has a separate Output Enable ($\overline{\mathrm{DEAS}}, \overline{O E B R}$) for its 3State buffer. The separate Clocks, Flags and Enables provide considerable flexibility as I/O ports for demand-response data transfer. When data is transferred from the A port to the B port, a parity bit is generated. On the other hand, when data is transferred from the B port to the A port, the parity of input data on $B_{0}-B_{7}$ is checked.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 552	6.5 ns	103 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}+\mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{C}$
28-Pin Plastic DIP	N74F552N
28-Pin Plastic SOL	N74F552D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74($ U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B-to-A Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPR	R registers Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPS	S registers Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { CER }}$	R registers Clock Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { CES }}$	S registers Clock Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { OEAS }}$	A-to-B Output Enable (active-Low) and Clear FS input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\text { OEBR }}$	B-to-A Output Enable (active-Low) and Clear FR input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
PARITY	Parity bit transceiver input	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Parity bit transceiver output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
ERROR	Parity check output (active-Low)	$50 / 33.3$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A-to-B Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B-to-A Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
FS	A-to-B Status Flag output (active-High)	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
FB	B-to-A Output Enable input (active-High)	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

Data applied to the A inputs are entered and stored on the rising edge of the CPR Clock pulse, provided that CER is Low; simultaneously, the status flip-flop is set and the A-to-B flag (FR) output goes High. As the CER returns to High, the data will be held in R register. This data entered from the A inputs will appear at the B port I/O pins after the OEBR has gone Low. When OEBR is Low, a parity bit appears at the parity pin, which will

LOGIC SYMBOL

be set High when there is an even number of 1 's or all 0 's at the Q outputs of the R register. After the data is assimilated, the receiving system clears the flag FR, by changing the signal at the OEBR pin from Low to High.
Data flow from B-to-A proceeds in the same manner described for A-to-B flow. A Low at the $\overline{C E S}$ pin and a Low-to-High transition at CPS pin enters the B-input data and the

LOGIC SYMBOL (IEEE/IEC)

parity-input data into the S register and the parity register respectively, and sets the flag output FS to High. A Low signal at the OEAS pin enables the A port I/O pins and a Low-toHigh transition of the OEAS signal clears the FS flag. When OEAS is Low, the parity check output ERROR will be High if there is an odd number of 1 's at the Q outputs of the S registers and the parity register. The flag FS can be cleared by a Low-to-High transition of the $\overline{O E A S}$ signal.

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

LOGIC DIAGRAM

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

R or S REGISTER FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUT
	D	$\mathbf{C P}$	$\overline{\text { CE }}$	INTERNAL \mathbf{Q}
Hold data	X	X	H	NC
Load data	L	\uparrow	L	L
	H	\uparrow	L	H

$H=$ High voltage level
$L=$ Low voltage level
$N C=$ No change
NC = No change
$X=$ Don't care
$\uparrow=$ Low to High transition
$\uparrow=$ Don't allow Low to High transition

OUTPUT CONTROL TABLE

OPERATING MODE	INPUT	OUTPUTS	
	$\overline{\text { OE }}$	INTERNAL Q	A or B
Disable outputs	H	X	Z
Enable outputs	L	L	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$\mathrm{X}=$ Don't care
$Z=$ High-impedance
R or S FLAG FUNCTION TABLE

OPERATING MODE	INPUTS			OUTPUT
	$\overline{\mathbf{C E}}$	$\mathbf{C P}$	$\overline{\mathbf{O E}}$	FLAG
Hold Flag	H	X	\uparrow	NC
Set Flag	L	\uparrow	\uparrow	H
Clear Flag	X	X	\uparrow	L

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$\mathrm{NC}=$ No change
$\mathrm{X}=$ Don't care
$\uparrow=$ Low to High transition
$\mathcal{q}=$ Don't allow Low to High Transition

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

PARITY GENERATION FUNCTION TABLE

OPERATING MODE	INPUT	OUTPUTS	
	OEBR	NUMBER OF HIGHS IN THE Q OUTPUTS OF THE R REGISTER	PARITY
	H	X	Z
Load data	L	$0,2,4,6,8$ $1,3,5,7$	H

$H=$ High voltage level
$L=$ Low voltage level
X = Don't care
Z = High-impedance

PARITY CHECK FUNCTION TABLE

OPERATING MODE	INPUTS		OUTPUTS	
	OEAS	PARITY	NUMBER OF HIGHS IN THE Q OUTPUTS OF THE R REGISTER	ERROR
	H	X	X	H
Parity check	L	L	$0,2,4,6,8$	L
	L	L	$1,3,5,7$	H
	L	H	$0,2,4,6,8$	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.

 Unless otherwise noted these limits are over the operating free-air temperature range.)| SYMBOL | PARAMETER | | RATING | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| V_{CC} | Supply voltage | | -0.5 to +7.0 | V |
| $\mathrm{V}_{\text {IN }}$ | Input voltage | | -0.5 to +7.0 | V |
| In | Input current | | -30 to +5 | mA |
| Vout | Voltage applied to output in High output state | | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| lout | Current applied to output in Low output state | FR, FS, ERROR | 40 | mA |
| | | $A_{0}-A_{7}$ | 48 | mA |
| | | $\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY | 128 | mA |
| T_{A} | Operating free-air temperature range | | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| TSTG | Storage temperature range | | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	V
Іон	High-level output current	FR, FS, ERROR			-1	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}$			-3	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY			-15	mA
lol	Low-level output current	FR, FS, ERROR			20	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			Limits			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	ERROR, FS, FR				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0					V			
		$A_{0}-A_{7}, B_{0}-B_{7}$ PARITY	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
				$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5				V			
			$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ or -3 mA		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$A_{0}-A_{7}$, ERROR, FS, FR	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\begin{aligned} & \mathrm{loL}=20 \mathrm{~mA} \\ & \text { or } \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
		$B_{0}-B_{7}$ PARITY		$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
					$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.73	-1.2	V			
I	Input current at maximum input voltage	others	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}, B_{0}-B_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
IH	High-level input current	others except $A_{0}-A_{7}, B_{0}-B_{7}$ PARITY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current	others	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		OEAS, $\overline{\text { OEBR }}$						-1.2	mA			
$\mathrm{liH}^{+} \mathrm{l} \mathrm{lOZH}$	High-level input current	$A_{0}-A_{7}, B_{0}-B_{7},$ PARITY	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {IL }}+\mathrm{l}_{\text {OZL }}$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\text {ch }}$	$V_{C C}=$ MAX				110	165	mA			
		$\mathrm{I}_{\mathrm{CLL}}$					100	150	mA			
		Iccz					100	150	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.

2 All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay CPS or CPR to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CPS or CPR to FS or FR	Waveform 1	3.0	5.5	7.5	2.5	8.5	ns
$t_{\text {PHL }}$	Propagation delay $\overline{\text { OEAS }}$ to FS or OEBR to FR	Waveform 2	3.5	6.0	8.0	3.0	9.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CPS to ERROR	Waveform 4	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 20.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CPR to PARITY	Waveform 4	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 18.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay OEAS to ERROR	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	3.0 2.5	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tpzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output Enable time OEAS or OEBR to B_{n} or A_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLz}} \end{aligned}$	Output Disable time OEAS or OEBR to B_{n} or A_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output Enable time OEBR to PARITY	Waveform 6 Waveform 7	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable time OEBR to PARITY	Waveform 6 Waveform 7	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	2.5 2.5	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	ns

Octal Registered Transceiver With Parity and Flags (3-State) FAST 74F552

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{CL}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} or PARITY to CPS or CPR	Waveform 5	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$			8.5 5.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} or PARITY to CPS or CPR	Waveform 5	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CES or CER to CPS or CPR	Waveform 5	$\begin{gathered} \hline 6.0 \\ 10.0 \end{gathered}$			$\begin{gathered} 7.0 \\ 11.5 \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CES or CER to CPS or CPR	Waveform 5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CPS or CPR Pulse width High or Low	Waveform 5	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.5 7.5		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output

Waveform 3. Propagation Delay, Output Enable to ERROR
$\overline{\text { OEAS }} \overline{\text { OEBR }}$

Waveform 2. Propagation Delay, Output Enable to Flag Output

Waveform 4. Propagation Delay, Clock to PARITY and ERROR

FAST 74F563, 74F564 Latch/Flip-Flop

'F563 Octal Transparent Latch (3-State) 'F564 Octal D Flip-Flop (3-State) Preliminary Specification

Signetics

FAST Products

FEATURES

- 'F563 is broadside pinout version
of 'F533
- 'F564 is broadside pinout version of 'F534
- Inputs and outputs on opposite side of package allow easy interface to microprocessors
- Useful as an Input or Output for microprocessors
- 3-State Outputs for bus interfacing
- Common Output Enable
- 'F573 and 'F574 are non-inverting versions of 'F563 and 'F564 respectively
- These are high-speed replaceThese are high-speed replace-
ments for 8 TS807 and 8TS808

DESCRIPTION

The 'F563 is an octal transparent latch coupled to eight 3-State inverting output buffers. The two sections of the device are controlled independently by Latch Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 563$	4.5 ns	35 mA
74 F 564	6.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
20-Pın Plastic DIP	N74F563N, F74F564N
20-Pin Plastic SOL	N74F563D, N74F564D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F563)	Clock Pulse Input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E ('F564)	Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the Low state and 0.6 mA in the Low state

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Latch/Flip-Flop

FAST 74F563, 74F564

The 'F563 is functionally identical to the 'F533 but has a broadside pinout configuration to facilitate PC board layout and allows easy interface with microprocessors.

The data on the D inputs are transferred to the Latch outputs when the latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data present one setup time before the High-to-Low enable transition.
The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independently of the
latch operation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When $\overline{O E}$ is High, the outputs are in the Highimpedance 'OFF' state, which means they will neither drive nor load the bus.

The 'F564 is an 8-bit edge-triggered register coupled to eight 3-State inverting output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

The F564 is functionally identical to the 'F534 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition, transferred to the corresponding flip-flop's \bar{Q} output.

The 3-State inverting output buffers are designed to drive heavily loaded 3-State buses. MOS memories, or MOS microprocessors. The active-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independently of the register operation. When $\overline{\mathrm{OE}}$ is Low, data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High-impedance 'OFF' state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM, 'F563

$V_{C C}=\operatorname{PIn} 20$
GND $=\operatorname{Pin} 10$

LOGIC DIAGRAM, 'F564

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

MODE SELECT FUNCTION TABLE for 'F563

OPERATING MODE	INPUTS			INTERNAL REGISTER	OUTPUTS
	$\overline{\text { OE }}$	E	D_{n}		$\overline{\mathbf{a}}_{0}-\overline{\mathbf{a}}_{7}$
Enable and read register	L	H	L	L	H
	L	H	H	H	L
Latch and read register	L	\downarrow	1	L	H
	L	\downarrow	h	H	L
Hold	L	L	X	NC	NC
Disable outputs	H	X	X	X	Z

MODE SELECT FUNCTION TABLE for 'F564

OPERATING MODES	INPUTS			INTERNAL REGISTER	$\begin{gathered} \text { OUTPUTS } \\ \hline \bar{\alpha}_{0}-\bar{\alpha}_{7} \end{gathered}$
	OE	CP	D_{n}		
Load and read register	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\uparrow	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$
Disable outputs	H	X	X	X	Z

[^12]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Operating free-air temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current			-3	mA
loL	Low-level output current			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F563, 74F564			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=M A X, I_{O H}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=M I N, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \quad \text { IOL }=\text { MAX } \\ & \mathrm{V}_{\mathrm{H}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=I_{\mathrm{I}}$			-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
lozh	OFF-state output current, High-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	OFF-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
Icc	Supply current (total)	'F563	$V_{C C}=\mathrm{MAX}$			41	61	mA		
		'F564				55	86	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. 'F563 measure $I_{C C z}$ with $\overline{O E}$ input at $4.5 \mathrm{~V}, \mathrm{D}_{\mathrm{n}}$ and E inputs at ground and all outputs open.
'F564 measure I_{CCZ} with $\overline{\mathrm{OE}}$ inputs at 4.5 V and D_{n} inputs at ground and all outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F563, 74F564					UNIT
				$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \\ & \hline \end{aligned}$			$T_{A}, V_{c C}$ Comp'I$\begin{aligned} & \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathbf{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	'F563	Waveform 2	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{p} L \mathrm{H}} \end{aligned}$	Propagation delay E to Q_{n}		Waveform 1	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.6 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PzL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 5.1 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	'F564	Waveform 1	100			70		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpzH}^{2} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.8 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pl} 1} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F563, 74F564					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to E	'F563		Waveform 3	2.0 2.0			2.0 2.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, D_{n} to E			Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$t_{w}(H)$	E Pulse width High High or Low		Waveform 1	6.0			6.0		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time D_{n} to CP	'F564	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, D_{n} to CP		Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{H}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$		ns	

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock and Enable Inputs to Outputs, Clock and Enable Widths and Maximum Clock Frequency

Waveform 3. Data Setup and Hold Times

Waveform 2. Propagation Delay for Non-Inverting Output

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: $V_{M}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- 4-Bit Bidirectional Counters
- 'F568-Decade Counter
- 'F569-Binary Counter
- Synchronous counting and loading
- Look-ahead Carry capability for easy cascading
- Preset capability for programmable operation
- Master Reset (MR) overrides all other inputs
- Synchronous Reset ($\overline{\mathbf{S R}}$) overrides counting and parallel loading
- Clocked carry ($\overline{\mathbf{C C}}$) output to be used as a clock for flip-flops, registers, and counters
- 3-State outputs for bus organized systems

PIN CONFIGURATION

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT
(TOTAL)		
$74 F 568$	115 MHz	40 mA
74 F 569	115 MHz	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
$20-$ Pin Plastic DIP	N74F568N, N74F569N
$20-$ Pin Plastic SO	N74F568D, N74F569D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count enable parallel input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count enable trickle input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel enable input (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{U}} / \mathrm{D}$	Up/Down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count output (active-Low)	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{CC}}$	Clocked carry output (active-Low)	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

U/D 1	
CP 2	19 TC
$\mathrm{D}_{0}{ }^{3}$	18 CC
$\mathrm{D}_{1} 4$	17 OE
$\mathrm{D}_{2} 5$	16) a_{0}
$\mathrm{D}_{3} 6$	$15 a_{1}$
CEP 7	(14) Q_{2}
$\overline{M R} 8$	$13 Q_{3}$
$\overline{S R} 9$	12 CET
GND 10	$11 . \mathrm{PE}$
	cpor970s
$\begin{aligned} & V_{c c}=\operatorname{Pin} 20 \\ & G N D=P \text { in } 10 \end{aligned}$	

FUNCTIONAL DESCRIPTION

The 'F568 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9 . The 'F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15 . The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except those due to Master Reset) occur synchronously with the Low-to-High transition of the Clock Pulse (CP) input signal.

The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs - Master Reset ($\overline{\mathrm{MR}}$), Synchronous Reset ($\overline{\mathrm{SR}}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel ($\overline{\mathrm{CEP}}$), and Count Enable Trickle $\overline{\mathrm{CET}}$) - plus the Up/Down (U/ \bar{D}) input, determine the mode of operation, as shown in the Function Table. A Low signal on $\overline{\mathrm{MR}}$ overrides all other inputs and asynchronously forces the flip-flop Q outputs Low. A Low signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows the Q outputs to go Low on the next rising edge of CP. A Low signal on $\overline{\text { PE }}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of $C P$. With $\overline{M R}, \overline{S R}$ and $\overline{\mathrm{PE}}$ High, $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ permit counting when both are Low. Conversely, a High signal on either $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ inhibits counting.
The 'F568 and 'F569 use edge-triggered flipflops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ or U / \bar{D} inputs when the $C P$ is in either state

LOGIC SYMBOL

does not cause errors, provided that the recommended setup and hold times, (with respect to the rising edge of CP), are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count ($\overline{\mathrm{TC}}$) output is normally High and goes Low providing $\overline{\text { CET }}$ is Low, when the counter reaches zero in the Down mode, or reaches maximum (9 for the 'F568, 15 for the 'F569) in the Up mode. $\overline{\mathrm{TC}}$ will then remain Low until a state change occurs, whether by counting or presetting, or untıl U/ \bar{D} or $\overline{\text { CET }}$ is changed. To implement synchronous multistage counters, the connections between the $\overline{\mathrm{TC}}$ output and the $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ inputs can provide either slow or fast carry propagation. Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to $\overline{\mathrm{TC}}$ delay of the first stage, plus the cumulative $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ delays of the intermediate stages, plus the $\overline{\mathrm{CET}}$ to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry look-ahead connections shown in Figure 2 are recommended. In this scheme, the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, (or min to max in the Down mode), to start its final cycle. Since this final cycle takes 10 ('F568) or 16 ('F569) clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timıng that limits the clock period is the CP to $\overline{T C}$ delay of the first stage plus the $\overline{C E P}$ to $C P$ setup time of the last stage. The $\overline{\mathrm{TC}}$ output is subject to decoding spikes

LOGIC SYMBOL (IEEE/IEC)

due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry ($\overline{\mathrm{CC}}$) output is provided. The $\overline{\mathrm{CC}}$ output is normally High. When $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$, and $\overline{\mathrm{TC}}$ are Low, the $\overline{\mathrm{CC}}$ output will go Low when the clock next goes Low and will stay Low until the clock goes High again; as shown in the $\overline{\mathrm{CC}}$ Function Table. When the Output Enable $(\overline{\mathrm{OE}})$ is Low, the parallel data outputs $Q_{0}-Q_{3}$ are active and follow the flip-flop Q outputs. A High signal on $\overline{O E}$ forces $Q_{0}-Q_{3}$ to the Hi-Z state but does not prevent counting, loading or resetting.

LOGIC EQUATIONS:

Count Enable $=\overline{\text { CEP }} \cdot \overline{\mathrm{CET}} \cdot \overline{\mathrm{PE}}$

$$
\begin{aligned}
\text { Up ('F568): } \overline{T C} & =Q_{0} \cdot \bar{Q}_{1} \cdot \bar{Q}_{2} \cdot Q_{3} \cdot(U p) \cdot \overline{C E T} \\
\text { ('F569): } \overline{T C} & =Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot(\text { Up }) \cdot \overline{\mathrm{CET}} \\
\text { Down (Both): } \overline{T C}= & =\bar{Q}_{0} \cdot \bar{Q}_{1} \cdot \bar{Q}_{2} \cdot \bar{Q}_{3} \cdot \\
& \text { (Down) } \cdot \overline{\mathrm{CET}}
\end{aligned}
$$

CC FUNCTION TABLE

INPUTS						OUTPUT
$\overline{\text { SR }}$	$\overline{\text { PE }}$	$\overline{C E P}$	$\overline{\mathrm{CET}}$	TC*	CP	$\overline{C D}$
L	X	X	X	X	X	H
X	L	X	X	x	x	H
X	X	H	X	x	x	H
X	X	X	H	X	X	H
X	X	X	X	H	x	H
H	H	L	L	L	Ч	Ј

* $=\overline{\mathrm{TC}}$ is generated internally
$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

FUNCTION TABLE

INPUTS							OPERATING MODE
$\overline{\text { MR }}$	$\overline{\mathbf{S R}}$	PE	CEP	CET	U/D	CP	
L	X	X	X	X	X	X	Asynchronous Reset
h	1	X	X	X	X	\uparrow	Synchronous Reset
h	h	1	X	X	X	\uparrow	Parallel Load
h	h	h	1	1	h	\uparrow	Count up (increment)
h	h	h	1	1	1	\uparrow	Count down (decrement)
h	H	H	H	X	X	X	d (do nothing
h	H	H	X	H	X	X	(do nothing)

H = High voltage level
L = Low voltage level
$x=$ Don't care
$h=$ High voltage level one setup prior to the Low-to-High clock transition
1 = Low voltage level one setup prior to the Low-to-High clock transition
= Low-to-High clock transition

APPLICATION

Figure 1. Multistage Counter With Ripple Carry
APPLICATION

AF03270S
Figure 2. Multistage Counter With Look-ahead Carry

STATE DIAGRAMS

Bidirectional Counters

LOGIC DIAGRAM for 'F568

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +1	mA
V OUT	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	$\overline{\mathrm{TC}}, \overline{\mathrm{CC}}$	40	mA
		Q_{n}	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
I'	High-level output current	$\overline{\text { TC, }} \overline{\mathrm{CC}}$			-1	mA
Ior	High-level output current	Q_{n}			-3	mA
	Low-level output current	$\overline{\mathrm{TC}}, \overline{\mathrm{CC}}$			20	mA
IoL	Low-level output current	Q_{n}			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F568, 74F569			UNIT		
			Min	Typ ${ }^{2}$	Max					
V OH	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, V_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input clamp current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX} \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	others $\overline{\mathrm{CET}}, \overline{\mathrm{PE}}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				$\begin{aligned} & -0.6 \\ & -1.2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$		
lozh	OFF-state output current, High-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		

DC ELECTRICAL CHARACTERISTICS (Continued) (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$	74F568, 74F569			UNIT	
			Min	Typ ${ }^{2}$	Max			
lozl	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$	-60		-150	mA	
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$		38	60	mA	
		${ }^{\text {c CCL }}$			43	86	mA	
		$\mathrm{I}_{\text {ccz }}$			40	60	mA	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F568, 74F569					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{VCC}_{\mathrm{cC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
${ }^{\text {f }}$	Maximum clock	to Q		Waveform 1	100	115		90		MHz
$\mathrm{m}_{\text {M }}$	frequency	to $\overline{C D} / \overline{T C}$		Waveform 2	50	65		45		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $C P$ to $Q_{n}(\overline{P E}=$ High or Low $)$		Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$	Propagation delay CP to TC		Waveform 2	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{tPLH}^{\text {tPHL }} \\ & \mathrm{t}^{2} \end{aligned}$	Propagation delay CET to TC		Waveform 3	$\begin{aligned} & 1.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay U/D to TC	'F568	Waveform 4	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} 9.0 \\ 15.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay U/D to TC	'F569	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	
tpLH tphL	Propagation delay CP to $\overline{C C}$		Waveform 2	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{2} \\ & \hline \end{aligned}$	Propagation Delay CEP, CET to CC		Waveform 2	$\begin{aligned} & \hline 2.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \end{gathered}$	ns	
tPHL	Propagation delay $\overline{M R}$ to Q_{n}		Waveform 5	6.0	8.0	12.0	4.0	13.5	ns	
	Propagation delay U / \bar{D} to $\overline{C C}$		Waveform 4	$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 12.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 17.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{tPHL}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	$\frac{\text { Propagation delay }}{\overline{\text { MR }}}$ $\overline{M R}$ to $\overline{T C}$		Waveform 5	8.0	11.0	15.0	7.5	16.0	ns	
tpHL	Propagation delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{CC}}$		Waveform 5	10.0	12.0	15.0	9.5	16.0	ns	
$\begin{aligned} & t_{\text {PLL }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{SR}}$ to $\overline{\mathrm{CC}}$		Waveform 3	$\begin{aligned} & 5.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{tPLH}^{\text {the }} \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation delay } \\ & \hline P E \text { to } \overline{C C} \end{aligned}$		Waveform 3	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \\ & \hline \end{aligned}$	Output Enable time to High or Low level $\overline{\mathrm{OE}}$ to Q_{n}		Waveform 10 Waveform 11	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \end{gathered}$	ns	
$\begin{aligned} & \text { tpHz } \\ & \text { tplz } \\ & \hline \end{aligned}$	Output Disable time to High or Low level $\overline{\mathrm{O} E}$ to Q_{n}		Waveform 10 Waveform 11	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F568, 74F569					UNIT	
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF}, \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or D_{n} to CP			Waveform 6	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or L D_{n} to CP			Waveform 6	3.0 3.0			3.5 3.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or CEP, CET to CP		Waveform 7	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			6.0 6.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(L) \end{aligned}$	Hold time, High or L CEP, CET to CP		Waveform 7	0			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or PE to CP		Waveform 6	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 9.0		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold time, High or L PE to CP		Waveform 6	0			0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low U/D to CP ('F568)	'568	Waveform 8	$\begin{aligned} & 11.0 \\ & 10.5 \end{aligned}$			$\begin{aligned} & 12.5 \\ & 17.5 \end{aligned}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Setup time, High or Low U/D to CP ('F569)	'569	Waveform 8	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$			$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low U/D to CP		Waveform 8	0			0 0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{S R}$ to CP		Waveform 9	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$			$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$		ns	
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{S R}$ to $C P$		Waveform 9	0 0			0 0		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width, High or Low		Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.5 6.5		ns	
$t_{w}(L)$	$\overline{\mathrm{MR}}$ pulse width, Low		Waveform 5	4.5			5.0		ns	
$\mathrm{trec}^{\text {c }}$	$\overline{\mathrm{MR}}$ recovery time		Waveform 5	6.0			7.0		ns	

AC WAVEFORMS

AC WAVEFORMS (Continued)

Waveform 9. Data and Select Setup and Hold Times

WF0609DS
Waveform 10. 3-State Enable Time to High Level and Disable Time From High Level

Waveform 11. 3-State Enable Time to Low Level and Disable

 Time From Low LevelNOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ	closed
tpzL	closed
All other	open

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

Signetics

FAST Products

FEATURES

- '573 is broadside pinout version of 'F373
- '574 is broadside pinout version of 'F374
- Inputs and outputs on opposite side of package allow easy interface to microprocessors
- Useful as an input or output port for microprocessors
- 3-State outputs for bus interfacing
- Common Output Enable
- 'F563 and 'F564 are inverting versions of 'F573 and 'F574 respectively
- These are high-speed replacements for N8TS805 and N8TS806

DESCRIPTION

The 'F573 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

FAST 74F573, 74F574 Latch/Flip-Flops

'F573 Octal Transparent Latch (3-State)
'F574 Octal D Flip-Flop (3-State)
Preliminary Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 573	4.5 ns	35 mA
74 F 574	6.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{5V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F573N, N74F574N
20-Pin Plastic SOL	N74F573D, N74F574D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F574)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E ('F573)	Latch Enable input (active-High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

June 1987

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

The 'F573 is functionally identical to the 'F373 but has a broadside pinout configuration to facilitate PC Board layout and allow easy interface with microprocessors.
The data on the D inputs is transferred to the latch outputs when the Latch Enable (E) input is High. The latch remains transparent to the data inputs while E is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The ac-tive-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the latch oper-

LOGIC SYMBOL

ation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.
The 'F574 is functionally identical to the 'F374 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface to microprocessors.
It is an 8 -bit, edge-triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

LOGIC SYMBOL (IEEE/IEC)

The register is fully edge triggered. The state of each D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.
The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The ac-tive-Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the register operation. When $\overline{O E}$ is Low, the data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM, 'F573

[^13]
LOGIC DIAGRAM, 'F574

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$
FUNCTION TABLE FOR 'F573

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODE
$\mathbf{n n n n n n} \mathbf{O E}$	E	$\mathbf{D}_{\mathbf{n}}-\mathbf{Q}_{\mathbf{7}}$			
L	H	L	L	L	Enable and read register
L	H	H	H	H	
L	\downarrow	I	L	L	Latch and read register
L	\downarrow	h	H	H	
L	L	X	NC	NC	Hold
H	X	X	X	Z	Disable Outputs

$H=$ High voltage level
h = High voltage level one setup time pror to the High-to-Low E transition
L = Low voltage level
= Low voltage level one setup time prior to the High-to-Low E
NC $=$ No change transition
$x=$ Don't care
= High-impedance (OFF) state
= High-to-Low E transition

FUNCTION TABLE FOR 'F574

INPUTS			INTERNAL REGISTER	OUTPUTS	OPERATING MODE
$\overline{O E}$	CP	D_{n}		$Q_{0}-Q_{7}$	
L	\uparrow	1	L	L	Load and read register
L	\uparrow	h	H	H	
H	X	X	X	Z	Disable outputs

[^14]
Latch/Flip-Flops

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	74F573	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F573			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current			-3	mA
lOL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F573, 74F574			UNIT			
				Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7					V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{l}_{\mathrm{OL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\text {cC }}$		0.35	0.5	V			
						$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.5	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
lozH	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied			$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\text {cc2 }}$	'F573	$V_{C C}=$ MAX		$\begin{aligned} & =4.5 \mathrm{~V} \\ & \mathrm{E}=\mathrm{GND} \end{aligned}$		35	55	mA			
			'F574			$\begin{aligned} & =\overline{\mathrm{OE}}=4.5 \mathrm{~V} \\ & \text { nputs }=\mathrm{GND} \end{aligned}$		57	86	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F563, 74F564					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$T_{A}, V_{C c}$ Comp'I$\begin{aligned} & \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathbf{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$						
			Min	Typ	Max	Min	Max			
$t_{P L H}$ t_{PHL}	Propagation delay D_{n} to Q_{n}	'F573		Waveform 2	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns
$t_{\text {PLH }}$ t_{PHL}	Propagation delay E to Q_{n}			Waveform 1	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.2 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 6.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	ns	
$f_{\text {MAX }}$	Maximum clock frequency	'F574	Waveform 1	100			70		MHz	
tplH $t_{\text {PHL }}$	Propagation delay $C P$ to Q_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High to Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.3 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High to Low level		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F563, 74F564					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{Cc}} \\ \mathrm{Comp}^{\prime} \mathrm{I} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time D_{n} to E	'F573		Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, D_{n} to E			Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	E Pulse width, High or Low		Waveform 1	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to CP	'F574	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, D_{n} to CP		Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$		ns	

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock and Enable Inputs to Outputs, Clock and Enable Widths and Maximum Clock Frequency

Waveform 3. Data setup and Hold Times

Waveform 2. Propagation Delay for Non-Inverting Output

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

wfogotas
Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ	closed
tpzL	closed
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST 74F579
 Counter

8-Bit Bidirectional Binary Counter (3-State)

 Product SpecificationFAST Products

FEATURES

- Multiplexed 3-State I/O ports for bus-oriented applications
- Built-In cascading carry capability
- Count frequency 115MHz typ
- Supply current 100 mA typ
- Fully synchronous operation
- U/D pin to control direction of counting
- Separate pins for Master Reset and Synchronous Reset
- Center power pins to reduce effects of package inductance
- See 'F269 for 24-pin separate I/O port version
- See 'F779 for 16-pin version

PIN CONFIGURATION

DESCRIPTION

The 'F579 is a fully synchronous 8 -stage up/down counter with multiplexed 3-State I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry look-
ahead for easy cascading and a U/D input to control the direction of counting. All state changes, except for the case of asynchronous reset, are initiated by the rising edge of the clock.

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 579	115 MHz	100 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F579N
20 -Pin Plastic SOL	N74F579D

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Lso9523s

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up-down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable parallel input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable trickle input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal Count output (active-Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

FUNCTION TABLE

$\overline{\text { MR }}$	$\overline{\text { SR }}$	$\overline{\text { CS }}$	$\overline{\text { PE }}$	CEP	CET	U/ $\overline{\mathbf{D}}$	$\overline{O E}$	CP	FUNCTION
X	x	H	X	X	X	X	X	X	$1 / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$ in $\mathrm{Hi}-\mathrm{Z}$ ($\overline{\mathrm{PE}}$ disabled)
X	X	L	H	X	X	X	H	X	$1 / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$ in $\mathrm{Hi}-\mathrm{Z}$
X	X	L	H	X	X	X	L	X	Flip-flop outputs appear on I/O lines
L	X	X	X	X	X	X	X	X	Asynchronous reset for all flip-flops
H	L	X	X	X	X	X	X	\uparrow	Synchronous reset for all flip-flops
H	H	L	L	X	X	X	X	\uparrow	Parallel load all flip-flops
H	H		LL)	H	X	X	x	\uparrow	Hold
H	H		LL)	X	H	X	X	\uparrow	Hold ($\overline{\mathrm{TC}}$ held high)
H	H		LL)	L	L	H	X	\uparrow	Count up
H	H	(not	LL)	L	L	L	X	\uparrow	Count down

[^15]LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
IN	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	TC	40	mA
		$1 / O_{n}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
	High-level output current	TC			-1	mA
OH	Hign-level output current	$1 / 0_{n}$			-3	mA
	Low-level output current	$\overline{\mathrm{TC}}$			20	mA
loL	Low-level output current	$1 / \mathrm{O}_{\mathrm{n}}$			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F579			UNIT			
			Min	Typ ${ }^{2}$	Max							
V OH	High-level output voltage	TC				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V} \\ & V_{\mathrm{IH}}=4.5 \mathrm{~V} \\ & \text { for MR, } \mathrm{CP} \\ & \text { inputs) } \end{aligned}$	$\mathrm{lOH}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
		$1 / O_{n}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {c }}$	2.4		3.3		V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.3		V			
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
		Others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathbf{I H}}$	High-level input current	All inputs except $1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	OFF-state current High-level voltage applied	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & I_{\text {OZL }} \\ & +I_{I L} \end{aligned}$	OFF-state current Low-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60	-80	-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$				95	135	mA			
		l CCL					105	145	mA			
		$\mathrm{I} C \mathrm{Cz}$					105	150	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F579					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		80		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P \text { to } I / O_{n}$	Waveform 1	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \\ & \hline \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphi	Propagation Delay CP to TC	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay U/D to TC	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CET to TC	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to I / O_{n}	Waveform 2	5.0	7.0	9.0	5.0	10.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Output Enable Time to High or Low level CS, PE to I/On	Waveform 6 Waveform 7	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {pZH }} \\ & \mathrm{t}_{\text {pZL }} \\ & \hline \end{aligned}$	Output Disable Time from High or Low level CS, PE to I/On	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \end{aligned}$	Output Enable Time to High or Low level $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	Waveform 6 Waveform 7	$\begin{aligned} & 4.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Disable Time from High or Low level $\overline{O E}$ to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F579					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low I/On to CP	Waveform 5	3.0 3.0			4.0 4.0		ns
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	Waveform 5	0 0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low PE, SR or CS to CP	Waveform 5	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low $\overline{\mathrm{PE}}, \overline{\mathrm{SR}}$ or $\overline{\mathrm{CS}}$ to CP	Waveform 5	0 0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \\ & \hline \end{aligned}$	Setup time, High or Low CET or CEP to CP	Waveform 5	$\begin{aligned} & 5.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{gathered} 5.5 \\ 10.5 \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CET or CEP to CP	Waveform 5	0 0			0		ns
tw	Clock pulse width	Waveform 1	4.5			6.0		ns
$t_{w}(L)$	$\overline{\text { MR Pulse Width }}$	Waveform 2	3.0			3.0		ns
$\mathrm{t}_{\text {rec }}$	$\overline{\mathrm{MR}}$ Recovery Time	Waveform 2	4.0			4.5		ns

Counter

FAST 74F579

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Fequency

Waveform 3. Propagation Delay, CET input to Terminal Count Output

Waveform 5. Setup And Hold Times

WF21670S
Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 4. Propagation Delay, U/ $\overline{\mathbf{D}}$ to Terminal Count Output

Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

Counter

TEST CIRCUIT AND WAVEFORMS

Product Specification

Logic Products

FEATURES

- Performs four BCD functions
- $\overline{\mathbf{P}}$ and $\overline{\mathbf{G}}$ outputs for high-speed expansion
- Add/Subtract delay 28 ns max
- Look-ahead delay 22.5 ns max
- Supply current 85 mA max
- 24-pin 300mil Slim DIP package

DESCRIPTION

The 'F582 Binary Coded Decimal (BCD) Arithmetic Logic Unit (ALU) is a 24-pin expandable unit that performs addition, subtraction, comparison of two numbers, and binary to BCD conversion.

The 'F582 input and output logic includes a Carry/Borrow which is generated internally in the look-ahead mode, allowing BCD arithmetic to be computed directly. For more than one BCD decade, the Carry/Borrow term may ripple between 'F582s.
When \bar{A} / S is Low, $B C D$ addition is performed $(A+B+C / \bar{B}=F)$. If an input is greater than 9 , binary to $B C D$ conversion results at the output.
When A / \bar{S} is High, subtraction is performed. If the C / \bar{B} is Low, then the subtraction is accomplished by internally computing the nine's complement addition of two $B C D$ numbers ($A-B-1=F$). When $\mathrm{C} / \overline{\mathrm{B}}$ is High, the difference of the two numbers is figured as $A-F=F$. If: A is greater than or equal to B, the $B C D$ difference appears at the output F in its true form. If: A is less than B and C / \bar{B} is

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 582	12 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{5 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F582N
24-Pin Plastic SOL	N74F582D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~B}_{0}$	B operand input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{1}$	B operand input	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{~B}_{2}$	B operand input	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~B}_{3}$	B operand input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{~A}} / \mathrm{S}$	Add/subtract input	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{C} / \overline{\mathrm{B}}$	Carry/borrow input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{C} / \bar{B}_{\mathrm{n}}+4$	Carry/borrow output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry propagate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
\bar{G}	Carry generate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}=\mathrm{B}$	Comparator output	$0 \mathrm{C}^{*} / 33$	$0 \mathrm{C}^{*} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Low, the nine's complement of the true form appears at the output F.

As long as A is less than B, an activeLow borrow is also generated. The 'F582 also performs binary to BCD con-
version. For inputs between 10 and 15, binary to $B C D$ conversion occurs by grounding one set of inputs, A_{n} or B_{n}, and applying the binary number to the other set of inputs. This will generate a carry term to the next decade.

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

OPERATING MODE	INPUTS				OUTPUTS		
	$\overline{\mathbf{A}}$ /S	A_{n}	B_{n}	$\mathbf{C / B}$	F_{n}	C / \bar{B}_{n+4}	(Compare) $A=B$
Add	L	BCD Augend	BCD Addend	$\begin{aligned} & H=\text { Carry } \\ & L=\text { No Carry } \end{aligned}$	$\begin{aligned} & \text { IF C/ } \bar{B}=H \\ & F=A+B+1 \\ & \text { IF } C / \bar{B}=L \\ & F=A+B \end{aligned}$	$\begin{aligned} & F \leq 9 \\ & C / \bar{B}_{n+4}=L \\ & F / S_{n+4}=H \\ & C / \bar{B}_{n}= \end{aligned}$	X
Subtract	H	BCD Minuend	BCD Subtrahend	$L=\text { Borrow }$ $H=N o \text { Borrow }$	$\begin{aligned} & \text { IF C/ } \bar{B}=L \\ & F=A-B-1 \\ & \text { IF C } / \bar{B}=H \\ & F=A-B \end{aligned}$	$\begin{aligned} & A>B \\ & C / B_{n+4}=H \\ & A \leq B \\ & C / B_{n+4}=L \\ & A<B \\ & C / \bar{B}_{n+4}=L \\ & A \geq B \\ & C / B_{n+4}=H \end{aligned}$	X
Compare	H	BCD Word A	BCD Word B	H	A-B	$\begin{aligned} & A<B \\ & C / \bar{B}_{n+4}=L \\ & A>B \\ & C / \bar{B}_{N+4}=H \end{aligned}$	$\begin{aligned} & \text { IF } A=B \\ & \text { Compare }=H \\ & \text { IF } A \neq B \\ & \text { Compare }=L \end{aligned}$
Binary to BCD Conversion	L	$0<A<15$	$B=0$	X	BCD	$\begin{aligned} & A \leq 9 \\ & C / \bar{B}_{n+4}=L \\ & A>9 \\ & C / \bar{B}_{n+4}=H \end{aligned}$	X

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
V_{OH}	High-level output voltage	$A=B$ only			4.5	V
l OH	High-level output current	except $A=B$			-1	mA
loL	Low-level output current				20	mA
TA	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

4-Bit BCD Arithmetic Logic Unit

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F582			UNIT		
			Min	Typ ${ }^{2}$	Max					
$\mathrm{IOH}^{\text {O}}$	High-level output current	A = B only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{H}}=\mathrm{MIN}, \mathrm{V}_{\text {L }}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
V_{OH}	High-level output voltage	Any output except$\mathrm{A}=\mathrm{B}$	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=M A X \quad I_{O H}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=\text { MIN } \\ & V_{\mathrm{IL}}=\text { MAX } \quad \mathrm{O}_{\mathrm{OL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{B}_{0}, \mathrm{C} / \overline{\mathrm{B}}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		A_{n}, B_{3}					-1.2	mA		
		$\mathrm{B}_{2}, \overline{\mathrm{~A}} / \mathrm{S}$					-1.8	mA		
		B_{1}					-2.4	mA		
los	Short-circuit output current ${ }^{3}$	Any output except $A=B$	$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=M A X$			55	85	mA		

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type 2 All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3 Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 582$					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} or B_{n} to F_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 20.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay A_{n} or B_{n} to C / \bar{B}_{n+4}	Waveform 1, 2	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay C / \bar{B}_{n} to C / \bar{B}_{n+4}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} or B_{n} to $A=B$	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 21.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay A_{n} or B_{n} to \bar{G} or \bar{P}	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{A} / S to F_{n}	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 19.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay \bar{A} / S to $A=B$	Waveform 1, 2	$\begin{gathered} 10.0 \\ 4.0 \end{gathered}$	$\begin{gathered} 18.0 \\ 6.0 \end{gathered}$	$\begin{gathered} 24.0 \\ 9.0 \end{gathered}$	$\begin{gathered} 10.0 \\ 3.5 \end{gathered}$	$\begin{aligned} & 28.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay \bar{A} / S to \bar{G} or \bar{P}	Waveform 1, 2	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay $\overline{\mathrm{A}} / \mathrm{S}$ to $\mathrm{C} / \bar{B}_{\mathrm{n}}+4$	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 16.5 \end{aligned}$	ns
tpLH tpHL	Propagation delay C / \bar{B}_{n} to F_{n}	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 17.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 14.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay C / \bar{B}_{n} to $A=B$	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 13.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs Waveform 2. Propagation Delay for Inverting Outputs NOTE: $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

NOTE:
When using Open-Collector parts, the value of the pull-up resistor greatly affects the value of the tplh. For example, changing the specified pull-up resistor value from 500Ω to 100Ω will improve the $\mathrm{t}_{\text {PLH }}$ up to 50% with only a slight increase in the $\mathrm{t}_{\mathrm{PHL}}$. However, if the value of the pull-up resistor is changed, the user must make certain that the total loL current through the resistor and the total ILS 2 of the recervers does not exceed the loL maximum specification.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

WF06450S

Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST 74F583
 4-Bit BCD Adder

Product Specification

FAST Products

FEATURES

- Adds two decimal numbers
- Full internal look-ahead
- Fast ripple carry for economical expansion
- Sum output delay 19.5ns max
- Ripple carry delay $8.5 n s$ max
- Input to ripple delay 13.0ns max
- Supply current 60 mA max

DESCRIPTION

The 'F583 4-bit coded (BCD) full adder performs the addition of two decimal numbers $\left(A_{0}-A_{3}, B_{0}-B_{3}\right)$. The lookahead generates BCD carry terms internally, allowing the 'F583 to then do BCD addition correctly. For BCD numbers 0 through 9 at A and B inputs, the $B C D$ sum forms at the output.
In addition of two BCD numbers totalling a number greater than 9, a valid BCD number and a carry will result. For input values larger than 9 , the number is converted from binary to BCD. Binary to BCD conversion occurs by grounding one set of inputs, A_{n} or B_{n}, and applying a 4-bit binary number to the other set of inputs. If the input is between 0 and $9, a$

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 583	9.0 ns	45 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{5 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0} \mathbf{}{ }^{\circ} \mathbf{C}$
16-Pın Plastic Slim DIP	74 F583N
16-Pin Plastic SO	74 F583D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
C_{n}	Carry input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Sum outputs	$50 / 33$	$1.0 \mu \mathrm{~A} / 20 \mathrm{~mA}$
$\mathrm{C}_{\mathrm{n}}+4$	Carry output	$50 / 33$	$1.0 \mu \mathrm{~A} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

BCD number occurs at the output. If the binary input falls between 10 and 15, a carry term is generated. Both the carry term and the sum are the BCD equiva-
lent of the binary input. Converting binary numbers greater than 16 may be achieved by cascading 'F583s.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	74F583	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F583			UNIT
		Min	Nom	Max	
$V_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
l OL	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F582, 74F583			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$			0.35	0.50	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					20	$\mu \mathrm{A}$			
ILL	Low-level input current	C_{n} only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		A_{n} \& B_{n}						-1.2	mA			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-60		-150	mA			
Icc	Supply current (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				45	60	mA			

NOTES:

1. For conditons shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 582$					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} or B_{n} to S_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 15.0 \end{aligned}$	ns
$t_{\text {tpL }}$ $t_{\text {PHL }}$	Propagation delay A_{n} or B_{n} to S_{n} (INV)	Waveform 2	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 12.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay C_{n} to C_{n+4}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} or B_{n} to C_{n+4}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay C_{n} to S_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{array}{r} 15.5 \\ 12.5 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 13.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay C_{n} to S_{n} (INV)	Waveform 2	$\begin{aligned} & \hline 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs
Waveform 2. Propagation Delay for Inverting Outputs NOTE: $V_{M}=1.5 \mathrm{~V}$.

4-Bit BCD Adder

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jg and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-impedance NPN base input for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Non-inverting buffers
- Bidirectional data path
- B outputs sink 48 mA , source 15 mA

DESCRIPTION

The 'F588 contains eight non-inverting bidirectional buffers with 3-State outputs and is intended for bus-oriented applications. The B ports have termination resistors as specified in the IEEE-488 specifications. Current sinking capability is 20 mA at the A ports and 48 mA at the B ports. The Transmit/Receive ($T / \overline{\mathrm{R}}$) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-High) enables data from A ports to B ports and Receive (active-Low) enables data from B ports to A ports. The Output Enable input, when High, disables both A and B ports by placing them in a high-impedance condition.

FAST 74F588
Transceiver
Octal Bidirectional Transceiver With IEEE-488 Termination Resistors (3-State Inputs and Outputs) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 588	4.0 ns	96 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F588N
20 -Pin Plastic SOL	N74F588D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Port A data inputs	$3.5 / 0.115$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Port B data inputs	${ }^{*} \mathrm{~T} / 5.33$	${ }^{*} \mathrm{~T} / 3.2 \mathrm{~mA}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/receive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Port A data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Port B data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. ${ }^{*} T=$ Resistance Termination per IEEE-488 Standard.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUTS
$\overline{O E}$	T/R	
L	L	
L	H	Bus B data to bus A
H	X	High impedance

$H=$ High voltage level
$L=$ Low voltage level $X=$ Don't care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
IOUT	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	48
	$\mathrm{~B}_{0}-\mathrm{B}_{7}$	128	mA
	Operating free-air temperature range	mA	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK^{\prime}	Input clamp current				-18	mA
	High-level output current	$A_{0}-A_{7}$			-3	mA
OH	Hign-level output current	$B_{0}-B_{7}$			-15	mA
10	Low-level output current	$A_{0}-A_{7}$			24	mA
lol	Low-level output current	$B_{0}-B_{7}$			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F588			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage	$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N, \\ & O E=0.0 V \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$A_{0}-A_{7}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N, \\ & O E=0.0 V \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
		$B_{0}-B_{7}$		$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
				$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{NL}	No load voltage	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$,	$=0.0 \mathrm{~V}$		2.5		3.7	V			
V_{iK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$A_{0}-A_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
		$\overline{O E}, T / \bar{R}$	$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H}}$	High-level input current	$\overline{O E}, T / \bar{R}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
IIL	Low-level input current	$\overline{O E}, \mathrm{~T} / \overline{\mathrm{R}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{lozH}^{2} \\ & +\mathrm{I}_{\mathrm{HH}} \end{aligned}$	OFF-state current, High-level voltage applied	$A_{0}-A_{7}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=4.5 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \text { IozL } \\ & +I_{1 L} \\ & \hline \end{aligned}$	OFF-state current, Low-level voltage applied	$A_{0}-A_{7}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=4.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{H}} \end{aligned}$	OFF-state current, High-level voltage applied	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.0 \mathrm{~V}$			0.7			mA			
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.0 \mathrm{~V}$					2.5	mA			
$\begin{aligned} & \text { IozL } \\ & +I_{\text {IL }} \end{aligned}$	OFF-state current Low-level voltage applied	$B_{0}-B_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.0 \mathrm{~V}$			-1.3		-3.2	mA			
los	Short-circuit output current ${ }^{3}$	$A_{0}-A_{7}$	$V_{C C}=M A X$			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$				-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{C C}=\mathrm{MAX}$, $=T / \bar{R}=4.5 \mathrm{~V} ; \overline{O E}=0.0 \mathrm{~V}$			82	100	mA			
		$\mathrm{I}_{\text {CCL }}$		= $\overline{O E}=0.0 \mathrm{~V} ; \mathrm{T} / \overline{\mathrm{R}}=4.5 \mathrm{~V}$			110	135	mA			
		$l_{\text {ccz }}$		$\mathrm{E}=4.5 \mathrm{~V}$			95	125	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F588					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}, B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PZH }} \\ & \mathbf{t}_{\text {pzL }} \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	5.5 5.0	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 70 \end{aligned}$	2.5 2.5	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. For Non-Inverting Outputs

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time From High Level

WF0607FS
Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 8-bit serial-in, parallel-out shiftregister with storage
- 3-State outputs
- Shift-register has direct clear
- Guaranteed shift frequency - DC to 120 MHz

DESCRIPTION

This device contains an 8-bit serial-in, parallel-out shift-register that feeds an 8bit D-type storage register. The storage register has parallel 3-State outputs. Separate clocks are provided for both the shift-register and the storage register. The shift-register has a direct overriding clear, Serial input, and Serial output pins for cascading.

Both the shift-register and storage register clocks are positive edge-triggered. If the user wishes to connect both clocks together, the shift-register state will always be one clock pulse ahead of the storage register.

FAST 74F595
 8-Bit Shift Register

8-Bit Shift Register with Output Latches (3-State) Preliminary Specification

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 595	120 MHz	75 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F595N
16-Pin Plastic SO	N74F595D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L$ L) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{\mathbf{S}}$	Serial data input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SHCP	Shift register clock pulse input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
STCP	Storage register clock pulse input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\text { MR }}$	Master reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { OE }}$	Output Enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q_{8}	Serial expansion output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

6-581

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		74F595	UNIT
V_{Cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	\checkmark
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUt }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	Q_{8}	40	mA
		$Q_{0}-Q_{7}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74F595			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
	High-level output current	Q_{8}			-1	mA
OH	High-level output current	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$			-3	mA
1	Low-level output current	Q_{8}			20	mA
loL	Low-level output current	$Q_{0}-Q_{7}$			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F595			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	Q_{8}				$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.4				V			
		$Q_{0}-Q_{7}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7		3.3		V			
VoL	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MIN} \mathrm{IOL}_{\mathrm{I}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$		$\pm 10 \% V_{c c}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage	others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1.0	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}$,	2.7V				20	$\mu \mathrm{A}$			
ILL	Low-level input current	others	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
		$\overline{\mathrm{MR}}$, $\overline{\mathrm{OE}}$						-0.6	mA			
lozh	OFF-state output current, High-level voltage applied	$Q_{0}-Q_{7}$ only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied	$Q_{0}-Q_{7}$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$				60	75	mA			
		$\mathrm{I}_{\text {CCL }}$					70	85	mA			
		liccz					80	95	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F595					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	120		80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SHCP to Q_{8}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay STCP to $Q_{0}-Q_{7}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{8}	Waveform 2	4.0	7.0	9.0	4.0	10.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable time to High or Low level	Waveform 5 Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PHZ }}$ tPLZ	Output disable time from High or Low level	Waveform 5 Waveform 6	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F595					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time, High or Low D_{s} to SHCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{s} to SHCP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time, $\overline{M R}$ to STCP	Waveform 3	5.0			6.0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup time SHCP to STCP	Waveform 4	6.0			6.0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	SHCP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	STCP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $\overline{\text { MR }}$ to SHCP	Waveform 2	6.0			7.0		ns

8-Bit Shift Register

FAST 74F595

AC WAVEFORMS

Waveform 1. Clock to Output Delays, Clock Pulse Width, and Maximum Clock Frequency

Waveform 3. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

WF0632Ms
Waveform 4. Data Setup and Hold Times

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMSS

wF08471s

Test Circult for 3-State Outputs

SWITCH POSITION

TEST	SWITCH		
tPLZ	closed tPZL All other		closed
:---:			
open			

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

FAST 74F597, 74F598 8-Bit Shift Register

8-Bit Shift Register with Input Latches (3-State) Preliminary Specification

FAST Products

FEATURES

- High-impedance NPN Base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 8-bit Parallel Storage Register - 'F597
- Shift Register has Asynchronous Direct Overriding Load and Reset
- Guaranteed Shift Frequency DC to 120 MHz
- Parallel 3-State I/O, Storage Register inputs
- Shift Register outputs - 'F598

DESCRIPTION

The 'F597 consists of an 8-bit storage register feeding a parallel-in, serial-out 8bit shift register. The storage register and shift register have separate positiveedge triggered clocks. The shift register also has asynchronous direct load (from storage) and reset inputs.

The 'F598 consists of an 8-bit storage latch feeding a parallel/serial-in, paral-lel/serial-out 8-bit shift register. Both the storage register and shift register have positive edge triggered clocks. The shift register also has asynchronous direct load (from storage) and reset inputs. The 'F598 has 3-State I/O ports that provide parallel shift register outputs and also has multiplexed serial data input.

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 597	120 MHz	75 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$
Plastic DIP	N74F597N, N74F598D
16-Pin Plastic SO	N74F597D
20-Pin Plastic SO	N74F598D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
'F597	$\mathrm{D}_{\text {s }}$	Serial data input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Parallel data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCP	Shift register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	STCP	Store register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHL	Shift register load input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHR	Shift register reset input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	Q_{S}	Serial data output	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
'F598	$1 / O_{n}$	Parallel data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{D}_{\text {S0 }}, \mathrm{D}_{\text {S }}$	Serial data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCP	Shift register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	STCP	Store register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCPEN	Shift register clock pulse enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\text { SHL }}$	Shift register load input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHR	Shift register reset input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	S	Serial data selector input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{O E}$	Output Enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	Q_{S}	Serial data output	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
	$1 / O_{n}$	Parallel data output	150/33	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

8-Bit Shift Register

LOGIC DIAGRAM for 74F597

TYPICAL TIMING DIAGRAM for 'F597

LOGIC DIAGRAM for 74F598

TYPICAL TIMING DIAGRAM for 'F598

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
IOUT	Current applied to output in Low output state	Q_{S}	40
		I_{n}	48
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	mA	
$\mathrm{T}_{\text {STG }}$	Storage temperature	0 to +70	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
IOH	High-level output current	Q_{S}			-1	mA
		$1 / O_{n}$			-3	mA
lol	Low-level output current	Q_{S}			20	mA
		$1 / O_{n}$			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F597			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		Q				$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$1 / O_{n}$	$\mathrm{IOH}^{\text {O }}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4				V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		2.7	3.3			V				
Vol	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$		$\pm 10 \% V_{c c}$		0.35	0.50	V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage					$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage			Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
			$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{I}_{\mathbf{H}}$	High-level input current			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state current, High-level voltage applied		I/On only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozl	OFF-state current, Low-level voltage applied		I/On only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	'F597	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$				45	70	mA			
			$\mathrm{I}_{\text {CLL }}$					48	75	mA			
		'F598	$\mathrm{I}_{\mathrm{CCH}}$					75	90	mA			
			ICCL					78	95	mA			
			Iccz					85	100	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

8-Bit Shift Register

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 597$					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{L}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	120		80		MHz
tpLH $t_{\text {PHL }}$	Propagation delay SHCP to $\mathbf{Q}_{\mathbf{S}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay SHL to $\mathbf{Q}_{\mathbf{S}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay STCP to $\mathrm{Q}_{\mathbf{S}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{\text { SHR }}$ to $Q_{\text {S }}$	Waveform 3	4.0	8.0	10.0	4.0	11.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F597					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{S} to SHCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{S} to SHCP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time STCP to SHL	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low STCP to SHL	Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	SHCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	STCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$t_{w}(L)$	SHR pulse width, Low	Waveform 1	4.0			4.0		ns
$t_{\text {w }}(L)$	SHL pulse width, Low	Waveform 1	4.0			4.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, SHR to SHCP	Waveform 2	6.0			7.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, SHL to SHCP	Waveform 2	6.0			7.0		ns

8-Bit Shift Register

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F598					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{L}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	120		80		MHz
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {tpHL }} \end{aligned}$	Propagation delay $\text { SHCP to } Q_{\mathrm{S}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 10.5 \\ \hline \end{gathered}$	ns
${ }^{\text {tpLH }}$ tpHL	$\begin{aligned} & \text { Propagation delay } \\ & \text { STCP to } Q_{\mathrm{S}}(\mathrm{SHL}=\text { Low) } \end{aligned}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{SHL}}$ to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 11.0 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay SHCP to I / O_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay SHL to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
tpHL	Propagation delay $\overline{\text { SHR }}$ to $1 / \mathrm{O}_{n}$	Waveform 2	4.0	8.0	10.0	4.0	11.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{\text { SHR }}$ to Q_{S}	Waveform 2	4.0	8.0	10.0	4.0	11.5	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\text {PZL }} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 10.5 \\ 10.5 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F598					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.5 . \mathrm{V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}^{=}+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(H) \\ & \mathbf{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low D_{Sn} to SHCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{Sn} to SHCP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time STCP to SHL	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$			3.0 3.0		ns
$\begin{aligned} & \hline t_{n}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold time, High or Low STCP to SHL	Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time SHCPEN to SHCP	Waveform 3	6.0			6.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	SHCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$			4.0 5.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	STCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$t_{w}(L)$	SHR pulse width, Low	Waveform 1	4.0			4.0		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { SHL }}$ pulse width, Low	Waveform 1	4.0			4.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time, $\overline{\text { SHR }}$ to SHCP	Waveform 2	6.0			7.0		ns
$\mathrm{trec}^{\text {che }}$	Recovery time, SHL to SHCP	Waveform 2	6.0			6.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Inputs to Output, Clock Widths and Maximum Clock Frequency and Shift Register Reset and Load Inputs to Serial Data Output

Waveform 3. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay, Shift Register Reset and Load Inputs to Serial Data Output, Shift Register Reset and Load Inputs to Shift Register Clock Pulse Input Recovery Time

Waveform 4. Data Setup and Hold Times

wFo607Ps

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F604 Register

Dual Octal Register (3-State) Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Stores 16-bit-wide Data inputs, multiplexed 8-bit outputs
- 3-State outputs
- Typical shift frequency of 105 MHz
- Power supply current 75mA typical

DESCRIPTION

The 'F604 contains 16 D-type edgetriggered data inputs. Organized as 8 -bit A and B registers, the flip-flop outputs are connected by pairs to eight 2-input multiplexers. A SELECT (SELECT A/ \bar{B}) input determines whether the A or B register contents are multiplexed to the eight 3-State outputs. Data entered from the B inputs are selected when SELECT A / \bar{B} is Low: data from the A inputs are selected when SELECT A / \bar{B} is High. Data enters the flip-flops on the rising edge of the Clock (CP) input, which also controls the 3-State outputs. The outputs are enabled when CP is High and disabled when CP is Low.

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 604$	105 MHz	75 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V$ $\pm 10 \% ; T_{A}=0^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$
28 -Pin Plastic DIP	N74F604N
28 -Pin Plastic SOL	N74F604D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8}$	Inputs A	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Inputs B	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SELECT A/ \bar{B}	Select inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock Pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{1}-\mathrm{Y}_{8}$	Outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS				OUTPUTS
$A_{1}-A_{8}$	$B_{1}-B_{8}$	SELECT A/E	CP	$Y_{1}-Y_{8}$
A data	B data	L	1	B data
A data	B data	H	1	A data
X	X	X	L	Z
x	x	L	H	B register stored data
X	X	H	H	A register stored data

$\mathrm{H}=$ High level (steady state)
$\mathrm{L}=$ Low level (steady state)
X = Don't care
$Z=$ High-impedance state
I = Transition from Low-to-High level

LOGIC DIAGRAM

Register

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
loL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F604			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% V_{c c}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{C L}=M A X \end{aligned}$		$\pm 10 \% V_{c c}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$V_{C C}=$ MIN, $I_{1}=l_{\text {IK }}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state output current, High-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	A_{n}, B_{n}, SELECT $A / \bar{B}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$			60	82	mA			
		ICCL		A_{n}, B_{n}, S	CP = \uparrow		75	100	mA			
		Iccz		A_{n}, B_{n}, S	CP = GND		75	100	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F604					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 5	95	105		80		MHz
$\mathbf{t p L H}$ t_{PHL}	Propagation delay SELECT A / \bar{B} to Y_{n}	Waveform 2	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns
$\overline{t_{P L H}}$ $t_{\text {PHL }}$	Propagation delay SELECT A / \bar{B} to Y_{n}	Waveform 1	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 4, 5	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{array}{r} 9.5 \\ 11.0 \end{array}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PHZ }}$ $t_{p L Z}$	Output disable time from High or Low level	Waveform 4, 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	4.5 4.5	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F604					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n}, B_{n}, SELECT A / \bar{B} to CP	Waveform 4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			2 3		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $A_{n}, B_{n}, \operatorname{SELECT} A / \bar{B}$ to CP	Waveform 4	$\begin{aligned} & 0 \\ & 1 \end{aligned}$			$\begin{gathered} 0 \\ 1.5 \end{gathered}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Clock pulse width, High	Waveform 4	5			6		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F605
 Register

Dual Octal Register (Open-Collector) Product Specification

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Stores 16-bit-wide data inputs, multiplexed 8-bit outputs
- Open-Collector outputs
- Propagation delay 10ns typical
- Power supply current 85 mA typical

DESCRIPTION

The 'F605 contains 16 D-type edgetriggered flip-flops with common Clock and individual data inputs. Organized as 8 -bit A and B registers, the flip-flop outputs are connected by pairs to eight 2 -input multiplexers. A SELECT (SELECT A / \bar{B}) input determines whether the A or B register contents are multiplexed to the eight Open-Collector outputs. Data entered from the B inputs are selected when SELECT A / \bar{B} is Low; data from the A inputs are selected when SELECT A / \bar{B} is High. Data enters the flip-flops on the rising edge of the Clock (CP) input, which also controls the Open-Collector outputs. The outputs are enabled when CP is High and disabled when CP is Low.
These functions are well-suited for receiving 16 -bit simultaneous data and transmitting it as two sequential 8 -bit words.

PIN CONFIGURATION

| TYPE | TYPICAL f MAX $^{\text {TYPICAL SUPPLY CURRENT }}$ |
| :---: | :---: | :---: |
| (TOTAL) | |

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$
28 -Pın Plastıc DIP	N74F605N
28 -Pin Plastic SOL	N74F605D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8}$	Inputs A	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Inputs B	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SELECT A / \bar{B}	Select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock Pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{1}-\mathrm{Y}_{8}$	Outputs	${ }^{*} \mathrm{OC} / 33.3$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. ${ }^{*} \mathrm{OC}=$ Open-Collector.

LOGIC SYMBOL

6-606

Register

FUNCTION TABLE

INPUTS				OUTPUTS
$\mathbf{A}_{\mathbf{1}}-\mathbf{A}_{\mathbf{8}}$	$\mathbf{B}_{\mathbf{1}}-\mathbf{B}_{\mathbf{8}}$	$\mathbf{S E L E C T} \mathbf{A} / \overline{\mathbf{B}}$	$\mathbf{C P}$	$\mathbf{Y}_{\mathbf{1}}-\mathbf{Y}_{\mathbf{8}}$
\mathbf{A} data	B data	L	\uparrow	B data
A data	B data	H	A data	
X	X	X	Z or Off	
X	X	L	H	B register stored data
X	X	H	H	A register stored data

$H=$ High level (steady state)
L = Low level (steady state)
$\mathrm{Off}=\mathrm{H}$ if pull-up resistor is connected to Open-Collector output
$X=$ Don't care
$Z=$ High-impedance state
$\uparrow=$ Transition from Low-to-High level

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$V_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}.	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
V_{OH}	High-level output voltage			4.5	V
loL	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F605			UNIT			
			Min	Typ ${ }^{2}$	Max							
IOH	High-level output current					$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$					250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & I_{O L}=M A X, V_{I H}=M I N \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{C}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$V_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	$A_{n}=B_{n}=$ SELECT $A / \bar{B}=4.5 \mathrm{~V}, \mathrm{CP}=\uparrow$			80	100	mA			
		ICCL		$A_{n}=B_{n}=$ SELECT $A / \bar{B}=G N D, C P=\uparrow$			85	105	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F605					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 4	95	105		80		MHz
tPLH $t_{\text {PHL }}$	Propagation delay SELECT A / \bar{B} to Y_{n}	Waveform 2	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	Propagation delay SELECT A / \bar{B} to Y_{n}	Waveform 1	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tPLH}^{2} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation delay CP to Y_{n}	Waveform 3	$\begin{aligned} & \hline 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F605					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n}, B_{n}, Select A / \bar{B} to $C P$	Waveform 4	1 3			2 4		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n}, B_{n}, Select A / \bar{B} to $C P$	Waveform 4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			2 3		ns
t_{w}	Clock Pulse width	Waveform 4	5			6		ns

AC WAVEFORMS

WF07547S
Waveform 1. Propagation Delay SELECT A / \bar{B} to Output $\left(\mathbf{Y}_{\mathrm{n}}\right)$ (\mathbf{A} Register stored data $=\mathrm{L}, \mathbf{C P}=\mathrm{H}$)

WF06141S
Waveform 3. Clock to Output Delays (SELECT A/ $\bar{B}=H$)

WF0605FS
Waveform 2. Propagation Delay SELECT A / \bar{B} to Output $\left(Y_{n}\right)(B$ Register stored data $=L, C P=H$)

Waveform 4. Data and SELECT Setup and Hold Times
NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORM

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Octal bidirectional bus interface
- 3-State buffer outputs sink $\mathbf{6 4 m A}$ and source 15 mA
- 'F620, inverting
- 'F623, non-inverting

DESCRIPTION

The 'F623 is an octal transceiver featuring non-inverting 3 -State bus-compatible outputs in both send and receive directions. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , providing very good capacitive drive characteristics. The 'F620 is an inverting version of the 'F623.

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

FAST 74F620, F623 Transceivers

Octal Bus Transceiver
('F620 - Inverting 3-State)
('F623 - Non-Inverting 3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 620	3.5 ns	75 mA
74 F 623	4.5 ns	105 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~S} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F620N, N74F623N
$20-$ Pin Plastic SOL 1	N74F620D

NOTE:

1. Thermal mountıng techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted device.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8}, \mathrm{~B}_{1}-\mathrm{B}_{8}$	Data inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
GBA, GAB	3-State output enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE)

PIN CONFIGURATION

These devices allow data transmisstion from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the Enable inputs (GBA and GAB). The Enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives the 'F620 and 'F623 the capability to store data by the simultaneous enabling of GBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE)

FUNCTION TABLE

ENABLE	INPUTS	OPERATION	
$\mathbf{G} B A$	GAB	'F620	'F623
L	L	\bar{B} data to A bus	B data to A bus
H	H	\bar{A} data to B bus	A data to B bus
H	L	Z	Z
L	H	\bar{B} data to A bus, \bar{A} data to B bus	B data to A bus, A data to B bus

$H=$ High voltage level
$L=$ Low voltage level
$Z=$ High-impedance (OFF) state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
IOUT	Current applied to output in Low output state	$\mathrm{A}_{1}-\mathrm{A}_{8}$	48
	$\mathrm{~B}_{1}-\mathrm{B}_{8}$	128	mA
	Operating free-air temperature range	mA	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IK	Input clamp current				-18	mA
Ior	High-level output current	$A_{1}-A_{8}$			-3	mA
Ior	High-level output current	$B_{1}-B_{8}$			-15	mA
lo	Low-level output current	$\mathrm{A}_{1}-\mathrm{A}_{8}$			24	mA
lol	Low-level output current	$B_{1}-B_{8}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V OH	High-level output voltage		$A_{1}-A_{8}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		2.0				V				
VoL	Low-level output voltage			$A_{1}-A_{8}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOL}=24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$A_{1}-A_{8}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$				0.35	0.50	V			
			$\mathrm{B}_{1}-\mathrm{B}_{8}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$		$\pm 10 \% V_{C C}$		0.40	0.55	V			
			$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$			0.40	0.55	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			ḠBA, GAB	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
			Others	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\bar{G} B A$, GAB only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	OFF-state current High-level voltage applied		$\begin{aligned} & A_{1}-A_{8} \\ & B_{1}-B_{8} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \hline \text { lozL } \\ & +I_{\text {IL }} \\ & \hline \end{aligned}$	OFF-state current Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$A_{1}-A_{8}$	$\mathrm{V}_{C C}=\mathrm{MAX}$			-60		-150	mA			
			$\mathrm{B}_{1}-\mathrm{B}_{8}$				-100		-225	mA			
Icc	Supply curren (total)	'F620	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX	$\overline{\mathrm{G}} \mathrm{BA}=\mathrm{GAB}=4.5 \mathrm{~V} ; \mathrm{A}_{1}-\mathrm{A}_{8}=\mathrm{GND}$			70	92	mA			
			$\mathrm{I}_{\mathrm{CCL}}$		$\overline{\mathrm{G}} \mathrm{BA}=\mathrm{GAB}=4.5 \mathrm{~V} ; \mathrm{A}_{1}-\mathrm{A}_{8}=4.5 \mathrm{~V}$			84	110	mA			
			ICCZ		$\mathrm{GAB}=\mathrm{GND} ; \overline{\mathrm{G}} \mathrm{BA}=\mathrm{A}_{1}-\mathrm{A}_{8}=4.5 \mathrm{~V}$			70	92	mA			
		'F623	${ }^{\text {cCH }}$		$\overline{\mathrm{G}} \mathrm{BA}=\mathrm{GAB}=4.5 \mathrm{~V} ; \mathrm{A}_{1}-\mathrm{A}_{8}=4.5 \mathrm{~V}$			110	140	mA			
			$\mathrm{I}_{\mathrm{CCL}}$		$\overline{\mathrm{G}} \mathrm{BA}=\mathrm{GAB}=4.5 \mathrm{~V} ; \mathrm{A}_{1}-\mathrm{A}_{8}=\mathrm{GND}$			110	140	mA			
			Iccz		$\mathrm{GAB}=\mathrm{GND} ; \mathrm{GBA}=\mathrm{A}_{1}-\mathrm{A}_{8}=4.5 \mathrm{~V}$			99	130	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Measure ICC with outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F620					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{P} \text { PL }} \\ & \hline \end{aligned}$	Output enable to High or Low level $\bar{G} B A$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable from High or Low level ḠBA to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output enable to High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} P \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable from High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	2.5 3.5	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F623					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphL	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	2.0 2.5	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	2.0 2.5	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{p} \text { PH }} \\ & \mathrm{t}_{\mathrm{p} Z \mathrm{~L}} \\ & \hline \end{aligned}$	Output enable to High or Low level $\bar{G} B A$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable from High or Low level $\bar{G} B A$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZLL}} \\ & \hline \end{aligned}$	Output enable to High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output disable from High or Low level GAB to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	3.0 4.0	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading $(20 \mu \mathrm{~A}$ in High and Low states)
- Octal bidirectional bus interface
- Open-Collector outputs sink 64 mA
- 'F621, non-inverting
- 'F622, inverting
- 15mA source current

DESCRIPTION

The 'F621 is an octal transceiver featuring non-inverting Open-Collector buscompatible outputs in both send and receive directions. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , providing very good capacitive drive characteristics. The 'F622 is an inverting version of the 'F621.

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

FAST 74F621, F622
 Transceivers

Octal Bus Transceiver
'F621 - Non-Inverting (Open-Collector)
'F622 - Inverting (Open-Collector)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 621	8.0 ns	105 mA
74 F 622	8.5 ns	53 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F621N, N74F622N
20-Pin Plastic SOL ${ }^{1}$	N74F621D, N74F622D

NOTE:

1. Thermal mountıng techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{G} B A, ~ G A B ~}$	Enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}, \mathrm{~B}_{1}-\mathrm{B}_{8}$	3-State inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}$	3-State outputs	${ }^{*} \mathrm{OC} / 40$	${ }^{*} \mathrm{OC} / 24 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	3-State outputs	${ }^{*} \mathrm{OC} / 106.7$	${ }^{*} \mathrm{OC} / 64 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. *OC = Open-Collector

PIN CONFIGURATION

| | |
| :--- | :--- | :--- |

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

$\begin{array}{r} \text { ENABLE } \\ \left.\begin{array}{l} \text { GAB } \\ \hline 1 \\ \hline 2 \\ \hline \end{array}\right] \\ \hline \end{array}$	20 vcc
	$1{ }^{\text {ENBA }}$ ENA
$\mathrm{A}_{2} 3$	$18 \mathrm{B1}$
A3 4	$17{ }^{\text {B2 }}$
${ }^{4} 45$	$16{ }^{\text {в }}$ -
A5 6	15 B4
${ }^{46} 7$	14) ${ }^{\text {b5 }}$
A7 8_{8}	${ }^{13}{ }^{\text {B6 }}$
${ }^{88}$ [9]	$12 \mathrm{B7}$
ano 10	11]88
	c007320s

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the Enable inputs (GBA and GAB). The Enable inputs can be used to disable the device so that the buses are effectively isolated.
The dual-enable configuration gives the 'F621 and 'F622 the capability to store data by the simultaneous enabling of GBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high-impedance, both sets of bus lines (16 in all) will remain at their last states.

LOGIC SYMBOL
LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

ENABLE INPUTS		MODE OF OPERATION	
$\overline{\text { GBA }}$	GAB	'F621	'F622
L	L	B data to A bus	\bar{B} data to A bus
H	H	A data to B bus	\bar{A} data to B bus
H	L	Z or OFF	Z or OFF
L	H	B data to A bus, A data to B bus	\bar{B} data to A bus, \bar{A} data to B bus

$H=$ High voltage level
L = Low voltage level
$Z=$ High-impedance (OFF) state
OFF $=$ High if pull-up resistor is connected to Open-Collector output

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	$A_{1}-A_{8}$	40	mA
		$B_{1}-B_{8}$	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LImits			UNIT
			Min	Nom	Max	
V_{Cc}	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
V_{OH}	High-level output voltage				4.5	V
Io	Low-level output current	$\mathrm{A}_{1}-\mathrm{A}_{8}$			20	mA
OL	Low-level output current	$B_{1}-B_{8}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F621, 74F622			UNIT			
				Min	Typ ${ }^{2}$	Max							
IOH	High-level output voltage						$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{HH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}^{2}=20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
						$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$B_{1}-B_{8}$		$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% V_{c c}$		0.40	0.55	V			
					$\mathrm{lOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$\overline{\mathrm{G}} \mathrm{BA}, \mathrm{GAB}$		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		Others		$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
$\mathrm{I}_{\mathbf{H}}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
Icc	Supply current (total)	'F621	ICCH	$V_{C C}=M A X$	$\mathrm{GAB}=4.5 \mathrm{~V}$;	$-\mathrm{A}_{8}=4.5 \mathrm{~V}$		105	140	mA			
			l CCL		$\mathrm{GAB}=4.5 \mathrm{~V} ;$	$-A_{8}=$ GND		105	140	mA			
		'F622	$\mathrm{I}_{\mathrm{CCH}}$		$\mathrm{GAB}=4.5 \mathrm{~V}$;	- $A_{8}=$ GND		37	48	mA			
			$\mathrm{I}_{\text {CCL }}$		$\mathrm{GAB}=4.5 \mathrm{~V} ;$	$-\mathrm{A}_{8}=4.5 \mathrm{~V}$		68	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F621					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A to B	Waveform 2	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	9.5 6.0	$\begin{array}{r} 12.0 \\ 8.0 \end{array}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 13.0 \\ 8.5 \end{array}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay B to A	Waveform 2	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	9.0 5.5	$\begin{array}{r} 12.0 \\ 7.5 \end{array}$	5.5 3.0	$\begin{array}{r} 12.5 \\ 8.0 \end{array}$	ns
tpLH $t_{\text {PHL }}$	Propagation delay GBA to A	Waveform 3	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 6.5 \end{array}$	$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay GAB to B	Waveform 4	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 12.0 \\ 6.5 \end{array}$	$\begin{array}{r} 15.0 \\ 9.5 \end{array}$	6.0 3.0	$\begin{aligned} & 17.0 \\ & 10.0 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74 F 622					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay A to B	Waveform 1	$\begin{aligned} & 8.0 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 11.0 \\ 4.0 \end{array}$	$\begin{array}{r} 12.5 \\ 5.5 \end{array}$	8.0 1.5	$\begin{array}{r} 13.5 \\ 6.0 \end{array}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay B to A	Waveform 1	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 3.5 \end{array}$	$\begin{array}{r} 12.0 \\ 5.0 \end{array}$	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 12.5 \\ 5.5 \end{array}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay GBA to A	Waveform 3	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \end{array}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay GAB to B	Waveform 4	$\begin{array}{r} 10.0 \\ 5.0 \end{array}$	$\begin{array}{r} 12.5 \\ 7.5 \end{array}$	$\begin{array}{r} 14.5 \\ 9.0 \end{array}$	$\begin{array}{r} 10.0 \\ 5.0 \end{array}$	$\begin{array}{r} 15.5 \\ 9.5 \end{array}$	ns

AC WAVEFORMS

WF0601TS
Waveform 1. Propagation Delay for A to Bor B to A (F622)

Waveform 3. Propagation Delay for GBA to \mathbf{A}

Waveform 2. Propagation Delay for A to B or B to A (F621)

Waveform 4. Propagation Delay for GAB to B NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Open-Collector Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$
of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Detects and corrects single-bit errors
- Detects and flags dual-bit errors
- Fast processing times:
- Write cycle: Generates check word in 20ns typical
- Read cycle: Flags errors in 25ns typical
- Power dissipation 600mW (typical)
- Choice of output configurations
- 'F630: 3-State
- 'F631: Open-Collector

DESCRIPTION

The 'F630 and 'F631 devices are 16-bit parallel error detection and correction circuits (EDACs) in 28-pin, 600-mil packages. They use a modified Hamming code to generate a 6 -bit check word from a 16 -bit data word.

FAST 74F630, 74F631
 Error Detection Correction

16-Bit Parallel Error Detection and Correction ('F630-3-State)
 ('F631 - Open-Collector)
 Preliminary Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 630	17 ns	120 mA
74 F 631	17 ns	120 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathbf{5} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
28-Pin Plastic DIP	N74F630N, N74F631N
28-Pin Plastic SOL	N74F630D, N74F631D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Control	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{CB}_{0}-\mathrm{CB}_{15}$	Check bits, input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{DB}_{0}-\mathrm{DB}_{15}$	Data bits, input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{CB}_{0}-\mathrm{CB}_{5}$	Check bits, output for ' F 630	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{CB}_{0}-\mathrm{CB}_{5}$	Check bits, output for 'F631	${ }^{*} \mathrm{OC} / 33.3$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$
$\mathrm{DB}_{0}-\mathrm{DB}_{15}$	Data bits, outputs for 'F630	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{DB}_{0}-\mathrm{DB}_{15}$	Data bits, outputs for 'F631	${ }^{*} \mathrm{OC} / 33.3$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$
$\mathrm{SEF}^{\prime} \mathrm{DEF}$	Error flags outputs for 'F630	$150 / 33.3$	$3 \mathrm{~mA} / 20 \mathrm{~mA}$
SEF, DEF	Error flags outputs for 'F631	${ }^{*} \mathrm{OC} / 33.3$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. ${ }^{*} \mathrm{OC}=\mathrm{Op}$ - Collector

PIN CONFIGURATION

LOGIC DIAGRAM

This check word is stored along with the data word during the memory write cycle. During the memory read cycle, the 22-bit words from memory are processed by the EDACs to determine if errors have occurred in memory.
Single-bit errors in the 16-bit data word are flagged and corrected. Single-bit errors in the 6 -bit check word are flagged, and the CPU sends the EDAC through the correction cycle even though the 16 -bit word is not in error. The correction cycle will simply pass along the original 16 -bit word in this case and produce error syndrome bits to pinpoint the error-generating location.

Dual-bit errors are flagged but not corrected. These dual errors may occur in any 2 bits of the 22 -bit word from memory (two errors in the 16 -bit data word, two errors in the 6 -bit check word, or one error in each word).

The gross-error condition of all Lows or all Highs from memory will be detected. Otherwise, errors in three or more bits of the 22-bit word are beyond the capabilities of these devices to detect.

In order to be able to determine whether the data from the memory is acceptable to use as presented to the bus, the EDAC must be strobed to enable the error flags, and the flags will have to be tested for the zero condition.

The first case in the error function table represents the normal, no-error condition. The CPU sees Lows on both flags. The next two cases of single-bit errors require data correction. Although the EDAC can discern the single check bit error and ignore it, the error flags are identical to the single error in the 16 -bit data word. The CPU will ask for data correction in both cases. An interrupt condition to the CPU results in each of the last three cases, where dual errors occur.

ERROR DETECTION AND CORRECTION DETAILS

During a memory write cycle, six check bits $\left(\mathrm{CB}_{0}-\mathrm{CB}_{5}\right)$ are generated by eight-input parity generators using the data bits as defined below. During a memory read cycle, the 6 -bit check word is retrieved along with the actual data.
Error detection is accomplished as the 6-bit check word and the 16 -bit data word from memory are applied to internal parity generators/checkers. If the parity of all six groupings of data and check bits is correct, it is assumed that no error has occurred and both error flags will be Low. (It should be noted that the sense of two of the check bits, CB_{0} and CB_{1}, is inverted to ensure that the grosserror condition of all Lows and all Highs is detected.)

If the parity of one or more of the check groups is incorrect, an error has occurred and the proper error flag or flags will be set High. Any single error in the 16-bit data word will change the sense of exactly 3 bits of the 6 -bit check word. Any single error in the 6 -bit check word changes the sense of only that one bit. In either case, the single-error flag will be set High while the dual-error flag will remain Low.

Any 2-bit error will change the sense of an even number of check bits. The 2-bit error is not correctable, since the parity tree can only identify single-bit errors. Both error flags are set High when any 2-bit error is detected.

Three or more simultaneous bit errors can fool the EDAC into believing that no error, a correctable error, or an uncorrectable error has occurred and produce erroneous results in all three cases.
Error correction is accomplished by identifying the bad bit and inverting it. Identification of the erroneous bit is achieved by comparing the 16 -bit data word and 6 -bit check word from memory with the new check word with one (check word error) or three (data word error) inverted bits.

As the corrected word is made available on the data word I/O port, the check word I/O port presents a 6 -bit syndrome error code. This syndrome code can be used to identify the bad memory chip.

FUNCTION TABLE

TOTAL NUMBER OF ERRORS		ERROR FLAGS		DATA CORRECTION
16-Bit Data	6-Bit Check Word	SEF	DEF	
0	0	L	L	Not Applicable
1	0	H	L	Correction
0	1	H	L	Correction
1	1	H	H	Interrupt
2	0	H	H	Interrupt
0	2	H	H	Interrupt

$H=$ High voltage level, $L=$ Low voltage level

CHECK WORD BIT	16-BIT DATA WORD															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CB_{0}	X	x		X	X				X	X	X			X		
CB_{1}	x		X	X		X	x		X			x			x	
CB_{2}		X	x		X	X		X		X			x			X
CB_{3}		x	X				X	X			x	X	X			
CB_{4}				x	x	x	X	X						x	X	x
CB_{5}									x	X	x	X	X	X	X	X

NOTE:

1. The six check bits are parity bits derived from the matrix of data bits as indicated by " X " for each bit.

ERROR SYNDROME TABLE

ERROR LOCATION	SYNDROME ERROR CODE					
	CB_{0}	CB_{1}	CB_{2}	CB_{3}	CB_{4}	CB_{5}
DB_{0}	L	L	H	L	H	H
DB_{1}	L	H	L	L	H	H
DB_{2}	H	L	L	L	H	H
DB_{3}	L	L	H	H	L	H
DB_{4}	L	H	L	H	L	H
DB_{5}	H	L	L	H	L	H
DB_{6}	H	L	H	L	L	H
DB_{7}	H	H	L	L	L	H
DB_{8}	L	L	H	H	H	L
DB_{9}	L	H	L	H	H	L
DB_{10}	L	H	H	L	H	L
DB_{11}	H	L	H	L	H	L
DB_{12}	H	H	L	L	H	L
DB_{13}	L	H	H	H	L	L
DB_{14}	H	L	H	H	L	L
DB_{15}	H	H	L	H	L	L
CB_{0}	L	H	H	H	H	H
CB_{1}	H	L	H	H	H	H
CB_{2}	H	H	L	H	H	H
CB_{3}	H	H	H	L	H	H
CB_{4}	H	H	H	H	L	H
CB_{5}	H	H	H	H	H	L
No Error	H	H	H	H	H	H

[^16]$\mathrm{L}=$ Low voltage level

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
IOUT	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
V_{OH}	High-level output voltage	'F631			4.5	V
IOH	High-level output current	'F630			-3	mA
l L	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F630			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & V_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{LL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 / \mathrm{K}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
lozh	OFF-state output current, High-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
lozl	OFF-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
los	Short-crrcuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
lcc	Supply current (total)	ICCH	$V_{C C}=M A X$					mA		
		$\mathrm{I}_{\text {ccl }}$						mA		
		Iccz						mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F631			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{l}_{1}=I_{\text {IK }}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	mA		
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$					mA		
		$\mathrm{I}_{\mathrm{CCL}}$						mA		
		$\mathrm{I}_{\mathrm{CCz}}$						mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F630					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{tpLH}^{2} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay DB to CB	Waveform 1			$\begin{aligned} & 22 \\ & 20 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay SI to DEF, SEF	Waveform 1			$\begin{aligned} & 13 \\ & 12 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time to High level, SO to CB, DB	Waveform 3 \& 4			$\begin{aligned} & 12 \\ & 12 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High level, SO to CB, DB	Waveform 3 \& 4			$\begin{aligned} & 15 \\ & 15 \end{aligned}$			ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F631					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay DB to CB	Waveform 1			$\begin{aligned} & 25 \\ & 18 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SI to DEF, SEF	Waveform 1			$\begin{aligned} & 16 \\ & 11 \end{aligned}$			ns
$t_{\text {PHL }}$ tpLH	Propagation delay time, High-to-Low level output, SO to CB, DB	Waveform 1			$\begin{aligned} & 12 \\ & 16 \end{aligned}$			ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F630, 'F631					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {s }}$	Setup time, CB or DB to SI	Waveform 2	4					ns
$t_{\text {h }}$	Hold time, CB or DB to SI	Waveform 2	4					ns

AC WAVEFORMS

Error Detection Correction

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high-output drive and minimal bus loading
- Inverting version of 'F245
- Octal bidirectional bus interface
- 3-State buffer outputs sink 64 mA and source 15 mA

DESCRIPTION

The 'F640 is an octal transceiver featuring inverting 3 -State bus-compatible outputs in both send and receive directions.
The $B_{1}-B_{8}$ outputs are capable of sinking 64 mA and sourcing 15 mA , providing very good capacitive drive characteristics.

These octal bus transceivers are designed for asynchronous two-way communication between data busses.

FAST 74F640
Transceiver
Octal Bus Transceiver, Inverting (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 640	3.5 ns	78 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
20 -Pin Plastic DIP	N74F640N
20 -Pin Plastic SOL	N74F640D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{1}-\mathrm{A}_{8}, \mathrm{~B}_{1}-\mathrm{B}_{8}$	Data inputs	$3.5 / 0.115$	$70 \mathrm{uA} / 70 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/receive input	$2.0 / 0.067$	$40 \mathrm{uA} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable inputs (active-Low)	$2.0 / 0.067$	$40 \mathrm{uA} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{1}-\mathrm{A}_{8}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{1}-\mathrm{B}_{8}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS		OUTPUTS
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathrm{R}}$	
L	L	Bus $\overline{\bar{B}}$ data to Bus A
L	H	Bus \bar{A} data to Bus B
H	X	Z

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$Z=$ High-impedance state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{I}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
IOUT	Current applied to output in Low output state	48	mA
	Operating free-air temperature range	$\mathrm{A}_{1}-\mathrm{A}_{8}$	$\mathrm{~B}_{1}-\mathrm{B}_{8}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{Cc}	Supply voltage		4.50	5.0	5.50	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
		$A_{1}-A_{8}$			-3	mA
OH	High-level output current	$B_{1}-B_{8}$			-15	mA
lo	Low-level output current	$A_{1}-A_{8}$			24	mA
lol	Low-levol output curront	$B_{1}-B_{8}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F640			UNIT			
			Min	Typ ${ }^{2}$	Max							
Vor	High-level output voltage	$\begin{aligned} & A_{1}-A_{8} \\ & B_{1}-B_{8} \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$B_{1}-B_{8}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
V_{OL}	Low-level output voltage	$A_{1}-A_{8}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{2}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
		$B_{1}-B_{8}$		$\mathrm{IOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
				$\mathrm{IOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$\begin{aligned} & A_{1}-A_{8} \\ & B_{1}-B_{8} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
		$\overline{O E}, T / \bar{R}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 / H}$	High-level input current	$\overline{\mathrm{O}}, \mathrm{T} / \overline{\mathrm{R}}$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
ILL	Low-level input current	$\overline{O E}, T / \bar{R}$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{l}_{\mathrm{IH}^{+}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	OFF-state current, High-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{LL}}+ \\ & \mathrm{I}_{\mathrm{ozL}} \\ & \hline \end{aligned}$	OFF-state current, Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$\mathrm{A}_{1}-\mathrm{A}_{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
		$\mathrm{B}_{1}-\mathrm{B}_{8}$				-100		-225	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=$ MAX	$\mathrm{T} / \mathrm{R}=\mathrm{A}_{1}-\mathrm{A}_{8}=4.5 \mathrm{~V} ; \overline{\mathrm{OE}}=\mathrm{GND}$			66	85	mA			
		ICCL		$\overline{C E}=T / \bar{R}=B_{1}-B_{8}=G N D$			91	120	mA			
		lccz		$\mathrm{OE}=4.5 \mathrm{~V} ; \mathrm{T} / \mathrm{R}=\mathrm{B}_{1}-\mathrm{B}_{8}=\mathrm{GND}$			78	102	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F640					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}, B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {pzH }} \\ & \mathbf{t}_{\text {plLL }} \\ & \hline \end{aligned}$	Output enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	ns
$t_{\text {PHZ }}$ $t_{P L Z}$	Output disable time from High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	2.5 2.0	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Octal bidirectional bus interface
- Common Output Enable for both Transmit and Receive modes
- Open-Collector outputs sink 64mA
- 'F641 Non-inverting
'F642 Inverting
FUNCTION TABLE 'F641

INPUTS		INPUTS/OUTPUTS	
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	$\mathrm{A}=\mathrm{B}$	INPUTS
L	H	INPUTS	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z

FUNCTION TABLE 'F642

INPUTS		INPUTS/OUTPUTS	
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	$\mathrm{A}=\overline{\mathrm{B}}$	INPUTS
L	H	INPUTS	$\mathrm{B}=\overline{\mathrm{A}}$
H	X	Z	Z

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High-impedance state

FAST 74F641, 74F642 Transceivers

'F641-Octal Bus Transceiver with Common Output Enable, Non-Inverting (Open-Collector)
'F642-Octal Bus Transceiver with Common Output Enable, Inverting (Open-Collector) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 641	8.0 ns	69 mA
74 F 642	8.5 ns	52 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F641N, N74F642N
$20-$ Pin Plastic SOL	N74F641D, N74F642D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/receive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Common output enable input (active-Low)	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data outputs	${ }^{*} \mathrm{OC} / 33$	${ }^{*} \mathrm{OC} / 20 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data outputs	${ }^{*} \mathrm{OC} / 106.7$	${ }^{*} \mathrm{OC} / 64 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. ${ }^{*} O C=$ Open-Collector

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

'F642

LOGIC SYMBOL (IEEE/IEC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
	Operating free-air temperature range	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{~B}_{0}-\mathrm{B}_{7}$
128	mA		

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
V_{OH}	High-level output voltage				4.5	mA
lot	Low-level output current	$A_{0}-A_{7}$			20	mA
		$B_{0}-B_{7}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F641/74F642			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
						$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$		$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
			$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=I_{\text {IK }}$				-0.73	-1.2	\checkmark			
1	Input current at maximum input voltage	T/R, $\overline{\mathrm{O}} \mathrm{E}$		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}, B_{0}-B_{7}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{I}_{\mathbf{I H}}$	High-level input current	T/ $\bar{R}, \overline{\mathrm{OE}}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$							20	$\mu \mathrm{A}$			
ILL	Low-level input current	T/可, 何		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$							-20	$\mu \mathrm{A}$			
Icc	Supply current (total)	'F641		$\mathrm{I}_{\text {cch }}$	$V_{C C}=$ MAX	= $T / \bar{R}=4.5 \mathrm{~V}$;	= GND		60	90	mA		
			$\mathrm{I}_{\text {CCL }}$	i $=4.5 \mathrm{~V} ; \mathrm{A}_{\mathrm{n}}=$		= GND		78	120	mA			
		'F642	ICCH	$A_{n}=T / \bar{R}=\overline{O E}=$				37	55	mA			
			$\mathrm{I}_{\text {ccl }}$	= $T / \bar{R}=4.5 \mathrm{~V}$;		= GND		67	98	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F641					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 7.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	ns
$t_{P L H}$ $t_{\text {PHL }}$	Propagation delay B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 7.5 \end{gathered}$	6.0 3.5	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay $\overline{O E}$ to A_{n}	Waveform 3	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphi	Propagation delay $\overline{O E}$ to B_{n}	Waveform 4	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \end{gathered}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F642					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{+ 5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\overline{t_{P L H}}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 9.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 4.5 \end{gathered}$	$\begin{gathered} 13.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 7.0 \end{gathered}$	ns
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 8.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 4.0 \end{gathered}$	$\begin{gathered} 12.5 \\ 6.0 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 6.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{OE}}$ to A_{n}	Waveform 3	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay $\overline{\mathrm{OE}}$ to B_{n}	Waveform 4	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 11.0 \end{aligned}$	9.0 6.5	$\begin{aligned} & 14.0 \\ & 11.5 \end{aligned}$	ns

AC WAVEFORM

Waveform 1. Propagation Delay for A_{n} to B_{n} or B_{n} to A_{n} (F642)

Waveform 3. Propagation Delay for OE to A_{n} or B_{n} Outputs ('F642) (B_{n} or A_{n} Inputs in High State)
A_{n} or B_{n}

WFO606AS

Waveform 4. Propagation Delays for OE to A_{n} or B_{n} Outputs ('F641) (B_{n} or A_{n} Inputs in Low State)

Transceivers

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Open-Collector Outputs

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FAST Products

FEATURES

- Combines 'F245 and 'F374 type functions in one chip
- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-State outputs
- 300mil wide 24-pin Slim DIP package

DESCRIPTION

These devices consist of bus transceiver circuits with 3-State outputs, D-type flipflops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a High logic level. Enable $\overline{\mathbf{G}}$ and DIR pins are provided to control the transceiver function. In the transceiver mode, data present at the High-impedance port may be stored in either the A or B register or both.

PIN CONFIGURATION

FAST 74F646, 74F648 Transceivers/Registers

'F646 - Octal Transceiver/Register, Non-Inverting (3-State) 'F648 - Octal Transceiver/Register, Inverting (3-State) Product Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 646	115 MHz	140 mA
74 F 648	115 MHz	140 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V} \mathbf{5 V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F646N, N74F648N
24-Pin Plastic SOL 1	N74F646D, N74F648D

NOTE:

1. Thermal mounting techniques are recommeded. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{7}$	A inputs	$3.5 / 0.0116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B inputs	$3.5 / 0.0116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB	A-to-B Clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A Clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B Select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A Select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
DIR	Data flow Directional control Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E}$	Output Enable Input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

REAL-TIME TRANSFER BUS B TO BUS A

REAL-TIME TRANSFER BUS A TO BUS B

STORAGE FROM
A, B or A and B

TRANSFER STORAGE DATA TO A OR B

Figure 1

The Select (S) controls can multiplex stored and real-time (transparent mode) data. The DIR determines which bus will receive data when the Enable $\overline{\mathrm{G}}$ is active (Low). In the isolation mode (Enable G, High), A data may
be stored in the B register and/or B data may be stored in the A register.
When an output function is disabled, the input function is still enabled and may be used to
store and transmit data. Only one of the two buses, A or B , may be driven at a time. Figure 1 demonstrates the four fundamental busmanagement functions that can be performed with the 'F646 and 'F648.

FUNCTION TABLE

INPUTS						DATA I/O*		OPERATING MODE	
$\overline{O E}$	DIR	CPAB	CPBA	SAB	SBA	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{B}_{0}-\mathrm{B}_{7}$	'F646	'F648
X 	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \mathrm{x} \end{aligned}$	$\underset{\uparrow}{\text { ¢ }}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input un*	un* Input	Store A, B unspecified* Store B, A unspecified*	Store A, B unspecified* Store B, A unspecified*
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\stackrel{\uparrow}{H} \text { or } L$	$\begin{gathered} \uparrow \\ H \text { or } L \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage
L	L	X X	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus	Real time \bar{B} Data to A bus Stored $\overline{\mathrm{B}}$ data to A bus
L	H H	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	X X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus	Real Time \bar{A} Data to B Bus Stored \bar{A} Data to B Bus

*The data output functions may be enabled or disabled by various signals at the $\overline{O E}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
un = unspecified
$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't Care
$\uparrow=$ Low-to-High clock transition
LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	74F646	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74F646			UNIT
			Min	Typ	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
IOH	High-level output current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ or 2.7 V			-3	mA
		$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$			-15	
loL	Low-level output current				64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F646, 74F648			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.3				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, I_{O L}=M A X \\ & V_{I H}=M I N, \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		4.0	0.55	V			
			$\pm 5 \% \mathrm{VCC}$		4.0	0.55	V					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V	
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}, B_{0}-B_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	$\mu \mathrm{A}$			
I_{1}	High-level input current	CPAB, CPBA SAB, SBA OE, DIR	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\mathrm{lozH}^{+} \mathrm{I}_{\mathrm{IH}}$	High-level input current	$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozL $+1 / 1 \mathrm{~L}$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$			-100		-225	mA			
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				125	165	mA			
		ICCL					160	210	mA			
		ICCz					135	180	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F646					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation delay SBA or SAB to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\text {pZH }} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PPHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F646					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{s}}(\mathrm{t}) \\ & \hline \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(H) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.0 6.0		ns

Transceivers/Registers
FAST 74F646, 74F648

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F648					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 2, 3	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	2.5 3.5	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SBA or SAB to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	6.0 6.0	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	4.5 5.0	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F648					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 3.5 \\ & 6.5 \end{aligned}$			4.0 7.0		ns

AC WAVEFORMS

WF06117s
Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

WF06051S
Waveform 3. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to A_{n} or $B_{n}\left(Y_{n}\right)$
(B Register Stored Data $=\mathrm{L}, \mathrm{CP}=\mathrm{H}$)

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time From High Level

WF0754Gs

Waveform 2. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to A_{n} or B_{n}

WF21630S
Waveform 4. Data Setup and Hold Times

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- Open-Collector outputs
- Available in 300 mil-wide 24 -pin Slim DIP package

DESCRIPTION

These devices consist of bus transceiver circuits with Open-Collector outputs, Dtype flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to High logic level. Enable $\overline{O E}$ and DIR pins are provided to control the transceiver function. In the transceiver mode, data present at the High-impedance port may be stored in either the A or B register or both.

PIN CONFIGURATION

CPab 1	24) Vcc
SAB 2	23 CPBA
DIR 3	22 SBA
$A_{0} 4$	21 $\overline{O E}$
$A_{1} 5$	20] B_{0}
$A_{2} 6$	(19) B_{1}
$A_{3} 7$	(18) B_{2}
$\mathrm{A}_{4} 8$	${ }^{17} \mathrm{~B}_{3}$
$A_{5} 9$	(16) B_{4}
$A_{6} 10$	(15) B_{5}
${ }^{\text {A }} 711$	(14) B_{6}
GND 12	[13) B_{7}

FAST 74F647, 74F649

Transceivers/Registers
'F647 - Octal Transceiver/Register, Non-Inverting (Open-Collector) 'F649 - Octal Transceiver/Register, Inverting (Open-Collector) Product Specification

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 647	65 MHz	125 mA
74 F 649	65 MHz	125 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F647N, N74F649N
24-Pin Plastic SOL ${ }^{1}$	N74F647D, N74F649D

NOTE:

1. Thermal mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPAB	A-to-B Clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A Clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B Select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A Select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
DIR	Data flow directional control enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A outputs	${ }^{*} \mathrm{OC} / 106.7$	$\mathrm{OC} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B outputs	${ }^{*} \mathrm{OC} / 106.7$	$\mathrm{OC} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. ${ }^{*} O C=$ Open-Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The Select (S) controls can multiplex stored and real-time (transparent mode) data. The DIR determines which bus will receive data when the Enable $\overline{\mathrm{OE}}$ is active-Low. In the isolation mode (Enable $\overline{\mathrm{G}}$, High), A data may
be stored in the B register and/or B data may be stored in the A register.
When an output function is disabled, the input function is still enabled and may be used to
store and transmit data. Only one of the two buses, A or B, may be driven at a time. Figure 1 demonstrates the four fundamental busmanagement functions that can be performed with the 'F647, and 'F649.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE	
$\overline{O E}$	DIR	CPAB	CPBA	SAB	SBA	$A_{0}-A_{7}$	$\mathrm{B}_{0}-\mathrm{B}_{7}$	'F647	'F649
$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \mathrm{x} \end{aligned}$	$\stackrel{\text { ¢ }}{ } \uparrow$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input un*	un* Input	Store A, B unspecified* Store B, A unspecified*	Store A, B unspecified* Store B, A unspecified*
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \uparrow \\ \text { Hor } L \end{gathered}$	$\begin{gathered} \uparrow \\ \text { Hor } L \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \text { Hor } \mathrm{L} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus	Real Time \bar{B} Data to A Bus Stored \bar{B} Data to A Bus
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Hor L X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus	Real Time \bar{A} Data to B Bus Stored \bar{A} Data to B Bus

[^17]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
V_{OH}	High-level output voltage			4.5	V
loL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F647, 'F649			UNIT		
			Min	Typ ${ }^{2}$	Max					
IOH	High-level output current				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$				250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1} \mathrm{~K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathbf{H}}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			105	145	mA		
		$\mathrm{I}_{\text {CCL }}$				145	200	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F647, 'F649					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5}^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	50	65		40		MHz
$\begin{aligned} & t_{\text {tPLH }} \\ & t_{\text {tPHL }} \\ & \hline \end{aligned}$	Propagation delay CPBA or CPAB to A_{n} or B_{n}	Waveform 1	$\begin{gathered} 10.0 \\ 5.5 \end{gathered}$	$\begin{gathered} 15.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 11.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 5.5 \end{gathered}$	$\begin{aligned} & 19.5 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpLH}^{\text {tph }} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 2, 3	$\begin{gathered} 10.5 \\ 4.0 \end{gathered}$	$\begin{gathered} 13.5 \\ 7.0 \end{gathered}$	$\begin{gathered} 16.5 \\ 9.5 \end{gathered}$	$\begin{gathered} 10.5 \\ 4.0 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SBA or SAB to A_{n} or B_{n}	Waveform 2, 3	$\begin{gathered} 10.5 \\ 4.0 \end{gathered}$	$\begin{gathered} 14.5 \\ 7.0 \end{gathered}$	$\begin{gathered} 17.5 \\ 9.5 \end{gathered}$	$\begin{gathered} 10.5 \\ 4.0 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {tpLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $\overline{O E}$ to A_{n} or B_{n}	Waveform 2, 3	$\begin{gathered} 13.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 12.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 22.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay DIR to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 13.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 18.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 22.5 \\ & 20.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F647, 'F649					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{o}}(\mathrm{l} \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPBA or CPAB	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPBA or CPAB	Waveform 4	0			0 0		ns
${ }^{\text {w }}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$			4.5		ns

TYPICAL PROPAGATION DELAYS VERSUS LOAD RESISTOR FOR OPEN-COLLECTOR OUTPUTS

 through the resistor and the total l_{L} 's of the receivers does not exceed the l_{OL} maximum specification.

AC WAVEFORMS

WF06110S

WF0754FS

Waveform 1. Clock to Bus Delays, Clock Pulse Width
Waveform 2. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and $S B A$ or $S A B$ to A_{n} or B_{n}

Waveform 3. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to A_{n} or B_{n}

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Open-Collector Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-State outputs

DESCRIPTION

These devices consist of bus transceiver circuits with 3-State outputs, D-type flipflops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output Enable (OEAB, $\overline{O E B A}$) and Select (SAB, SBA) pins are provided for bus management.

PIN CONFIGURATION

FAST 74F651, 74F652 Transceivers/Registers

'F651 Octal Transceiver/Register, Inverting (3-State)
'F652 Octal Transceiver/Register, Non-Inverting (3-State) Product Specification

TYPE	TYPICAL $\boldsymbol{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 651	115 MHz	140 mA
74 F 652	115 MHz	140 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Cerdip (300mil)	N74F651F, N74F652F

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB	A-to-B clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OEAB	Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEBA}}$	Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (10) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 'F651 and 'F652.

The select pins determine whether data is stored or transferred through the device in real-time.

The Output Enable pins determine the direction of the data flow.

SYMBOL (IEEE/IEC)

Transceivers/Registers

FAST 74F651, 74F652

FUNCTION TABLE

OPERATING MODE		INPUTS						DATA I/O	
'F651	'F652	OEBA	OeAB	CPAB	CPBA	SAB	SBA	A_{n}	B_{n}
Isolation Store A and B data	Isolation Store A and B data	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\uparrow}{\mathrm{HorL}}$	$\underset{\uparrow}{\mathrm{HorL}}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Input
Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \uparrow \uparrow \\ & \uparrow \end{aligned}$	HorL \uparrow	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input Input	un* Output
Hold A, Store B Store B in both registers	Hold A, Store B Store B in both registers	L	$\begin{aligned} & X \\ & L \end{aligned}$	HorL \uparrow	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & X \\ & X \\ & L \end{aligned}$	un* Output	Input Input
Real time \bar{B} data to A bus Stored \bar{B} data to A bus	Real time B data to A bus Stored B data to A bus	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	L	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\underset{\text { Hor L }}{X}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input
Real time \bar{A} data to B bus Stored \bar{A} data to B bus	Real time A data to B bus Stored A data to B bus	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \hline X \\ \text { HorL } \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output
Stored \bar{A} data to B bus Stored $\overline{\bar{B}}$ data to A bus	Stored A data to B bus Stored B data to A bus	H	L	HorL	HorL	H	H	Output	Output

NOTES:

* The data output function may be enabled or disabled by various signals at OEBA and OEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
$H=$ High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	V
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
	High-level output current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ or 2.7 V			-3	mA
OH	gh-level output current	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$			-15	mA
loL	Low-level output current				64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F651, 74F652			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\text {OH }}$	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.3				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=M A X \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
			$\mathrm{lOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=l_{1 \mathrm{~K}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}, B_{0}-B_{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{IIH}^{\text {H}}$	High-level input current	CPAB, CPBA SAB, SBA OEAB, OEBA	$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
I/L	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathrm{H}}+\mathrm{l}_{\text {OZH }}$	High-level input current	$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Low-level input current		$V_{C C}=$ MAX, $V_{O}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-100		-225	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=\mathrm{MAX}$				$\begin{gathered} 110 \\ 140^{4} \end{gathered}$	$\begin{gathered} 155 \\ 185^{4} \end{gathered}$	mA			
		$I_{\text {ccl }}$					$\begin{gathered} 155 \\ 165^{4} \end{gathered}$	$\begin{gathered} 200 \\ 240^{4} \end{gathered}$	mA			
		Iccz					130	175	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. These values are for worst case only. Worst case is defined as all (16) I/O pins selected as outputs. Thermal mounting is required when using worst case conditions.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F651, 74F652					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	90	110		80		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tpHL	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 2, 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	2.5 3.0	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay SBA or SAB to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	4.0 4.0	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time OEAB or DEBA to A_{n} or B_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output Enable time OEAB or OEBA to A_{n} or B_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	4.0 4.0	$\begin{aligned} & 14.5 \\ & 15.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F651, 74F652					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low OEBA to OEAB	Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low OEBA to OEAB	Waveform 5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	4.5 6.5			4.5 6.5		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

Waveform 2. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to \mathbf{A}_{n} or $\mathbf{B}_{\mathbf{n}}$

Waveform 3. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to A_{n} or B_{n}

Waveform 5. OEBA to OEAB Setup and Hold Time

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

WF06481s

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ, tPZL	closed
OC	closed
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

Signetics

FAST Products

FAST 74F653, 74F654

```
'F653 Octal Transceiver/Register, Inverting (3-State + Open-Collector)
'F654 Octal Transceiver/Register, Inverting (3-State + Open-Collector)
Product Specification
```


FEATURES

- High-impedance NPN base inputs for reduced loading
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-State outputs $\left(B_{0}-B_{7}\right)$ or OpenCollector outputs ($A_{0}-A_{7}$)

DESCRIPTION

These devices consist of bus transceiver circuits with 3-State ($\mathrm{B}_{0}-\mathrm{B}_{7}$) or OpenCollector ($\mathrm{A}_{0}-\mathrm{A}_{7}$) outputs, D-type flipflops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output Enable (OEAB, $\overline{O E B A}$) pins are provided for bus management.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 653	90 MHz	140 mA
74 F 654	90 MHz	140 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Cerdip (300mil)	$74 \mathrm{~F} 653 \mathrm{~F}, 74 \mathrm{~F} 654 \mathrm{~F}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB	A-to-B clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OEAB	Output enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\text { OEBA }}$	Output enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A outputs	$\mathrm{OC} / 106.7$	$\mathrm{OC} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 'F653 and 'F654.

The Select pins determine whether data is stored or transferred through the device in real-time.

The Output Enable pins determine the direction of the data flow.

SYMBOL (IEEE/IEC)

FAST 74F653, 74F654

FUNCTION TABLE

OPERATING MODE		INPUTS						DATA I/O	
'F651	'F652	OEBA	OEAB	CPAB	CPBA	SAB	SBA	A_{n}	B_{n}
Isolation Store A and B data	Isolation Store A and B data	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	HorL \uparrow	HorL \uparrow	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Input
Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \uparrow \uparrow \\ & \uparrow \end{aligned}$	HorL \uparrow	x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input Input	$\begin{gathered} \text { un* } \\ \text { Output } \end{gathered}$
Hold A, Store B Store B in both registers	Hold A, Store B Store B in both registers	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	X	HorL \uparrow	$\begin{aligned} & \uparrow \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & L \end{aligned}$	$\begin{aligned} & \text { un* } \\ & \text { Output } \end{aligned}$	Input Input
Real-time \bar{B} data to A bus Stored \bar{B} data to A bus	Real-time B data to A bus Stored B data to A bus	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	HorL	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input
Real-tıme \bar{A} data to B bus Stored \bar{A} data to B bus	Real-time A data to B bus Stored A data to B bus	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	HorL	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output
Stored \bar{A} data to B bus Stored $\overline{\mathrm{B}}$ data to A bus	Stored A data to B bus Stored B data to A bus	H	L	HorL	HorL	H	H	Output	Output

NOTES:

* The data output function may be enabled or disabled by various signals at OEBA and OEAB inputs. Data input functions are always enabled, ו.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
H = High voltage level
$\mathrm{L}=$ Low voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	V
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			LIMITS			UNIT
				Min	Nom	Max	
V_{CC}	Supply voltage			4.5	5.0	5.5	V
V_{IH}	High-level input voltage			2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.8	V
IIK	Input clamp current					-18	mA
V_{OH}	High-level output voltage		$A_{0}-A_{7}$			4.5	V
IOH	High-level output current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ or 2.7 V	$\mathrm{B}_{0}-\mathrm{B}_{7}$			-3	mA
		$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$				-15	
loL	Low-level output current					64	mA
T_{A}	Operating free-air temperature			0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output current	$A_{0}-A_{7}$				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { MAX } \end{aligned}$				250	$\mu \mathrm{A}$
V_{OH}	High-level output voltage	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=M A X \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{lOH}=-3 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$	2.4			V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7	3.4		V			
				$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & V_{\mathrm{IL}}=\mathrm{MAX} \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
			$\mathrm{IOL}^{2}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.40	0.55	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage	Others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$\begin{aligned} & A_{0}-A_{7}, \\ & B_{0}-B_{7} \end{aligned}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
$\mathrm{IIH}^{\text {r }}$	High-level input current	CPAB, CPBA SAB, SBA OEAB, DEBA $A_{0}-A_{7}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 V$					-20	$\mu \mathrm{A}$			
$\mathrm{lozH}^{+} \mathrm{I}_{\text {H }}$	High-level input current	$B_{0}-B_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{l}_{\text {OZL }}+\mathrm{I}_{\text {LL }}$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$B_{0}-B_{7}$	$V_{C C}=$ MAX			-100		-225	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$				$\begin{gathered} 110 \\ 140^{4} \end{gathered}$	$\begin{gathered} 160 \\ 185^{4} \end{gathered}$	mA			
		lcCl					$\begin{gathered} 140 \\ 160^{4} \end{gathered}$	$\begin{gathered} 210 \\ 240^{4} \end{gathered}$	mA			
		Iccz					130	175	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. These values are for worst case only. Worst case is defined as all (16) I/O pins selected as outputs. Thermal mounting is required when using worst case conditions.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$f_{\text {MAX }}$	Maximum clock frequency	$A_{0}-A_{7}$		Waveform 1	55	70		45		MHz
		$B_{0}-B_{7}$		Waveform 1	100	115		85		MHz
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation delay CPBA to A_{n}		Waveform 1	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CPAB to B_{n}		Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay B_{n} to A_{n}		Waveform 3, 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 14.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 10.5 \end{aligned}$	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}		Waveform 3, 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay SBA to A_{n}		Waveform 3, 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 45 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SAB to B_{n}		Waveform 3, 4	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	ns	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Output enable time $\overline{O E B A}$ to A_{n}		Waveform 2	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 14.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time OEAB to B_{n}		Waveform 7 Waveform 8	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 55 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output enable time OEAB to B_{n}		Waveform 7 Waveform 8	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0 0			0 0		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time, High or Low $\overline{O E B A}$ to OEAB	Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\overline{O E B A}$ to OEAB	Waveform 5	0 0			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width and Maximum Clock Frequency

WF0754FS
Waveform 3. Propagation Delay, A_{n} or B_{n} to B_{n} or A_{n} and SBA or SAB to A_{n} or B_{n}

WF0632Gs
Waveform 5. Data Setup and Hold Times,

Waveform 7. 3-State Output Enable Time to High Level and Output Disable Time From High Level

教

NOTES:
When using Open-Collector parts, the value of the pull-up resistor greatly affects the value of the tplh. For example, changing the specified pull-up resistor value from 500Ω to 100Ω will improve the $t_{\text {PLH }}$ up to 50% with only a slight increase in the $t_{\text {pHL }}$ However, if the value of the pull-up resistor is changed, the user must make certain that the total l_{OL} current through the resistor and the total I_{LL} 's of the receivers does not exceed the lol maximum specification.

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FAST 74F655A, 74F656A Buffers/Drivers

Octal Buffers/Line Drivers with Parity
('F655A - Inverting 3-State)
('F656A - Non-Inverting 3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 655 A	6.5 ns	64 mA
74 F 656 A	6.5 ns	64 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP	N74F655AN, N74F656AN
24-Pin Plastic SOL	N74F655AD, N74F656AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
I_{n}	Data inputs	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
PI	Parity input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	3-State output enable inputs $\overline{\mathrm{OE}}_{3}$	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{Y}}_{\mathrm{n}}$	Data outputs ('F655A)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
Y_{n}	Data outputs ('F656A)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\Sigma_{\mathrm{E}}, \Sigma_{0}$	Parity outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

DESCRIPTION

The 'F655A and 'F656A are octal buffers and line drivers with parity generation/checking designed to be employed as memory address drivers, clock drivers, and bus-oriented transmitters/receivers. These parts include parity generator/checker to improve PC board density.

FEATURES

- Significantly improved AC performance over 'F655 and 'F656
- High-impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal in applications where high output drive and light bus loading are required (I_{LL} is $20 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 'F655A combines 'F240 and 'F280 functions in one package
- 'F656A combines 'F244 and 'F280A functions in one package
- 'F655A Inverting 'F656A Non-inverting
- 3-State outputs sink 64mA
- Inputs source 15mA
- 24-pin plastic Slim DIP (300mil) package
- Inputs on one side and outputs on the other side simplify PC board layout
- Combined functions reduce part count and enhance system performance

Buffers/Drivers

FAST 74F655A, 74F656A

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM FOR 'F655A

(Non-Inverting for 'F656A Indicated by Symbol *)

FUNCTION TABLE

INPUTS $^{\prime 2}$				DATA OUTPUTS	
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\overline{\mathbf{O E}}_{\mathbf{3}}$	$\mathrm{I}_{\mathbf{n}}$	'F655A	'F656A
L	L	L	L	H	L
L	L	L	H	L	H
H	X	X	X	Z	Z
X	H	X	X	Z	Z
X	X	H	X	Z	Z

INPUTS	PARITY OUT- PUTS	
Number of inputs High (PI, $\left.I_{0}-I_{7}\right)$	Σ_{E}	Σ_{0}
EVEN $-0,2,4,6,8$	H	L
ODD $-1,3,5,7,9$	L	H
Any $\overline{\mathrm{OE}}=$ High	Z	Z

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$\mathrm{X}=$ Don't care
$Z=$ High-impedance state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F655A, 'F655A			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
VoL	Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=M A X, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V			
II	Input clamp current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathbf{H}}$	High-level input current	I_{n}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
		$\mathrm{PI}, \overline{\mathrm{OE}}_{\mathrm{n}}$						20	$\mu \mathrm{A}$			
ILL	Low-level input	I_{n}	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
		PI, OE_{n}						-20	$\mu \mathrm{A}$			
lozH	OFF-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozu	OFF-state output current Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	0.0 V		-100		-225	mA			
Icc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				50	80	mA			
		ICCL					78	110	mA			
		ICCz					63	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F655A, 656A					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay I_{n} to \bar{Y}_{n}	'F655A		Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay I_{n} to Y_{n}	'F656A		Waveform 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	2.0 2.5	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay I_{n} to Σ_{E}, Σ_{0}		Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \end{aligned}$	ns	
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL }^{2} \end{aligned}$	Output enable time to High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{tpl}_{17} \end{aligned}$	Output disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	1.5 2.0	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns	

AC WAVEFORMS

test circuit and waveforms

Signetics

FAST Products

FEATURES

- High-impedance NPN base input for reduced loading $(70 \mu \mathrm{~A}$ in High and Low states)
- Ideal in applications where High output drive and light bus loading are required ($I_{L L}$ is $70 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 24-pin plastic Slim dip (300-mil) package
- Combines 'F245 and 'F280A functions in one package
- 3-State outputs
- Outputs sink 64mA
- 15mA source current
- Input diodes for termination effects

DESCRIPTION

The 'F657 contains eight non-inverting buffers with 3-State outputs and an 8-bit parity generator/checker, and is intended for bus-oriented applications. The buffers have a guaranteed current sinking capability of 24 mA at the A ports and 64 mA at the B ports. The Transmit/ Receive (T / \bar{R}) input determines the direction of the data flow through the bidirectional transceivers. Transmit (ac-tive-High) enables data from A ports to B ports; Receive (active-Low) enables data from B ports to A ports.
PIN CONFIGURATION

FAST 74F657

Transceiver

Octal Bidirectional Transceiver With 8-Bit Parity Generator/Checker (3-State Outputs) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 657$	8.0 ns	100 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F657N
24-Pin Plastic SOL	N74F657D

NOTE:

1. Thermal mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A ports 3-State inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B ports 3-State inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
PARITY	Parity input	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/receive input	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{ODD} / \overline{\mathrm{EVEN}}$	Parity select	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A ports 3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B ports 3-State outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
PARITY	Parity output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\overline{\mathrm{ERROR}}$	Error output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The Output Enable (OE) input disables both the A and B ports by placing them in a $\mathrm{Hi}-\mathrm{Z}$ condition when the $\overline{O E}$ input is High.
The parity select (ODD/EVEN) input gives the user the option of odd or even parity systems.
The parity (PARITY) pin is an output from the generator/checker when transmitting from port A to $B(T / \bar{R}=H i g h)$ and an input when receiving from port B to $A(T / \bar{R}=$ Low).
When transmitting ($\mathrm{T} / \overline{\mathrm{R}}=$ High) the parity select (ODD/EVEN) input is set, then the A port data is polled to determine the number of High bits. The parity (PARITY) output then goes to the logic state determined by the parity select (ODD/EVEN) setting and by the number of High bits on port A. For example, if the parity select (ODD/EVEN) is set Low (even parity), and the number of High bits on port A is odd, then the parity (PARITY) output will be High, transmitting even parity. If the number of High bits on port A is even, then the parity (PARITY) output will be Low, keeping even parity. When in receive mode (T / $\overline{\mathrm{R}}=$ Low) the B port is polled to determine the number of High bits.
If parity select (ODD/EVEN) is Low (even parity) and the number of Highs on port B is:

FUNCTION TABLE

NUMBER OF INPUTS THAT ARE HIGH	INPUTS			INPUT/ OUTPUT	OUTPUTS	
	OE	T/R	ODD/EVEN	PARITY	ERROR	OUTPUTS MODE
	L	H	H	H	Z	Transmit
0, 2, 4, 6, 8	L	H	L	L	Z	Transmit
	L	L	H	H	H	H
Receive						
	L	L	L	H	L	Receive
	L	L	L	L	H	Receive
	Receive					
	L	H	H	L	Z	Transmit
1, 3, 5, 7	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
Don't care	H	X	X	Z	L	Receive

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$\mathrm{Z}=$ High-impedance state
(1) odd and the parity (PARITY) input is High, then ERROR will be High, signifying no error.
(2) even and the parity (PARITY) input is Low, then ERROR will be asserted Low, indicating an error.

LOGIC DIAGRAM

Transceiver

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	48
		mA	
T_{A}	Operating free-air temperature range	128	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
IOH	High-level output current	$A_{0}-A_{7}$			-3	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			-15	mA
loL	Low-level output current	$A_{0}-A_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	All Outputs				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% V_{\text {cC }}$	2.7	3.4				V			
		$B_{0}-B_{7}$, PARITY, ERROR	$\mathrm{IOH}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.0				V			
V_{OL}	Low-level output voltage	$A_{0}-A_{7}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$PARITY,$\overline{\text { ERROR }}$		$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.40	0.55	V			
				$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V			
II	Input current at maximum input voltage	T/R, $\overline{O E}$, ODD/EVEN	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$A_{0}-A_{7}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$					2	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$						1	mA			
$\mathrm{I}_{\mathbf{H}}$	High-level input current	ODD/EVEN	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
		T/产, $\overline{O E}$						40	$\mu \mathrm{A}$			
IIL	Low-level input current	ODD/EVEN	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
		T/产, $\overline{O E}$						-40	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\text {OZH }}$	OFF-state current High level voltage applied	$\begin{aligned} & \mathrm{A}_{0}-\mathrm{A}_{7}, \\ & \mathrm{~B}_{0}-\mathrm{B}_{7}, \\ & \text { PARITY } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
IIL $+l_{\text {OzL }}$	OFF-state current Low level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
lozh	OFF-state current High level voltage applied	ERROR	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=\mathrm{MIN}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state current Low level voltage applied		$V_{C C}=M A X$,	$\mathrm{MIN}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$A_{0}-A_{7}$	$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$				-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				90	125	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					106	150	mA			
		ICCZ					98	145	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a tıme. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heatıng and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay A_{n} to PARITY	Waveform 1, 2	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay ODD/EVEN to PARITY, ERROR	Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay B_{n} to ERROR	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 22.5 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{P} P \mathrm{~L}} \\ & \hline \end{aligned}$	Propagation delay PARITY to ERROR	Waveform 1, 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 17.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PzL}} \end{aligned}$	Output enable time ${ }^{2}$ to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns

NOTE:

1. These delay times reflect the 3 -state recovery time only and not the signal through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, tıme must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to Parity), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin $\geqslant(B$ to $A)+(A$ to Parity) $+($ Output enable time).

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Preliminary Specification

FAST Products

FEATURES

- Simultaneous and independent Read and Write operations
- Expandable to almost any word size and bit length
- 3-State outputs

DESCRIPTION

The 'F670 is a 16 -bit 3-State Register File organized as 4 words of 4 bits each. Separate Read and Write Address and Enable inputs are available, permitting simultaneous writing into one word location and reading from another location. The 4-bit word to be stored is presented to four data inputs. The Write Address inputs (WA and WB) determine the location of the stored word. When the Write Enable (WE) input is Low, the data is entered into the addressed location. The addressed location remains transparent to the data while the WE is Low. Data supplied at the inputs will be read out in true (non-inverting) form from the 3-State outputs. Data and Write Address inputs are inhibited when WE is High. Direct acquisition of data stored in any of the four registers is made possible by individual Read Address inputs (RA and RB). The addressed word appears at the four outputs when the Read Enable ($\overline{\mathrm{RE}}$) is Low. Data outputs are in the High-imped-

PIN CONFIGURATION

	$16 \mathrm{~V}_{\mathrm{cc}}$ $15 \mathrm{D}_{0}$ $14 W_{A}$ 13. W_{B} 12. $\overline{W E}$烏 $\overline{\text { EE }}$ 10) a_{0} 9) a_{1}
TOP VIEW	co14620s

LOGIC SYMBOL

6-682

LOGIC SYMBOL (IEEE/IEC)

Up to 128 devices can be stacked to increase the word size to 512 locations by tying the 3 State outputs together. Since the limiting factor for expansion is the output High current, further stacking is possible by tying pull-
up resistors to the outputs to increase the I_{OH} current available. Design of the Read Enable signals for the stacked devices must ensure that there is no overlap in the Low levels which would cause more than one output to
be active at the same time. Parallel expansion to generate n-bit words is accomplished by driving the Enable and Address inputs of each device in parallel.

LOGIC DIAGRAM

WRITE MODE FUNCTION TABLE

OPERATING MODE	INPUTS		INTERNAL LATCHES*
	$\overline{\mathrm{WE}}$	$\mathrm{D}_{\boldsymbol{n}}$	
Data latched	L	L	H
	L	H	NC

NOTES:
$H=$ High voltage level
L = Low voltage level
NC = No change
$X=$ Don't care

* = The Write Address (W_{A} and W_{B}) to the "internal latches" must be stable while $\overline{\mathrm{WE}}$ is Low for conventional operation.

READ MODE FUNCTION TABLE

OPERATING MODE	INPUT	INTERNAL LATCHES*	OUTPUT
	$\overline{R E}$		
	L	L	L
	L	H	H
Disabled	H	X	Z

NOTES:
$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state

* = The selection of the "internal latches" by Read Address (R_{A} and R_{B}) are not constrained by $\overline{W E}$ or $\overline{R E}$ operation.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
loL	Low-level output current			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}^{\text {a }}$ MAX	$\pm 10 \% V_{\text {cC }}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.3		V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}_{\text {L }}=\mathrm{MAX}$	$\pm 10 \% V_{C C}$		0.35	0.50	V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$V_{C C}=\mathrm{MIN}, I_{1}=I_{\text {I }}$				-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA
lozh	OFF-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$
lozl	OFF-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$\mathrm{V}_{C C}=\mathrm{MAX}$			-60		-150	mA
lcc	Supply current (total)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$				45	60	mA

NOTES:

1. For conditons shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LImits					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay R_{A}, R_{B} to Q_{n}	Waveform 2			$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$			ns
$t_{\text {tpL }}$ $t_{\text {PHL }}$	Propagation delay $\overline{W E}$ to Q_{n}	Waveform 1			$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$			ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to Q_{n}	Waveform 1			$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output Enable time to High or Low Level	Waveform 3 Waveform 4			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ppHz}} \\ & \mathrm{t}_{\mathrm{tpLz}} \\ & \hline \end{aligned}$	Output Disable time to High or Low level	Waveform 3 Waveform 4			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to positive going $\overline{\text { WE }}$	Waveform 2			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time D_{n} to positive going $\overline{\mathrm{WE}}$	Waveform 2			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time W_{A}, W_{B} to negative going $\overline{W E}^{1}$	Waveform 2			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time W_{A}, W_{B} to positive going $\overline{W E}^{1}$	Waveform 2			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	$\overline{\mathrm{RE}}$ Pulse width High or Low	Waveform 3			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	$\overline{\text { WE }}$ Pulse width High or Low	$\begin{gathered} \text { Waveform } 2 \\ R E \leqslant 0.8 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			ns
$\mathrm{t}_{\text {latch }}$	Latch time for new data ${ }^{2}$	Waveform 2			5.0			ns

NOTES:

1. Write Address setup time will protect the data written into the previous address. If protection of data in the previous address is not required, setup time for Write Address to $\overline{W E}$ can be ignored. Any address selection sustained for the final 30ns of the $\overline{W E}$ pulse and during hold time for Write Address to $\overline{W E}$ will result in data being written into that location.
2. Latch time is the time allowed for the internal output of the latch to assume the state of the new data. This is important only when attempting to read from location immediately after that location has received new data. This parameter is measured from the falling edge of WE to the rising or falling edge of R_{A} or R_{B}. $\overline{R E}$ must be Low.

AC WAVEFORMS

Waveform 1. Propagation Delay, Write Enable and Data to Outputs NOTE: $\mathrm{V}_{\mathrm{M}}=\mathbf{1 . 5 V}$.

4×4 Register File (3-State)

AC WAVEFORMS (Continued)

4×4 Register File (3-State)

TEST CIRCUIT AND WAVEFORMS

WF06471S Test Circuit for 3-State Outputs						
SWITCH POSITION	FAMILY	INPUT PULSE REQUIREMENTS				
TEST SWITCH		Amplitude	Rep. Rate	Pulse Width	ttLH	$\mathbf{t}_{\text {THL }}$
tplz closed closed $t_{p Z L}$ All other open	74F	3.0 V	1 MHz	500ns	2.5ns	2.5 ns
DEFINITIONS $\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capactance includes jig and probe capacitance; see AC CHARACTERISTICS for value. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.						

Signetics

FAST Products

FEATURES

- Serial-to-parallel converter
- 16-bit serial I/O shift register
- 16-bit parallel-out storage register
- Recirculating serial shifting
- Recirculating parallel transfer
- Common serial data I/O pin
- Available in 300 mil -wide 24 -Pin Slim DIP package

DESCRIPTION

The 'F673A contains a 16 -bit serial-in/ serial-out shift register and a 16 -bit par-allel-out storage register. A single pin serves either as an input for serial entry, or as a 3-State serial output. In the serial-out mode, the data recirculates in the shift register. By means of a separate clock, the contents of the shift register are transferred to the storage register for parallel outputting. The contents of the storage register can also be parallel loaded back into the shift register. A High-signal on the Chip Select input prevents both shifting and parallel transfer. The storage register may be cleared via STMR.

FAST 74F673A 16-Bit Shift Register

16-Bit Shift Register (Serial-In/Serial-Parallel Out) Preliminary Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 673 \mathrm{~A}$	130 MHz	106 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
24-Pin Plastic Slim DIP (300mil)	N74F673N
24-Pin Plastic SOL	N74F673D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{CS}}$	Chip select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { SHCP }}$	Shift Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
STMR	Store Master Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
STCP	Store clock pulse input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SI/O	Serial data input or	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	3-State serial output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Parallel data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

16-Bit Shift Register

FUNCTIONAL DESCRIPTION

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table. A High signal on the Chip Select (CS) input prevents clocking and forces the Serial Input/Output (SI/O) 3-State buffer into the High-impedance state. During serial shift-out operations, the SI/O buffer is active (i.e., enabled) and the output data is also recirculated back into the shift register. When parallel loading the shift register from the storage register, serial shifting is inhibited.
The storage register has an asynchronous Master Reset (STMR) input that overrides all other inputs and forces the $Q_{0}-Q_{15}$ outputs Low. The storage register is in the Hold mode whether $\overline{\mathrm{CS}}$ or the Read/Write (R / \bar{W}) input is High. With $\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ both Low, the storage register is parallel loaded from the shift register.
To prevent false clocking of the shift register, SHCP should be in the Low state during a Low-to-High transition of $\overline{\mathrm{CS}}$. To prevent false clocking of the storage register, STCP should be Low during a High-to-Low transition of CS if R / \bar{W} is Low, and should also be Low during a High-to-Low transition of R/W if CS is Low.

STORAGE REGISTER
OPERATIONS TABLE

CONTROL INPUTS				OPERATING MODE
$\overline{\text { STMR }}$	$\overline{\mathbf{C S}}$	R/W	STCP	
L	X	X	X	Reset; Outputs Low
H	H	X	X	Hold
H	X	H	X	Hold
H	L	L	\uparrow	Parallel Load

$\uparrow=$ Low-to-High clock transition

SHIFT REGISTER OPERATIONS TABLE

CONTROL INPUTS				$\begin{gathered} \text { SI/O } \\ \text { STATUS } \end{gathered}$	OPERATING MODE
$\overline{\text { CS }}$	R/W	$\overline{\text { SHCP }}$	STCP		
$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	x	x	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	Hi-Z Data in	Hold Serial load
L	H	\downarrow	L	Data out	Serial output with recirculation
L	H	\downarrow	H	Active	Parallel load; no shifting

$H=$ High voltage level
L = Low voltage level
X = Don't care
$\downarrow=$ High-to-Low clock transition

FUNCTIONAL BLOCK DIAGRAM

[^18]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to $+V_{\text {cc }}$	V
lout	Current applied to output in Low output state	SI/O	48	mA
		$Q_{0}-Q_{15}$	40	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
$\mathrm{IOH}^{\text {I }}$	High-level output current	SI/O			-3.0	mA
		$Q_{0}-Q_{15}$			-1.0	mA
lol	Low-level input current	SI/O			24	mA
		$Q_{0}-Q_{15}$			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	$Q_{0}-Q_{15}$				$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		SI/O	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.3		V			
VoL	High-level output voltage	$Q_{0}-Q_{15}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}=20 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
		SI/O		$\mathrm{lOL}=24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	High-level input current	SI/O only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	$V_{C C}=M A X$						mA			
		$\mathrm{I}_{\mathrm{CCL}}$						160	mA			
		Iccz							mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to mınımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequences of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	130				MHz
$t_{\text {PLH }}$ ${ }^{\text {tphL }}$	Propagation delay STCP to Q_{n}	Waveform 1	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \end{aligned}$	$\begin{aligned} & 18 \\ & 22 \end{aligned}$			ns
$t_{\text {PHL }}$	Propagation delay STMR to Q_{n}	Waveform 2	6.0	10	14			ns
$t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay SHCP to SI/O	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 11 \\ 12.5 \end{gathered}$			ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL }^{2} \end{aligned}$	Output enable time $\overline{\mathrm{CS}}$ or R/W to SI/O	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H \mathrm{Z}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output disable time $\overline{\mathrm{CS}}$ or R/W to SI/O	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			ns

16-Bit Shift Register

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\mathrm{CS}}$ or R/W to STCP	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$					ns
$\begin{aligned} & \mathrm{t}_{n}(H) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\overline{\mathrm{CS}}$ or R/W to STCP		$\begin{aligned} & 0 \\ & 0 \end{aligned}$					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low SI/O to SHCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low SI/O to SHCP		$\begin{aligned} & 0 \\ & 0 \end{aligned}$					ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $\overline{\mathrm{CS}}$ or R/W to $\overline{\mathrm{SHCP}}$	Waveform 3	$\begin{gathered} 5.0 \\ 5.0 \\ 0 \\ 0 \end{gathered}$					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\overline{\mathrm{CS}}$ or R/W to $\overline{\mathrm{SHCP}}$							ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{\text { SHCP }}$ pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$					ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	STCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.0 \\ & 10 \\ & \hline \end{aligned}$					ns
$\mathrm{tw}_{\text {(}}(\mathrm{L})$	STMR pulse width Low	Waveform 2	7.0					ns
trec	Recovery time STMR to STCP	Waveform 2	10					ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

WF0632RS

Waveform 3. Data and Select Setup and Hold Times

Waveform 2. Store Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 4. 3-State Output Enable Time to High level and Output Disable Time From High Level
$\overline{\mathbf{C s}}, \mathbf{R} / \overline{\mathbf{w}}$

WF0608NS
Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: $V_{M}=15 \mathrm{~V}$
The shaded area indicates when the input is permitted to change for predictable output performance

16-Bit Shift Register

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F674
16-Bit Shift Register
16-Bit Shift Register, Serial-Parallel-In/Serial-Out (3-State) Preliminary Specification

FAST Products

FEATURES

- 16-bit serial I/O shift register
- 16-blt parallel-in/serial-out converter
- Recirculating serial shifting
- Common serial data I/O pin
- Avallable in 300 mil -wide 24-pin Slim DIP package

DESCRIPTION

The 'F674 is a 16 -bit shift register with serial and parallel load capability and serial output. A single pin serves alternately as an input for serial entry or as a 3-State serial output. In the Serial-out mode the data recirculates in the register. Chip Select, Read/Write and Mode inputs provide control flexibility.

FUNCTIONAL DESCRIPTION

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table.
Hold - a High signal on the Chip Select (CS) input prevents clocking and forces the Serial Input/Output (SI/O) 3-State buffer into the high-impedance state.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 674	140 MHz	53 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F674N
24-Pin Plastic SOL	N74F674D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$D_{0}-D_{15}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{C S}$	Chip Select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{C P}$	Clock Pulse input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
R/ \bar{W}	Read/Write input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SI/O	3-State serial data input or 3-State serial output	$3.75 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Serial Load-data present on the SI/O pin shifts into the register on the falling edge of $\overline{\mathrm{CP}}$. Data enters the Q_{0} position and shifts toward Q_{15} on successive clocks.

Serial Output - the SI/O 3-State buffer is active and the register contents are shifted out from Q_{15} and simultaneously shifted back into Q_{0}.

Parallel Load - data present on $\mathrm{P}_{0}-\mathrm{P}_{15}$ are entered into the register on the falling edge of CP . The SI/O 3-State buffer is active and represents the Q_{15} output.
To prevent false clocking, CP must be Low during a Low-to-High transition of $\overline{C S}$.

STORAGE REGISTER OPERATIONS TABLE

CONTROL INPUTS				$\begin{aligned} & \text { SI/O } \\ & \text { STATUS } \end{aligned}$	OPERATING MODE
$\overline{\text { CS }}$	R/W	M	$\overline{\text { CP }}$		
$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & X \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Hi-Z Data in	Hold Serial load
L	H	L	\downarrow	Data out	Serial output with recirculation
L	H	H	\downarrow	Active	Parallel load; no shifting

$H=$ High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care
$\downarrow=$ High-to-Low clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
I_{OH}	High-level output current			-3	mA
lOL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
VOH	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.3		V
Vol	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOL}_{\text {O }}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
				$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA
lozh	OFF-state output current, High-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$
lozl	OFF-state output current Low-level voltage applied	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-600	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M A X$			-60		-150	mA
Icc	Supply current (total)	$V_{C C}=$ MAX				53	84	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{C} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum input frequency	Waveform 1	100	140				MHz
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{CP}}$ to SI / O	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 11 \\ 12.5 \end{gathered}$			ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time $\overline{\mathrm{CS}}$ or R/W to SI/O	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\mathrm{pLz}} \end{aligned}$	Output disable time $\overline{\mathrm{CS}}$ or R/W to SI/O	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low SIO to $\overline{\mathrm{CP}}$	Waveform 2	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$					ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low SI/O to $\overline{\mathrm{CP}}$	Waveform 2	0 0					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low P_{n} to $\overline{C P}$	Waveform 2	3.0 3.0					ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low P_{n} to $\overline{C P}$	Waveform 2	0					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{R} / \overline{\mathrm{W}}$ or $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$					ns
$t_{n}(\mathrm{H})$	Hold time, High or Low R/W or $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	Waveform 3	0					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}$ pulse width High or Low	Waveform 1	4.0 5.0					ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- Serial-to-parallel converter
- 16-bit serial I/O shift register
- 16-bit parallel-out storage register
- Recirculating parallel transfer
- Expandable for longer words
- Available in 300 mil -wide 24 -pin Slim DIP package

DESCRIPTION

The 'F675 contains a 16 -bit serial-in/ serial-out shift register and a 16 -bit par-allel-out storage register. Separate serial input and output pins are provided for expansion to longer words. By means of a separate clock, the contents of the shift register are transferred to the storage register. The contents of the storage register can also be loaded back into the shift register. A High signal on the Chip Select input prevents both shifting and parallel loading.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 675$	130 MHz	106 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F675N
24-Pin Plastıc SOL	N74F675D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
SI	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { SHCP }}$	Shift clock pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
STCP	Store clock pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SO	Serial data output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{15}$	Parallel data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
1 One (10) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The 16 -bit shift register operates in one of four modes, as determined by the signals applied to the Chip Select (드), Read/Write (R/W) and Store Clock Pulse (STCP) inputs. State changes are indicated by the falling edge of the Shift Clock Pulse (SHCP). In the Shift-right mode, data enters D_{0} from the Serial Input (SI) pin and exits from Q_{15} via the Serial Data Output (SO) pin. In the Parallel Load mode, data from the storage register outputs enter the shift register and serial shifting is inhibited.

The storage register is in the Hold mode when either $\overline{C S}$ or R/W is High. With $\overline{C S}$ and R / \bar{W} both Low, the storage register is parallel loaded from the shift register on the rising edge of STCP.
To prevent false clocking of the shift register, SHCP should be in the Low state during a Low-to-High transition of CS. To prevent false clocking of the storage register, STCP should be Low during a High-to-Low transition of $\overline{C S}$ if R / \bar{W} is Low, and should also be Low during a High-to-Low transition of R/W if $\overline{\mathrm{CS}}$ is Low.

REGISTER
OPERATIONS TABLE

CONTROL INPUTS				OPERATING MODE
$\overline{\text { CS }}$	R/W	SHCP	STCP	
H	X	X	X	Hold
L	L	\downarrow	X	Shift right
L	H	\downarrow	L	Shift right
L	H	\downarrow	H	Parallel load; No shifting

STORAGE REGISTER
OPERATIONS TABLE

INPUTS			
$\overline{\text { CS }}$	R/ $\overline{\mathrm{W}}$	$\overline{\mathbf{S T C P}}$	
H	OPERATING MODE	X	Hold
L	H	X	Hold
L	L	\uparrow	Parallel load

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
$=$ High-to-Low clock transition

Abstract

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-1	mA
lO	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
Vor	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=1 \mathrm{~mA} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=20 \mathrm{~mA} \end{aligned}$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M A X$		-60		-150	mA
Icc	Supply current (total)	$V_{C C}=$ MAX			106	160	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	130				MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay STCP to Q_{n}	Waveform 1	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \end{aligned}$	$\begin{aligned} & 18 \\ & 22 \end{aligned}$			ns
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay SHCP to SO	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11 \\ 12.5 \end{gathered}$			ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\text { CS }}$ or R/W to STCP	Waveform 2	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$					ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time, High or Low $\overline{\mathrm{CS}}$ or R/W to STCP	Waveform 2	0					ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low SI to SHCP	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$					ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low SI to SHCP	Waveform 2	0					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{R} / \overline{\mathrm{W}}$ or $\overline{\mathrm{CS}}$ to $\overline{\mathrm{SHCP}}$	Waveform 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$					ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\mathrm{R} / \overline{\mathrm{W}}$ or $\overline{\mathrm{CS}}$ to $\overline{\mathrm{SHCP}}$	Waveform 2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	SHCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$					ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	STCP pulse width, High or Low	Waveform 1	5.0 10					ns

16-Bit Shift Register

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F676
 Shift Register

'F676 16-Bit Shift Register Product Specification

FAST Products

FEATURES

- 16-bit parallel-to-serial conversion
- 16-bit serial-in, serial-out
- Chip Select control
- Power supply current 48 mA typical
- Shift frequency 110 MHz typical
- Available in 300mil-wide 24-pin Slim DIP package

DESCRIPTION

The 'F676 contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the Mode (M) input is High, information present on the parallel data $\left(D_{0}-D_{15}\right)$ inputs is entered on the falling edge of the Clock Pulse ($\overline{\mathrm{CP}}$) input signal. When M is Low, data is shifted out of the most significant bit position while information present on the Serial (SI) input shifts into the least significant bit position. A High signal on the Chip Select ($\overline{\mathrm{CS}}$) input prevents both parallel and serial operations.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 676	110 MHz	48 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C C}}=\mathbf{5 V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F676N
24-Pin Plastic SOL	N74F676D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{CS}}$	Chip Select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SI	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SO	Serial data output	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

The 16-bit shift register operates in one of three modes, as indicated in the Shift Register Operations Table.

HOLD - a High signal on the Chip Select ($\overline{\mathrm{CS}}$) input prevents clocking, and data is stored in the 16 registers.
Shift/Serial Load - data present on the SI pin shifts into the register on the falling edge of $\overline{C P}$. Data enters the Q_{0} position and shifts toward Q_{15} on successive clocks, finally appearing on the SO pin.

Parallel Load - data present on $\mathrm{P}_{0}-\mathrm{P}_{15}$ are entered into the register on the falling edge of $\overline{\mathrm{CP}}$. The SO output represents the Q_{15} register output.

To prevent false clocking, $\overline{\mathrm{CP}}$ must be Low during a Low-to-High transition of $\overline{\mathrm{CS}}$.

FUNCTION TABLE

CONTROL INPUT			OPERATING MODE
$\overline{\text { CS }}$	M	$\overline{\mathbf{C P}}$	
$\begin{gathered} H \\ L \\ L \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & \downarrow \\ & \downarrow \end{aligned}$	Hold Shift/serial load Parallel load

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$\downarrow=$ High-to-Low clock transition

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
${ }_{1 / H}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA
los	Short-circuit output current ${ }^{3}$	$V_{C C}=M A X$		-60		-150	mA
Icc	Supply current (total)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			48	72	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	110		90		MHz
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{CP}}$ to SO	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 70 \end{aligned}$	$\begin{gathered} 11 \\ 12.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12 \\ 13.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low SI to $\overline{\mathrm{CP}}$	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low SI to $\overline{\mathrm{CP}}$	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.0 4.0		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $D_{n} \overline{C P}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $\overline{C P}$	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low M to $\overline{\mathrm{CP}}$	Waveform 2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low M to $\overline{\mathrm{CP}}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		
$\mathrm{ts}_{\mathbf{s}}(\mathrm{L})$	Setup time, Low $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	Waveform 2	10.0			10.0		
$t_{\text {h }}(\mathrm{H})$	Hold time, High $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	Waveform 2	10.0			10.0		
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	$\overline{\mathrm{CP}}$ pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.0 6.0		

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

Waveform 2. Propagation Delay for Data to Output, Data and Select Setup, and Hold Times

NOTE: $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAST 74F711, 74F712

74F711 Quint 2-to-1 Data Selector Multiplexer (3-State) 74F712 Quint 3-to-1 Data Selector Multiplexer Preliminary Specification

FEATURES for 74F711

- Consists of five 2-to-1 multiplexers
- Equivalent to two 'F257s
- Designed for address multiplexing of dynamic RAM and other applications
- 3-State outputs sink 64mA

FEATURES for 74F712

- Consists of five 3-to-1 multiplexers
- Equivalent to four 'F157s
- Designed for address multiplexing of dynamic RAM and other applications
- Outputs sink 64mA

DESCRIPTION

The 'F711 consists of five 2-to-1 multiplexers designed for address multiplexing dynamic RAMs and other multiplexing applications. The 'F711 has a common select(S) input and an Output Enable ($\overline{\mathrm{OE}})$ to control the 3-State outputs. The 3-State outputs source 15 mA and sink 64 mA .
The 'F112 consists of five 3 -to- 1 multiplexers designed for address multiplexing dynamic RAMs and other multiplexing applications. The 'F712 has two select (S0, S1) inputs to determine which set of five inputs will be propagated to the five outputs.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 711	5.5 ns	12 mA
74 F 712	6.0 ns	24 mA

ORDERING INFORMATION

PACKAGES		COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
Plastic	DIP	N74F711N
	Slim DIP	N74F712N
Plastic	20-Pin SOL	N74F711D
	24-Pin SOL	N74F712D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
'F711	$\mathrm{D}_{\text {na }}, \mathrm{D}_{\mathrm{nb}}$	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
	S	Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{\mathrm{OE}}$	Output Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\mathrm{Q}_{0}-\mathrm{Q}_{4}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
'F712	$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}, \mathrm{D}_{\mathrm{nc}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\mathrm{Q}_{0}-\mathrm{Q}_{4}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM for 'F711

LOGIC SYMBOL

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for 'F711

INPUTS				OUTPUT
\mathbf{s}	$\overline{\mathbf{O E}}$	\mathbf{D}_{na}	\mathbf{D}_{nb}	$\mathbf{Q}_{\mathbf{n}}$
L	L	data a	data b	data a
H	L	data a	data b	data b
X	H	X	X	Z

[^19]LOGIC DIAGRAM for 'F712

FUNCTION TABLE for 'F712

INPUTS					OUTPUT
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{n a}}$	$\mathbf{D}_{\mathbf{n b}}$	$\mathbf{D}_{\mathbf{n c}}$	$\mathbf{Q}_{\mathbf{n}}$
L	L	data \mathbf{a}	data \mathbf{b}	data c	data \mathbf{a}
X	H	data \mathbf{a}	data b	data c	data c
H	L	data \mathbf{a}	data b	data c	data b

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			v
$\mathrm{V}_{\text {IL }}$	Low-level input voitage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0	3.3			V				
Vol	Low-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}^{2}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.40	0.55	V		
				$\mathrm{lOL}=64 \mathrm{~mA}$		5\% V CC		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H}}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	2.7 V				20	$\mu \mathrm{A}$			
ILL	Low-level input current	'F711	$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-1.2	mA			
		others							-0.6	mA			
lozh	OFF-state output current, High-level voltage applied		'F711 only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		'F711 only	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	'F711	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				12		mA			
			ICCL					12		mA			
			Iccz					12		mA			
		'F712	$\mathrm{I}_{\mathrm{CCH}}$					18		mA			
			$\mathrm{I}_{\text {CCL }}$					24		mA			
			Iccz					30		mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay $D_{n a}, D_{n b}$ to Q_{n}	Waveform 1, 2			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay $S \text { to } Q_{n}$	Waveform 1			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {pZH }} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4			$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LImits					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}$ to Q_{n}	Waveform 1, 2			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay S_{0}, S_{1} to Q_{n}	Waveform 1			$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES for 74F723

- Consists of four 3-to-1 multiplexers
- Equivalent to three 'F157s or 'F158s
- Inverting or non-inverting data path capability by an Enable input
- Designed for address multiplexing of dynamic RAM and other applications
- Multiple side pins for $V_{\text {cc }}$ and GND to reduce lead inductance (improves speed and noise immunity)
- 3-State outputs sink 64mA

FEATURES for 74F725

- Consists of four 4-to-1 multiplexers
- Equivalent to two 'F253s without 3-State
- Outputs sink 64MA

DESCRIPTION

The 'F723 consists of four 3-to-1 line multiplexers designed for address multiplexing of dynamic RAMs and other applications. It can take place of either four 'F157s or 'F158s.
PIN CONFIGURATION

| | |
| :---: | :--- | :--- |

FAST 74F723, 74F725

74F723 Quad 3-to-1 Data Selector Multiplexer (3-State) 74F725 Quad 4-to-1 Data Selector Multiplexer Preliminary Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 723$	5.5 ns	28 mA
74 F 725	6.0 ns	29 mA

ORDERING INFORMATION

PACKAGE	COMMERCIAL RANGE $\mathbf{V C C}^{\mathbf{5 V}} \pm 10 \%, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F723N, N74F725N
24-Pin Plastic SOL	N74F723D, N74F725D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
'F723	$\begin{aligned} & \mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}} \\ & \mathrm{D}_{\mathrm{nc}} \end{aligned}$	Data inputs	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	E	Enable input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{\text { OE }}$	Output Enable input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$Q_{0}-Q_{3}$	Data outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
'F725	$\begin{aligned} & \mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}} \\ & \mathrm{D}_{\mathrm{nc}}, \mathrm{D}_{\mathrm{nd}} \\ & \hline \end{aligned}$	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$Q_{0}-Q_{3}$	Data outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defind as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

DESCRIPTION (Continued)

Select (S0 and S1) inputs control which line is to be selected, as defined in the Function Table for 'F723. The Enable(E) input, when Low, changes data path to inverting, and
when High, changes the data path to noninverting.

To improve speed and noise immunity, multiple side pins are used for $V_{C C}$ and GND pins. The 3-State outputs sink 64MA.

The 'F725 consists of four 4-to-1 line multiplexers designed for general multiplexing purpose. The select (S0 and S1) inputs control line is to be selected, as defined in the Function Table for 'F725. It can take place of two 'F253s without 3-State function.

LOGIC DIAGRAM for 'F723

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for 'F723

INPUTS							OUTPUT
$\mathrm{S}_{\mathbf{0}}$	S_{1}	E	$\overline{\mathbf{O E}}$	$\mathrm{D}_{\text {na }}$	$\mathrm{D}_{\text {nb }}$	$\mathrm{D}_{\text {nc }}$	Q_{n}
L	L	L	H	data a	data b	data C	data a
L	L	H	H	data a	data b	data c	data a
H	L	L	H	data a	data b	data c	$\overline{\text { data } \mathrm{b}}$
H	L	H	H	data a	data b	data c	data b
X	H	L	H	data a	data b	data c	$\overline{\text { data } \mathrm{c}}$
X	H	H	H	data a	data b	data c	data c
X	X	X	L	X	X	X	Z

$H=$ High Voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
Z = High-impedance 'OFF' state

LOGIC DIAGRAM for 'F725

$V_{C C}=\operatorname{Pin} 24$
GND $=$ Pin 12
FUNCTION TABLE for 'F725

INPUTS						OUTPUT
S_{0}	\mathbf{S}_{1}	$\mathrm{D}_{\text {na }}$	D_{nb}	$\mathrm{D}_{\text {nc }}$	$\mathrm{D}_{\text {nd }}$	\mathbf{Q}_{n}
L	L	data a	data b	data C	data d	data a
H	L	data a	data b	data C	data d	data b
L	H	data a	data b	data c	data d	data c
H	H	data a	data b	data c	data d	data d

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
lOL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

							74F	23, 74	725		
							Min	Typ ${ }^{2}$	Max		
V_{OH}	High-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.4			V	
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		2.7	3.4		V		
				$\mathrm{IOH}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V		
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0	3.3		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.40	0.55	V
				$\mathrm{lOL}^{\prime}=64 \mathrm{~mA}$		$5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V	
V_{IK}	Input clamp voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}} \end{aligned}$				-0.73	-1.2	V	
I	Input current at maximum input voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{1}=7.0 \mathrm{~V} \end{aligned}$					100	$\mu \mathrm{A}$	
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=2.7 \mathrm{~V} \end{aligned}$					20	$\mu \mathrm{A}$	
IIL	Low-level input current	'F723	$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-1.2	mA	
		others							-0.6	mA	
lozh	OFF-state output current, High-level voltage applied		'F723 only	$V_{C C}=M A X$,	2.7 V				70	$\mu \mathrm{A}$	
lozl	OFF-state output current, Low-level voltage applied		'F723 only	$\mathrm{V}_{C C}=\mathrm{MAX}$,	0.5 V				-70	$\mu \mathrm{A}$	
los	Short-circuit output current ${ }^{3}$			$V_{C C}=M A X$			-100		-225	mA	
Icc	Supply current (total)	'F723	$\mathrm{I}_{\text {CCH }}$	$V_{C C}=\mathrm{MAX}$				28		mA	
			$\mathrm{I}_{\text {CCL }}$					26		mA	
			$\mathrm{I}_{\text {c }}$					30		mA	
		'F725	$\mathrm{I}_{\mathrm{CCH}}$					29		mA	
			ICCL					28		mA	
			I ccz					30		mA	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}$ to Q_{n}	Waveform 1, 2			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{0}, S_{1} to Q_{n}	Waveform 1			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{tpzL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4			$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PPZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+\mathbf{5 . 0 \mathrm { V } \pm 1 0 \%} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}, D_{n d}$ to Q_{n}	Waveform 1, 2			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Q_{n}	Waveform 1			$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F732, 74F733 Multiplexers

'F732 Quad Data Multiplexer, Inverting (3-State)
'F733 Quad Data Multiplexer, Non-Inverting (3-State) Preliminary Specification

FAST Products

FEATURES

- Quad 2-to-1 (two busses to one bus) Multiplexer
- Data can flow in either direction between busses resulting in sixway data paths $(A \rightarrow B, A \rightarrow C$, $\mathrm{B} \rightarrow \mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{A}, \mathrm{C} \rightarrow \mathrm{B})$
- A built-in 'break-before-make" feature eliminates current glitches and simplifies PC board design
- Output Enable for each bus to allow flexible contention control
- 3-State outputs sink 64mA

DESCRIPTION

'F732/'F733 are Quad Data Multiplexers designed to provide a simple means to control the flow of bidirectional data between three data busses.
The 'F732/'F733 consist of four multiplexers. Each multiplexer has three I/O (A_{n}, B_{n}, C_{n}) pins and one Output Enable ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}, \overline{\mathrm{OEC}})$ pin. There are 3 Select ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{3}$) pins to control data flow paths for all four multiplexers.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 732	8.0 ns	80 mA
74 F 733	7.5 ns	85 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F732N, N74F733N
20 -Pin Plastic SOL	N74F732D, N74F733D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Data inputs for Bus A	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	Data inputs for Bus B	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{C}_{0}-\mathrm{C}_{3}$	Data inputs for Bus C	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$,	Output enable inputs (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OEC}}$	Data outputs for Bus A	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{3}$	Data outputs for Bus B	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	Dat	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{C}_{0}-\mathrm{C}_{3}$	Data outputs for Bus C		

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20, \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

With the Select control, data can flow in the following directions between busses: A to B, A to C, B to A, B to C, C to A, C to B, A to B and C.

A built-in "break-before-make" feature eliminates current glitches common to systems using 3-State transceivers to accomplish the same function.

FUNCTION TABLE

INPUTS						OPERATING MODE	
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\overline{\text { OEA }}$	OEB	$\overline{\text { OEC }}$		
X	X	X	H	X	X	Bus A disabled except for input	
X	X	X	X	H	X	Bus B disabled except for input	
X	X	X	X	X	H	Bus C disabled except for input	
L	L	L	X	X	L	Data flow from Bus A to Bus C	
H	L	L	L	X	X	Data flow from Bus C to Bus A	
L	L	H	X	X	L	Data flow from Bus B to Bus C	
H	L	H	X	L	X	Data flow from Bus C to Bus B	
L	H	L	X	L	X	Data flow from Bus A to Bus B	
H	H	L	L	X	X	Data flow from Bus B to Bus A	
X	H	H	X	L	L	Data flow from Bus A to Bus B and Bus C	

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$X=$ Dont caro
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F32, 74F33			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & I_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4				V			
				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & I_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0			v			
				$\pm 5 \% \mathrm{VCC}$		2.0			V				
Vol	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & \mathrm{I}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.4	0.55	V		
				$\mathrm{IOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{VCC}$		0.4	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V			
1	Input clamp current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{IH}	High-level input current	$\begin{aligned} & \overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}, \overline{\mathrm{OEC}}, \\ & \mathrm{~S}_{0}-\mathrm{S}_{3} \end{aligned}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current	$\begin{aligned} & \overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}, \overline{\mathrm{OEC}}, \\ & \mathrm{~S}_{0}-\mathrm{S}_{2} \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
$\begin{aligned} & \mathrm{I}_{\mathrm{OZH}} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	OFF-state output current, High-level voltage applied	$\begin{aligned} & A_{0}-A_{3}, \\ & B_{0}-B_{3}, C_{0}-C_{3} \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozL + IIL	OFF-state output Low-level current, voltage applied	$\begin{aligned} & A_{0}-A_{3}, \\ & B_{0}-B_{3}, C_{0}-C_{3} \end{aligned}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	'F732	ICCH	$V_{C C}=M A X$					80	mA			
			$\mathrm{I}_{\text {CCL }}$						110	mA			
			Iccz						100	mA			
		'F733	ICCH						70	mA			
			$\mathrm{I}_{\text {CCL }}$						100	mA			
			ICCz						90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to mınımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Multiplexers
FAST 74F732, 74F733

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 732$					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ tphi	Propagation delay A_{n}, B_{n}, C_{n} to B_{n}, C_{n}, A_{n}	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay $S_{1}-A_{n}, S_{2}-C_{n}$	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzL}} \\ & \hline \end{aligned}$	Output enable time OEA, DEB, DEC to A_{n}, B_{n}, C_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	ns
$t_{\text {PHZ }}$ $t_{\text {PLZ }}$	Output disable time OEA, DEB, DEC to A_{n}, B_{n}, C_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F733					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL $^{\text {Pr }}$	Propagation delay A_{n}, B_{n}, C_{n} to B_{n}, C_{n}, A_{n}	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $S_{1}-A_{n}, S_{2}-C_{n}$	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time OEA, $\overline{O E B}, \overline{O E C}$ to A_{n}, B_{n}, C_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	Output disable time OEA, DEB, $\overline{O E C}$ to A_{n}, B_{n}, C_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns

Multiplexers

AC WAVEFORMS

Waveform 1. Propagation Delay Select, Busses to Busses
$\overline{\mathrm{OEA}}, \overline{\mathrm{OEE}}, \overline{\mathrm{OEC}}$

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay Busses to Busses
$\overline{\text { OEA, }} \overline{\text { OEE }}, \overline{\text { OEC }}$

wFobess4s
Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

WF06471S

$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed
tpZL $^{\text {closed }}$	
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

Signetics

FAST Products

This document contains Product specifications for the 74F764/765 and 74F764-1/765-1, and Preliminary specification for the 74F764A/765A

FEATURES

- Allows two microprocessors to access the same bank of dynamic RAM
- Performs arbitration, signal timing, address multiplexing, and refresh
- 9 address output pins allow direct control of up to 256 K dynamic RAMS
- External address multiplexing enables control of 1Mbit (or greater) dynamic RAMs
- Separate refresh clock allows adjustable refresh timing
- F764/F764A/F764-1 have on-chip 18-bit address input latch
- F764/765, F764-1/765-1 allow control of dynamic RAMs with row access times down to 40ns
- F764A/765A allow control of dynamic RAMs with row access times down to 30ns
- F764/765, F764A/765A output drivers designed for incident wave switching
- F764-1/765-1 output drivers designed for first reflected wave switching

DESCRIPTION

The 74F764/765 DRAM Dual-ported Controller is a High-speed synchronous dual-port arbiter and timing generator that allows two microprocessors, micro-

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 764 / 765$	150 MHz	150 mA
$74 \mathrm{~F} 764 \mathrm{~A} / 765 \mathrm{~A}$	175 MHz	150 mA
$74 \mathrm{~F} 764-1 / 765-1$	150 MHz	125 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	$74 \mathrm{~F} 764 \mathrm{~N}, 74 \mathrm{~F} 765 \mathrm{~N}, 74 \mathrm{~F} 764 \mathrm{AN}$, $74 \mathrm{~F} 765 \mathrm{AN}, 74 \mathrm{~F} 764-1 \mathrm{~N}, 74 \mathrm{~F} 765-1 \mathrm{~N}$
PLCC-44	74F764A, 74F765A, 74F764AA, $74 \mathrm{~F} 765 \mathrm{AA}, 74 \mathrm{~F} 764-1 \mathrm{~A}, 74 \mathrm{~F} 765-1 \mathrm{~A}$

controllers, or any other memory accessing device to share the same block of DRAM. The device performs arbitration, signal timing, address multiplexing, and refresh address generation, replacing up to 25 discrete devices.

74F764 vs 74F765

The F764, though functionally and pin-to-pin compatible with the F765, differs from the later in that it has an on-chip address input latch. This is useful in systems that have unlatched or multiplexed address and data bus.

74F764/765 vs 74F764A/765A
The 74F764A/765A is a faster version of the F764/765. The F764/765, rated at a maximum clock frequency of 100 MHz , can control dynamic RAMs with row access times down to 40 ns . The F764A/765A devices on the other
hand are rated at 150 MHz which translates to control of 30 ns dynamic RAMs.

74F764/765, 74F764A/765A vs

 74F764-1/765-1The 74F764-1/765-1, though as fast as the 74F764/765, differs from the 74F764/765 and 74F764A/765A in the following respects:
a) they reduce the row address hold time by half-a-clock cycle, and
b) their outputs are optimized for first reflected wave switching as opposed to incident wave switching.
The specialized outputs eliminate the need for signal terminations inessentially all applications.

All devices are available in 40-pin plastic DIP or 44-pin PLCC with pinouts designed to allow convenient placement of microprocessors, DRAMs, and other support chips.

DRAM Dual-Ported Controllers

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

SYMBOL 2	PINS			
	DIP	PLCC		

ARCHITECTURE

The 74F764/765 DRAM dual-ported controller is a synchronous device, with all signal generation being a function of the input clock (CP).

The 'F764/765 arbitration logic is divided into two stages. The first stage controls which one of the two $\overline{R E Q}$ inputs will be serviced by activating the corresponding SEL output. This arbitration takes place irrespective of whether or not a refresh cycle is in progress. The arbitration is accomplished by sampling the $\overline{\operatorname{REQ}}_{1}$ and $\overline{\mathrm{REQ}}_{2}$ inputs on different edges of the CP clock. $\overline{\mathrm{REQ}}_{1}$ is sampled on the rising edge and $\overline{\mathrm{REQ}}_{2}$ on the falling edge (refer to Figures 1-4).

Therefore, if access to the DRAM is requested by both processors at the same time, the contention is automatically resolved. The internal flip-flops of the device used in the arbitration process have been chosen for their immunity to metastable conditions.

The second stage of arbitration selects between the selected processor and any internal refresh request. Refresh always has priority and is serviced immediately after the current cycle is completed (if needed). This arbitration stage also indicates the start of an access cycle by asserting the GNT output.

The Refresh Clock (RCP) input determınes the period for each row. This clock may be held in the High state for external or no refresh applications. When used, a refresh request is internally generated every 64 RCP cycles. The refresh counter is incremented at
the end of every refresh cycle, and provides the refresh address.

Since $\overline{\text { SEL }}$ outputs indicate which one of the two memory accessing devices has been selected to be serviced, these provide an indication of which processor's address bus should be asserted at the controller address inputs. A Data Transfer Acknowledge (DTACK) signal is generated by the timing logic and either this signal or GNT may be used with the $\overline{\mathrm{SEL}}$ outputs to indicate the end or beginning of an access cycle for each processor.

FUNCTIONAL DESCRIPTION

As described earlier, the timing, arbitration, refresh and multiplexing functions provided by the controller are all derived from the $C P$ input. The period of this clock for the F764/ 765 and F764A/765A should be set equal to: (Tras(of the DRAM) $+16-5$)/4ns plus any system guard-band required.

For the F764-1/765-1 the CP clock input period should be equal to:
(Tras(of the DRAM) $+22-10$)/4ns plus any system guard-band required.

A microprocessor requests access to the DRAM by activatıng the appropriate $\overline{R E Q}$ input. If a refresh cycle is not in process and the other request input is not active, the SEL output corresponding to the active $\overline{\operatorname{REQ}}$ input will be asserted to indicate the selected processor. The GNT output then goes High to indicate the start of a memory access cycle. If
however, a refresh cycle is in process, and there is only one active $\overline{\operatorname{REQ}}$ input, the $\overline{\mathrm{SEL}}$ output corresponding to the active input $\overline{R E Q}$ will be asserted but the GNT output will not go High until after the completion of the refresh cycle (see Figures 10, 11, 14 and 15).
When the device is servicing a memory access cycle and a memory access is also requested by the other processor before the current cycle is completed, the SEL output for the other processor will not be issued, though GNT is asserted at that time, because the other processor is performing an access cycle. This will ensure that there is no contention on the address bus, i.e., the address bus is not driven by both processors at the same time.

Following the completion of the current memory access cycle, the SEL output corresponding to the awaiting $\overline{R E Q}$ input will be asserted, followed by the GNT output. If however, there were any pending refresh requests, assertion of the GNT output will be held OFF until the refresh request has been serviced.

When GNT goes High, the $A_{1}-A_{18}$ address inputs to the 'F764/F764A/F764-1 are latched internally and the $A_{1}-A_{9}$ signals are propagated to the $M A_{0}-M A_{8}$ outputs. The address inputs are not latched by the 'F765/ F765A/F765-1 and therefore, $A_{1}-A_{9}$ inputs propagate directly to the $M A_{0}-M A_{8}$ outputs.

A half-clock cycle is allowed for the address signals to propagate through to the outputs, after which the RAS output is asserted.

BLOCK DIAGRAM

One clock cycle later, the $A_{10}-A_{18}$ latch outputs on the 'F764/F764A or $A_{10}-A_{18}$ inputs to the 'F765/F765A are selected and propagated to the $M A_{0}-M A_{8}$ outputs. This occurs half a clock cycle earlier on the F764-1/765-1 (refer to Figures 3 and 4). The Write Gate (WG) output becomes valid at this time to indicate the proper time to gate the Write signal from the selected processor to the DRAM to perform an Early Write cycle.

A half-clock cycle is again allowed for the $A_{10}-A_{18}$ signals to propagate and stabilize. CASEN then becomes valid. $\overline{\text { CASEN }}$ can be used as $\overline{\mathrm{CAS}}$ output or decoded with Higherorder address signals to produce multiple
$\overline{\text { CAS }}$ signals. After CASEN is valid, the controller will wait for $2 \frac{1}{2}$ clock cycles before negating $\overline{\text { RAS, }}$, making a total $\overline{\text { RAS }}$ pulse width of approximately 4 clock cycles. Since this width matches the standard DRAM access time, the controller next asserts DTACK output, indicating that valid data is on the DRAM data lines or that a memory access cycle is complete. DTACK may be used to assert valid data transfer acknowledge for processors requiring this signal (i.e., the 68000 family of processors).
All controller output signals are held in this final state until the selected processor withdraws its request by driving its $\overline{\mathrm{REQ}}$ input

High. When the request is withdrawn, internal synchronization takes place, the controller output signals become inactive, and any pending memory access or refresh cycles are serviced.

A refresh cycle is serviced by propagating the 9 refresh counter address signals to the $M A_{0}-M A_{8}$ outputs. After a half-clock cycle the $\overline{\text { RAS }}$ output is asserted for four cycles and then negated for three clock cycles to meet the $\overline{\mathrm{RAS}}$ precharge requirements of the DRAMs (see Figures 5 and 6).
$\mathrm{A}^{\prime} \overline{\mathrm{REQ}}_{2}$ sampled
A $\overline{\operatorname{REQ}}_{1}$ sampled
$\overline{\mathrm{SEL}}_{1}$ triggered ($\overline{\mathrm{SEL}}_{1}$ triggered by $\overline{\mathrm{REQ}}_{1}$ sample circuitry) ($\overline{\mathrm{REQ}}_{2}$ disabled by $\overline{\mathrm{SEL}}_{1}$ circuitry)
B GNT triggered
$A_{1}-A_{18}$ latched (Input address latch triggered by GNT circuitry)*
$A_{1}-A_{9}$ propagate to $M A_{0}-M A_{8}$ outputs
C $\overline{\text { RAS }}$ triggered
D WG triggered $A_{10}-A_{18}$ selected and propagated to $M A_{0}-M A_{8}$ outputs
E CASEN triggered
F $\overline{\text { RAS }}$ negated DTACK triggered

* Only on the 'F764/F764A.

Figure 1. Sequence of Events for $\overline{\operatorname{REQ}}_{1}$ Memory Access Cycle for F764/765 and F764A/765A

$\mathrm{A}^{\prime} \overline{\operatorname{REQ}}_{2}$ sampled
$\overline{\mathrm{SEL}}_{2}$ triggered ($\overline{\mathrm{SEL}}_{2}$ triggered by $\overline{\mathrm{REQ}}_{2}$ sampling circuitry)
A $\overline{\mathrm{REQ}}_{1}$ is not sampled (disabled by $\overline{\mathrm{SEL}}_{2}$ circuitry)
B GNT triggered
$\mathrm{A}_{1}-\mathrm{A}_{18}$ latched (Input address latch triggered by GNT circuitry)*
$A_{1}-A_{9}$ propagate to $M A_{0}-M A_{8}$ outputs
C $\overline{\text { RAS }}$ triggered
D WG triggered
$A_{10}-A_{18}$ selected and propagated to $M A_{0}-M A_{8}$ outputs
E CASEN triggered
F $\overline{\text { RAS }}$ negated DTACK triggered

* Only on the 'F764/F764A

Figure 2. Sequence of Events for $\overline{\mathrm{REQ}}_{2}$ Memory Access Cycle for F764/765 and F764A/765A

Figure 3. Sequence of Events for $\overline{R E Q}_{1}$ Memory Access Cycle for F764-1/765-1

A' $\overline{R E Q}_{2}$ sampled
$\overline{S E L}_{2}$ triggered ($\overline{S E L}_{2}$ triggered by $\overline{\mathrm{REQ}}_{2}$ sampling circuitry)
$\mathrm{A} \overline{\mathrm{REQ}}_{1}$ is not sampled (disabled by SEL_{2} circuitry)
B GNT triggered
$A_{1}-A_{18}$ latched (input address latch triggered by GNT circuitry)*
$A_{1}-A_{9}$ propagate to $M A_{0}-M A_{8}$ outputs
C $\overline{\text { RAS }}$ triggered
D WG triggered
$A_{10}-A_{18}$ selected and propagated to $M A_{0}-M A_{8}$ outputs
E CASEN triggered
F $\overline{\text { RAS }}$ negated
DTACK triggered

* Only on the 'F764-1.

Figure 4. Sequence of Events for $\overline{\operatorname{REQ}}_{\mathbf{2}}$ Memory Access Cycle for F764-1/765-1

AC WAVEFORMS

DRAM Dual-Ported Controllers

AC WAVEFORMS

USING 74F764/765,
74F764A/765A, AND 74F764-1/765-1
TO ADDRESS 1MBIT DRAMS
The addressing capabilities of the DRAM dual-ported controllers can be extended to address 1 Mbit (or greater) DRAMs by using an external multiplexer to multiplex additional address bits.

Figure 7 shows an application, using an external 2-to-1 multiplexer to address 1 Mbit dynamic RAMs. The 9-bit internal refresh counter of the controller provides 512 row addresses which more than meet the refreshing needs for most industry standard 1Mbit DRAMs. Therefore, it is unnecessary to provide for any additional refresh address bits for DRAMs with up to 512 rows.

Additional address bits (for larger DRAMs) may also be multiplexed externally as long as the DRAM refreshing requirements do not exceed 512 row addresses.
The WG output of the controller should be used to multiplex between the external row and column address bits. However it is important that the propagation delay through the external multiplexer does not cause column address setup violations on the dynamic RAM.

* The CAS decode logic is not necessary if multiple CAS signals are not required The application also does not show further decoding of multiple CAS signals to distinguish between Upper and Lower data bytes. If required, multiple CAS signal generation and Upper and Lower byte decoding can be accomplished as shown in Figures $16-18$. ** Propagation delay through the multiplexer should be considered when using the controller for 1Mbit addressing.

Figure 7. Using the Controller to Address 1Mbit DRAMs

DRAM Dual-Ported Controllers

AC WAVEFORMS

Figure 8. Request $1\left(\overline{\operatorname{REQ}}_{\mathbf{1}}\right)$ Memory Access Cycle Timing for F764/765 and F764A/765A

DRAM Dual-Ported Controllers

AC WAVEFORMS

Figure 10. Request $1\left(\overline{\operatorname{REQ}}_{1}\right)$ Memory Access Cycle Timing Following a Refresh Cycle for F764/765 and F764A/765A

Figure 11. Request $2\left(\overline{R E Q}_{2}\right)$ Memory Access Cycle Timing Following a Refresh Cycle for F764/765 and F764A/765A

Figure 12. Request $1\left(\overline{\operatorname{REQ}}_{1}\right)$ Memory Access Cycle Timing for F764-1/765-1

DRAM Dual-Ported Controllers

DRAM Dual-Ported Controllers

DRAM Dual-Ported Controllers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range).

SYMBOL	PARAMETER	74F764/765, 74F764A/765A	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
louT	Current applied to output in Low output state	500	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F764/765, 74F764A/765A			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current ${ }^{1}$			24	mA
T_{A}	Operating free-air temperature ${ }^{1}$	0		70^{\prime}	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transient currents will exceed these values in actual operation. Please refer to Appendix A for detailed discussion.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F764/765, 74F764A/765A			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5	3.2		V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
$\mathrm{VOH}^{3}{ }^{3}$	High-level output voltage		$1 \mathrm{OH} 2^{3}=-35 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
VoL	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{2}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.50	V				
$\mathrm{V}_{\mathrm{OL} 2}{ }^{4}$	Low-level output voltage			$\mathrm{OLL2}^{4}=60 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.45	0.80	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
$\\|$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{5}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				150	200	mA			
		$\mathrm{I}_{\text {ccl }}$					165	210	mA			

NOTES:

1. For conditions shown as MIN or MAX , use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Refer to Appendix A.
4. Refer to Appendix A.
5. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well over the normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER ${ }^{1}$	74F764/765, 74F764A/765A					UNIT
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ R_{\mathrm{L}}=70 \Omega \\ \hline \end{gathered}$		
		Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{G})$ to $\overline{\mathrm{SEL}}_{1}$	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\mathrm{CP}(\mathrm{A})$ to $\overline{\mathrm{SEL}}_{1}$	5	10	14	5	16	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}^{\prime}\right)$ to $\overline{\mathrm{SEL}}_{2}$	5	10	14	5	16	ns
$t_{\text {PHL }}$	Propagation delay $\mathrm{CP}\left(\mathrm{A}^{\prime}\right)$ to $\overline{\mathrm{SEL}}_{2}$	5	10	14	5	16	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{B})$ to GNT	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(G or G^{\prime}) to GNT	5	10	15	5	16	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\mathrm{CP}(\mathrm{B})$ to MA(row address)	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{F}$ or H$)$ to $\overline{\mathrm{RAS}}$	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(C) to $\overline{\mathrm{RAS}}$	5	10	14	5	16	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{D})$ to WG	5	10	14	5	16	ns
$t_{\text {PHL }}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}\right.$ or G^{\prime}) to WG	8	13	17	8	18	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\mathrm{CP}(\mathrm{D})$ to MA(column address)	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation delay CP(G or G^{\prime}) to CASEN	7	17	23	7	25	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{CP}(\mathrm{E})$ to $\overline{\text { CASEN }}$	5	10	14	5	16	ns
$\mathrm{t}_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{F})$ to DTACK	5	10	14	5	16	ns
$t_{\text {PHL }}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}\right.$ or G^{\prime}) to DTACK	6	13	17	5	18	ns
74F765, 74F765A Only							
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $A_{1}-A_{18}$ to $M A_{0}-M A_{8}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{gathered} 12 \\ 8 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 19 \end{aligned}$	ns

NOTE:

1. For test conditions, see the $A C$ waveforms.

AC SETUP AND HOLD REQUIREMENTS

SYMBOL	PARAMETER ${ }^{2}$	74F764/765, 74F764A/765A					UNIT
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$ to CP	2 2			2		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP to $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$	2			3		ns
$\begin{aligned} & \mathrm{t}_{\mathbf{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{w}}(\mathrm{L}) \end{aligned}$	CP pulse width High or Low	5 5			5 5		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	RCP pulse width High or Low	$\begin{aligned} & 10 \\ & 10 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns
74F764, 74F764A Only							
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup time, High or Low $\mathrm{A}_{1}-\mathrm{A}_{18}$ to $\mathrm{CP}(\downarrow)$	-4^{1} -4			-5 -5		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP(\downarrow) to $\mathrm{A}_{1}-\mathrm{A}_{18}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			5		ns
74F764/765 Only							
$\mathrm{f}_{\text {max }}$	Input clock frequency	100	150		100		MHz
74F764A/765A Only							
$f_{\text {max }}$	Input clock frequency	150	175		150		MHz

NOTES:

1. These numbers indicate that the address inputs have a negative setup time and could be valid 4 ns after the falling edge of the $C P$ clock. It is suggested that SEL_{2} be used to enable Address Bus 2 and the opposite polarity of the same be used, instead of $\mathbf{S E L}_{1}$ to enable Address Bus 1 . This will insure that setup time for Address Bus 1 is not violated.
2. For the Test Conditions, see the AC Waveforms.

DRAM Dual-Ported Controllers

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range).

SYMBOL	PARAMETER	$\mathbf{7 4 F 7 6 4 - 1 / 7 6 5 - 1}$	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	500	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F764-1/765-1			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current ${ }^{1}$			-20	mA
loL	Low-level output current ${ }^{1}$			8	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transient currents will exceed these values in actual operation. Please refer to Appendix A for detailed discussion.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			$\begin{aligned} & \text { 74F764-1, } \\ & \text { 74F765-1 } \end{aligned}$			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4	2.70		V
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.6	3.0				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOL}^{2}=8 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.30	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$			0.30	0.50	V				
$\mathrm{V}_{\mathrm{OL} 2}{ }^{3}$	Low-level output voltage			$1 \mathrm{LL}^{3}=75 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {CC }}$		2.1	2.5	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\text {IK }}$				-0.7	-1.2	V		
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.2	-0.6	mA			
los	Short-circuit output current ${ }^{4}$		$V_{C C}=M A X$			-80	-150	-225	mA			
Icc	Supply current (total)	${ }^{\text {CCH }}$	$V_{C C}=\operatorname{MAX}$				120	165	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					125	170	mA			

NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Refer to Appendix A.
4. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımıze internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well over the normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	74F764-1/765-1					UNIT
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \\ \hline \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	100	150		100		MHz
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{G})$ to SEL_{1}	9	12	15	8	17	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{CP}(\mathrm{A})$ to $\overline{S E L}_{1}$	13	16	20	12	22	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}^{\prime}\right)$ to SEL_{2}	9	12	15	8	17	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{CP}\left(\mathrm{A}^{\prime}\right)$ to SEL_{2}	13	16	20	12	22	ns
$t_{\text {PLH }}$	Propagation delay CP(B) to GNT	9	12	14	8	16	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}\right.$ or G^{\prime}) to GNT	20	23	26	17	28	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\mathrm{CP}(\mathrm{B})$ to MA (row address)	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation delay CP(F or H$)$ to $\overline{\mathrm{RAS}}$	11	14	16	10	18	ns
$t_{\text {PHL }}$	Propagation delay CP(C) to $\overline{\text { RAS }}$	13	17	20	12	22	ns
$t_{\text {PLH }}$	Propagation delay $\mathrm{CP}(\mathrm{D})$ to WG	9	11	14	8	16	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay $\mathrm{CP}\left(\mathrm{G}\right.$ or G^{\prime}) to WG	20	23	26	19	26	ns
$t_{\text {PLH }}$ t_{PHL}	Propagation delay $\mathrm{CP}(\mathrm{D})$ to MA (column address)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 21 \end{aligned}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 23 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation delay CP(G or G^{\prime}) to CASEN	14	17	20	12	22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(E) to CASEN	14	16	19	13	21	ns
$t_{\text {PLH }}$	Propagation delay CP(F) to DTACK	10	12	15	9	17	ns
$t_{\text {PHL }}$	Propagation delay CP(G or G^{\prime}) to DTACK	20	23	26	19	28	ns
74F765-1 Only							
$\mathrm{t}_{\mathrm{PLH}}$ t_{PHL}	Propagation delay $A_{1}-A_{18}$ to $M A_{0}-M A_{8}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	ns

AC SETUP AND HOLD REQUIREMENTS

SYMBOL	PARAMETER	74F764-1/765-1					UNIT
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$ to CP	3	1		4		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP to $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$	2	0		3		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	CP pulse width High or Low	5	3		5		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	RCP pulse width High or Low	5			5		ns
74F764-1 Only							
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low $A_{1}-A_{18}$ to CP(\downarrow)	0	-1^{1}		1		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP(\downarrow) to $A_{1}-A_{18}$	5	3		6		ns

NOTE:

1. These numbers indicate that the address inputs have a negative setup time and could be valid 1 ns after the falling edge of the CP clock. It is suggested that $\overline{\mathrm{SEL}}_{2}$ be used to enable Address Bus 2 and the opposite polarity of the same be used, instead of SEL_{1} to enable Address Bus $\mathbf{1}$. This will insure that setup tıme for Address Bus 1 is not violated.
February 5, 1987

TEST CIRCUIT AND WAVEFORMS FOR ALL DEVICES

Test Circuit Simulating RAM Boards

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC Characteristics for value. $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

wFob450s
$V_{M}=15 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

APPLICATIONS

The DRAM dual-ported controller can be designed into a wide range of single and dualport interface configurations. The processors could be general or special-purpose (microcontrollers) and the data bus may differ in size.

Figure 16 shows a 68000 processor sharing a $64 \mathrm{~K} \times 8$ (two banks each consisting of sixteen $16 \mathrm{~K} \times 1$ devices) memory with a Z-80 processor. Since neither Z-80 nor 68000 have multiplexed address and data bus, the 'F765/F765A/F765-1 is appropriate.

Since the Z-80 has an 8-bit wide data bus, data buffers are used to convert the 16 -bit
memory data bus to an 8-bit wide processor bus. Address bit $\left(\mathrm{A}_{0}\right)$ from the $\mathrm{Z}-80$ serves as an enable to one of the two data buffers at a given time. Address bit $\left(\mathrm{A}_{15}\right)$ from either the Z-80 or the 68000 distinguishes between Memory Banks A and B. Where Bank A consists of Upper Data Byte A (UDBA) and Lower Data Byte A (LDBA) and Bank B consists of Upper Data Byte B (UDBB) and Lower Data Byte B (LDBB).
When the Z-80 is selected and A_{15} is a zero, all even bytes will be accessed from UDBA and all odd bytes from LDBA. Similarly, when A_{15} is a one, UDBB will contain all even bytes and LDBB all odd bytes.

For 68000, Upper and Lower Data Strobes (UDS and $\overline{L D S}$) determine whether a byte or word transfer will take place. The WAIT input on the Z-80 is asserted when $\overline{\mathrm{REQ}}_{1}$ is generated, and is negated when the GNT output is asserted by the controller. The additional gating circuitry is to ensure that DTACK to the 68000 is asserted only when it is selected.
Figure 17 shows two 8086 processors sharing 1MByte (two banks each consisting of sixteen $256 \mathrm{~K} \times 1$ devices) of dynamic RAM. Using 74F764 in this application may eliminate the need for an external address latch.
Similarly, Figure 18 shows two 68020 processors sharing the same amount of memory.

DRAM Dual-Ported Controllers

APPLICATIONS

Figure 16. A 68000 Processor Sharing $\mathbf{6 4 K} \times 8$ DRAM With a Z-80

APPLICATIONS

- It might be necessary to synchronize READY by the 8284A. Please refer to the 8086 data sheet
** Whether or not the 8086 address bus needs to be latched externally, should be determined by the relative speeds of the 8086 and the controller
Figure 17. Two $\mathbf{8 0 8 6}$ Processors Sharing 1MBYTE of DRAM

APPLICATIONS

BD09152S
Figure 18. Two 68020 Processors Sharing 1MBYTE of DRAM

74F764 FAMILY LINE DRIVING CHARACTERISTICS

The 74F764/765 and 74F764A/765A are designed to provide incident wave switching in Dual-Inline-Package (DIP) or Zig-zag-InlinePackage (ZIP) housed memory arrays and first reflected wave switching in Single-InlinePackage (SIP) or Single-Inline-Module (SIM) housed arrays. The 74F764-1/765-1, on the other hand, are designed to provide first reflected wave switching with as wide a range of characteristic impedances as possible.

The $\mathrm{l}_{\mathrm{OL} 2} / \mathrm{V}_{\mathrm{OL} 2}$ and $\mathrm{l}_{\mathrm{OH} 2} / \mathrm{V}_{\mathrm{OH} 2}$ parameters are included in the product specifications to assist engineers in designing systems which will switch memory array signal lines in the above mentioned manner. For example, the characteristic impedance of signal lines in DIP housed memory arrays is usually around 70Ω. If a signal line has settled out in a High state at 4 volts and must be pulled down to
0.8 volts or less on the incident wave, the DRAM Controller output must sink (4-0.8)/ 70 A or 46 mA at 0.8 volts. The lol2 $\mathrm{V}_{\mathrm{OL} 2}$ parameter indicates that the signal line in question will always be switched on the incident wave over the full commercial operating range.

It should be noted here that lol2 $/ \mathrm{V}_{\mathrm{OL} 2}$ and $\mathrm{l}_{\mathrm{OH} 2} / \mathrm{V}_{\mathrm{OH} 2}$ are intended for transient use only and that steady state operation at $\mathrm{l}_{\mathrm{OH} 2}$ or $\mathrm{l}_{\mathrm{OL} 2}$ is not recommended (long term, steady state operation at these currents may result in electromigration).

Figures 1-4 show the output I/V characteristics of the DRAM Controller family of devices. These figures also demonstrate a graphical method for determining the incident wave (and first reflected wave) characteristics of the devices.

The suggested line termination for the 74F764/765 or 74F764A/765A driving dual-
inline packaged or zig-zag packaged DRAMs is shown in Figure 8a. When driving singleinline modules using the 74F764/765 or 74F764A/765A, or when driving any type of memory arrays with the 74F764-1/765-1, the schottky diode termination shown in Figure 8 b can be used (most of these will need no termination at all).

Figures 5-7 are double exposures showing the High to Low and Low to High transitions while driving four banks of eight Dual-InlinePackaged DRAMs. The signal line is unterminated in Figures 5 and 6, allowing the 74F764/765/764A/765A to ring two volts below ground while the 74F764-1/765-1 make nice clean transitions. In Figure 7 the 74F764/765/764A/765A is driving the same signal line but with one of its four branches terminated with its characteristic impedance in series with 300 pF to ground (the worst of the four branches is shown).

Figure 1. I-V Output Characteristics of the 74F764 and 765 in the Low State. Light Line is the I-V Curve of a 25Ω Transmission Line Settled to 3.5 V (Typical for Recommended Termination). The High to Low Incident Wave on This Line Would Typically be to .8 V

Figure 3. I-V Output Characteristics of the 74F764-1 and 765-1 in the Low State. Any Unterminated Line Impedance Between 18Ω and 70Ω (Both Shown) Will Typically Switch on the First Reflected Wave Without Violating the-1V Minimum Input Voltage Specification Typical of DRAMs

Figure 2. I-V Output Characteristics of the 74F764 and 765 in the High State. Light Line is the I-V Curve of a 35Ω Transmission Line Settled to .25 V . The Incident Wave on the Low to High Transition Will Typically be to 2.4V on This Line. Any Line Over 35Ω Will Typically be Switched on the Incident Wave

Figure 4. I-V Output Characteristics of the 74F764-1 and 765-1 While in the High State

Figure 5. 74F764-1/765-1 Driving 32 DRAMs (Unterminated)

Figure 7. 74F764/765/764A/765A Driving 32 DRAMs (Terminated as in Figure 8a)

Signetics

FAST 74F779
 8 -Bit Counter

8-Bit Bidirectional Binary Counter (3-State) Product Specification

FAST Products

FEATURES

- Multiplexed 3-State I/O ports for bus oriented applications
- Built-in look-ahead carry capability
- Center power pins to reduce effects of package inductance
- Count frequency 145 MHz typical
- Supply current 90mA typical
- See 'F269 for 24-pin separate I/O port version
- See 'F579 for 20-pin version

DESCRIPTION

The 'F779 is a fully synchronous 8 -stage up/down counter with multiplexed 3State I/O ports for bus-oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pins ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The device also features carry lookahead for easy cascading. All state changes are initiated by the rising edge of the clock.

When CET is High the data outputs are held in their current state and TC is held High. The TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F779	145 MHz	90 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F779N
16-Pin Plastic SOL 1	N74F779D

NOTE:

1. Thermal mounting techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count enable trickle input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input pulse (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count output (active-Low)	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS					OPERATING MODE
S1	so	CET	OE	CP	
X	X	X	H	X	I/Oa to I/Oh in Hi-Z
X	X	X	L	X	Flip-flop outputs appear on I/O lines
L	L	X	X	\uparrow	Parallel load all flip-flops
(not LL)		H	X	\uparrow	Hold ($\overline{T C}$ held High)
H	L	L	X	\uparrow	Count up
L	H	L	X	\uparrow	Count down

$H=$ High voltage level
$L=$ Low voltage level
$X=$ don't care
$\uparrow=$ Low-to-High clock transition
(not LLL) $=\overline{C S}$ and $\overline{P E}$ should never be Low voltage level at the same time in the hold mode only.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{Cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	TC	40	mA
		$1 / O_{n}$	48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{CC}	Supply voltage		4.50	5.0	5.50	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	\checkmark
IIK	Input clamp current				-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current	$1 / \mathrm{O}_{0}-1 / \mathrm{C}_{7}$			-3	mA
		$\overline{\text { TC }}$			-1	mA
lob	Low-level output current	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$			24	mA
		TC			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

8-Bit Counter

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	TC				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}^{\text {O }}=-1 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$1 / O_{n}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{H H}=M I N, I_{L L}=M A X \end{aligned}$		$\pm 10 \% V_{\text {CC }}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=l_{\mathrm{IK}}$				-0.73	-1.2	V	
4	Input current at maximum input voltage	$1 / O_{n}$	$V_{C C}=\mathrm{MAX}$,					1.0	$\mu \mathrm{A}$			
		others	$V_{C C}=5.5 \mathrm{~V}, V^{\prime}$					100	mA			
$\mathrm{I}_{\mathbf{H}}$	High-level input current	except$1 / O_{n}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILI	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
$\mathrm{lozH}^{+} \mathrm{l}_{\mathrm{H}}$	OFF-state current High-level voltage applied	$1 / O_{n}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozl + IL	OFF-state current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-60		-150	mA			
lcc	Supply current (total)	ICCH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				82	116	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					91	128	mA			
		Iccz					97	136	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	125	145		115		MHz
$t_{p L H}$ $t_{\text {PHL }}$	Propagation delay CP to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to TC	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $\overline{\text { CET }}$ to $\overline{T C}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PZH }}$ tpZL	Disable time from High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Enable time from High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	1.0 1.0	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / O_{n}$ to CP	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low I / O_{n} to CP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CET to CP	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CET to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S_{n} to CP	Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns

AC WAVEFORMS

WF21830S
Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths and Maximum Clock Frequency

WF21254

Waveform 2. Propagation Delay, CET input to Terminal Count Output

Waveform 3. Setup and Hold Times
Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time From High Level

AC WAVEFORMS (Continued)

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=15 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.
TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- Serial ($n \times 8$)-bit multiplication
- Final stage adder/subtracter for optional use in adding a B bit to obtain S \pm B.
- Two's Complement multiplication
- Cascadable for any number of bits
- Full Adder and B-1 input included for maximum flexibility
- Maximum clock frequency 50 MHz guaranteed
- Supply current $100 \mathrm{~mA} \max$

DESCRIPTION

The 'F784 is a serial ($\mathrm{n} \times 8$)-bit multiplier with a final stage adder/subtracter for optional use in adding a B bit to obtain $S \pm B$. A ' $B-1$ ' bit can also be added via an internal flip-flop to achieve a 1 -bit delay. The X word is parallel loaded (8 bits wide) into latches and the Y word is clocked in serially from a shift register. The 'F784 is particularly useful for highspeed digital filtering or butterfly networks in fast Fourier transforms.

FAST 74F784
Multiplier

8-Bit Serial/Parallel Multiplier (With Adder/Subtracter) Preliminary Specification

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 784	65 MHz	67 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{~}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F784N
20 -Pin Plastic SOL	N74F784D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{X}_{0}-\mathrm{X}_{7}$	Multiplicand data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y	Serial multiplier input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
K	Serial expansion input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Parallel Load input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~A} / \overline{\mathrm{S}}$	Add/subtract input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{\mathrm{n}}$	Serial B input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{\mathrm{n}-1}$	Delayed serial B input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SP	Serial X•Y product output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~S} \pm \mathrm{B}$	Serial Y.Y $\pm \mathrm{B}$ output	$50 / 33.3$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

The 'F784 is a serial/parallel 8-bit multiplier. Also included is an adder/subtracter stage. The X word (multiplicand) is loaded into a register while simultaneously clearing the arithmetic cell flip-flops in preparation for a multiplication. The Y word (multiplier) is clocked in serially.
Expansion capability is provided via the M and K inputs. The K (cascade) input is connected to the SO output of the more significant chip. The M (mode) input is used to determine whether the multiplicand is to be
treated as a Two's Complement or unsigned number.

The 'F784 has logic to enable complex arithmetic to be performed. A serial adder/subtracter enables constants to be added to the product. Typically, this feature would be used in FFT butterfly networks to reduce package count and power.

Two outputs are provided: the product $X \cdot Y$ and the product $X \cdot Y \pm B$. Because of the internal adder/subtracter, a speed advantage
is gained when using the 'F784 over using a separate adder and multiplier chip.
During a multiplication operation, the first clock cycle is used to load both the X word (multiplicand) and the first bit of the Y word (operand) into the input registers. At this time there is no valid data at the SP output, so that B bits added will not give the correct sum output. In order to load the first B bit on the same clock as X and Y, a B_{n-1} input is provided which delays the B data by one clock cycle. Thus, a valid output results.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH^{\prime}	High-level output current			-1	mA
loL	Low-level output current			20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		74F784			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.4		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{IOL}^{2}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	v			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 H}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
ILL	Low-level input current	$\overline{\mathrm{P}}$	$V_{C C}=M A X, V_{1}=0.5 V$				-1.2	mA		
		Others				-0.4	-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
Icc	Supply current (total)		$V_{C C}=$ MAX			67	100	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F784					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	50	65		50		MHz
tPHL	Propagation delay $\overline{\text { PL to }} \mathrm{SP}$	Waveform 2	6.0		13.0	5.0	14.5	ns
$t_{\text {PHL }}$	Propagation delay $\overline{\mathrm{PL}}$ to $\mathrm{S} \pm \mathrm{B}$	Waveform 2	5.5		12.0	4.5	13.5	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CP to SP	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$		$\begin{gathered} 9 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLH }}$ tphi	Propagation delay CP to $\mathrm{S} \pm \mathrm{B}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	3.5 3.5	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F784					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time K to CP	Waveform 3	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$			$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{n}(L) \end{aligned}$	Hold time K to CP	Waveform 3	$\begin{gathered} 0 \\ 1.0 \end{gathered}$			$\begin{gathered} 0 \\ 1.0 \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time Y to CP	Waveform 3	$\begin{aligned} & 15 \\ & 15 \end{aligned}$			$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time Y to CP	Waveform 3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1.5 1.5		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time X_{3} to $\overline{\mathrm{PL}}$	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			6.0 6.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time X_{3} to $\overline{P L}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time B_{n} to CP	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time B_{n} to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $\mathrm{A} / \overline{\mathrm{S}}$ to CP	Waveform 3	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(H) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time $\mathrm{A} / \overline{\mathrm{S}}$ to CP	Waveform 3	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			1.5 1.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time B_{n} to CP	Waveform 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time B_{n} to CP	Waveform 3	0			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
trec	Recovery time $\overline{\text { PL to CP }}$	Waveform 2	6.5			7.5		ns
$t_{\text {w }}(L)$	Pulse width		5.0			6.0		ns
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP pulse width	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			6.0 6.0		ns

Multiplier

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

WF06450S
$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t $_{\text {TLH }}$	t $_{\text {THL }}$
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- Arbitrates between 4 asynchronous inputs
- Separate grant output for each input
- Common output enable
- On-board 4-input AND gate

DESCRIPTION

The 74F786 is an asynchronous 4-input arbiter designed for high-speed real-time applications. The priority of arbitration is determined on first-come first-served basis.
Separate Bus Grant ($\overline{\mathrm{BG}}_{n}$) outputs are available to indicate which one of the request inputs is served by the arbitration logic. All $\overline{B G}$ outputs are enabled by a common enable (EN) input.
The 74F786 is available in a 16 -pin plastic DIP and SO packages. In order to generate a bus request signal, a separate 4 -input AND gate is provided. This may also be used as an independent AND gate. Arbiter

Preliminary Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 786$	5.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F786N
16-Pin Plastic SO	N74F786D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{BR1}}-\overline{\mathrm{BR} 4}$	Bus Request inputs (active-Low)	3.0/3.0	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
A, B, C, D	AND gate inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
EN	Common Bus Grant output enable input (active-Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Yout	AND gate output	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
BG1- $\overline{\text { BG4 }}$	Bus Grant outputs (active-Low)	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

Signetics

FAST Products

FEATURES

- High-speed parallel registers with positive edge-triggered D-type flip-flops
- Extra data width for wide address/data paths or buses with parity
- High-impedance NPN base input structure minimizes bus loading
- $I_{\text {IL }}$ is $20 \mu \mathrm{~A}$ vs $1000 \mu \mathrm{~A}$ for AM29821 series
- Buffered control inputs reduce AC effects
- Ideal where high-speed, lightloading, or increased fan-in are required as with MOS microprocessors
- Positive and negative overshoots are clamped to ground
- 3-State outputs glitch free during power-up and down
- 48mA Sink current
- Slim DIP 300mil package
- Broadside pinout
- Pin-for-pin and function compatible with AMD AM29821 29826 series

DESCRIPTION

The 74F821 Series Bus Interface Registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity.
The 'F821 and 'F822 are buffered 10-bit wide versions of the popular 'F374/ 'F534 functions.
The 'F823 and 'F824 are 9-bit wide buffered registers with Clock Enable and Master Reset which are ideal for parity bus interfacing in high-performance microprogrammed systems.
The 'F825 and 'F826 are 8-bit buffered registers with all the 'F823/'F824 controls plus multiple Enables $\left(\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}\right.$, $\overline{\mathrm{OE}}_{2}$) to allow multiuser control of the interface, e.g., CS, DMA, and RD/ $\overline{\mathrm{WR}}$. They are ideal for use as an output port requiring high $\overline{\mathrm{TOL}^{\prime}} / \overline{\mathrm{OH}}$.

FAST 74F821/822/823/ 824/825/826 Bus Interface Registers

Preliminary Specification

'F821 10-Bit Bus Interface Register, Non-Inverting (3-State)
'F822 10-Bit Bus Interface Register, Inverting (3-State)
'F823 9-Bit Bus Interface Register, Non-Inverting (3-State)
'F824 9-Bit Bus Interface Register, Inverting (3-State)
'F825 8-Bit Bus Interface Register, Non-Inverting (3-State)
'F826 8-Bit Bus Interface Register, Inverting (3-State)

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
'F821/' 'F822/ 'F823 'F824/' $\mathrm{F} 825 /{ }^{\prime} \mathrm{F} 826$	115 MHz	75 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F821N, N74F823N, N74F825N N74F822N, N74F824N, N74F826N
24-Pin Plastic SOL	N74F821D, N74F823D, N74F825D N74F822D, N74F824D, N74F826D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\begin{aligned} & \text { 'F821 } \\ & \text { 'F822 } \end{aligned}$	D_{n}	Data input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	OE	Output Enable input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Data Outputs	750/106.7	$15 \mu \mathrm{~A} / 64 \mu \mathrm{~A}$
$\begin{aligned} & \text { 'F823 } \\ & \text { 'F824 } \end{aligned}$	D_{n}	Data input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	EN	Clock Enable input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\text { OE }}$	Output Enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Data outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\begin{aligned} & \text { 'F825 } \\ & \text { 'F826 } \end{aligned}$	D_{n}	Data input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	EN	Clock Enable input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	MR	Master Reset input (active-Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{OE}}, \overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Data outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the HIGH state and 0.6 mA in the LOW state.

PIN CONFIGURATION

'F822	
OE 1 $D_{0} 2$	$24{ }^{\text {c }}$ c
	${ }_{23} \bar{a}_{0}$
$\begin{array}{lll} D_{0} & 2 \\ D_{1} & \boxed{3} \end{array}$	22 $\overline{\mathrm{a}}_{1}$
$\mathrm{D}_{2} 4$	21 \bar{a}_{2}
$\mathrm{D}_{3} 5$	$20 \bar{Q}_{3}$
$\mathrm{D}_{4} 6$	19] \bar{a}_{4}
$\mathrm{D}_{5} 7$	$18 \overline{\mathrm{a}}_{5}$
$\mathrm{D}_{6} 8$	17] $\overline{\mathrm{a}}_{6}$
$D_{7}[9$	$16 \bar{Q}_{7}$
$\mathrm{D}_{8} 10$	$15 \overline{\mathrm{a}}_{8}$
$\mathrm{D}_{9} 11$	$14 \overline{\mathrm{O}}_{9}$
and 12	13 CP
	cooszos

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM for 'F821

$V_{C C}=\operatorname{Pin} 24$
$V_{C C}=\operatorname{PIn} 24$
$G N D=\operatorname{PIn} 12$

LOGIC DIAGRAM for 'F822

$V_{C C}=\operatorname{Pin} 24$
$V_{C C}=\operatorname{Pin} 24$
GND $=P$ In 12

LOGIC DIAGRAM for 'F823

[^20]
LOGIC DIAGRAM for 'F824

LOGIC DIAGRAM for 'F825

LOGIC DIAGRAM for 'F826

FUNCTION TABLE FOR 'F821 AND 'F822

INPUTS			OUTPUTS	
$\overline{O E}$	CP	D_{n}	$\begin{gathered} \text { Q } \\ \text { 'F821 } \end{gathered}$	$\begin{gathered} \overline{\mathbf{Q}} \\ \text { 'F822 } \end{gathered}$
L	\uparrow	1	L	H
L	\uparrow	h	H	L
L	L	X	No change	No change
L	H	X	No change	No change
H	X	X	Z	Z

FUNCTION TABLE FOR 'F823 AND 'F824

INPUTS					OUTPUTS		
$\overline{\mathbf{O E}}$	$\overline{\text { MR }}$	$\overline{\text { EN }}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	\mathbf{Q} 'F823	\mathbf{Q} 'F824	
L	L	X	X	X	L	L	
L	H	L	\uparrow	h	H	L	
L	H	L	\uparrow	I	L	H	
L	H	H	X	X	No change	No change	
H	X	X	X	X	Z	Z	

FUNCTION TABLE FOR 'F825 AND 'F826

INPUTS					OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{n}}$	$\overline{\text { MR }}$	EN	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	\mathbf{Q} 'F825	$\mathbf{\mathbf { Q }}$ 'F826
L	L	X	X	X	L	L
L	H	L	\uparrow	h	H	L
L	H	L	\uparrow	I	L	H
L	H	H	X	X	No change	No change
H	X	X	X	X	Z	Z

[^21]$h=$ High voltage level one setup time prior to the Low-to-High clock transition
L = Low voltage level steady state
1 = Low voltage level one setup time prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
Z $=$ High-Impedance

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-15	mA
I_{OL}	Low-level output current			64	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			$\begin{aligned} & \text { 74F821, } 822,823 \\ & \text { 74F824, } 825,826 \\ & \hline \end{aligned}$			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.3				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
Vol	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$				0.35	0.50	V			
			$\mathrm{IOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$1 / 2$	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state output current, High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	'F821, 'F822	$V_{C C}=M A X$				75	110	mA			
		'F823, 'F824						110	mA			
		'F825, 'F826						86	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F821, 74F822, 74F823, 74F824, 74F825, 74F826					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {max }}$	Maximum clock fr			Waveform 1	100					MHz
$\begin{aligned} & \hline \mathrm{tPLH} \\ & \mathrm{t}_{\mathrm{tPHL}} \\ & \hline \end{aligned}$	Propagation delay $C P$ to Q_{n} or \bar{Q}_{n}			Waveform 1			$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$			ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{\mathrm{MR}}$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$	$\begin{aligned} & \text { 'F823, 'F824 } \\ & \text { 'F825, 'F826 } \end{aligned}$	Waveform 2			15.0			ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output enable time to High or Low level		Waveform 4 Waveform 5			$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$			ns	
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\mathrm{pLLZ}} \\ & \hline \end{aligned}$	Output disable time from High or Low level		Waveform 5 Waveform 5			$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$			ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F821, 74F822, 74F823, 74F824, 74F825, 74F826					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{n} to CP			Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$					ns
$\begin{aligned} & t_{h}(H) \\ & t_{n}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to CP			Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$					ns
$t_{w}(H)$ $t_{w}(\mathrm{~L})$	Clock pulse width High or Low		Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$					ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low, \bar{E}_{n} to CP	$\begin{aligned} & \text { 'F823, } \\ & \text { 'F824, } \\ & \text { 'F825, } \\ & \text { 'F826 } \end{aligned}$	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$					ns	
$t_{n}(H)$ $t_{h}(L)$	Hold time, High or Low, \bar{E}_{n} to CP		Waveform 3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					ns	
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ Pulse width, Low		Waveform 2	5.0					ns	
$\mathrm{t}_{\text {rec }}$	$\overline{\mathrm{MR}}$ Recovery time		Waveform 2	5.0					ns	

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

WF06471S Test Circuit for 3-State Outputs						
SWITCH POSITION	FAMILY	INPUT PULSE REQUIREMENTS				
TEST \quad SWITCH		Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	${ }_{\text {t }}^{\text {THL }}$
$t_{\text {pLz }}$ closed closed $t_{p Z L}$ All other	74F	3.0 V	1 MHz	500ns	2.5ns	2.5ns
DEFINITIONS $R_{L}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value. $R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.						

Signetics

FAST Products

FEATURES

- Outputs sink 64mA
- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- I_{IL} is $20 \mu \mathrm{~A}$ vs FAST family spec of $600 \mu \mathrm{~A}$ and $1000 \mu \mathrm{~A}$ for AMD 29827/828 series
- Ideal where high speed, light bus loading, and increased fan-in are required
- Controlled rise and fall times to minimize ground bounce
- Glitch free power up in 3-State
- Flow through pinout architecture for microprocessor oriented applications
- Slim 300mil-wide plastic 24-pin package
- Pinout and function compatible with AMD 29827/828 series

FAST 74F827, 74F828 Buffers

'F827 10-Bit Buffer/Line Driver, Non-Inverting (3-State) 'F828 10-Bit Buffer/Line Driver, Inverting (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 827	6.0 ns	60 mA
74 F 828	6.0 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V C C}_{\mathbf{~}} \mathbf{5 V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F827N, N74F828N
24-Pin Plastic SOL	N74F827D, N74F828D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{9}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	Output enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{9}$	Data outputs for 'F827	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{9}$	Data outputs for 'F828	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
1 One (10) FAST Unit Load is defined as. $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

DESCRIPTION

The 'F827 and 'F828 10-Bit bus buffers provide High performance bus interface buffering for wide data/address paths or busses
carrying parity. They have NOR Output Enables $\left(\mathrm{OE}_{0}, \mathrm{OE}_{1}\right)$ for maximum control flexibility.

The 'F827 and 'F828 are functionally and pin compatible to AMD AM29827 and AM29828. The 'F828 is an inverting version of 'F827.

LOGIC DIAGRAM FOR 'F827

LOGIC DIAGRAM FOR 'F828

FUNCTION TABLE

INPUTS		OUTPUTS		OPERATING MODE
$\bar{\sigma} \mathrm{E}_{\mathrm{n}}$	D_{n}	'F827	'F828	
		Q_{n}	$\mathbf{Q}_{\mathbf{n}}$	
L	L	L	H	Transparent
L	H	H	L	Transparent
H	X	Z	Z	Hi-Z

[^22]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.0	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{l}_{1 \mathrm{~K}}$	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
lOL	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F827, 74F828			UNIT			
				Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage						$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.3				V			
				$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.0				v			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
V_{OL}	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}^{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V		
				$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{H}	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.4	-20	mA			
lozh	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
'ozl	OFF-state output current, Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
${ }^{\text {ICC }}$	Supply current (total)	'F827	ICCH	$V_{C C}=M A X$				50	70	mA			
			$\mathrm{I}_{\text {CCL }}$					70	100	mA			
			ICcz					60	90	mA			
		'F828	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				30	45	mA			
			$\mathrm{I}_{\text {CCL }}$					65	85	mA			
			Iccz					55	70	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minımize internal heatıng and more accurately reflect operatıonal values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	$74 F 827$					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}^{=}+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \overline{t_{\text {pZH }}} \\ & t_{\text {PZZ }} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5^{\circ} \\ & 8.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F828					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathbf{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{tpLH}^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay D_{n} to \bar{Q}_{n}	Waveform 2	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpzH}^{\mathrm{t}_{\text {pl }}} \end{aligned}$	Output Enable time $\overline{O E}$ to \bar{Q}_{n}	Waveform 3 Waveform 4	$\begin{aligned} & \hline 7.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 13.0 \\ 12.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & t_{\text {tpLZ }} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to \bar{Q}_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

WF06471S Test Circuit for 3-State Outputs						
SWITCH POSITION	FAMILY	INPUT PULSE REQUIREMENTS				
TEST \quad SWITCH		Amplitude	Rep. Rate	Pulse Width	$t_{\text {the }}$	$\mathbf{t}_{\text {THL }}$
tpLz closed closed tpZL $^{\text {All other }}$ open	74F	3.0 V	1 MHz	500ns	2.5ns	2.5ns
DEFINITIONS $R_{L}=$ Load resistor; see AC CHARACTERISTICS for value. $C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value. $R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.						

FAST Products

FEATURES

- 5-bit address generator (32 Micro-instruction addressability)
- Two subroutine branching capability
- Interrupt branching
- Cascadable for increased addressing
- Direct branching over full address range

DESCRIPTION

The Signetics 74F838 Microprogram Sequence Controller generates addresses to access instructions from a microprogram memory.

This high-speed device provides an efficient means of controlling the flow through a microprogram by providing a powerful set of sequencing functions.

In addition to providing branching facility over the entire address range, the device also supports two subroutines and an interrupt level.
The 74F838 can directly address up to 32 micro-instructions; however, two or more of these devices may be cascaded for increased addressing. For example: two devices can address 1 K and three devices can address up to 32 K of program storage.
Combined with memory, the 74F838 forms a powerful control section for CPUs and I/O controllers.

The device is available in a 20-pin Dual-In-Line (DIP) and SOL Packages.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
N74F838	90 MHz	65 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} \mathbf{}{ }^{\circ} \mathbf{C}$
20-Pin Plastic DIP	N74F838
20-Pin Plastic SOL	N74F838D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
JSO- JS4	Jump State inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
JMP	Jump input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SUB1,SUB2	Subroutine inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { NTT }}$	Interrupt input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CLK	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CI	Cascade-In/input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
RESET	Reset input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PSO - PS4	Present state outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
CO	Cascade-Out/output	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Signetics

FAST Products

FEATURES

- High-speed parallel latches
- Extra data width for wide address/data paths or buses carrying parity
- High-impedance NPN base input structure minimizes bus loading
- IL is $20 \mu \mathrm{~A}$ vs $1000 \mu \mathrm{~A}$ for AM29841 series
- Buffered control inputs to reduce AC effects
- Ideal where high-speed, light loading, or increased fan-in are required as with MOS microprocessors
- Positive and negative over-shoots are clamped to ground
- 3-State outputs glitch free during power-up and power-down
- 48mA sink current
- Slim DIP 300mil package
- Broadside pinout
- Pin-for-pin and function compatible with AMD
AM29841-29846 series

DESCRIPTION

The 'F841-'F846 bus interface latch series are designed to provide extra data width for wider address/data paths or busses carrying parity. The 'F841'F846 series are functionally and pin compatible to AMD AM29841AM29846 series.

The 'F841 consists of ten D-type latches with 3-State outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is High. This allows asynchronous operation, as the output transition follows the data in transition. On the LE High-to-Low transition, the data that meets the setup and hold time is latched.

FAST 74F841/842/843/
 844/845/846
 Bus Interface Latches

Preliminary Specification for 74F843 and 74F845
Product Specification for 74F841, 74F842, 74F844, and 74F846
'F841/'F842 10-Bit Bus Interface Latches, NINV/INV (3-State)
'F843/'F844 9-Bit Bus Interface Latches, NINV/INV (3-State)
'F845/'F846 8-Bit Bus Interface Latches, NINV/INV (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F841, 74F842	5.5 ns	60 mA
$74 \mathrm{~F} 843,74 \mathrm{~F} 844$	6.2 ns	65 mA
$74 \mathrm{~F} 845,74 \mathrm{~F} 846$	6.2 ns	60 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F841N, N74F842N, N74F843N N74F844N, N74F845N, N74F846N
24-Pin Plastic SOL	N74F841D, N74F842D, N74F843D N74F844N, N74F845N, N74F846N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D_{n}	Data input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
LE	Latch Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}, \overline{\mathrm{OE}}_{\mathrm{n}}}$	Output Enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{PRE}}$	Preset input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Q_{n}	Data output	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
\bar{Q}_{n}	Data output	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}}$) is Low. When OE is High the output is in the High-impedance state. The 'F842 is the inverted output version of 'F841.

The 'F843 consists of nine D-type latches with 3-State outputs.
In addition to the LE and $\overline{O E}$ pins, the 'F843 has a Master Reset (MR) pin and a Preset ($\overline{\mathrm{PRE}}$) pin. These pins are ideal for parity bus interfacing in high performance systems. When $\overline{M R}$ is Low, the outputs are Low if $\overline{\mathrm{OE}}$ is Low. When $\overline{\mathrm{MR}}$ is High, data can be entered into the
latch. When $\overline{\mathrm{PRE}}$ is Low, the outputs are High, if $\overline{O E}$ is Low. $\overline{P R E}$ overrides $\overline{M R}$. The 'F844 is the inverted output version of 'F843. The 'F845 consists of eight Dtype latches with 3-State outputs.
In addition to the LE, $\overline{\mathrm{OE}}, \overline{\mathrm{MR}}$ and $\overline{\mathrm{PRE}}$ pins, the 'F845 has two additional $\overline{\mathrm{OE}}$ pins making a total of three Output Enable ($\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$) pins.
The multiple Output Enables $\left(\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}\right.$, $\overline{\mathrm{OE}}_{2}$) allow multiuser control of the interface, e.g., $\overline{C S}$, DMA, and RD/WR. The 'F846 is the inverted output version of 'F845.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

'F842

Bus Interface Latches

PIN CONFIGURATION

| | |
| :--- | :--- | :--- |

LOGIC SYMBOL (IEEE/IEC)

	24 vcc
	${ }^{23} \mathrm{OE}_{2}$
	20 0_{0}
	（29）a_{1}
	$200 a_{2}$
	閑 a_{3}
	$18 a_{4}$
	17）a_{5}
	$16 a_{8}$
	${ }^{15} \mathrm{a}_{7}$
	640 PRE
	13 LE
	cosorvs
	＇F846
$\begin{aligned} & \sigma_{E_{0}} \sqrt{1} \\ & \left.\sigma_{1}\right]_{2} \end{aligned}$	24 v_{cc}
	${ }^{23} \overline{0}_{5}$
$D_{0}[3$$D_{1}[4$	20^{2}
	$2{ }^{2} \bar{a}_{1}$
$\mathrm{D}_{1} \mathrm{D}_{2} 5$	20 \bar{a}_{2}
$0_{3} 6$	190 \bar{a}_{3}
$\mathrm{D}_{4} \mathrm{D}_{5} 8$	10 \bar{a}_{4}
	77 a_{5}
$\mathrm{D}_{6} 9$	$18 \mathrm{a}_{8}$
$0_{7} 10$	70 a_{7}
$\begin{aligned} & \overline{\mathrm{CLR}} \text { 鱼 } \\ & \text { GND } \end{aligned}$	${ }^{\text {可 }}$ PRE
	［133 ${ }^{\text {LE }}$
	\％oss

LOGIC SYMBOL

LOGIC SYMBOL（IEEE／IEC）

＇F846

LOGIC DIAGRAM FOR 'F841

LOGIC DIAGRAM FOR 'F842

FUNCTION TABLE FOR 'F841 AND 'F842

INPUTS			OUTPUTS		OPERATING MODE
			'F841	'F842	
$\overline{\mathbf{O E}}$	LE	D_{n}	Q	$\overline{\mathbf{Q}}$	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Transparent
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Latched
H	X	X	Z	Z	Hi-Z
L	L	X	NC	NC	Hold

[^23]LOGIC DIAGRAM FOR 'F843

LOGIC DIAGRAM FOR 'F844

FUNCTION TABLE FOR 'F843 AND 'F844

INPUTS					OUTPUTS		OPERATING MODE
					'F843	'F844	
$\overline{O E}$	PRE	$\overline{M R}$	LE	D_{n}	Q	$\overline{\mathbf{Q}}$	
H	X	X	X	X	Z	Z	$\mathrm{Hi}-\mathrm{Z}$
L	L	X	X	X	H	H	Preset
L	H	L	X	X	L	L	Clear
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Transparent
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Latched
L	H	H	L	X	NC	NC	Hold

[^24]
LOGIC DIAGRAM FOR 'F845

LOGIC DIAGRAM FOR 'F846

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

FUNCTION TABLE FOR 'F845 AND 'F846

INPUTS					OUTPUTS		OPERATING MODE
					'F845	'F846	
$\overline{\mathrm{OE}}_{\mathrm{n}}$	PRE	$\overline{\text { MR }}$	LE	D_{n}	Q	$\overline{\mathbf{Q}}$	
H	X	X	X	X	Z	Z	Hi-Z
L	L	X	X	X	H	H	Preset
L	H	L	X	X	L	L	Clear
L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Transparent
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Latched
L	H	H	L	X	NC	NC	Hold

$H=$ High voltage level steady state
$h=$ High voltage level one setup time prior to the High-to-Low transition of LE
L = Low voltage level steady state
I = Low voltage level one setup time prior to the High-to-Low transition of LE
$\mathrm{X}=$ Don't care
$\mathbf{Z}=$ High-impedance
$\mathrm{NC}=\mathrm{No}$ change
$\downarrow=$ High-to-Low transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	84	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current			-15	mA
loL	Low-level output current			48	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F843, 74F845, 74F841, 74F842, 74F844, 74F846			UNIT			
				Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0					V			
				1	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4				V			
				$\mathrm{IOH}^{\text {a }}=-3 \mathrm{ma}$	$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7		3.4		V			
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lol}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.55	V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$			0.35	0.55	v				
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V		
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	mA			
lozH	OFF-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current, Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
ICC	Supply current (total)	'F841	ICCH	$V_{C C}=M A X$				50	70	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					60	80	mA			
			$\mathrm{I}_{\text {ccz }}$					70	95	mA			
Icc	Supply current (total)	'F842	ICCH	$V_{C C}=\mathrm{MAX}$				40	60	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					65	90	mA			
			$\mathrm{I}_{\mathrm{CCz}}$					60	90	mA			
Icc	Supply current (total)	$\begin{aligned} & \text { 'F844 } \\ & \text { 'F846 } \end{aligned}$	${ }^{\mathrm{ICCH}}$	$V_{C C}=$ MAX				50	70	mA			
			$\mathrm{I}_{\text {CCL }}$					70	100	mA			
			ICCz					70	100	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F841, 74F842					UNIT	
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{c \mathrm{C}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to Q_{n} or \bar{Q}_{n}	'F841		Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay LE to Q_{n} or \bar{Q}_{n}			Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay D_{n} to Q_{n} or \bar{Q}_{n}	'F842	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns	
$t_{\text {PLH }}$ tphL	Propagation delay LE to Q_{n} or \bar{Q}_{n}		Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PzL}} \\ & \hline \end{aligned}$	Output enable time to High or Low level, $\overline{\mathrm{O}} \mathrm{E}_{\mathrm{n}}$ to Q_{n} or \bar{Q}_{n}		Waveform 5 Waveform 6	$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 13.0 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output enable time to High or Low level, $\overline{\mathrm{O}} \mathrm{E}_{\mathrm{n}}$ to Q_{n} or \bar{Q}_{n}		Waveform 5 Waveform 6	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITIONS	74F841, 74F842				UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$					
			Min	Max	Min	Max			
$\begin{aligned} & t_{s}(H) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to LE			Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{s}(L) \end{aligned}$	Hold time, High or Low D_{n} to LE	'F841		Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		ns
$t_{w}(\mathrm{H})$	LE pulse width, High		Waveform 2	3.5		4.0		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{s}(L) \end{aligned}$	Hold time, High or Low D_{n} to LE	'F842	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$		ns	
$t_{w}(H)$	LE pulse width, High		Waveform 2	3.0		3.0		ns	

Bus Interface Latches

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F844, 74F846					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ tphL	Propagation delay D_{n} to Q_{n} or \bar{Q}_{n}	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay LE to Q_{n} or \bar{Q}_{n}	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$t_{\text {PLL }}$	Propagation delay $\overline{\text { PRE }}$ to Q_{n} or \bar{Q}_{n}	Waveform 3	3.5	5.5	8.5	3.0	9.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\overline{M R}$ to Q_{n} or \bar{Q}_{n}	Waveform 3	5.0	7.0	10.0	4.5	10.5	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output Enable time to High or Low level, \bar{O}_{n} to Q_{n} or \bar{Q}_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \mathrm{t}_{\text {PLLZ }} \end{aligned}$	Output Disable time to High or Low level, $\overline{\mathrm{O}} \mathrm{E}_{\mathrm{n}}$ to Q_{n} or \bar{Q}_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F844, 74F846				UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF}, R_{L}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to LE	Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to LE	Waveform 2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		ns
$t_{w}(H)$	LE Pulse width, High	Waveform 2	3.0		3.0		ns
$t_{w}(L)$	$\overline{\text { PRE Pulse width, Low }}$	Waveform 2	4.0		5.0		ns
$t_{w}(\mathrm{~L})$	$\overline{\mathrm{MR}}$ Pulse width, Low	Waveform 2	4.0		5.0		ns
$\mathrm{t}_{\text {rec }}$	$\overline{\text { PRE }}$ Recovery time	Waveform 2	0.0		0.0		ns
$\mathrm{t}_{\text {rec }}$	$\overline{\mathrm{MR}}$ Recovery time	Waveform 2	3.5		4.5		ns

Bus Interface Latches

AC WAVEFORMS

Waveform 1. Propagation Delay for Non-Inverting Outputs

Waveform 3. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay for Inverting Outputs

Waveform 4. Data and Select Setup and Hold Times

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

FAST Products

FEATURES

- Provide high-performance bus interface buffering for wide data/ address paths or buses carrying parity
- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- $I_{L L}$ is $20 \mu \mathrm{~A}$ vs $1000 \mu \mathrm{~A}$ for AM29861 series
- Buffered control inputs to light loading, or increased fan-in are required as with MOS microprocessors
- Positive and negative over-shoots are clamped to ground
- 3-State outputs glitch free during power-up and power-down
- Slim DIP 300 mil package
- Broadside pinout compatible with AMD AM29861-29864 series
- Outputs sink 64mA

DESCRIPTION

The 'F861 series Bus Transceivers provide High-performance bus interface buffering for wide data/address paths or buses carrying parity.

The 'F863/'F864 9-Bit Bus Transceivers have NORed Transmit and Receive Output Enables for maximum control flexibility.
All Data Transmit and Receive inputs have 200 mV minimum input hysteresis to provide improved noise rejection.

FAST 74F861, 74F862, 74F863, 74F864 Bus Transceivers

'F861/'F862 10-Bit Bus Transceivers, NINV/INV (3-State) 'F863/'F864 9-Bit Bus Transceivers, NINV/INV (3-State) Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 861,74 \mathrm{~F} 863$	6.0 ns	140 mA
$74 \mathrm{~F} 862,74 \mathrm{~F} 864$	6.0 ns	105 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \%, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+70^{\circ} \mathbf{C}$
24 -Pin Plastic Slim DIP (300mil)	N74F861N, N74F862N, N74F863N,
N74F864N	

NOTES:

1. Thermal mountıng techniques are recommended. See App Note AN SMD-100 for a discussion of thermal considerations for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	$\begin{gathered} \text { 74F(U.L) } \\ \text { HIGH/LOW } \end{gathered}$	LOAD VALUE HIGH/LOW
$\begin{aligned} & \text { 'F861 } \\ & \text { 'F862 } \end{aligned}$	$A_{0}-A_{9}$	Data transmit inputs	3.5/0.117	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
	$B_{0}-B_{9}$	Data receive inputs	3.5/0.117	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
	$\overline{\text { OEBA }}$	Transmit output enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\text { OEAB }}$	Receive output enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\bar{A}_{0}-\bar{A}_{9}$	Data transmit outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
	$\bar{B}_{0}-\bar{B}_{9}$	Data receive outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\begin{aligned} & \text { 'F863 } \\ & \text { 'F864 } \end{aligned}$	$A_{0}-A_{8}$	Data transmit inputs	3.5/0.117	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
	$B_{0}-B_{8}$	Data receive inputs	3.5/0.117	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
	$\begin{aligned} & \overline{\mathrm{OEBA}}_{0} \\ & \overline{\mathrm{OEBA}}_{1} \end{aligned}$	Transmit output enable inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\begin{aligned} & \overline{\mathrm{OEAB}}_{0} \\ & \overline{\mathrm{OEAB}}_{1} \end{aligned}$	Receive output enable inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$A_{0}-A_{8}$	Data transmit outputs	750/106.7	15mA/64mA
	$\mathrm{B}_{0}-\mathrm{B}_{8}$	Data receive outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

Bus Transceivers

PIN CONFIGURATION

'F861/'F862	
CEBA 1	24 vcc
$A_{0}{ }_{2}$	${ }^{2} \mathrm{~B}_{0}$
$A_{1} \sqrt{3}$	$2{ }^{2} \mathrm{~B}_{1}$
$\mathrm{A}_{2} 4$	$21 \mathrm{~B}_{2}$
$A_{3} 5$	20) 8_{3}
$A_{4} 5$	$19 \mathrm{~B}_{4}$
$A_{5} 7$	$18 \mathrm{~B}_{5}$
$A_{6} 8$	$17 \mathrm{~B}_{6}$
$A_{7}{ }_{8}$	$16 \mathrm{~B}_{7}$
$A_{6} 10$	$15 \mathrm{~B}_{6}$
$A_{9} 11$	$14 \mathrm{~B}_{9}$
and 12	13 OEAB
	c007820s

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC SYMBOL (IEEE/IEC)

Bus Transceivers

FAST 74F861, 74F862, 74F863, 74F864

FUNCTION TABLE FOR 'F861 AND 'F862

INPUTS		MODE OF OPERATION	
$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	'F861	'F862
L	H	A data to B bus	A data to B bus
H	L	B bus to A data	B bus to A data
H	Z	Z	

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$Z=$ High-impedance state
LOGIC DIAGRAM

FUNCTION TABLE FOR 'F863 AND 'F864

INPUTS				MODE OF OPERATION	
OEAB ${ }_{0}$	OEAB ${ }_{1}$	OEBA ${ }_{0}$	OEBA $_{1}$	'F863	'F864
L	L	H	X	A data to B bus	A data to $\overline{\mathrm{B}}$ bus
L	L	X	H		
H	X	L	L	B bus to A data	B bus to \bar{A} data
X	H	L	L		
H	H	H	H	z	z

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High-impedance state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
lout	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F861, 74F862 74F863, 74F864			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0					V			
				$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4			V				
V_{OL}	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
				$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		CTRL	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
			A_{n}, B_{n}	$V_{C C}=5.5 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$					1	mA			
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & +\mathrm{I}_{\mathrm{OZH}} \end{aligned}$	High-level input current		$\begin{aligned} & A_{0}-A_{9} \\ & B_{0}-B_{9} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}} \\ & +\mathrm{I}_{\mathrm{OzL}} \end{aligned}$	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{C C}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	861/863	ICCH	$V_{C C}=M A X$				145	195	mA			
			$\mathrm{I}_{\mathrm{CLL}}$					140	195	mA			
			ICCz					130	190	mA			
		862/864	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				90	130	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					120	170	mA			
			ICCZ					100	145	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Bus Transceivers

FAST 74F861, 74F862, 74F863, 74F864

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F861, 74F863					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns
$t_{\text {PLH }}$ tphl $^{\text {PHL }}$	Propagation delay B_{n} to A_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & t_{P Z H} \\ & t_{P Z L} \end{aligned}$	Output Enable time to High or Low level $\overline{O E B A}_{n}$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & t_{P Z H} \\ & t_{P Z L} \end{aligned}$	Output Enable time to High or Low level $\overline{O E A B}_{n}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\text {PHZ }} \\ & \mathbf{t}_{\text {PLZ }} \\ & \hline \end{aligned}$	Output Enable time from High or Low level $\overline{O E B A}_{n}$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Enable time from High or Low level $\overline{O E A B}_{n}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F862, 74F864					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output Enable time to High or Low level $\overline{\mathrm{OEBA}}_{\mathrm{n}}$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL }^{2} \end{aligned}$	Output Enable time to High or Low level $\overline{O E A B}_{\mathrm{n}}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Enable time from High or Low level $\overline{O E B A}_{n}$ to A_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	Output Enable time from High or Low level $\overline{O E A B}_{n}$ to B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	2.5 2.0	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

WF06471S

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tplZ $^{t_{\text {PZL }}}$	closed
All other	closed
open	

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

Signetics

FAST Products

FEATURES

- Full look-ahead carry for Highspeed arithmetic operation on long words
- Arithmetic Operating Modes:
- addition
- subtraction
- shift operand A one position
- magnitude comparison
- plus twelve other arithmetic operations
- Logic Function Modes:
- exclusive-OR
- comparator
- AND, NAND, OR, NOR
- provides status register check
- plus ten other logic operations
- Replaces 'AS 881
- Same pinout and function as 'F181 except for $\overline{\mathbf{P}}, \overline{\mathbf{G}}$, and $\mathbf{C}_{\mathrm{n}+4}$ outputs when the device is in Logic Mode ($\mathbf{M}=\mathrm{H}$)
- Available in 300 mil -wide 24 -pin Slim DIP package

PIN CONFIGURATION

FAST 74F881
 Arithmetic Logic Unit/Function Generator

Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 881	7.3 ns	43 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{v}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F881N
24-Pin Plastic SOL	N74F881D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
M	Mode control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{~A}}_{0}-\overline{\mathrm{A}}_{3}, \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3}$	Operand inputs	$3.0 / 3.0$	$60 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Function select inputs	$4.0 / 4.0$	$80 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
C_{n}	Carry input	$6.0 / 6.0$	$120 \mu \mathrm{~A} / 3.6 \mathrm{~mA}$
$\mathrm{C}_{n}+4$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}=\mathrm{B}$	Compare output	$\mathrm{OC}^{*} / 33$	OC*/20mA
$\overline{\mathrm{F}}_{0}-\overline{\mathrm{F}}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
\bar{G}	Carry generate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry propagate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. 2. $\mathrm{OC}^{*}=$ Open-Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN DESIGNATION TABLE

PIN NUMBER	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 7}$
I (active-Low data)	$\overline{\mathrm{A}}_{0}$	$\overline{\mathrm{~B}}_{0}$	$\overline{\mathrm{~A}}_{1}$	$\overline{\mathrm{~B}}_{1}$	$\overline{\mathrm{~A}}_{2}$	$\overline{\mathrm{~B}}_{2}$	$\overline{\mathrm{~A}}_{3}$	$\overline{\mathrm{~B}}_{3}$	$\overline{\mathrm{~F}}_{0}$	$\overline{\mathrm{~F}}_{1}$	$\overline{\mathrm{~F}}_{2}$	$\overline{\mathrm{~F}}_{3}$	C_{n}	$\mathrm{C}_{\mathrm{n}}+4$	$\overline{\mathrm{P}}$	$\overline{\mathrm{G}}$
II (active-High data)	A_{0}	$\mathrm{~B}_{0}$	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~B}_{3}$	$\mathrm{~F}_{0}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\overline{\mathrm{C}}_{n}$	$\overline{\mathrm{C}}_{n}+4$	X	Y

DESCRIPTION

The 'F881 is an arithmetic logic unit (ALU)/ function generator that has a complexity of 77 equivalent gates on a monolithic chip. This circuit performs 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a Low-level voltage to the mode control input (M). A full carry lookahead scheme is made available in these devices for fast, simultaneous carry generation by means oftwo cascade-ouputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the 'F882 full carry look-ahead circuit, High-speed arithmetic operations can be performed.
The method of cascading ' F 882 circuits with these ALUs to provide multi-level full carry look-ahead is illustrated under signal designations.
If High-speed is not of importance, a ripplecarry input $\left(\mathrm{C}_{n}\right)$ and a ripple-carry output $\left(C_{n+4}\right)$ are available. However, the ripplecarry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.
The 'F881 will accommodate active-High or active-Low data if the pin designations are interpreted as indicated in the Pin Designation Table.

Subtraction is accomplished by 1 's Complement addition where the 1's Complement of the subtrahend is generated internally. The resultant output is A-B-1, which requires an end-around or forced carry to provide A-B.
The 'F881 can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs ($F_{0}, F_{1}, F_{2}, F_{3}$) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a High level to indicate equality $(A=B)$. The ALU must be in the subtract mode with $\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ when performing this comparison. The $\mathrm{A}=\mathrm{B}$ output is open-collector so that it can be wire-AND connected to give a com-

COMPARATOR TABLE

INPUT $\mathbf{C}_{\boldsymbol{n}}$	OUTPUT $\mathbf{C}_{\boldsymbol{n}+\boldsymbol{4}}$	ACTIVE-LOW DATA	ACTIVE-HIGH DATA
H	H	$\mathrm{A} \geqslant \mathrm{B}$	$\mathrm{A} \leqslant \mathrm{B}$
H	L	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	H	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	L	$\mathrm{A} \leqslant \mathrm{B}$	$\mathrm{A} \geqslant \mathrm{B}$

parison for more than four bits. The carry output (C_{n+4}) can also be used to supply relative magnitude information. Again, the ALU must be placed in the subtract mode by placing the function select inputs $\mathrm{S}_{3}, \mathrm{~S}_{2}, \mathrm{~S}_{1}$, S_{0} at L, H, H, L, respectively.

This circuit has been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$) with the mode-control input (M) at a High level to disable the internal carry. The 16 logic functions are detailed in the Logic Function Table and include Exclusive-OR, NAND, AND, NOR, and OR functions.
The 'F881 has the same pinout and same functionality as the 'F181 except for the \bar{P}, \bar{G}, and C_{n+4} outputs when the device is in the logic mode ($M=H$).
In the logic mode the 'F881 provides the user with a status check on the input words, A and B, and the output word F. While in the logic mode the \bar{P}, \bar{G} and C_{n+4} outputs supply status information based upon the following logical combinations:

$$
\begin{aligned}
& \bar{P}=F_{0}+F_{1}+F_{2}+F_{3} \\
& \bar{G}=H \\
& C_{n+4}=P C_{n}
\end{aligned}
$$

The combination of signals on the S_{3} through S_{0} control lines determine the operation performed on the data words to generate the output bits F_{1}. By monitoring the \bar{P} and C_{n+4} outputs, the user can determine if all pairs of input bits are equal or if any pair of inputs are both High (see Function Table). The 'F881 has the unique feature of providing an $\mathrm{A}=\mathrm{B}$ status while the exclusive-OR (\oplus) function is being utilized. When the control inputs $\left(S_{3}\right.$,
S_{2}, S_{1}, S_{0}) equal H, L, L, H; a status check is generated to determine whether all pairs (A_{i}, B_{i}) are equal in the following manner: $\bar{P}=\left(A_{0} \oplus B_{0}\right)+\left(A_{1} \oplus B_{1}\right)+\left(A_{2} \oplus B_{2}\right)+$ $\left(A_{3} \oplus B_{3}\right)$. This unique bit-by-bit comparison of the data words which is available on the totem pole $\overline{\mathrm{P}}$ output is particularly useful when cascading 'F881's. As the $A=B$ condition is sensed in the first stage the signal is propagated through the same ports used for carry generation in the arithmetic mode ($\overline{\mathbf{P}}$ and $\bar{G})$. Thus the $A=B$ status is transmitted to the second stage more quickly without the need for external multiplexing logic. The $\mathrm{A}=\mathrm{B}$ open-collector output alLows the user to check the validity of the bit-by-bit result by comparing the two signals for parity.
If the user wishes to check for any pair of data inputs (\bar{A}_{1}, \bar{B}_{1}) being High, it is necessary to set the control lines $\left(S_{3}, S_{2}, S_{1}, S_{0}\right)$ to L, H, L, L. The data pairs will then be ANDed together and the results ORed in the following manner: $\overline{\mathrm{P}}=\overline{\mathrm{A}}_{0} \bar{B}_{0}+\overline{\mathrm{A}}_{1} \overline{\mathrm{~B}}_{1}+\overline{\mathrm{A}}_{2} \bar{B}_{2}+$ $\overline{\mathrm{A}}_{3} \overline{\mathrm{~B}}_{3}$.

SIGNAL DESIGNATIONS

In both Figures 1 and 2, the polarity indicators indicate that the associated input or output is active-Low with respect to the function shown inside the symbol and the symbols are the same in both figures. The signal designations in Figure 1 agree with the indicated internal functions based on active-Low data, and are for use with the logic functions and arithmetic operations shown in Table 1. The signal designations have been changed in Figure 2 to accommodate the logic functions and arithmetic operations for the active-High data given in Table 2. The 'F181 and 'F881 together with the 'F882 and 'F182 can be used with the signal designation of either Figure 1 or Figure 2.

FUNCTION TABLE FOR INPUT BITS

EQUAL/NOT EQUAL

$S_{0}=S_{3}=H, S_{1}=S_{2}=L$, and $M=H$

C_{n}					OUTPUTS		
	DATA INPUTS				$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$	$\mathrm{C}_{\mathrm{n}+4}$
	$\mathrm{A}_{0}=\mathrm{B}_{0}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{3}=\mathrm{B}_{3}$	H	L	H
L	$\mathrm{A}_{0}=\mathrm{B}_{0}$	$\mathrm{~A}_{1}=\mathrm{B}_{1}$	$\mathrm{~A}_{2}=\mathrm{B}_{2}$	$\mathrm{~A}_{3}=\mathrm{B}_{3}$	H	L	L
X	$\mathrm{A}_{0} \neq \mathrm{B}_{0}$	X	X	X	H	H	L
X	X	$\mathrm{A}_{1} \neq \mathrm{B}_{1}$	X	X	H	H	L
X	X	X	$\mathrm{A}_{2} \neq \mathrm{B}_{2}$	X	H	H	L
X	X	X	X	$\mathrm{A}_{3} \neq \mathrm{B}_{3}$	H	H	L

FUNCTION TABLE FOR INPUT PAIRS

HIGH/NOT HIGH

$S_{0}=S_{1}=S_{3}=L, S_{2}=H$, and $M=H$

C_{n}	DATA INPUTS				OUTPUTS		
					$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$	C_{n+4}
H	\bar{A}_{0} or $\bar{B}_{0}=\mathrm{L}$	\bar{A}_{1} or $\bar{B}_{1}=\mathrm{L}$	$\overline{\mathrm{A}}_{2}$ or $\overline{\mathrm{B}}_{2}=\mathrm{L}$	$\begin{aligned} & \bar{A}_{3} \text { or } \\ & \bar{B}_{3}=L \end{aligned}$	H	L	
L	\bar{A}_{0} or $\bar{B}_{0}=\mathrm{L}$	\bar{A}_{1} or $\bar{B}_{1}=\mathrm{L}$	\bar{A}_{2} or $\bar{B}_{2}=\mathrm{L}$	$\begin{aligned} & \bar{A}_{3} \text { or } \\ & \bar{B}_{3}=L \end{aligned}$	H	L	
X	$\bar{A}_{0}=\bar{B}_{0}=\mathrm{H}$	X	X	X	H	H	L
X	X	$\bar{A}_{1}=\bar{B}_{1}=\mathrm{H}$	X	X	H	H	L
X	X	X	$\bar{A}_{2}=\bar{B}_{2}=\mathrm{H}$	X	H	H	L
X	X	X	X	$\bar{A}_{3}=\bar{B}_{3}=\mathrm{H}$	H	H	L

SELECT TABLE FOR DATA INPUT PAIRS

S_{3}	S_{2}	S_{1}	S_{0}	M	$\bar{P}=F_{0}+F_{1}+F_{2}+F_{3}$
L	H	L	L	H	$\bar{A}_{0} \bar{B}_{0}+\bar{A}_{1} \bar{B}_{1}+\bar{A}_{2} \bar{B}_{2}+\bar{A}_{3} \bar{B}_{3}$
H	L	L	H	H	$\left(A_{0} \oplus B_{0}\right)+\left(A_{1} \oplus B_{1}\right)+\left(A_{2} \oplus B_{2}\right)+\left(A_{3} \oplus B_{3}\right)$

Figure 1
(Use With Table 1)
Table 1

SELECTION				ACTIVE-LOW DATA		
	\mathbf{S}_{2}	S_{1}	$\mathbf{S}_{\mathbf{0}}$	M-H Logic Functions	$\mathrm{M}=\mathrm{L}$; Arithmetic Operations	
\mathbf{S}_{3}					$\begin{gathered} C_{n}=L \\ \text { (no carry) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathrm{n}}=\mathrm{H} \\ \text { (with carry) } \end{gathered}$
L	L	L	L	$F=\bar{A}$	$F=A$ MINUS 1	$F=A$
L	L	L	H	$F=\overline{A B}$	$F=A B$ MINUS 1	$F=A B$
L	L	H	L	$F=\bar{A}+B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
L	L	H	H	$F=1$	$F=$ MINUS 1 (2's COMP)	$F=$ ZERO
L	H	L	L	$F=\overline{A+B}$	$F=A$ PLUS $(A+\bar{B})$	$F=A$ PLUS $(A+\bar{B})$ PLUS 1
L	H	L	H	$F=\bar{B}$	$F=A B$ PLUS $(A+\bar{B})$	$F=A B$ PLUS $(A+\bar{B})$ PLUS 1
L	H	H	L	$F=\bar{A} \oplus \bar{B}$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L	H	H	H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
H	L	L	L	$F=\bar{A} B$	$F=A$ PLUS $(A+B)$	$F=A$ PLUS ($A+B$) PLUS 1
H	L	L	H	$F=A \oplus B$	$F=A$ PLUS B	$F=A$ PLUS B PLUS 1
H	L	H	L	$\mathrm{F}=\mathrm{B}$	$F=A \bar{B}$ PLUS $(A+B)$	$F=A \bar{B}$ PLUS $(A+B)$ PLUS 1
H	L	H	H	$F=A+B$	$F=(A+B)$	$F=(A+B)$ PLUS 1
H	H	L	L	$\mathrm{F}=0$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H	H	L	H	$F=A \bar{B}$	$F=A B$ PLUS A	$F=A B$ PLUS A PLUS 1
H	H	H	L	$F=A B$	$F=A \bar{B}$ PLUS A	$F=A \bar{B}$ PLUS A PLUS 1
H	H	H	H	$F=A$	$F=A$	$\mathrm{F}=\mathrm{A}$ PLUS 1

[^25]

Figure 2
(Use with Table 2)
Table 2

SELECTION				ACTIVE-LOW DATA		
	\mathbf{S}_{2}	S_{1}	$\mathbf{S}_{\mathbf{0}}$	$M-H$ Logic Functions	M = L; Arithmetic Operations	
\mathbf{S}_{3}					$\begin{gathered} \overline{\mathbf{C}}_{\mathrm{n}}=\mathbf{H} \\ \text { (no carry) } \end{gathered}$	$\begin{gathered} \overline{\mathbf{C}}_{\mathrm{n}}=\mathrm{L} \\ \text { (with carry) } \end{gathered}$
L	L	L	L	$F=\overline{\mathbf{A}}$	$F=A$	$\mathrm{F}=\mathrm{A}$ PLUS 1
L	L	L	H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B)$ PLUS 1
L	L	H	L	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
L	L	H	H	$\mathrm{F}=0$	$F=$ MINUS 1 (2's COMPL)	$\mathrm{F}=\mathrm{ZERO}$
L	H	L	L	$F=\overline{A B}$	$F=A$ PLUS $A \bar{B}$	$F=A$ PLUS $A \bar{B}$ PLUS 1
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=(A+B)$ PLUS $A \bar{B}$	$F=(A+B)$ PLUS $A \bar{B}$ PLUS 1
L	H	H	L	$F=A \oplus B$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L	H	H	H	$F=A \bar{B}$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
H	L	L	L	$F=\bar{A}+B$	$F=A$ PLUS AB	$F=A$ PLUS AB PLUS 1
H	L	L	H	$F=\bar{A} \oplus B$	$F=A$ PLUS B	$\mathrm{F}=\mathrm{A}$ PLUS B PLUS 1
H	L	H	L	$F=B$	$F=(A+\bar{B})$ PLUS $A B$	$F=(A+\bar{B})$ PLUS $A B$ PLUS 1
H	L	H	H	$F=A B$	$F=A B$ MINUS 1	$F=A B$
H	H	L	L	$\mathrm{F}=1$	$F=A$ PLUS A^{*}	$\mathrm{F}=\mathrm{A}$ PLUS A PLUS 1
H	H	L	H	$F=A+\bar{B}$	$F=(A+B)$ PLUS A	$F=(A+B)$ PLUS A PLUS 1
H	H	H	L	$F=A+B$	$F=(A+\bar{B})$ PLUS A	$F=(A+\bar{B})$ PLUS A PLUS 1
H	H	H	H	$F=A$	$F=A$ MINUS 1	$F=A$

*Each bit is shifted to the next more significant position.

Arithmetic Logic Unit/Function Generator

LOGIC DIAGRAM (POSITIVE LOGIC)

Arithmetic Logic Unit/Function Generator

Table 3. SUM MODE TEST TABLE
Function Inputs: $\mathrm{S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	\bar{B}_{i}	None	Remaining \bar{A} and \bar{B}	C_{n}	\bar{F}_{1}
${ }^{\text {tPLH }}$ tphL	\bar{B}_{1}	\bar{A}_{1}	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$	C_{n}	\bar{F}_{i}
$\begin{aligned} & t_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{A}_{1}	\bar{B}_{1}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	$\overline{\mathbf{P}}$
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{i}	\bar{A}_{1}	None	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	$\overline{\text { P }}$
${ }^{\text {tpLH }}$ tphL	\bar{A}_{1}	None	\bar{B}_{i}	$\begin{gathered} \text { Remaining } \\ \bar{B} \end{gathered}$	Remaining \bar{A}, C_{n}	$\overline{\mathrm{G}}$
$t_{\text {PL }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{1}	None	\bar{A}_{1}	$\begin{aligned} & \text { Remaining } \\ & \bar{B} \end{aligned}$	Remaining \bar{A}, C_{n}	$\overline{\mathrm{G}}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	\bar{A}_{1}	None	\bar{B}_{i}	$\begin{gathered} \text { Remaining } \\ \bar{B} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\mathrm{C}_{\mathrm{n}+4}$
$t_{\text {PLH }}$ tphL	\bar{B}_{i}	None	\bar{A}_{1}	$\begin{gathered} \text { Remaining } \\ \hline \bar{B} \end{gathered}$	Remaining \bar{A}, C_{n}	$\mathrm{C}_{\mathrm{n}+4}$
$t_{\text {PLH }}$ tphL	C_{n}	None	None	$\frac{\mathrm{All}}{\bar{A}}$	$\begin{aligned} & \hline \text { All } \\ & \bar{B} \end{aligned}$	Any \bar{F} or C_{n+4}

Table 4. DIFF MODE TEST TABLE
Function Inputs: $\mathrm{S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{3}=\mathrm{M}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
tpLH tphL	\bar{A}_{1}	None	\bar{B}_{i}	$\underset{\bar{A}}{R_{i}}$	Remaining \bar{B}, C_{n}	\bar{F}_{1}
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	\bar{B}_{1}	\bar{A}_{1}	None	$\operatorname{Remaining~}_{\bar{A}}$	Remaining \bar{B}, C_{n}	\bar{F}_{i}
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	$\overline{\mathbf{P}}$
$t_{\text {PLH }}$ tpHL	\bar{B}_{1}	\bar{A}_{i}	None	None	$\begin{gathered} \text { Remaining } \\ \bar{A} \text { and } \bar{B}, C_{n} \end{gathered}$	$\overline{\mathbf{P}}$
$t_{\text {PL }}$ $t_{\text {PHL }}$	\bar{A}_{1}	\bar{B}_{i}	None	None	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	$\overline{\mathrm{G}}$
$t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$	\bar{B}_{1}	None	\bar{A}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\overline{\mathrm{G}}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	None	\bar{B}_{1}	$\underset{\bar{A}}{\text { Remaining }}$	Remaining \bar{B}, C_{n}	$A=B$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \\ & \hline \end{aligned}$	\bar{B}_{1}	\bar{A}_{1}	None	${\underset{\bar{A}}{ }}_{\text {Remaining }}$	Remaining \bar{B}, C_{n}	$A=B$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	\bar{A}_{1}	\bar{B}_{1}	None	None	$\begin{gathered} \text { Remaining } \\ \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{gathered}$	C_{n+4}
tpLH tphL	\bar{B}_{i}	None	\bar{A}_{1}	None	Remaining \bar{A} and \bar{B}, C_{n}	C_{n+4}
$t_{\text {PLH }}$ tphL	C_{n}	None	None	$\begin{gathered} \text { All } \\ \bar{A} \text { and } \bar{B} \end{gathered}$	None	Any \bar{F} or $\mathrm{C}_{\mathrm{n}+4}$

Table 5. LOGIC MODE TEST TABLE

PARAMETER	INPUT UNDER TEST	OTHER INPUT, SAME BIT		OTHER DATA INPUTS		OUTPUT	FUNCTION INPUTS
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND		
$t_{\text {PLH }}$ tphL	\bar{A}_{i}	\bar{B}_{1}	None	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	\bar{F}_{i}	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 V \end{gathered}$
$t_{\text {PLH }}$ tpHL	\bar{B}_{i}	\bar{A}_{i}	None	None	Remaining \bar{A} and \bar{B}, C_{n}	\bar{F}_{i}	$\begin{gathered} S_{1}=S_{2}=M=4.5 \mathrm{~V} \\ S_{0}=S_{3}=0 V \end{gathered}$

Table 6. INPUT BITS EQUAL/NOT EQUAL TEST TABLE
Function Inputs: $\mathrm{S}_{0}=\mathrm{S}_{3}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
$t_{\text {PLH }}$	\bar{A}_{i}	\bar{B}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \bar{A} \text { and } \bar{B}, C_{n} \end{aligned}$	None	$\overline{\mathbf{P}}$
$\mathrm{t}_{\text {PHL }}$						
tpLH	\bar{B}_{1}	\bar{A}_{i}	None	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	None	$\overline{\mathbf{P}}$
tpHL						
$t_{\text {PLH }}$	\bar{A}_{i}	None	\bar{B}_{i}	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \mathrm{C}_{\mathrm{n}} \end{aligned}$	None	$\overline{\mathrm{P}}$
tpHL						
tPLH	\bar{B}_{i}	None	\bar{A}_{1}	Remaining\bar{A} and\bar{B}, C_{n}	None	$\overline{\mathbf{P}}$
tpHL						
tPLH	\bar{A}_{1}	$\overline{B_{1}}$	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}} \text { and } \overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	None	C_{n+4}
$\mathrm{t}_{\text {PHL }}$						
tPLH	\bar{B}_{1}	\bar{A}_{i}	None	\bar{A} and \bar{B}, C_{n}	None	C_{n+4}
$\mathrm{t}_{\text {PHL }}$						
tpLH	\bar{A}_{1}	None	\bar{B}_{i}	$\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	None	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{t}_{\text {PHL }}$						
tpLH	\bar{B}_{i}	None	\bar{A}_{1}	Remaining $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}, \mathrm{C}_{\mathrm{n}}$	None	C_{n+4}
$\mathrm{t}_{\text {PHL }}$						

Table 7. INPUT PAIRS HIGH/NOT HIGH TEST TABLE
Function Inputs: $\mathrm{S}_{2}=\mathrm{M}=4.5 \mathrm{~V}, \mathrm{~S}_{0}=\mathrm{S}_{1}=\mathrm{S}_{3}=0 \mathrm{~V}$

PARAMETER	INPUT UNDER TEST	OTHER INPUT SAME BIT		OTHER DATA INPUTS		OUTPUT UNDER TEST
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND	
tpLH	\bar{A}_{i}	\bar{B}_{i}	None	Remaining\bar{A}, C_{n}	${ }_{\bar{B}}^{\text {Remaining }}$	$\overline{\mathbf{P}}$
$\mathrm{t}_{\text {PHL }}$						
tpli	\bar{B}_{i}	\bar{A}_{i}	None	Remaining \bar{B}, C_{n}	$\operatorname{Remaining~}_{\bar{A}}$	$\overline{\mathbf{P}}$
$\mathrm{t}_{\text {PHL }}$						
tple	\bar{A}_{i}	\bar{B}_{i}	None	$\begin{aligned} & \text { Remaining } \\ & \overline{\mathrm{A}}, \mathrm{C}_{\mathrm{n}} \end{aligned}$	$\begin{gathered} \text { Remaing } \\ \overline{\bar{B}} \end{gathered}$	C_{n+4}
tphL						
tpLH	\bar{B}_{i}	\bar{A}_{1}	None	Remaining \bar{B}, C_{n}	$\underset{\bar{A}}{\text { Remaining }}$	$\mathrm{C}_{\mathrm{n}+4}$
$\mathrm{t}_{\text {PHL }}$						

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	Any output except $\overline{\mathbf{G}}$	40	mA
		$\overline{\mathrm{G}}$	96	mA
TA	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LImits			UNIT
			Min	Typ	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{K}	Input clamp current				-18	mA
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage	$A=B$ only			4.5	V
IOH	High-level output current	except $A=B$			-1	mA
loL	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

Arithmetic Logic Unit/Function Generator

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
IOH	High-level output current	$A=B$ only				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \end{aligned}$	$\begin{aligned} & \mathrm{IHH}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{OH}=4.5 \mathrm{~V} \end{aligned}$				250	$\mu \mathrm{A}$
VOH	High-level output voltage	Any output except $A=B$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O H}=M A X \end{aligned}$		$\pm 10 \% V_{C C}$	2.5			V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.7	3.4		V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N, I_{O L}=20 \mathrm{~mA} \end{aligned}$		$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V					
V_{IK}	Input clamp voltage				$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V	
1	Input current at maximum input voltage		$V_{C C}=M A X$,	$\mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$			
${ }_{\text {IH }}$	High-level input current	M	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
		A_{n}, B_{n}						60	$\mu \mathrm{A}$			
		S_{n}						80	$\mu \mathrm{A}$			
		C_{n}						120	$\mu \mathrm{A}$			
ILL	Low-level input current	M	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		A_{n}, B_{n}						-1.8	mA			
		S_{n}						-2.4	mA			
		C_{n}						-3.6	mA			
IOH	High-level output current	$A=B$ only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=4.5 \mathrm{~V}$					250	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	Any output except $A=B$	$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$	$\begin{aligned} & S_{0}-S_{3}=1 \\ & \bar{B}_{0}-\bar{B}_{3}= \end{aligned}$	$=4.5 \mathrm{~V}$		48	65	mA			
		$\mathrm{I}_{\mathrm{CCL}}$		$\begin{aligned} & \mathrm{S}_{0}-\mathrm{S}_{3}=1 \\ & \overline{\mathrm{~B}}_{0}-\overline{\mathrm{B}}_{3}=(\end{aligned}$	$=\text { GND }$		48	65	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Arithmetic Logic Unit/Function Generator
FAST 74F881

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS				LIMITS					UNIT
						$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
		Mode	T^{1}	$\mathbf{w}^{\mathbf{2}}$	Conditions	Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay C_{n} to C_{n+4}					$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	7.5 8.5	2.0 2.0	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to C_{n+4}	Sum	III	1	$\begin{aligned} & M=S_{1}=S_{2}=0 \mathrm{~V} \\ & S_{0}=S_{3}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.5 \end{array}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or B_{n} to c_{n+4}	Diff	IV	4	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V} \\ & \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 10.5 \\ 9.0 \end{array}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to $\mathrm{C}_{\mathrm{n}+4}$ (status check)	Equality $\begin{gathered} \bar{A}_{1}=\bar{B}_{1} \text { or } \\ \bar{A}_{1} \neq \bar{B}_{1} \end{gathered}$	VI	1	$\begin{aligned} & \mathrm{M}=\mathrm{C}_{\mathrm{n}}=4.5 \mathrm{~V}, \\ & \mathrm{~S}_{0}=\mathrm{S}_{3}=4.5 \mathrm{~V} \\ & \mathrm{~S}_{1}=\mathrm{S}_{2}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 9.0 \\ 10.0 \end{array}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to $\mathrm{C}_{\mathrm{n}+4}$ (status check)	$\begin{aligned} & \bar{A}_{1}=\bar{B}_{i}=H \\ & \bar{A}_{1}=\bar{B}_{1}=L \end{aligned}$		1	$\begin{aligned} & M=C_{n}=4.5 \mathrm{~V} \\ & S_{2}=4.5 \mathrm{~V} \\ & S_{0}=S_{1}=S_{3}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 9.0 \\ 10.5 \end{array}$	$\begin{aligned} & 13.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay C_{n} to F_{n}		IV	2		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLL}}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{G}	Sum	III	2	$\begin{aligned} & M=S_{1}=S_{2}=0 \mathrm{~V}, \\ & S_{0}=S_{3}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{G}	Diff	IV	3	$\begin{aligned} & M=S_{0}=S_{3}=0 \mathrm{~V}, \\ & S_{1}=S_{2}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$t_{\text {PLH }}$ tphL	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{P}_{n}	Sum	III	2	$\begin{aligned} & M=S_{1}=S_{2}=0 V, \\ & S_{0}=S_{3}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
t_{PLLH} $t_{\text {PHL }}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{P}_{n}	Diff	IV	3	$\begin{aligned} & M=S_{0}=S_{3}=0 \mathrm{~V}, \\ & S_{1}=S_{2}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to P_{n} (status check)	$\begin{gathered} \text { Equality } \\ \bar{A}_{1}=\bar{B}_{1} \text { or } \\ \bar{A}_{1} \neq \bar{B}_{i} \end{gathered}$	VI	3	$\begin{aligned} & M=C_{n}=0 V, \\ & S_{2}=S_{3}=4.5 V \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{tpLH}^{\text {tph }} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{P}_{n} (status check)	$\begin{aligned} & \bar{A}_{1}=\bar{B}_{1}=H \\ & \bar{A}_{1}=\bar{B}_{i}=L \end{aligned}$	VII	3	$\begin{aligned} & M=C_{n}=4.5 \mathrm{~V} \\ & S_{2}=4.5 \mathrm{~V} \\ & S_{0}=S_{1}=S_{3}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 7.5 \end{array}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PLL }}$ $t_{\text {PHL }}$	Propagation delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{i}	Sum	III	2	$\begin{aligned} & M=S_{1}=S_{2}=0 \mathrm{~V}, \\ & S_{0}=S_{3}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{1}	Diff	IV	3	$\begin{aligned} & \mathrm{M}=\mathrm{S}_{0}=\mathrm{S}_{3}=0 \mathrm{~V}, \\ & \mathrm{~S}_{1}=\mathrm{S}_{2}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
tpLH $t_{\text {PHL }}$	Propagation delay \bar{A}_{1} or \bar{B}_{1} to \bar{F}_{1}	Logic	V	3	$\mathrm{M}=4.5 \mathrm{~V}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 10.5 \\ 9.5 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}} \\ & \mathrm{t}_{\text {PHLL }} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to $A=B$	Diff	IV	3	$\begin{aligned} & M=S_{0}=S_{3}=0 \mathrm{~V}, \\ & S_{1}=S_{2}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 14.5 \\ 9.0 \end{array}$	$\begin{aligned} & 20.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{F}_{n}	Sum		$1+2$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay \bar{A}_{n} or \bar{B}_{n} to \bar{F}_{n}	Diff		$1+2$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	7.0 7.5	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS				LIMITS					UNIT
						$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
		Mode	T ${ }^{1}$	$\mathbf{w}^{\mathbf{2}}$	Conditions	Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to F_{n}			1+2		$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ t_{PHL}	Propagation delay S_{n} to $A=B$			$1+2$		$\begin{array}{r} 12.0 \\ 5.5 \end{array}$	$\begin{array}{r} 16.5 \\ 9.0 \end{array}$	$\begin{aligned} & 22.0 \\ & 13.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 5.0 \end{array}$	$\begin{aligned} & 24.0 \\ & 14.0 \end{aligned}$	ns
${ }^{\text {tpLH }}$ tphL	Propagation delay S_{n} to $\mathrm{C}_{\mathrm{n}+4}$			1		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 7.5 \end{array}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{n} to $\overline{\mathrm{G}}$			2		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	2.5 2.5	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay S_{n} to $\overline{\mathrm{P}}$			2		$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay M to \bar{F}_{n}	Sum		$1+2$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay M to \bar{F}_{n}	Diff		$1+2$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation delay M to $A=B$	Sum		$1+2$		$\begin{array}{r} 13.0 \\ 5.5 \end{array}$	$\begin{array}{r} 16.5 \\ 9.5 \end{array}$	$\begin{aligned} & 22.0 \\ & 12.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 5.0 \end{array}$	$\begin{aligned} & 24.0 \\ & 13.5 \end{aligned}$	ns
tpLH tphL	Propagation delay M to $A=B$	Diff		1+2		$\begin{array}{r} 13.5 \\ 5.5 \end{array}$	$\begin{array}{r} 16.5 \\ 9.5 \end{array}$	$\begin{aligned} & 22.0 \\ & 12.0 \end{aligned}$	12.0 5.0	$\begin{aligned} & 24.0 \\ & 13.5 \end{aligned}$	ns

NOTES:
T = Table
W= Waveform

AC WAVEFORMS

WF07540S
Waveform 1. Propagation Delay for Operands to Carry Output and Outputs

WF06201s
Waveform 3. Propagation Delay for Operands to Carry Generate and Propagate Outputs, Operands to A = B Output, and Outputs

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

WFoboses
Waveform 2. Propagation Delays for Carry Input to Carry Output, Carry Input to Outputs, and Operands to Carry Generate and Carry Propagate Outputs

WF06181S
Waveform 4. Propagation Delays for Operands Carry Output

TEST CIRCUIT AND WAVEFORMS

FAST 74F882

Look-Ahead Carry Generator

32-bit Look-Ahead Carry Generator Product Specification

FAST Products

FEATURES

- Capable of anticipating the carry across a group of eight 4-bit binary adders
- Cascadable to perform lookahead across n-bit adders
- Available in 300 mil wide 24 pin Slim DIP package
- Typical Carry Time, \mathbf{C}_{n} to any C_{n+1} is less than $\mathbf{6}_{\mathrm{ns}}$
- Replaces AS 882
- Available in 300 mil -wide 24 -pin Slim DIP package

DESCRIPTION

The 'F882 is a high-speed carry lookahead generator capable of anticipating the carry across a group of eight 4-bit adders, thereby permitting the designer to implement look-ahead for a 32-bit ALU with a single package. In addition, full look-ahead is possible across n-bit adders cascading 'F882's.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 882$	4.0 ns	20 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F882N
24-Pin Plastic SOL	N74F882D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LWW	LOAD VALUE HIGH/LOW
C_{n}	Carry input	$5.0 / 1.0$	$100 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{4}$	Carry generate inputs	$6.0 / 8.0$	$120 \mu \mathrm{~A} / 4.8 \mathrm{~mA}$
$\overline{\mathrm{G}}_{1}$	Carry generate input	$9.0 / 12.0$	$180 \mu \mathrm{~A} / 7.2 \mathrm{~mA}$
$\overline{\mathrm{G}}_{2}$	Carry generate input	$9.0 / 11.0$	$160 \mu \mathrm{~A} / 6.6 \mathrm{~mA}$
$\overline{\mathrm{G}}_{3}$	Carry generate input	$10.0 / 13.0$	$200 \mu \mathrm{~A} / 7.8 \mathrm{~mA}$
$\overline{\mathrm{G}}_{5}$	Carry generate input	$7.0 / 9.0$	$140 \mu \mathrm{~A} / 5.4 \mathrm{~mA}$
$\overline{\mathrm{G}}_{6}$	Carry generate input	$2.0 / 2.0$	$40 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{G}}_{7}$	Carry generate input	$3.0 / 3.0$	$60 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\overline{\mathrm{P}}_{0}, \overline{\mathrm{P}}_{1}$	Carry propagate inputs	$3.0 / 4.0$	$60 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\overline{\mathrm{P}}_{2}, \overline{\mathrm{P}}_{3}$	Carry propagate inputs	$2.0 / 2.6$	$40 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$\overline{\mathrm{P}}_{4}, \overline{\mathrm{P}}_{5}, \overline{\mathrm{P}}_{6}, \overline{\mathrm{P}}_{7}$	Carry propagate inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{C}_{n}+8$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{C}_{n}+16$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{C}_{n}+24$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{C}_{n}+32$	Carry output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

FOR $\mathbf{C}_{\mathrm{n}+32}$ OUTPUT

INPUTS																	OUTPUT
\bar{G}_{7}	$\overline{\mathrm{G}}_{6}$	\bar{G}_{5}	\bar{G}_{4}	$\overline{\mathbf{G}}_{3}$	\bar{G}_{2}	$\overline{\mathrm{G}}_{1}$	\bar{G}_{0}	\bar{P}_{7}	\bar{P}_{6}	\bar{P}_{5}	\bar{P}_{4}	\bar{P}_{3}	\bar{P}_{2}	$\overline{\mathbf{P}}_{1}$	\bar{P}_{0}	C_{n}	C_{n+32}
L	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	L	X	x	X	x	X	X	x	X	H
x	X	L	x	X	X	X	X	L	L	X	X	x	x	X	x	x	H
X	X	X	L	X	x	X	X	L	L	L	X	x	X	X	X	X	H
X	X	X	X	L	X	X	X	L	L	L	L	X	X	X	X	X	H
X	X	X	X	X	L	X	X	L	L	L	L	L	X	X	x	X	H
X	X	X	X	X	X	L	X	L	L	L	L	L	L	X	X	X	H
X	X	X	X	X	X	X	L	L	L	L	L	L	L	L	X	X	H
X	X	X	X	X	X	X	X	L		L	L	L	L		L	H	H
All other combinations																	L

FUNCTION TABLE

FOR C_{n+24} OUTPUT

INPUTS													OUTPUT
$\overline{\mathbf{G}}_{5}$	G_{4}	\bar{G}_{3}	\bar{G}_{2}	\bar{G}_{1}	\bar{G}_{0}	\bar{P}_{5}	\bar{P}_{4}	\bar{P}_{3}	\bar{P}_{2}	\bar{P}_{1}	\bar{P}_{0}	C_{n}	C_{n+24}
L	X	X	X	X	X	X	X	X	X	X	X	X	H
X	L	X	X	X	X	L	X	X	X	X	X	X	H
X	X	L	X	X	X	L	L	X	X	X	X	X	H
X	X	X	L	X	X	L	L	L	X	X	X	X	H
X	X	X	X	L	X	L	L	L	L	X	X	X	H
X	X	X	X	X	L	L	L	L	L	L	X	X	H
X	X	X	X	X	X	L	L	L	L	L	L	H	H
All other combinations													L

FUNCTION TABLE
FOR $\mathrm{C}_{\mathrm{n}+16}$ OUTPUT

INPUTS									OUTPUT
$\overline{\mathbf{G}}_{3}$	\bar{G}_{2}	\bar{G}_{1}	$\overline{\mathbf{G}}_{0}$	$\overline{\mathbf{P}}_{3}$	\bar{P}_{2}	\bar{P}_{1}	\bar{P}_{0}	C_{n}	$\mathrm{C}_{\mathrm{n}+16}$
L	X	X	X	X	X	X	X	X	H
X	L	X	X	L	X	X	X	X	H
X	X	L	X	L	L	X	X	X	H
X	x	X	L	L	L	L	X	X	H
X	X	X	X	L	L	L	L	H	H
All other combinations									L

FUNCTION TABLE
FOR $\mathrm{C}_{\mathrm{n}+8}$ OUTPUT

INPUTS					OUTPUT
$\overline{\mathbf{G}}_{\mathbf{1}}$	$\overline{\mathbf{G}}_{\mathbf{0}}$	$\overline{\mathbf{P}}_{\mathbf{1}}$	$\overline{\mathbf{P}}_{\mathbf{0}}$	$\mathrm{C}_{\mathbf{n}}$	$\mathrm{C}_{\mathrm{n}+\mathbf{8}}$
L	X	X	X	X	H
X	L	L	X	X	H
X	X	L	L	H	H
All	other combinations	L			

NOTE:
Any inputs not shown in a given table are irrelevant with respect to that output.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted thiese limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +1	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
İ	Input clamp current			-18	mA
IOH	High-level output current			-1	mA
loL	Low-level output current			20	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage						$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V			
				$\pm 5 \% V_{\text {cc }}$			0.35	0.50	v				
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current	$\mathrm{C}_{n}, \overline{\mathrm{P}}_{4}, \overline{\mathrm{P}}_{5}, \overline{\mathrm{P}}_{6}, \overline{\mathrm{P}}_{7}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
		$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{4}$							-4.2	mA			
		\bar{G}_{1}, \bar{G}_{2}							-5.4	mA			
		G_{3}							-6.0	mA			
		G_{5}							-4.8	mA			
		$\bar{G}_{6}, \bar{P}_{2}, \bar{P}_{3}$							-1.2	mA			
		$\overline{\mathrm{G}}_{7}$							-1.8	mA			
		\bar{P}_{0}, \bar{P}_{1}							-2.4	mA			
los	Short circuit output current ${ }^{3}$			$V_{C C}=M A X$			-60		-150	mA			
Icc	Supply current (total)		ICCH	$V_{C C}=$ MAX				35	50	mA			
			lCCL					45	65	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F882					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay C_{n} to Any output	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay \bar{P}_{n} or \bar{G}_{n} to $\mathrm{C}_{\mathrm{n}+8}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns
$t_{P L H}$ t_{PHL}	Propagation delay \bar{P}_{n} to \bar{G}_{n} to $\mathrm{C}_{\mathrm{n}+16}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay \bar{P}_{n} or \bar{G}_{n} to C_{n+24}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$t_{\text {PLH }}$ ${ }_{\text {tpHL }}$	Propagation delay \bar{P}_{n} or \bar{G}_{n} to $\mathrm{C}_{\mathrm{n}+32}$	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	1.0 1.0	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns

AC WAVEFORMS

WF0754KS

Waveform 1. Propagation Delay for Carry Propagate, Carry Generate Inputs to Carry Outputs

Waveform 2. Propagation Delay for Carry Input to Carry Outputs

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FAST 74F1240, F1241
Buffers

'F1240 Octal Inverter Buffer (3-State)
'F1241 Octal Buffer (3-State)
Product Specification

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Low-power, light-bus loading
- Functional pin for pin equivalent of 'F240 and 'F241
- 1/30th the bus loading of 'F240 or 'F241
- Provides ideal interface and increases fan-out of MOS Microprocessors
- Octal bus interface
- 3-State buffer outputs sink 64 mA
- 15mA source current

DESCRIPTION

The 'F1240 and 'F1241 are octal buffers that are ideal for driving bus lines or buffer memory address registers. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features two Output Enables, $\overline{\mathrm{OE}}_{\mathrm{n}}$, each controlling four of the 3-State outputs.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1240	3.5 ns	40 mA
74 F 1241	4.5 ns	46 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=0^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F1240N, N74F1241N
$20-$ Pin Plastic SOL	N74F1240D, N74F1241D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{O E}_{a}, \overline{O E}_{b}$	3-State output enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OE_{b}	3-State output enable input (active-High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{a} 0}-\mathrm{I}_{\mathrm{a} 3}, \mathrm{I}_{\mathrm{b} 0}-\mathrm{I}_{\mathrm{b} 3}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\bar{Y}_{\mathrm{a} 0}-\bar{Y}_{\mathrm{a} 3}, \bar{Y}_{\mathrm{b} 0}-\bar{Y}_{\mathrm{b} 3}$ $\mathrm{~F}_{1240}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{a} 0}-\mathrm{Y}_{\mathrm{a} 3}, \mathrm{Y}_{\mathrm{b} 0}-\mathrm{Y}_{\mathrm{b} 3}$ $\mathrm{~F}_{1241}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for 'F1240

INPUTS				OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{a}}$	$\mathbf{I}_{\mathbf{a}}$	$\overline{\mathbf{O E}}_{\mathbf{b}}$	$\mathrm{I}_{\mathbf{b}}$	$\overline{\mathbf{Y}}_{\mathbf{a n}}$	$\overline{\mathbf{Y}}_{\mathbf{b n}}$
L	L	L	L	H	H
L	H	L	H	L	L
H	X	H	X	Z	Z

FUNCTION TABLE for 'F1241

INPUTS				OUTPUTS	
$\overline{O E}_{\mathbf{a}}$	la	OEb	I_{b}	$\mathbf{Y}_{\text {an }}$	$\mathrm{Y}_{\text {bn }}$
L	L	\dot{H}	L	L	L
L	H	H	H	H	H
H	X	L	X	Z	Z

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state

ABSOLUTE MAXIMUM RATINGS
(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {l }}$	High-level output current			-15	mA
loL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

Buffers

FAST 74F1240, F1241

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F1240, 74F1241			UNIT			
				Min	Typ ${ }^{2}$	Max							
Vor	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
				$\mathrm{l}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
V_{OL}	Low-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{HH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOL}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V		
				$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{VCC}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state output current High-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	mA			
lozl	OFF-state output current Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	mA			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	ICCH	'F1240	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				22	30	mA			
		$\mathrm{I}_{\mathrm{CLL}}$						58	75	mA			
		ICCz						44	58	mA			
		ICCH	'F1241					33	44	mA			
		$\mathrm{I}_{\text {CCL }}$						62	80	mA			
		Iccz						45	60	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Buffers

FAST 74F1240, F1241

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F1240, 74F1241					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay Data to output	'F1240		Waveform 1	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{tpzL}} \end{aligned}$	Output enable time To High or Low			Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & t_{\text {tpLZ }} \\ & \hline \end{aligned}$	Output disable time From High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns	
tpLH tphL	Propagation delay Data to output	'F1241	Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t} \text { pZH } \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output enable time To High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{tpLZ}} \\ & \hline \end{aligned}$	Output disable time From High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	

AC WAVEFORMS

WF06014s
Waveform 1. Propagation Delay Data to Output for 'F1240

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Ian, Ibn

Waveform 2. Propagation Delay Data to Output for 'F1241

wFoborys
Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FAST 74F1242, F1243
Transceivers
'F1242 Quad Inverting Transceiver (3-State)
'F1243 Quad Transceiver (3-State)
Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1242	3.5 ns	43 mA
74 F 1243	4.5 ns	44 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 V \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F1242N, N74F1243N
$20-$-Pin Plastic SOL	N74F1242D, N74F1243D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\overline{O E}_{\mathrm{a}}$	3-State output enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OE_{b}	3-State output enable input (active-High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION
C1243

February 5, 1987

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for 'F1242

INPUTS		INPUT/OUTPUT	
$\overline{\mathbf{O E}}_{\mathbf{a}}$	$\mathbf{O E}_{\mathbf{b}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$
L	L	INPUT	$\mathrm{B}=\mathrm{A}$
H	L	Z	Z
L	H	a	a
H	H	$\mathrm{A}=\mathrm{B}$	INPUT

FUNCTION TABLE for 'F1243

INPUTS		INPUT/OUTPUT	
$\mathbf{O E}_{\mathbf{a}}$	$\mathbf{O E}_{\mathbf{b}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\mathbf{n}}$
L	L	INPUT	$\mathrm{B}=\mathrm{A}$
H	L	Z	Z
L	H	a	a
H	H	$\mathrm{A}=\mathrm{B}$	INPUT

$H=$ High voltage level
$L=$ Low voltage level
Z = High-impedance (OFF) state
a $=$ This condition is not allowed due to excessive currents.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Supply voltage	-0.5 to +7.0	V
V IN	Input voltage	-0.5 to +7.0	V
In	Input current	-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+V_{c c}$	V
lout	Current applied to output in Low output state	128	mA
T_{A}	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
1 IK	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
lOL	Low-level output current			64	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F1242/74F1243			UNIT			
				Min	Typ ${ }^{2}$	Max							
Vor	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4			V
				$\pm 5 \% V_{\text {cC }}$	2.7	3.4				V			
				$\mathrm{IOH}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V		
				$\mathrm{IOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage			$V_{C C}=M I N, I_{I}=I_{I K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$A_{0}-A_{3}, B_{0}-B_{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1.0	mA			
		$\overline{\mathrm{OE}}_{\mathrm{a}}, \mathrm{OE}_{\mathrm{b}}$		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current for $\overline{O E}_{\mathrm{a}}$ and $\mathrm{OE} \mathrm{E}_{\mathrm{b}}$ inputs only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current for OE_{a} and OE_{b} inputs only			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{IH}}+ \\ & \mathrm{I}_{\mathrm{OZH}} \\ & \hline \end{aligned}$	OFF-state output current High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}}+ \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$	OFF-state output current Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	'F1242	$\mathrm{I}_{\text {CCH }}$	$V_{C C}=M A X$				35	46	mA			
			$\mathrm{I}_{\text {CCL }}$					50	72	mA			
			ICcz					45	60	mA			
		'F1243	ICCH					40	50	mA			
			$\mathrm{I}_{\text {cle }}$					52	65	mA			
			Iccz					44	55	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F1242/74F1243					UNIT	
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$t_{\text {pLH }}$ $t_{\text {PHL }}$	Propagation delay data to output	'F1242		Waveform 1	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	3.0 1.5	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output enable time to High or Low			Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}} \\ & \mathrm{t}_{\mathrm{plz}} \\ & \hline \end{aligned}$	Output disable time from High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay data to output	'F1243	Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL }^{2} \end{aligned}$	Output enable time to High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tpHz } \\ & \text { tplz } \\ & \hline \end{aligned}$	Output disable time from High or Low		Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	3.0 2.0	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 1. Propagation Delay Data to Output for 'F1242

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 2. Propagation Delay Data to Output for 'F1243

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F1244
Buffer
Octal Buffer (3-State)
Product Specification

FAST Products

FEATURES

- High-impedance NPN base Inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Functional pin for pin equivalent of 'F244
- 1/30th the bus loading of 'F244
- Low-power, light-bus loading
- Provides ideal interface and increases fan-out of MOS Microprocessors
- Octal bus interface
- 3-State buffer outputs sink 64 mA and source 15 mA

DESCRIPTION

The ' $F 1244$ is an octal buffer that is ideal for driving bus lines or buffer memory address registers. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features two output enables, $\overline{\mathrm{OE}}_{\mathrm{n}}$, each controlling four of the 3-State outputs. The 'F1244 is pin and functional compatible with the 'F244. The lower power and light bus loading features make it an ideal part to interface directly with MOS Microprocessors.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1244	4.5 ns	43 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F1244N
$20-$ Pin Plastic SOL	N74F1244D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$I_{a 0}-I_{a 3}, I_{b 0}-I_{b 3}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E}_{\mathrm{a}}$	3-State output enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E}_{\mathrm{b}}$	3-State output enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{\mathrm{a} 0}-Y_{\mathrm{a} 3}, Y_{\mathrm{b} 0}-Y_{\mathrm{b} 3}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

February 5, 1987

LOGIC SYMBOL

Buffer

FUNCTION TABLE for 'F1244

INPUTS				OUTPUTS	
$\overline{\mathbf{O E}}_{\mathbf{a}}$	$\mathbf{I}_{\mathbf{a}}$	$\overline{\mathbf{O E}}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\mathbf{Y}_{\mathbf{a n}}$	$\mathbf{Y}_{\mathbf{b n}}$
L	L	L	L	L	L
L	H	L	H	H	H
H	X	H	X	Z	Z

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$Z=$ High-impedance (OFF) state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	128	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{Cc}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {K }}$	Input clamp current			-18	mA
IOH	High-level output current			-15	mA
lol	Low-level output current			64	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F1244			UNIT			
			Min	Typ ${ }^{2}$	Max							
V OH	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{LL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.0				V				
VoL	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V		
			$\mathrm{lOL}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
lozh	OFF-state output current High-level voltage applied		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
lozl	OFF-state output current Low-level voltage applied		$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100		-255	mA			
Icc	Supply current ${ }^{4}$ (total)	ICCH	$V_{C C}=$ MAX				30	40	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					57	75	mA			
		ICCz					43	58	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may rase the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. Icc is measured with outputs open.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F1244					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay $l_{a n}, I_{b n}$ to $Y_{a n}, Y_{b n}$	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output disable time from High or Low	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns

Buffer

AC WAVEFORMS

Waveform 1. Propagation Delay Data to Output

WF06091S
Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time From High Level

wF06071s
Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State Outputs
SWITCH POSITION

TEST	SWITCH
tpLZ	closed closed tpZL All other
open	

DEFINITIONS

$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

Signetics

FAST Products

FEATURES

- Same function and pinout as 74F1245
- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Useful in applications where light bus-loading or direct interface with output of a MOS microprocessor is desired
- Octal bidirectional bus interface
- Glitch free during 3-State power up and power down
- 3-State buffer outputs sink $\mathbf{6 4 m A}$
- 15mA source current

DESCRIPTION

The ' F 1245 is octal transceiver featuring non-inverting 3 -State bus compatible outputs in both transmit and receive directions. The B port outputs are all capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features an Ouput Enable ($\overline{\mathrm{OE}}$) input for easy cascading and a Transmit/Receive (T/R) input for direction control. The 3State ouputs, $B_{0}-B_{7}$, have been designed to prevent ouput bus loading if the power is removed from the device.

PIN CONFIGURATION

LOGIC SYMBOL

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
$\overline{\mathbf{O E}}$	$\mathrm{T} / \overline{\mathrm{R}}$	$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\mathbf{n}}$
L	L	$\mathrm{A}=\mathrm{B}$	INPUT
L	H	INPUT	$B=A$
H	X	Z	Z

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High-impedance (OFF) state
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	$A_{0}-A_{7}$	48	mA
		$B_{0}-B_{7}$	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Typ	Max	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
	High-level output curre	$A_{0}-A_{7}$			-3	mA
OH	Hign-level output current	$B_{0}-B_{7}$			-15	mA
lo	Low-level output current	$A_{0}-A_{7}$			24	mA
IoL	Low-level output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F1245			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\text {OH }}$	High-level output voltage	$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$				$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7	3.4				V			
		$B_{0}-B_{7}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$A_{0}-A_{7}$	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{lOL}^{\prime}=24 \mathrm{~mA}$			0.35	0.50	V			
							0.35	0.50	V			
		$B_{0}-B_{7}$		$\mathrm{IOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.40	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$I_{1 H}$	High-level input current $O \bar{E}$ and S / \bar{R} only		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IL	Low-level input current $O \bar{E}$ and $S / \overline{\mathrm{R}}$ only		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\mathrm{lozH}^{+} \mathrm{l}_{\mathrm{H}}$	OFF-state current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$l_{\text {OzL }}+\mathrm{I}_{\text {IL }}$	OFF-state current Low-level voltage applied		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=$ MAX			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{C C}=\mathrm{MAX}$			-100		-225	mA			
${ }^{\text {lcc }}$	Supply current (total)	ICCH	$V_{C C}=M A X$	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$			120	155	mA			
		$\mathrm{I}_{\mathrm{CCL}}$		$\mathrm{V}_{\text {IN }}=\mathrm{GND}$			116	150	mA			
		Iccz		$\mathrm{V}_{\mathrm{IN}}=\overline{\mathrm{OE}}=4.5 \mathrm{~V}$			110	165	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F1245					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{tPzL}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 2 Waveform 3	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tplz } \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 2 Waveform 3	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Input to Output
Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time From High Level

Waveform 3. 3-State Output Enable Time to Low Level and Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=15 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

FAST Products

FEATURES

- Programmable DRAM signal timing generator
- Automatic refresh circuitry
- Provides byte selection for 16and 32-bit buses
- Interrupt Priority Encoder included
- Interrupt Acknowledge vector generator on-chip

DESCRIPTION

The Signetics DRAM and Interrupt Vector Controller (DIVC) is a high-performance bipolar device designed to reduce board space and improve performance in microprocessor-based systems. The DIVC's functions include a DRAM signal interface with user programmable timing to match the performance of specific DRAMs used in a system. With a maximum clock frequency of 100 MHz , this means a timing resolution of 10 ns . The DRAM Controller section also includes automatic refresh arbitration, with the duration and frequency of refresh totally programmable by the user. When used with the 74F1762 Memory Address Controller, the DIVC provides a complete system solution for DRAM and Interrupt Control. For Interrupt Control, the DIVC contains an Interrupt Priority Decoder with latched inputs controlled by the Interrupt Latch Enable (ILE) input. In addition, the DIVC contains an Interrupt Acknowledge Controller which passes a programmable 8-bit vector on the system data bus upon receipt of an interrupt acknowledge. There are 7 interrupt acknowledge vectors; each accessible by placing the priority number of the Interrupt Acknowledge on the A1-A3 signal inputs while acknowledging an interrupt.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1761	100 MHz	200 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	N74F1761N
PLCC 44	N74F1761A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\text { REQ }}$	DRAM request input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\begin{aligned} & \mathrm{SIZO/} \mathrm{\overline{LDS},} \\ & \mathrm{SIZ1,} \mathrm{A0/} \mathrm{\overline{USS},} \\ & \mathrm{~A} 1 \end{aligned}$	Byte Select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
A2, A3	Register Select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}, \overline{\mathrm{DS}}$	Chip Select, Data Strobe	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
R/W	Read/Write input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
INTACK	Interrupt Acknowledge input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
ILE	Interrupt Latch Enable input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
INTRQ1-7	Interrupt Request inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { DTACK }}$	Data Transfer Acknowledge output	(OC)/80	24mA
D0-D7	Data Bus	$\begin{gathered} 50 / 80 \\ (1.0 / 1.0) \end{gathered}$	$1.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{\text { PLO-2 }}$	Interrupt Priority outputs	50/80	$1.0 \mathrm{~mA} / 24 \mathrm{~mA}$
RAS, MUX, REFEN, $\overline{\text { CASO-3 }}$	DRAM Control outputs	1750/100	$35 \mathrm{~mA} / 60 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. O.C. = Open-Collector

PIN CONFIGURATION

FAST Products

FEATURES

- Provides DRAM Refresh and multiplexed addresses
- Direct Addressing of up to 4 Mb
- Compatible with 74F1761 DIVC and other DRAM controllers
- High-performance outputs
- High-speed multiplexing
- Internal 11-blt refresh counter

DESCRIPTION

The Signetics Memory Address-Controller is designed for use in very highperformance dynamic RAM applications. In addition to multiplexing row and column addresses, the device also generates and multiplexes refresh addresses. Though specifically designed to be used with the 74F1761 DRAM and Interrupt Vector Controller, it may be used with any other custom or standard DRAM timing controller chip.

The F1762 contains 22 address inputs $\left(R A_{0}-R A_{10}\right.$ and $\left.C A_{0}-C A_{10}\right)$, an 11-bit refresh counter, and eleven 3-to-1 multiplexers. The multiplexed row, column, or refresh address is output on the eleven high-performance outputs ($M A_{0}-M A_{10}$). This enables direct addressing of up to 4Mb dynamic RAMs.
Combined with the F1761, the F1762 provides a complete 4 Mb DRAM and Interrupt Control solution. This solution can control dynamic RAMs with access times down to 40ns.

TYPE	TYPICAL DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1762	5.3 ns	70 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{7 0}{ }^{\circ} \mathbf{C}$
Plastic DIP	N74F1762N
PLCC 44	N74F1762A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
RAO-RA10	Row Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CAO-CA10	Column Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { MAO }-\overline{\text { MA10 }}}$	DRAM Address outputs	N/A	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
$\overline{\text { REFEN }}$	Refresh Select input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MUX	Row/Column Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
COUNT	Refresh Address Count input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Refresh Counter Reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. FAST Unit Loads do not correspond to DRAM Input Loads. See Functional Description for details.

EQUIVALENT LOGIC DIAGRAM

PIN CONFIGURATION

Signetics

FAST 74F1763
Intelligent DRAM Controller

Preliminary Specification

FAST Products

FEATURES

- DRAM signal timing generator
- Automatic refresh circuitry
- Programmable row address hold and RAS precharge Time
- Supports Page Mode accesses
- Controls 1Mb DRAMs
- Intelligent Burst-Mode Refresh after Page-Mode access cycles

DESCRIPTION

The Signetics Intelligent Dynamic RAM Controller is a 1 Mb , single-port version of the popular 74F764 Dynamic RAM Dual-Ported Controller. It contains automatic signal timing, address multiplexing, and refresh control required for interfacing with dynamic RAMs. Additional features have been added to this device to take advantage of technological advances in Dynamic RAMs. A Page-Mode access pin allows the user to assert $\overline{\text { RAS }}$ for the entire access cycle rather than the predefined four-clock-cycle pulse width used for normal random access cycles. In addition, the user has the ability to program the $\overline{\text { RAS }}$ precharge time and Row-Address-Hold time to fit the particular DRAMs being used. $\overline{\text { DTACK }}$ has been modified from previous family parts to become a negative true, tri-stated output. The options for latched or unlatched address are contained on a single device by the addition of an Address Latch Enable (ALE) input. Finally, a burst refresh monitor has been added to ensure complete refreshing after lengthy page-mode access cycles. With a maximum clock frequency of 100 MHz , the F1763 is capable of driving DRAM arrays with access times down to 40ns.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1763	100 MHz	150 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathbf{C}$
Plastic DIP	N74F1763N
PLCC 44	N 74 F 1763 A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{R E Q}$	DRAM Request input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { PAGE }}$	Page Mode Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PRECHRG	RAS Precharge Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
HLDROW	Row Hold Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { DTACK }}$	Data Transfer Ack. output	$50 / 80$	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
GNT	Access Grant output	$50 / 80$	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
RCP	Refresh Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
RAO - RA9	Row Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CAO - CA9	Column Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
ALE	Address Latch Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { RAS }}$	Row Address Strobe output	N/A	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
$\overline{\text { CAS }}$	Column Address Strobe output	N / A	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
MAO - MA9	DRAM Address outputs	N/A	$35 \mathrm{~mA} / 60 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as $20 \mu \mathrm{~A}$ in the High state and 06 mA in the Low state FAST Unit Loads do not correspond to DRAM Input Loads See Functional Description for detalls

BLOCK DIAGRAM

PIN CONFIGURATION

CD14690S

FAST 74F1764/1765, 74F1764-1/1765-1 1 Megabit DRAM Dual-Ported Controllers

Preliminary Specification

FEATURES

- Allows two microprocessors to access the same bank of dynamic RAM
- Performs arbitration, signal timing, address multiplexing, and refresh
- 10 address output pins allow direct control of up to 1Mbit dynamic RAMS
- External address multiplexing enables control of 4Mbit (or greater) dynamic RAMs
- Separate refresh clock allows adjustable refresh timing
- F1764/F1764-1 have on-chip 20bit address input latch
- Allows control of dynamic RAMs with row access times down to 40ns
- F1764/1765 output drivers designed for incident wave switching
- F1764-1/1765-1 output drivers designed for first reflected wave switching

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 1764 / 1765$	150 MHz	150 mA
$74 \mathrm{~F} 1764-1 / 1765-1$	150 MHz	125 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
Plastic DIP	74F1764N, 74F1765N, 74F1764-1N, 74F1765-1N
PLCC-44	$74 \mathrm{~F} 1764 \mathrm{~A}, 74 \mathrm{~F} 1765 \mathrm{~A}, 74 \mathrm{~F} 1764-1 \mathrm{~A}, 74 \mathrm{~F} 1765-1 \mathrm{~A}$

DESCRIPTION

The 74F1764/1765 DRAM Dual-ported Controller is a high-speed synchronous dual-port arbiter and timing generator that allows two microprocessors, microcontrollers, or any other memory accessing device to share the same block of DRAM. The device performs arbitration, signal timing, address multiplexing, and refresh address generation, replacing up to 25 discrete devices.

74F1764 vs 74F1765

The F1764 though functionally and pin to pin compatible with the F1765 differs from the later in that it has an on-chip address input latch. This is useful in systems that have unlatched or multiplexed address and data bus.

74F1764/1765 vs 74F1764-1/ 1765-1
The 74F1764-1/1765-1, though as fast as the 74F1764/1765, differs from the 74F1764/1765 in the following respects:
a) they reduce the row address hold time by half-a-clock cycle, and
b) their outputs are optimized for first reflected wave switching as opposed to incident wave switching.

The specialized outputs eliminate the need for signal terminations in essentially all applications.

1 Megabit DRAM Dual-Ported Controllers

PIN CONFIGURATION

LOGIC SYMBOL

1 Megabit DRAM Dual-Ported Controllers

PIN DESCRIPTION

SYMBOL	PINS		TYPE	NAME AND FUNCTION
	DIP	PLCC		
RA ${ }_{0}$	2	1	1	Address inputs used to generate memory row address
RA_{1}	4	3	1	
RA_{2}	6	5	1	
RA_{3}	8	7	1	
RA_{4}	10	9	1	
RA A_{5}	15	12	1	
$R A_{6}$	17	14	1	
RA_{7}	19	16	I	
RA_{8}	21	18	,	
RA9	23	20	1	
CA_{0}	3	2	1	Address inputs used to generate memory column address
CA_{1}	5	4	1	
CA_{2}	7	6	1	
CA_{3}	9	8	1	
CA_{4}	11	10	1	
CA_{5}	16	13	1	
CA_{6}	18	15	I	
CA_{7}	20	17	I	
CA_{8}	22	19	1	
CA_{9}	24	21	1	
$\overline{\mathrm{REQ}}_{1}$	26	23	1	Memory access request from Microprocessor 1
$\overline{\mathrm{REQ}}_{2}$	27	24	1	Memory access request from Microprocessor 2
CP	29	26	1	Clock input which determines the master timing
RCP	48	44	1	Refresh clock determines the period of refresh for each row after it is internally divided by 64
$\overline{S E L}_{1}$	25	22	0	Select signal is activated in response to active $\overline{\mathrm{REQ}}_{1}$ input, indicating selection of Microprocessor 1
V_{CC}	12-14	11		Power supply $+5 \mathrm{~V} \pm 10 \%$
GND	37-39	$\begin{aligned} & 34 \\ & 35 \end{aligned}$		Ground
SEL 2	28	25	0	Select signal is activated in response to active $\overline{\mathrm{REQ}}_{2}$ input, indicating selection of Microprocessor 2
MA ${ }_{0}$	42	38	0	
MA ${ }_{1}$	41	37	0	
MA_{2}	40	36	0	
MA_{3}	36	33	0	
MA_{4}	35	32	0	Memory address output pins, designed to drive address lines of the DRAM
MA_{5}	34	31	0	Memory address output pins, designed to drive address lines of the DRAM
MA ${ }_{6}$	33	30	0	
MA_{7}	32	29	0	
MA_{8}	31	28	0	
MA9	30	27	0	
GNT	46	42	0	Grant output, activated upon start of a memory access cycle
$\overline{\text { RAS }}$	43	39	0	Row address strobe, used to latch the row address into the bank of DRAM (to be connected directly to the $\overline{\text { RAS }}$ inputs of the DRAMs)
WG	47	43	0	Write Gate may be gated with the microprocessor's write strobe to perform an early write cycle
CASEN	45	41	0	Column Address Strobe Enable is used to latch the column address into the bank of DRAMs
DTACK	44	40	0	Data Transfer Acknowledge indicates that data on the DRAM output lines is valid or the proper access time has been met

ARCHITECTURE

The 74F1764/1765 1 Megabit DRAM dualported controller is a synchronous device, with all signal generation being a function of the input clock (CP).
The 'F1764/1765 arbitration logic is divided into two stages. The first stage controls which one of the two $\overline{R E Q}$ inputs will be serviced by activating the corresponding SEL output. This arbitration takes place irrespective of whether or not a refresh cycle is in progress. The arbitration is accomplished by sampling the $\overline{\operatorname{REQ}}_{1}$ and $\overline{\mathrm{REQ}}_{2}$ inputs on different edges of the CP clock. $\overline{\operatorname{REQ}}_{1}$ is sampled on the rising edge and $\overline{\operatorname{REQ}}_{2}$ on the falling edge (refer to Figures 1-4).
Therefore, if access to the DRAM is requested by both processors at the same time, the contention is automatically resolved. The internal flip-flops of the device used in the arbitration process have been chosen for their immunity to metastable conditions.

The second stage of arbitration selects between the selected processor and any internal refresh request. Refresh always has priority and is serviced immediately after the current cycle is completed (if needed). This arbitration stage also indicates the start of an access cycle by asserting the GNT output.
The Refresh Clock (RCP) input determines the period for each row. This clock may be held in the High state for external or no refresh applications. When used, a refresh request is internally generated every 64 RCP cycles. The refresh counter is incremented at
the end of every refresh cycle, and provides the refresh address.

Since $\overline{\text { SEL }}$ outputs indicate which one of the two memory accessing devices has been selected to be serviced, these provide an indication of which processor's address bus should be asserted at the controller address inputs. A Data Transfer Acknowledge (DTACK) signal is generated by the timing logic and either this signal or GNT may be used with the $\overline{\text { SEL }}$ outputs to indicate the end or beginning of an access cycle for each processor.

FUNCTIONAL DESCRIPTION

As described earlier, the timing, arbitration, refresh and multiplexing functions provided by the controller are all derived from the CP input. The period of this clock should be set equal to:
(Tras (of the DRAM) $+16-5$)/4 plus any system guard-band required.
For the F1764-1/1765-1 the CP clock input period should be equal to:
(Tras (of the DRAM) $+22-10$)/4 plus any system guard-band required.
A microprocessor requests access to the DRAM by activating the appropriate $\overline{R E Q}$ input. If a refresh cycle is not in process and the other request input is not active, the SEL output corresponding to the active $\overline{\operatorname{REQ}}$ input will be asserted to indicate the selected processor. The GNT output then goes High to indicate the start of a memory access cycle. If
however, a refresh cycle is in process, and there is only one active $\overline{R E Q}$ input, the SEL output corresponding to the active input REQ will be asserted but the GNT output will not go High until after the completion of the refresh cycle (see Figures 10, 11 \& 14, 15).

When the device is servicing a memory access cycle and a memory access is also requested by the other processor before the current cycle is completed, the SEL output for the other processor will not be issued, though GNT is asserted at that time, because the other processor is performing an access cycle. This will ensure that there is no contention on the address bus, i.e., the address bus is not driven by both processors at the same time.

Following the completion of the current memory access cycle, the SEL output corresponding to the awaiting $\overline{R E Q}$ input will be asserted, followed by the GNT output. If however, there were any pending refresh requests, assertion of the GNT output will be held OFF until the refresh request has been serviced.
When GNT goes High, the RA $A_{0}-\mathrm{RA}_{9}$ and $C A_{0}-C A_{9}$ address input to the 'F1764/ F1764-1 are latched internally and the $R A_{0}-R A_{9}$ signals are propagated to the $M A_{0}-M A_{9}$ outputs. The address inputs are not latched by the F1765/F1765-1 and therefore, $R A_{0}-R A_{9}$ inputs propagate directly to the $M A_{0}-M A_{9}$ outputs.

A half-clock cycle is allowed for the address signals to propagate through to the outputs, after which the $\overline{R A S}$ output is asserted.

BLOCK DIAGRAM

1 Megabit DRAM Dual-Ported Controllers

One clock cycle later, the $\mathrm{CA}_{0}-\mathrm{CA}_{9}$ latch outputs on the ' F 1764 or $C A_{0}-C A_{9}$ inputs to the 'F1765 are selected and propagated to the $M A_{0}-M A_{9}$ outputs. This occurs half a clock cycle earlier on the F1764-1/1765-1 (refer to Figures 3 \& 4). The Write Gate (WG) output becomes valid at this time to indicate the proper time to gate the Write signal from the selected processor to the DRAM to perform an Early Write cycle.
A half-clock cycle is again allowed for the $C A_{0}-C A_{9}$ signals to propagate and stabilize. CASEN then becomes valid. CASEN can be used as CAS output or decoded with Higherorder address signals to produce multiple

CAS signals. After CASEN is valid, the controller will wait for $21 / 2$ clock cycles before negating $\overline{R A S}$, making a total $\overline{R A S}$ pulse width of approximately 4 clock cycles. Since this width matches the standard DRAM access time, the controller next asserts DTACK output, indicating that valid data is on the DRAM data lines or that a memory access cycle is complete. DTACK may be used to assert valid data transfer acknowledge for processors requiring this signal (i.e., the 68000 family of processors).
All controller output signals are held in this final state until the selected processor withdraws its request by driving its $\overline{R E Q}$ input

High. When the request is withdrawn, internal synchronization takes place, the controller output signals become inactive, and any pending memory access or refresh cycles are serviced.
A refresh cycle is serviced by propagating the 10 refresh counter address signals to the $M A_{0}-M A_{9}$ outputs. After a half-clock cycle the $\overline{\text { RAS }}$ output is asserted for four cycles and then negated for three clock cycles to meet the RAS precharge requirements of the DRAMs (see Figures 5 \& 6).
$\mathrm{A}^{\prime} \quad \mathrm{REQ}_{2}$ sampled
A $\overline{\mathrm{REQ}}_{1}$ sampled
$\overline{S E L}_{1}$ triggered ($\overline{S E L}_{1}$ triggered by $\overline{\operatorname{REQ}}_{1}$ sample circuitry) ($\overline{\mathrm{REQ}}_{2}$ disabled by $\overline{\mathrm{SEL}}_{1}$ circuitry)
B GNT triggered
$R A_{0}-R A_{9}$ and $C A_{0}-C A_{9}$ latched (Input address latch triggered by GNT circuitry)*
$R A_{0}-R A_{9}$ propagate to $M A_{0}-M A_{9}$ outputs
C $\overline{R A S}$ triggered
D WG triggered
$C A_{0}-C A_{9}$ selected and propagated to $M A_{0}-M A_{9}$ outputs
E CASEN triggered
F RAS negated
DTACK triggered

* Only on the 'F1764.

Figure 1. Sequence of Events for $\overline{\mathrm{RE}}_{1}$ Memory Access Cycle for $\mathrm{F} 1764 / 1765$
CP

A' $\quad \overline{R E Q}_{2}$ sampled
$\overline{S E L}_{2}$ triggered ($\overline{S E L}_{2}$ triggered by $\overline{\mathrm{REQ}}_{2}$ sampling circuitry)
A $\overline{\mathrm{REQ}}_{1}$ is not sampled (disabled by $\overline{\mathrm{SEL}}_{2}$ circuitry)
B GNT triggered
$R A_{0}-\mathrm{RA}_{9}$ and $\mathrm{CA}_{0}-\mathrm{CA}_{9}$ latched (Input address latch triggered by GNT circuitry)*
$R A_{0}-R A_{9}$ propagate to $M A_{0}-M A_{9}$ outputs
C $\overline{\text { RAS triggered }}$
D WG triggered
$C A_{0}-C A_{9}$ selected and propagated to $M A_{0}-M A_{9}$ outputs
E CASEN triggered
F $\overline{R A S}$ negated
DTACK triggered

* Only on the 'F1764.

Figure 2. Sequence of Events for $\overline{\mathrm{REQ}}_{\mathbf{2}}$ Memory Access Cycle for F1764/1765

1 Megabit DRAM Dual-Ported Controllers

CP

$\mathrm{A}^{\prime} \quad \overline{\mathrm{REQ}}_{2}$ sampled
A $\overline{\mathrm{REQ}}_{1}$ sampled
$\overline{\mathrm{SEL}}_{1}$ triggered ($\overline{\mathrm{SEL}}_{1}$ triggered by $\overline{\mathrm{REQ}}_{1}$ sample circuitry) $\left(\overline{\mathrm{RE}}_{2}\right.$ disabled by $\overline{\mathrm{SEL}}_{1}$ circuitry)
B GNT triggered
$\mathrm{RA}_{0}-\mathrm{RA}_{9}$ and $\mathrm{CA}_{0}-\mathrm{CA}_{9}$ latched (Input address latch triggered by GNT circuitry)*
$R A_{0}-R A_{9}$ propagate to $M A_{0}-M A_{9}$ outputs
C $\overline{\mathrm{RAS}}$ triggered
D WG triggered
$C A_{0}-C A_{g}$ selected and propagated to $M A_{0}-M A_{9}$ outputs
E $\overline{\text { CASEN }}$ triggered
F $\overline{\text { RAS }}$ negated
DTACK triggered

* Only on the F1764-1

Figure 3. Sequence of Events for $\overline{R E Q}_{1}$ Memory Access Cycle for F1764-1/1765-1

$\mathrm{A}^{\prime} \quad \overline{\mathrm{REQ}}_{2}$ sampled
$\overline{\mathrm{SEL}}_{2}$ triggered ($\overline{\mathrm{SEL}}_{2}$ triggered by $\overline{\mathrm{REQ}}_{2}$ sampling circuitry)
A $\overline{\mathrm{REQ}}_{1}$ is not sampled (disabled by $\overline{\mathrm{SEL}}_{2}$ circuitry)
B GNT triggered
$R A_{0}-R A_{9}$ and $C A_{0}-C A_{9}$ latched (Input address latch triggered by GNT circuitry)*
$R A_{0}-R A_{9}$ propagate to $M A_{0}-M A_{9}$ outputs
C $\overline{\mathrm{RAS}}$ triggered
D WG triggered
$C A_{0}-C A_{9}$ selected and propagated to $M A_{0}-M A_{9}$ outputs
E CASEN triggered
F $\overline{\text { RAS }}$ negated
DTACK triggered

* Only on the F1764-1.

Figure 4. Sequence of Events for $\overline{\mathrm{RE}}_{\mathbf{2}}$ Memory Access Cycle for $\mathbf{F 1 7 6 4 - 1 / 1 7 6 5 - 1}$

1 Megabit DRAM Dual-Ported Controllers

NOTE:

* These are internal signals only.

Figure 5. Refresh Cycle Timing Following a $\overline{R E O}_{1}$ Memory Access Cycle

1 Megabit DRAM Dual-Ported Controllers

NOTE:
*These are internal signals only
Figure 6. Refresh Cycle Timing Following a $\overline{\mathrm{RE}}_{\mathbf{2}}$ Memory Access Cycle

USING 74F1764/1765 AND 74F1764-1/1765-1 TO ADDRESS 4MBIT DRAMS

The addressing capabilities of the 1 Megabit DRAM dual-ported controllers can be extended to address 4Mbit (or greater) DRAMs by using an external multiplexer to multiplex additional address bits.

Figure 7 shows an application, using an external 2-to-1 multiplexer to address 4 Mbit dynamic RAMs. The 10 -bit internal refresh counter of the controller provides 1024 row addresses which more than meet the refreshing needs for most industry standard 4Mbit DRAMs. Therefore, it is unnecessary to provide for any additional refresh address bits for DRAMs with up to 1024 rows.

Additional address bits (for larger DRAMs) may also be multiplexed externally as long as the DRAM refreshing requirements do not exceed 1024 row addresses.
The WG output of the controller should be used to multiplex between the external row and column addresses. However it is important that the propagation delay through the external multiplexer does not cause column address setup violations on the dynamic RAM.

1 Megabit DRAM Dual-Ported Controllers

Figure 8. Request $1\left(\overline{\operatorname{REQ}}_{1}\right)$ Memory Access Cycle Timing for F1764/1765

Figure 9. Request $2\left(\overline{\mathbf{R E Q}}_{\mathbf{2}}\right)$ Memory Access Cycle Timing for $\mathbf{F 1 7 6 4 / 1 7 6 5}$

1 Megabit DRAM Dual-Ported Controllers

1 Megabit DRAM Dual-Ported Controllers

Figure 11. Request $2\left(\overline{\operatorname{REQ}}_{2}\right)$ Memory Access Cycle Timing Following a Refresh Cycle for F1764/1765

1 Megabit DRAM Dual-Ported Controllers

Figure 12. Request $1\left(\overline{\operatorname{REQ}}_{1}\right)$ Memory Access Cycle Timing for F1764-1/1765-1

Figure 13. Request $2\left(\overline{\mathrm{REQ}}_{2}\right)$ Memory Access Cycle Timing for F1764-1/1765-1

1 Megabit DRAM Dual-Ported Controllers

Figure 14. Request $1\left(\overline{R E}_{1}\right)$ Memory Access Cycle Timing Following a Refresh Cycle for F1764-1/1765-1

1 Megabit DRAM Dual-Ported Controllers

Figure 15. Request $2\left(\overline{R E Q}_{2}\right)$ Memory Access Cycle Timing Following a Refresh Cycle for F1764-1/1765-1

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range).

SYMBOL	PARAMETER	74F1764/1765	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	500	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F1764/1765			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current ${ }^{1}$			-15	mA
loL	Low-level output current ${ }^{1}$			24	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transient currents will exceed these values in actual operation. Please refer to Appendix A for a detailed discussion.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F1764/1765			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{O}}$	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5	3.2		V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
$\mathrm{V}_{\mathrm{OH} 2}{ }^{3}$	High-level output voltage		$\mathrm{IOH2}^{3}=-35 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {c }}$	2.4				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOL}^{2}=24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$			0.35	0.50	V				
$\mathrm{V}_{\mathrm{OL} 2}{ }^{4}$	Low-level output voltage			$10 \mathrm{LL}{ }^{4}=60 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.45	0.80	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{1 \mathrm{~K}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current		$\mathrm{V}_{\text {cC }}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{5}$		$\mathrm{V}_{C C}=\mathrm{MAX}$			-100		-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{C C}=\mathrm{MAX}$				150	200	mA			
		${ }^{\text {c CLL }}$					165	210	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Refer to Appendix A.
4. Refer to Appendix A.
5. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well over the normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

1 Megabit DRAM Dual-Ported Controllers

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER ${ }^{1}$	74F1764/1765					UNIT
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =300 \mathrm{pF} \\ R_{L} & =70 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	100	150		100		M Hz
tPLH	Propagation delay CP(G) to SEL $_{1}$	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay $\mathrm{CP}(\mathrm{A})$ to $\overline{S E L}_{1}$	5	10	14	5	16	ns
tPLH	Propagation delay $\mathrm{CP}\left(\mathrm{G}^{\prime}\right)$ to SEL_{2}	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(A') to $\overline{S E L}_{2}$	5	10	14	5	16	ns
tPLH	Propagation delay CP(B) to GNT	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(G or G^{\prime}) to GNT	5	10	15	5	16	ns
$\begin{aligned} & \mathbf{t p L H}^{\text {tpHL }} \\ & t_{\text {the }} \end{aligned}$	Propagation delay $\mathrm{CP}(\mathrm{B})$ to MA(row address)	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	ns
tPLH	Propagation delay CP(F or H) to /̄AS	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(C) to $\overline{\text { RAS }}$	5	10	14	5	16	ns
tPLH	Propagation delay CP(D) to WG	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(G or G^{\prime}) to WG	8	13	17	8	18	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\operatorname{CP}(\mathrm{D})$ to MA(column address)	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	ns
tPLH	Propagation delay CP(G or G^{\prime}) to CASEN	7	17	23	7	25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(E) to CASEN	5	10	14	5	16	ns
tPLH	Propagation delay CP(F) to DTACK	5	10	14	5	16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(G or G') to DTACK	6	13	17	5	18	ns
74F1765 Only							
$\begin{aligned} & \hline \mathrm{tPLH}^{2} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $R A_{0}-R A_{9}, C A_{0}-C A_{9}$ to $M A_{0}-M A_{9}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{gathered} 12 \\ 8 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{gathered} 13 \\ 9 \end{gathered}$	ns

NOTE:

1. For test conditions, see the AC waveforms.

AC SETUP AND HOLD REQUIREMENTS

SYMBOL	PARAMETER ${ }^{\mathbf{2}}$	74F1764/1765					UNIT
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \\ \hline \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$ to CP	2 2			2 2		ns
$\begin{aligned} & \operatorname{t}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP to $\overline{\mathrm{REQ}}_{1}, \overline{\mathrm{REQ}}_{2}$	2 2			3 3		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low	5 5			5 5		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	RCP pulse width High or Low	10 10			10 10		ns
74F1764 Only							
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(H) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \\ & \hline \end{aligned}$	Setup time, High or Low $R A_{0}-R A_{9}, C A_{0}-C A_{9} \text { to } C P(\downarrow)$	$\begin{aligned} & \hline-4^{1} \\ & -4 \end{aligned}$			-5 -5		ns
$\begin{aligned} & \hline \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\mathrm{CP}(\downarrow)$ to $R A_{0}-R A_{9}, C A_{0}-C A_{9}$	5 5			5 5		ns

[^26]2. For the test conditions, see the $A C$ waveforms.

1 Megabit DRAM Dual-Ported Controllers

ABSOLUTE MAXIMUM RATINGS
 (Operation beyond the limits set forth in this table may impair the useful life of the device.

 Unless otherwise noted, these limits are over the operating free-air temperature range).| SYMBOL | PARAMETER | 74F1764-1/1765-1 | UNIT |
| :--- | :--- | :---: | :---: |
| V_{CC} | Supply voltage | -0.5 to +7.0 | V |
| $\mathrm{~V}_{\text {IN }}$ | Input voltage | -0.5 to +7.0 | V |
| $\mathrm{I}_{\text {IN }}$ | Input current | -30 to +5 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in High output state | -0.5 to $+\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{I}_{\text {OUT }}$ | Current applied to output in Low output state | 500 | mA |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature range | 0 to +70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74F1764-1/1765-1			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current ${ }^{1}$			-20	mA
loL	Low-level output current ${ }^{1}$			8	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transient currents will exceed these values in actual operation. Please refer to Appendix A for a detailed discussion.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F1764-1/1765-1			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{LI}}=M A X, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{lOH}^{\text {O }}=-20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4	2.7		V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.6	3.0				V			
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{loL}=8 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.30	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$			0.30	0.50	v				
$\mathrm{V}_{\mathrm{OL} 2}{ }^{3}$	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{lOLL}^{3}=75 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$		2.1	2.5	V		
V_{IK}	Input clamp voltage		$V_{C C}=$ MIN, $I_{1}=I_{\text {IK }}$				-0.7	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 / H}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.2	-0.6	mA			
los	Short-circuit output current ${ }^{4}$		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			-80	-150	-225	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{V}_{C C}=\mathrm{MAX}$				120	165	mA			
		$\mathrm{I}_{\mathrm{CCL}}$					125	170	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value under the recommended operating conditions for the applicable conditions.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Refer to Appendix A.
4. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well over normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

1 Megabit DRAM Dual-Ported Controllers

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	74F1764-1/1765-1					UNIT
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \\ \hline \end{gathered}$		
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	150	175		100		MHz
tpLH	Propagation delay CP(G) to $\overline{\text { SEL }}_{1}$	9	12	15	8	17	ns
$\mathrm{tpHL}^{\text {che }}$	Propagation delay $\mathrm{CP}(\mathrm{A})$ to $\overline{\mathrm{SEL}}_{1}$	13	16	20	12	22	ns
tpLH	Propagation delay $\mathrm{CP}\left(\mathrm{G}^{\prime}\right)$ to $\overline{\mathrm{SEL}}_{2}$	9	12	15	8	17	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CP(A') to $\overline{S E L}_{2}$	13	16	20	12	22	ns
tpli	Propagation delay CP(B) to GNT	9	12	14	8	16	ns
tpHL	Propagation delay CP(G or G^{\prime}) to GNT	20	23	26	17	28	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $\mathrm{CP}(\mathrm{B})$ to MA(row address)	$\begin{aligned} & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \end{aligned}$	ns
tpli	Propagation delay CP(F or H$)$ to $\overline{\mathrm{RAS}}$	11	14	16	10	18	ns
$t_{\text {PHL }}$	Propagation delay CP(C) to $\overline{\text { RAS }}$	13	17	20	12	22	ns
tpLH	Propagation delay CP(D) to WG	9	11	14	8	16	ns
tpHL	Propagation delay CP(G or G^{\prime}) to WG	20	23	26	19	26	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $\mathrm{CP}(\mathrm{D})$ to MA(column address)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 19 \\ & 23 \end{aligned}$	ns
tpLH	Propagation delay CP(G or G^{\prime}) to CASEN	14	17	20	12	22	ns
tpHL	Propagation delay CP(E) to CASEN	14	16	19	13	21	ns
tPLH	Propagation delay CP(F) to DTACK	10	12	15	9	17	ns
tpHL	Propagation delay CP(G or G^{\prime}) to DTACK	20	23	26	19	28	ns
74F1765-1 Only							
$\begin{aligned} & t_{\text {PLLH }} \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay $R A_{0}-R A_{9}, C A_{0}-C A_{9}$ to $M A_{0}-M A_{9}$	$\begin{aligned} & \hline 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	ns

AC SETUP AND HOLD REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F1764-1/1765-1					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =70 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(H) \\ & \mathbf{t}_{\mathbf{s}}(L) \end{aligned}$	Setup time, High or Low $\mathrm{REQ}_{1}, \overline{\operatorname{REQ}}_{2}$ to CP	AC Waveforms	3	1		4		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CP to $\overline{\operatorname{REQ}}_{1}, \overline{\operatorname{REQ}}_{2}$		2	0		3		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP pulse width High or Low		5	3		5		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	RCP pulse width High or Low		5			5		ns
74F1764-1 Only								
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(L) \end{aligned}$	Setup time, High or Low $R A_{0}-R A_{9}, C A_{0}-C A_{9} \text { to } C P(\downarrow)$	AC Waveforms	0	-1^{1}		1		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\mathrm{CP}(\downarrow)$ to $R A_{0}-R A_{9}, C A_{0}-C A_{9}$		5	3		6		ns

NOTE:

1. These numbers indicate that the address inputs have a negative setup time and could be valid 1 ns after the falling edge of the CP clock. It is suggested that SEL_{2} be used to enable Address Bus 2 and the opposite polarity of the same be used, instead of SEL_{1} to enable Address Bus 1. This will insure that setup time for Address Bus 1 is not violated.

TEST CIRCUIT AND WAVEFORMS

Test Circult Simulating RAM Boards

DEFINITIONS

$R_{L}=$ Load resistor to GND; see AC Characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC Characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

APPLICATIONS

The 1 Megabit DRAM dual-ported controller can be designed into a wide range of single and dual-port interface configurations. The processors could be general or special-purpose (microcontrollers) and the data bus may differ in size.

Figure 16 shows two 68000 processors sharing a $4 \mathrm{Meg} \times 8$ (two banks each consisting of sixteen $1 \mathrm{Meg} \times 1$ devices) memory. Since the 68000 does not have a multiplexed address and data bus, the 'F1765/F1765-1 is appropriate.

Address bit (A_{21}) from either of the two 68000 processors distinguishes between Memory Banks A and B. Where Bank A consists of Upper Data Byte A (UDBA) and Lower Data Byte A (LDBA) and Bank B consists of Upper Data Byte B (UDBB) and Lower Data Byte B (LDBB).
Upper and Lower Data Strobes (UDS and $\overline{\mathrm{LDS}}$) from either of the two 68000 determine processors determine whether a byte or word transfer will take place. The additional circuitry is to ensure that DTACK to the 68000 is asserted only when it is selected.

Figure 17 shows two 8086 processors sharing 1MByte (two banks each consisting of sixteen $256 \mathrm{~K} \times 1$ devices) of dynamic RAM. Using 'F1764/1764-1 in this application may eliminate the need for an external address latch.

Similarly, Figure 18 shows two 68020 processors sharing 4 Mbyte of memory.

1 Megabit DRAM Dual-Ported Controllers

APPLICATIONS

Figure 16. Two 68000 Processor Sharing 4 Mega-Byte DRAM

APPLICATIONS

BD09142S

NOTES:

* It might be necessary to synchronize READY by the 8284A Please refer to the 8086 data sheet.
* Whether or not the 8086 address bus needs to be latched externally, should be determined by the relative speeds of the 8086 and the controller.

Figure 17. Two 8086 Processors Sharing 1MBYTE of DRAM

APPLICATIONS

Figure 18. Two 68020 Processors Sharing 4MBYTE of DRAM

1 Megabit DRAM Dual-Ported Controllers

74F1764 FAMILY LINE DRIVING CHARACTERISTICS

The 74F1764/1765 are designed to provide incident wave switching in Dual-Inline-Package (DIP) or Zig-zag-Inline-Package (ZIP) housed memory arrays and first reflected wave switching in Single-Inline-Package (SIP) or Single-Inline-Module (SIM) housed arrays. The 74F1764-1/1765-1, on the other hand, are designed to provide first reflected wave switching with as wide a range of characteristic impedances as possible.
The $\mathrm{l}_{\mathrm{OL} 2} / \mathrm{V}_{\mathrm{OL} 2}$ and $\mathrm{I}_{\mathrm{OH} 2} / \mathrm{V}_{\mathrm{OH} 2}$ parameters are included in the product specifications to assist engineers in designing systems which will switch memory array signal lines in the above mentioned manner. For example, the characteristic impedance of signal lines in DIP housed memory arrays is usually around 70Ω. If a signal line has settled out in a High
state at 4 volts and must be pulled down to 0.8 volts or less on the incident wave, the DRAM Controller output must sink (4-0.8)/ 70 A or 46 mA at 0.8 volts. The $\mathrm{l}_{\mathrm{OL} 2} / \mathrm{V}_{\mathrm{OL} 2}$ parameter indicates that the signal line in question will always be switched on the incident wave over the full commercial operating range.
It should be noted here that $\mathrm{l}_{\mathrm{OL} 2} / \mathrm{V}_{\mathrm{OL} 2}$ and $\mathrm{l}_{\mathrm{OH} 2} / \mathrm{V}_{\mathrm{OH} 2}$ are intended for transient use only and that steady state operation at $\mathrm{l}_{\mathrm{OH} 2}$ or lOL_{2} is not recommended (long term, steady state operation at these currents may result in electromigration).

Figures 1-4 show the output I/V characteristics of the DRAM Controller family of devices. These figures also demonstrate a graphical method for determining the incident wave (and first reflected wave) characteristics of the devices.

The suggested line termination for the 74F1764/1765 driving dual-in-line packaged or zig-zag packaged DRAMs is shown in Figure 8a. When driving single-in-line modules using the 74F1764/1765 or when driving any type of memory arrays with the 74F1764-1/1765-1, the schottky diode termination shown in Figure 8b can be used (most of these will need no termination at all).

Figures 5-7 are double exposures showing the High to Low and Low to High transitions while driving four banks of eight Dual-InlinePackaged DRAMs. The signal line is unterminated in Figures 5 and 6, allowing the 74F1764/1765 to ring two volts below ground while the 74F1764-1/1765-1 make nice clean transitions. In Figure 7 the 74F1764/1765 is driving the same signal line but with one of its four branches terminated with its characteristic impedance in series with 300 pF to ground (the worst of the four branches is shown).

Figure 1. I-V Output Characteristics of the 74F1764/1765 in the Low State. Light Line is the I-V Curve of a 25Ω Transmission Line Settled to 3.5 V (Typical for Recommended Termination). The High to Low Incident Wave on This Line WIII Typically be to 0.8 V

Figure 3. I-V Output Characteristics of the 74F1764-1/ 1765-1 In the Low State. Any Unterminated Line Impedance Between 18Ω and 70Ω (Both Shown) Will Typically Switch on the First Reflected Wave Without Violating the -1V Minimum Input Voltage Specification Typical of DRAMs

OP19840S
Figure 2. I-V Output Characteristics of the 74F1764/1765 in the High State. Light Line is the I-V Curve of a 35Ω Transmission Line Settled to 0.25 V . The Incident Wave on the Low to High Transition Will Typically be to 2.4 V on This Line. Any Line Over 35Ω Will Typically be Switched on the Incident Wave

Tylcal of DRAMs

Figure 4. I-V Output Characteristics of the 74F1764-1/ 1765-1 While in the High State

Figure 5. 74F1764-1/1765-1 Driving 32 DRAMs (Unterminated)

Figure 7. 74F1764/1765/1764-1/1765-1 Driving 32 DRAMs (Terminated as in Figure 8a)
(a)

LDo8s80S
(b)

Figure 8

Signetics

74F2952, 74F2953 Registered Transceivers

'F2952 8-Bit Registered Transceivers, Non-Inverting (3-State)
'F2953 8-Bit Registered Transceivers, Inverting (3-State) Preliminary Specification

FAST Products

FEATURES

- 8-bit registered transceivers
- Two 8-bit, back to back registers store data moving in both directions between two bidirectional busses
- Separate Clock, Clock Enable and 3-State Output Enable provided for each register
- 'F2952 Non-Inverting
- 'F2953 Inverting
- AM2952/2953 functional equivalent
- A Outputs sinks 24mA
- B Outputs sinks 64mA
- 24-pin 300mil-wide Slim DIP package

DESCRIPTION

The 'F2952 and 'F2953 are 8-bit registered transceivers. Two 8-bit back to back registers store data fLowing in both directions between two bidirectional busses. Data applied to the A inputs is entered and stored on the rising edge of the clock (CPAB), provided that the Clock Enable ($\overline{\mathrm{CEAB}}$) is Low; simultaneously, the status flip-flop is set and the A-to-B flag (FAB) output goes High.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 2952$	12 ns	56 mA
74F2953	12 ns	65 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{C C}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
24-Pin Plastic Slim DIP (300mil)	N74F2952N, N74F2953N
24-PIn Plastic SOL	N74F2952D, N74F2953D

NOTE:

1. For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$A_{0}-A_{3}, B_{0}-B_{7}$	A and B inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPAB, CPBA	Clock inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\text { CEAB }}, \overline{\mathrm{CEBA}}$	Clock enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEBA}, \overline{O E A B}}$	Output enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A Outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B Outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

'F2952	'F2953
LS09931S	LS09921S

Data thus entered from the A inputs is present at the inputs to the B output buffers, but only appears on the $\mathrm{B} / / O$ pins when the B

Output Enable (OEAB) is made Low. Data flow from B inputs to A outputs proceeds in
the same manner as described for A inputs to B outputs flow.

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE for Register A or B

INPUTS			internal \mathbf{Q}	OPERATING MODE
A_{n} or \mathbf{B}_{n}	$\mathbf{C P}$	CE		
X	X	H	NC	Hold data
L	\uparrow	L	L	Load data
H	\uparrow	L	H	

FUNCTION TABLE for Output Enable

$\overline{\text { OE }}$	INTERNAL Q	A OR B OUTPUTS		OPERATING MODE
		F2952	F2953	
H	X	Z	Z	Disable Outputs
L	L	L	H	Enable Outputs
L	H	H	L	

H $=$ High voltage level
$\mathrm{L}=$ Low voltage level
$\mathrm{X}=$ Don't care
$\mathrm{Z}_{\uparrow}=$ High-impedance (OFF) state
$\uparrow=$ Low-to-High transition
$N C=$ No change

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$V_{\text {cc }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
IN	Input current		-30 to +5	mA
Vout	Voltage applied to output in High output state		-0.5 to +5.5	
lout	Current applied to output in Low output state	$A_{0}-A_{7}$	48	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	128	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.75	5.0	5.25	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
IIK	Input clamp current				-18	mA
IOH	High-level output current	$A_{0}-A_{7}$			-3	mA
		$B_{0}-B_{7}$			-15	mA
lol	Low-level output current	$A_{0}-A_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$			64	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F00			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$\begin{aligned} & A_{0}-A_{7} \\ & B_{0}-B_{7} \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
				$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7	3.4				V			
			$B_{0}-B_{7}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.0				V			
					$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$A_{0}-A_{7}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{loL}=20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{C C}$		0.35	0.50	V			
						$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
			$B_{0}-B_{7}$		$\mathrm{loL}=48 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.40	0.55	V			
					$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{VCC}_{\text {c }}$		0.40	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	CPAB, CPBA, $\overline{O E A B}$ OEBA, CEAB, CEBA		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		A_{n}, B_{n}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
IH	High-level input current	CPAB, CPBA, $\overline{O E A B}$ $\overline{O E B A}, \overline{C E A B}, \overline{C E B A}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current	CPAB, CPBA, $\overline{\text { OEAB }}$ OEBA, CEAB, CEBA		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
$\begin{aligned} & \mathrm{IOZH}^{\prime} \\ & +\mathrm{I}_{\mathrm{IH}} \end{aligned}$	OFF-state output current, High-level voltage applied		A_{n}, B_{n}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\begin{aligned} & \mathrm{l}_{\mathrm{OZL}} \\ & +\mathrm{I}_{\mathrm{IL}} \end{aligned}$	OFF-state output current, Low-level voltage applied		A_{n}, B_{n}	$V_{C C}=M A X$,	.5V				-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$A_{0}-A_{7}$	$V_{C C}=$ MAX			-60		-100	mA			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-150		-225	mA			
Icc	Supply current (total)			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				130	190	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F2952, 74F2953					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	110	130		100		MHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation delay CPBA or CPAB to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output enable time $\overline{O E A B}$ or $\overline{O E B A}$ to A_{n} or B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZZ}} \end{aligned}$	Output disable time $\overline{O E A B}$ or $\overline{O E B A}$ to A_{n} or B_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	2.5 2.0	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITIONS	74F2952, 74F2953					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{0}(L) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPBA or CPAB	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPBA or CPAB	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(H) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CEAB, CEBA to CPAB, CPBA	Waveform 2	$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$			1.0 4.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CEAB, CEBA to CPAB, CPBA	Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CPAB, CPBA pulse width High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			3.0 3.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST 74F3037 30Ω Line Driver

Quad 2-Input NAND 30Ω Line Driver Product Specification

FAST Products

FEATURES

- 30Ω line driver
- 160 mA output drive capability in the Low state
- 67 mA output drive capability in the High state
- High-speed
- Facilitates incident wave switching
- 3nh lead inductance each on Vcc and GND when both side pins are used

DESCRIPTION

The F3037 is a high current Line driver composed of four 2-input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.
The drive capability of the F3037 is 67 mA source and 160 mA sink with a V_{CC} as low as 4.5 volts. This guarantees

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 3037	3.8 ns	15 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathbf{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74F3037N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{Y}	Data output	$3350 / 266$	$67 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
incident wave switching with V_{OH} not less than 2.0 V and V_{OL} not more than 0.8 V while driving impedances as low as 30Ω. This is applicable with any combination of outputs using continuous duty.

The propagation delay of the part is minimally affected by reflections when terminated only by the TTL inputs of other devices. Performance may be improved by full or partial line termination.

PIN CONFIGURATION

LOGIC SYMBOL

6-888

LOGIC SYMBOL (IEEE/IEC)

853-0021 87467

FUNCTION TABLE

Inputs		OUTPUT	
A	B	$\overline{\mathbf{Y}}$	
L	L	H	
L	H	H	
H	L	H	
H	H	L	

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
lout	Current applied to output in Low output state	320	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High level input voltage	2.0			V
V_{IL}	Low level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High level output current			-67	mA
loL	Low level output current			160	mA
TA	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F3037			UNIT			
			Min	Typ ${ }^{2}$	Max							
VOH	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}=-45 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH} 1}=-67 \mathrm{~mA}^{3}$	$\pm 10 \% V_{c c}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{H}}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.40	0.55	V			
				$\mathrm{IOLS}^{\prime}=160 \mathrm{~mA}^{4}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$			0.80	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$V_{C C}=$ MIN, $I_{1}=I_{1 K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
10^{5}			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-60		-160	mA			
Icc	Supply current (total)	${ }^{\text {chen }}$	$V_{C C}=\mathrm{MAX}$				3.5	6.0	mA			
		$\mathrm{I}_{\text {cle }}$					27	40	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. $\mathrm{l}_{\mathrm{OH} 1}$ is the current necessary to guarantee the Low to High transition in a 30Ω transmission line on the incident wave.
4. lol1 is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.
5. I_{0} is tested under conditions that produce current approximately one half of the true short-circuit output current (los).

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F3037					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	ns

AC WAVEFORM

\square

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$R_{L}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

Signetics

Quad 2-Input NAND 30Ω Line Driver (Open-Collector) Product Specification

FAST Products

FEATURES

- 30Ω line driver
- 160mA output drive capability
- High speed
- Facilitates incident wave switching
- 3nh lead inductance each on $V_{\text {CC }}$ and GND when both side pins are used

DESCRIPTION

The F3038 is a high current OpenCollector Line Driver composed of four 2-input NAND gates.
It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.

The F3038 can sink 160 mA with a V_{CC} as low as 4.5 V . This guarantees incident wave switching with $V_{O L}$ not more than 0.8 V while driving impedances as low as 30Ω. This is applicable with any combination of outputs using continuous duty.
The AC specifications for the F3038 were determined using the standard

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 3038	9.0 ns	17 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \% ;} \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
Plastic DIP	N74F3038N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Y}}$	Data output	OC $^{*} / 266$	OC $^{*} / 160 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. $\mathrm{OC}^{*}=$ Open Collector

Fast load for Open-Collector parts of 50 pF capacitance, a 500Ω pull-up resistor and a 500Ω pull-down. (See Test Circuit).
Reducing the load resistors to 100Ω will decrease the $\mathrm{T}_{\text {PLH }}$ propagation delay by approximately 50% while increasing

TPHL only slightly. The graph of Typical Propagation Delay vs Load Resistor shows a spline fit curve from four measured data points: $R_{L}=30 \Omega$, $R_{L}=100 \Omega, R_{L}=300 \Omega$, and $R_{L}=500 \Omega$.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$L=$ Low voltage level
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{l}_{\text {OUT }}$	Current applied to output in Low output state	320	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{1}	Input clamp current			-18	mA
V_{OH}	High-level output voltage			4.5	V
l L	Low-level output current			160	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			74F3038			UNIT			
			Min	Typ ${ }^{2}$	Max							
IOH	High-level output current					$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
Vol	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{C C}$			0.55	V			
			$\mathrm{l}_{\mathrm{OL} 1}=160 \mathrm{~mA}^{3}$	$\pm 10 \% \mathrm{Vcc}_{\text {c }}$			0.80	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
IIH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
I/L	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
Icc	Supply current (total)	${ }^{\text {CCH }}$	$V_{C C}=M A X$		$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		3.5	6.0	mA			
		$\mathrm{I}_{\text {CLL }}$			$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$		30	40	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. lol1 is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F3038					UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay A, B to \bar{Y}	Waveform 1	$\begin{aligned} & 6.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 5.0 \\ \hline \end{array}$	5.5 1.5	$\begin{array}{r} 12.5 \\ 5.5 \\ \hline \end{array}$	ns

AC WAVEFORM

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
Waveform 1. Propagation Delay for Input to Output

AC CHARACTERISTICS

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Open-Collector Outputs

DEFINITIONS
$\mathbf{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	tTLH	t THL
	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- 30Ω line driver
- 160 mA output drive capability in the Low state
- 67mA output drive capability in the High state
- High-speed
- Facilitates incident wave switching
- 3nh lead inductance each on $V_{\text {cc }}$ and GND when both side pins are used

DESCRIPTION

The F3040 is a high-current Line driver composed of two 2-Input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.
The drive capability of the F3040 is 67 mA source and 160 mA sink with a V_{CC} as low as 4.5 V . This guarantees

FAST 74F3040 30Ω Line Driver

Dual 4-Input NAND 30Ω Line Driver Product Specification

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 3040	3.7 ns	7.5 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Plastic DIP	N74F3040N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A, B, C, D	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{Y}	Data output	$3350 / 266$	$67 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
incident wave switching with V_{OH} not less than 2.0 V and V_{OL} not more than 0.8 V while driving impedances as low as 30Ω. This is applicable with any combination of outputs using continuous duty.

The propagation delay of the part is minimally affected by reflections when terminated only by the TTL inputs of other devices. Performance may be improved by full or partial line termination.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

30Ω Line Driver

FUNCTION TABLE

INPUT				OUTPUT
A	B	C	D	Y
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	320	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I_{K}	Input clamp current			-18	mA
IOH	High-level output current			-67	mA
loL	Low-level output current			160	mA
T_{A}	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{\mathbf{1}}$			74F3040			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathbb{H}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-45 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.5			V
			$\mathrm{l}_{\mathrm{OH} 1}=-67 \mathrm{~mA}^{3}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.7		3.4		V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{H}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{LL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.4	0.55	V			
				$\mathrm{l}_{\mathrm{OL} 1}=160 \mathrm{~mA}^{4}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.8	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
$!$	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current		$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
105			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-60		-160	mA			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				2.0	4.0	mA			
		$\mathrm{l}_{\text {CCL }}$					14	20	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{l}_{\mathrm{OH} 1}$ is the current necessary to guarantee the Low to High transition in a 30Ω transmission line on the incident wave.
4. lol1 is the current necessary to guarantee the the High to Low transition in a 30Ω transmission line on the incident wave.
5. I_{0} is tested under conditions that produce current approximately one half of the true short-circuit output current (los).

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	74F3040					UNIT
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay A, B, C, D to \bar{Y}	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	2.5 1.0	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns

AC WAVEFORM

Waveform 1. Propagation Delays for Inputs to Output

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Totem-Pole Outputs

DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor to GND; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS					
	Amplitude	Rep. Rate	Pulse Width	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$	
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns	

FAST 74F30240, 74F30244 30Ω Line Drivers

Product Specification

FAST Products

'F30240 Octal 30Ω Line Driver With Enable, INV (Open-Collector) 'F30244 Octal 30 Ω Line Driver With Enable, NINV (Open-Collector)

FEATURES

- Ideal for driving transmission lines or backplanes. 160 mA lol ideal for applications with impedance as low as 30Ω.
- Guaranteed threshold voltages on the incident wave while driving line impedance as low as 30Ω.
- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Octal bus interface
- 'F30240A Inverting
- 'F30244A Non-Inverting
- Open-Collector outputs sink 160 mA
- 160mA lol ideal for low-impedance applications and transmission line effects with impedance as low as 30Ω
- Multiple side pins are used for $V_{C C}$ and GND to reduce lead Inductance (improves speed and noise immunity)
- 24-pin 300mil-wide Slim DIP package

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (Total)
$74 F 30240$	9.5 ns	62.5 mA
74 F 30244	10.5 ns	69 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE VCC $=5 \mathrm{~V} \pm 10 \% ; ~$
Plastic SLIM DIP (300mil)	74F30240AN, 74F30244AN $+70^{\circ} \mathrm{C}$

NOTE:

* Thermal mounting techniques are recommended.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	Output Enable inputs (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{7}$	Data outputs (OC*)'F30240A	$\mathrm{OC}^{*} / 266.7$	$\mathrm{OC}^{*} / 160 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs (OC*)'F30244A	$\mathrm{OC}^{*} / 266.7$	$\mathrm{OC} / 160 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. $\mathrm{OC}^{*}=$ Open-Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

DESCRIPTION

The 'F30240/'F30244 are high current OpenCollector Octal Buffers composed of eight inverters.

The 'F30240 has inverting data paths and the 'F30244 has non-inverting paths. Each device has eight inverters with two Output Enables ($\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$) each controlling four outputs. Both drivers are designed to deal with the low-impedance transmission line effects found on printed circuit boards when fast edge rates are used.

The 160 mA loL provides ample power to achieve TTL switching voltages on the incident wave.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		OUTPUTS	
	D_{n}	'F30240	'F30244
$\overline{\mathrm{OE}}_{\mathrm{n}}$	\bar{Q}_{n}	Q_{n}	
L	L	H	L
L	H	L	H
H	X	OFF	OFF

$H=$ High voltage level
$L=$ Low voltage level X = Don't care

30Ω Line Drivers

FAST 74F30240, 74F30244

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to 5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	320	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
$\mathrm{~V}_{\mathrm{OH}}$	High-level output voltage			4.5	V
l_{OL}	Low-level output current			160	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature				

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			$\begin{aligned} & \text { 74F30240 } \\ & \text { 74F30244 } \end{aligned}$			Unit			
				Min	Typ ${ }^{\mathbf{2}}$	Max							
IOH	High-level output current						$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$. 55	V			
				$\mathrm{l}_{\mathrm{OL} 1}=160 \mathrm{~mA}^{3}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$. 80	V				
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{\text {IH }}$	High-level input current			$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current			$V_{C C}=\mathrm{MAX}$,	.5V				-20	$\mu \mathrm{A}$			
Icc	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	'F30240	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				13	23	mA			
		$\mathrm{I}_{\text {ccl }}$						70	95				
		ICCH	'F30244					19	27	mA			
		$\mathrm{I}_{\text {CCL }}$						70	100				

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. lol1 is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F30240, 74F30244					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay D_{n} to \bar{Q}_{n}	'F30240		Waveform 2	$\begin{aligned} & 4.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 2.0 \end{gathered}$	$\begin{gathered} 14.5 \\ 5.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 5.5 \end{gathered}$	ns
${ }^{\text {tpLH }}$ tphi	Propagation delay $\overline{\mathrm{O} E}$ to \bar{Q}_{n}			Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.0 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	'F30244	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 5.5 \end{gathered}$	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 9.5 \end{gathered}$	ns	
tpLH tphi	Propagation delay $\overline{O E}$ to Q_{n}		Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$	4.0 3.5	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output

WF0754DS
Waveform 2. Propagation Delay for Data to Output $V_{M}=1.5 \mathrm{~V}$.

TYPICAL PROPAGATION DELAYS VERSUS LOAD RESISTOR FOR OPEN-COLLECTOR OUTPUTS

When using open-collector parts, the value of the pull-up resistor greatly affects the value of the $t_{\text {PLH }}$. For example, changing the specified pull-up resistor value from $\mathbf{5 0 0}$ ohms to $\mathbf{1 0 0}$ ohms will improve the $\mathrm{t}_{\text {PLH }}$ up to 50% with only a slight increase in the $t_{P H L}$. However, if the value of the pull-up with oniy a sight increase in the $\mathrm{t}_{\mathrm{PHL}}$. However, if the value of the pull-up
resistor is changed, the user must make certain that the total l_{OL} current resistor is changed, the user must make certain that the total loL current
through the resistor and, thus the total IIL of the receiver, does not exceed the lol maximum specification

TEST CIRCUIT AND WAVEFORMS

Test Circuit for Open-Collector Outputs
DEFINITIONS
$\mathrm{R}_{\mathrm{L}}=$ Load resistor; see AC CHARACTERISTICS for value. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	$\boldsymbol{t}_{\text {TLH }}$	$\boldsymbol{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

FAST Products

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require High output drive and minimal bus loading
- Octal bidirectional bus interface
- 'F30245 Non-Inverting
- 'F30640 Inverting
- Choice of outputs: Open-Collectors $\left(B_{0}-B_{7}\right)$ and 3-States ($\mathrm{A}_{0}-\mathrm{A}_{7}$)
- Open-Collector outputs sink 160 mA
- 160 mA lol ideal for low-impedance applications and transmission line effects with impedance as low as 30Ω
- 3-State outputs sink 24 mA
- Multiple side pins are, used for Vcc and GND to reduce lead inductance (improves speed and noise immunity)
- Available in 24 -pin standard Slim DIP (300mil) plastic or Cerdip packages
- Flow through pinout structure facilitates PC board layout

PIN CONFIGURATION

FAST 74F30245,
 74F30640
 Transceivers

Product Specification
'F30245 Octal 30Ω Transceivers, NINV (Open-Collector With Enable + 3-State)
'F30640 Octal 30Ω Transceivers, INV (Open-Collector With Enable + 3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 30245	5.5 ns	90 mA
74 F 30640	5.0 ns	85 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \%$; $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\boldsymbol{+ 7 0}^{\circ} \mathbf{C}$
Cerdip (300mil)	N74F30245F, N74F30640F
Plastic Slim DIP	N74F30245N, N74F30640N

NOTE: Thermal mountıng techniques are recommended.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data inputs	$3.5 / 0.1167$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active-Low)	$2.0 / 0.0667$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{~T}} / \mathrm{R}$	Transmit/Receive input	$2.0 / 0.0667$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data outputs (3-State)	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data outputs (OC*)	$\mathrm{OC} / 266.7$	$\mathrm{OC} / 160 \mathrm{~mA}$

NOTES:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. $\mathrm{OC}^{*}=$ Open-Collector

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Transceivers

PIN CONFIGURATION

DESCRIPTION

The 'F30245/'F30640 are high-current Octal Transceivers.
The 'F30245 has non-inverting data paths and the 'F30640 has inverting paths. The B outputs are Open-Collectors with 160 mA IOL while the A outputs are 3 -State with 24 mA loL. Both transceivers are designed to deal with the Low-impedance transmission line effects found on printed circuit boards when fast edge rates are used.
The 160 mA lol provides ample power to achieve TTL switching voltages on the incident wave.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS				
		'F30245			'F30640A	
$\overline{\mathrm{OE}}$	$\overline{\mathrm{T}} / \mathrm{R}$	A_{n}	B_{n}	A_{n}	B_{n}	
L	H	$\mathrm{A}=\mathrm{B}$	Inputs	$\mathrm{A}=\overline{\mathrm{B}}$	Inputs	
L	L	Inputs	$\mathrm{B}=\mathrm{A}$	Inputs	$\mathrm{B}=\overline{\mathrm{A}}$	
H	X	Z	Z	Z	Z	

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High-impedance

Transceivers

LOGIC DIAGRAM 'F30245

NOTES:
$V_{C C}=\operatorname{Pin} 18,19$
$G N D=\operatorname{Pin} 5,6,7,8$

LOGIC DIAGRAM 'F30640

NOTES:
$V_{C C}=\operatorname{Pin} 18,19$
$G N D=\operatorname{Pin} 5,6,7,8$

PACKAGE OUTLINES for HERMETIC CERDIP

1. Controlling dimensions are given in inches and millimeters in parentheses.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
$2.1 \oplus$ is a geometric characteristic symbol meaning the accuracy of a position.
2.2 'T'", 'D', and 'E' are reference datums on the body and include allowance for glass overrun and meniscus on the seal line and lid to mismatch.
2.3 ' S ' is a modifying symbol and means 'regardless of features".
2.4 ' M ' is a modifying symbol and means "at a maximum material condition".
3. These dimensions measured with the leads constrained to be perpendicular to plane T .
4. Pin numbers start with pin \#1 and continue counter-clockwise when viewed from the top.
5. Lead material: ASTM Alloy F-30 (Alloy 42) or equivalent-tin plated or solder dipped.
6. Body Material: Ceramic with glass seal at leads.
7. Thermal resistance values for N74F30245F/N74F30640F in 24-pin CERDIP (300 mil) package:

$$
\begin{aligned}
& \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{JC}}=11^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Test conditions:
Test ambient - still air
Power dissipation-1.0W
Test fixture

$$
\begin{aligned}
\theta_{\mathrm{JA}}= & \text { Textool ZIF socket with } .040^{\prime \prime} \\
& \text { stand-OFF } \\
\theta_{\mathrm{JC}}= & \text { water cooled heat sink }
\end{aligned}
$$

Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application.

FN 24-PIN CERDIP (300MIL)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT	
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V	
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V	
I_{N}	Input current	-30 to +5	mA	
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V	
louT	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	320	mA
		$\mathrm{~B}_{0}-\mathrm{B}_{7}$	48	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74F30245, 74F30640			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{1}	Input clamp current				-18	mA
V_{OH}	High-level output voltage	$A_{0}-A_{7}$			4.5	V
IOH	High-level output current	$B_{0}-B_{7}$			-3	mA
lot	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			160	mA
		$B_{0}-B_{7}$			24	mA
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			74F30245, 74F30640			UNIT			
				Min	Typ ${ }^{2}$	Max							
$\mathrm{IOH}^{\text {l }}$	High-level output current		$\mathrm{B}_{0}-\mathrm{B}_{7}$				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
VOH	High-level output voltage		$\begin{aligned} & A_{0}-A_{7} \\ & R / \bar{T}, \bar{O} E \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{HH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$			2.7	3.4		V				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% V_{c c}$		0.35	0.50	V		
			R/T, OE	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$				0.35	0.50	V			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$		$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.40	0.55	V			
			$\mathrm{IOLI}=160 \mathrm{~mA}^{4}$	$\pm 5 \% \mathrm{~V}_{\mathrm{Cc}}$				0.80	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=I_{\text {IK }}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			T/R, $\overline{O E}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
			$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1.0	mA			
I_{IH}	High-level input current		$\overline{\mathrm{T}} / \mathrm{R}, \overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$						20	$\mu \mathrm{A}$			
IIL	Low-level input current		T/R, $\overline{O E}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
			$\mathrm{B}_{0}-\mathrm{B}_{7}$						-600	$\mu \mathrm{A}$			
$\mathrm{lozH}^{+} \mathrm{IIH}^{\text {r }}$	OFF-state output current, High-level voltage applied		$A_{0}-A_{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {OzL }}+\mathrm{I}_{\text {IL }}$	OFF-state current, Low-level voltage applied		$A_{0}-A_{7}$	$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{V}_{C C}=\mathrm{MAX}$			-60		-150	mA			
Icc	Supply current (total)	ICCH	'F30245	$V_{C C}=\mathrm{MAX}$				45	70	mA			
		$\mathrm{I}_{\text {CCL }}$						85	135	mA			
		ICCz						55	75	mA			
		ICCH	'F30640	$V_{C C}=\mathrm{MAX}$				40	60	mA			
		${ }_{\text {ICCL }}$						75	130	mA			
		Iccz						45	65	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of High-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and to more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. lol. is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	74F30245, 74F30640					UNIT	
			$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
*tpLH $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}	'F30245		Waveform 1, 2	$\begin{aligned} & 7.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$t_{\text {pLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay B_{n} to A_{n}			Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	ns
*tPLH $t_{\text {PHL }}$	Propagation delay A_{n} to B_{n}	'F30640	Waveform 1, 2	$\begin{aligned} & 7.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 2.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 5.0 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 5.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{tPHL}} \end{aligned}$	Propagation delay B_{n} to A_{n}		Waveform 1, 2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\mathrm{OE}}$ to B_{n}	B_{n} outputs	Waveform 1, 2	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{p} \text { PH }} \\ & \mathrm{t}_{\mathrm{p} Z \mathrm{~L}} \end{aligned}$	Output Enable time from High to Low	A_{n} outputs	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Enable time to High or Low	A_{n} outputs	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	ns	

* See Figure A for Open-Collector Output Information

TYPICAL PROPAGATION DELAYS VERSUS LOAD RESISTOR FOR OPEN-COLLECTOR OUTPUTS

AC WAVEFORMS

Waveform 1. Propagation Delay for Data to Output

Waveform 3. 3-State Enable Time to High Level and Disable Time From High Level

Waveform 2. Propagation Delay for Data to Output

wFobogks
Waveform 4. 3-State Enable Time to Low Level and Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit for 3-State and Open-Collector (OC) Outputs

SWITCH POSITION

TEST	SWITCH
tPLZ, tPZL	closed
OC	closed
All other	open

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

INDEX
AN202
AN203 AN205 AN206 AN207 AN208 AN212
Testing and Specifying FAST Logic 7-3
Test Fixtures for High-Speed Logic 7-8
Using FAST ICs for μ P-to-Memory Interfaces 7-20
Using $\mu \mathrm{P}$ I/O Ports With FAST Logic. 7-31
Multiple $\mu \mathrm{P}$ Interfacing With FAST ICs. 7-40
Interrupt Control Logic Using FAST ICs 7-53
Package Lead Inductance Considerations in High-SpeedApplications7-61

FAST Products

AN202
Testing And Specifying FAST Logic

Application Note

INTRODUCTION

FAST ${ }^{\text {TM }}$ is a second generation Schottky logic family that utilizes advanced oxide-isolation techniques to increase the speed and decrease the power dissipation beyond the levels achievable with conventional junctionisolated families. The improved performance of the family is exhibited in two ways - first, the speed and power characteristics of the devices are improved, and second, the conditions under which speed and power are specified are much tighter. For instance, LS and S TTL families offer AC limits only at a nominal $+5.00 \mathrm{~V} V_{C C}$ supply voltage and at room temperature, $25^{\circ} \mathrm{C}$. By contrast, FAST guarantees improved AC performance and specifies that performance over a supply variation of $+5.00 \mathrm{~V} \pm 10 \%$ and at temperatures from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Thus the designer no longer needs to derate his propagation delays from the data sheet limits to compensate for speed degradation over the temperature range.
With every advance of this magnitude, there arise new considerations that must be kept in mind both by the system designer and the user setting up test procedures. FAST is no exception, and it is these considerations that will be addressed in this application note. This paper represents an attempt to describe the way the FAST logic parts are specified, why they are spec'd in the way they are, and how the parts may be tested in the qualification lab and at incoming inspection to verify their performance.

THE FAST DATA SHEET PHILOSOPHY

Signetics FAST data sheets have been configured with an eye to quick useability . . . they are self contained and should require no reference to other sections for information. The typical propagation delays listed at the top of the page are the average between tpLH and $\mathrm{t}_{\mathrm{PHL}}$ for the most significant data path through the part. In the case of clocked products, this is sometimes the max frequency of operation, but in any event this number is a $5.00 \mathrm{~V}-25^{\circ} \mathrm{C}$ typical specification. The $I_{\text {CC }}$ typical current shown in that same specification block is the average current (in the case of a gate, this will be the average of the $\mathrm{I}_{\mathrm{CCH}}$ and $\mathrm{I}_{\mathrm{CCL}}$ currents) at room temperature and $\mathrm{V}_{\mathrm{CC}}=5.00 \mathrm{~V}$. It represents the total cur-
rent through the package, not the current through individual functions.
Other considerations are the Fanout And Loading tables. Some manufacturers relate these numbers in terms of 7400 gate loads . . . Signetics feels that FAST is unlikely to be mixed with other logic families and so gives the loading factors in terms of FAST unit loads. A FAST unit load is defined to be 0.6 mA in the Low state and $20 \mu \mathrm{~A}$ in the High state. Thus in the case of the 74F00 gate, the inputs are specified as 1 Ful (FAST unit load) each ... the outputs need a little explanation. The standard FAST output is specified with an IOL sink current of 20 mA and an $\mathrm{IOH}_{\mathrm{OH}}$ of +1.0 mA . Thus the fanout of this gate in the Low state is $20 \mathrm{~mA} / 0.6 \mathrm{~mA}$ or 33 FAST unit loads. In the High state the fanout is $1 \mathrm{~mA} /$ $20 \mu \mathrm{~A}$ or 50 FAST unit loads. In each case, the Fanout and Loading Table on the Signetics data sheets states the High/Low fanout numbers...thus the 74F00 output fanout is specified as $50 / 33$ Ful.

ABSOLUTE MAXIMUM RATINGS

The Absolute Maximum Ratings table carries the maximum limits to which the part can be subjected without damaging it... there is no implication that the part will function at these extreme conditions. Thus, specifications such as the most negative voltage that may be applied to the outputs only guarantees that if less than -0.5 V is applied to the output pin, after that voltage is removed the part will still be functional and its useful life will not have been shortened - it is difficult to imagine the meaning of the term "functionality" WHILE that voltage is applied to the output.
Input voltage and output voltage specification in this table reflect the device breakdown voltages in the positive direction (+7.0 V) and the effect of the clamping diodes in the negative direction $(-0.5 \mathrm{~V})$.

RECOMMENDED OPERATING CONDITIONS

The Recommended Operating Conditions table has a dual- purpose. In one sense, it sets some environmental conditions (operating free-air temperature), and in another, it sets the conditions under which the limits set forth in the DC Electrical Characteristics table and AC Electrical Characteristics table will be met.

Another way of looking at this table is to think of it, not as a set of limits guaranteed by Signetics, but as the conditions Signetics uses to test the parts and guarantee that they will then meet the limits set forth in the DC and $A C$ Electrical Characteristics tables.

Some care must be used in interpreting the numbers in this table. Signetics feels strongly that the specifications set forth in a data sheet should reflect as accurately as possible the operation of the part in an actual system. In particular, the input threshold values of V_{IH} and V_{IL} can be tested by the user with parametric test equipment... if V_{IH} and V_{IL} are applied to the inputs, the outputs will be at the voltages guaranteed by the DC Electrical Characteristics table providing that there is adequate grounding and the input voltages are free from noise, otherwise a guardbanded V_{IH} and V_{IL} should be used, ie., 2.5 V instead of 2.0 V and .5 V instead of .8 V . There is a tendency on the part of some users to use V_{IH} and V_{IL} as conditions applied to the inputs to test the part for functionality in a "truthtable exerciser" mode. This frequently causes problems because of the noise present at the test head of automated test equipment. Parametric tests, such as those used for the output levels under the V_{IH} and V_{IL} conditions are done fairly slowly, on the order of milliseconds, and any noise present at the inputs has settled out before the outputs are measured. (This is not the case with clocked or enabled parts and poor or moderate fixturing may induce oscillations or severe ground bounce if noise is present.) But in functionality testing, the outputs are examined much faster, before the noise on the inputs are settled out and the part has assumed its final and correct output state. Since these are unloaded outputs, having faster edge rates, this causes more noise. If the outputs are loaded, the 50 pF per output pin can cause substantial ground bounce. Thus V_{IH} and V_{IL} should never be used in testing the functionality of any TTL part including FAST. For these types of tests input voltages of +4.5 V and 0.0 V should be used for the High and Low states respectively.

In no way does this imply that the devices are noise sensitive in the final system. The use of "hard' Highs and Lows during functional testing is done primarily to (1) reduce the effects of the large amounts of noise typically present at the test heads of automated test
equipment with cables that may at times reach several feet and (2) deal with testing parts exhibiting fast edge rates and 50pF per output pin. The situation in a system on a PC board is less severe than in a noisy production environment.

DC ELECTRICAL
 CHARACTERISTICS

This table reflects the DC limits used by Signetics during its testing operations and conducted under the conditions set forth under the Recommended Operating Conditions table. V_{OH}, for example, is guaranteed to be no less than 2.7 V when tested with $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$, across the temperature range from 0° to $70^{\circ} \mathrm{C}$, and with an output current of $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$. In this table, one sees the heritage of the original junction isolated Schottky fami$l y . . . V_{\mathrm{OL}}=0.5 \mathrm{~V}$ at $\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$. This gives the user a guaranteed worst-case Low state noise immunity of 0.3 V . In the High state the noise immunity is 0.7 V worst case. Although at first glance it would seem one-sided to have greater noise immunity in the High state than in the Low, this is a useful state of affairs. Because the impedance of an output in the High state is generally much higher than in the Low state, more noise immunity in the High state is needed. This is because the noise source couples noise onto the output connection of the device - that output tries to pull the noise source down by sinking the energy to ground or to V_{CC} depending on the state. The ability of the output to do that is determined by its output impedance. The lower half of the output stage is a very lowimpedance transistor which can effectively pull the noise source down. Because of the higher impedance of the upper stage of the output, it is not as effective in shunting the noise energy to V_{CC}, so that an extra 0.4 V of noise immunity in the High state compensates for the higher impedance. The result is a nice balance of sink and drive current capabilities with the optimum amount of noise immunity in both states.
I_{1}, the maximum input current at maximum input voltage, is a measure of the input leakage current at the guaranteed minimum input breakdown voltage of 7.0 V . Although some users consider this to be a test of the input breakdown itself, that voltage is typically over 15V. At room temperature, this leakage current should be less than $10 \mu \mathrm{~A}$. (This is not the case with NPN input designed parts.)

Short-Circuit Output Current is a parameter that has appeared on digital data sheets since the inception of integrated circuit logic devices, but the meaning and implications of that specification have totally changed. Originally los was an attempt to reassure the user
that if a stray oscilloscope probe accidentally shorted an output to ground the device would not be damaged. In this manner, an extremely long time was associated with the los test. However, thermally induced malfunctions could occur after several seconds of sustained test. Over a period of time, los became a measure of the ability of an output to charge line capacitance. Assume a device is driving a long line and is in the Low state. When the output is switched High, the rise time of the output waveform is limited by the rate at which the line capacitance can be charged to its new state of V_{OH}. At the instant that the output switches, the line capacitance looks like a short to ground. los is the current demanded by the capacitive load as the voltage begins to rise and the demand decreases. The full value of los need only be supplied for a few hundred microseconds at most, even with $1.0 \mu \mathrm{Fd}$ of line capacitance tied to the output, a load that is unrealistically high by several orders of magnitude.

The effective of a large los surge through the relatively small transistors that make up the upper part of the output stage is not serious, AS LONG AS THAT CURRENT IS LIMITED TO A SHORT DURATION. If the hard short is allowed to remain, the full los current will flow through that output state and may cause functional failure or damage to the structure. A test induced failure may occur if the los test time is excessive. As long as the los condition is very brief, typically 50 ms or less with ATE equipment, the local heating does not reach the point where damage or functional failures might occur. As we have already seen, this is considerably longer than the time of the effective current surge that must be supplied by the device in the case of charging line capacitance. The Signetics data sheet limits for los reflect the conditions that the part will see in the system - full los spikes for extremely short periods of time. Problems could occur if slow test equipment or test methods ground an output for too long a time causing functional failure or damage.

AC TESTING

FAST data sheets carry several types of AC information. The AC Characteristics table contains the guaranteed limits when tested under the conditions set forth under the AC Test Circuits And Waveforms. In some cases, the test conditions are further defined by the AC Setup Conditions - this is generally the case with counters and flip-flops where setup and hold times are involved. All of the AC Characteristics are guaranteed with 50 pF load capacitances and with the fewest number possible of outputs switching, depending upon the functionality of the device. One of the sets of limits is spec'd at $25^{\circ} \mathrm{C}$ and $+5.00 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ - these relate closely to the
standard Schottky specifications which are under similar conditions but use only 15 pF load capacitances. While these numbers are convenient for comparing the two families, keep in mind that using full 50pF loads with the Schottky devices would add several nanoseconds to their propagation delays. These numbers are ideal for checking out test jigs and correlating data since they do not involve temperature or supply voltage spreads. For system design, full specifications are included that include temperature and supply voltage variations - in one case the military ranges and in the other, the commercial ranges.

AC TEST JIGS AND SETUPS

Each FAST data sheet spells out the test circuit used to check AC performance, the waveforms, measurement points, rep rate, test loads, etc. But there are only the quantifiable variables involved in this testing. There is another more complex side to the issue test jigs and equipment setups.

To get an appreciation for the problems involved in testing FAST, consider these facts. The output rise and fall times on FAST outputs are very sharp. Translating these edge rates into the effective sine wave equivalents generates frequencies on the order of several hundred MHz. At these frequencies, attention to RF phenomena is required.
Because of these RF frequencies, it is necessary to have an AC test jig that has minimal modifying effect on the input and output waveforms. To do this the jig must be constructed properly. The following items are key in dealing with AC jig construction.

BYPASSING CAPACITORS

Signetics uses high quality capacitors that have good RF qualities to decouple the power supply lines on the test jig, right at the $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$ to the ground plane. Four capacitors with absolute minimum lead length are used. Microwave chip capacitors are recommended. (Note: In some sensitive test environments it is advisable to decouple the V_{C}, as well as bypass. This is done by passing the V_{CC} through a wire wrapped around a ferrite core 6-8 times. The inductor created helps decouple the noise from $V_{C C}$ and reduces dramatically, the tendency for feedback oscillations through the $V_{C C}$ and ground current loop. This is a key problem on clocked parts since the ground bounce created by the fast edge rates and high currents will effect V_{CC} and ground substantially and thereby effect internal thresholds.) These are one each, 10μ Fd dipped tantalum, $0.1 \mu \mathrm{Fd}$ dipped tantalum or chip, $.001 \mu \mathrm{Fd}$ chip and 100 pF chip.

Testing And Specifying FAST Logic

GROUNDING

One of the biggest contributors to waveform degradation is improper grounding. In reference up to the test jig, the grounding is best done with one or more large ground planes that are directly connected to the ground pin of the test socket. The Signetics AC Test Jigs, both DIP and SO styles, are constructed as a four layer PC board with the 2 internal layers as ground planes. Ground planes are also interdigitated between all signal lines to decrease crosstalk. There are holes drilled in these and they are plated through to connect with the internal 2 layers and the top and bottom layers. See Figure 3 to see the interdigitated ground planes on the PCB layout of the SO jig. This grounding scheme has been used with great success in 10 k and 100k ECL fixturing. The board is laid out so that the characteristic impedance of the signal lines is 50Ω. This is done by using industry standard stripline techniques. The ground plane also passes down through the center of the part on the bottom side of the board and ground pin is soldered to it using copper wire to connect the pin and the ground plane. On the top side of the board, the V_{CC} plane goes through the center of the part too, and connects to the V_{CC} pin in like manner as the ground pin. See Figure 1. The bypass capacitors are attached on the bottom side to the $V_{C C}$ pin from the ground plane, see Figure 1. As the $V_{C C}$ is brought on board, the V_{CC} wire is wrapped around a $1 / 2$ inch ferrite core, 6-8 times, then makes connection with the $V_{C C}$ plane on the top side.

INTERCONNECTS

The next concern is getting the input signal to the part and the output signal to the measurement system. As stated before, the Signetics jig is laid out for a 50Ω characteristic impedance. We recommend that the user maintain a 50Ω environment for the input signal as close as possible to the input pin and then terminate in 50Ω. On our jig, we terminate with a 50Ω chip resistor. The signal is brought on board through an SMB connector to the 50Ω trace on the top side of the board. The signal is terminated by the chip resistor, R3, see Figure 2a and 2 b . The signal proceeds to the DUT pin, a distance of about .5 inches, through Jumper 1 (in the Input Only position), and the rest of the trace. The same pin on the opposite side of the board has a 450Ω chip resistor soldered to it. The other side of this resistor, R1, is soldered to a 50Ω trace on the bottom side of the board that runs to an SMB connector on the edge of the jig. This connects to the 50Ω input of the Sampling

Figure 1

Oscilloscope. This 450Ω resistor in series with the 50Ω input of the scope creates a 10X divided 500Ω probe for the scope and provides impedance matching for the scope. See Figure 2 b . This circuit also doubles as the resistive portion of the FAST AC Output Load and thereby allows the output to be sensed in the same fashion. When the input is not used for a signal or generator input, the line may be switched to one of three voltage sources. V_{S} $1-V_{S} 3$, by the use of a DIP switch on each pin. It may also be left open and then the 50Ω pull-down resistor that is used for an input terminator, pulls the line to ground and can be used as a hard low level. See Figure 2b. This scheme eliminates excessive cabling to each input to provide static input levels and thereby reduces parasitic inductances and cross-talk. It also eliminates the need for bulky and sometimes unreliable high impedance probes by using the 50Ω input of the Sampling Scope. With the designed-in flexibility of Jumper 1 and Jumper 2, and the selectable nature of V_{CC} and Ground pin designations, one can configure this board for any $V_{C C}$ and Ground pin designations, select which pins
are outputs or inputs and even provide the proper pull-up for 3-state outputs. This makes the board entirely universal for designated V_{CC} /Ground configurations. To explain this, the output of the device is connected to its capacitive load by Jumper 1 in the Output Only position. This means that no pin can be both output and input at the same time, but can be either. Jumper 2 allows an output to be connected to the 3 -state pull-up resistor, R2, and have that connected to the needed 7 V . See Figure 2 a and 2 b . The scope is connected in the same way as the input, with the 450Ω resistor and the 50Ω of the scope comprising the 500Ω needed for the FAST load. One other consideration exists. In small part quantity testing, the elimination of a socket is very desirable, using inserted pins that are flush with the jig. In larger quantity testing, sockets may be needed, however. If this is the case, some degradation in the performance will occur due to the increased lead inductance for each pin, which is observable, and the addition of group delay through the socket may alter or affect the readings obtained.

HIGH-FREQUENCY DESIGN

The exact jig delay time is determined by the size of the universal jig that is being used. It is important to know that the frequency response of the jig must be High to prevent any delay factor from varying with the edge rates. The frequency response of the jig indicates how constant the impedance remains over frequency. The characteristic impedance of a transmission line is expressed as...

Where L_{0} is the inductance per unit length, C_{0} is the capacitance per unit length, Z_{0} is in Ohms, L_{0} in Henrys, and C_{0} in Farads. Propagation velocity and its inverse, delay per unit length d, are also expressed in L_{o} and Co...

$$
V=\frac{1}{\sqrt{L_{o} C_{o}}} \quad \delta=\sqrt{L_{o} C_{o}}
$$

where δ is expressed in nanoseconds, L_{o} is in microhenrys per unit length, and C_{0} in microfarads per unit length. From this, it is clear that if the Z_{0} changes over frequency, then the delay per unit length will vary as well. Therefore, it is imperative to know how the jig responds over frequency and that all measurement line lengths are identical.
Frequency response also depends on the phase as well as the magnitude of the impedance. If the phase changes so does the delay, since delay is the derivative of phase change with frequency. An S-parameter analysis is needed in evaluating jig performance.

UNIVERSAL JIG CONSTRUCTION

Jig universality is with respect to chip pin count and $V_{C C}$ and ground pin placements and as such, separate universal test jigs are built for 14, 16, 20, 24, and 28 pin parts.
An S-parameter analysis was performed in a network analyzer to optimize the jig layout. This assured that the jig had a flat frequency response over the spectrum of interest for FAST products. Figure 2 b shows the schematic of the fixture and Figure 2 a shows a

Figure 2b. FAST AC Test Fixture - Schematic
drawing of the board layout, component placement and signal paths. The equipment used to analyze the jigs and loads was: HP8505A Network Analyzer, HP8503A SParameter Test Set, HP8501A Storage Normalizer. In some measurements the equipment was driven by an HP9845B desk-top computer.
Jigs produced in this way should have minimal lead length to reduce the characteristic inductance. This in turn minimizes reflections with their accompanying waveform distortions and measurement inaccuracies.

AC TEST LOADS FOR THE SIGNETICS UNIVERSAL JIG

As stated previously, the Network Analyzer was also used to design and optimize AC test loads to be used with the universal jig. FAST product loads require 50pF load capacitance and 500Ω resistance to ground.

Signetics meets the 50 pF requirement through the use of a 45 pF load, 4 pF jig capacitance, and 3 pF probe capacitance. The result, 52 pF , is slightly more stringent than required.

A few words about load capacitors are in order. All capacitors have an associated inductance. Due to this inductance, a capacitor will form a series resonant circuit at some frequency. For single 50 pF capacitors, this typically occurs between 200 and 600 MHz
depending on the type of capacitor. Above this resonant frequency, the capacitor has inductive characteristics and does not present a capacitive load. This is very important with FAST because harmonics due to the sharp edge transition rates occur at 600 MHz and above.

The Signetics FAST loads solve this problem by reducing the load capacitor lead inductance by paralleling three 15 pF chip capacitors. The resulting load is 45 pF . At the same time, since smaller value caps are used to build up the capacitive load, the associated series resonant point is above 1.2 GHz .

The load resistors are $1 / 8 \mathrm{~W}$ selected 510Ω $\pm 10 \Omega$ chip resistors.

The entire load assembly is constructed on the jig PCB along with the input termination, and the jumpers with select an input or output path. The load circuit is detailed on the FAST data sheets for 3-state parts.

CORRELATION

While numerous ATE systems are available and are very efficient, it is imperative that the ATE correlate to a user's bench setup. Since the Signetics FAST parts are all characterized on the setup described in this note, it is just as important that the user bench jigs meet the same performance criteria. Without similar jigs, it will be very difficult to correlate AC data.

Testing And Specifying FAST Logic AN202

Figure 3

Signetics

FAST Products

INTRODUCTION

The Signetics Standard Products Division (SPD) operates a Characterization Laboratory in Orem, Utah. This Lab maintains the capain Orem, Utah. This Lab maintains the capathe Division supports. These include: AuTTL74XXX, Schottky-74SXXX, Low-Power Schottky-74LSXXX, FAST-74FXXX, ALS74ALSXXX, High-Speed CMOS-74HCXXX, High-Speed CMOS/TTL-74HCTXXX, Advanced CMOS/TTL (ACL)-74ACT11XXX, Advanced CMOS/TTL (ACL)-74ACT11XXX, Ad-
vanced CMOS (ACL)-74AC11XXX, and both 10 K and 100 K ECL.

Due to the great diversity of product families and the different testing requirements and complexity of the product types of each family, Signetics SPD Characterization has designed and built a bench test AC fixture that is specifically designed to address to only the High-speed logic families. It has the advantages of being very versatile, has high bandwidth capability ($\geqslant 750 \mathrm{MHz}$), is 50Ω system compatible, and is manually programmable for the input static voltages. This provides the ability to have one fixture that addresses many product types across families. The extent of this versatility is explained in the following Application Note. The families that this fixture is intended to support are: FAST, ALS, ACL, 10K ECL, and 100K ECL (Note: This fixture is compatible with any 500Ω pull-down load.)

THEORY OF OPERATION

There are several key points in testing the faster edge-rate logic families. They are:

- Very good by-passing and decoupling (they are different).
- Large ground and $V_{C C}$ planes
- Low-impedance signal lines (i.e., 50Ω)
- Signal lines that are uniform in impedance over frequency
- Signal lines must have high bandwidth ($>500 \mathrm{MHz}$)
- Low-inductance paths for the DUT leads, including $V_{C C}$ and GND
- Output AC load close to the DUT

AN203

Test Fixtures for High-Speed Logic

Application Note

- Measurement point close to the DUT
- Avoidance of ground loops (especially on inputs at DC levels)

Also of concern to the test engineer and the manager are:

- Versatility and/or ease of use (there are tradeoffs)
- Cost
- The number of fixtures needed to support products

Each of these concerns have merit and must be understood by the user of these logic families if valid and correlatable results are to be found.

$V_{C c}$ and GND

The secret in $V_{C C}$ and GND use in fixturing is to do the things that reduce the noise that can: 1) get to your part, and 2) come from your part. This is done by reducing the noise of the V_{CC} as it arrives to the fixture, by judicious application of frequency dependant by-passing at the DUT $V_{C C}$ pin to GND and reducing inductance from the $V_{C C}$ and GND pins of the DUT to the point where good contact of the by-passing and $V_{C C}$ and GND planes occur. All of these are techniques used in good RF and microwave board design. By reducing parasitic inductances and
cleaning up any sources of noise, good signal integrity is better maintained.

These points are evident in the fixture Signetics has designed. Part of the noise reduction of the power supply as it arrives is done by by-passing the power supply at its terminals. The power is then brought to the fixture via banana cables, (as short as possible), to jacks on the chassis of the fixture. An 18 gauge wire, attached to the jack, is wrapped through a $3 / 4$ inch ferrite core 8-12 times for decoupling of any spikes. (Details of the cores used are included in the parts list.) This acts as a Low-pass filter. The wire is then soldered to the bottom of the PC board onto the large $V_{C C}$ plane that narrows to the $V_{C C}$ bus running between the pins of the DUT. See Figures 1 and 2 for detail.

Triangle-shaped, the $V_{C C}$ plane provides a Low inductive path for the V_{CC} to the DUT pin. See Figure 2 for the board layouts. The $V_{C C}$ bus from this plane travels down between the DUT pins to that connection. This is so connection to the V_{CC} bus is easy and very short. The DUT may have $V_{C C}$ located on any pin with this configuration. The pin is connected to the V_{CC} bus by soldering small copper braid or similar Low-inductance wire capable of carrying the current for the device, see Figure 3.

Test Fixtures for High-Speed Logic

D.IP 5디Nutibs

S08512.31

Figure 2b. Board Layout - Bottom Side

On the opposite side of the top layer of the board is a triangle-shaped ground plane. Ground planes are also located on the bottom layer of the board in the same places as the V_{CC} and ground planes of the top layer. Since this fixture is laid out for 50Ω stripline, layers 2 and 3 are almost total ground plane, with holes in them for feed-throughs and components. Also found between the signal lines, on the top and bottom layers, are ground plane "fingers' that are connected to all 4 layers by plated-through holes. This provides good separation of the signal lines resulting in lower cross-talk.

The bottom layer ground plane consists of two triangle-shaped planes connected by a bus strip that runs between the DUT pins. This was done for 3 reasons: First, this allows connection of any ground pin of the DUT to the ground, regardless of location; like the V_{CC} connection on the top layer. Second, it allows the connection of the by-pass capacitors from the V_{CC} pin to the ground with the shortest possible lead length. Characterization uses typically 2 or 3 ceramic chip capacitors and 1 or 2 dipped tantalum capacitors (35V) to by-pass the V_{CC} pin. It is important to keep the dipped tantalum capacitor's leads as short as possible to reduce series inductance. The recommended values of capacitors are: $100 \mathrm{pf}, .01 \mu \mathrm{f}, .1 \mu \mathrm{f}$. and $10 \mu \mathrm{f}$. We have found at times, the need to adjust these values depending upon the product type and its performance. Some noise sensitive circuits need more by-passing in the lower and extreme higher values of capacitance. And third, the connection of the two planes eliminates possible ground loops and the feedthroughs create a ground mesh and give an excellent ground plane for the circuit. Figure 3 illustrates the by-pass connections.

BY-PASS AND DECOUPLING

It is important to understand the difference between decoupling, as with the ferrite core,
and by-passing, as with capacitors. Decoupling occurs as High-frequency signals are removed by saturation of the ferrite core. This prevents "noise" that may be on the V_{CC} power supply from getting on the V_{Cc} plane. The action of the by-passing capacitors is to: 1) "pass" any non-DC signals that occur on the $V_{C C}$ (due to the part's operation) to ground, and 2) be able to provide the 'instantaneous' current demands of the part as it switches.
The various values of capacitors are intended to provide a Low-impedance path at all operating frequencies. Since real-world capacitors have resonance points at a given frequency, depending upon their value and type of capacitor (and actually turn inductive above the resonance point), using different values that have different resonance points allows an across-frequency Low-impedance path for V_{CC} noise.

An important point in the use of by-pass capacitors is the minimization of lead length. Lead length represents inductance; inductance in series with the capacitance. If it is too much, it can cause resonance and oscillation problems with the part anri/or power supplies and nullify the benefit of the capacitors. It also plays a major part in inhibiting the effect of the "instantaneous' current response needed by the part from the by-pass capacitors. It actually can cause the ground of the device to track the change in current to the degree of the lead inductance. The lower the inductance, the lower the "ground bounce" effect. Hence, short or no lead lengths on capacitors are needed to help prevent the effects of ground bounce.

SIGNAL LINES

A signal line is defined as a line that carries the input stimulus, either DC or $A C$, or output response, to or from the device. Since these

Figure 3. Decoupling Connections
signals are measured and determine the data which characterizes the part, it is critical that they are of the highest integrity and represent, as far as physically possible, the action of the part; not the nuances of the fixture. To achieve this, the line must not be able to change the signal over the measureable frequencies of the device, nor affect the delay of the part.
The fixture as designed, has 50Ω signal lines determined by a stripline layout method. The 50Ω value was selected for several reasons: 1) the 50Ω value matches impedance with the pulse generators that are used as input stimulus. 2) The output loads specified for this fixture are either a 500Ω pull-down or a 50Ω pull-down (ECL), in parallel with a capacitive load. This allows the 50Ω signal line to be terminated into this load for either a 10:1 or a 1:1 match. 3) A Low-impedance line will have better characteristics with regards to crosstalk and resisting external noise.
There are two types of signal lines on this fixture: input and output; both of which are 50Ω transmission lines. The input line is on the top side of the board and is always terminated in 50Ω. It is connected to the DUT via a $.3^{\prime \prime}$ jumper, Jumper \#1 for input. When this jumper is installed, the DUT pin is available only as an input. To allow this line to be used as an output, a $.1^{\prime \prime}$ jumper, Jumper \#1 for output, is used instead of the $.3^{\prime \prime}$ jumper. This connects the DUT pin to the AC load when the DUP pin is an output. See Figure 5.
The output signal line can be dedicated two different ways. The first method, used for ECL, is to leave shorted the 50Ω trace and have it run directly into the SMB connector into the 50Ω sampling system. The second method is to cut the trace at the DUT pin and solder the 450Ω chip resistor, R1, across the cut. This, combined with the 50Ω scope, then appears to the part as either a 500Ω probe for the input signal or the 500Ω output AC load for the output signal.
The signal lines are equal length and therefore do not introduce any extraneous delay from pin to pin. We also characterized the impedance of the lines over frequency to ensure minimal distortion over the frequency range and any effective change in propagation delay caused by the relationship of inductance and group delay, see Ap Note 202. Figure 4 illustrates the frequency response of the signal lines in impedance.

This is considered to be high bandwith and encompasses the frequency range exhibited by ALS, ACL, ELC, and FAST logic families.

op 19870 S
Figure 4. Signal Line Frequency Response

TC03670s
Figure 5. Signetics PCB Fixture Schemetic

LOADING

The explanation of the two types of AC loads that may be used will be covered in two parts. First the ALS, ACL, and FAST implementation will be discussed, then the ECL implementation.

ALS. ACL, and FAST Implementation The FAST, ALS, and ACL product families AC load is specified as a 50pF capacitor and a 500Ω resistor in parallel. This load has the advantage of being adaptable to both a Highimpedance (A.T.E.) or a Low-impedance (bench) measurement environment. The Signetics fixture uses a Low-impedance environment primarily for two reasons. The first reason is that experience of the last 5 years has told us that High-impedance probes represent a reliability concern and can introduce
hard to detect errors into the waveform. The second reason being that most suppliers of these technologies provide data based upon the Low-impedance approach and most large users of these products do so as well. This also allows the fixture to be used for ECL testing since that product uses a totally 50Ω environment. Figure 5 illustrates how this test fixture implements the $50 \mathrm{pF} / 500 \Omega$ load schematically.
The fixture was laid out to present the load as close as possible to the device, and yet allow for flexibility in deciding if a certain pin is an output or an input. This distance is critical due to its inductive effect upon ground bounce phenomena. It is acknowledged here that a fixture dedicated to a single device type without jumpers, and therefore placing the
load virtually on the pin of the device, would show the ground bounce phenomena for simultaneous switching to be less than that of this fixture. However, this fixture can be so dedicated by not using the pads as provided, but rather by using the ground bus, like the by-pass capacitors used. The flexibility of this fixture substantially reduces the cost of fixturing for these families. Studies on simultaneous switching with this fixture have shown dramatically favorable results to previous fixtures. Those studies continue. For work other than that of simultaneous switching, there will be no appreciable difference with a dedicated fixture.
As illustrated in Figure 5, the load is shared with the 50Ω input of the measurement system; a 50Ω sampling oscilloscope. The 450Ω resistor: R1, is soldered to the socket pin of the device and is in series with the 50Ω input of the scope. Figure 6 illustrates this on the board layout of one input/output pin. This allows virtually a probe tip on the device pin. The load capacitor: $\mathbf{C 1}$, is a 33 pF ceramic chip capacitor. This is added to the measured value of 17 pF of board capacitance, achieving the 50 pF value specified for the load. The distance from the pin to the capacitor is .5 inches and is adequate for the testing of these product families.

For testing 3-State parameters, the 500Ω resistor: R2, is connected to it's pull-up supply. V_{t} via a.$^{\prime \prime}$ jumper: Jumper \#2. The V_{t} supply is bussed to each pin and may or may not be connected with that jumper. See Figures 5 and 6.

ECL Implementation

When testing ECL product, the 450Ω resistor: R1, is not used, Rather, this point is left shorted together in the construction process. Also for ECL, the load chip capacitor: C1, the tri-state pull-up resistor: R2, the 50Ω terminator: R3, and the "output only" jumper: Jumper \#1, are not used. The input signal travels down the input path, is jumpered using the "input only" (Jumper \#1), goes to the device, travels out the output path (left shorted, no R1), and proceeds to the scope. When the signal is an output, the 'input only" jumper: Jumper \#1, is removed and a 50Ω terminator is connected to the SMB connector as the load or the 50Ω input of the scope. See Figure 7.

Test Fixtures for High-Speed Logic

Figure 7. ECL Configuration

INPUT STIMULUS AND MEASUREMENT

When the input is not used for a signal input, the line may be switched to one of three voltage sources: $\mathrm{V}_{\mathrm{s}} 1$ through $\mathrm{V}_{\mathrm{s}} 3$, by the use of a DIP switch on each pin. It may also be left open and then the 50Ω pull-down resistor: R1, pulls the line to ground and can be used as a hard low level. See Figure 5. These voltage levels are brought in from external supplies through banana connectors like $V_{C C}$. This scheme eliminates excessive cabling to each input to provide the static input levels and thereby reduces parasitic inductances and cross-talk. Each of the 3 busses and the V_{t} bus all have places for by-pass capacitors in the event of noise on the static levels. Figure 8 illustrates the DIP switch and SMB connectors and how they control the input stimulus and output measurement.

As stated previously, the measurements are made with 50Ω sampling systems. The connections to these systems are made via SMB connectors. This was chosen since it is compatible with SMC; it is push-on, it is small for easy configuration, and it is capable of high bandwidth operation. Figure 8 illustrates where the connections are made, where the pulse generators connect to the input and an SMB connector. Since the 450Ω resistor: R1, is soldered directly to the pin of the device, the actual probe tip is at that point. See Figure 6. This has the advantage of eliminating any distance from the device to the probe tip, thus guaranteeing accurate results.

VERSATILITY AND COST

At some point, there is a choice between the most technically attractive options and the cost of options. This fixture has been primarily designed to optimize the cost effectiveness of test fixturing yet yielding a technically sound tool. To do this, a compromise has been made between the ease of use and the versatility.
In the construction of the fixture, a choice is made as to where the V_{CC} and GND pins are to be located. This then dedicates this particular fixture to part types with this $V_{C C}$ and GND configurations. This is alos done with a
dedicated fixture. However, on a dedicated fixture, the pins are individually constructed to be either an input or an output, and in so doing, the fixture is usable for 1-to-4 devices. The Signetics fixture, once dedicated to a particular $V_{C C}$ and GND configuration, is built up to have both input and output components on all signal pins. The selection of which pin is an output or an input is made by inserting the appropriate jumper, See Figures 5 and 6. The same applies in doing tri-state testing. The tradeoff here is that it would probably take less time to setup the dedicated fixture than the Signetics fixture. To help compensate for that tradeoff, we have the three Vs supplies that may be switched into any pin to provide input static levels and eliminate the need to bus input High or Low levels by external cabling. For the user that means the only connections being made to the fixture are:

- the $V_{C C}$ (banana jack)
- the (GND) (banana jack): this is the common ground of all input supplies.
- the $V_{S} 1, V_{S} 2$, and $V_{S} 3$ supplies (banana jack): these may be any voltage and are switchable. Signetics connects programmable supplies to these connectors.
- the V_{t} supply (banana jack): this is the tri-state pull-up voltage and is permanently connected to the bus to each pin. It is selectable by Jumper \#2, see Figures 5 and 6. For FAST and ALS products this is 7 V . For ACL products this is $\mathrm{V}_{\mathrm{CC}} \times 2$ and it is not used for ECL applications.
- Input Stimulus (inside SMB connector: this is found on every input/output pin. More than one pin may be used in this manner. CAUTION: When using this connector as an input stimulus, make sure $V_{s} 1-3$ are disconnected. This will short the power supplies to the generator if they are not disconnected.
- Output Measurement or Scope Connection (outside SMB connector: this is also found on every input/output pin. More than one pin may be used in this
manner. Remember, if this pin is not connected to a scope and is an output, a 50Ω resistor must be connected here to ground to complete the 50Ω resistive load. Signetics has constructed 50Ω load by soldering a high-quality (Highfrequency) 50Ω resistor inside a female SMB cable connector. See Figure 9.

CAUTION: $V_{S} 1.2$ and 3 are all on the same DIP switch. Since they connect to the same bus per pin, ONLY ONE SUPPLY MAY BE CONNECTED AT ONE TIME, Otherwise, this will result in a short between power supplies connected.
With these 6 connections, the fixture is capable of testing the product lines as mentioned.

The cost of this fixture ranges from 550 per fixture, dedicated to a 20 -pin device in quantities of $1-10$, to as low as 385 per fixture of the same type in quantities over 100. This is not substantially higher than the cost of a dedicated fixture; which is estimated at 200 500. The factor to consider would be the quantity of fixtures for the number of products to be tested. To have a dedicated fixture for every 2-3 product types versus a "universal" test fixture for $20-30$ product types is worth considering from a cost standpoint.
Included in Appendix 1 is the parts list for this fixture and the supplies used by Signetics. This in no way constitutes Signetics endorsements of these suppliers and the customer may select their own supplier if they so desire. This fixture is offerd to the public to duplicate and use within their own environments. Signetics will not provide any materials but will allow the manufacturers of the board and materials to build and/or supply for any requesting party. Pricing and availability are left to the vendors and Signetics has no control over those issues. The intent is to provide something for users of High-speed logic that has been proven and tested in a true High-speed use, and provide a characterization of these products prior to their introduction to the market place.

Figure 8. DIP Switch Connections for $\mathbf{V}_{\mathbf{s}} 1, \mathbf{V}_{\mathbf{s}} \mathbf{2}, \mathbf{V}_{\mathbf{s}} \mathbf{3}$, and $\mathbf{V}_{\mathbf{t}}$ and the SMB Connectors for Input Signals and Output Measurement

Figure 9. 50Ω Load Resistors Using Output Pin SMB Cable Connectors

Test Fixtures for High-Speed Logic

5. APPENDIX I - Component and Vendor List

The following prices are quoted for a 30 piece build of a 24 pin test fixture and are not binding in any way.

1. Printed circuit mother board

SO and SOL	- \#SD8512.28	$\$ 195.00$
DIP	-\# SD8512.31	$\$ 195.00$
Requirement:	1 per part configuration	
Supplier:	Prototype and Production Circuits	
	8040 S. 1444 W.	
	West Jordan, UT 84084	
	(801) 566-5431	

2. SO and SOL sockets.

\#_PINS	PART_\#
14	$001-14$
16	$001-016$
16 L	$001-116$
20	$001-120$
24	$001-124$
28	$001-128$

All sockets are the same price.
SOIC through hole socket
Requirement: 1 per board
Supplier: Surface Mount Devices, Inc.
PO Box 16818
Stamford, CT. 06903
(203) 322-8290
3. L\$G-1AG14-1 Socket Terminal Pins.

For DIP boards - number of pins equal to the part pin count times by (7) seven. $24 \times 7=160 \times .20=$
For SO and SOL boards - number of pins equal to the part pins count times by (5) five. $24 \times 5=120 \times .20=$
cost per pin is \$. 20
4. Shorting Blocks (Jumpers).
.3 inch $\begin{gathered}8136-475 G 1 \\ \$.25 \text { each } \times 24=\end{gathered} \quad$ Requirement: 1 per pin
.1 inch 8136-651P2 Requirement: 1 per pin $\$.05$ each $\times 24=\quad \$ 1.20$
Supplier: Augat
5. Chip Resistors.
$50 \Omega 1 \%$ CRCW 1210 Requirement: 1 per pin
$\$.168$ each $\times 24=\quad \$ 4.03$
450Ω 1\% CRCW 1206
Requirement: 1 per pin
$\$.037$ each $\times 24=\quad \$.91$
500Ω 1\% CRCW 1206
$\$.037$ each $\times 24=$
Supplier:
Dale Electronics, Inc. 2300 Riverside Blvd. Norfolk, Nebraska 68701 (402) 371-0080

Test Fixłures for High-Speed Logic

6. Chip Capacitors.

Ceramic Part_\#	Requirement	
33pf 500R15N330JP	1 per bin	
\$.17 each $\times 24=$		\$4.08
15pf 500R15N150JP4	1 per board	
\$. 50 each $\times 1=$		\$. 50
. $015 \mu \mathrm{f}$ 500\$41W103KP4	1 per board	
\$1.00 each $\times 1=$		\$1.00
. $1 \mu \mathrm{f}$ 500\$41W104KP4	1 per board	
\$1.00 each $\times 1=$		\$1.00
Supplier: Johanson Dielectrics		

7. Dipped Tantalum.

Requirement

1 per board
1 per board
$47 \mu \mathrm{f} \quad \begin{aligned} & \text { 476K020WLG } \\ & \$ 2.18 \text { each } \times 1=\end{aligned}$
8. Ferrite Core.

T80-1
Requirement: 1 per board
9. Mounting Screw.

4-40 $\times 1 / 4$ Phillips pan head machine screw Requirement: 16 per board. $\$.02 \times 16=$
Supplier: Bonneville Industry Supply Co.
45 So. 1500 W.
Orem, Utah
(801) 225-7770
10. Bannana Plug Jack.

H.H._Sm	mith_Type	Order_\#	Requirement	
White	1509-101	28F1178	6/board-color your choice	
Red	1509-102	35F870	6/board-color your choice	
Black	1509-103	35F869	6/board-color your choice	
Green	1509-104	28F1179	6/board-color your choice	
Blue	1509-105	28F1180	6/board-color your choice	
Yellow	1509-107	28 F 1182	6/board-color your choice	
	\$. $35 \times$			\$2.10
Supplier:		Newark	tronics	

11. Switch.

$$
\begin{array}{lll}
\text { 76P\$B04 } & \text { 4-bit side actuated piano-dip } & \text { Requirement: } 1 \text { per pin } \\
& \$ 1.39 \times 24= & \\
\text { Supplier: } & \text { Grayhill Co. } & \$ 33.36
\end{array}
$$

12. Connectors - Snap-on SMB.
$\begin{array}{lll}\text { 51-051-0000-220 - Straight jack receptacle } & \text { Requirement: } 2 \text { per pin } & \\ & \$ 2.25 \times 48= & \\ \text { Supplier: } & \text { Sealectro } & \$ 108.00\end{array}$
13. Mounting frame.

Signetic's number CB-1.0
Requirement: 1 per test fixture
\$21.50
Supplier: Electronic Chassis Corp. 468 North 1200 West Lindon, Utah 84062 (801) 785-9113

Test Fixtures for High-Speed Logic

14. Hookup wire.

No. 18/20 gauge Teflon coated - about 24 inches per test fixture.
The approximate cost for 1 -of- 30 , 24 -pin fixtures is $\$ 418.73$ each.
The following components may be needed in use of the test fixtures but are not part of the test fixtures.

$61-001-0000-89$	50Ω terminator plug	As required or hand built with
$51-007-0000$	Straight Cable Clamp Type	50Ω resistor and $51-007-0000$
$51-083-0000-222$	"T" adaptor J-J-J	As required
$51-085-0000$	"T" adaptor J-P-J	As required
$51-072-0000$	Adaptor J-J	As required
$51-073-0000$	Adaptor P-P	As required
$51-001-0020$	Shorting plug	As required
$61-002-0000-89$	50Ω terminator jack	As required
Supplier:	Sealectro Corp	As required
	(415) $965-1212$	

Test Fixtures for High-Speed Logic

6. APPENDIX II-Construction Hints

A suggested order of assembly is as follows:

1. Cut traces for 450Ω resistor. (Not needed for ECL)
2. Install SMB Connectors. Elevate base from board $.05^{\prime \prime}$.
3. Install DIP Switches. Note: Numbers on switches may not correlate to Vs supply numbers.
4. Install Augat socket pin.
5. Install load/termination resistors and capacitors.
6. Strap $V_{C C}$ and GND pins to appropriate bus strips.
7. Install by-pass capacitors.
8. Clean flux off of board and components.
9. Check for lead to frame shorts on PLCC board. (Not discussed in App Note.)
10. Install banana jacks on frame.
11. Attach board to frame with $1 / 4$ Phillips pan head machine screws.
12. Wrap wire 8-12 times around ferrite core. Leave enough wire to connect to frame and board. See Figure 1.
13. Connect V_{CC}, GND, and voltage supplies from banana jacks to board.
14. Remove all remaining flux. Keep 'flux-off' from banana jacks.

Hints on construction:

- A $.05^{\prime \prime}$ shim that fits under the SMB connector base helps elevate it during construction.
- Mount the SMB connector with flat side out rather that point side out. See Figure 8.
- Solder Augat socket pins in with a part inserted to hold the pins steady.
- 'Piano DIP' switches have the numbers reversed from the Board notation. Taping a new number on the board designations will help match the switches.
- Hint for solder chip components: apply a small amount of solder on one side of the pads on the board.
- Keep DIP switches and SMB connectors spaced as far away from each other as the holes will permit, ie., push the SMBs in and the DIP switches out.

AN205

Using FAST ICs For μ P-To-Memory Interfaces

Application Note

FAST Products

INTRODUCTION

Most microprocessor-based systems use some form of bipolar interface between the processor and memory; only a very primitive system does not require such interface support. TTL devices in quad, hex, or octal configurations are used to meet functional and circuit-interface requirements of the system. For complex systems, the interface support may be extensive while, for simple systems, only a few devices may be required to ensure operational integrity. In a majority of system designs, one or more of the following interface requirements must be addressed.

- Buffering and Demultiplexing of Data/ Address Buses
- Signal Timing and Signal Isolation
- Address Decoding
- Bank Switching
- Handling of Wait States
- Adjusting Read/ Write Data Rates
- Refreshing Dynamic RAM
- Unique Interface Requirements such as Multi-Processor Networks, Data Communication Links, etc.
Interface support is an important part of the overall design job; when implemented with the proper parts, system efficiency can be dramatically improved, higher reliability can be obtained and the design can be executed with minimum parts. This Application Note shows how common interface problems can be solved by using a minimum of highperformance bipolar devices from Signetics.

BUFFERING AND DEMULTIPLEXING

Microprocessor outputs are inherently fanoutlimited; thus, some form of buffering is required to drive multiple loads such as those found on address and data buses. Extended bus configurations coupled with MOS loads tend to produce large capacitive sinks which degrade waveforms and also increase propa-
gation delays. The use of TTL buffers provides an easy and economical way of overcoming or, at least, minimizing these harmful effects. In those systems that use shared memories and direct memory access (DMA), buffers are frequently used for isolation and as a method for switching between multiple buses. Buffers are also commonly used to optimize signal-to-noise ratios and to drive multicard bus interfaces. For the most part, buffer and latch-control functions can be summarized as follows:

- Latch the address information in systems that use multiplexed buses.
- During read operations, avoid bus contention by preventing the system from driving the multiplexed address/ data bus until the address information is removed.
- Control the direction of data transceivers according to processor operation while preserving write-data and read-data hold times and avoiding bus contention when switching direction.
- Isolate the microprocessor from the system bus during DMA and multiprocessor operations.

With the use of 16 -bit microprocessors, systems have become more sophisticated; likewise, buffer control and interface circuits have become somewhat more complex. Many of the 16 -bit machines use multiplexed address/data buses to reduce I/O pin count; as a result, latches are required to demultiplex, hold, and buffer the address bus. Not only must the address information be latched at the correct time but the date bus must usually be buffered with bidirectional transceivers to provide the necessary drive. As previously indicated, the interface circuits must be able to avoid bus contention and, when required, to isolate the processor from the system bus.

Buffers and latch-control signals for three popular 16-bit microprocessors - the 8086,
the Z8001, and the 68000 - are shown in Figure 1. For each processor, the buffer and interface functions are summarized at the bottom of the figure. Although the timing-andcontrol functions of the interface support circuits are fairly complex, these internal complexities are transparent to the user; only the bus connections and a few control lines are required to achieve the management goals of the system.

INTERFACE FUNCTIONS (8086 SYSTEM)

- Multiplexed address/data bus $\left(A D_{0}-A D_{15}\right)$
- 3-State latches (74F373) used for demultiplexing; latches are continuously enabled by ALE until data is stable on the bus and a timing pulse is delivered by the microprocessor.
- HLDA is used to float address bus during DMA operation.
- Data bus buffered by 74F1245 or 74F245 Transceivers; data direction controlled by DT/信 in minimum mode.
- Bus control and DMA isolation controlled by $\overline{\mathrm{DEN}}$ is minimum mode.

INTERFACE FUNCTIONS (Z8001 SYSTEM)

- Address bus $\left(\mathrm{AD}_{0}-\mathrm{AD}_{15}\right)$ latched with 74F373s using $\overline{A S}$ for latch enable and BUSAK for isolation. (Note: The segmented outputs are designed to drive a Memory Management Unit with internal latches; however, in this application, the address outputs are prelatched since they are not stable for the entire cycle.)
- Data bus buffered with 74F1245s or 74F245s; $\overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, respectively, control data direction and bus contention.
- BUSAK controls DMA isolation.

AF02331S
Figure 1. Examples of Processor-to-Bus Interfaces

Figure 2. System Showing Typical Interface Delays

INTERFACE FUNCTIONS
 (68000 SYSTEM)

- Address bus buffered by 74F1244s or 74F244s and DMA isolation controlled by BGACK.
- Data bus buffered by 74F1245 or 74F245 Transceivers with R/W and BGACK, respectively, controlling data direction and bus isolation. (Note: In this configuration, a larger processor package is required since the address and data buses are separate; some advantage in speed and simplified timing are to be gained.)

Figure 2 shows the effects of buffers and an address decoder on the memory access time in a system configuration. The access time of the 8086 microprocessor is defined as the time from which a valid address appears at the output of the processor assuming that there are no wait states. Observe that each buffer and the decoding function adds a specific delay to the data-processing chain. In addition to these propagation delays, the system designer must consider capacitive loading, buffer access delays, (that is, are buffers enabled when valid data appears at input) and any other delay parameters that would extend the memory access time. (Note: The normal 8086 buffer control does not affect access time.) The delay should be calculated using maximum propagation delays over the operating temperature range of the system. Based on these considerations, the memory access time for the system shown in Figure 2 can be approximated as follows:

8086 READ CYCLE - Address Valid Output to Data Valid Input 460ns
2732 MEMORY ACCESS TIME ($T_{C E}$)-
$\mathrm{T}_{C E}=460 \mathrm{~ns}-3$ (7 ns) $-6.2 \mathrm{~ns}-9 \mathrm{~ns}=423.8 \mathrm{~ns}$

Figure 3. Using 8T28 Transceive to Obtain Optimum Interface Flexibility

Using FAST ICs For μ P-To-Memory Interfaces

BIDIRECTIONAL BUS INTERFACES

Virtually all microprocessor-based systems use a bidirectional bus interface between the processor and I/O peripherals; the memory interface may require separate-or-common bus connections. In either case, the 8T28 Quad Transceiver is well suited to this type of application. The 8T28 is able to drive a capacitive load of 300 -picofarads without waveform degradation and the three-state outputs provide the switching speeds of TTL while offering the drive capabilities of opencollector gates. Typical bus interfaces are shown in Figure 3.
In Figure 3a, the transceiver provides a bidirectional interface between the system bus and separate input/output buses of the dynamic RAM. The D_{IN} bus is continuously driven while the DOUT bus is gated onto the system bus via D/E.
Figure 3b shows a static RAM interface implemented by tying $R_{\text {OUT }}$ and $D_{\text {IN }}$ together. Here, the 8 T28 functions as a normal bidirectional transceiver, providing buffered drive between the system bus on one hand and the memory I/O bus on the other. The bottom
panel shows how the 8T28 can be used in the dual capacity of an on-board/off-board buffer/driver. To prevent signal degradation in such multi-board systems, the address/data/ control buses must be buffered if off-board extensions are to be driven. Furthermore, the on-board/off-board buses should be bufferisolated to prevent down-stream noise and/or failures from feeding back to the mother board. In Figure 3, observe that driver gates of the 8T28 are used to drive the on-board bus and receiver gates are used for the offboard bus. Low cost and minimum component count make the 8T28 ideally suited for such double-buffered applications.

MEMORY ADDRESS DECODING

In any computer system, information on the address bus must be decoded to generate select signals for memory and any I/O peripherals. There are numerous decoding schemes and a variety of implementation techniques. Generally, the methods used depend on system complexity which, in turn, depends on memory size, mapping parameters, access time, the particular technology, etc. Although simple decoders are frequently
used in uncomplicated systems, the more sophisticated applications use PROMs to provide the required flexibility and to satisty the mapping complexities that are usually encountered.

To develop trouble-free decoding circuits, the designer must be aware of those areas that can degrade system performance. For instance, caution is advised when using decoder outputs to terminate date write cycles. When read/write strobes (such as ' E ' on the 6801) are used to enable the address decoder, the data hold time is reduced because the trailing edge of the address decoder output now follows the trailing edge of the strobe signal to which the "hold time" is referenced. In systems that are sensitive to hold time, read and write strobes should not be used to enable address decoding circuits. Instead, the strobes should be gated with the decoder outputs to reduce the hold time.

Signetics makes a wide range of decoders, demultiplexers, and PROMs that are suitable for both simple and complex decoding functions. Some of the more common decoding applications are summarized in Figures 4 through 7.

Using FAST ICs For μ P-To-Memory Interfaces

Figure 4. Two Simple Decoding Methods

OPERATION \& APPLICATIONS SUMMARY

For small uncomplicated systems, the 74F138 decoder provides a cost-effective interface between the system address bus and memory. The configuration shown above is not only economical, it is fast, uses very little power, and requires no programming.

Such systems are commonly used to generate contiguous memory addresses and to decode memory segments of equal size. With additional decoding circuits, the memory mapping capabilities of the system can be expanded.

Where speed is not a critical factor, the PROM decoder shown below adds consider-
able flexibility with no increase in chip count. The 82S123 can generate contiguous or noncontiguous address space and can be memo-ry-mapped to satisfy the requirements of most applications. Although the PROM decoder is a bit more expensive and uses slightly more power, it has the advantage of being field programmable.

Using FAST ICs For μ P-To-Memory Interfaces

OPERATION \& APPLICATIONS SUMMARY

In some applications, it is desirable for the system memory to extend beyond the logical address space of the processor. As shown, such a system can be easily implemented with a few interface parts and a bit of software. The four memory banks are wired in parallel; each bank can be as large as the
logical memory space of the microprocessor - 512 bytes for 8 -bits of address and 64 K for a 16 -bit address bus. An output port under software control selects the active bank; the bank address is decoded to ensure that only the appropriate memory bank is enabled. In this way, the possibility of bank contention is eliminated.

Memory allocation schemes such as these are frequently used in multiprocessor environments and, in this type of application, a copy of the operating system kernel must reside in each memory bank. The system can be enhanced by providing direct switching between the memory banks; however, additional hardware is required for such operations.

OPERATION \& APPLICATIONS SUMMARY

In a multi-board system, the address decoding and memory-bank select functions can be implemented as shown here. The bank address on the memory card is identified by
setting the address select switches of the comparator to a predetermined configuration. When the bank select signals from the CPU card match the present bank address, the PROM is enabled and the appropriate memory bank is placed on-line. Data bus control for
the system is not shown.
The system show in Figure 6 and the one shown here are similar in that the four memory banks are wired in parallel and each bank can be as large as the logical address space of the microprocessor.

Figure 8. Programming Wait States to Optimize Data Throughput

SPECIAL MEMORY-INTERFACE CIRCUITS

In some applications, the memory interface circuits must be adapted to the unique requirements of the system. For instance, a system may use devices whose response time and wait-state requirements are vastly different, necessitating programmed wait states for optimum throughput.
Other examples include capturing a highspeed bit stream without the use of highspeed (high cost) memories, refreshing dy-
namic RAM via interleaving, and minimizing leakage problems when driving open-collector buses. Figures 8 through 11 show how Signetics ICs can be used to solve interface problems of this type.

OPERATION \& APPLICATIONS SUMMARY

Using the "slowest" device in the system as a reference for data through-put is a gross waste of processor time. ROM is usually
slower than RAM, and I/O devices are generally slowest of all. One way of reducing the harmful effects of these diverse characteristics is to program wait states for each device such that inactive periods for the CPU will be minimized. With the PROM decoder in the system shown above programmed in this manner, the multiplexer selects the appropriate tap of the shift register to initiate the required number of wait states. The wait cycle is terminated when a " 1 " is shifted to the selected tap; the shift register is cleared at the end of each wait state cycle.

OPERATION \& APPLICATIONS SUMMARY

In the design and use of logic analyzers, disk media, modems, and other similar equipment, a high-speed serial bit stream must be stored in memory. The above system shows how a 20 MHz serial data stream can be captured and stored in a relatively low-speed RAM that has a $5 \mathrm{MHz}(200 \mathrm{~ns})$ cycle rate. The system
uses a simple parallel to serial converter, thus, saving the cost of high-speed memory devices. Other than the synchronizing clock being supplied by the serial-input system and the setup/hold times of the shift registers being met, operation is simple and straightforward.

- Incoming serial data is clocked into shift register.
- After each fourth bit, data is transferred in parallel to a 4-bit counter (74F163) used as a latch.
- Data is written into RAM while four new bits enter shift register.
- Memory addressing is performed by incrementing the 74F163s and timing is controlled by a simple ring counter.

AFO2881S
Figure 10. Using Interleaving Technique to Refresh Dynamic RAM Memories

OPERATION \& APPLICATIONS

SUMMARY

Most dynamic RAMs must be refreshed at least every 2 -milliseconds to ensure retention of valid data. One method of memory refresh is shown in the above example. This system uses interleaving and relies on the premise that, during normal program execution, A_{0} toggles frequently enough to refresh the RAM
without slowing the microprocessor with waitstates or DMA cycles to refresh the counter. If the system program uses wait-states, halt instructions, or address incrementing is otherwise limited, A_{0} may not toggle at a rate sufficient to accomplish refresh. For such situations, additional circuits or special programming may be required to prevent loss of
data. Operation of the system can be summarized as follows:

- When even bank is addressed by CPU, odd bank is refreshed by address counter.
- Even bank is refreshed when CPU addresses the odd bank.
- A_{0} increments the refresh counter before each odd-bank refresh.

Using FAST ICs For μ P-To-Memory Interfaces

Figure 11. Reducing Leakage Current When Driving Open-Collector Buses

OPERATION \& APPLICATIONS SUMMARY

The number of buffers (7406 type) that can share an open-collector bus is often limited by device leakage or by the increased power consumption caused by lowering the values of the pullup resistors. A method of reducing the leakage current is shown in the above example. Here, the logic input and output enable of each gate are tied together; thus, the gate output is floated High to drive the open-collector bus. Floating the gate outputs provides a significant reduction in leakage current which allows the use of more gates
and/or reduced power consumption by the pullups.

SUMMARY

Many of the applications and concepts provided in this document were direct contributions or heavily influenced by entries in the Signetics' Interface Circuit Design contest. Our special thanks to those individuals whose entries are referenced in whole or in part.
As integrated circuits become more and more complex, fewer and fewer parts are required to implement a functional system; thus, inter-
face support is a major consideration in the overall design process. To produce a competitive and cost effective product, the user must choose interface components that are efficient, reliable, and those that reflect the best features of current technologies. Signetics has met these challenges in the past and will continue to meet them in the future, providing silicon solutions that are truly state of the art - be it logic, memories, gate arrays, or other. For further documentation and/or applications assistance, call or write to your nearest Signetics Sales and Service Office there is one near you.

Signetics

FAST Products

INTRODUCTION

Signetics interface ICs are most often used to implement input and output ports in microprocessor based systems. This application note illustrates the effective use of Signetics FAST devices to interface microprocessor data and address buses to general purpose I/O ports. Topics illustrated include handshaking, multiplexing, arbitration, and bit manipulating. More complex circuits involving memory inter-
facing, shared memory, and multiple processors are covered in other application notes.

Simple I/O Ports

The simple Input/Output ports shown in Figure 1 use 74F374 octal flip-flops and 74F244 octal 3-State buffers to interface to a microprocessor's data bus. The input port is enabled by RD AND PORTSEL. The output is enabled by $\overline{W R}$ and PORTSEL.

AFO3081s
Figure 1. Simple Input/Output Ports Interface With Microprocessor Data Bus

When 16 pin packages are preferable to 20 pin packages for physical design considerations, 3 -State multiplexers may be used as input ports. In Figure 2, 74F257 quad twoinput multiplexers are used. A_{0} selects between port A and port B.
In Figure 3, a 74F373 octal transparent latch is used to drive a light emitting diode annunciator array. The output follows the data bus while E is High, and the display freezes when E goes Low. The 20 mA sink current of the 74F373 permits interface to most LED devices.
A potential hazard exists when using transparent latches as output ports. The timing diagram of Figure 4 shows that data may not be valid when E is brought High, causing invalid data to be present on the output for a brief period. This will not cause a problem when driving LEDs because the duration of the invalid data is too short to be seen. But, problems will occur if the outputs are used to trigger other circuits that cannot tolerate glitches. Flip-fleps should be used instead of transparent latches when these conditions exist.
Interfacing microprocessors to slow peripherals, such as printers, usually requires handshaking logic. In Figure 5, the 74F374, 3-State octal flip-flop acts as an output port for the microprocessor and as an input port for peripheral. The microprocessor writes data to the output port which sets /data available Low. The peripheral then reads input port which sets /data accepted Low and /data available back to High. The Low/data accepted line interrupts microprocessor indicating that peripheral is ready for another data transfer.

Bit Manipulation

In Figure 6, the 74F251, 3-State 8 to 1 multiplexer provides a bit-oriented input port. This technique permits processors which do not have built-in bit manipulating capability to examine single bits at input ports efficiently. In addition, parallel inputs may be read bitserially over a single data line. Address lines A_{0}, A_{1}, and A_{2} select the bit to be read, and data bus line D_{7} is selected to permit a simple software decision based on JUMP-ON-SIGN or SHIFT-LEFT \& JUMP-ON-CARRY.

A versatile bit-oriented output port may be implemented with a 74F259, eight-bit addressable latch as shown in Figure 7. With this technique single output bits may be manipulated without maintaining a copy of the output port contents in memory. This is useful in bit-oriented control applications. The addressable latch effectively performs serial to parallel conversion on data supplied from the system bus. Data is written to 1 of 8 output bit locations specified by address lines A_{0}, A_{1}, and A_{2}.
Caution: Address inputs must be stable before latch is enabled or data can be entered into incorrect locations. If output glitches cannot be tolerated, data input must also be stable before the latch is enabled.

A similar technique is used in Figure 8, to accomplish bit manipulation without using the data bus. Each bit is associated with two addresses. If A_{0} is High, the bit is set High; if A_{0} is Low, the bit is set Low. With this approach bit-manipulation is faster and re-
quires less program memory because data does not have to be loaded and output from the accumulator. Also PCB layout complexity is reduced by removing the data bus from the output port.

I/O Timing

In many applications it is necessary to adjust timing to match microprocessor specifications to bus specifications. For example, the MC6809 microprocessor has data write hold time of 30 ns , making it difficult to interface to peripheral chips such as floppy disk controllers that have longer hold time requirements.
Figure 9 extends this hold time for interface to slow peripheral devices. A 74F373 3-State octal transparent latch is used to freeze data on I/O bus during write operations. During read operations, the 74F373 outputs are floated and data is read through the 74F244 3 -State octal buffer.

Figure 10 shows the timing diagram for an I/O bus with extended hold time. During the write cycle, data is latched by 74F373 on the
falling edge of E. Data remains on the outputs of the 74F373 until the rising edge of Q at the beginning of the next cycle, when the outputs are floated. The read cycle is unaffected. Data hold time is extended to $1 / 4$ cycle - from 30 ns to 250 ns for a 1 MHz cycle rate. Note that a latch is used instead of a flip-flop to preserve the data setup time of the 6809.
A dedicated hardware solution is faster in systems requiring High throughput rates where the required function is performed frequently. In Figure 11, a 74F374 3-State octal flip-flop is used as both input and output port. By jumpering the output data lines of the 74F374 to different system data bus lines, various dedicated functions can be real-ized-examples are nibble swapping, bit transposing, and data encryption. The software to perform data manipulation is sim-ple-data is written to the octal flip-flop, and manipulated data is read back into the processor using the following instructions: OUT (DATA MANIPULATOR), A IN A, (DATA MANIPULATOR)

Figure 2. Use of 3-State Multiplexers As Input Ports

Using $\mu \mathrm{P} \mathrm{I} / \mathrm{O}$ Ports

Figure 6. 3-State $\mathbf{8}$ to $\mathbf{1}$ Multiplexer Provides Versatile Bit-Oriented Input Port

Figure 8. Bit Addressable Output Port Does Not Require Data Bus

Using $\mu \mathrm{P}$ I/O Ports

Figure 9. Hold Time Extended for Interface to Slow Peripheral With MC6809 Microprocessor

Using $\mu \mathrm{P}$ I/O Ports

Using $\mu \mathrm{P} \mathrm{I} / \mathrm{O}$ Ports

BIBLIOGRAPHY

Many of the applications illustrated in this note were contributed or influenced by entries in Signetics' Interface Circuit design contest. Special thanks are due to the following individuals whose entries were referenced in whole or in part in this note:
V.K. Agrawal

Timothy Anderson
Wiley M. Bird
James A. Ciarpella

Mark Forbes

Loren H. Johnson
Prakash R. Kollaram
G.B. Livingston Joseph Mastroieni
Jonathan A. Titus
Eugene M. Zumchak

FAST Products

INTRODUCTION

As microprocessor costs continue to decrease and the demands on product performance continue to increase, designers are increasingly turning to multiple microprocessor systems to meet the performance challenge. The introduction of many "peripheral controller' type processors has made this choice even more attractive. This application note addresses typical problems associated with interfacing multiple microprocessors, and illustrates the use of Signetics Interface Circuits in solving these problems.

A multi-processor system contains two or more processors communicating through parallel ports, multi-port memories, serial data

AN207

Multiple $\mu \mathrm{P}$ Interfacing With FAST ICs

Application Note

links, and/or shared buses. The most popular multi-processor architectures are 'loosely coupled' systems. In loosely coupled systems each processor operates asynchronously with the other processors, usually performing a separate function. Communication is not continuous, and occurs only when necessary.

A special application for multiple microprocessor systems is in redundant systems. As the price of microprocessors dropped, it became economically feasible to achieve greatly increased reliability by employing several processors operating in parallel, performing identical functions. After each operation a vote is taken on the result. If there is disagreement, a fault has been detected, and

Figure 1. Typical Multi-processor System
appropriate corrective action can be taken. Appropriate action might be switching in a third processor, repeating the process, or activating an error sequence and/or an alarm.

In the typical loosely coupled multiple processor system of Figure 1, a main processor "delegates" processing work to four other processors. A keyboard scanner microprocessor scans the keyboard continuously, debounces key closures, performs code conversions, and transmits key codes to the main processor in a format that it can easily assimilate. A separate arithmetic processor accepts parameters from the main processor, performs arithmetic calculations, and provides the results for the main processor to read when it is not busy with other tasks. The display controller accepts data and commands from the main processor, then displays and manipulates data on CRT or other displays. The display controller refreshes the display and supports graphic displays without tying up the main processor. The print spooler is a separate processor that accepts files to be printed from the main processor using high-speed data transfers. Then the print spooler stores and feeds data to the printer at the printer's lower data rate, freeing the main processor for other chores. Each processor module contains its own 'local' ROM, RAM, or I/O, so that it performs its task independently, and communicates with other processors only when necessary. As a result, the system as a whole operates closer to its maximum speed.

Some of the advantages of multiple microprocessor systems are:

- Each processor performs a relatively independent task.
- Design is easily split among team members.
- Testing is easily performed on a modular level.
- Modules can be added or modified without affecting other modules.
- Multi-processing allows distributed processing where modules may be physically separated from the main system.

Figure 2. Basic Inter-processor Communication Using Parallel I/O Ports

Figure 3. Handshake for Parallel Port Communication

- Parallel processing greatly increases system performance and throughput.
- Hardware cost is less than singleprocessor systems with similar performance.
- Reliability can be increased easily by redundant processing.

The following application examples illustrate the use of Signetics FAST Interface Circuits in multiple-processor systems.

PARALLEL I/O PORT COMMUNICATIONS

Figure 2 illustrates how parallel I/O ports using Signetics FAST Interface devices are
used to accomplish simple 2-processor communications. Two 74F374 octal 3-State registers are used to implement bi-directional parallel data communication. Each 74F374 acts as output port to one processor and input port to the other. The handshake lines are needed when the processors operate asynchronously to ensure that data has been received before new data is transmitted. A handshake timing protocol (Figure 3) implemented in software acts as a traffic cop to assure valid data communications. The transmitting processor starts the handshake by setting Data Available to indicate that data is valid. The receiving processor sets Data Accepted to indicate data has been read. The transmitter then resets Data Available allowing the receiver to
reset Data Accepted. The transmitter will not send new data until Data Accepted is reset.

COMMUNICATIONS VIA MULTI-PORT MEMORY

Figure 4 illustrates the logic required for two processors to communicate through a multiport memory. The RAM is accessible from both processor A and processor B via 74F157 multiplexers used to select one processor's bus at a time. Multi-byte messages and data blocks may be written into the memory by one processor and read out by the other at a later time. No byte-by-byte handshake is required. The multi-port memory provides increased system performance at somewhat higher cost compared to a parallel port technique. Because of the use of multiport memories in microprocessor systems, these systems can become quite complex. Another application note in this series covers interfacing to multi-port memories in greater depth.

Multiple $\mu \mathrm{P}$ Interfacing With FAST ICs

Figure 4. Multiport Memory Provides High-performance Multi-processor Communications

SERIAL COMMUNICATIONS

Although serial communications between multiple processors is slower than the parallel methods examined above, it is usually less expensive and very useful for communicating with remote units. Serial communications via RS-232 or RS-422 links can provide reliable communications over great distances. Implementation of serial communications is simplified by the availability of Universal Asynchronous Receiver Transmitter (UART) devices and well established standards for circuit interfaces and protocols. Figure 5 illustrates local/remote processor communication using Signetics SC2681 UART devices. In many cases additional interface lines are required for handshaking.

SHARED BUS ARCHITECTURE

One of the most powerful multiple processor architectures uses the popular shared bus concept. In Figure 6, each processor has its own local bus with some combination of RAM, ROM, and I/O available locally. The shared bus permits use of "global resources" such as global memory and global I/O which are accessible to all processors on the shared bus. Common interfaces such as printer ports do not have to be implemented for each processor, and may be connected to the shared bus. Multiple processors communicate indirectly with one another through the
global RAM. This technique provides highest throughput when interconnecting more than two processors. It also reduces cost through sharing of global resources.
Any processor permitted to drive the system address, data, and control buses is known as a 'master.' Processors not having this capability are "slaves." A useful attribute of shared bus systems is the ability to add whole new functions by connecting a new master to the bus. Figure 7 illustrates a typical shared system bus interface using Signetics Interface circuits. Three 74F244 octal 3-State buffers are used to drive the 24 bit system address bus (16 bits in some cases). Two 74F245 octal bidirectional 3-State buffers are used to drive the 16 bit data bus (8 bits in some cases). In addition, half a 74F244 is used to drive the system command bus, composed of the signals IORD, $\overline{\text { IOWR }}$, MEMRD, and MEMWR.

Multiple local processors may request use of the shared bus by setting BUS REQUEST active and waiting for the arbitration logic to assert BUS GRANT. The arbitration logic indicates to the local processor when it may access the shared bus after a request has been made. This is necessary to prevent more than one local processor from accessing the system bus at the same time, resulting in bus contention and possible system failure.

ARBITRATION

Contention by several processors for use of shared resources can create sticky timing problems unless care is exercised in the design of appropriate arbitration logic to resolve timing conflicts. Schemes for bus arbitration vary in speed, cost, and flexibility and involve parallel, serial, transparent, pseudotransparent, polled, and flag operations.

Parallel Priority Resolution

Parallel priority resolution is most useful in systems with 4 or more masters, where its speed outweighs the disadvantage of the additional hardware. A scheme for system bus arbitration using parallel priority resolution is illustrated in Figure 8.
A master's priority is determined by using a 74F148 priority encoder. Each master's arbitration logic generates a $\overline{\operatorname{REQ}}$ to the priority encoder. When there is contention, the master whose $\overline{\mathrm{REQ}}$ is connected to the highest priority input will be granted access.

A 74F138 is used to decode the encoder outputs to generate the El (enable input) to the arbitration logic of the master which has been granted access. CLEAR is used to remove all masters from the bus during reset or when an error condition is present. $\overline{\text { ARB }}$ CLOCK is used to synchronize all bus arbitration inputs and outputs to prevent race conditions and to facilitate a standard interface

Figure 5. Serial Communications Link Provides Economical Inter-processor Communications

Figure 6. Shared Bus Provides Most Powerful Multiple Processor Architecture

Multiple $\mu \mathrm{P}$ Interfacing With FAST ICs

AF02711s
Figure 7. Typical System Bus Interface

Figure 8. System Bus Arbitration Using Parallel Priority Resolution

Figure 9. System Bus Arbitration Using Serial Priority Resolution

design. $\overline{B U S Y}$ is generated by the master currently accessing the bus to indicate that the bus is in use. Even after a master has been granted access by the priority resolution, it must still wait for the current master to vacate the bus, i.e., $\bar{B} U S Y$ going inactive. The
arbitration logic generates a $\overline{\text { BUS }}$ GRANT to a master when EI is asserted and BUSY is not.

Serial Priority Resolution

Serial priority resolution eliminates the need for encoder/decoder hardware at the expense of speed. In Figure 9 a master's priority is determined by its physical location in a daisy chain configuration. A master negates its EO (enable output) when its El (enable input) is negated or when it wants to access the bus. This negates $\overline{E O}$ for all masters further down the line to go inactive. If a master requests the bus, and no higher priority master is requesting the bus, as indicated by El being asserted, the master may access the bus when the current master is finished. The ARB clock rate is limited to the speed at which the daisy chain signals can propagate through all masters.

Arbitration Logic

Arbitration logic suitable for either parallel or serial priority resolution is illustrated in Figure 10. The logic shown synchronizes a master's BUS REQUEST input to $\overline{\text { ARB CLOCK using }}$ flip-flop 1, asserting $\overline{\mathrm{REQ}}$ and negating $\overline{\mathrm{EO}}$. If El is asserted and $\overline{B U S Y}$ is not, the master may access the bus on the next falling edge of ARB CLOCK. This arbitration is provided by flip-flop 2. BUS GRANT and BUSY are asserted. When the access is complete, the master negates BUS REQUEST inactive. On the falling edge of $\overline{\text { ARB CLOCK, }} \overline{\text { REQ }}$ negated and, if $\overline{E l}$ is asserted $\overline{\mathrm{EO}}$ is asserted. On the next falling edge $\overline{B U S Y}$ and BUS GRANT are negated. The timing diagram for this sequence is illustrated in Figure 11. Note that a master must wait for the current master to complete a transfer and negate $\overline{\mathrm{BUSY}}$ before it may access the bus.

Multiple μ P Interfacing With FAST ICs

AN207

Figure 11. Timing Diagram for Arbitration Logic

Figure 12. Pseudo-Transparent Access to Shared Bus

Figure 13. Polled Access to Shared Bus

Pseudo-Transparent Priority Resolution

The logic of Figure 12 uses "cycle stealing" to permit single byte transfers with pseudo-
transparent arbitration. When the address decoder determines that a master requires access to shared bus, it asserts BUS REQUEST. The processor's READY line is held negated, "freezing" the processor until the
arbitration logic asserts BUS GRANT. Then READY is asserted and the shared bus cycle occurs. The processor is unaware of arbitration and unaware that the bus is shared. With this technique, a watchdog timer should be used to ensure that the processor doesn't "hang up" if faulty bus operation prevents access. Access occurs one cycle at a time, preventing any one master from "hogging" the bus.

Polled Access to Shared Bus

The logic in Figure 13 uses an output port to request access to the bus, and polls an input port to determine when access has been granted. Once access is granted, the master retains the bus until it negates the BUS REQUEST output port bit. Large block moves may occur without fear of another master changing the data as with cycle-by-cycle arbitration. However, this approach greatly slows down the response time of the system, because of the waiting while each master performs. All other masters must wait, even if they do not require the use of the same shared resource.

Semaphore (Flag) Arbitration

The logic of Figure 14 improves on the polled access technique by permitting access to a shared resource when that resource is available. A master first reads the semaphore register associated with the resource it wishes to access. The master may not access the resource unless the semaphore bit is false. When the semaphore bit is false, reading the register automatically sets the bit true. When the master reads a false semaphore, it may then access the resource. All other masters reading the semaphore will see it set and will not access the resource. The master may access the resource until it is no longer needed. By writing to the semaphore register, it is automatically reset, allowing other masters to access the resource. Only the one resource, not the entire shared bus, is monopolized by one master at a time. The hardware performs a function similar to a software read-modify-write operation.
The timing for the semaphore operation is shown in Figure 15. If the semaphore bit is false and the register is read, the bit is set true at the end of the read cycle (rising edge of IORD). The semaphore bit is reset by doing a "dummy" write to the semaphore register. The bit is set false at the beginning of the cycle (IOWR going low).

INTERFACING THE MC68000 TO THE MULTIBUS ${ }^{\text {TM }}{ }^{*}$

One of the best examples of a multi-processor shared bus is the MULTIBUS. One of the
most popular 16 bit processors in new designs today is the MC68000. Yet, to our knowledge, there are currently (mid-83) no LSI MULTIBUS arbiter ICs available to allow a designer to easily interface the two. There are arbiter ICs available, but they were designed for other processors and are cumbersome and limited in performance when interfaced to the 68000 .

The following is the design for a 68000 MULTIBUS interface. The design supports serial or parallel arbitration and performs with a 10 MHz bus clock. Operation is similar to the example described previously. Tables 1 and 2 define the MC68000 bus control signals and the MULTIBUS arbitration signals. The timing diagram for MC68000 read and write cycles is shown in Figure 16.

Figure 17 illustrates the control circuitry for the MC68000 to MULTIBUS interface. The master initiates a MULTIBUS transfer by asserting MULTIREQ active. This is usually the output of address decode circuitry. $\overline{\text { AS }}$ clears the request at the end of the transfer. Flip-flops 1, 2, and 3 sample and synchronize the bus request to the falling edge of BCLK. Since MULTIREQ is asynchronous to $\overline{B C L K}$, flip-flop 2 serves as a synchronizer and is clocked on the rising edge of $\overline{B C L K}$. All inputs to the arbiter are thus synchronous so that race conditions at flip-flop inputs are avoided.

If the bus is not in use (BUSY is not asserted), and no higher priority master requests the bus ($\overline{\mathrm{BRPN}}$ is asserted), the master is granted access on the next falling edge of BCLK. Flipflop 4 provides this function. If these conditions are not satisfied, DTACK is used to force the CPU to wait. Once the master is granted access, it sets BUSY active to indicate that the bus is in use. BUSEN (bus enable) also becomes active and gates the master's address, data, and control buses onto the MULTIBUS. One half cycle later, on the rising edge of BCLK, flip-flop 5 sets CMDEN (Command Enable) active. This allows RD or WR strobes to be asserted on the MULTIBUS. This delay is necessary because the MULTIBUS requires data and address valid 50 ns before read or write commands. DS is used to generate the read or write strobes.
The MULTIBUS transfer is completed when $\overline{\text { XACK }}$ is asserted terminating the 68000 cycle by asserting DTACK. The master maintains control of the MULTIBUS until another master requests access, as indicated by asserted $\overline{\text { CBRQ. If the current master is not performing }}$ a MULTIBUS transfer, it loses the bus on the next falling edge of BCLK. CMDEN, BUSEN, and $\overline{B U S Y}$ are negated. Flip-flop 4 provides this function.

Table 1. MC68000 Bus Control Signals.
(Refer To The Signetics 68000 Microprocessor Data Sheet For More Information.)

CLK	Clock. Time reference for 68000 microprocessor bus control.
$\overline{\text { AS }}$	Address Strobe. Indicates that address on address bus is valid.
$\begin{aligned} & \overline{\overline{U D S},} \\ & \hline \overline{\mathrm{LDS}} \end{aligned}$	Upper and Lower Data Strobe. Indicates that the processor is reading from or writing to the upper data byte ($D_{7}-D_{15}$) and/or the lower data byte ($D_{0}-D_{7}$).
R/W	Read/Write. Indicates whether the current bus cycle is a read or a write cycle.
$\overline{\text { DTAK }}$	Data Transfer Acknowledge. Input to the 68000 indicating that the data transfer can be completed, on the high to low transition.
$\overline{\text { BCLK }}$	Bus Clock. All arbitration signals listed below must be synchronized to the negative edge of this clock. It is independent of any processor clock.
$\overline{\text { BPRN }}$	Bus Priority In. Indicates that no higher priority master is requesting the bus. Similar to El in previous examples.
$\overline{\text { BPRO }}$	Bus Priority Out. Used in serial priority resolution circuits. Similar to $\overline{\mathrm{EO}}$ in previous examples.
$\overline{\text { BUSY }}$	Bus Busy. Driven by current bus master to indicate that the bus is in use.
BREQ	Bus Request. Used in parallel priority resolution circuits. Similar to $\overline{R E Q}$ in previous examples.
$\overline{\mathrm{CBRQ}}$	Common Bus Request. Driven by all potential bus masters requesting bus. Used to save time by allowing the present bus master to avoid arbitration after each cycle if no other requests are active.
$\overline{\text { XACK }}$	Transfer Acknowledge. Indicates that the MULTIBUS data transfer is completed on high to low transition.

The logic that interfaces the MC68000 to the MULTIBUS is shown in Figure 18. 74F533 inverting octal 3 -State latches are used to gate the 20 bit address and 16 bits of data onto the MULTIBUS. Note that the data and address bus is negative true. 74F240 octal 3State inverting buffers are used to gate 16 bits of data onto and off of the MULTIBUS. Data direction is determined by the MC68000's R/W line. A 74F139, 2 to 4 decoder is used to decode I/O and RD/WR to generate the 4 MULTIBUS commands. I/O is the output of address decode circuitry which decodes I/O addresses. A 74F244 is used to gate the commands onto the MULTIBUS.
Signetics FAST logic family is used in this design to increase speed and bus drive capability while minimizing MULTIBUS loading.

REDUNDANT
 MICROPROCESSORS ENHANCE RELIABILITY

Figure 19 illustrates how two 6809E microprocessors are used in a parallel redundancy
scheme to prevent faulty operation from damaging external systems. Two systems with identical processors, RAM, ROM, and I/O are first synchronized. After synchronization, their data buses are compared every cycle. If the data on the two buses is different, an error has occurred and the system shuts down.
A common clock is used to drive the 6809E processor in each system so that a timing reference is established. Upon reset, both processors execute a sync instruction and the critical output circuits are turned off. When both processors have executed the sync instruction, as indicated by $\mathrm{BA}=0$ and $B S=1$, the START button is used to interrupt the processors and they begin program execution in synchronism. The critical outputs are also turned on. On the falling edge of E, the data buses of the two systems are compared using the 74F521 octal comparator. If the data does not match, at least one system is operating incorrectly. The 74F74 flip-flop latches the error condition and turns off the critical outputs.

A similar technique should be used on outputs to ensure that an output goes active only when the output of both systems goes active.

Figure 15. Timing Diagram for Semaphore Operation

Figure 16. MC68000 Read and Write Cycle Timing Diagram

Figure 18. MC68000 to MULTIBUS Interface Logic

Multiple μ P Interfacing With FAST ICs

BIBLIOGRAPHY
Many of the applications illustrated in this note were contributed or influenced by entries in Signetics' Interface Circuit design contest. Special thanks are due to the individuals whose entries were referenced in whole or in part in this note.

AN208

Interrupt Control Logic Using FAST ICs

Application Note

FAST Products

INTRODUCTION

This application note shows how Signetics FAST circuits can be used to implement interrupt control logic for a variety of microprocessors. The circuits presented serve a variety of functions, which include:

- Masking: How to selectively enable interrupt inputs
- Prioritizing: Which interrupt is serviced when more than one interrupt occurs
- Vector Generation: How the interrupt service routine is selected

An interrupt is an asynchronous input to a microprocessor that suspends current program execution and causes a jump to an interrupt service routine. Interrupts are especially useful in real-time systems and have become a standard feature in microprocessor designs.

REASONS FOR USING
 INTERRUPTS

The use of interrupts generally increases the efficiency of the system. Without interrupts, the microprocessor must poll each peripheral to determine when it is ready for service. The time spent polling cuts down available processing time, and polling is unnecessary when the peripheral devices are not ready for service. With interrupts, the peripheral device informs the processor when it is ready; thus no time is wasted.

Interrupts also provide faster response to service requests from a peripheral. The high data rate of many devices, (e.g. disk drives) requires immediate response to prevent loss of data. As another example, a power-fail interrupt can be used to initiate an orderly shutdown in the remaining moments.

Interrupts can also be used for error handling. If a parity error is detected in the memory, for example, an interrupt can be generated to suspend the operation of the program or invoke an error-handling routine.

INTERRUPT LATCHING

Figure 1 shows a circuit that captures asynchronous events and generates an interrupt to the microprocessor. The 74F533 inverting octal latch is used to 'freeze' the state of the interrupt inputs. This is necessary to catch short interrupt request pulses. When all interrupt requests are inactive, the latch enable (LE) input of the 74F533 is asserted. When any request is asserted, the interrupt signal to the microprocessor ($(\mathbb{N T})$ is asserted and the latch is disabled. Thus, the state of the interrupt inputs is latched.

Figure 1. Interrupt Latching

AF029e1s
Figure 2. Interrupt Masking

During its interrupt service routine, the microprocessor reads the interrupt latch outputs via the74F1244 or 74F244 octal 3-State buffer to determine which event caused the interrupt. This scheme is most useful with microprocessors such as the 68000 family that do not have vectored interrupts.

At the end of the interrupt service routine, the microprocessor resets the latch by pulsing the /CLEARINT output line. This would typically be generated by decoding a write to a particular address.

INTERRUPT MASKING

Figure 2 shows an interrupt controller that allows each interrupt input to be individually enabled or disabled (masked). A 74F273 octal D flip-flop stores the state of the interrupt inputs whenever any input changes.

Exclusive-OR gates 74F86 compare the inputs of the state register to its outputs; whenever an input changes, the corresponding exclusive-OR gate output goes High.
Another 74F273, connected as an output port, serves as the mask register. The microprocessor writes a bit pattern to this port to determine which interrupts are enabled. The outputs of the exclusive-OR gates are then ANDed with the mask register outputs, so
that interrupt inputs with a zero in their mask bit are ignored.

Whenever any unmasked input changes state, the state register is clocked, and the interrupt latch is set. The microprocessor reads the state register via the 74F1244 or 74F244 3-State buffer acting as an input port, and the interrupt latch is cleared.
Caution: This circuit can be fooled if an interrupt input changes twice before the microprocessor reads the state register. Therefore, this design should be used only for relatively slow-changing interrupt inputs.

INTERRUPT PRIORITIZING

In the previous circuits, the hardware does not select which interrupt has highest priority. If two or more interrupts are simultaneously asserted, the microprocessor software must decide which to process first.
Figure 3 shows a circuit with prioritization logic to select the highest priority interrupt. Interrupt inputs are sampled by the 74F377 octal flip-flop. This register is also used to freeze the state of the interrupt inputs when the output of the priority encoder is being read by the microprocessor. If one (or more) interrupt input is asserted, the output of the

74F148 priority encoder will indicate the number of the highest priority active interrupt.

The GS output of the encoder is effectively the OR of all the inputs, and produces the interrupt signal to the microprocessor. The microprocessor then reads the interrupt number via the 74F1244 or 74F244 3-State buffer connected as an input port. The microprocessor can use the interrupt number as an index pointer into a branch table, to access the appropriate service routine.
A 74F138 3-to-8 decoder decodes the interrupt number to generate individual reset signals for each interrupt source. The decoder is enabled when the microprocessor reads the interrupt number, so the interrupt output of the device being serviced is automatically reset.

RESTART VECTOR GENERATION FOR
 8080 - FAMILY PROCESSORS

The 8080, 8085, NSC800, and Z80 all have interrupt modes in which a vector is automatically read from the interrupting device. (For the 8080, this is the only mode; the other processors also have additional modes.) This vector is treated as an instruction; the singlebyte CALL instructions called RESTARTs are

generally used for the vectors. The format of the restart instructions is 11CBA111 (binary), where CBA represents the three-bit identifier. Figure 4 illustrates a restart vector generation circuit.

The 74F148 priority encoder generates the interrupt request to the microprocessor when any interrupt input is asserted. It also provides the three-bit identifier to the appropriate inputs of the 74F1244 or 74F244. When the microprocessor performs an interrupt acknowledge cycle, the restart instruction is
read via the 74F244 octal buffer. Table 1 shows the vectors generated for each input. Interrupt input 7 produces an identification code of 000, since the priority encoder outputs are active-Low.
Note that the interrupt inputs are not latched by this circuit, and thus must remain asserted until the interrupt acknowledge cycle is completed.
The Z80 microprocessor has several modes of interrupt operation. The mode described
above is called mode 1. Mode 2 is a tabledriven mode in which the vector supplied by the peripheral is used as a pointer to a table. The service routine address is then read from the table.

Figure 5 shows a circuit for generating the vectors for Z80 mode 2 interrupts. The 74F148 priority encoder generates a three-bit binary number corresponding to the highest priority active interrupt. This number is read by the microprocessor during the interrupt

Table 1. 8080-Family Interrupt Vector Generation

HIGHEST PRIORITY	VECTOR	INSTRUCTION NAME	
ACTIVE INPUT	GENERATED	8080	Z80
INT7	11000111	RST0	RST 0
INT6	11001111	RST1	RST 8
INT5	11010111	RST2	RST 16
INT4	11011111	RST3	RST 24
INT3	11100111	RST4	RST 32
INT2	11101111	RST5	RST 40
INT1	11110111	RST6	RST 48
INT0	11111111	RST7	RST 56

acknowledge cycle via the 74F244 octal 3State driver.

Table 2 shows the vectors generated by the circuit. The least significant data input of the 74F1244 or 74F244 is grounded, and the code from the priority encoder provides the next three bits. This is necessary because each interrupt vector must point to a two-byte entry in the service routine address table. The four most significant bits are set by the switches. This allows the same circuit to be used in several places in a system by setting the switches differently on each.

VECTORED INTERRUPTS FOR 68000 - FAMILY MICROPROCESSORS

The 68000 microprocessor and its derivatives (68002 and 65002) do not have a built-in
mechanism for handling vectored interrupts. When an interrupt occurs, the microprocessor fetches the address of the service routine from memory locations FFF8 and FFF9 (for the 65002, locations FFFE and FFFF). Normally these are ROM locations, and the interrupt service routine address is therefore fixed.

Figure 6 shows a circuit that provides vectored, prioritized interrupts for these microprocessors. When the microprocessor reads from address FFF8 or FFF9, this circuit disables the normal address buffers and substitutes a different address via a second set of 74F1244 or 74F244 octal 3-State drivers. Bits 1, 2 and 3 of the substituted address are determined by the highest priority active interrupt input. Thus, the service routine address is fetched from a different memory location for each interrupt input. The high-order address bits are set by the switches.

Table 2. Interrupt Vectors Generated By Circuit In Figure 5

HIGHEST PRIORITY ACtive INPUT	VECTOR GENERATED (HEX)
INT7	X 0
INT6	X 2
INT5	X 4
INT4	X 6
INT3	X 8
INT2	X A
INT1	X C
INTO	X E

NOTE:

1. $X=$ Switch settings

DAISY CHAIN INTERRUPT PRIORITY SYSTEM

In the previous examples, a priority encoder was used to set the priority of each interrupt source. Another way to set priority is with an interrupt priority daisy chain, as shown in Figure 7. The priority of each device is determined by its physical location in the chain. Support for an interrupt daisy chain is built into the peripheral chips for some microprocessor families, such as the Z80. This example shows how a similar daisy chain can be implemented for other microprocessors such as the 8085 or 68000 .

AF02991S
Figure 5. Vector Generation for Two Interrupt Modes

Interrupt Control Logic Using FAST ICs

Figure 6. Prioritized Interrupt Vector Generator

Figure 8. Logic Circuit for Implementation of Daisy Chain Interrupt

When one or more device asserts an interrupt, the microprocessor responds by asserting INTACK active. This signal connects directly to the highest priority device's INTACK $\overline{\mathbb{N}}$ input. If that device had not asserted an interrupt, then it passes the interrupt acknowledge signal to the next device via its INTACK OUT signal. Thus, the interrupt acknowledge is passed along from one device to the next until it reaches the highest priority device that generated an interrupt. That device then places its interrupt vector on the data bus.
Figure 8 shows an implementation of this system. The two 74F74 flip-flops latch the interrupt request and synchronize it with the system clock. The signal at INTACK IN is passed to INTACK OUT unless the interrupt latch is set. The 74F244 drives the interrupt vector (restart instruction) to the data bus when INTACK IN is active and the interrupt latch is set. Switches allow the interrupt instruction to be selected for each device.

68000 INTERRUPT STRUCTURE
The 68000 16-bit microprocessor provides an extremely versatile interrupt structure. There are seven interrupt priority levels with up to 256 different vectors per level. The 68000 has a three-bit interrupt input which specifies the interrupt level. A code of 000 means no interrupt; any other code produces an interrupt, and the level corresponds to the code.

Figure 9 shows the timing diagram for the interrupt acknowledge cycle. When the 68000 recognizes the interrupt, it places the interrupt acknowledge code on the function code outputs $/ \mathrm{FC}_{0}-/ \mathrm{FC}_{2}$, and outputs the interrupt level being serviced on address lines A_{0}, A_{1} and A_{2}. The interrupting device then places the interrupt vector on the data bus from which it is read by the 68000.

Figure 10 shows a circuit that allows the user, under program control, to generate an interrupt of any priority level and to supply any
interrupt vector. The program uses a MOVE instruction to output the desired interrupt level and vector. The circuit then generates the interrupt. This allows subroutines to be implemented as interrupt service routines. It is also useful for testing interrupt service routines.
All signals are VERSABUS ${ }^{\text {TM }}$ signals, with the exception of INT ADDR* which is the output of the address decoder, and RD/WR* which must be derived from the VERSABUS ${ }^{\text {TM }}$ control signals. Note that the address and data buses are active low; VERSABUS ${ }^{\text {TM }}$ notation is used (active low signal names are followed by an asterisk "*''). DS0* and DS1* are basically the same as the 68000's UDS and $\overline{\text { LDS. IACKIN* and IACKOUT* are priority }}$ daisy chain signals as described previously. IPL1* through IPL7* are the seven interrupt signals which are fed through a priority encoder on the CPU board (not shown) to generate the binary-encoded interrupt signals to the 68000 .

The operation of the circuit is as follows:

- The software performs a move instruction to the address decoded as INTADDR*, with the interrupt vector in $D_{0}-D_{7}$ and the interrupt level in D_{8}, D_{9} and D_{A}.
- Flip-flop \mid is set, releasing the clear from the 74F175 priority register C. The new interrupt level is clocked into the register and an interrupt of that level is generated by the 74F138 decoder D.
- At the same time, the interrupt vector is loaded into the 74F373 latch L .
- After an appropriate delay 74F73A flipflops P and Q generate XACK*, and the cycle completes.

When the 68000 recognizes the interrupt, the following sequence occurs:

- The priority level being serviced, as indicated by the state of A_{0}, A_{1} and A_{2}, is compared to the contents of the
interrupt priority latch C by the 74F85 comparator B. (Note that the $\overline{\mathbf{Q}}$ outputs of the 74F175 are used to invert the active low address signals.)
- If the levels match, the interrupt vector is placed on the data bus, XACK* is generated, and the cycle terminates. Flip-flop I is reset, which removes the interrupt by clearing the interrupt request register.

AF03040S
Figure 10. Complete Interrupt Circuit for 68000

BIBLIOGRAPHY
Many of the applications illustrated in this note were contributed or influenced by entries in Signetics' Interface Circuit design contest. Special thanks are due to the individuals whose entries were referenced in whole or in part in this note.

Signetics

FAST Products

Authors: Stephen C. Hinkle, Jeffrey A. West

INTRODUCTION

As circuits become faster, more concern needs to be focused on packaging and interconnects in order to fully utilize device performance. One area of concern is with the package leads between the chip and the board environment. The current flowing into or out of an integrated circuit is conducted through a lead frame trace and bonding wire connecting the integrated circuit to outside circuitry. These leads are circuit elements, inductors, and have a definite effect on the circuit performance because they generate noise in High-speed applications.

Inductance is the measure of change in the magnetic field surrounding a conductor resulting from the variation of the current flowing through the conductor. The change in current through the inductor induces a counter electromotive force, EMF, which opposes that change in current.

Figure 1 illustrates the current surge and ground bounce during switching. This was modeled using the equations:

$$
\begin{aligned}
& V(t)=\frac{3 V}{1+e^{(t-t o) / K}} \\
& I_{C}(t)=C \frac{d V(t)}{d t} \\
& V_{L}(t)=L \frac{d I_{C}(t)}{d t}=L C \frac{d^{2} V(t)}{d t^{2}}
\end{aligned}
$$

If more than one output is switched at a time this ground bounce can get very large. Changing the ground reference on the chip can have significant effects on circuit performance. A $V_{C C}$ bounce can also be calculated when the 50 pF load capacitors are being charged and can also have serious effects on circuit performance.

Some of the problems caused by package lead inductance are:

1. Adding delay through buffer parts
2. Changing the state of flip-flop parts
3. Output glitching on unswitched outputs
4. Circuit oscillations

GENERAL PROBLEMS

ASSOCIATED WITH GROUND

 bOUNCE IN High-SPEEd CIRCUITS
Adding Delay Through Buffer Parts

Delay through a buffer part is not only a function of the gate itself but is also a function of how many gates in the package are switching at once. Switching more than one output at a time adds to the current being forced through the ground lead of the package. The ground potential seen by the chip rises because of the lead inductance. This rise in ground potential raises the threshold of the gate and tends to turn the gate back OFF slowing the discharge rate of the load capacitor. The gate doesn't finish switching until the ground bounce settles out.

Figure 1

An example is a buffer driver discharging a 50 pF load. At a switching rate of about 3 V in 2 ns , the current generated by discharging that capacitor at that rate is:

$$
\mathrm{I}=\mathrm{C} \frac{\mathrm{dV}}{\mathrm{dt}} \simeq 50 \mathrm{pF} * \frac{3 \mathrm{v}}{2 \mathrm{~ns}}=75 \mathrm{~mA}
$$

All this current flows through the ground lead of the package. Changing the current through this lead generates a ground lead voltage or ground bounce. A typical lead inductance has been measured to be about 10 nH . Switching 75 mA through a ground lead with an inductive value of 10 nH causes a ground bounce of about:

$$
V=L \frac{\mathrm{dl}}{\mathrm{dt}} \simeq 10 \mathrm{nH} * \frac{75 \mathrm{~mA}}{1 \mathrm{~ns}}=750 \mathrm{mV}
$$

AN212
Package Lead Inductance Considerations In High-Speed Applications

Application Note

Package Lead Inductance Considerations In High-Speed Applications

Figure 2 shows an example of a buffer connected to a test load. Probing on the ground pad, V_{G}, shows the effect ground lead inductance has on the ground pad potential.

Figures 3 and 4 show the ground and $V_{C C}$ bounce during switching on an 'F240 Buffer. The effect of ground bounce on this part is to slow the propagation delays from 3 ns with only one output switching to 5 ns with all 8 outputs switching at once. AC specifications are usually generated with only one gate switching at a time. For example the 'F240 $T_{\text {PHL }}$ limits are 2.0 ns minimum, 3.5 ns typical and 4.7 ns maximum. Therefore when using AC specifications based on single gate switching, a derating factor for multiple switching should be used. A derating factor of 250 to 300 ps per output switching has been suggested as a reasonable number and some customers are using this in their internal specifications.

Integrated Circuits Containing Flip-Flops

Integrated circuits containing flip-flops might be seriously affected by inductive ground bounce because of the possibility of the flipflops changing states. To explore this effect, the 'F374, an Octal D-type flip-flop, was analyzed by comparing test results from the conventional corner mount V_{CC} and ground package to that of a side mount V_{CC} and ground version. A test setup was used where

alternate 1's and 0's were clocked into seven of the eight flip-flops to obtain simultaneous output switching and worst case ground
bounce. The eighth flip-flop input was held at a DC bias of 2.0 V . This should result in its output being held at a constant 1 level.

CDOBOB1S
74F374 Fallure Analysis

Opo2221s
Figure 5

Figure 6

Figure 5 shows the corner mount results. The ground bounce is sufficient to couple the output of the eighth flip-flop $\left(Q_{7}\right)$ to less than 2.0 V during the transition of the other seven outputs represented by Q_{6}. The output then charges to a marginal V_{OH} level.
Figure 6 shows the results from the side mount version. Output glitching during the transition of the other seven outputs is still present, but due to the approximately 50% reduction in lead inductance over the corner mount version, the output is allowed to charge back to its original V_{OH} level.

Output Glitching During Multiple Switching

In some cases the effects of ground bounce can be minimized if properly taken into consideration during the design and layout of the integrated circuit. Note in Figure 7, the glitch that was present on the output of the 'F11, a triple 3 -input AND gate, during an early transition of the other two outputs. A newer version of the 'F11 is shown in Figure 8. Note that the glitch has been greatly minimized.

Circuit Oscillations

A fourth area of concern is the possibility of circuit oscillations during slow input transitions through threshold. This would be of importance if the delay through the part is on the order of the natural period of oscillations of the ground inductance and the load capacitance.

During testing, a particular problem has been seen when the inputs are driven by a power supply by way of a cable. Because there is a delay through the cable, it takes time for the power supply to sense a change in the impedance at the input near threshold. This delay sets up oscillations between the power supply and the input of the part when the input is held near threshold.

Inductance Measurements And Verification

To verify that lead inductance caused these problems, the lead inductance was measured and circuit simulations done to show circuit behavior. Measurement of lead inductance was accomplished using an HP S-parameter test set. These measured values of lead inductance were used in a circuit simulation program. The results of the simulation show voltage and current wave forms similar to the measured waveforms.

Package Lead Inductance
 Considerations In High-Speed Applications

Figure 7

Figure 8

Derivation of the S-parameter Method

The general form for voltage and current along a transmission line is:
$\bar{V}(z)=V^{+} e^{-\gamma^{z}}+V^{-} e^{\gamma z}$
$\bar{I}(z)=1^{+} e^{-\gamma^{z}}-I^{-} e!s$

Where $\mathrm{V}^{+}, \mathrm{V}^{-}, \mathrm{I}^{+}, \mathrm{I}^{-}$are constants, usually complex, determined by the boundary condi-
tions, z is the distance from the load and gamma (γ) is a complex term involving a real or loss term and an imaginary or phase shift term.

$$
\begin{aligned}
& \gamma=\propto+j \beta \\
& \gamma \simeq 1 / 2(R \sqrt{C / L}+G \sqrt{L / C})+j \omega \sqrt{L C}
\end{aligned}
$$

Considering the lossless case where $R=0$ and $\mathrm{G}=0, \gamma=\mathrm{j} \beta$ and only results in a phase
shift. The equations for voltage and current then become:

$$
\begin{aligned}
& \bar{V}(z)=V^{+} e^{-j \beta z}+V^{-} e^{j \beta z} \\
& \bar{I}(z)=I^{+} e^{-j \beta z}-I^{-} e^{j \beta z}
\end{aligned}
$$

To find Z_{1} set $z=O$. (See Figure 9).

$$
\bar{Z}_{1}=\bar{V}_{1} / \bar{I}_{1}=\left(V^{+}+V^{-}\right) /\left(I^{+}-I^{-}\right)
$$

since, $1^{+}=V^{+} / Z_{0}$ and,

$$
\begin{aligned}
& \mathrm{I}^{-}=\mathrm{V}^{-} / Z_{0}, \\
& \bar{Z}_{1}=\left(\mathrm{V}^{+}+\mathrm{V}^{-}\right) /\left(\mathrm{V}^{-} / Z_{0}-\mathrm{V}^{+} / Z_{0}\right), \text { or, } \\
& \bar{Z}_{1}=Z_{0} \frac{1+\mathrm{V}^{-} N^{+}}{1-V^{-} N^{+}}
\end{aligned}
$$

$\mathrm{V}^{-} / \mathrm{V}^{+}$is called the reflection coefficient and is usually complex,

$$
\Gamma=V^{-} / \mathrm{V}^{+}
$$

The impedance at the load then becomes:

$$
\bar{Z}_{1}=Z_{0} \frac{1+\Gamma}{1-\Gamma}
$$

On the S-parameter test set, the magnitude of the reflection coefficient, $|\Gamma|$, is measured in dB at a particular angle,

$$
\Gamma_{\text {real }}=10^{\left(\left|\Gamma_{\mathrm{dB}}\right|^{/ 20}\right)} L \theta
$$

For an inductor,

$$
\bar{Z}_{1}=Z_{0} \frac{1+\Gamma}{1-\Gamma}=R+j \omega L,
$$

usually $R \simeq 0$ and L can be solved for directly.

Figure 9

Package Lead Inductance Considerations In High-Speed Applications

Table 1

PACKAGE	REFLECTION COEFFICIENT	INDUCTANCE
16-pin (300mil-wide)	$-0.50 \angle 162^{\circ} \mathrm{C}$	
8 to 16	$-0.32 \angle 172^{\circ} \mathrm{C}$	25.62 nH
4 to 12		11.51 nH
24 -pin (600 mil-wide)	$-0.56 \angle 157^{\circ} \mathrm{C}$	
12 to 24	$-0.29 \angle 157^{\circ} \mathrm{C}$	32.78 nH
6 to 18		18.33 nH
24 pin (300mil-wide)	$-0.47 \angle 160^{\circ} \mathrm{C}$	
12 to 24	$-0.34 \angle 170^{\circ} \mathrm{C}$	28.39 nH
6 to 18		14.27 nH

Example

A 16-pin package measurıng from pin 8 to 16 has a reflection coefficient $\Gamma_{\mathrm{dB}}=-0.5 L$ $162^{\circ}, Z_{0}$ of the system is 50Ω and the measurement frequency is 50 MHz .

$$
\begin{aligned}
& \Gamma_{\mathrm{dB}}=-0.5 \angle 162^{\circ} \\
& \Gamma_{\text {real }}=0.944 \angle 162^{\circ}=-0.898+\mathrm{j} 0.292 \\
& \begin{aligned}
\bar{Z}_{1}=\mathrm{Z}_{0} \frac{1+\Gamma}{1-\Gamma} & =50^{*} \frac{0.102+\mathrm{j} 0.292}{1.898-\mathrm{j} 0.292} \\
& =50^{*} \frac{0.309 \angle 70.7^{\circ}}{1.920 \angle-8.74^{\circ}} \\
& =8.05 \angle 79^{\circ} \\
\bar{Z}_{1} & =1.475+\mathrm{j} 7.914
\end{aligned}
\end{aligned}
$$

$$
\mathrm{L}=7.914 /\left(2 \pi^{*} 50 \mathrm{MHz}\right)=\underline{25.19 n H}
$$

Alternately, using the approximation $\mathrm{R}=0$, so $\left|Z_{1}\right|=\omega L$:

$$
\mathrm{L}=\frac{8.05}{2 \pi^{*} 50 \mathrm{MHz}}=25.62 \mathrm{nH}
$$

Three packages were used to measure lead inductance, a 16-pin CERDIP, a 24-pin CERDIP and a 24-pin skinny CERDIP. $V_{C C}$ and ground were double bonded to an 80×80 mil blank die. Table 1 shows the results of the measurements.

These values are the total inductance $V_{C C}$ to ground. Each lead inductance would be about one half these members.

Simulation of Measured Values

Both ground and $V_{C C}$ bounce for the 'F240 were simulated using the inductive values measured. The results were similar to the measured data of the 'F240, Figures 3 and 4. The simulation of the 'F240 is shown in Figure 10. This shows the pad $V_{C C}$, the pad ground $\left(\mathrm{V}_{\mathrm{G}}\right)$ and the inputs $\left(\mathrm{V}_{\mathrm{IN}}\right)$ and outputs (VOUT) when all 8 buffers are switched simultaneously.

SUMMARY

A major contributor to noise in High-speed circuits is package lead inductance. Integrated circuits are packaged with lead frame traces and bonding wire. These leads act as inductors. Voltage generated across these leads follow the law:

$$
\mathrm{V}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}
$$

This represents noise to an integrated circuit chip and can cause performance degradation. The faster the switching rates become, the more lead inductance can affect circuit performance.

As circuits become faster, more care should be taken in packaging and chip layout. In some cases like the 'F11, a better layout can help remove potential problems but in most cases like the 'F240, the noise is strictly a function of the package. Care should be taken in integrated circuit packages to minimize lead lengths. Side mount $V_{C C}$ and ground pins, smaller packages such as the surface mounted SO, and High levels of board integration are a few possibilities which would help minimize lead lengths.

Signetics

FAST Products

Section 8
Surface Mounted ICs

FAST Products

INTRODUCTION

Economic survival is driving the electronics industry to use cheaper, faster, more reliable and more dense systems and components. Assembly technologies, such as SMD (Surface Mounted Device) technology, developed and used in hybrids and for military electronics for over two decades, is being adapted to commercial electronics as part of this evolution. With SMD technology, components are soldered directly to a metalized footprint on the surface of the board or substrate rather than being inserted through holes drilled in the board and then soldered. Because of this evolution, package styles specially designed to faclitate surface mounting are now in high demand.

The reasons for the change to SMD technology vary from one customer to another; but the primary motivator is higher profits through lower manufacturing and material costs, or an improved product, or both.

Improved Electrical Performance

Because SMD packages are much smaller than their DIP counterparts, they have much less capacitance and inductance, and provide improved AC performance, especially in highspeed environments. They help to minimize problems associated with ground bounce and multiple output switching found with standard DIP packages. The SO package is especially suitable for high-speed families such as FAST and High-Speed CMOS where package inductance can induce or compound problems not normally found in slower technologies.

Ease Of Automation

SMD pick-and-place machines offer higher yields, faster cycle rates ($3-10 x$ faster), and much higher throughput volumes than automatic insertion machines for DIP packages.

Greatly Increased Densities

Greatly increased densities can be achieved through surface mounting. The packages themselves are much smaller (as much as 70%) and can be placed much closer together. Furthermore, both sides of the board can be used with SMDs.

Reduced Board Costs

The number of layers, total size of the board, and the number of plated through holes can be reduced, thus lowering the total cost of the board (many companies claim savings of 30 to 50%).

Surface Mounted ICs

Easier Board Rework

In those instances where rework is necessary, it is much faster and cheaper with SMDs.

Improved Reliability

Not only are the components proving to be at least as reliable as their DIP counterparts but, surface mounted assemblies show fewer failures in stress tests than equivalent through hole assemblies.

Lower Shipping, Storage And Handling Costs

SMD components are up to 70% smaller and weigh up to 90% less than DIPs (up to 95% savings in storage area for Tape \& Reel SMD components vs DIPs and up to 90% savings in component weight). Surface mount assemblies offer additional savings in both weight and space, both of which can be linked to increased profits.
SMD packages for integrated circuits fall into two categories: Swiss Outline, also known as Small Outline (SO), and the Plastic Leaded Chip Carrier (PLCC).

SO PACKAGE

The SO package was developed by N.V. Philips Corp, originally for the Swiss watch industry. In the mid 1970s Signetics introduced linear ICs in SO packages to the US market (hybrid and telecommunications). As demand grew, other technologies such as FAST, Low Power Schottky, Schottky, TTL, CMOS, High-Speed CMOS (HC and HCT),

ECL, ROMs, RAMs, PROMs, were made available in SO packages.

The SO is a dual-in-line plastic package with leads spaced $0.050^{\prime \prime}$ apart and bent down and out in a Gull-Wing format. It comes in two widths: $0.150^{\prime \prime} \mathrm{SO}$, and $0.300^{\prime \prime} \mathrm{SOL}$ (SOLarge) depending on the pin count.

As ICs became more complex and the number of pins grew, the standard dual-in-line packages grew longer and wider, presenting new electrical and mechanical problems. Some of these were resolved with the introduction of the ceramic leadless chip carrier (LCC). These were square, ceramic packages without leads which can be socketed or soldered directly to a substrate if the thermal coefficient of expansion of the chip carrier and the substrate are to be matched.

In 1980, the Plastic Leaded Chip Carrier (PLCC) was introduced as a cheaper alternative to the LCC. However, this was at the same time that SMD was winning acceptance in commercial electronics and the PLCC was seen as an ideal SMD package for the higher pin count devices (those with more than 28 leads). The PLCC is a square, plastic package with leads on four sides, spaced down and under in a J-Bend configuration. It is available in the higher pin counts: $20,28,44$, $52,68,84$ with even higher pin counts under development.

The smallest square PLCC is the 20 pin package. There are many reasons for this; the primary one is that below 20 pins, the package would be as thick as it is square,

Table 1

PIN COUNT	SO	SOL	PLCC
8	x		
14	x		
16	x	x	
18		x	x (rectangular)
20		x	x
24		x	
28		x	x
44			x
52			x
68			x
84			x

Surface Mounted ICs

resulting in a cube-like package which would be very difficult to handle in an automated environment.

Logic and linear devices are available in SO while the more complex parts such as microprocessors, microcontrollers, complex peripherals, large memory devices, and other higher pin count integrated circuits will be found in the PLCC.

ASSEMBLY

The assembly of these SMD packages is virtually the same as for the older DIP packages using the same materials and most of the same equipment and assembly technologies.
The only differences in the process are the smaller lead frames, different lead bends (gull-wing for SO and J-Bend for the PLCC), and closer spacing resulting in a much smaller package for the same basic die.

RELIABILITY

Reliability studies of SMD components, conducted not only by Signetics and Philips, but by many of our competitors and customers,
have revealed that these packages are at least as reliable as the standard plastic DIP packages that have been used over the past 20 years. In several cases, test results of the SMD packages have been better than their DIP counterparts.

STANDARDIZATION

The SO package is an industry standard format. In June 1985, the JEDEC (Joint Electronics Engineering Council) of the EIA (Electronics Industries Association) issued a Solid State Product Outlines Standard for each of the SO formats: MS-012 AA-AC for the $0.150^{\prime \prime}$ body width SO and Ms-013 AA-AE for the $0.300^{\prime \prime}$ body width SOL. In addition to the JEDEC Standard, de facto standardization has been achieved in the industry in that most of the major US and European IC manufacturers (more than 15 companies currently) use this standard.

The PLCC is also a standardized format, with a JEDEC Registered Outline \#MO-047 AAAH. It also is multiple sourced with over 10 US IC manufacturers using this standard.

Points worth noting: All SO And SOL packages have $0.050^{\prime \prime}$ lead spacing and a Gull-

Wing lead bend, while all PLCC packages have the same lead spacing and a J-Bend lead bend.

TAPE AND REEL

One revolutionary phenomenon in SMD is the development of Tape and Reel for the IC packages. Philips and several other companies making automatic placement equipment recognized the need for a feed system which allows for positive indexing large volumes of components at high-speed in order to get maximum efficiency out of the new pick-andplace machines. Tubes are limited to a relatively small number of parts (dictated by tube length) and depend on gravity to feed components to the placement head. After several proposed tape formats, Philips, Signetics, many of the component and placement equipment manufacturers, and board manufacturers convened under the auspices of EIA (Electronic Industries Association) and agreed on an industry standard specification for Tape and Reel for both SO and PLCC packages. The proposed EIA specification RS 481A is being used by Signetics and Philips, both of whom have shipped components on Tape and Reel since late 1984.

Surface Mounted ICs

DF00480S
Figure 1. Manufacturers' Recommended Footprint

PINS	A
20	.425
28	.525
44	.725
52	.825
68	1.025

Figure 2. Footprint Design for The PLCC-IC

Signetics

FAST Products

Section 9
 Package Outlines

INDEX
Package Outlines for Plastic Packages 9-3
A Plastic Leaded Chip Carrier 9-4
D Plastic Small Outline 9-8
N Plastic Standard Dual-in-Line 9-11
Package Outlines for Hermetic CERDIP 9-15
F Hermetic CERDIP 9-16

FAST Products

PACKAGE OUTLINES FOR PLASTIC PACKAGES

The following information applies to all plastic packages unless otherwise specified on individual package outline drawings.

1. Dimensions are shown in Metric units (Millimeters) and English units (Inches).
2. Lead material: Copper Alloy, solder ($63 \% \mathrm{Sn} / 37 \% \mathrm{~Pb}$) dipped.
3. Body material: Plastic (Epoxy)
4. Thermal resistance values are determined by temperature sensitive parameter (TSP) method. This method uses the forward voltage drop of a calibrated di-
ode to measure the change in junction temperature due to a known power application. The substrate diode of a Bipolar technology device is generally the diode used in these tests. Die size and test environment have significant effects on thermal resistance values.

PLASTIC PACKAGES OUTLINES								
Package Type	Number of Leads	Package Feature	Package Ordering Code	Package Outline Code	Thermal Resistance $\theta_{\mathrm{JA}} / \theta_{\mathrm{JC}}$ (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	Die Size (square mils)	Test Conditions	
							Test Ambient	Test Fixture
so^{1} (Copper Leadframe)	$\begin{aligned} & 14 \text { pin } \\ & \text { (SO-14) } \end{aligned}$	3.9 mm $\left(0.15^{\prime \prime}\right)$ Body width	D	DH1	124/37	2,500	Still air at room temperature	Device soldered to Philips glass epoxy test board ($1.12^{\prime \prime} \times 0.75^{\prime \prime} \times 0.059^{\prime \prime}$) with $0.008-0.009^{\prime \prime}$ stand-off. Accuracy: $\pm 15 \%$
	$\begin{aligned} & 16 \text { pin } \\ & \text { (SO-16) } \end{aligned}$		D	DJ1	113/36			
	$\begin{aligned} & 16 \mathrm{pin} \\ & \text { (SOL-16) } \\ & \hline \end{aligned}$	7.5 mm (0.30") Body width	D	DJ2	98/30	5,000		Device soldered to Philips glass epoxy test board $\left(1.58^{\prime \prime} \times 0.75^{\prime \prime} \times 0.059^{\prime \prime}\right)$ with $0.008-0.009^{\prime \prime}$ stand-off. Accuracy: $\pm 15 \%$
	$\begin{aligned} & \hline 20 \mathrm{pin} \\ & \text { (SOL-20) } \end{aligned}$		D	DL2	90/28			
	$\begin{aligned} & 24 \mathrm{pin} \\ & \text { (SOL-24) } \end{aligned}$		D	DN2	76/26			
	$\begin{aligned} & 28 \mathrm{pin} \\ & \text { (SOL-28) } \end{aligned}$		D	DQ2	70/24	10,000		
PLCC ${ }^{2}$ (Copper Leadframe)	$\begin{aligned} & 44 \text { pin } \\ & \text { (PLCC-44) } \end{aligned}$	$0.650^{\prime \prime}$ Square body	A	AX1	50/20	15,000	Still air at room temperature	Device soldered to Philips glass epoxy test board $\begin{aligned} & \left(2.24^{\prime \prime} \times 2.24^{\prime \prime} \times 0.062^{\prime \prime}\right) \\ & \text { with } 0.008-0.009^{\prime \prime} \\ & \text { stand-off. Accuracy: } \pm 15 \% \\ & \hline \end{aligned}$
DIP ${ }^{3}$ (Copper Leadframe)	$\begin{aligned} & \hline 14 \operatorname{pin} \\ & \text { (DIP-14) } \end{aligned}$	0.300" Lead row centers	N	NH1	89/44	2,500	Still air at room temperature	Device in Textool ZIF socket with 0.040", stand-off. Accuracy: $\pm 15 \%$
	$\begin{aligned} & 16 \text { pin } \\ & \text { (DIP-16) } \end{aligned}$		N	NJ1	86/43			
	$\begin{aligned} & 20 \operatorname{pin} \\ & \text { (DIP-20) } \end{aligned}$		N	NL1	74/32	5,000		Device in Textool ZIF socket with $0.040^{\prime \prime}$, stand-off. Accuracy: $\pm 15 \%$
	24 pin SLIM DIP (DIP-24)		N	NN1	65/36			
	$\begin{aligned} & 24 \operatorname{pin} \\ & \text { (DIP-24) } \end{aligned}$	0.600" Lead row centers	N	NN3	59/30			
	$\begin{aligned} & 28 \mathrm{pin} \\ & \text { (DIP-28) } \end{aligned}$		N	NQ3	52/27	10,000		
	$\begin{aligned} & 40 \text { pin } \\ & \text { (DIP-40) } \end{aligned}$		N	NW3	45/19	15,000		

NOTES:

1. $S O=$ Small Outline
2. $\operatorname{PLCC}=$ Plastic Leaded Chip Carrier
3. $\mathrm{DIP}=$ Dual-In-Line Package

Package Outlines

AL1 PLASTIC PLCC-20

AQ1 PLASTIC PLCC-28

NOTES:
1 Package dimensions conform to JEDEC specification MO-047-AB for plastic leaded chip carrier 28 leads, 050 inch lead spacing, square (issue $A, 10 / 31 / 84$)
2 Controlling dimensions' inches Metric are shown in parentheses
3 Dimensions and tolerancing per ANSI Y145M-1982
4 " A " and " B " are reference datums on the molded body at plane " H " and do not include mold flash. Mold flash protrusion shall not exceed $006^{\prime \prime}$ (15 mm) on any side
5 Datum "D-E" and "F-G" are determined where these center leads exit from the body at plane " H "
6 Pin numbers continue counterclockwise to pin \#28 (top view)
7. Signetics order code for product packaged in a PLCC is the suffix A after the product number

P000611S

Package Outlines

AR2/PLASTIC PLCC-32

AX1/PLASTIC PLCC-44

Package Outlines

AA1 PLASTIC PLCC-52

AB1 PLASTIC PLCC-68

Package Outlines

AC1 PLASTIC PLCC-84

Package Outlines

DH1/PLASTIC SO-14

DJ1/PLASTIC SO-16

Package Outlines

DJ2/PLASTIC SOL-16

DL2/PLASTIC SOL-20

Package Outlines

DN2/PLASTIC SOL-24

DQ2/PLASTIC SOL-28

Package Outlines

NH1/PLASTIC DIP-14

NJ1/PLASTIC DIP-16

Package Outlines

NL1/PLASTIC DIP-20

NN1/PLASTIC DIP-24

Package Outlines

NN3/PLASTIC DIP-24

NQ3/PLASTIC DIP-28

Package Outlines

NW3/PLASTIC DIP-40

Package Outlines

PACKAGE OUTLINES FOR HERMETIC CERDIP

1. Controlling dimensions are given in inches, and millimeters in parentheses.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
$2.1 \oplus$ is a geometric characteristic symbol meaning: the accuracy of a position.
2.2 'T'', 'D', and ' E ' are reference datums on the body and include allowance for glass overrun and meniscus on the seal line, and lid to mismatch.
2.3 ' S ' is a modifying symbol and means: regardless of features.
2.4 ' M ' is a modifying symbol and means: at a maximum material condition.
3. BSC means: Basic
4. These dimension measured with the leads constrained to be perpendicular to plane T.
5. Pin numbers start with pin \#1 and contınue counter-clockwise when viewed from the top.
6. Lead material: ASTM alloy F-38 (Alloy 42) or equivalent - tin plated or solder dipped.
7. Body Material: Ceramic with glass seal at leads.
8. Thermal resistance values are determıned by temperature sensitive parameter (TSP) method. This method uses the forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application.
9. Test conditions:

Test ambient - still aır Power dissipation - 1.0W Test fixture
$\theta_{\text {JA }}$ - Textool ZIF socket with $.040^{\prime \prime}$ stand-off θ_{JC} - water cooled heat sink

Package Outlines

FN1 24-PIN HERMETIC CERDIP (300mil-wide)

Signetics

FAST Products

Sales Offices

SIGNETICS
HEADQUARTERS
811 East Arques Avenue
P.O. Box 3409

Sunnyvale,
California 94088-3409
Phone: (408) 991-2000

ALABAMA

Huntsville
Phone: (205) 830-4001
ARIZONA
Phoenix
Phone: (602) 265-4444
CALIFORNIA
Canoga Park
Phone: (818) 340-1431
Irvine
Phone: (714) 833-8980
(213) $588-3281$

Los Angeles
Phone: (213) 670-1101
San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5011
FLORIDA
Clearwater
Phone: (813) 796-7086
Ft. Lauderdale
Phone: (305) 486-6300

GEORGIA

Atlanta
Phone: (404) 953-0067
ILLINOIS
Itasca
Phone: (312) 250-0050
INDIANA
Kokomo
Phone: (317) 453-6462

KANSAS

Overland Park
Phone: (913) 469-4005

MASSACHUSETTS

Littleton
Phone: (617) 486-8411
MICHIGAN
Farmington Hills
Phone: (313) 476-1610
minnesota
Edina
Phone: (612) 835-7455

NEW JERSEY
Parsippany
Phone: (201) 334-4405
NEW YORK
Hauppauge
Phone: (516) 348-7877
Wappingers Falls
Phone: (914) 297-4074
NORTH CAROLINA
Cary
Phone: (919) 481-0400
OHIO
Worthington
Phone: (614) 888-7143
OREGON
Portland
Phone: (503) 297-5592
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
TENNESSEE
Greeneville
Phone: (615) 639-0251
TEXAS
Austin
Phone: (512) 339-9944
Richardson
Phone: (214) 644-3500
CANADA
SIGNETICS CANADA, LTD.
Etobicoke, Ontario
Phone: (416) 626-6676
Nepean, Ontario
Signetics, Canada, Ltd.
Phone: (613) 726-9576
REPRESENTATIVES

ARIZONA

Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 941-1901
CALIFORNIA
Santa Clara
Magna Sales Phone: (408) 727-8753

CONNECTICUT
Brookfield
M \& M Associates
Phone: (203) 775-6888
FLORIDA
Clearwater
Sigma Technical Associates Phone: (813) 791-0271

Ft. Lauderdale
Sigma Technical Associates Phone: (305) 731-5995

ILLINOIS
Hoffman Estates
Micro-Tex, Inc.
Phone: (312) 382-3001
INDIANA
Indianapolis
Mohrfield Marketing Inc.
Phone: (317) 546-6969

IOWA

Cedar Rapids
J.R. Sales

Phone: (319) 393-2232

MARYLAND

Glen Burnie
Third Wave Solutions, Inc.
Phone: (301) 787-0220
MASSACHUSETTS
Needham Heights
Kanan Associates
Phone: (617) 449-7400
MICHIGAN
Bloomfield Hills
Enco Marketing
Phone: (313) 642-0203

MINNESOTA

Eden Prairie
High Technology Sales
Phone: (612) 944-7274

MISSOURI

Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW JERSEY
East Hanover
Emtec Sales, Inc.
Phone: (201) 428-0600

NEW MEXICO

Albuquerque
F.P. Sales

Phone: (505) 345-5553

NEW YORK

Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111

OHIO

Cleveland
Covert \& Newman
Phone: (216) 663-3331
Dayton
Covert \& Newman
Phone: (513) 439-5788

Worthington

Covert \& Newman
Phone: (614) 888-2442

OKLAHOMA
Tulsa
Jerry Robinson and
Associates
Phone: (918) 665-3562
OREGON
Hillsboro
Western Technical Sales
Phone: (503) 640-4621
PENNSYLVANIA
Pittsburgh
Covert \& Newman
Phone: (412) 531-2002
Willow Grove
Delta Technical Sales Inc.
Phone: (215) 657-7250
UTAH
Salt Lake City
Electrodyne
Phone: (801) 486-3801
WASHINGTON
Bellevue
Western Technical Sales
Phone: (206) 641-3900
Spokane
Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352

CANADA

Burnaby, British Columbia
Tech-Trek, Ltd.
Phone: (604) 439-1367
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Nepean, Ontario
Tech-Trek, Ltd. Phone: (613) 726-9562

Richmond, British Columbia
Tech-Trek, Ltd.
Phone: (604) 271-3149
Ville St. Laurent, Quebec
Tech-Trek, Ltd.
Phone: (514) 337-7540

DISTRIBUTORS
Contact one of our local distributors:
Anthem Electronics
Arrow Electronics
Avnet Electronics Hamilton/Avnet Electronics
Lionex Corporation
Schweber Electronics
Summit Distributors
Quality Components
Wyle LEMG
Zentronics, Ltd.
FOR SIGNETICS
PRODUCTS
WORLDWIDE:
ARGENTINA
Philips Argentina S.A.
Buenos Aires
Phone: 54-1-541-7141
AUSTRALIA
Philips Electronic
Components and Materials, Ltd.

Artarmon, N.S.W.
Phone: 61-2-439-3322
AUSTRIA
Osterrichische Philips
Bauelemente
Wien
Phone: 43-222-62-91-11

BELGIUM

N.V. Philips \& MBLE

Bruxelles
Phone: 32-2-5-23-00-00
BRAZIL
Philips Do Brasil, Ltda.
Sao Paulo
Phone: 55-11-211-2600
CHILE
Philips Chilena S.A.
Santiago
Phone: 56-02-077-3816
COLOMBIA
Iprelenso, Ltda.
Bogota
Phone: 57-1-2497624

DENMARK

Miniwatt A/S
Copenhagen S
Phone: 45-1-54-11-33

FINLAND

Oy Philips Ab
Helsinki
Phone: 358-0-172-71

FRANCE

R.T.C. La Radiotechnique-

Compelec
Paris
Phone: 33-1-43-38-80-00

GERMANY

Valvo

Hamburg
Phone: 49-40-3-296-1
GREECE
Philips Hellenique S.A. Athens
Phone: 30-1-9-21-5111
HONG KONG
Philips Hong Kong, Ltd.
Kwai Chung
Phone: 852-0-245-121
INDIA
Peico Electronics \& Elect.
Ltd.
Bombay
Phone: 91-22-493-8721
INDONESIA
P.T. Philips-Ralin Electronics Jakarta Selatan
Phone: 62-21-512-572
IRELAND
Philips Electrical Ltd.
Dublin
Phone: 353-1-69-33-55
ISRAEL
Rapac Electronics, Ltd.
Tel Aviv
Phone: 972-3-477115
ITALY
Philips S.p.A.
Milano
Phone: 39-2-67-52-1

JAPAN
Signetics Japan Ltd. Osaka
Phone: 81-6-304-6071
Signetics Japan Ltd.
Tokyo
Phone: 81-3-230-1521/2
KOREA
Philips Industries, Ltd.
Seoul
Phone: 82-2-794-5011/2/3
/4/5
MEXICO
Electronica S.A. de C.V.
Toluca
Phone: (721) 613-00
NETHERLANDS
Philips Nederland B.v.
Eindhoven
Phone: 31-40-793-333
NEW ZEALAND
Philips New Zealand Ltd.
Auckland
Phone: 64-9-605914
NORWAY
Norsk A/S Phillps
Oslo
Phone: 47-2-68-02-00
PERU
Cadesa
Lima
Phone: 51-14-319253
PHILIPPINES
Philips Industrial Dev., Inc. Makati
Phone: 63-2-868951-9
PORTUGAL
Philips Portuguesa SARL
Lisbon
Phone: 351-1-65-71-85

SINGAPORE

Philips Project Dev. Pte., Ltd.
Singapore
Phone: 65-350-2000

SOUTH AFRICA

E.D.A.C. (PTY), Ltd.

Joubert Park
Phone: 27-11-402-4600

SPAIN

Miniwatt S.A.
Barcelona
Phone: 34-3-301-63-12

SWEDEN

Philips Komponenter A.B.
Stockholm
Phone: 46-8-782-10-00
SWITZERLAND
Philips A.G.
Zurich
Phone: 41-1-488-2211
TAIWAN
Philips Taiwan, Ltd.
Taipei
Phone: 886-2-712-0500
THAILAND
Philips Electrical Co.
of Thailand Ltd.
Bangkok
Phone: 66-2-233-6330-9
TURKEY
Turk Philips
Ticaret A.S.
Istanbul
Phone: 90-11-43-59-10
UNITED KINGDOM
Mullard, Ltd.
London
Phone: 44-1-580-6633
UNITED STATES
Signetics International Corp. Sunnyvale, California Phone: (408) 991-2000
URUGUAY
Luzilectron, S.A.
Montevideo
Phone: 598-91-56-41/42
/43/44

VENEZUELA
Magnetica, S.A.
Caracas
Phone: 58-2-241-7509

Signetics Corporation 811 E. Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 408/991-2000

[^0]: $H=$ High voltage level
 L = Low voltage level
 X = Don't care

[^1]: $V_{C C}=\operatorname{Pin} 14$
 GND $=\operatorname{Pin} 7$

[^2]: $H=$ High voltage level steady state
 $h=$ High voltage level one setup time prior to the Low-to-High clock transition
 L = Low voltage level steady state
 I = Low voltage level one setup time prior to the Low-to-High clock transition
 $X=$ Don't care
 $\mathrm{q}=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
 $\dagger=$ Low-to-High clock transition
 NOTE:
 1 The $\overline{T C}$ is Low when $\overline{C E T}$ is Low and the counter is at Terminal Count Terminal Count Up is $(H H H H)$ and Terminal Count Down is (LLLL) for 'F169 The $\overline{\mathrm{TC}}$ is Low when $\overline{\mathrm{CET}}$ is Low and the counter is at Terminal Count Terminal Count Up is (HLLH) and Terminal Count Down is (LLLL) for 'F168

[^3]: $\mathrm{L}=$ Low voltage
 $H=$ High voltage level
 Each bit is shifted to the next more significant position.
 **Arithmetic operations expressed in two's complement notation

[^4]: $V_{C C}=\operatorname{Pin} 16$
 GND $=\operatorname{Pin} 8$

[^5]: $V_{C C}=\operatorname{Pin} 16$
 $G N D=\operatorname{Pin} 8$

[^6]: $H=$ High voltage level
 $\mathrm{L}=$ Low voltage level
 $X=$ Don't care
 $Z=$ High-impedance (OFF) state

[^7]: $H=$ High voltage level steady state.

[^8]: $H=$ High voltage level
 $\mathrm{L}=$ Low voltage level

[^9]: H = High voltage level
 h $=$ High voitage level one setup tıme prior to the High-to-Low clock transition
 L = Low voltage level
 I = Low voltage voltage level one setup time prior to the High-to-Low clock transition
 $q_{n}=$ Lower case letters indicate the state of the referenced output one setup time prior to the High-to-Low clock transition
 $\mathrm{X}=$ Don't care
 $Z=$ High-impedance "OFF" state
 $\downarrow=$ High-to-Low transition

[^10]: $H=$ High voltage level

[^11]: $\mathrm{H}=$ High voltage level
 L = Low voltage level
 X = Don't care
 $Z=$ High-impedance

[^12]: $\mathrm{H}=\mathrm{H}$ igh voltage level
 $h=$ High voltage level one setup time prior to the Low-to-High Clock transition or High-to-Low OE transition
 L = Low voltage level
 $X=$ Don't care
 $1=$ Low voltage level one setup time prıor to the Low-to-High Clock transition or High-to-Low OE transition
 $Z=$ High-impedance (OFF) state
 $\uparrow=$ Low-to-High clock transition
 $\mathrm{NC}=$ No change
 $\downarrow=$ High-to-Low enable transition

[^13]: $V_{C C}=\operatorname{Pin} 20$
 GND $=\operatorname{Pin} 10$

[^14]: H = High voltage level
 h = High voltage level one setup time prior to the Low-to-High clock transition
 = Low voltage level
 = Low voltage level one setup time prior to the Low-to-High clock transition
 = Don't care
 $Z=$ High-impedance (OFF) state
 $=$ Low-to-High clock transition

[^15]: H = High voltage level
 L = Low voltage level
 X = Don't Care
 $\uparrow=$ Low-to-High clock transition
 (not $L L$) $=\overline{C S}$ and $\overline{\mathrm{PE}}$ should never both be Low voltage level at the same time

[^16]: $H=$ High voltage level

[^17]: *The data output function may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
 un = unspecified
 $\mathrm{H}=$ High voltage level
 L = Low voltage level
 $X=$ Don't care
 $\uparrow=$ Low-to-High clock transition

[^18]: NOTE:
 This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

[^19]: $H=$ High voltage level
 $\mathrm{L}=$ Low voltage level
 $\mathrm{X}=$ Don't care
 $Z=$ High-impedance

[^20]: $V_{C C}=\operatorname{Pin} 24$
 GND $=\operatorname{Pin} 12$

[^21]: $H=$ High voltage level steady state

[^22]: $H=$ High voltage level
 $\mathrm{L}=$ Low voltage level
 X = Don't care
 Z = High-impedance

[^23]: $H=$ High voltage level steady state
 h = High voltage level one setup time prior to the High-to-Low transition of LE
 L = Low voltage level steady state
 I = Low voltage level one setup time prior to the High-to-Low transition of LE
 $\mathrm{X}=$ Don't care
 $Z=$ High-impedance
 $\mathrm{NC}=$ No change
 $\downarrow=$ High-to-Low transition

[^24]: $H=$ High voltage level steady state
 h = High voltage level one setup time prior to the High-to-Low transition of LE
 L = Low voltage level steady state
 = Low voltage level one setup time prior to the High-to-Low transition of LE
 X = Don't care
 $\mathbf{Z}=$ High-impedance
 $\mathrm{NC}=\mathrm{No}$ change
 $\downarrow=$ High-to-Low transition

[^25]: *Each bit is shifted to the next more significant position.

[^26]: NOTES:

 1. These numbers indicate that the address inputs have a negative setup time and could be valid 4 ns after the falling edge of the CP clock. It is suggested that SEL_{2} be used to enable Address Bus 2 and the opposite polarity of the same be used, instead of SEL_{1} to enable Address Bus 1. This will insure that setup time for Address Bus 1 is not violated.
