Signetics

FOREWORD

Signetics Integrated Fuse Logic elements combine into single-chip dense arrays of gates, buffers, and flip-flops interconnected via fusible Ni-Cr links. IFL, in effect, lifts circuit connections from the printed circuit board and integrates them on chip where they can be selectively blown by the user with standard PROM programming equipment.

The flexible architecture of Signetics IFL elements allows a "firmware" approach to the synthesis of complex logic functions which result in distinct design advantages. Specifically, most random logic designs using discrete TTL elements can be condensed into fewer IC packages, dramatically reducing overall system cost. Also, since IFL devices can be customized or edited in the field without retooling, your products can benefit from shorter development cycles, custom design flexibility, and quick recovery from design errors.

With the ability to manipulate a flexible logic system quick to debug and adapt to changes in architecture, you gain a competitive edge, not only by compacting in a system more functions, speed, and cost advantages, but by getting your products to the market ahead of your competitors.

Revised November 1981

Contents

Integrated Fuse Logic Series 28 Data Specifications
82S100/101 - FPLA 3
82S102/103 - FPGA 15
82S104/105-FPLS 23
82S106/107 - FPRP 45
Integrated Fuse Logic Series 20 Data Specifications
82S150/151 - FPGA 57
82S152/153-FPLA 63
82S154-159-FPLS 75
Technical Article
"Field Programmable Arrays:
Powerful Alternatives to Random Logic" 89
DEFINITION OF TERMS

Data Sheet Identification	Product Status	Definition
Preview	Formative or In Design	This data sheet contains the design specifications for product develop- ment. Specifications may change in any manner without notice.
Advance Information	Sampling or Pre-Production	This data sheet contains advance information and specifications are subject to change without notice.
	First	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Preliminary		This data sheet contains final specifications. Signetics reserves
the right to make changes at any		
time without notice in order to im-		
prove design and supply the best		
possible product.		

${ }^{\bullet}$ Copyright 1981 Signetics Corporation

DESCRIPTION

The 82S100 (tri-state outputs) and the 82 S 101 (open collector outputs) are Bipolar Programmable Logic Arrays, containing 48 product terms (AND terms), and 8 sum terms (OR terms). Each OR term controls an output function which can be programmed either true active-high ($F p$), or true activelow (\bar{F}_{p}). The true state of each output function is activated by any logical combination of 16 -input variables, or their complements, up to 48 terms. Both devices are field programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S100 and 82S101 are fully TTL compatible, and include chip-enable control for expansion of input variables, and output inhibit. They feature either open collector or tri-state outputs for ease of expansion of product terms and application in busorganized systems.

Both devices are available in commercial and military temperature ranges. For the commercial temperature range $10^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N82S100/101, F or N, and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S100/101, F or G, I, R.

LOGIC FUNCTION

Typical Product Term:
$P_{0}=I_{0} \cdot I_{1} \cdot \bar{I}_{2} \cdot I_{5} \cdot \bar{I}_{13}$
Typical Output Functions: @ $\overline{C E}=0$:
$F_{0}=\left(P_{0}+P_{1}+P_{2}\right) @ L=$ Closed
$F_{0}=\left(\overline{P_{0}} \cdot \overline{P_{1}} \cdot \overline{P_{2}}\right) @ L=$ Open
note
For each of the 8 outputs, either the function $F p$ (active-high) or \vec{F}_{p} (active low) is available, but not both. The required function polarity is programmed via link (L).

FEATURES

- Field programmable (Ni-Cr link)
- Input variables: 16
- Output functions: 8
- Product terms: 48
- Address access time:

S82S100/101-80ns Max
N82S100/101-50ns Max

- Power dissipation: 600mW typ
- Input loading:

S82S 100/101: $\mathbf{- 1 5 0} \mu \mathrm{A}$ Max
N82S 100/101: $-100 \mu \mathrm{~A}$ Max

- Chip enable input
- Output option: 82S100: Tri-state
82S101: Open collector
- Output disable function:

Tri-state-HI-Z
Open collector-Hi

APPLICATIONS

- CRT display systems
- Random logic
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Sequential controllers
- Data security encoders
- Fault detectors
- Frequency synthesizers

INTEGRATED FUSE LOGIC SERIES 28
PIN CONFIGURATION

TRUTH TABLE

MODE	Pn	CE	$\mathrm{Sr} \stackrel{?}{\underline{=}} \mathrm{f}(\mathrm{Pn})$	Fp	\bar{F}_{p}
$\begin{aligned} & \text { Disabled } \\ & (82 \mathrm{~S} 101) \end{aligned}$	X	1	X	1	1
$\begin{aligned} & \hline \text { Disabled } \\ & \text { (82S100) } \end{aligned}$				Hi-2	Hi-Z
Read	1 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Yes	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0 1
	x	0	No	0	1

LOGIC DIAGRAM

FPLA LOGIC DIAGRAM

FIELD PROGPAMMABIE IOGIC ARPAY (16X48X8)

ABSOLUTE MAXIMUM RATINGS1				
PARAMETER		RATING		UNIT
		Min	Max	
	Supply voltage		+7	Vdc
	Input voltage		+5.5	Vdc
Vout	Output voltage		+5.5	Vdc
IIN	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Temperature range Operating			
TA	N82S100/101	0	+75	
	S82S100/101	-55	+125	
TSTG	Storage	-65	$+150$	

DC ELECTRICAL CHARACTERISTICS N82S100/101: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
S82S100/101: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	N82S100/101			S82S100/101			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
V_{IH} VIL VIC	Input voltage ${ }^{3}$ High Low Clamp3,4		$\begin{gathered} V_{C C}=\operatorname{Max} \\ V_{C C}=M i n \\ V_{C C}=M \operatorname{Min} . \operatorname{liN}=-18 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{array}{r} 0.85 \\ -1.2 \end{array}$	2	-0.8	0.8 -1.2	v
VOH Vol	Output voltage High (82S100)3,5 Low 3 , 6	$\begin{aligned} & V_{C C}=M 1 n \\ & I_{O H}=-2 \mathrm{~mA} \\ & I_{O L}=9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	2.4	0.35	0.50	v	
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$	Input current High Low	$\begin{gathered} V_{\text {IN }}=5.5 \mathrm{~V} \\ V_{\text {IN }}=0.45 \mathrm{~V} \end{gathered}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ -100 \end{array}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{gathered} 50 \\ -150 \end{gathered}$	$\mu \mathrm{A}$	
lolk loioff) los	Output current Leakage ${ }^{7}$ Hi-Z state (82S100)7 Short circuit (82S100)4,8		-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	Vcc supply current ${ }^{\text {9 }}$	$V_{C C}=$ Max		120	170		120	180	mA	
Cin Cout	Capacitance7 Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{VCC}=5.0 \mathrm{~V} \\ \mathrm{VIN}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ \text { VOUT }=2.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 17 \end{gathered}$			8 17		pF	

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S100/101: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
S82S100/101: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TO	FROM	N82S100/101			S82S100/101			UNIT	
		Min		Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & \mathrm{T}_{1 A} \\ & \mathrm{~T}^{2} \end{aligned}$	Progagation delay Input Chip enable		Output Output	Input Chip enable		$\begin{aligned} & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	ns
TCD	Disable time Chip disable	Output	Chip enable		15	30		15	50	ns	

NOTES on following page.

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operation of the device specifications is not implied.
2. All voltage values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5. Measured with VIL applied to $\overline{C E}$ and a logic high stored.
6. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied thru a resistor to Vcc.
7. Measured with $V_{I H}$ applied to $\overline{C E}$.
8. Duration of short circuit should not exceed 1 second.
9. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

TEST LOAD CIRCUIT

TIMING DIAGRAM

TIMING DEFINITIONS

TCE Delay between beginning of Chip Enable low (with Input valid) and when Data Output becomes valid.
TCD. Delay between when Chip Enable becomes high and Data Output is in off state ($\mathrm{Hi}-\mathrm{Z}$ or high).
TIA Delay between beginning of valid Input (with Chip Enable low) and when Data Output becomes valid.

VIRGIN DEVICE

The 82S 100/101 are shipped in an unprogrammed state, characterized by:

1. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
2. Each product term (P-term) contains both true and complement values of every input variable Im (P-terms always logically "false").
3. The "OR" Matrix contains all 48-P-terms.
4. The polarity of each output is set to active high (Fp function).
5. All outputs are at a low logic level.

RECOMMENDED
 PROGRAMMING PROCEDURE

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P -terms, follow the Program/Verify procedures for the "AND" matrix, "OR" matrix, and output polarity outlined below. To maximize recovery from programming errors, leave all links in unused device areas intact.

SET-UP

Terminate all device outputs with a 10 K resistor to +5 V . Set GND (pin 14) to 0 V .

VOLTAGE WAVEFORM

Output Polarity
 PROGRAM ACTIVE LOW (Fp FUNCTION)

Program output polarity before programing "AND" matrix and "OR" matrix. Program 1 output at the time. (L) links of unused outputs are not required to be fused.

1. Set FE (pin 1) to VFEL.
2. Set $\mathrm{V}_{C C}$ (pin 28) to $\mathrm{V}_{\mathrm{CCL}}$
3. Set $\overline{C E}$ (pin 19), and I_{0} through I_{15} to $V_{I H}$.
4. Apply VOPH to the appropriate output, and remove after a period t_{p}.
5. Repeat step 4 to program other outputs.

VERIFY OUTPUT POLARITY

1. Set FE (pin 1) to VFEL; set VCC (pin 28) to Vccs.
2. Enable the chip by setting $\overline{C E}$ (pin 19) to VIL.
3. Address a non-existent P-term by applying $V_{I H}$ to all inputs I_{0} through l_{15}.
4. Verify output polarity by sensing the logic state of outputs F_{0} through F_{7}. All outputs at a high logic level are programmed active low (F_{p} function), while all outputs at a low logic level are programmed active high ($\overline{F_{p}}$ function).
5. Return V_{CC} to $\mathrm{V}_{\mathrm{CCP}}$ or $\mathrm{V}_{\mathrm{CCL}}$.

"AND" Matrix

PROGRAM INPUT VARIABLE

Program one input at the time and one Pterm at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P -terms.

1. Set FE (pin 1) to $V_{F E L}$, and $V_{C C}(p i n 28)$ to VCcP.
2. Disable all device outputs by setting CE (pin 19) to V_{IH}.
3. Disable all input variables by applying $V_{1 x}$ to inputs l_{0} through l_{15}.
4. Address the P-term to be programmed (No. 0 through 47) by forcing the corresponding binary code on outputs Fo through F_{5} with F_{0} as LSB. Use standard TTL logic levels Vohf and Volf.
5 a . If the P -term contains neither I_{0} nor $\overline{\mathrm{I}_{0}}$ (input is a Don't Care), fuse both 10 and \bar{T}_{0} links by executing both steps $5 b$ and $5 c$, before continuing with step 7.
5 b . If the P -term contains l , set to fuse the $\overline{T_{0}}$ link by lowering the input voltage at Io from $V_{I X}$ to V_{IH}. Execute step 6.
5 c . If the P-term contains $\overline{I_{0}}$, set to fuse the Io link by lowering the input voltage at 10 from $V_{\text {IX }}$ to $V_{\text {IL }}$. Execute step 6.
6 a. After to delay, raise $F E$ (pin 1) from $V_{F E L}$ to Vfeh.
6 b. After to delay, pulse the $\overline{\mathrm{CE}}$ input from $V_{I H}$ to $V_{I X}$ for a period t_{p}.
6 c. After to delay, return $F E$ input to $V_{F E L}$.
5. Disable programmed input by returning lo to $V_{1 X}$
6. Repeat steps 5 through 7 for all other input variables.
7. Repeat steps 4 through 8 for all other P terms.
8. Remove $V_{I X}$ from all input variables.

VERIFY INPUT VARIABLE

1. Set FE (pin 1) to $V_{F E L}$; set $V_{C C}($ pin 28) to VCCP.
2. Enable F_{7} output by setting $\overline{C E}$ to $V_{I x}$.
3. Disable all input variables by applying $V_{i x}$ to inputs l_{0} through l_{15}.
4. Address the P-term to be verified (No. 0 through 47) by forcing the corresponding binary code on outputs F0 through F_{5}.
5. Interrogate input variable I_{0} as follows:
A. Lower the input voltage at I_{0} from $V_{1 x}$ to V_{IH}, and sense the logic state of output F7.
B. Lower the input voltage at I_{0} from V_{IH} to $V_{\text {IL }}$, and sense the logic state output F7.

The state of 10 contained in the P-term is determined in accordance with the following truth table:

		INPUT VARIABLE STATE CONTAINED IN P-TERM
\mathbf{I}_{0}	$\mathbf{F}_{\mathbf{7}}$	$\overline{I_{0}}$
0	1	
1	0	I_{0}
0	0	
1	1	Don't Care
0	1	$\left(\mathrm{I}_{0}\right),\left(\overline{T_{0}}\right)$
1	1	
0	0	
1	0	

Note that 2 tests are required to uniquely determine the state of the input variable contained in the P-term.
6. Disable verified input by returning lo to Vix.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other P terms.
9. Remove VIX from all input variables.

"OR" MATRIX

PROGRAM PRODUCT TERM

Program one output at the time for one P term at the time. All P_{n} links in the "OR" matrix corresponding to unused outputs and unused P-terms are not required to be fused.

1. Set FE (pin 1) to VFEL.
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to $V_{I H}$.
3. After to delay, set $V_{C C}(p i n 28)$ to $V_{C C S}$, and inputs I_{6} through l_{15} to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, or VIX.
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input
variables I_{0} through 1_{5}, with I_{0} as LSB.
5a. If the P-term is contained in output function $F_{0}\left(F_{0}=1\right.$ or $\left.\overline{F_{0}}=0\right)$, got to step 6 , (fusing cycle not required).
5b. If the P -term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.\overline{F_{0}}=1\right)$, set to fuse the P_{n} link by forcing output F_{0} to Vopf.
6a. After to delay, raise FE (pin 1) from $V_{\text {FEL }}$ to $V_{\text {FEH. }}$
6b. After to delay, pulse the $\overline{\mathrm{CE}}$ input from $V_{I H}$ to $V_{I X}$ for a period t_{p}.
6c. After to delay, return FE input to $V_{F E L}$.
6d. After tD delay, remove VOPF from output F_{0}.
5. Repeat steps 5 and 6 for all other output functions.
6. Repeat steps 4 through 7 for all other P-terms.
7. Remove $\mathrm{V}_{\mathrm{ccs}}$ from V_{Cc}.

VERIFY PRODUCT TERM

1. Set FE (pin 1) to $V_{F E L}$.
2. Disable the chip by setting $\overline{C E}$ (pin 19) to V_{IH}.
3. After t_{D} delay, set $V_{C C}$ (pin 28) to $V_{C C S}$, and inputs Io through I_{15} to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, or V_{IX}.
4. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables lo through I_{5}.
5. After to delay, enable the chip by setting $\overline{C E}$ (pin 19) to $V_{\text {IL }}$.
6. To determine the status of the P_{n} link in the "OR" matrix for each output function F_{p} or $\overline{F_{p}}$, sense the state of outputs F_{0} through F_{7}. The status of the link is given by the following truth table:

OUTPUT		
Active High (Fp)	Active Low (Fp)	
	P-TERM LINK	
0	1	Fused 1

7. Repeat steps 4 through 6 for all other P terms.
8. Remove Vccs from Vcc.

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

"AND" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

"OR" MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

PROGRAMMING SYSTEM SPECIFICATIONS ${ }^{1} \quad\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VCCS VCCL Iccs	Vcc supply (program/verify "OR", verify output polarity)2 Vcc supply (program output polarity) Icc limit (program "OR")		Iccs $=550 \mathrm{~mA}, \mathrm{~min}$, Transient or steady state $V_{\text {ccs }}=+8.5 \pm .25 \mathrm{~V}$	$\begin{gathered} 8.25 \\ 0 \\ 550 \end{gathered}$	8.5 0.4	$\begin{gathered} 8.75 \\ \\ 0.8 \\ 1,000 \end{gathered}$	V V mA
Voph Vopl	Output voltage Program output polarity ${ }^{3}$ Idle	$1 \mathrm{OPH}=300 \pm 25 \mathrm{~mA}$	$\begin{gathered} 16.0 \\ 0 \end{gathered}$	$\begin{gathered} 17.0 \\ 0.4 \end{gathered}$	$\begin{gathered} 18.0 \\ 0.8 \end{gathered}$	v	
IOPH	Output current limit (Program output polarity)	$V_{\text {OPH }}=+17 \pm 1 \mathrm{~V}$	275	300	325	mA	
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	v	
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{IL}_{\mathrm{L}} \end{aligned}$	Input current High Low	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$			$\begin{gathered} 50 \\ -500 \end{gathered}$	$\mu \mathrm{A}$	
VOHF Volf	Forced output voltage High Low		2.4 0	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	v	
$\begin{aligned} & \text { Iohf } \\ & \text { loLF } \end{aligned}$	Output current High Low	$\begin{gathered} \mathrm{V}_{\mathrm{OHF}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OLF }}=0 \mathrm{~V} \\ \hline \end{gathered}$			$\begin{array}{r}100 \\ -1 \\ \hline\end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	
VIX	$\overline{\mathrm{CE}}$ program enable level		9.5	10	10.5	V	
I\|x1	Input variables current	$\mathrm{V}_{\mathrm{IX}}=+10 \mathrm{~V}$			10	mA	
lix2	$\overline{\mathrm{CE}}$ input current	$V_{1 \mathrm{X}}=+10 \mathrm{~V}$			10	mA	
$\mathrm{V}_{\text {FEH }}$	FE supply (program) 3	$I_{\text {FEH }}=300 \pm 25 \mathrm{~mA}$, Transient or steady state	16.0	17.0	18.0	V	
$V_{\text {FEL }}$	FE supply (idle)	$\mathrm{I}_{\text {FEL }}=-1 \mathrm{~mA}$, max	1.25	1.5	1.75	v	
Ifeh	FE supply current limit	$\mathrm{V}_{\text {FEH }}=+17 \pm 1 \mathrm{~V}$	275	300	325	mA	
VCCP	Vcc supply (program/verify "AND")	$\mathrm{ICCP}=550 \mathrm{~mA}, \mathrm{~min}$, Transient or steady state	4.75	5.0	5.25	V	
Iccp	Icc limit (program "AND")	$V_{\text {CCP }}=+5.0 \pm .25 \mathrm{~V}$	550		1,000	mA	
Vopf	Forced output (program)		9.5	10	10.5	V	
lopf	Output current (program)				10	mA	
T_{R}	Output pulse rise time	10\% to 90%	10		50	$\mu \mathrm{s}$	
tp	$\overline{C E}$ programming pulse width		0.3	0.4	0.5	ms^{5}	
to	Pulse sequence delay		10			$\mu \mathrm{s}$	
TPR	Programming time			0.6		ms	
$\frac{\text { TPR }}{}$	Programming duty cycle				50	\%	
FL	Fusing attempts per link				2	cycle	
V_{S}	Verify threshold 4		1.4	1.5	1.6	V	

NOTES

1. These are specifications which a Programming System must satisy in order to be qualified by Signetics.
2. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu \mathrm{f}$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit
4. V_{S} is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
5. These are new limits resulting from device improvements, and which supersede, but do not obsolete the performance requirements of previously manufactured programming equipment.

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/OR/EXOR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this Table the logic state or action of variables I, P, and F, associated with each Sum Term S_{r}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:
"AND" ARRAY - (I)

"OR" ARRAY - (F)

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}
2. Any gate P_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

FPLA PROGRAM TABLE (Logic)

TWX TAPE CODING

The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
A number of Program Tables can be se-

INTEGRATED FUSE LOGIC SERIES 28

quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name
2. Purchase Order No.
3. Customer TWX No.
4. Number of Program Tables
5. Date
6. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:
7. Signetics Device No. \qquad 4. Date
8. Program Table No. \qquad 5. Customer Symbolized Part No.
9. Revision
10. Number of Parts
C. Program Table data blocks in Logic format are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following sequence:

Entries for the 3 Data Fields are determined in accordance with the following Table:

INPUT VARIABLE		
$\mathbf{I}_{\mathbf{m}}$	$\bar{I}_{\mathbf{m}}$	Don't Care
H	L	- (dash)

NOTE
Enter (-) for unusedinputs of used P -terms.

OUTPUT FUNCTION	
Product term present in Fp	Product term $\overline{\text { not }}$ present in Fp
A	\bullet (period)

notes

1. Entries independent of output polarity.
2. Enter (A) for unused outputs of used P-terms.

OUTPUT ACTIVE LEVEL	
Active high	Active low
H	L

notes

1. Polarity programmed once only.
2. Enter (H) for all unused outputs.

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

notes

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25.
2. Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
3. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be interspersed between data groups.
4. Comments are allowed between data fields, provided that an asterisk (*) is not used in any Heading or Comment entry.

TYPICAL APPLICATIONS

Signetics

DESCRIPTION

The 82S102 and 82S103 are Bipolar programmable AND/NAND gate array, containing 9 gates sharing 16 common inputs. On-chip input buffers enable the user to individually program for each gate either the True (1_{m}), Complement ($\overline{\mathrm{I}}$), or Don't Care (X) logic state of each input. In addition, the polarity of each gate output is individually programmable to implement either AND or NAND logic functions.

Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its input variables, and output (DeMorgan theorem).

Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.

The 82S102 and 82S103 include chipenable control for output strobing and inhibit. They feature either open collector or tri-state outputs for ease of expansion of input variables and application in busorganized systems.
Both devices are available in the commercial and military temperature ranges. For the commercial range ($0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N82S102/103, F or N , and for the military range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S102/103, F, G, I, and R.

FEATURES

- Field programmable (Ni-Cr link)
- 16 input variables
- 9 output functions
- Chip enable input
- I/O propagation delay: N82S102/103: 35ns max S82S 102/103: 50ns max
- Power dissipation: 600mW typ
- Input loading:

N82S102/103: $-100 \mu \mathrm{~A}$ max
S82S102/103: $-150 \mu \mathrm{~A}$ max

- Output options: 82S102: Open collector 82S103: Tri-state
- Output disable function: 82S102: Hi 82S103: Hi-Z
- Fully TTL compatible

APPLICATIONS

- Random logic
- Address decoders
- Code detectors
- Peripheral selectors
- Fault monitors
- Machine state decoders

INTEGRATED FUSE LOGIC SERIES 28
PIN CONFIGURATION

LOGIC FUNCTION

```
Typical Output Functions @ \(\overline{C E}=0\) :
```

$$
\begin{aligned}
\text { At } L & =\text { Open: } \\
F_{0} & =\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots . \overline{\mathrm{m})}\right. \\
A t L & =C \text { losed: } \\
F_{0} & =\left(T_{0}+\bar{T}_{1}+T_{2}+\ldots .1 \mathrm{~m}\right) \\
m & =0,1,2, \ldots \ldots 15
\end{aligned}
$$

NOTES
For each of the 9 outputs, either the function Fp (active high) or Fp (active low) is available but not both. The required function polarity is programmed via link (L).

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATING	UNIT
Vcc	Supply voltage	+7	Vdc
VIN	Input voltage	+5.5	Vdc
	Output voltage		Vdc
VOH	High (82S102)	+5.5	
Vo	Off-state (82S103)	+5.5	
In	Input current	± 30	mA
lout	Output current	+100	mA
	Temperature range		${ }^{\circ} \mathrm{C}$
TA	Operating N82S102/103	0 to +75	
	S82S102/103	-55 to +125	
Tstg	Storage	-65 to +150	

FPGA LOGIC DIAGRAM

DC ELECTRICAL CHARACTERISTICS N82S102/103: $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V}$ S82S102/103: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER ${ }^{1}$		TEST CONDITIONS	N82S102/103			S82S102/103			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Input voltage Low ${ }^{1}$ High 1 Clamp ${ }^{1,3}$		$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=M a x \\ V_{C C}=M i n, \operatorname{liN}=-18 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{aligned} & 0.85 \\ & -1.2 \end{aligned}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V
Vol VOH	Output voltage Low 1,4 High (82S103)1,5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}=9.6 \mathrm{~mA} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	2.4	0.35	0.50	V	
$\begin{aligned} & I_{I L} \\ & I_{I H} \end{aligned}$	Input current Low High	$\begin{aligned} V_{\mathrm{IN}} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -10 \\ & <1 \end{aligned}$	$\begin{gathered} -100 \\ 25 \end{gathered}$		$\begin{gathered} -10 \\ <1 \end{gathered}$	$\begin{gathered} -150 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	
IOLK lo(OFF) los	Output current Leakage (82S102)6 $\mathrm{Hi}-\mathrm{Z}$ state (82S103)6 Short circuit (82S103)3,7	$V_{C C}=M a x$ $V_{\text {OUT }}=5.5 \mathrm{~V}$ $V_{\text {OUT }}=5.5 \mathrm{~V}$ $V_{\text {OUT }}=0.45 \mathrm{~V}$ VOUT $=0 \mathrm{~V}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	Vcc supply current ${ }^{8}$	$\mathrm{V}_{\text {cc }}=$ Max		120	170		120	180	mA	
CIN Cout	Capacitance Input Output6	$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 15 \end{gathered}$			$\begin{gathered} 8 \\ 15 \end{gathered}$		pF	

AC ELECTRICAL CHARACTERISTICS
$R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S 102/103: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S 102/103: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VcC} \leq 5.5 \mathrm{~V}$

PARAMETER		TO	FROM	N82S102/103			S82S103/103			UNIT	
		Min		Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & T_{I A} \\ & T C E \end{aligned}$	Progagation delay Input Chip enable		Output Output	Input Chip enable		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	ns
TCD	Disable time Chip disable	Output	Chip enable		15	30		15	45	ns	

NOTES

1. All voltage values are with respect to network ground terminal.
. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
. Test each output one at a time.
. Measured with a programmed logic condition for which the output under test is at a low logic level.
Output sink current is supplied through a resistor to $V_{C C}$.
. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic high at the output.
. Measured with $V_{I H}$ applied to $\overline{\mathrm{CE}}$.
Duration of short circuit should not exceed 1 second.
ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

INTEGRATED FUSE LOGIC SERIES 28

OUTPUT POLARITY PROGRAM-VERIFY SEQUENCE (TYPICAL)

INPUT MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

VIRGIN DEVICE

The 82S 102/103 are shipped in an unprogrammed state, characterized by:

1. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
2. Each gate contains both true and complement values of every input variable I_{m} (logic Null state).
3. The polarity of each output is set to active low ($\overline{F_{p}}$ function).
4. All outputs are at a high logic level.

RECOMMENDED PROGRAMMING PROCEDURE

To program each of 9 Boolean logic functions of 16 True, Complement, or Don't Care input variables follow the program/verify procedures for the Input Matrix and Output Polarity outlined below. To maximize recovery from programming errors, leave all links of unused gates intact.

SET-UP

Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to +5 V .

Output Polarity

PROGRAM ACTIVE HIGH (Fp FUNCTION) Program output polarity before programming inputs (for convenience). Program one output at a time. (L) links of unused outputs are not required to be fused.

1. Set GND (pin 14) to $O V$, and $V_{C C}(\operatorname{pin} 28)$ to Vccv.
2. Disable all device outputs by setting $\overline{C E}$ (pin 19) to Vit.
3. Disable all input variables by applying V_{IX} to inputs I_{0} through I_{15}.
A.Raise V_{Cc} (pin 28) from V_{cc} to V_{cc}.

B After to delay, force output to be programmed to VopF.
C. After to delay, pulse the $\overline{\mathrm{CE}}$ input from V_{IH} to V IX for a period t_{p}.
D.After to delay, remove VOPF voltage source from output being programmed.
E. After to delay, return $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 28)$ to $\mathrm{V}_{\mathrm{CCV}}$, and verify.
F. Repeat steps A through E for any other output.

VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to OV, and $V_{c c}(\operatorname{pin} 28)$ to Vccv.
2. Disable all input variables by applying V_{IX} to inputs l_{0} through I_{15}.
A.After to delay, set the $\overline{C E}$ input to VIL.
B.Verify output polarity by sensing the logic state of outputs F_{0} through F_{8}. All outputs at a low logic level are programmed active low (F_{p} function), while all outputs at a high logic level are programmed active high (F_{p} function).

Input Matrix PROGRAM INPUT VARIABLE

Program one input at a time for one gate at a time. Input variable links of unused gates are not required to be fused. However, unused input variables must be programmed at Don't Care for all used gates.

1. Set GND (pin 14) to OV, and $\mathrm{V}_{\mathrm{CC}}($ pin 28) to V_{cc}.
2. Disable all device outputs by setting $\overline{C E}$ (pin 19) to V_{IH}.
3. Disable all input variables by applying $V_{I X}$ to inputs I_{0} through I_{15}.
A-1. If a gate contains nether lo nor $\overline{1}$ (input is a Don't Care), fuse both links by executing both steps A-2 and A-3, before continuing with step C .
A-2.If a gate contains l_{0}, set to fuse link by lowering the input voltage at I_{0} from $V_{1 X}$ to V_{IL}. Execute step B.
A-3.If a gate contains $\overline{\Gamma_{0}}$, set to fuse link by lowering the input voltage at l_{0} from $V_{I X}$ to V_{IL}. Execute step B.
$B-1$.After to delay, raise $V_{c c}$ from $V_{c c v}$ to Vccp.
B-2.After to delay, force output of gate to be programmed to VopF.
B-3.After to delay, pulse the $\overline{C E}$ input from $V_{I H}$ to $V_{I L}$ for a period t_{p}.
B-4.After to delay, remove VopF voltage source from output of gate being programmed.
B-5.After to delay, return $V_{c c}$ (pin 28) to Vccv, and verify.
C. Disable programmed input by returning lo to VIX.
D. Repeat steps A through C for all other input variables.
E. Repeat steps A through D for all other gates to be programmed.
F. Remove V_{IX} from all input variables.

VERIFY INPUT VARIABLE

Unambiguous verification of the logic state programmed for the inputs of each gate requires prior knowledge of its programmed output polarity. Therefore, the output polarity verify procedure must precede input variable verify.

1. Set GND (pin 14) to $0 V$, and $V_{c c}($ pin 28) to Vccv.
2. Enable all outputs by setting $\overline{\mathrm{CE}}$ (pin 19) to V_{IL}.
3 . Disable all input variables by applying V_{IX} to inputs I_{0} through I_{15}.
A. Interrogate input variable l_{0} as follows: Lower the input voltage to lo from VIX to V_{IL}, and sense the logic state of outputs F0-8.
Raise the input voltage to 10 from $V_{I L}$ to V_{IH} and sense the logic state of outputs F0-8.

The state of l_{0} contained in each gate is determined in accordance with the given truth table. Note that 2 tests are required to uniquely determine the state of the input variable contained in each gate.
B. Disable verified input by returning t_{0} to Vix.
C. Repeat steps A and B for all other input variables.
D.Remove VIX from all input variables.

$\mathbf{I}_{\mathbf{0}}$	$\mathbf{F p}$	$\overline{\mathbf{F p}}$	INPUT VARIABLE STATE
0	1	0	$\overline{\bar{I}_{0}}$
1	0	1	
0	0	1	I_{0}
1	1	0	
0	1	0	Don't care
1	1	0	
0	0	1	$\left(I_{0}\right),\left(\overline{I_{0}}\right)$
1	0	1	

PROGRAMMING SYSTEMS SPECIFICATIONS $1 \quad T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VCCP Vccv	VCc supply Program ${ }^{2}$ Verify		$\mathrm{ICCP}=550 \mathrm{~mA}, \mathrm{~min}$ Transient or steady state	8.25 4.75	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 5.25 \end{aligned}$	V
Iccp VopF lopF	Icc limit (program) Forced output voltage ${ }^{3}$ (program) Output current (program)	$\mathrm{V}_{\mathrm{CCP}}=+8.5 \pm .25 \mathrm{~V}$, Transient or steady state $\mathrm{lop}=300 \pm 25 \mathrm{~mA},$ Transient or steady state $V_{O P}=+17 \pm 1 \mathrm{~V},$ Transient or steady state	$\begin{aligned} & 550 \\ & 16.0 \\ & 275 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 300 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 18.0 \\ & 325 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$	
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	V	
$\begin{aligned} & \mathrm{IH} \\ & \mathrm{IIL} \end{aligned}$	```Input current High Low```	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$			$\begin{gathered} 50 \\ -500 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	
$\begin{aligned} & V_{1 x} \\ & l_{1 \times 1} \\ & l_{1 \times 2} \end{aligned}$	$\overline{\mathrm{CE}}$ program enable level Input variables current $\overline{C E}$ input current	$\begin{aligned} & V_{I X}=+10 V \\ & V_{I X}=+10 V \end{aligned}$	9.5	10	$\begin{aligned} & 10.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	
T_{R} t_{P} t_{D} $T_{P R}$ $\frac{T_{P R}}{T_{P R}+T_{P S}}$ $\mathrm{~F}_{\mathrm{L}}$ V_{S}	Output pulse rise time $\overline{\mathrm{CE}}$ programming pulse width Pulse sequence delay Programming time Programming duty cycle Fusing attempts per link Verify threshold4	10\% to 90\%	$\begin{gathered} 10 \\ 0.3 \\ 10 \\ \\ \\ 1.4 \end{gathered}$	0.4 0.6 1.5	50 0.5 100 2 1.6	$\begin{gathered} \mu \mathrm{s} \\ \mathrm{~ms} \\ \mu \mathrm{~s} \\ \mathrm{~ms} \\ \% \\ \text { cycle } \\ \mathrm{V} \end{gathered}$	

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics.
2. Bypass V_{CC} to GND with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. V_{s} is the sensing threshold of a gate output voltage for a programmed link. It normaily constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

LOGIC PROGRAMMING

In a virgin device all Ni-Cr links are intact. The initial programmed state of each gate is shown in the Typical Gate illustration.

The FPGA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this table, the logic state or action of variables I and F associated with each gate G_{n} is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

TYPICAL GATE

EX-OR ARRAY - (F)

"AND" ARRAY - (I)

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates G_{n}
2. Any gate G_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

INTEGRATED FUSE LOGIC

FPGA PROGRAM TABLE (Logic)

CUSTOMER NAME	THIS PORTION TO BE COMPLETED BY SIGNETICS
PURCHASE ORDER \#	$C F(X X X X)$
SIGNETICS DEVICE \#	CUSTOMER SYMBOLIZED PART \# -
TOTAL NUMBER OF PARTS	DATE RECEIVED
PROGRAM TABLE \#	COMMENTS

$F_{0}(18)$	$=$
$F_{1}(17)$	$=$
$F_{2}(16)$	$=$
$F_{3}(15)$	$=$
$F_{4}(13)$	$=$
$F_{5}(12)$	$=$
$F_{6}(11)$	$=$
$F_{7}(10)$	$=$
$F_{8}(9)$	$=$

GATE	INPUT VARIABLE															
ACTIVE LEVEL	I_{15}	I_{14}	I_{13}	I_{12}	I_{11}	I_{10}	19	I_{8}	17	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}
F_{0}																
F_{1}	3.	30	29	28		26	25	${ }_{24}$	23	22	2.	20	19	18	12	16
F_{2}		46	${ }_{4} 5$	4	43	42	4.	${ }^{4}$	39	38	3.	${ }^{6}$	${ }_{35}$	34	33	${ }_{32}$
F_{3}	6.	62	6.	60	s.	58	5	56	ss	56	53	52	5	so	4	A8
F_{4}		${ }^{8}$		26	${ }_{75}$	29	${ }_{23}$	12	,	20	6	6	6.	6	${ }_{6} 5$	64
F_{5}		9	${ }_{93}$	92	9	9	8	8	8,	s		8	83		8	80
F_{6}	'11	110	109	108	10	${ }^{106}$	105	100	103	102	10	100	9	${ }_{98}$,	96
F_{7}	127	126	${ }^{125}$	${ }^{124}$	${ }^{23}$	122	12	120	19	118	11.	116	115	1.16	13	${ }^{12}$
F_{8}	123	1.42	14.	140	138	138	132	136	${ }^{135}$	130	133	132	13.	130	129	${ }^{120}$
PIN NO.	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	1	2	3	4	5	6	7	8
$\begin{aligned} & \text { Active-High }=1 \\ & \text { Action-Low }=\text { L } \end{aligned}$			$\mathrm{Im}_{\mathrm{m}}=\mathrm{H}$	L	n't Care											

NOTES

1. The number in each cell in the table denotes its address for programmers with a decimal address display.

INTEGRATED FUSE LOGIC SERIES 28

TWX TAPE CODING

The FPGA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar, fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
A number of Program Tables can be se-

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:
\qquad 4. Purchase Order No.
5. Number of Program Tables
3. Date
6. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

1. Signetics Device No. \qquad
2. Program Table No. \qquad
3. Revision
4. Date
5. Customer Symbolized Part No.
6. Number of Parts
quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:
. Program Table data blocks in Logic format are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level and AND gates information separated by appropriate identifiers in accordance with the following sequence:

Entries for the 2 Data Fields are determined in accordance with the following Table:

INPUT VARIABLE		
IM_{M}	$\overline{\mathrm{IM}}$	Don't care
H	L	- (dash)

OUTPUT ACTIVE LEVEL	
Active high	Active low
H	L

NOTE

Enter (-) for unused inputs of used gates.

NOTES

1. Polarity programmed once only.
2. Enter (L) for all unused outputs.

Although AND Gate data are shown entered in sequence, this is not necessary. It is possible to input only one Gate if desired. Unused Gates require no entry. ETX signalling end of Program Table may occur with less than the maximum number of AND Gates entered.

NOTES

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25.
2. Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
3. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be interspersed between data groups.
4. Comments are allowed between data fields, provided that an asterisk (*) is not used in any Heading or Comment entry.

DESCRIPTION

The 82S 104 (open collector outputs) and the 82S 105 (tri-state outputs) are bipolar, programmable state machines of the Mealy type. They contain logic AND-OR gate arrays with user programmable connections which control the inputs of on-chip State and Output registers. These consist respectively of $6 Q_{p}$, and $8 Q_{F}$ edge triggered, clocked S/R flip-flops, with an asynchronous Preset option. All flip-flops are unconditionally preset to "1" during power turn on.
The AND array combines 16 external inputs 10.15 with 6 internal inputs P_{0-5} fed back from the State register to form up to 48 Transition terms (AND terms). All Transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low to High transition of the Clock pulse. Both True and Complement Transition terms can be generated by optional use of the internal input variable (C) from the Complement array. Also, if desired, the Preset input can be converted to OutputEnable function, as an additional user programmable option.
Both devices are available in commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$) specify N82S $104 / 105, \mathrm{~F}$ or N , and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S $104 / 105, \mathrm{~F}, \mathrm{I}, \mathrm{G}$ or R .

TRUTH TABLE (Output Control)

10	INPUT OPTION		FN
	PR	$\overline{\text { O.E. }}$	
*	H		H
+10V	L		Q_{P}
X	L		Q_{F}
*		H	H/Hi-Z
+10V		L	$\mathrm{QP}_{\mathbf{p}}$
X		L	Q_{F}

NOTES

1. Positive Logic:

$$
S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47}
$$

$T_{n}=C \quad\left(l_{0} \quad l_{1} l_{2} \ldots\right)\left(P_{0} \quad P_{1} \ldots P_{5}\right)$
2. Either Preset (active-High) or Output Enable (activeLow) are available, but not both. The desired function is a user programmable option.
3. 4 denotes transition from Low to High level.
4. $R=S=$ High is an illegal input condition.
5. $*=H / L /+10 V$
6. $X=$ Don't Care $(\leq 5.5 \mathrm{~V})$

FEATURES

- Field programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-BIT state register
- 8-BIT output register
- Transition complement array
- Positive edge trigger clock
- Programmable asynchronous preset or output enable
- Power-on preset to all "1" of internal registers
- 90ns maximum I/O delay
- 650 mW power dissipation (typical)
- TTL compatible
- Single +5V supply

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems

BLOCK DIAGRAM

I, P, C, N, F and P/E are user programmable connections.
TRUTH TABLE (All flip-flops)

VCC	INPUT OPTION		CK	S	R	STATEREGISTER	OUTPUT REGISTER Q_{F}
	PR	O.E.					
+5V	H		X	X	X	H	H
	L	X	4	L	L	QP	QF
	L	X	4	L	H	L	L
	L	X	\uparrow	H	L	H	H
	L	X	1	H	H	INDET.	INDET.
4	X	X	X	X	X	H	H

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	CLOCK The clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\left[\begin{array}{c} 2-8 \\ 20-27 \end{array}\right]$$9$	$11-15$	LOGIC INPUTS	Active-High
		The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. LOGIC/DIAGNOSTIC INPUT	Active-High
	10	A 16th external logic input to the AND array, as above, when exercised with standard TTL levels. When I_{0} is held at +10 V , device outputs F_{0-5} reflect the contents of State Register bits P_{0-5}. The contents of the Output Register remain unaltered. LOGIC/DIAGNOSTIC OUTPUTS	Active-High
$\left[\begin{array}{l} 10-13 \\ 15-18 \end{array}\right]$	F0-7	Eight device outputs which normally reflect the contents of Output Register bits Q_{0-5}, when enabled. When I_{O} is held at $+10 \mathrm{~V}, \mathrm{~F}_{0-5}=\left(\mathrm{P}_{0-5}\right)$, and $\mathrm{F}_{6,7}=$ Logic "I".	
19	PR/O.E.	PRESET OR OUTPUT ENABLE INPUT	
		A user programmable function: - PRESET Provides an asynchronous preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and F0-7 are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High
		- OUTPUT ENABLE Provides an output enable function to buffers F_{0-7} from the Output Register.	Active-Low

PROGRAMMABLE VARIABLES

The FPLS can be programmed with any clocked sequence expressed in terms of "control" variables, which are coupled to on-chip gates and flip-flops by means of programmable connections through $\mathrm{Ni}-\mathrm{Cr}$ fusible links:
(I) - External control inputs for state jump conditions.
(P) - Present state, prior to clock.
(C) - Complement variable for activating and generating the complement of programmed jump conditions.

TYPICAL STATE DIAGRAM

(T_{n}) - Transition "AND" terms including I, \mathbf{P}.
(N) - Next state, following clock.
(F) - Next logic output, following clock.
(P/E) - Asynchronous preset, or output enable function.

TYPICAL STATE TRANSITION

FPLS LOGIC DIAGRAM

FIELD PROGRAMMABLE LOGIC SEQUENCER

INTEGRATED FUSE LOGIC SERIES 28

PROGRAMMABLE CONNECTIONS (\quad Denotes fixed connection)
CONNECTION

PROGRAMMING LEGEND

AND	OR	PR/O.E.	LINK	SYMBOL
			Closed	
			OPEN	-

VIRGIN DEVICE

The FPLS is shipped with all internal links intact, so that a "dot" connection exists at all cross points in all arrays. For clarity, unprogrammed arrays are initially shown blank. The desired functional logic diagram is obtained by placing "dot" connections in used device areas where links remain intact. (Since both True and Complement input links of all AND gates are initially closed, all gates are disabled, preventing clocking. For testing purposes, clocking can occur via a factory programmed Test Array.

PROGRAMMED (TYPICAL)

SERIES 28

FPLS ARCHITECTURE

The 82S 104/105 Logic Sequencer is a programmable state machine of the Mealy type, in which the output is a function of the present state and the present input.

With the FPLS a user can program any logic sequence expressed as a series of jumps between stable states, triggered by a valid input condition (I) at clock time (t). All stable states are arbitrarily assigned and stored in the State Register. The logic output of the machine is also programmable, and is stored in the Output Register.

CLOCKED SEQUENCE

A synchronous logic sequence can be represented as a group of circles interconnected with arrows. The circles represent stable states, labeled with an arbitrary numerical code (binary, hex, etc.) corresponding to discrete states of a suitable register. The arrows represent state transitions, labeled with symbols denoting the jump condition and the required change in output. The number of states in the sequence depends on the length and complexity of the desired algorithm.

STATE JUMPS

The state from which a jump originates is referred as the present state (P), and the state to which a jump terminates is defined as the next state (N). A state jump always causes a change in state, but may or may not cause a change in machine output (F).

State jumps can occur only via "transition terms" T_{n}. These are logical AND functions of the clock (t), the present state (P), and a valid input (I). Since the clock is actually applied to the State Register, $\mathrm{T}_{\mathrm{n}}=\mathrm{loP}$. When T_{n} is "true", a control signal is generated and used at clock time (t) to force the contents of the State Register from (P) to (N), and to change the contents of the Output Register (if necessary). The simple state jump below, involving 2 inputs, 1 state bit, and 1 output bit, illustrates the equivalence of discrete and programmable logic implementations.

FPLS LOGIC STRUCTURE

The FPLS consists of programmable AND and OR gate arrays which control the Set and Reset inputs of a State Register, as well as monitor its output via an internal feedback path. The arrays also control an independent Output Register, added to store output commands generated during state transitions, and to hold the output constant during state sequences involving no output changes. If desired, any number of bits of the Output Register can be used to extend the width of the State Register, via external feedback.

Figure 1: Basic architecture of 82S104/105 FPLS. I, P, N, and F are multi-line paths denoting groups of binary variables programmed by the user.

Figure 2: Typical state diagram. 11-3 are jump conditions which must be satisfied before any transitions take place. F_{r} are changes in output triggered by I_{m}, and stored in the Output Register. State transitions $a \rightarrow b$ and $\mathrm{c} \rightarrow \mathrm{d}$ involve no output change.

Figure 3: Typical state transition between any two states of Figure 2. The arrow connecting the two states gives rise to a transition term T_{n}. I is the jump condition.

Figure 4: Typical state jump from state (0) to state (1), if inputs $A=B=$ " 1 ". The jump also forces $F={ }^{\prime \prime}{ }^{1}$ ", as required.

INPUT BUFFERS

16 external inputs (I_{m}) and 6 internal inputs (P_{s}), fed back from the state register, are combined in the AND array through two sets of True/Complement (T/C) buffers. There are a total of 22 T/C buffers, all connected to multi-input AND gates via fusible links which are initially intact.

Selective fusing of these links allows coupling either True, Complement, or Don't Care values of $\left(I_{m}\right)$ and (P_{s}).

Figure 6: Typical AND gate coupled to (I) and (P) inputs. If at least one link pair remains intact, T_{n} is unconditionally forced Low.
times with T_{n} commands. This is accomplished by selectively ORing through a programmable OR array all AND gate outputs T_{n} necessary to activate the proper flip-flop control inputs.
The FPLS OR array consists of 14 pairs of OR gates, controlling the S/R inputs of 14 state and output register stages, and a single OR gate for the Complement Array. All gates have 48 inputs for connecting to all 48 AND gates.

COMPLEMENT ARRAY

The COMPLEMENT array provides an asynchronous feed back path from the OR array back to the AND array.
This structure enables the FPLS to perform both direct and complement sequential state jumps with a minimum of transition (AND) terms.
Typically direct jumps, such as T_{1} and T_{2} in Figure 11 require only a single AND gate each.

But a complement jump such as T_{3} generally requires many AND gates if implemented as a direct jump. However, by using the complement array, the logic requirements for this type of jump can be handled with just one more gate from the AND array.

"AND" ARRAY

State jumps and output changes are triggered at clock time by valid transition terms T_{n}. These are logical AND functions of the present state (P) and the present input (1).
The FPLS AND array contains a total of 48 AND gates. Each gate has 45 inputs- 44 connected to 22 T/C input buffers, and 1 dedicated to the Complement Array. The outputs of all AND gates are propagated through the OR array, and used at clock time (t) to force the contents of the State Register from (P) to (N). They are also used to control the Output Register, so that the FPLS 8-bit output F_{r} is a function of the inputs and present state.

Figure 8: Typical transition terms involving arbitrary inputs and state variables. All remaining gate inputs are programmed Don't Care. Note that $\mathbf{T}_{\mathbf{2}}$ output is state independent.

"OR" ARRAY

In general, a clocked sequence will consist of several stable states and transitions, as determined by the complexity of the desired algorithm. All state and output changes in the state diagram imply changes in the contents of state and output registers.
Thus, each flip-flop in both registers may need to be conditionally set or reset several

Figure 9: Typical OR array gating of transition terms $\mathbf{T}_{1,2,3}$ controlling arbitrary state and output register stages.

Figure 10: The COMPLEMENT array is logically constructed from a 48-input programmable OR gate followed by an inverter. All AND terms coupled to the OR gate are complemented at the inverter output, and can be fed back as inputs to the AND array.
(A) TYPICAL STATE SEQUENCE

TRANSITION TERMS

DIRECT $\left\{\begin{array}{l}T_{1}=P O X \\ T_{2}=P O Y\end{array}\right.$
$T_{3}=\mathrm{Po}_{\mathrm{P}}\left(\overline{\mathrm{POX}^{X}+\mathrm{POY}^{\prime}}\right)$
$T_{3}=\mathrm{Po}[\overline{\mathrm{PO}(X+Y)]}$
$T_{3}=P o\left[\bar{P}_{0}+\overline{(X+Y)}\right]$
$T_{3}=0+P_{0}(\bar{X}+Y)$
$\mathrm{T}_{\mathbf{3}}=\mathbf{P o}(\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}})$

COMPLEMENT $\quad\left\{T_{\mathbf{3}}=\mathbf{P o}(\bar{X} \cdot \overline{\mathrm{Y}})=\mathrm{PO}_{\mathrm{O}}\left(\overline{\mathbf{T}_{1}+\mathrm{T}_{\mathbf{2}}}\right)\right.$

Figure 11: (A) X and Y specify the conditional logic for direct jump transition terms T_{1} and T_{2}. The complement jump term T_{3} is true only when both T_{1} and T_{2} are false. (B) Note that the complementary logic expression for $\mathbf{T}_{\mathbf{3}}, \overline{\mathbf{T}_{1}}+\mathbf{T}_{\mathbf{2}}$, corresponds exactly to the logic structure of the complement array.

As indicated in Figure 12, the single complement array gate may be used for many states of the state diagram. This happens because all transition terms linked to the OR gate include the present state as a part of their conditional logic. In any particular state only those transition terms which are a function of that state are enabled; all other terms coupled to different states are disabled and do not influence the output of the complement array. As a general rule of thumb, the complement array can be used as many times as there are states.
(A) STATE DIAGRAM

(C) STATE LOGIC WITHOUT USING THE COMPLEMENT ARRAY
(B) LOGIC DEFINITION
$T_{d 1}=10{ }_{10}{ }_{1} \mathrm{PO}_{0}$
$T_{d 2}=I_{2} P_{0}$
$T_{c 3}=\overline{\left(T_{d 1}+T_{d 2}\right) P O}=\overline{\left(10 T_{1}+T_{2}\right)} P_{0}$
$T_{d 4}=T_{2} P_{3}$
$T_{d 6}=10{ }_{1}{ }_{1} P_{3}$
$T_{c 5}=\left(\overline{\left.T_{d 4}+T_{d 6}\right)} P_{3}=\left(\overline{\left(10 I_{1}+T_{2}\right.}\right) P_{3}\right.$
$\mathbf{T}_{\mathbf{c n}}=$ COMPLEMENT STATE TRANSITION TERM
$T_{d n}=$ dIRECT STATE TRANSITION TERM
$\mathbf{P s}_{\mathbf{s}}=$ PRESENT STATE
(D) STATE LOGIC USING THE COMPLEMENT ARRAY

Figure 12: Logic reduction with the complement array. The logic state diagram in (a) includes complement jumps TC3 and TC5 defined in (b). When using the complement array a savings of 2 transition terms results, as shown in (c) and (d).

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND / OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Table on the following page.
In this Table, the logic state or action of control variables C, I, P, N, and F, associated with each Transition Term T_{n}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

PRESET/O.E. OPTION - (P/E)

"AND" ARRAY - (I), (P)
(
"OR" ARRAY - (N), (F)

"COMPLEMENT ARRAY" - (C)

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.

3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

FPLS PROGRAM TABLE (Logic)

PROGRAM TABLE ENTRIES:

Cn		Im, Ps_{8}		Ns, Fr		P/E	
GENERATE	A	I, P	H	SET	H	PRESET	H
PROPAGATE	-	$\overline{\mathrm{I}}, \overline{\mathrm{P}}$	L	RESET	L	$\overline{\text { O.E. }}$	L
TRANSPARENT	-	DON'T CARE	-	NO CHANGE	-		

NOTES

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an " H " for the P/E option, exists in the table, shown BLANK instead for
2. Unused C_{n}, I_{m}, and P_{s} bits are normally programmed Don't Care (-) clarity.
3. Unused transition and output Terms can be left blank.
4. Letters in variable fields are used as identifiers by logic type programmers

INTEGRATED FUSE LOGIC

 SERIES 28
TWX TAPE CODING (LOGIC FORMAT)

The FPLS Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8 -level tape (paper, mylar,
fanfold, etc.), or via TWX: just dial (910) 339-9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.

A number of Program Tables can be sequentially assembled on a continuous tape as follows, however, limit tape length to a roll of 1.75 inch inside diameter and 4.25 inch outside diameter.

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name \qquad 4. Purchase Order No \qquad
2. Customer TWX No.
3. Number of Program Tables \qquad
4. Date \qquad 6. Total Number of Parts \qquad
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:
5. Signetics Device No. \qquad 4. Date
6. Program Table No. \qquad 5. Customer Symbolized Part No. \qquad
7. Revision
8. Number of Parts
C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of preset/ output enable option, transition term, and output term information separated by appropriate identifiers in accordance with the following format:

INTEGRATED FUSE LOGIC SERIES 28

Entries for the Data Fields are determined in accordance with the following Table:

COMPLEMENT VARIABLE (C)			PRESENT STATE (Ps)/INPUT (Im_{m})			NEXT STATE ($\mathbf{N}_{\mathbf{s}}$)/OUTPUT (F_{n})			OPTION (P/E)	
GENERATE	PROPA. GATE	TRANSPARENT	I_{m}, P_{s}	$\overline{I_{m}}, \overline{P_{s}}$	DON'T CARE	N_{s}, F_{n}	$\overline{N_{s}}, \overline{F_{n}}$	$\begin{gathered} \text { NO } \\ \text { CHANGE } \end{gathered}$	PRESET	OUTPUT ENABLE
A	-	-	H	L	-	H	L	-	H	L

Although the Transition Term data are shown entered in sequence, this is not necessary. It is possible to input only one Transition Term, if desired. Unused Transition Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Transition Terms entered.

notes

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25.
2. T-terms can be re-entered any number of times. The last entry for a particular T-term will be interrupted as valid data.
3. To facilitate an orderly Teletype printout, carriage returns, line feeds, spaces, rubouts, etc., may be interspersed between data groups.
4. Comments are allowed between data fields provided that an asterisk (*) is not used in any Heading or Comment entry.

ABSOLUTE MAXIMUM RATINGS 1

PARAMETER		RATING		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	Vdc
$V_{\text {IN }}$	Input voltage		+5.5	Vdc
VOUT	Output voltage		+5.5	Vdc
In	Input currents	-30	+30	mA
Iout	Output currents		+100	mA
	Temperature range			${ }^{\circ} \mathrm{C}$
T_{A}	Operating			
	N82S 104/105	0	+75	
	S82S 104/105	-55	+125	
TSTG	Storage	-65	+150	

THERMAL RATINGS

TEMPERATURE	MILI-	COM- MER- TARY
CIAL		

DC ELECTRICAL CHARACTERISTICS N82S 104/105: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S 104/105: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	N82S 104/105			S82S 104/105			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I C} \end{aligned}$	```Input voltage }\mp@subsup{}{}{3 High Low Clamp3,4```		$\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=\operatorname{Min} \\ V_{C C}=M i n, I_{N}=-18 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{aligned} & 0.85 \\ & -1.2 \end{aligned}$	2	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V
$\mathrm{VOH}_{\mathrm{OH}}$ V_{OL}	Output voltage High (82S 105) 3,5 Low ${ }^{3,6}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{I}_{\mathrm{OH}} & =-2 \mathrm{~mA} \\ \mathrm{IOL} & =9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	2.4	0.35	0.50	V	
$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & \mathrm{IIL}^{\prime} \\ & \mathrm{IL}^{2} \end{aligned}$	Input current High Low Low (CK input)	$\begin{aligned} & V_{\mathbb{I N}}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \\ & V_{\mathbb{I N}}=0.45 \mathrm{~V} \end{aligned}$		$\begin{array}{r} <1 \\ -10 \\ -50 \end{array}$	$\begin{gathered} 25 \\ -100 \\ -250 \end{gathered}$		$\begin{gathered} <1 \\ -10 \\ -50 \end{gathered}$	$\begin{gathered} 50 \\ -150 \\ -350 \end{gathered}$	$\mu \mathrm{A}$	
lolk IO(OFF) los	Output current Leakage ${ }^{7}$ $\mathrm{Hi}-\mathrm{Z}$ state $(82 \mathrm{~S} 105)^{7}$ Short circuit (82S 105)4,8	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	$V_{\text {CC }}$ supply current ${ }^{9}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$		120	180		120	185	mA	
C_{IN} Cout	$\begin{aligned} & \text { Capacitance }{ }^{7} \\ & \text { Input } \\ & \text { Output } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 8 \\ 10 \end{gathered}$			$\begin{aligned} & 8 \\ & 10 \end{aligned}$		pF	

notes

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.

5. Measured with a programmed logic condition for which the output is at a low logic level, and $V_{I L}$ applied to PR/ $\overline{O . E}$. Output sink current is supplied thru a resistor to $V_{C C}$.
6. Measured with $V_{I H}$ applied to PR/O.E..
7. Duration of short circuit should not exceed 1 second.
8. Icc is measured with the PR/ $\overline{\mathrm{O} . \mathrm{E}}$. input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS $\quad R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S 104/ 105: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S 104/105: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

	PARAMETER	T0	FROM	N82S104/105			S82S 104/105			UNIT
				Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
	Pulse width									ns
TCKH	Clock ${ }^{3}$ high	CK-	CK+	30	15		40	15		
TCKL	Clock low	CK+	CK-	30	15		40	15		
TCKP	Period (w/o c-array)	CK+	CK+	90	65		120	65		
TPRH	Preset pulse	PR+	PR-	25	15		40	15		
	Set up time									ns
TIS1	Input	CK+	Input \pm	60	40		80	40		
TIS2	Input (through	CK+	Input \pm	90	70		120	70		
	Complement array) ${ }^{4}$						5			
Tvs	Power-on preset	CK-	$V_{\text {cc }}+$	0	-10		5	10		
TPRS	Preset	CK-	PR-	0	-10		5	-10		
	Hold time									ns
$\mathrm{T}_{\text {IH }}$	Input	Input \pm	CK+		-10	5		-10	10	
	Propagation delay									ns
TCKO	Clock	Output \pm	CK+		25	30		25	40	
ToE	Output enable	Output-	O.E.-		20	30		20	40	
TOD	Output disable	Output+	O.E. +		20	30		20	40	
TPR	Preset	Output+	PR+		25	35		25	45	
TPPR	Power-on preset	Output+	$\mathrm{V}_{\text {CC }+}$		0	10		0	20	

NOTE

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Diagnostic mode only.
3. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 n s$.
4. When using the Complement Array, $\mathrm{T}_{\text {CKP }}=120 \mathrm{~ns}(\mathbf{m i n})$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

TIMING DIAGRAMS

INTEGRATED FUSE LOGIC SERIES 28

TIMING DIAGRAMS (Cont'd)

TIMING DEFINITIONS

TCKH Width of input clock pulse.
TCKL Interval between clock pulses.
TCKP Clock period.
TIS1 Required delay between beginning of valid Input and positive transition of clock.

Required delay between beginning of valid Input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array).

TVs
Required delay between $V_{C C}$ (after power-on) and negative transition of
clock preceding first reliable clock pulse.
TPRS Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse.
$\mathrm{T}_{\mathrm{IH}} \quad$ Required delay between positive transition of clock and end of valid Input data.
TCKO Delay between positive transition of clock and when Outputs become valid (with PR/ $\overline{O . E}$. low).
TOE Delay between beginning of Output Enable Low and when Outputs become valid.
TOD Delay between beginning of Output Enable High and when Outputs are in the off state.
TSRE
Delay between input I_{0} transition to Diagnostic mode and when the Outputs reflect the contents of the State Register.
TSRD Delay between input I_{0} transition to Logic mode and when the Outputs reflect the contents of the Output Register.
TPR Delay between positive transition of Preset and when Outputs become valid at " 1 ".
TPPR Delay between $V_{C C}$ (after poweron) and when Outputs become preset at " 1 ".
TPRH Width of preset input pulse.

INTEGRATED FUSE LOGIC SERIES 28

VIRGIN STATE 1,2,3

A factory shipped virgin device contains all fusible links intact, such that:

1. $\mathrm{PR} / \overline{\mathrm{OE}}$ option is set to PR .
2. All T_{n} terms are disabled.
3. All S/R flip-flop inputs are disabled.
4. Test array is programmed with standard test pattern.

RECOMMENDED PROGRAMMING PROCEDURE

To program the AND, OR, and Complement arrays in addition to the PR/ $\overline{\mathrm{OE}}$ option the following procedure should be followed. To maximize recovery from programming errors, leave all links in unused device areas intact.

SET-UP

Terminate all device outputs with a $10 \mathrm{k} \Omega$ resistor to $V_{C C}$. Set GND (pin 14) to OV.

PROGRAM PR/OE OPTION

1. With $P R / \overline{O E}\left(\right.$ pin 19) at GND, raise $V_{C C}$ to $V_{C C P}$.
2. After to delay pulse PR/ $\overline{O E}$ to Vix for a duration of tp .
3. tD delay after PR/ $\overline{\mathrm{OE}}$ has returned to GND, lower $V_{C C}$ to $V_{C C V}$ or GND.

VERIFY PR/OE OPTION

1. With PR/ $\overline{O E}$ at $G N D$, set $V_{C C}$ to $V_{C C V}$.
2. After a delay of tD raise PR/ $\overline{O E}$ to Vix for a minimum duration of $T_{R S}$.
3. Return PR/ $\overline{O E}$ to GND with a fall time less than T_{f}.
4. After t_{D} delay, pulse $P R / \overline{O E}$ to $V_{I H}$ for a minimum duration of $T_{p s}$.
5. After to delay, F_{O} (pin 18) indicates V_{OH} if the PR option is selected and $V_{O L}$ if the $\overline{\mathrm{OE}}$ option is programmed.

notes

1. All outputs will be at " 1 ", as preset by initial power-up procedure.
2. Device can be clocked via test array function.
3. Test array function MUST be deleted before incorporating user program.

PROGRAM-VERIFY "AND" ARRAY

1. SET-UP:

With $V_{C C}$ at GND and CK at $V_{C K V}$, select the fuse to be programmed by applying TTL voltage levels to input sets I_{0-5} and 1_{7-13} in accordance with the binary address map on page 21. Also set $\mathrm{I}_{15}=$ $V_{I H}$, and $I_{14}=V_{I L}$. After t_{D} delay raise $V_{C C}$ to $V_{C C P}$.

2. PROGRAM CYCLE:

After a delay of tD raise I_{14} to V_{IH}. Proceed after another tD delay to raise CK to $V_{\text {CKP }}$. Following still another t_{D} delay, pulse I_{15} to V_{IL} for a duration of t_{p}. t_{D} later return $C K$ to $V_{C K V}$, and then t_{D} after that return I_{14} to V_{IL}.

3. VERIFY CYCLE:

After a tD delay lower I_{15} to $V_{I L}$ for a duration of tv. At the end of tV, FO should indicate a level of V_{OH}; a level of V_{OL} indicates an unsuccessful fusing attempt.
4. NEXT VARIABLE SELECT (C,Im,Ps) (SAME TERM Tn):
After to delay, apply the next variable select ($C, I m, P s$) address to I_{7-13}, then continue with step 2.
5. NEXT VARIABLE SELECT (C,Im,Ps) (DIFFERENT TERM Tn):
After tD, delay apply the next variable select ($\mathrm{C}, \mathrm{Im}, \mathrm{Ps}$) and term (Tn) addresses to respectively I_{7-13} and I_{0-5}, then continue to step 2.

PROGRAM-VERIFY "OR" ARRAY

1. SET-UP:

With $V_{C C}$ at GND and CK at $V_{C K V}$, select the fuse to be programmed by applying TTL voltage levels to input sets l_{0-5} and 17-13 in accordance with the binary address map on page 21. Also set $\mathrm{I}_{14}=$ $V_{I L}$, and $I_{15}=V_{I H}$. After tD delay raise $V_{C C}$ to $V_{C C P}$
2. PROGRAM CYCLE:

After a delay of t_{D} raise I_{14} to V_{IH}. Proceed after another tD delay to raise CK
to $V_{\text {CKP. }}$. Following still another tD delay pulse I_{15} to V_{IL} for a duration of tp . t_{D} later return $C K$ to $\mathrm{V}_{\mathrm{CKV}}$ and then to after that return I_{14} to V_{IL}.
3. VERIFY CYCLE:

After a t_{D} delay lower I_{15} to $V_{I L}$ for a duration of $\mathrm{t} v$. At the end of $\mathrm{tv} \mathrm{FO}_{\mathrm{O}}$ should indicate a level of V_{OH}; a level of V_{OL} indicates an unsuccessful fusing attempt.
4. Next Variable select (C,Ns,Fn) (SAME TERM (Tn)):
After to delay apply the next variable select ($\mathrm{C}, \mathrm{Ns}, \mathrm{Fn}$) address to $17-13$, then continue with step 2.
5. NEXT VARIABLE SELECT (C,Ns,Fn) (DIFFERENT TERM (Tn)):
After to delay apply the next variable select (C,Ns,Fn) and term (Tn) addresses to respectively I_{7-13} and I_{0-5}, then continue to step 2.

PROGRAM CYCLE POWER DOWN

When programming of the device is complete, after to delay set I_{15} to $V_{I H}, I_{14}$ to $V_{I L}$ and CK to $V_{C K V}$. After another t_{D} delay reduce $V_{C C}$ to $O V$.

FIEID PPOGRAMMABIE IOGIC SEQUENCER

PROGRAM CYCLE ROW/COLUMN FUSE ADDRESSING VARIABLE SELECT Table 1

ROWHEX ADDRESS		SELECTED VARIABLE	ROW HEX ADDRESS		SELECTED VARIABLE	
${ }_{13} l_{12} l_{11}$	$\mathrm{l}_{10} \mathrm{lg}_{8} \mathrm{l}_{8} \mathrm{l}^{\prime}$		${ }_{13}{ }^{\prime} 12{ }^{1} 11$	$\mathrm{l}_{10} \mathrm{lg}_{8} \mathrm{l}_{8} 7$		
0	0 1	 Empty Address	4	0	AND Array	$\frac{\mathrm{I}_{0}}{\mathrm{I}_{0}}$
0	2		4	2		$\frac{l_{1}}{T_{1}}$
0	4		4	4 5		$\frac{\mathrm{I}_{2}}{\mathrm{I}_{2}}$
0	5		4 4	6 7		$\frac{I_{3}}{I_{3}}$
0 0	6 7		4	8		$\frac{I_{4}}{I_{4}}$
0	8		4	A		$\frac{l_{5}}{I_{5}}$
0 0	$\begin{aligned} & A \\ & B \end{aligned}$		4	C		$\frac{I_{6}}{I_{6}}$
0	C		4	E		$\frac{I_{7}}{1_{7}}$
0	D		5	0		$\frac{I_{8}}{I_{8}}$
0	$\begin{gathered} E \\ F \end{gathered}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	2 3		$\frac{\mathrm{I}_{9}}{\mathrm{~T}_{9}}$
1	0 1		5	4 5		I_{10} $\mathrm{~T}_{10}$ 1
1	2		5	6 7		$\frac{l_{11}}{T_{11}}$
1			5	8		$\frac{l_{12}}{T_{12}}$
1	5		5	A		I_{13} $\mathrm{~T}_{13}$
1	6 7		5	C		
1	8		5	E		l I_{15} $\mathrm{~T}_{15}$
1	A		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		P ${ }^{\text {P }}$
1	C		$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		P1
				4		P ${ }^{\text {P }}$
1	1		6	6 7		P_{3} P_{3}
			6	$\begin{aligned} & 8 \\ & 9 \end{aligned}$		$\mathrm{P}_{4} \mathrm{P}_{4}$
			$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & A \\ & R \end{aligned}$		$\mathrm{P}_{5} \mathrm{P}_{5}$
			6	c	Complement Array	$\overline{\mathrm{c}}$

TRANSITION TERM SELECT Table²

COLUMN HEX ADDRESS		SELECTED TRANSITION TERM
$\mathrm{I}_{5} \mathrm{I}_{4}$	$I_{3} I_{2} I_{1} I_{0}$	
0	0	0
0	1	1
0	2	2
0	3	3
0	4	4
0	5	5
0	6	6
0	7	7
0	8	8
0	9	9
0	A	10
0	B	11
0	C	12
0	D	13
0	E	14
0	F	15
1	0	16
1	1	17
1	2	18
1	3	19
1	4	20
1	5	21
1	6	22
1	7	23
1	8	24
1	9	25
1	A	26
1	B	27
1	C	28
1	D	29
1	E	30
1	F	31
2	0	32
2	1	33
2	2	34
2	3	35
2	4	36
2	5	37
2	6	38
2	7	39
2	8	40
2	9	41
2	A	42
2	B	43
2	C	44
2	D	45
2	E	46
2	F	47
3	0	48
3	1	49

NOTES

1. A row address identifies a particular variable coupled to all transition terms.
2. With a variable selected by the row address the column address further selects a
coupling fuse for each term.

PROGRAMMING SYSTEM SPECIFICATIONS1 $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
VCCP	$V_{C C}$ supply (program)		ICCP $=550 \mathrm{~mA}$ min Transient or steady state $V_{C C P}=+8.50 \pm .25 \mathrm{~V}$	8.25	8.5	8.75	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
Vccv	$V_{C C}$ supply (verify)	4.75		5.0	5.25		
ICCP	ICC limit program	550			1,000		
$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	Input voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	V	
	Input Current					$\mu \mathrm{A}$	
IIH	High	$\mathrm{V}_{\text {IH }}=+5.5 \mathrm{~V}$			50		
IIL	Low	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$			-500		
$\mathrm{V}_{\text {IX }}$	O.E. program enable level		9.5	10	10.5	V	
IIX	$\overline{\text { O.E. program input current }}$	$\mathrm{V}_{\mathrm{IX}}=+10 \mathrm{~V}$			10	mA	
VCKP	CK supply (program) ${ }^{3}$	ICKP $=300 \pm 25 \mathrm{~mA}$	16.0	17.0	18.0	V	
v		Transient or steady state					
$\mathrm{V}_{\text {CKV }}$	CK supply (idle)	ICKV $=1 \mathrm{~mA}$ max	1.25	1.5	1.75	v	
ICKP	CK supply current limit	$\mathrm{V}_{\text {CKP }}=+17 \pm 1 \mathrm{~V}$	275	300	325	mA	
t_{v}	Verify time		1			$\mu \mathrm{s}$	
TRS	Reset pulse width		1			$\mu 8$	
TPS	Preset pulse width		1			$\mu \mathrm{s}$	
t_{p}	Programming pulse width		0.3	0.4	0.5	ms	
tD	Pulse sequence delay		10			$\mu \mathrm{s}$	
T_{R}	CK Pulse rise time	10\% to 90\%	10		50	$\mu \mathrm{s}$	
TPVB	Program-Verify time per link			0.6		ms	
PDC	Programming duty cycle				100	\%	
FL	Fusing attempts per link				2	cycle	
$\mathrm{V}_{\mathbf{S}}$	Verify threshold ${ }^{4}$		1.4	1.5	1.6	V	

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics.
2. Bypass V_{CC} to GND with a $0.01 \mu \mathrm{f}$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. V_{S} is the sensing threshold of the FPLS output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

PR/O.E. OPTION PROGRAM-VERIFY SEQUENCE

"OR" ARRAY PROGRAM-VERIFY SEQUENCE (TYPICAL)

"AND" ARRAY PROGRAM-VERIFY SEQUENCE (TYPICAL)

NOTE

1. (P) and (N) represent respectively a programmed and non-programmed fuse, corresponding to logic " 1 " or " 0 " output voltage levels.

TEST ARRAY

STATE DIAGRAM
FPLS UNDER TEST
The FPLS may be subjected to AC and DC parametric tests prior to programming via an on chip test array.
The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to lo-7 as shown in the test circuit timing diagram.

TEST ARRAY PROGRAM (LOGIC)

TRANSITION TERM																							
NO.	C	InPUT VARIABLE (Im)																PRESENT STATE (Ps)					
		$\overline{1}$	1	1	1	1	1																
		5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	5	4	3	2	1	0
48	A	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	\bullet	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any Signetics' qualified programming equipment.

TEST ARRAY DELETED (LOGIC)

TRANSITION TERM																							
NO.	C	-1																PRESENT STATE (Ps)					
		5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	5	4	3	2	1	0
48	-	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	\bullet	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

SERIES 28

DESCRIPTION

The 82S106 (Open collector outputs) and $82 \mathrm{S107}$ (3-state outputs) are bipolar Programmable ROM Patches organized as 48 words by 8 bits, addressed via a 16 bit programmable address comparator. Each word can be assigned a unique address code, P_{n}, within a $64 \mathrm{~K}\left(2^{16)}\right.$ address range by programming the comparator inputs High, Low, or Don't care via True/Complement input buffers.

The contents of each word are also programmable, and are enabled to the activeHigh Patch outputs only when a programmed address is detected, which causes the $\overline{\text { Flag }}$ output to go Low. For all unprogrammed addresses, the device outputs remain High (82S106) or Hi-Z (82S107) while the $\overline{\text { Flag }}$ output remains High. The $\overline{\text { Flag }}$ is open collector to allow wire-ANDing for expansion to more than 48 patch words.

The 82S106 and 82S107 are fully TTL compatible and can be programmed in the field by following the fusing procedure outlined in this data sheet, or by means of commercially available equipment.
Both devices are available in commercial and military temperature ranges. For the commercial range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$) specify N82S106/107, F or N, and for the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S106/107, F, G, or R.

FEATURES

- Field programmable (Ni-Cr link)
- Address Inputs: 16
- Data Outputs: 8
- Patch Words: 48
- Address access time: S82S106/107-100ns Max N82S106/107-70ns Max
- Power dissipation: 600mW typ
- Input loading:

S82S106/107: -150μ A Max N82S106/107: -100μ A Max

- Open collector Flag
- Output option: 82S106: Open collector 82S107: 3-state
- Output disabled state

3-state-Hi-Z
Open collector- Hi
APPLICATIONS

- ROM data modifications
- Memory address trap
- Digital filter
- Interrupt request/vector generator
- Data security encoder

PIN CONFIGURATION

TRUTH TABLE

$\mathbf{A}_{\mathbf{N}}=\mathbf{P}_{\mathbf{N}}$	$\overline{\text { Flag }}$	$\mathbf{F}_{\mathbf{0 - 7}}$	
		$\mathbf{8 2 S 1 0 6}^{\mathbf{8 2 S} 107}$	
NO	1	1	Hi-Z
YES	0	Stored Data	

LOGIC DIAGRAM

FPRP LOGIC DIAGRAM

SERIES 28
THERMAL RATINGS

TEMPERATURE	MILI-	COM- TARY
MER- CIAL		
Maximum junction Maximum ambient Allowable thermal rise ambient to junction	$175^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER		RATING		UNIT
		Min	Max	
VCC	Supply voltage		+7	Vdc
VIN	Input voltage		+5.5	Vdc
Vout	Output voltage		+5.5	Vdc
lin	Input currents	-30	+30	mA
lout	Output currents		+100	mA
	Temperature range			${ }^{\circ} \mathrm{C}$
TA	Operating			
	N82S106/107	-	+75	
	S82S106/107	-55	+125	
Tstg	Storage	-65	+150	

DC ELECTRICAL CHARACTERISTICS N82S106/107: $0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S106/107: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS	N82S106/107			S82S106/107			UNIT
			Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I C} \end{aligned}$	```Input voltage 2 High Low Clamp 2,3```	$\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=M i n \\ V_{C C}=M i n, \operatorname{liN}=-18 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{aligned} & 0.85 \\ & -1.2 \end{aligned}$	2	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V
V_{OH} Vol Vol	Output voltage High (82S107) ${ }^{2,4}$ Low ${ }^{2,5}$ (F_{0-7}) Low ${ }^{2,5}$ (Flag)	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} \\ & \mathrm{IOH}=-2 \mathrm{~mA} \\ & \mathrm{IOL}=9.6 \mathrm{~mA} \\ & \mathrm{IOL}=4.8 \mathrm{~mA} \end{aligned}$	2.4	$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	2.4	$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	v
$\begin{aligned} & I_{I H} \\ & I_{I L} \end{aligned}$	input current High Low	$\begin{gathered} V_{\mathbb{N}}=5.5 \mathrm{~V} \\ V_{\mathbb{N}}=0.45 \mathrm{~V} \end{gathered}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{gathered} 25 \\ -100 \end{gathered}$		$\begin{gathered} <1 \\ -10 \end{gathered}$	$\begin{gathered} 50 \\ -150 \end{gathered}$	$\mu \mathrm{A}$
lolk lo(off) los	Output current Leakage ${ }^{7}$ Hi-Z state $(82 \mathrm{~S} 107)^{6}$ Short circuit (82S107) ${ }^{3,7}$	$\begin{aligned} & V_{C C}=\mathrm{Max} \\ & \mathrm{VOUT}=5.5 \mathrm{~V} \\ & \text { VOUT }=5.5 \mathrm{~V} \\ & \text { VOUT }=0.45 \mathrm{~V} \\ & \text { VOUT }=0 \mathrm{~V} \end{aligned}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	VCC supply current ${ }^{8}$	$V_{C C}=$ Max		120	170		120	180	mA
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{COUT} \end{aligned}$	Capacitance ${ }^{6}$ Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{O U T} & =2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 17 \end{gathered}$			$\begin{gathered} 8 \\ 17 \end{gathered}$		pF

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$
N82S106/107: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S106/107: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER	TO	FROM	N82S106/107			S82S106/107			UNIT
			Min	Typ	Max	Min	Typ	Max	
Access time $T_{I A}$ Address $T_{F L}$ Enable	$\frac{\text { Output }}{\text { Flag }}$	Input Input		45 40	70 55		100 40	100 80	ns

NOTES on following page.

INTEGRATED FUSE LOGIC SERIES 28

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specification is not implied.
2. All typical values are at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at the time.
5. Measured with the Patch enabled ($A_{N}=P_{N}$) and a logic high stored.
6. Measured with a programmed logic condition for which the output under test is at a low logic level when the Patch is enabled ($A_{N}=P_{N}$). Output sink current is applied thru a resistor to $V_{C C}$.
7. Measured with the Patch disabled ($A_{N} \neq P_{N}$).
8. Duration of short circuit should not exceed 1 second.
9. Icce is measured with all inputs at 4.5 V and the outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM

TIMING DIAGRAM

TIMING DEFINITIONS

TIA Delay between latest Address variable change and when Data Output becomes stable.

TFL Delay between latest Address variable change and when Flag output becomes stable.

VIRGIN DEVICE

The 82S106/107 are shipped in an unprogrammed state, characterized by:

1. All internal $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
2. Each comparator address (P-term) contains both true and complement values of every input variable I_{m} (P-terms always logically "false").
3. The storage Matrix contains all " 1 ".
4. The polarity of each output is set to active high.
5. All outputs are at a low logic level.

RECOMMENDED

PROGRAMMING PROCEDURE
To program up to 48 address-data pair locations, follow the program/verify procedures outlined below. To maximize recovery from programming errors, leave all links corresponding to unused address-data pairs intact.

SET-UP

Terminate all device outputs with a 10 K resistor to +5 V . Set GND (pin 14) to OV.

ADDRESS COMPARATOR

Program Pn Address

Program one input at the time and one P term at the time. Unused comparator inputs must be programmed as Don't Care for all programmed P-terms.

1. Set $\operatorname{FE}(\operatorname{pin} 1)$ to $\mathrm{V}_{\mathrm{FEL}}$, and $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 28)$ to Vccp.
2. Disable all device outputs by setting Flag (pin 19) to V_{IH}.
3. Disable all comparator inputs by applying $V_{I X}$ to inputs I_{0} through I_{15}.
4. Address the P-term to be programmed (No. 0 through 47) by forcing the corresponding binary code on outputs F_{0} through F_{5} with F_{0} as LSB. Use standard TTL logic levels Vohf and Volf.
5a. If the P-term contains neither Io nor Io (input is a Don't Care), fuse both I_{0} and Tolinks by executing both steps 5 b and 5 c , before continuing with step 7 .
5b. If the P-term contains I_{0}, set to fuse the To link by lowering the input voltage at Io from V_{IX} to V_{IH}. Execute step 6.
5c. If the P-term contains $\overline{\mathrm{I}}$, set to fuse the Io link by lowering the input voltage at lo from V_{IX} to V_{IL}. Execute step 6.
6a. After to delay, raise FE from VFEL to $V_{\text {FEH }}$.
6 b. After to delay, pulse the Flag input from V_{IH} to V_{IX} for a period t_{p}.
6c. After tD delay, return FE input to $\mathrm{V}_{\text {FEL }}$.
5. Disable programmed input by returning lo to VIX.
6. Repeat steps 5 through 7 for all other input variables.
7. Repeat steps 4 through 8 for all other P-terms.
8. Remove V_{IX} from all input variables.

VERIFY $\mathbf{P}_{\mathbf{n}}$ ADDRESS

1. Set FE to $V_{F E L}$, and $V_{C C}$ to $V_{C C P}$.
2. Enable F_{7} output by setting $\overline{\text { Flag }}$ to $V_{I X}$.
3. Disable all comparator inputs by applying $V_{1 x}$ to inputs lo through I_{15}.
4. Address the P-term to be verified (No. 0 through 47) by forcing the corresponding binary code on outputs F_{0} through F5.
5. Interrogate Input lo as follows:
A. Lower the input voltage at I_{0} from $V_{I X}$ to V_{IH}, and sense the logic state of output F_{7}.
B. Lower the input voltage at Io from V_{IH} to V_{IL}, and sense the logic state output F_{7}.

The state of I_{0} contained in the P-term is determined in accordance with the following truth table:

$I_{\mathbf{0}}$	$F_{\mathbf{7}}$	COMPARATOR INPUT STATE CONTAINED IN P-TERM
0	1	$\overline{I_{0}}$
1	0	I_{0}
0	0	Don't Care
1	1	$\left(I_{0}\right),\left(\overline{I_{0}}\right)$
0	1	
1	1	
0	0	

Note that 2 tests are required to uniquely determine the state of the input contained in the P-term.
6. Disable verified input by returning I_{0} to VIx.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other Pterms.
9. Remove $V_{I X}$ from all comparator inputs.

STORAGE MATRIX

Program Output Data

Program one output at the time for one P term at the time.

1. Set FE to $V_{\text {FEL }}$.
2. Disable the chip by setting Flag to V_{IH}.
3. After to delay, set $V_{C C}$ to $V_{C C S}$, and inputs I_{6} through I_{15} to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, or V_{IX}.
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to comparator inputs I_{0} through I_{5}, with I_{0} as LSB.

INTEGRATED FUSE LOGIC SERIES 28

5. To program a logic " 0 " at output F_{0}, force F_{0} to Vopf.
6a. After to delay, raise FE (pin 1) from $V_{\text {fel }}$ to $V_{\text {fen }}$.
6b. After to delay, pulse the $\overline{\text { Flag input }}$ from $V_{I H}$ to $V_{I X}$ for a period t_{p}.
6c. After tD delay, return FE input to $\mathrm{V}_{\mathrm{FEL}}$.
6d. After tD delay, remove Vopf from output Fo.
6. Repeat steps 5 and 6 for all other output functions.
7. Repeat steps 4 through 7 for all other P-terms.
8. Remove $V_{c c s}$ from $V_{c c}$.

Verify Output Data

1. Set FE to VFEL.
2. Disable the chip by setting Flag to V_{IH}.
3. After to delay, set V_{cc} to $\mathrm{V}_{\mathrm{ccs}}$, and inputs I_{0} through I_{15} to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$, or V_{IX}.
4. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to comparator inputs lo through I_{5}.
5. After to delay, enable the chip by setting Flag to VIL.
6. To determine the status of each output link in the Storage Matrix, sense the state of outputs F_{0} through F_{7}. The status of the link is given by the following truth table:

$\mathbf{F}_{\mathbf{P}}$	LINK
$\mathbf{0}$	Fused
1	Present

7. Repeat steps 4 through 6 for all other P-terms.
8. Remove Vccs from Vcc.

ADDRESS COMPARATOR PROGRAM-VERIFY SEQUENCE (TYPICAL)

STORAGE MATRIX PROGRAM-VERIFY SEQUENCE (TYPICAL)

PROGRAMMING SYSTEM SPECIFICATIONS $1 \quad\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
Vccs Iccs	Vcc supply (program/verify Storage Matrix)2 Icc limit		ICCs $=550 \mathrm{~mA}$, min. Transient or steady state $V_{C C S}=+8.50 \pm .25 \mathrm{~V}$	$\begin{aligned} & 8.25 \\ & 550 \end{aligned}$	8.5	$\begin{gathered} 8.75 \\ 1,000 \end{gathered}$	v mA
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	V	
$\begin{aligned} & I_{I H} \\ & I_{I L} \end{aligned}$	Input current High Low	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{gathered}$			$\begin{gathered} 50 \\ -500 \end{gathered}$	$\mu \mathrm{A}$	
Vohf Volf	Forced output voltage High Low		$\begin{gathered} 2.4 \\ 0 \end{gathered}$	0.4	$\begin{aligned} & 5.5 \\ & 0.8 \end{aligned}$	V	
$\begin{aligned} & \text { IohF } \\ & \text { IoLF } \end{aligned}$	Output current High Low	$\begin{gathered} \mathrm{V}_{\mathrm{OHF}}=+5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OLF}}=0 \mathrm{~V} \end{gathered}$			100 -1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	
$\begin{aligned} & V_{1 x} \\ & I_{X_{1}} \\ & l_{1 \times 2} \end{aligned}$	$\overline{\text { Flag }}$ program enable level Input current Flag input current	$\begin{aligned} & V_{1 X}=+10 V \\ & V_{1 X}=+10 \mathrm{~V} \end{aligned}$	9.5	10	10.5 10 10	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	
VFEH	FE supply (program) ${ }^{3}$	$I_{\text {FEH }}=300 \pm 25 \mathrm{~mA},$ Transient or steady state	16.0	17.0	18.0	V	
Vfel	FE supply (idle)	$\mathrm{IfEL}^{\text {a }}=-1 \mathrm{~mA}, \max$	1.25	1.5	1.75	V	
Ifer	FE supply current limit	$\mathrm{V}_{\text {FEH }}=+17 \pm 1 \mathrm{~V}$	275	300	325	mA	
VCCP	VCC supply (program/verify Address Comparator)	$\mathrm{ICCP}=550 \mathrm{~mA}, \mathrm{~min}$. Transient or steady state	4.75	5.0	5.25	V	
Iccp	Icc limit	$\mathrm{V}_{\mathrm{CCP}}=+5.0 \pm .25 \mathrm{~V}$	550		1,000	mA	
Vopf	Forced output (program)		9.5	10	10.5	V	
lopf	Output current (program)				10	mA	
TR	FE pulse rise time	10\% to 90\%	10		50	$\mu \mathrm{S}$	
t_{p}	Flag programming pulse width		0.3	0.4	0.5	ms ${ }^{5}$	
tD	Pulse sequence delay		10			$\mu \mathrm{S}$	
$T_{T_{P R}}$	Programming time Programming duty cycle			0.6	50	$\begin{aligned} & \mathrm{ms} \\ & \% \end{aligned}$	
$\begin{aligned} & \frac{1 P R}{T P R+T P S} \\ & F_{L} \\ & V_{S} \end{aligned}$	Fusing attempts per link Verify threshold ${ }^{4}$		1.4	1.5	$\begin{gathered} 2 \\ 1.6 \end{gathered}$	cycle V	

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics.
2. Bypass Vcc to GND with a $0.01 \mu \mathrm{f}$ capacitor to reduce voitage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. V_{S} is the sensing threshold of the FPRP output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt
5. These are new limits resulting from device improvements, and which supersede, but do not obsolete the performance requirements of previously manufactured programming equipment.

INTEGRATED FUSE LOGIC

LOGIC PROGRAMMING
The FPRP can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from memory patch specifications using the Program Table on the following page.

In this Table, the logic state of variables I and F associated with each Patch address P_{n} is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:
"OR" ARRAY - (F)

"AND" ARRAY - (I),

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}.
2. Any gate P_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

FPRP PROGRAM TABLE (Logic)

1. Unused inputs and outputs are FPRP terminals left floating.
2. Input and output fields of inactive P-terms can be left blank

OUTPUT FUNCTION							
7	6	5	4	3	2	1	0

NOTES

INTEGRATED FUSE LOGIC SERIES 28

TWX TAPE CODING FORMAT

The FPRP Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8-level tape (paper, mylar; fanfold, etc.), or via TWX: just dial (910) 339-

9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.
quentially assembled on a continuous tape as follows, however limit tape length to a roll of 1.75 inch inside diameter, and 4.25 inch outside diameter:

A number of Program Tables can be se-

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name
2. Customer TWX No
3. Date
. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:

1. Signetics Device No.	4. Date
2. Program Table No. 5. Customer Symbolized Part No. 3. Revision 6. Number of Parts	

C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of Output Active Level, Product Term, and Output Function information separated by appropriate identifiers in accordance with the following format:

$$
\begin{aligned}
& \text { START OF DATA FIELD } \\
& \text { PRODUCT TERM IDENTIFIER } \\
& 1 \text { SPACE (MANDATORY) }
\end{aligned}
$$

STX * A НННННННН
4. Purchase Order No.
5. Number of Program Tables
6. Total Number of Parts PRODUCT TERM NUMBER

END OF DATA TEXT
 (2 DECIMAL DIGITS) Start of data field - COMPARATOR INPUT IDENTIFIER

COMPARATOR INPUT		
I_{m}	$\overline{I_{m}}$	Don't care
H	L	-(dash)

OUTPUT FUNCTION	
$" 1 "$	$" 0 "$
A	\bullet (period)

NOTES

1. Enter (-) for unused inputs of all active P-terms.
2. Enter (A) for unused outputs of all active P-terms.
3. Unused inputs and outputs are FPRP terminals left floating.

Although the Product Term data are shown entered in sequence, this is not necessary. It is possible to input only one Product Term, if desired. Unused Product Terms require no entry. ETX signalling end of Program Table may occur with less than the maximum number of Product Terms entered.

NOTES

1. Corrections to any entry can be made by backspace and rubout. However, limit consecutive rubouts to less than 25
2. Terms can be re-entered any number of times. The last entry for a particular P-Term will be interpreted as valid data.
3. To facilitate an orderly Teletype print out, carriage returns, line feeds, spaces, rubouts etc. may be interspersed between data groups.
4. Comments are allowed between data fields, provided that an asterisk (*) is not used in any Heading or Comment entry.

FILLD PROGRANMABIE ROM PATCH (16YA8X8)

TYPICAL APPLICATION

Since Patch inputs I_{12-15} are unused, they are programmed Don't Care (-), and left open in the circuit. Note however that I_{0} and I_{1} are programmed as $(-)$ in P-term 2 because they define an address block of 4 memory locations.

EXPANSION

Signetics

Preview

DESCRIPTION

The 82S 150 and the 82S 151 are single level logic elements, consisting of 12 AND gates with fusible link connections for programming I/O polarity, I/O direction and output enable control.

All gates are linked to 6 inputs (I) and 12 bidirectional I/O lines (B). These yield variable I/O gate configurations via 3 direction control gates (D), ranging from 18 inputs to 12 outputs.

On chip T/C buffers couple either True (I, B) or Complement (\bar{i}, \bar{B}) input polarities to each AND gate. The polarity of all gate outputs is individually programmable through a set of EX-OR gates for implementing AND/ NAND logic functions. Alternately, if desired, OR/NOR logic functions can also be realized by programming for each gate the complement of its inputs and output (DeMorgan's Theorem).
The 82S150 and the 82S 151 are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Both devices are available in a 20 -pin slim line package. For the commercial temperature range ($0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N82S 150/151 N or F. For the military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) specify S82S 150/151 F only.

FEATURES

- Field Programmable (Ni-Cr link)
- 6 inputs
- 12 AND gates
- 12 bidirectional I/O lines
- Active high or low outputs
- Programmable output enable
- Power dissipation: 650mW (typ)
- I/O propagation delay: 30ns (max)
- Input loading N82S150/151: $-100 \mu \mathrm{~A}(\max)$ S82S150/151: -150 μ A (max)
- Output options 82S150: open collector 82S151: tri-state
- TTL compatible

APPLICATIONS

- Random gating functions
- Address decoding
- Code detectors
- Memory mapped I/O
- Fault monitors
- I/O port decoders

INTEGRATED FUSE LOGIC SERIES 20
PIN CONFIGURATION

LOGIC FUNCTIONS

Typical Gate Functions:

$$
\begin{aligned}
\text { At } L & =\text { Open } \\
X & =A \bullet \bar{B} \bullet C \bullet \ldots \ldots \\
A t L & =\text { Closed } \\
X & =\bar{A} \bullet \bar{B} \bullet C \bullet \ldots \ldots \\
X & =\bar{A}+B+\bar{C}+\ldots \ldots
\end{aligned}
$$

NOTES:

1. For each of the 12 outputs, either function X (ac-tive-high) or \bar{X} (active-low) is available, but not both. The desired output polarity is programmed via link (L).
2. X, A, B, C, etc. are user defined connections to fixed inputs (I) and bidirectional pins (B).

FUNCTIONAL DIAGRAM

Preview

FPGA LOGIC DIAGRAM

FIEID PROGRAMMABIE GATE ARPAY (18X12)

Preview

ABSOLUTE MAXIMUM RATINGS

PARAMETER		RATING		UNIT
		Min	Max	
$V_{\text {cc }}$	Supply voltage		+7	Vdc
$V_{\text {IN }}$	Input voltage		+5.5	Vdc
VOUT	Output voltage		+5.5	Vdc
IN	Input currents	-30	+30	mA
IOUT	Output currents		+100	mA
	Temperature range			C°
T_{A}	Operating			
	N82S 150/151	0	+75	
	S82S 150/151	-55	+125	
TSTG	Storage	-65	+150	

INTEGRATED FUSE LOGIC SERIES 20
THERMAL RATINGS

TEMPERATURE	Mili-	Commercial
Maximum junction	$175^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Maximum ambient	$125^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHACTERISTICS N82S150/151: $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$
S82S150/151: $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITION	N82S150/151			S82150/151			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & V_{I C} \end{aligned}$	Input voltage ${ }^{3}$ Low High Clamp3,4		$\begin{gathered} V_{C C}=\operatorname{Min} \\ V_{C C}=\operatorname{Max} \\ V_{C C}=M \operatorname{Min}, \operatorname{lin}=-18 \mathrm{~mA} \end{gathered}$	2.0	. 8	$\begin{gathered} .85 \\ -1.2 \end{gathered}$	2.0	. 8	$\begin{gathered} .80 \\ -1.2 \\ \hline \end{gathered}$	V
VOL VOL $\mathrm{VOH}_{\mathrm{OH}}$	Output voltage Low ${ }^{3,5}$ Low ${ }^{3,5}$ High ${ }^{3,6}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{IOL}=8 \mathrm{~mA} \\ & \mathrm{OH}=-2 \mathrm{~mA} \end{aligned}$	2.4		. 5	2.4		. 5	V	
$\begin{aligned} & \mathbf{I}_{1} \\ & \mathbf{I}_{\mathrm{H}} \end{aligned}$	Input Current Low High	$\begin{aligned} V_{I N} & =0.45 \mathrm{~V} \\ V_{\mathbb{N}} & =5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$			$\begin{gathered} -150 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	
IOLK lo(OFF) los	Output Current Leakage (82S 150) Hi-Z state (82S151) Short circuit (82S 151) 4,6.7	$\begin{aligned} V_{\text {CC }} & =\max \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-20		$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15		$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$V_{C C}=\max$		130	155		130	155	mA	
$\begin{aligned} & C_{\mathbb{N}} \\ & C_{B} \end{aligned}$	Capacitance Input 1/0	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$			$\begin{gathered} 8 \\ 15 \end{gathered}$		pF	

AC ELECTRICAL CHACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega$
N82S150/151: $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$
S82S150/151: $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$

	PARAMETER	T0	FROM	TEST CONDITIONS	N82S150/151			S82S150/151			UNIT
					Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max	
TPD	Progagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	30		25		ns
$\begin{aligned} & \text { TOE } \\ & \text { TOD } \end{aligned}$	Output enable Output disable ${ }^{9}$	OutputOutput+	input \pm Input \pm	$C_{L}=5 \mathrm{pF}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		ns

NOTES

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
All typical values are at $V_{C C}=6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
All voltage values are with respect to network ground terminal
2. Test one at a time.
3.
4.
5. Duration of short circuit should not exceed 1 second
6. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.

Preview

TEST LOAD CIRCUIT

INTEGRATED FUSE LOGIC SERIES 20

TIMING DIAGRAM

TIMING DEFINITIONS

TPD
Propagation delay between input and output.

TOD Delay between input change and when output is off ($\mathrm{Hi}-\mathrm{Z}$ or High).

TOE Delay between input change and when output reflects specified output level.

VOLTAGE WAVEFORM

Measurements: All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Preview

INTEGRATED FUSE LOGIC SERIES 20

LOGIC PROGRAMMING

In a virgin device all $\mathrm{Ni}-\mathrm{Cr}$ links are intact.
The FPGA can be programmed by means of Logic programming equipment.

With Logic programming, the AND/EX-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this Table the logic state or action of variables I and B associated with each gate Gn , Dn is assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:

EX-OR ARRAY - (B)

"AND" ARRAY - $(1, B)$

notes

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates Gn, Dn.
2. Any gate Gn , D n will be unconditionally inhibited if any one of its (\mathbb{I}, B) link pairs is left intact.

FPGA PROGRAM TABLE (Logic)
integrated fuse logic

DESCRIPTION

The 82S 152 and 82S153 are two-level logic elements, consisting of 32 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (1) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 di rection control gates (D), ranging from 18 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement (\bar{i}, \bar{B}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for inplementing ANDOR or AND-NOR logic functions.

The 82S 152 and the 82S 153 are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

Both devices are available in a 20 pin slim line package. For the commercial temperature range ($0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N82S 152/153 N or F. For the military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) specify S82S 152 / 153 F only.

FEATURES

- Field programmable (Ni-Cr links)
- 8 inputs
- 32 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active high or low outputs
- I/O propagation delay: N82S152/153: 4Ons (max) S82S152/153: 60ns (max)
- Input loading

N82S 152 / 153: $-100 \mu \mathrm{~A}$ (max)
S82S 152/153: $-150 \mu \mathrm{~A}$ (max)

- Power dissipation:

650 mW (typ)

- Output options:

82S152: open collector
82S153: tri-state

- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

LOGIC FUNCTION

$$
\begin{aligned}
& \text { Typical product term: } \\
& P n=A \bullet \bar{B} \bullet C \bullet D \bullet \ldots \\
& \text { Typical logic function: } \\
& A t L=C l o s e d \\
& X=P O+P 1+P 2 \ldots \\
& A t=O \text { Open } \\
& X=\overline{P 0}+P 1+P 2+\ldots \\
& X=\overline{P O} \bullet \overline{P 1} \bullet \overline{P 2} \ldots
\end{aligned}
$$

NOTES

1. For each of the 10 outputs, either function X (active high) or \bar{X} (active low) is available, but not both. The desired output polarity is programmed via link (L).
2. X, A, B, C. etc. are user defined connections to fixed inputs (I) and bidirectional pins (B).
$\longrightarrow \underset{\substack{\text { INTEGRATED FUSE LOGIC } \\ \text { SERESES } \\ 20}}{ }$

FPLA LOGIC DIAGRAM

FIELD PROGRAMMABLE LOGIC ARRAY (18X32X10) 82S152 (O.C.)/82S153 (T.S.)

DC ELECTRICAL CHARACTERISTICS N82S $152 / 153: 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ S82S 152/153: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITION	N82S152/153			S82S152/153			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Input voltage ${ }^{3}$ Low High Clamp ${ }^{3,4}$		$\begin{gathered} V_{C C}=\min \\ V_{C C}=\max \\ V_{C C}=\min , \operatorname{lin}=-18 \mathrm{~mA} \end{gathered}$	2.0	-. 8	$\begin{array}{r} .85 \\ -1.2 \\ \hline \end{array}$	2.0	-. 8	$\begin{array}{r} .80 \\ -1.2 \\ \hline \end{array}$	V
V_{OL} V_{OL} VOH	Output voltage Low ${ }^{3,5}$ Low ${ }^{3,5}$ High ${ }^{3,6}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{min} \\ \mathrm{I}_{\mathrm{OL}} & =15 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =12 \mathrm{~mA} \\ \mathrm{IOH}_{\mathrm{OH}} & =-2 \mathrm{~mA} \end{aligned}$	2.4		. 5	2.4		5	v	
$\begin{aligned} & I_{I L} \\ & I_{H} \end{aligned}$	Input current Low High	$\begin{aligned} & V_{I N}=0.45 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$			$\begin{gathered} -150 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	
IOLK lo(OFF) los	Output current Leakage (82S 152) Hi-Z state (82 S 153) Short circuit (82S 153) 4, 6.7	$\begin{aligned} V_{\text {CC }} & =\max \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-20		$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15		$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
ICC	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$V_{C C}=\max$		130	155		130	165	mA	
$\begin{aligned} & C_{1 N} \\ & C_{B} \end{aligned}$	Capacitance Input I/O	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$			$\begin{gathered} 8 \\ 15 \end{gathered}$		pF	

AC ELECTRICAL CHACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{~K} \Omega$
N82S 152/153: $0^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
$\mathrm{~S} 82 \mathrm{~S} 152 / 153:-55^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

	PARAMETER	TO	FROM	TEST CONDITIONS	N82S152/153			S82S152/153			UNIT
					Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { TPD } \\ & \text { TOE } \end{aligned}$	Progagation delay Output enable	Output \pm Output-	Input \pm Input \pm	$C_{L}=30 \mathrm{pF}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$		$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	ns
TOD	Output disable ${ }^{9}$	Output+	Input \pm	$C_{L}=5 \mathrm{pF}$		25	35		25	45	ns

[^0]6. Measured with +10 V applied to I_{0-7}. Output sink current is supplied thru a resistor to $V_{C C}$
7. Duration of short circuit should not exceed 1 second.
8. ${ }_{\mathrm{C}}^{\mathrm{CC}}$ is measured with I_{0-7} and B_{0-9} at 4.5 V .
9. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.

TIMING DEFINITIONS

TPD Propagation delay between input and output.

TOD Delay between input change and when output is off (Hi-Z or High).

TOE Delay between input change and when output reflects specified output level.

INTEGRATED FUSE LOGIC SERIES 20
TIMING DIAGRAM

VOLTAGE WAVEFORM

Measurements: All circuit delays are measured at the +1.5 V level of inputs and outputs unless otherwise specified.

INTEGRATED FUSE LOGIC SERIES 20

LOGIC PROGRAMMING

The FPLA can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR/EXOR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this Table the logic state or action of variables I, P, and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

EX-OR ARRAY - (B)

"AND" ARRAY - $(1, B)$

"OR" ARRAY - (B)

NOTES

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if any one of its (I, B) link pairs is left intact.

82S452 (O.C.)/82S453 (T.S.)

INTEGRATED FUSE LOGIC SERIES 20

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.
4. Test array is programmed with standard test pattern.

RECOMMENDED PROGRAMMING

PROCEDURE

To program the AND, OR, and polarity arrays, the following procedure should be followed. To maximize recovery from programming errors, leave all links in unused device areas intact.

SET-UP

Terminate all device outputs with a $10 \mathrm{k} \Omega$ resistor to V_{CC}. Set GND (pin 10) to OV.

PROGRAM-VERIFY

1. SET-UP:

With V_{CC} at GND and B_{8} to $\mathrm{V}_{\text {FSV }}$ select the fuse to be programmed by applying TTL voltage levels to the input sets in accordance with the binary address map on page 8. Also set $B_{1}=V_{i H}$, and $B_{7}=V_{I L}$. After t_{D} delay raise $V_{C C}$ to $V_{\text {Ccp }}$.
2. PROGRAM CYCLE:

After a delay of t_{D} raise B_{7} to $V_{I H}$. After another t_{D}, raise B_{8} to $V_{\text {Fsp. }}$. Following t_{D} delay, pulse B_{1} to $V_{I L}$ for a duration of t_{p}. Wait t_{D} and return B_{8} to $V_{F S V}$, and then after t_{D} return B_{7} to $V_{I L}$.

3. VERIFY CYCLE:

After a t_{0} delay lower B_{1} to $V_{1 L}$ for a duration of t_{V}. At the end of t_{V}, B_{6} should indicate a level of $V_{O H}$; a level of V_{OL} indicates an unsuccessful fusing attempt.
4. NEXT VARIABLE SELECT (I_{m}, D_{s}, X_{R}) (SAME TERM P_{n}):
After t_{D} delay, apply the next variable select (I, D, X) address to the input set and continue with step 2.
5. NEXT VARIABLE SELECT (I_{m}, D_{s}, X_{R}) (DIFFERENT TERM $\left(P_{n}\right)$:
After t_{D}, delay apply the next variable select (I, D, X) and term (P_{n}) addresses to the input set then continue to step 2.

FIELD PROGRAMMABLE LOGIC ARRAY (18X32X10) $82 S 152$ (O.C.)/82S153 (T.S.)

INTEGRATED FUSE LOGIC SERIES 20

PROGRAM CYCLE ROWICOLUMN FUSE ADDRESSING VARIABLE SELECT Table ${ }^{1}$

ROWHEX ADDRESS		SELECTED VARIABLE	
$\mathrm{I}_{6} \mathrm{I}_{7} \mathrm{~B}_{0}$	$\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}$		
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\frac{1_{0}}{10}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\frac{l_{1}}{1_{1}}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\frac{\mathrm{I}_{2}}{\mathrm{I}_{2}}$
0	6 7		$\frac{I_{3}}{1_{3}}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$		$\frac{14}{14}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$		$\frac{I_{5}}{l_{5}}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	AND Array	$\frac{I_{6}}{I_{6}}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & E \\ & F \end{aligned}$		$\frac{17}{17}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\frac{B_{9}}{B_{9}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\frac{B_{8}}{B_{8}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\frac{B_{7}}{B_{7}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\frac{B_{6}}{B_{6}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$		$\frac{B_{5}}{B_{5}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$		$\frac{B_{4}}{B_{4}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$		$\frac{B_{3}}{B_{3}}$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~F} \end{gathered}$		$\frac{\mathrm{B}_{2}}{\mathrm{~B}_{2}}$
$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\frac{B_{1}}{B_{1}}$
$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\frac{B_{0}}{B_{0}}$
		Empty	dress

ROW HEX ADDRESS		SELECTED VARIABLE	
$1_{8} 1_{7} \mathrm{~B}_{0}$	$\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}$		
3	0		9
3	1		8
3	2		7
3	3		6
3	4	OR	5
3	5	Array	4
3	6		3
3	7		2
3	8		1
3	9		0
3	A	Polarlt	a able
3	B		
		Empty Sp	dress
$\begin{aligned} & \eta \\ & 3 \end{aligned}$	F		

TERM SELECT Table ${ }^{2}$

COLUMN HEX ADDRESS		SELECTED PRODUCT TERM	
$\mathrm{I}_{0} \mathrm{I}_{1}$	$\mathrm{I}_{2} \mathrm{I}_{3} \mathrm{I}_{4}$		
0	0		0
0	1		1
0	2		2
0	3		3
0	4		4
0	5		5
0	6		6
0	7		7
0	8		8
0	9		9
0	A		10
0	B		11
0	C		12
0	D		13
0	E	Logic	14
0	F	Terms	15
1	0		16
1	1		17
1	2		18
1	3		19
1	4		20
1	5		21
1	6		22
,	7		23
1	8		24
1	9		25
1	A		26
1	B		27
1	C		28
1	D		29
1	E		30
1	F		31
2	0		0
2	1		1
2	2		2
2	3		3
2	4	Control	4
2	5	Terms	5
2	6		6
2	7		7
2	8		8
2	9		9
2	A		0
2	B		1
2	C		2
2	D		3
2	E	Polarity	4
2	F	Terms	5
3	0		6
3			1
3	2		8
3			9

NOTES

1. A row address identifies a particular variable coupled to all product terms.
2. With a variable selected by the row address the column address further selects a coupling fuse for each term.

PROGRAMMING SYSTEM SPECIFICATIONS ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{LIMITS} \& \multirow{2}{*}{UNIT} \\
\hline \& \& \& Min \& Typ \& Max \& \\
\hline \[
\begin{aligned}
\& \mathrm{v}_{\mathrm{CCP}} \\
\& \mathrm{I}_{\mathrm{CCP}} \\
\& \hline
\end{aligned}
\] \& \(\mathrm{V}_{\mathrm{CC}}\) supply (program) Icc limit program \& \[
\begin{gathered}
I_{C C P}=550 \mathrm{~mA} \text { min } \\
v_{C C P}=+8.50 \pm .25 \mathrm{~V}
\end{gathered}
\] \& \[
\begin{aligned}
\& 8.25 \\
\& 550
\end{aligned}
\] \& 8.5 \& \[
\begin{aligned}
\& 8.75 \\
\& 1,000 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{IH}} \\
\& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Input voltage } \\
\& \text { High } \\
\& \text { Low } \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{gathered}
2.4 \\
0
\end{gathered}
\] \& 0.4 \& \[
\begin{aligned}
\& 5.5 \\
\& 0.8
\end{aligned}
\] \& V \\
\hline \[
\begin{aligned}
\& I_{I H} \\
\& I_{I L}
\end{aligned}
\] \& Input Current High Low \& \[
\begin{gathered}
\mathrm{V}_{\mathrm{iH}}=+5.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}
\end{gathered}
\] \& \& \& \[
\begin{array}{r}
50 \\
-500 \\
\hline
\end{array}
\] \& \(\mu \mathrm{A}\) \\
\hline \(V_{\text {FSP }}\)
\(V_{\text {FSV }}\)
\(\mathrm{I}_{\mathrm{FSP}}\)
\(\mathrm{t}_{\mathrm{V}}\)
\(\mathrm{T}_{\mathrm{RS}}\)
\(\mathrm{T}_{\mathrm{PS}}\)
\(\mathrm{t}_{\mathrm{p}}\)
\(\mathrm{t}_{\mathrm{D}}\)
\(\mathrm{T}_{\mathrm{R}}\)
\(\mathrm{T}_{\mathrm{PVB}}\)
\(\mathrm{P}_{\mathrm{DC}}\)
\(\mathrm{F}_{\mathrm{L}}\)
\(\mathrm{V}_{\mathrm{S}}\) \& \begin{tabular}{l}
Fuse supply (program) \({ }^{3}\) \\
Fuse supply (idle) \\
Fuse supply current limit \\
Verify time \\
Reset pulse width \\
Preset pulse width \\
Programming pulse width \\
Pulse sequence delay \\
Fuse pulse rise time \\
Program-Verify time per link \\
Programming duty cycle \\
Fusing attempts per link \\
Verify threshold \({ }^{4}\)
\end{tabular} \& \begin{tabular}{l}
\[
I_{\text {FSP }}=300 \pm 25 \mathrm{~mA}
\] \\
Transient or steady state
\[
\begin{aligned}
\& \mathrm{I}_{\mathrm{FSV}}=1 \mathrm{~mA} \max \\
\& \mathrm{~V}_{\mathrm{FSP}}=+17 \pm 1 \mathrm{~V}
\end{aligned}
\]
\[
10 \% \text { to } 90 \%
\]
\end{tabular} \& \[
\begin{gathered}
\hline 16.0 \\
\\
1.25 \\
275 \\
1 \\
1 \\
1 \\
0.3 \\
10 \\
10
\end{gathered}
\] \& 17.0
1.5
300

0.4

0.6 \& $$
\begin{gathered}
18.0 \\
1.75 \\
325 \\
\\
0.5 \\
50 \\
\\
100 \\
2 \\
1.6 \\
\hline
\end{gathered}
$$ \& V

V
mA
$\mu \mathrm{~s}$
$\mu \mathrm{~s}$
$\mu \mathrm{~s}$
ms
$\mu \mathrm{~s}$
$\mu \mathrm{~s}$
ms
$\%$
cycle
V

\hline
\end{tabular}

NOTES

1. These are specifications which a Programming System must satisfy in order to be qualified by Signetics.
2. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu f$ capacitor to reduce voltage spikes.
3. Care should be taken to ensure that the voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
4. V_{S} is the sensing threshold of the FPLA output voltage for a programmed link. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.

FIELD PROGRAMMABLE LOGIC ARRAY (18X32X10) 82S152 (O.C.)/82S153 (T.S.)

INTEGRATED FUSE LOGIC SERIES 20
ARRAY PROGRAM-VERIFY SEQUENCE (TYPICAL)

NOTE

1. (P) and (N) represent respectively a programmed and non-programmed fuse, corresponding to logic " 1 " or " 0 " output voltage levels.

TWX TAPE CODING (LOGIC FORMAT)
The FPLA Program Table can be sent to Signetics in ASCII code format via airmail using any type of 8 -level tape (paper, mylar,
fanfold, etc.), or via TWX: just dial (910) 339-9283, tell the operator to turn the paper puncher on, and acknowledge. At the end of transmission instruct the operator to send tape to Signetics Order Entry.

INTEGRATED FUSE LOGIC SERIES 20
A number of Program Tables can be sequentially assembled on a continuous tape as follows, however, limit tape length to a roll of 1.75 inch inside diameter and 4.25 inch outside diameter.

A. The MAIN HEADING at the beginning of tape includes the following information, with each entry preceded by a (\$) character, whether used or not:

1. Customer Name \qquad 4. Purchase Order No \qquad
2. Customer TWX No. \qquad 5. Number of Program Tables
3. Date
4. Total Number of Parts
B. Each SUB HEADING should contain specific information pertinent to each Program Table as follows, with each entry preceded by a (\$) character, whether used or not:
5. Signetics Device No. \qquad 4. Date
6. Program Table No. \qquad 5. Customer Symbolized Part No.
7. Revision \qquad 6. Number of Parts
C. Program Table data blocks are initiated with an STX character, and terminated with an ETX character. The body of the data consists of output polarity, product term, and output information separated by appropriate identifiers in accordance with the following format:

Entries for the Data Field are determined in accordance with the following tables:

I, B (I)	
Inactive $\mathbf{0}$ I, B H I, B L Don't Care -	

(AND)

INPUT AND I/O VARIABLE FOR ALL CONTROL TERMS USED

END OF dATA TEXT (CONTROL C) $\frac{1}{B_{0}} \frac{1}{\text { ETX }}$

B (0)

Active	A
Inactive	\bullet

(OR)

B (0)

High	H
Low	L
(POL.)	

Preview

DESCRIPTION

The 82S 154/155/156/157/158/159 are Open Collector and Tri-state registered logic elements combining AND/OR gate arrays with clocked J/K flip-flops, optionally convertible to D-type via a "foldback" inverting buffer. They all have similar organization, featuring respectively 4, 6, or 8 registered $1 / O$ outputs (F), in conjunction with 8,6 , or 4 bidirectional $1 / O$ lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 AND gates and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (\bar{C}). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

On chip T/C buffers couple either True (I, B, Q) or Complement ($\overline{\bar{l}}, \overline{\mathrm{~B}}, \overline{\mathrm{Q}}, \overline{\mathrm{C}}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. One group of OR gates drives bidirectional I/O lines (B), whose output polarity is individually programmable thru a set of EX-OR gates for implementing AND-OR or AND-NOR logic functions. Another group drives the J-K inputs of all flip-flops, as well as asynchronous Preset and Reset lines (P, R), (except the 82S 158 / 159, where AND functions are provided).
All flip-flops are positive edge trigger and can be used as input, output, or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).

The 82SXXX are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
FLIP-FLOP TRUTH TABLE

$v_{\text {cc }}$	O.E.	L CK P	P	R	J		0	F
	H							H/HI-Z
1	L	X \times L	L	X \times	X	X	L	H
+5	$\begin{aligned} & L \\ & L \end{aligned}$	X X X X		1 H	X	X	H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{ll}\text { L } & \text { I } \\ \text { L } & \\ \text { L } & \\ \text { L }\end{array}$	L	$\begin{array}{ll} L & l \\ L & \mathbf{l} \\ \mathrm{~L} & \mathrm{H} \\ \mathrm{~L} & \mathrm{H} \end{array}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	H L H	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \overline{\mathrm{Q}} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Q}} \\ & \mathbf{H} \\ & \mathrm{~L} \\ & \mathbf{Q} \end{aligned}$
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{ll} H & 1 \\ H & 1 \end{array}$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H}^{*} \\ & \mathrm{~L}^{*} \end{aligned}$
	+10V	$\begin{array}{\|l\|} \hline x \end{array} 1$	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	H	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathbf{H}^{* *} \\ & \mathbf{L}^{* *} \end{aligned}$

NOTES

1. Positive Logic:
$J / K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots . T_{47}$
$T_{n}=\bar{C} \bullet\left(I_{0} \bullet I_{1} \bullet I_{2} \ldots\right) \bullet\left(Q_{0} \bullet Q_{1} \ldots\right) \bullet\left(B_{0} \bullet B_{1} \bullet \ldots\right)$
2. \ddagger denotes transition from Low to High level.
3. $X=$ Don't Care
4. * $=$ Forced at F_{n} pin for loading J / K flip-flop in $1 / 0$ mode. L must be enabled, and other active T_{n} disabled via steering input(s) I, B, or \mathbf{Q}.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. * = Forced at F_{n} pin.to load J/K flip-flop independent of program code (Diagnostic mode).

INTEGRATED FUSE LOGIC

All devices are available in a 20 -pin, slim line package. For the commercial temperature range ($0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$) specify N 82 SXXXN or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82SXXX F only.

FEATURES

- Field programmable (Ni-Cr link)
- 4 Inputs
- 32 AND gates
- 21 OR gates
- Bidirectional I/O lines: 82S154/155 8

82S156/157-6
82S158/159-4

- Bidirectional Registers:

82S154/155-4
825156/157-6
82S158/159-8

- J/K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active high or low outputs
- Programmable $\overline{\text { O.E. control }}$
- Positive edge trigger clock
- Power-on reset of all flip-flops ($F_{n}=$ "1")
- Clock frequency: N82SXXX: 15 MHz (max) S82SXXX: MHz (max)
- Input loading:

N82SXXX: $-100 \mu \mathrm{~A}$ (max)
S82SXXX: $\mathbf{- 1 5 0 \mu A}$ (max)

- Power dissipation: 650mW (typ)
- TTL Compatible

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

SERIES 20

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

Preview

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	CLOCK The clock input to all flip-flops. A Low-to-High transition on this line is necessary to update the contents of flip-flops.	Active-High
2-5	10-3	INPUTS Fixed logic inputs to the AND array	Active-High/Low (user defined)
6-9	B_{0-3}	STATIC I/O PINS Bidirectional external inputs to the AND array, or outputs from the OR array, programmable via control gates D_{0-3}.	Active-High/Low (user defined)
11	ठ.E.	OUTPUT ENABLE Provides output enable functions E_{A} and E_{B} to flip-flop banks F_{0-3} and F_{4-7} respectively. May be programmed for external control, enable, or disable of flip-flop outputs.	Active-Low
12, 13	$\left(B_{n} / F_{n}\right)^{*}$	STATIC OR REGISTERED I/O PINS Bidirectional static or registered I/O pins, dependent on device configuration.	Active-High/Low (user defined)
14-17	$\left(F_{n}\right)^{*}$	REGISTERED I/O PINS Bidirectional flip-flop outputs or direct load inputs, selected via control gates L_{A-B} in conjunction with E_{A-B} output enables.	Active-Low
18, 19	$\left(B_{n} / F_{n}\right)^{*}$	STATIC OR REGISTERED I/O PINS Same as 12, 13.	Active-High/Low (user defined)

(*) Value of (n) is device dependent. Refer to circuit diagrams.

FLIP-FLOP FUNCTION

The output flip-flops (F_{N}) are programmable via the Flip-Flop Control Term (F_{C}). A tri-state inverter is positioned between the $\mathrm{J}-\mathrm{K}$ inputs as shown. If (Fc) is programmed as active (A), then F_{C} controls the output state of the tri-state inverter.

When $F_{C}=$ High, then flip-flop becomes a J-K type. When $\mathrm{F}_{\mathrm{C}}=$ Low, the flip-flop becomes a D-type.
When the F_{C} is programmed as a - (i.e., disabled), the flip-flop is permanently defined as a J-K type.

LOGIC FUNCTION

COMBINATORIAL

Typical Product Term:

$$
\text { at } D_{Y}=" 1 "
$$

$$
\begin{aligned}
P_{n}= & A \bullet \bar{B} \bullet \bar{C} \bullet D \bullet \bar{E} \bullet \ldots \\
Y & =P_{0}+P_{1}+P_{2}+\ldots \\
Y & =\overline{P_{0}+P_{1}+P_{2}+\ldots} \\
& =\bar{P}_{0} \cdot \bar{P}_{1} \bullet \bar{P}_{2} \bullet \ldots
\end{aligned}
$$

Typical Logic Function: At link $(X)=$ Open

$$
\text { At link }(X)=\text { Closed }
$$

SEQUENTIAL (J/K type)
Typical State Transition:

NOTES

1. For each of the combinatorial outputs, either function Y (active-high) or $\overline{\mathrm{Y}}$ (active-low) is available, but not both. The desired output polarity is programmed via link (X).
2. Y, A, B, C, etc. are user defined connections to fixed inputs (1), bidirectional pins (B), "foldback" register outputs (\mathbb{Q}), and Complement Array (\bar{C}).
3. Sequential state transitions occur on the positive edge of clock. External flip-flop outputs are given by $F_{n}=\bar{Q}_{n}$.
4. For D-type flip-flops, $K_{n}=J_{n}$. For T-type flip-flops, $K_{n}=J_{n}$.

$$
\begin{aligned}
& \text { SET } \mathbf{Q}_{0}: J_{0}=\left(\bar{Q}_{2} \bullet \mathbf{Q}_{1} \bullet \bar{Q}_{0}\right) \bullet \bar{A} \bullet \bar{B} \cdot C \ldots \\
& K_{0}=0 \\
& \text { RESET } Q_{1}: J_{1}=0 \\
& K_{1}=\left(\bar{Q}_{2} \bullet Q_{1} \bullet \bar{Q}_{0}\right) \bullet \bar{A} \bullet \bar{B} \bullet C \ldots \\
& \text { HOLD } Q_{2}: J_{2}=0 \\
& K_{2}=0
\end{aligned}
$$

FIELD PROGRAMMABLE LOGIC SEQUENCER (16X32X12)

82S154/6/8 (O.C.)/82S155/719 (T.S.)

Preview	INTEGRATED FUSE LOGIC SERIES 20

FPLS LOGIC DIAGRAM
82S156/157

Preview
ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER		RATING		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	Vdc
$V_{\text {IN }}$	Input voltage		+5.5	Vdc
Vout	Output voltage		+5.5	Vdc
IN	Input currents	-30	+30	mA
lout	Output currents		+100	mA
	Temperature range			${ }^{\circ} \mathrm{C}$
$T_{\text {A }}$	Operating			
	N82S154/5/6/7/8/9	0	+75	
	S82S154/5/6/7/8/9	-55	+125	
TSTG	Storage	-65	+150	

INTEGRATED FUSE LOGIC SERIES 20
THERMAL RATINGS

TEMPERATURE	MILI-	COM- TARY
MER-		
CIAL		

DC ELECTRICAL CHARACTERISTICS N82S $154 / 5 / 6 / 7 / 8 / 9: 0^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S $154 / 5 / 6 / 7 / 8 / 9:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	N82S154/5/6/7/8/9			S82S 154/5/6/7/8/9			UNIT	
		Min	Typ ${ }^{2}$	Max	Min	Typ ${ }^{2}$	Max			
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	```Input voltage }\mp@subsup{}{}{3 High Low Clamp3,4```		$\begin{gathered} V_{C C}=\text { Max } \\ V_{C C}=M \operatorname{Min} \\ V_{C C}=M i n, I_{N}=-18 \mathrm{~mA} \end{gathered}$	2	-0.8	$\begin{array}{r} 0.85 \\ -1.2 \end{array}$	2	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V
V_{OH} VOL V_{OL}	Output voltage High (82S 155/7/9)3,5 Low ${ }^{3,6}$ Low, ${ }^{3}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{IOH} & =-2 \mathrm{~mA} \\ \mathrm{IOL} & =10 \mathrm{~mA} \\ \mathrm{IOL} & =10 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.5	2.4	0.35	0.5	V	
$\begin{aligned} & \mathbf{I} \mathbb{H} \\ & \mathbf{I L}^{\prime} \\ & \mathbf{I L L}^{2} \end{aligned}$	Input current High Low Low (CK input)	$\begin{aligned} & V_{\mathbb{N}}=5.5 \mathrm{~V} \\ & V_{\mathbb{N}}=0.45 \mathrm{~V} \\ & V_{\mathbb{I N}}=0.45 \mathrm{~V} \end{aligned}$		$\begin{gathered} <1 \\ -10 \\ -50 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ -100 \\ -250 \end{gathered}$		$\begin{gathered} <1 \\ -10 \\ -50 \end{gathered}$	$\begin{gathered} 50 \\ -150 \\ -350 \end{gathered}$	$\mu \mathrm{A}$	
lolk IO(OFF) los	Output current Leakage ${ }^{7}$ Hi-Z state ($82 \mathrm{~S} 155 / 7 / 9)^{7}$ Short circuit (82S 155/7/9)4,6,7	$\begin{aligned} \mathrm{V}_{\text {CC }} & =\mathrm{Max} \\ \mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{C} \end{aligned}$	-20	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ -40 \\ -70 \end{gathered}$	-15	$\begin{gathered} 1 \\ 1 \\ -1 \end{gathered}$	$\begin{gathered} 60 \\ 60 \\ -60 \\ -85 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA	
ICC	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{9}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		130	155		130	155	mA	
$\begin{aligned} & \mathrm{C}_{\text {IN }} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Capacitance ${ }^{7}$ Input Output	$\begin{aligned} \mathrm{v}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }} & =2.0 \mathrm{~V} \\ \mathrm{v}_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$			$\begin{gathered} 8 \\ 15 \end{gathered}$		pF	

NOTES

1. Stresses above those listed under "Absolute Maximum

Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. All voltage values are with respect to network ground terminal.
4. Test one at a time.
5.
7. Measured with $V_{I H}$ applied to $\overline{\mathbf{O . E}}$.
8. Duration of short circuit should not exceed 1 second.
9. ICC is measured with the $\overline{\mathrm{O} . \mathrm{E} \text {. input grounded, all other }}$ inputs at 4.5 V and the outputs open.

Preview

INTEGRATED FUSE LOGIC SERIES 20
AC ELECTRICAL CHARACTERISTICS $\mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$
$\mathrm{N} 82 \mathrm{~S} 154 / 5 / 6 / 7 / 8 / 9: 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
S82S $154 / 5 / 6 / 7 / 8 / 9:-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

	PARAMETER	то	FROM	TEST CONDITIONS	N82S154/5/6/7/8/9/			S82S154/5/6/7/8/9			UNIT
					Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
	Pulse width			$C_{L}=30 \mathrm{pF}$							ns
$\mathrm{T}_{\text {CKH }}$	Clock ${ }^{2}$ high	CK-	CK+		25	20			20		
TCKL	Clock low	CK+	CK-		25	20			20		
TCKP	Period	CK+	CK+		65	50			50		
TPRH	Preset/Reset pulse	(1,B)+	($1, B$)-		25	20			20		
	Set up time Input Input (through F_{n}) Input (through Complement array) ${ }^{4}$	$\begin{aligned} & \text { CK+ } \\ & \text { CK }+ \\ & \text { CK }+ \end{aligned}$	$\begin{gathered} (1, B) \pm \\ F \pm \\ (1, B) \pm \end{gathered}$		$\begin{aligned} & 35 \\ & 10 \\ & 45 \end{aligned}$	$\begin{gathered} 30 \\ 5 \\ 40 \end{gathered}$		$\begin{gathered} 30 \\ 5 \\ 40 \end{gathered}$			ns
TIS1											
TIS2											
TIS3											
	Hold time Input		$\begin{gathered} (1, B) \pm \\ F \pm \end{gathered}$								ns
$\mathrm{T}_{\mathrm{H} 1}$		CK+				-10	0		-10		
$\mathrm{T}_{\mathrm{H} 2}$		CK+				-5	0		-5		
TCKO ToE 1 TOD1 TPD TOE2 TOD2 TPRO TPPR	Propagation delay Clock Output enable Output disable ${ }^{3}$ Output Output enable Output disable ${ }^{3}$ Preset/Reset Power-on preset	$F \pm$ F- F+ $B \pm$ $B \pm$ B+ F \pm F-	$\begin{aligned} & \mathrm{CK}+ \\ & \mathrm{O.E.} \end{aligned}$								ns
						25	30		25		
						20	25		20		
			O.E. +	$C_{L}=5 \mathrm{pF}$		20	25		20		
			$(1, B) \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	40		35		
			(1,B) +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	40		35		
			($1, B$)-	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		35	40		35		
			($1, \mathrm{~B}$) +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		50	65		50		
			$\mathrm{V}_{\mathrm{CC}}+$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		0	10		0		

NOTE

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 n s$
3. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
4. When using the Complement Array $\mathrm{T}_{\mathrm{CKP}}=75 \mathrm{~ns}(\mathrm{~min})$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORM
INPUT FULSES

Preview

TIMING DIAGRAMS

INTEGRATED FUSE LOGIC SERIES 20
MEMORY TIMING DEFINITIONS
TCKH Width of input clock pulse.
TCKL Interval between clock pulses.
TCKP Clock period.
TPRH Width of preset input pulse.
TIS1 Required delay between beginning of valid input and positive transition of clock.

TIS2 Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.

TIH1 Required delay between positive transition of clock and end of valid input data.

TIH2 Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.

TCKO Delay between positive transition of clock and when Outputs become valid (with О.E. low).

TOE1 Delay between beginning of Output Enable Low and when Outputs become valid.

TOD1 Delay between beginning of Output Enable High and when Outputs are in the off state.

TPD Propagation delay between combinational inputs and outputs.

TOE2 Delay between predefined Output Enable High, and when combinational Outputs become valid.
TOD2 Delay between predefined Output Enable Low and when combinational Outputs are in the off state.
TPRO Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

TPPR Delay between V_{CC} (after poweron) and when flip-flop outputs become preset at " 1 " (internal Q outputs at "0").

FIELD PROGRAMMABLE LOGIC SEQUENCER

Preview

INTEGRATED FUSE LOGIC SERIES 20
TIMING DIAGRAMS (Cont'd)

FLIP-FLOP INPUT MODE

Preview

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic Programming equipment.

With Logic programming, the AND/OR/EX-

OR input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Tables on the following pages.

INTEGRATED FUSE LOGIC SERIES 20

In this Table, the logic state or action of all I/O, control, and state variables is assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:
"AND" ARRAY = (I), (B), (Qp)

"COMPLEMENT" ARRAY = (C)

Signetics

Preview

INTEGRATED FUSE LOGIC SERIES 20
"OR" ARRAY - (S or B), (P), (R)

"EX-OR" ARRAY - (B)

"O.E." ARRAY - (E)

notes

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate (T, L, P, R, D) $)_{n}$ will be unconditionally inhibited if any one of the I, B, or Q link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
4. Although links in the $\overline{\mathrm{O} . E}$. array are isolated from each other, $\mathrm{E}_{\mathrm{n}}=0$ and $\mathrm{E}_{\mathrm{n}}=\bullet$ are logically equivalent. But if register bank A is enabled with $E_{A}=0$, then E_{B} can still be controlled (and vice versa).

82S154/6/8 (O.C.)/82S155/7/9 (T.S.)

INTEGRATED FUSE LOGIC SERIES 20

82S154/155

FPLS PROGRAM TABLE (Logic)
82S156/157

INTEGRATED FUSE LOGIC
SERIES 20
FPLS PROGRAM TABLE (Logic)

Field-programmable arrays: powerful alternatives to random logic

Bridging design gap, TTL-compatible logic family
is described in Part 1 of a two-part article

by Napoleone Cavlan and Stephen J. Durham, Signetics Corp., Sunnyvale, Calif.
\square With the steady growth of integrated circuit technologies, hardly a day goes by without the news that yet another chip has made scores of discrete TTL packages obsolete. Yet, though large-scale integration is packing entire system architectures onto a few chips, it is still impossible to complete a design without some discrete logic to hold the framework together.

The increase of LSI has thus created the need for efficient ways to bridge the gaps between large functional islands. Because of complexity, performance, or uniqueness, these bridges have evolved into nontrivial random-logic configurations that still rely on clusters of small- and medium-scale integrated circuits, whose fixed functions never quite fit the problem. Now Signetics

Corp. has attempted to meet the need with a fieldprogrammable logic family.

The family spans three ranges of complexity: at the low end are the field-programmable gate arrays (FPGAs); covering the middle range are the more complex logic arrays (FPLAs); and finally there are the logic sequencers (FPLSS). These last, most complex elements have built-in registers and enable the designer to proceed from state diagram directly to hardware. The family, summed up in the table on p. 110, is compatible with TTL and operates from a +5 -volt supply.

The devices provide a powerful and compact alternative to random logic, replacing discrete gates, wires, and connectors, with significant savings in board space,

FIELD-PROGRAMMABLE LOGIC FAMILY									
\%				E 0 0 0 0 0		$\begin{aligned} & \text { X } \\ & \text { E. } \\ & \underline{U} \\ & \text { U्U } \end{aligned}$			¢
FPGA	- AND/NAND	$\begin{aligned} & \hline 82 S 102 \\ & 82 S 103 \\ & \hline \end{aligned}$	16	$\begin{aligned} & 9 \mathrm{OC} \\ & 9 \mathrm{TS} \\ & \hline \end{aligned}$	yes	$\begin{aligned} & 170 \\ & \mathrm{~mA} \end{aligned}$	35 ns	now	N
FPLA	$\begin{aligned} & \text { - AND-OR/ } \\ & \text { NOR } \end{aligned}$	$\begin{aligned} & 82 S 100 \\ & 82 S 101 \end{aligned}$		$\begin{aligned} & 8 \text { TS } \\ & 80 C \end{aligned}$			50 ns	now	N, F
	- AND-OR - Self-enable output	$\begin{aligned} & 82 S 106 \\ & 82 S 107 \end{aligned}$		$\begin{aligned} & 8 \mathrm{OC} \\ & 8 \mathrm{TS} \end{aligned}$	по		70 ns	4079	N
FPLS	- AND-OR - Complement array -6.bit state register - 8-bit output register	$\begin{aligned} & 82 S 104 \\ & 82 S 105 \end{aligned}$		$80 C$ $8 \text { TS }$	yes ${ }^{(3)}$		90 ns	4079	N, F
${ }^{(1)} \mathrm{OC}=$ open collector $\quad \mathrm{TS}=$ three-state ${ }^{(2)} \mathrm{N}=$ plastic $\quad \mathrm{F}=$ Cerdip ${ }^{(3)} \overline{\mathrm{C}} \overline{\mathrm{E}}$ input may be optionally programmed as preset.									

power, and cost. Moreover, since all devices can be programmed and modified in the field (as programmable read-only memories can) using readily available programming equipment, the logic can be changed to meet new customer requirements or specifications, or to recover quickly from design errors-after delivery to the field - without expensive printed-circuit-board retooling.

Programming options

Depending on their complexity, members of the programmable logic family have internal AND gates, OR gates, S-R flip-flops, true or complement buffers, and exclusive-OR (EXOR) gates. Those elements can be combined to perform single-level, double-level, and sequential logic functions - all by blowing fuse links.

There are other fuse options in output structures for the entire logic family, too, since either active-high or active-low functions can be generated without additional hardware or signal delay. Finally, the family is well suited to bus-organized environments such as microprocessor systems, since all its members offer, in addition to open-collector outputs, three-state outputs whose signals are in the high-impedance state until activated by a chip-enable input.

All the logic elements perform standard logic functions that can be represented by augmenting conventional logic symbols with a few new definitions so that they can represent multiple-input gates (see "How the FPLF defines logic," p. 111).

The gate arrays

The simplest member in the family is the fieldprogrammable gate array, which performs single-level logic functions. The equivalent logic diagram for the FPGA is shown in Fig. 1. The two gate arrays currently available are open-collector (82 S 102) and three-state output (82 S 103) versions of the same array, which comprise nine NAND gates fuse-selectively connected to 16 common inputs by true/complement buffers.

Fuses in the FPGAs allow individual outputs to be complemented to AND, so that by proper manipulation of the input polarities, and by using De Morgan's theorem, AND, OR, NAND, and NOR logic functions can be easily implemented. The parts thus serve as universal logic elements that can be tailored to applications requiring random logic, as in fault monitors, code detectors, and address decoders for microcomputer systems with memory-mapped I/O.

The logic arrays

Devices performing two-level combinational logic functions are grouped into the field-programmable logic array (FPLA) category. These elements are a step up in complexity from gate arrays, capable of generating ANDOR, AND-NOR, and their De Morgan equivalents. There are at present two array types in the FPLA family, each with either open-collector or three-state outputs.

The equivalent logic diagram of the first array type, the open-collector output 82 S 101 (or three-state output 82S100), is shown in Fig. 2. The first level of logic in the device is made up of 48 AND gates fuse-connectable to any of 16 common inputs by true/complement buffers. The second logic level consists of eight OR gates-one per device output-each capable of being selectively coupled to any of the 48 gates. Finally, fusing options are included for generating true or complementary outputs.

The second logic array type, the $82 \mathrm{~S} 106 / 107$, has nearly the same organization as the first. The exception is that an additional OR gate with fixed inputs has been added to generate an internal enable command for the output structure. That self-enable is generated whenever any of the AND gates become logically true, which occurs when the external input code matches the internal AND-gate program. In the absence of such a match, all device outputs are unconditionally disabled. The selfenable signal is available externally-the chip-enable input ($\overline{C E}$) pin on the $82 S 100 / 101$ becomes an opencollector output called $\overline{\text { FLAG. }}$. Because of this feature, the 82S106/107 can be viewed as a content-addressable programmable read-only memory, ideally suited to modifying data in large ROMs, as will be shown in the second part of this article.

Shared gates

Both array types benefit from the second level of logic. The advantage here is that the AND gates can be shared-OR gates can couple with up to 48 AND gates. Also, a key advantage of this arrangement over singlelevel logic is that it allows editing-disconnecting invalid AND terms from the OR array and replacing them with spare AND gates (Fig. 3).

Open-collector versions of both gate-array and logicarray devices can form wired-AND outputs in order to expand the number of AND gates available on a single chip. This solves the problem that is posed by applications exceeding the resources of a single device. The only restriction is that the expanded outputs have to be programmed to be active-low.

By far the most powerful members of the family are the field-programmable logic sequencers (FPLS), which add on-chip registers to arrays of AND and OR gates. The

How the FPLF defines loglc

For the most part, schematic representation of logic in the field-programmable logic family follows conventional nota-tion-the devices include AND, OR, and exclusive-OR (EXOR) gates, as well as set-reset (S-R) flip-flops and true or complement buffers. To simplify the representation of fuse-link programmabiity, however, the FPLF schematics use a matrix arrangement with cross-point coupling to represent intact fuse links.
For example, (a) in the figure shows a typical input and AND gate of a gate array. The square "solder dot" represents a fixed internal connection. Both the line from input A and the line from the output of the inverter intersect the vertical input line of the AND gate; in actuality, fuse links make both connections. An intact fuse link is represented by a round solder dot. Blowing either of the fuse links will determine whether the input to the AND gate is A, or its complement, \bar{A}. (Leaving both fuses intact holds the output of the AND low, whereas blowing both fuses results in a "don't care" situation, an output that is independent of either input.)

Extending the matrix and cross-point coupling approach a step further, (b) shows the configuration of a two-input AND gate. Since the input to the AND gate crosses the four lines of inputs A and B as well as their complements, the gate serves as a four-input AND while appearing to be a single-input gate. Since the members of the field-programmable logic family have 16 inputs intersecting each AND gate, the gates are actually 32-input devices; the number of inputs used is determined finally by the number of fuses left intact. Thus, in (b), solder dots (or

intact fuse links) create the logical equation $F=\bar{A} B$.
The exclusive-OR gates on all outputs of the logic-family devices allow programming for either active-high or active-low output signals. As shown in (c), a fuse link grounding one of the two inputs of an EXOR gate results in an active-high output; blowing the fuse results in an output that is active-low.
The details of the fusing mechanisms are shown in (d). AND gates have a fuse in series with a Schottky diode, while OR gate fusing uses an npn transistor. The fuses for the true/complement input buffers and active-high/ac-tive-low outputs are in series with resistors.
The analogy between fixed and programmed logic is best shown by the examples in the table. The first example is typical of the single-level logic to which the gate array is applicable. The two-level logic of the second example is satisfied by the logic arrays. Finally, the registered state machine that executes the state transition of the third example is a candidate for the field-programmable logic sequencers.

sequencers are actually self-contained state machines, since they can be programmed to perform any synchronously clocked logic sequence.
State machines, whose general structure is shown in Fig. 4a, usually take two forms: Moore machines, in
which the output is a function of the present state only; and Mealy machines, whose output is a function of both the present state and the present input.

Figure 4 b shows the basic architecture of the opencollector output 82S104 (or three-state output 82S105),

1. Gate array. The simplest device in Signetics' field-programmable logic is the gate array, capable of single-level logic. Any of 16 inputs can connect to nine NAND gates by true/complement buffers. Since outputs can be complemented to AND, manipulating De Morgan's theorem makes the device a universal logic element.
the first members of the FPLS family. With the FPLS, a user may program any logic sequence that can be expressed as a series of jumps between stable states triggered by a valid input condition I at clock time t. The number of states in the sequence depends on the length and complexity of the desired algorithm.
A typical state diagram is shown in Fig. 5. The state from which a jump originates is called the present state P, and that at which it terminates is the next state N. A jump always causes a change in state, but may or may not cause a change in the machine's output F.

2. Editing. The logic array's programmable OR gates allow sharing of AND gates, as with gate B at left. The OR array also allows easy editing of logic statements when design changes are made; note how spare gate C at right was used to modify output F_{1} to $F_{1}{ }^{\prime}$.

3. Double deep. The field-programmable logic array carries out two-level combinational logic. The 16 inputs couple to 48 AND gates, which in turn connect to any of nine OR gates. Either true or complement outputs are provided.

All states are arbitrarily assigned and stored in the state register, where the clock and next-state information from the combinational logic are the inputs. State jumps can occur only when transition terms are true. A transition term is, by definition, the logical and function of the clock, present state, and valid inputs; hence, $\mathrm{T}_{\mathrm{n}}=$ $\mathrm{t} \cdot \mathrm{I} \cdot \mathrm{P}$. However, since the clock is actually applied to the state register, it may be removed from the equation. When T_{n} is true, a control signal is generated that, at clock time t, forces the contents of the state register from \mathbf{P} to \mathbf{N} and, if necessary, changes the contents of the output register.

FPLS organization

The architecture of the $82 \mathrm{~S} 104 / 105$ is a natural extension of the static logic structure of the FPLA. It accepts 16 input variables and provides eight output functions. It has a 6 -bit state register and an 8 -bit output register; all the internal registers are automatically preset to logic 1 when power is applied. The FPLS provides for 48 transition terms, which can be selected to be either true or complementary.
A look at the equivalent logic diagram of the FPLS (Fig. 6) shows its extension of the static FPLA. The AND and OR gate arrays of the latter have been expanded to control the set and reset (S and R) inputs of six flip-flops (the state register) and to monitor the register's contents over an internal feedback path. Also, an independent 8 -bit output register has been added to store output commands generated during state transitions and to hold the output constant during state sequences involving no output changes.
The AND array comprises 48 positive AND gates, each with 44 input connections from a set of true/complement buffers. The AND gates are used to form logic products of 16 external inputs (I_{0} to I_{15}) with six present-state (P) inputs fed back from the state register. The gates are

4. State machine. A state machine (a) takes either a Mealy or Moore form. The architecture of the field-programmable logic sequencer (b) is that of a self-contained Mealy machine, where the output is a function of both the present state and the present input.
therefore called transition terms because, like the transition terms in state diagrams, they issue next-state commands.

The OR array contains 28 positive OR gates, each with 48 input connections to all 48 AND gates. The outputs of the ORs drive the set and reset inputs of the 14 S-R flip-flops that are state and output registers.

The FPLS is made still more flexible by a complement array comprising a single 48 -input OR gate that drives an inverter, which then feeds back into the AND array. The complement array forms a bridge between the AND and OR arrays for generating NAND functions of input-jump conditions; the user programs it in such a way as to suit each transition term.

De Morgan's theorem

De Morgan's theorem to reduce logic terms can be easily implemented with the complementary array so that the most use is made of the and gates. For example, if the transition term is $T=(Q)(\bar{X}+\bar{Y}+\bar{Z})$, where Q is the output of the state register and $\overline{\mathbf{X}}, \overline{\mathrm{Y}}$, and $\overline{\mathrm{Z}}$ are inputs, three AND gates in the FPLS are required. However, De Morgan's theorem changes the transition term to $T=(Q) \overline{X Y Z}$, which requires only two AND gates.

The complementary array is also an efficient means of aborting a clocked sequence in the absence of valid jump conditions. As Fig. 7 shows, considerable minimization

5. State diagram. Example of a state diagram (a) with four statesA, B, C, and D. $I_{1}-I_{3}$ are jump conditions, which trigger output changes $F_{1}-F_{3}$. A state change (b) gives rise to transition term T_{n}, which is logical AND of clock t, input I, and present state P.

6. Sequencer. The field-programmable logic sequencer has 16 outputs, 48 AND gates, and 28 OR gates, plus 14 flip-flops that serve as state and output registers. Either an asynchronous preset input or an output-enable input is available as a programming option.
of and gates is possible when the detection of valid jumps involves many complements of jump functions, especially as the number of variables increases.

All clocked S-R flip-flops that make up the state and output registers offer the option of asynchronous presetting to all 1 s . The 64 -state total that can be represented by the state register is adequate in most cases to chart algorithms involving fewer than 48 nonredundant transitions. The register accepts next-state commands (N) from the OR array and supplies present-state information (P) to the AND array.

The output register is similar to the state register, except it has eight states for servicing eight output functions. It accepts the next-output commands $\mathrm{F}_{0}-\mathrm{F}_{7}$

7. Complementary. Use of AND gates in the FPLS is greatly reduced by the complement array, a single 48 -input OR gate driving an inverter that feeds back into the AND array. In this example, the default jump from state S_{0} to S_{3} is reduced from three AND gates to a single gate T_{3}.

8. Timing. Minimum clock duration for the FPLS is 20 nanoseconds. Minimum width of preset input, which overrides clock, is 40 ns . Normal clocking resumes with the first full clock pulse following a negative clock transition after the trailing edge of the present signal.
from the OR array and then reflects its contents to the device outputs through the buffered Q outputs of each of the flip-flops. Also, as an added feature to enhance fault isolation, driving input I_{0} to +10 volts will route the contents of the state register ($\mathrm{P}_{0}-\mathrm{P}_{5}$) directly to outputs $\mathrm{F}_{0}-\mathrm{F}_{5}$ without any alteration of the contents of the output register. However, the feature is not recommended for use in a normal mode of operation (as in a Moore machine). This is because it increases the device's maximum current by 5 to 10 milliamperes and thereby lowers the maximum ambient temperature rating of the package by approximately $5^{\circ} \mathrm{C}$.
As a final programming option in the 82S104/105, a pin can function as either an active-high asynchronous preset (pr) or an active-low output enable ($\overline{\mathrm{OE}}$). The output-enable function forces all outputs to logic 1 (or to
high impedance in the 82S105) and is normally used when the device is sharing a bus. It does not inhibit clocking of the internal registers. The asynchronous preset option, on the other hand, is useful when the logic sequence requires an immediate state-independent return to initial conditions. The state register and output register can also be synchronously preset independently of one another by dedicating that function to one of the input variables in conjunction with a single transition term and a clock pulse.

Timing constraints

The maximum clock rate of the 82S104/105 can be inferred from its timing diagram (Fig. 8), which shows worst-case delays and setup requirements during a typical I/O cycle. Using stable external inputs as a reference, the device can be clocked after a minimum setup time of 60 nanoseconds. The next output (as well as the next internal state) will be valid 30 ns after the positive edge of the clock, giving a total I/O delay of 90 ns. Since both output enable and disable delays are also 30 ns , when the $\overline{O E}$ pin is used its signal's edge should occur prior to or coincidentally with the clock in order to avoid increasing I/O delays.
The asynchronous preset option includes a clock lockout feature that eliminates the potential hazard of spurious clocking. But, as the timing diagram shows, when using the lockout feature it is possible to miss one clock pulse, which may be prohibitive in some applications.

Applications

The second part of this article, to appear in the next issue of Electronics, will provide examples of applications for the gate- and logic-array devices. It will also describe in detail the development of a full-blown cartridge-tape drive controller built with a single logic-sequencer chip. The design example proceeds from flow chart to statesequence diagram to hardware.

Sequencers and arrays transform truth tables into working systems

by Napoleone Cavlan and Stephen J. Durham
Signetics Corp., Sunnyvale, Callf.Because of its power and flexibility, the Signetics field-programmable logic family is ideal for replacing the discrete logic normally used to interface large-scale integrated devices, as shown in Part 1 [July 5, 1979, p. 109]. The examples of applications that follow show how to exploit its special features.

In designing with these gate and logic arrays and logic sequencers, the user need concern himself only with generating truth tables associated with the state diagrams or sets of Boolean logic equations that define his function. The one restriction is that he must use logic symbols corresponding to the status of fuse links.
As indicated in Fig. 1, an extra set of symbols is needed to describe all the states of FPLF gates corresponding to all combinations of blown and unblown fuse links. Once ordered into truth tables, the user-defined functions are then directly mapped onto standard program tables furnished with FPLF elements, whose fuses are then blown by a logic-type programmer. As the user gains experience, he can manipulate logic variables intuitively and can eventually implement algorithms directly on the program tables with only the device schematics for reference. (The formal step of deriving state diagrams and logic equations will not be considered here.)
Because of their simple and uncommitted structure, fPLF elements are suited to a wide variety of applications, several of them already well documented. The following examples illustrate the typical use of each logic element and match devices with applications.

Bus translator

Signetics' Instructor 50 microcomputer system is built around the 2650 microprocessor; but for compatibility with other systems and peripheral devices in the hobbyist market, it interfaces to the S100 bus, which is based mainly on 8080 microprocessor signals. Yet to carry out the seemingly unwieldy task of bus translation, only a single FPGA is needed. The gate array translates the logical combinations of timing, enable, and control signals supplied by the 2650 and its I/O hardware into control signals entirely compatible with the S100 bus definitions, as shown in Fig. 2.
The programmable feature of the FPGA is strategically
invaluable in this case since the S 100 bus is not yet totally standardized. The FPGA permits easy adaptation of the interface to changes in specifications, which are subject to arbitrary manipulation by manufacturers in the hobby arena.

Two-level logic

The logic arrays add a second level of combinational logic to the gate arrays, and thus another level of versatility. AND/OR combinations of the FPLAs are well suited to carrying out polynomial equations and the like, as shown in the next example.
In systems that transfer large blocks of data, a cyclic redundancy check (CRC) scheme can significantly improve data integrity. The technique appends a check word to a transmitted sequence of data, and the receiving end uses that word to check for errors. A cyclical division of the transmitted data by an industry-standard polynomial generates the CRC word; the remainder from the division forms the check word.
Polynomials lend themselves to serial manipulation, and serial CRC generation and checking are easy to implement. But in a multiple-line data system with parallel organization, a considerable amount of hardware may be needed for parallel-to-serial conversion. Moreover, the multiple-bit clocking for each word carries an inherent speed loss-a factor of 8 for a byte-oriented system. A parallel CRC generator-checker circuit is the answer, developed from the set of logic equations describing the function of the circuit in the form of a state machine.
The general design of the CRC circuit is shown in Fig. 3a, along with the logic equation set for the popular CRC polynomial $P(x)=x^{16}+x^{15}+x+1$. Figure $3 b$ shows that the entire byte-wide parallel CRC generatorchecker circuit can be implemented with only five chips: two 8 -bit latches, two fplas, and an FPGA. The fplas contain the set of logic equations controlling the flip-flop inputs, which are expanded from EXOR form to sum-of-products form. In Fig. 3a, variables $\mathrm{N}_{0}-\mathrm{N}_{15}$ represent the next CRC word after clocking, based on the current word $\mathrm{B}_{0}-\mathrm{B}_{15}$ and the present input byte $\mathrm{D}_{0}-\mathrm{D}_{7}$.

CRC generation begins by driving the RESET line low to initialize the latches to zero. Pulsing the clock line then transfers the first byte of the data block in at $\mathrm{D}_{0}-\mathrm{D}_{7}$. Subsequent bytes are clocked in the same way. The cyclic nature of this design places no limit on the size of the data block that can be processed. During data transmission, the 16 -bit CRC word is available at outputs $\mathrm{B}_{0}-\mathrm{B}_{15}$ after the last data byte has been clocked in; it is appended as two check bytes to the data in the block.

Checking

The circuit is used in the check mode when receiving data containing CRC characters. The last 2 bytes in the data block received are CRC send characters. They too are clocked in and contribute to form a final receive pair of CRC characters, which, for error-free transmission, must both be zero. If an error has occurred, $\mathrm{B}_{0}-\mathrm{B}_{15}$ will be nonzero. The FPGA will detect the nonzero condition and generate an error signal. This parallel CRC format can operate on data blocks at speeds in excess of 5.7

1. New notation. The many combinations of blown and unblown fuse links in the field-programmable logic family require new notation. The four possibilities for AND gates are shown in (a), while those for exclusive-OR outputs are in (b). The combinations for OR gates are in (c). The complement array in the logic sequencers is detailed in (d). Finally, OR gates controlling the flip-flops in sequencers are in (e).

megabytes per second.

An interesting use for the FPLA is in changing data at a few locations of a read-only memory (see "How to patch a read-only memory," p. 137).

The abilities of the field-programmable logic sequencer are well demonstrated by its use as a controller for a cartridge-tape transport. In this example, one chip replaces many-a distinct advantage if the controller is to be packed on a single-board microcomputer. Although the chip's function is complex, it can be programmed methodically and worked directly from a flow chart.

Controller routines

The controller executes fixed routines in response to status and input commands that may originate from an input/output bus or a monitoring station. Its outputs operate the velocity servo that drives the cartridge, form I/O status signals, and enable writing of data. The input and output signals of the one-chip controller are shown in detail in Fig. 4.

The controller carries out these eight routines:

- Move tape fast-forward.
- Move tape slow-forward.
- Move tape fast-reverse.
- Move tape slow-reverse.
- Bring tape to load point when cartridge is inserted.
- Rewind tape to load point.
- Rewind tape to beginning and eject cartridge in response to unload command.
- Rewind tape to beginning and eject cartridge in response to auto-unload true condition.

The routines could be represented concisely in a conventional Mealy state diagram, but that often obscures the actual machine function. Flow charts are more easily understood, where input variables, machine states, and output functions are given variable names. Such a chart is shown in Fig. 5.

Diagramming the flow

What would be transition terms in a Mealy state machine become true/false statements regarding the system inputs (taken one at a time) in the chart. The correlation is most obvious in the simple example in Fig. 6. The flow chart in (a) shows a conditional change from

2. Translator. Getting S100 bus signals, which are mostly 8080 microprocessor signals, out of a 2650 microprocessor calls for a field-programmable gate array. One 82S 103 translates signals from the 2650 and its companion 2656 interfacing chip to the hobby bus.
state A to state B. The conditions in the flow chart's diamonds must be simultaneously satisfied for the state change to occur. The conditions take on variable names, and for this example, which arbitrarily assumes a 4-bit state register, three inputs, and two outputs, the corresponding state diagram is shown in Fig. 6b.

The transition from A to B denotes a jump from 10 $\left(1010_{2}\right)$ to $13\left(1101_{2}\right)$ and an output transition to $2\left(10_{2}\right)$ at the next clock pulse if the combination $X_{n}=4\left(100_{2}\right)$ is true. The transition is synthesized by forming a transition term $\mathrm{T}=\mathrm{P}_{3} \overline{\mathrm{P}}_{2} \mathrm{P}_{1} \overline{\mathrm{P}}_{0} \mathrm{I}_{2} \overline{\mathrm{I}}_{1} \overline{\mathrm{I}}_{0}$ and using term T at the next clock pulse to generate next-state and next-output commands for the state and output registers, respectively. For the state register, flip-fiops N_{0} and \mathbf{N}_{2} are set by connecting T to set lines S_{o} and S_{2}, and flip-flop N_{1} is reset by coupling T to the R_{1} reset line. Similarly, for the output register bit F_{0} is reset and bit F_{1} is set by connecting T to corresponding flip-flop reset (R_{0}) and set $\left(\mathbf{S}_{1}\right)$ lines.

Controller conditions

Referring again to the controller flow chart, it can be seen that whenever the tape-drive power is turned on, or when an interlock is opened, the transport must be stopped. That is achieved by an input signal to the controller called $\overline{\text { INTRDY }}$ that resets the state register with an unconditional jump to state 1 or STOP. When that occurs, all outputs on the FPLS chip become inactive, WRITE is inhibited, and speed and direction are
arbitrarily set to SLOW and reverse. From the stop state, operation into any mode ocurs by state and output jumps when all of the intervening conditions are simultaneously satisfied.
As an example, writing at normal speed will occur with a jump from state 1 to state 3 , which requires that the following criteria be satisfied:

- The data cartridge is in place; therefore CIP is true.
- The drive has been addressed; SEL is true.

E The tape has been commanded to run; TR is true.

- The controller is not in state 6 ; state 6 is false.
- The tape should move slowly; therefore $\overline{\text { FAST }}$ is true (an active-low signal).
- The tape should move forward; $\overline{\mathrm{FWD}}$ is true.

In tracing the jump between these states two things must be noted. First, the commands RWD, UNL, and TR are mutually exclusive, so that when either is true the others can be considered false or "don't care." Second, after $\mathrm{TR}^{2}=$ true, the condition (State $=6$?) is inserted to indicate invalid jumps to states 2 and 3, which could originate from state 6 with an aUTO UNL false. Clearly, these should be avoided to inhibit honoring requests for read slow (or fast) forward while stopped at the end of the tape. So, the (State $=6$?) condition is a reminder to avoid programming $6 \rightarrow 2$ and $6 \rightarrow 3$ state jumps in the FPLS. A similar argument holds for (State $=7$?) and (State $=11$?) conditions.
After data has been either written or read, the tape drive is commanded to stop by TR false, which causes a

3. Error-free. The technique of using a cyclic redundancy check (CRC) word for error-free data transmission requires complex logic to generate the word (a). A pair of logic arrays, two latches, and a gate array (b) do the job, which usually requires a boardful of chips.
4. Tape controller. A field-programmable logic sequencer like this tape controller can perform extremely complex tasks. The $82 S 105$ receives commands from an input/output bus or monitor, and provides all the necessary signals for driving the tapetransport servo-motor mechanism.

5. Goes with the flow. The first step in designing the controller is preparing a flow chart of the operation. The chart is much easier to understand than a state diagram or Mealy machine, yet provides all the information needed for programming the logic-sequencer chip.
jump from state 3 (RUN SLOW FORWARD) to state 1 . By similar arguments, the tape drive can be run either fast or slow in either forward or reverse directions by jumping to states 2,4 , and 5 .

When the end of tape is reached (EOT true), the tape drive is stopped. That is implemented by jumps $2 \rightarrow 6$ or
$3 \rightarrow 6$. Once in state 6 , the tape drive can no longer move in the forward direction because of the State 6 false condition preceding states 2 and 3. If AUTO UNL is true, the drive will automatically rewind (state 12), wait for tape to decelerate (state 13), eject the tape cartridge (state 14) and stop. If AUTO UNL is false, the drive must

How to patch a read-only memory

It is a shame to throw away read-only memories. But often firmware-based systems must commit control programs to large mask-programmed ROMs, only to have a design revision requiring a new program - and a new ROM. If no pin-compatible, user-programmable ROM is available, the customer could end up waiting out the 5-to-10-week turnaround time for the new mask parts - and throwing away his inventory of old ROMs.

One way to save an obsolete ROM (or even PROMs-it hurts to throw them away, too) is by patching, which redirects certain addresses to an adjunct smaller memory. This can be done most efficiently with an 82S107 fieldprogrammable logic array.

As a ROM patch (FPRP), the FPLA becomes a programmable, content-addressable PROM that continually monitors the address bus. As shown in the figure, when the FPRP encounters a match that signals a correction of data, its flag output ($\overline{\mathrm{FL}}$) disables the ROM, and new data from the FPRP is put on the output bus. If, for example, address 750 were to be given new data A9, address 5FE were to be given 7F, and addresses OA4-OA7 were all to be reassigned B4, the FPRP would be programmed as in the table. For a 12-bit address, only inputs $I_{0}-I_{11}$ are used, and the remaining four, $I_{12}-I_{15}$ then become "don't care." (Incidentally, inputs I_{0} and I_{1} in the
second product term are also "don't care" because they define an address block of four locations.)

The address comparator can patch up to 48 nonoverlapping addresses anywhere within a memory field of 64 kilobytes. Block addressing is possible, too, using the FPRP's true or complement input buffers. Moreover, the number of addresses can be expanded by hooking several devices in parallel and wire-ANDing their flag outputs.

Since the outputs of the ROM patch primarily define a byte of memory data rather than a set of logic functions, output polarity is not controlled. Also, to maintain compatibility with the gate array, the FPRP generates its selfenable signal with a fixed multiple-input OR gate; the only disadvantage of that method is addresses (AND terms), once programmed, may no longer be deleted.

The ROM patch affords a recovery strategy effective in several design situations, including modifications of dedicated application programs, operating systems, assemblers, and monitor routines. It also permits on-site optimization of system parameters, in accordance with, say, environmental variables, and allows custom function options and product-line diversification. The customer need only allot board space next to the mask ROM for an FPRP; no parts are actually used until program changes are required after the product is in the field.

wait for either a rewind command (RWD), an unload command (UNL), or reverse command (FWD).

If the tape is moved in the reverse direction until the beginning (BOT), the drive is stopped. This is implemented by a jump from states 4 or 5 to state 7 . Once in state 7 , the tape drive can no longer move in the reverse
direction because of the state 7 false condition preceding states 4 and 5 . The tape will remain stopped at the beginning until TWD, UNL, or FWD commands are given.

If no cartridge is in place (CIP false) when the tape drive is turned on, the controller will jump from state 1 to 8 , and signal EMPTY. When a cartridge is installed,

6. Flow chart to state diagram. Simple transition from state A to state B is shown in flow chart (a). Three inputs (X_{0}, X_{1}, X_{2}) and two outputs $\left(Y_{0}, Y_{1}\right)$ are assumed. The contents of a four-bit state register show the transition from state $A\left(1010_{2}\right)$ to state $B\left(1101_{2}\right)$.

CIP $=$ true implements a jump from state 8 to 0 . In state 9 the tape will rewind in fast reverse until a BOT mark is reached. BOT true implements a jump from state 9 to 10. The tape now runs at slow speed in the forward direction until the load point (LP) is reached. LP true implements a jump from state 10 to 11 indicating STOPPED AT LP. From state 11, forward, reverse, or unload commands can be executed, but not rewind, because of the state 11 condition preceding state 9 . That keeps RWD from being needlessly repeated.

State jump

A single state jump is shown in detail in Fig. 7. The transition is from state 1 to 2 . In the latter, the controller is required to enter the READ FAST FORWARD routine from STOP when:

- CIP is true.
- SEL is true.
- TR is true.
- State 6 is false.
- FWD is true.
- FAST is true.

In response to this jump, the controller outputs that must change to issue the appropriate commands are run (TR),

7. Detailed state jump. The transition from state 1 (STOP) in the tape cartridge controller to state 2 (READ FAST FORWARD) is shown in flow-chart form. That part of the logic sequencer coding of the state jump is shown below, including transition and output terms.

TABLE. 1: COMPARISON OF DESIGN ALTERNATIVES FOR TAPE CONTROLLER

Parameter	Field-programmable logic sequencer	Discrete logic	Monolithic Memories Inc.'s Programmable Array Logic
Chip count	1 chip	6 chips	14 chips
Circuit-board area	$0.84 \mathrm{in}^{2}$	$2.13 \mathrm{in}.{ }^{2}$	$3.78 \mathrm{in} .^{2}$
Power (typical)	0.60 W	1.36 W	4.8 W
Speed	$90 \mathrm{~ns} / \mathrm{state}$	$132 \mathrm{~ns} / \mathrm{state}$	$105 \mathrm{~ns} / \mathrm{state}$
Voltage	+5 V	+5 V	+5 V
Cost (high-volume production)	$\$ 12$	$\$ 14$	$\$ 48$

Type	Manufacturer	Model	Field-programmable device				Availability
			Gate array	Logic array	ROM patch	Logic sequencer	
Memory	Data 1/O	17,19	\bullet	-	\bullet	\bullet	3079
	Sunrise Electronics	SM100		\bullet	\bullet		now
			-			-	in development
Hybrid	Stag	pp X-Plus					now: indeveloprient

forward (FWD), and fast (FAST).
The flow chart of the controller routines is complete with 14 states and 36 state jumps (including synchronous reset). As such, four state-register flip-flops sufficiently represent all states. All state jumps can be directly programmed into the chip from the flow chart. All state jumps occur on the leading edge of the clock.

The advantage of a controller built with the FPLS is best shown by a comparison to discrete logic, which would comprise Proms, latches, and gates, using the same state diagram as for the FPLS. Table 1 compares the FPLS controller with a discrete implementation as well as with Monolithic Memories Inc.'s Programmable Array Logic chips, in several aspects.

Programming

The key to design flexibility with programmable logic is the availability of programming equipment. The need for PROMS in this equipment has led to a large number of memory programmers being offered by several manufacturers. Generally, they operate with personality card sets that meet the requirements of various PROM technologies. Suppliers have already begun developing sets compatible with memory programmers for logic devices.

Hardware is expected to be available by the end of the third quarter of this year.
For the concept to work, the logic devices must be manipulated as memory chips are-by defining the desired fusing pattern in terms of an address-data relationship. Although this tends to obscure the logic function of the device, which is not visible on the program table, it is sure to provide low-cost programming equipment that can be manned by low-skilled labor.

Logic programming is another possibility, and lowcost equipment is already available from Signetics. Logic programmers allow direct entry of the logic function from the program table; no reference to the device logic diagram is necessary, and the user need not specify the status of each individual link in a device. Such programmers are more convenient for engineering use during the initial design phase, but with their high programming speed-about 10 seconds per device-can also be effective in production. Their only drawback is that they are dedicated machines and cannot program PROMs.

Some manufacturers offer a hybrid type of PROM programmer that can also be configured to do logic programming. Table 2 shows the various options available to prospective users now, or in the near future.

SIGNETICS HEADQUARTERS	San Diego Mesa Engineering Phone: (714) 278-8021	DISTRIBUTORS ALABAMA Huntsville	FLORIDA Ft. Lauderdate Arrow Electronics Phone: (305) 776.7790	MEW JERSEY Hamilton/Avnet Electronics Phone: (609) 424-0100	Dallas Mark Electronics Phone: (214) 341-1147 Hamilton 1 Avnet Electorics	INDIA Peico Electronics \& Elect. Ltd. Elcoma Div. \qquad
${ }_{80}^{811}$ East Argues Avenue	CONNECTICUT Danbury	Hall-Mark Electronic	Hamitton/Avnet Electronics		Mhone: (214) 659494111	${ }_{\text {Bhene }}$ Phome: $295-144$
Sunnyvale. California 94086	Kanan Associates	Phone: (205) 837.8700	Phone: (305) 97-2900	HamiltonAAvet Electronics	Quality Components	PIMDONESSIA
Phone: (408) 73997700	FLORIDA ${ }^{\text {a }}$ (${ }^{\text {a }}$	Phone: 205518337.7210	Holichwodeer Electronics	Phone: (201) 5 Sh7-3390	Schweber Electronics	jakarta
ARIzONA	Altamonte Springs	Pioneer teecromics	Phone: (305) 927-0511	Phone: (201) 227-7880	Phone: (214) 661-510	Phone: 581058
Phone: (602) 265	Semronic icssciales Phone: (305) $831-8233$	ARIZONA	$\begin{aligned} & \text { Paim Bay } \\ & \text { Arrow Elec } \end{aligned}$	Moores	Hamilton/Avnet Electronics	IRELAND Philips Electrical Lid.
Canoga Park Phone: (213) 340-1431	Clearwater Semtronic	Phoenix Hamiton/Avnet Electronics		Arrow lectronics	Phone: (713) 780-1771 Quality Components	Pubbin 693355
Cupertion	Phone: (813) 461.4675		Hemiltor/avnet Electronis	Sadaldebrook	Schweer Electronics	ISRREL
Phone: (408) 725-8100	Elik Grove village	Phone: (602) 249-2232	GEORGIA ${ }^{\text {Phone: }}$ (813) $576-3930$	Ahone: (201) 797.5800	Phone: (713) 784-3600	Repaza lectionics, Lid.
Inglewood ${ }_{\text {Phone }}(213$) 670-1101	Micro-Tex, Inc. Phone: (312) 640-9633	CALIFORNIA Costa Mesa	Atianta Schweber Electronics	MEw MExICO	UTAH Salt Lake City	Phone: $477115.6-7$ Hiply
Irvine Phone: (714) 833-8980 (213) 588 -3281	INDIANA Fort Wayne Insul-Reps Inc.	Avnet Electronics Phone: (714) 754-6111 Hamitoon Electro Sales	Phone: (404) 449-9170 Norcross	buquerque HamiltoniAvnet Electronics Phone: (505) 765-1500	Hamiltoni/Avnet Electronics Phone: (801) 972-4300 washmaton	Philips S.p.A. Milano Phone: 2-6994
$\begin{aligned} & \text { San Diego } \\ & \text { Phone: } \\ & \text { P14) } \\ & 560-0242 \end{aligned}$	Phone: (219) $482 \cdot 1596$ Indianapolis	Phone: (144) 641-4100 Culver City	Phone: (404) 449.8252 Hamitton/Avnet Electronics	NEW YORK Buffilo	Bellevue Arrow Electro	JaPAM Siznetics Japan, Lid.
COLORADO	Insul:Ress, Inc.	HamilitolAvnet Electronics	Phone: (404) 447-7500	Shomene: (116) 887 887-2800	Phone: (206) 6) 643.4800	Tokyo $\begin{aligned} & \text { Phone: (03) 230-1521 }\end{aligned}$
Aurora) (${ }_{\text {Phone: }}(303) 751-5011$	Phone: (37) 842-5203	Hamition/Aveet Electronics		Esast Syracuse	Phone: 2 (206) 453-58444	KOREA
CONNECTICUT	Cedar Rapids	Pmilitary	Bell Industrin	Arrow Ele	Phone: (206) 453-8300	Philips Elect Korea Lid.
Danbury Phone: (203) 744-6066	Comstrand Inc.	El Sequndo	Phone: (312) 982-9210	HamitioniAvnet Electronics	WISCONSIN	Phone: 44-4202
delaware	kansas	Wyie Distribution Group	Schweber Electronics	Phone: (315) 437-2642	Oath Creek	mexico
	Shawnee Mission	Phone: (213) 322-8100	Phone: (312) 364-3750	Furmingalate,	Arrow tlectronics	Electronice S.A. de C.Y.
florioa	Phone: 91313 888.6680	$\xrightarrow{\text { Irvine }}$ Schweberer Electronics	Schaumbur $\begin{gathered}\text { Arrow flectronics }\end{gathered}$	Phone: (516) 694.6800	New Berlin	Phone: 533-1180
Phone: (305) 782-8225	MARYLAND Baltimore	Phone: (714) 556-3880 Wyle Distribution Group	Phone: (312) 893 -9420	Liverpool	$\begin{aligned} & \text { Hamilton/Avnet Electroni } \\ & \text { Phone: }(414) 784-4510 \end{aligned}$	METIERLANUS Philips Nederland B.V.
GEORGIA	Micro-Comp. Inc. Phone: (301) 247-0400	Phone: (714) 979-2125	Hamilton/Avnet Electronics Phone: (312) 860-7700	hhone: (315) 652 -100		Eindhoven Phone: (040) 9
Phone: (404) 953.0067	MASSACHUSETTS	San Diego Anthem Electronics	indiana	ekrille		MEW ZEALAND
1 ILINOIS	Reading Kanan Associates	Phone: (714) 279.5200	Indiamapolis	Phone: (516) 454-6012	Produc	Philips Electrical ind. ELCOMA
Schaumburg ${ }_{\text {Phone: }}(312) 843.7805$	Phone: (617) 944-8484	Hamitonavinet Electionic	Pioneer Electronics	Rochester	WORLDWIDE	Phone: 867119
INDIANA	michigan	Wyle Distribution Group	Arrow Electronics	Arrow Elect	ARGENTINA	MORWAY
Koiomo		Phone	隹	hone:(10) 275		
Phone: (317) 453-6462	Enco Markeing ${ }^{\text {Phone: }} 13131642$-2203	San lose	Phane: (377) 844-9333	HamitonAfnet tlecironis	Phone: 652.743877478	Phone: (02) 15059
KANSAS Overland Park	MINNESOTA	Antinem Electronics inc.	kansas	Schweber Electronics	australia	PER
Phone: (913) 341-8181	Edina Mel Foster Technical Sales	Santa Clara	Overian Payk		Cane Cove N.S.W.	
maryiand	Phone: (612) 941-9790	ber Ele	Phone: 9131) 888.8900	Westbury ${ }^{\text {LI }}$	Phone: (02) 427 -0888	Phone: 628599
Phone: (301) 787-0220	mISSOURI	Phone: 4408 49660200	maryland	Phone: (516) 33447474	Queensland	PHILIPPINES
massachuseits	St. L. L. C. Electronic Saies	Phone: (408) 727.2500	Baltimore Arrow Ele	NORTH CAROLINA	Brisbane (07) $277-3332$	Philips Industrial Dev., Makata-Rizal
Phone: (617) 938.1000	Phone: (314) 731-1255	Sunnyvale	Phone: (301) 247-5200	Greensboro ${ }_{\text {Pioneer flec }}$		Phone: 888951-9
MICHIGAN farmington Hills Phone: (313) 476-1610	NEVADA Sierra Technolog Phone: (408) 354-9986	Phone: (408) 745-6600 Hamilton/Avnet Electronic	Columbia Hamilton/Avnet Electronics Phone: (301) 995-3500	Phone: Raleigh	Adelaide (08) $45-0211$	portugal Philips Portuguesa SARL Lisbon
minnesota	NEW MExico	Phone: (408) 743-3366	Gaithersburs	Hhomituaf(919) 8 899.8030		Phone: 683121
Pdinone: (612) 835-7455	Power Enterprises	Calkary, Alberta	Phone: (301) 948.0710	Winston-Salem	031	Philips Singapore Ple., Lto.
NEW JERSEY	NEW YORK	Hamilton/Avnet Electronis Phone: (403) 230-3586	Schweber Electronics	Arrow Electronics	Western Australia Perth	Singapore ${ }^{\text {Phone: }} 538811$
Chhone: (609) $665-5071$	1 thaca	Downsview, Ontario	massachusetis		(09) 277-4199	South afrid
Piscataway		Cesco Electronics	Bediord	Bechwood		A.
Phone: (201) 981-0126	OHIO ${ }^{\text {O }}$	Phone: (416) 661.0220	Schweeer Electronics	Schweber Electronics	Osierrichische Philips	Johannesbury
NEW YORX	Cleveland	Mississsuga, Ontario	Burlington	Phone: 216) 464-2970	Phone: 932622	SPAIM
Liverpool Phone: (315) 451-5470	Norm Case Associates Phone: (216) 333-4120	Hamitton/Avnet Electronics Phone: (416) $677-7432$	Lionex Corp.	Cleyeland	belilium	Copress S.A.
Melville	Dayton	Zentronics	Phone. (61) 27.9400	Phone:(216) 831.5500	m.B.L.L	Phone: 3296312
Phone: (516) 752 -0130	Norm Case Associates	Phone: (46) 451-9600	Woburn Arow Electronics	Pioneer Electronics	Phone: 5230000	SwEDEN
Wappingers Falls	Phone: 18000) 362.6631	Montreal, Quebec	Phone: (617), 933-8130	Phone: (216) 587-360	BRAZIL	Elcoma A.
NORTH CAROLINA	Tulsa	Phone: (514) $735-5511$	Hamiteof/iveet tectronis	Centerville	Ibrape Electron	Phone:08/67 9780
Raleiegh ${ }_{\text {Phone: (919) 851-2013 }}$	Cunningham Co. ${ }^{\text {Phene: }}$		MICHIGAN	Phone: (513) 435-5663	Phone: (011) 211-2600	SWITIZERLAMD
OHIO	OREGON	Othawa, Onlario	Ann Arbor	Dayton	CHILE	Philips Zurich
Worthington	Hillsboro	Cesco Electronics	Phone: (313) 971.8220	HamiloniAvnet Electronics	Philips Chilena S.A.	Phone: 017442211
Phone: (614) 888-7	Western Technical Sales	Phone: 613137729.5118	Grand Rapids	Pioneer Stiandard Electronics	Phone: 39.4001	TAMAN
TENNESSEE	TEXAS		Hamitoon/Avnet Electronics	Phone: (513) 236-9900	colombia	Philips Thiwan, Ltd.
Greenevile ${ }_{\text {Phone: }}(615$) 639.0251	Austin	Zentronics	Livonia ${ }^{\text {a }}$ (16) 44 -8005	Solon	Sadape S.A.	Phone: (02) 563-1717
texas	Cunningham Coo	Phone: (6) ${ }^{\text {(1) }}$ 238-641	Hamilton/Avnet Electronics	Arrow Electronics.	Phone: 600600	thalland
Ausin Phone: (512) 458-2591	Dallas	Cesco Elee	Pioneer Electronics		DEMMARK	
Dallias	Cunningham co.	Phone: (418) 524-4641	Phone: (313) 525-1800	Tulsa	Winimatitus	Phone: $34985 / 36980$
Phone: (214) 661-1296	Phone: (214) 233-4303	Ville St. Laurent, Quebec	Schweber Electronics	Quality Components ${ }^{\text {Phone: }}$ (918) 664.8812	Phone: (01) 691622	TURKEY
UTAH Bountitul	Cunningham $\mathrm{Co}^{\text {a }}$	Haminen (514) $331-6443$ Phone	MINMESOTA			Tiecret A.S.
Phone: (801) 298.2624	Phone: (713) 461-4197	colorado	Eden Prairie	Lake Osweg	Hellsinki	Photanbe: 453250
CCAMADA	virginia Lynchburs	Denver	Phone: (612) $941-5280$	HamittonAunet Electronics Phone: 503 635-8331	$\stackrel{\text { Phone: }}{ } 7271$	UNITED KINGDOM
Elobicsee. Ontario Phone: (4i6) 626.6675	Micro-Comp. Inc. Phone: (804) 237-6221	Arrow Elecironics Phone: Wyle Distribution Group	Minneapolis Arrow Electronics Phone (6) 83.1800	PENNSLYYANIA Horsham	$\begin{aligned} & \text { FRANCE } \\ & \text { R.I.C. } \end{aligned}$ R.T.C. Paris	Mullard, Ltd. London
SIGNETICS CCANADA, LTO.ILTEE.	mashing ion	Phone: (303) 457-9953	Hamilton/Avnet Electronics	Schwebee Electronics	Phone: 355-44-99	UNITED STATES
Pointe-liare. 6 uebec Phone: 514) $177-3385$	Western Technical Sales Phone: (206) $641-3900$	Englewood familton/Avnet Electronics	Phone: (612) 9332.0600 MIssouri	Phone: (215) 441-0600 Piltshurgh	$\begin{gathered} \text { GERMANY } \\ \text { Valuo } \end{gathered}$	siqnetics International Corp. Sunnyvale. California
REPRESENTATIVES alabama	Spokane Nestern Technical Sales Phone: (509) $922 \cdot 7600$	CONNECTICUT Danbury	Earth City Hamilton/Aynet Electronics Phone: (314) $344-1200$	Arrow Electronics Phone: (412) 856-7000 Pioneer Pitstsurgh	Phone: (040) 3296-1 GREECE	Phone: (408) 739-7700 urucuay Lurilectron SA
Huntsville Electronic Sales, Inc. Phone: (205) 533-1735	WASHIMGTON, D.C. Call: Micro-Comp Baltimore Phone: (301) 247.0400	Hamiton/Avnet Electronics Phone: (203) 797-2800 Schweber Electronics	St. Louis Afrow Electronics Phone: (314) $567-6888$	Phone: (412) 788-2300 IExAns Austin	$\begin{aligned} & \text { Phililips S.A. Hellenique } \\ & \text { Ahthens } \\ & \text { Phone: } 915311 \end{aligned}$	Montevideo Phone: 94321 venezuela
$\begin{aligned} & \text { CALIFORNIA } \\ & \text { Los Gatos } \\ & \text { Sierra Technology } \\ & \text { Phone: (408) } 354.9986 \end{aligned}$	WISCONSIN Waukesha Micro-Tex. Inc Phone: (414) 542.5352	Wallingtord Arrow Electronics Phone: (203) 265-7741	NEW HAMPSHIRE manchester Arrow Electronics Phone: (603) 668-6968	Hamilton/Avnet Electronics Phone: (512) 837-8911 Phone: (512) 835 -0220	Philips Hong Kong, Ltd. Hong Kong hone: 12-24512	Industrias Venezolanas Philips S.A. Caracas Phone: $239-8180$

a subsidiary of U.S. Philips Corporation
Signetics Corporation 811 East Arques Avenue PO. Box 409 Sunnyvale, California 94086 Telephone 408/739-7700

[^0]: NOTES

 1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device of these or any other condition above those indicated in the operation of the device specifications is not implied.
 2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 3. All voltage values are with respect to network ground terminal.
 4. Test one at a time.
 5. Measured with +10 V applied to I_{7}
