SICnETICS BIPOLAR MEMORIES

TABLE OF CONTENTS

8228 4096-Bit Bipolar ROM (1024×4 ROM) 3
82S09 576-Bit Bipolar RAM (64×9) 5
82S10 1024x1 Bit Bipolar RAM (Open Collector) 9
82 S 11 1024x 1 Bit Bipolar RAM (Tri-State) 9
82S12 High Speed Multiport Memory (8×4 Multiport RAM) 13
82S16 256-Bit Bipolar RAM (256×1 RAM)-Tri-State 15
82S17 256-Bit Bipolar RAM (256×1 RAM)-Open Collector 15
82S21 64-Bit Bipolar High Speed Write-While-Read RAM (32×2 RAM) 19
82S23 256-Bit Bipolar Programmable ROM (32×8 ROM)-Open Collector 22
82 S 25 64-Bit Bipolar Scratch Pad Memory (16x4 RAM) 27
82S27 1024-Bit Bipolar Programmable ROM (256x4 PROM) 31
82S100 Bipolar Field-Programmable Logic Array (16x8x48 FPLA)-Tri-State 36
82S101 Bipolar Field-Programmable Logic Array (16x8x48 FPLA)-Open Collector 36
82S112 High Speed Multiport Memory (8×4 Multiport RAM) 13
82 S114 2048-Bit Bipolar ROM (256x8 PROM) 41
82 S 115 4096-Bit Bipolar ROM (512x8 PROM) 41
82S116 256-Bit Bipolar RAM (256×1 RAM)-Tri-State 47
82S117 256-Bit Bipolar RAM (256x1 RAM)-Open Collector 47
82S123 256-Bit Bipolar Programmable ROM (32×8 ROM)-Tri-State 22
82S126 1024-Bit Bipolar Programmable ROM (256x4 PROM) 51
82S129 1024-Bit Bipolar Programmable ROM (256×4 PROM) 51
82S130 2048-Bit Bipolar Programmable ROM (512x4 PROM) 56
82S131 2048-Bit Bipolar Programmable ROM (512x4 PROM) 56
82S214 2048-Bit Bipolar ROM (256×8 ROM) 61
82S215 4096-Bit Bipolar ROM (512x8 ROM) 61
82 S 226 1024-Bit Bipolar Read Only Memory (256x4 ROM) 64
82 S 229 1024-Bit Bipolar Read Only Memory (256×4 ROM) 64
82S230 2048-Bit Bipolar ROM (512x4 ROM) 67
82S231 2048-Bit Bipolar ROM (512×4 ROM) 67
54/74S200 TTL 256x1 RAM (Tri-State) 70
54/74S201 TTL 256x1 RAM (Tri-State) 70
54/74S301 TTL 256x1 RAM (Open Collector) 70
3101A 64-Bit Bipolar Scratch Pad Memory (16x4 RAM) 74
10139 ECL High Performance 256-PROM 78
93415A 1024×1 Bit Bipolar RAM (Open Collector) 82
93425A 1024×1 Bit Bipolar RAM (Tri-State) 82
Package Information 86

DESCRIPTION

The 8228 is a 4096 Bit Bipolar Read Only Memory organized as 1024 words by 4 bits per word. Available in a 16 pin dual in-line package, the 8228 can provide very high bit packing density by replacing four standard 256X4 ROMS.

The 8228 is fully TTL compatible and includes on-the-chip decoding. Typical access time is 50 ns with a power consumption of only .125 mW per bit.

The standard 8228 ROM pattern is the USASCII Row Character Generator code; however, custom patterns are also available. The standard pattern is specified as the N82281 - CB162, while custom circuits are identified as N82281 - CXXX. A truth table/order blank is included on page 4-46 for ordering custom patterns.

BLOCK DIAGRAM

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTICS} \& \multicolumn{4}{|c|}{LIMITS} \& \multirow{2}{*}{TEST CONDITIONS} \& \multirow{2}{*}{NOTES} \\
\hline \& MIN. \& TYP. \& MAX. \& UNITS \& \& \\
\hline \begin{tabular}{l}
" 0 " Output Voltage \\
" 1 " Output Voltage \\
" 0 " Input Current \\
"1" Input Current Input Voltage \\
\(" 0 "\) Level (\(V_{I L}\))
\(" 1 "\) Level (\(V_{I H}\))
\end{tabular} \& 2.7

2.0 \& $$
\begin{gathered}
-10 \\
1
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0.5 \\
-400 \\
25 \\
.85
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A} \\
\mathrm{~V} \\
\mathrm{~V}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& l_{\text {out }}=11.2 \mathrm{~mA} \\
& \mathrm{l}_{\text {out }}=-1.0 \mathrm{~mA} \\
& \mathrm{~V}_{\text {in }}=0.45 \mathrm{~V} \\
& \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}
\end{aligned}
$$
\] \&

\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARACTERISTICS	LIMITS				TEST CONDITIONS	NOTES
	MIN.	TYP.	MAX.	UNITS		
Input Clamp Voltage	-1.2			V	$\mathrm{lin}_{\text {in }}=-18 \mathrm{~mA}$	
Power Consumption		140	170	mA	0_{1} to $0_{3}=$ ' 0 '	
Output Short Circuit Current	-20		-70	mA	$\mathrm{V}_{\text {OUT }}=0$ Volts	

SWITCHING CHARACTERISTICS $0 \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}$

CHARACTERISTICS	LIMITS				TEST CONDITIONS	NOTES
	MIN.	TYP.	MAX.	UNITS		
Access Time-Address to Output		50	70	ns		5

NOTES

1. Positive current is defined as into the terminal referenced.
2. No more than one output should be grounded at the same time.
3. Manufacturer reserves the right to make design and process changes and improvements.
4. Applied voltages must not exceed 6.0 V . Input currents must not exceed $\pm 30 \mathrm{~mA}$. Output currents must not exceed $\pm 100 \mathrm{~mA}$. Storage temperature must be between $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
5. Rise and fall time for th is test must be less than 5 ns. Input amplitudes are 2.8 V and all measurements are made at 1.5 V .

AC TEST FIGURE AND WAVEFORM

TEST LOAD

READ CYCLE

DESCRIPTION

The 82 S09 is a 576 -Bit, Schottky clamped TTL, random access memory, organized as 64X9. This organization allows byte manipulation of data, including parity. Where parity is not monitored, the ninth bit can be used as a flag or status indicator for each word stored. With a typical access time of 30 ns, it is ideal for scratch-pad, push-down stacks, buffer memories, and other internal memory applications in which cost and performance requirements dictate a wide data path in favor of word depth.

The 82S09 is fully TTL compatible, and features open collector outputs, chip enable input, and a very low current PNP input structure to enhance memory expansion.
During WRITE operation, the logic state of the device output follows the complement of the data input being written. This feature allows faster execution of WRITEREAD cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.
The 82509 is available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S09, I. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S09, I.

FEATURES

- ORGANIZATION - 64×9
- ADDRESS ACCESS TIME: S82S09 - 80ns, MAXIMUM N82S09 - 45ns, MAXIMUM
- WRITE CYCLE TIME:

S82S09-70ns, MAXIMUM
N82S09 - 45ns, MAXIMUM

- POWER DISSIPATION - 1.3mW/BIT TYPICAL
- INPUT LOADING:

S82S09 - $(-150 \mu \mathrm{~A})$ MAXIMUM
N82S09 - ($-100 \mu \mathrm{~A})$ MAXIMUM

- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- CHIP ENABLE FOR WORD EXPANSION
- BYTE I/O MANIPULATION, INCLUDING PARITY

APPLICATIONS BUFFER MEMORY CONTROL REGISTER
FIFO MEMORY
PUSH DOWN STACK
SCRATCH PAD

PIN CONFIGURATION

TRUTH TABLE

MODE	CE	WE	$\mathbf{I N}_{\mathbf{N}}$	$\mathbf{O}_{\mathbf{N}}$
READ	0	1	X	Complement of Data Stored
WRITE "0"	0	0	0	1
WRITE " 1 "	0	0	1	0
DISABLED	1	X	X	1

$x=$ Don't care.
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {in }}$	Input Voltage	+5.5
$V_{\text {OH }}$	High Level Output Voltage (82S10)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	Vdc
	(N82S09)	0° to $+75^{\circ}$
	(S82S09)	-55° to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$
Vdc		

$$
\begin{array}{lll}
\text { ELECTRICAL CHARACTERISTICS }{ }^{7} \quad & \text { S82S09 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \\
& \text { N82S09 } 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25
\end{array}
$$

PARAMETER ${ }^{1}$		TEST CONDITIONS	S82S09			N82S09			UNIT	
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$. 80			. 85	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{C C}=M A X$	2.2			2.0			V	
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$V_{C C}=M I N, I_{I N}=-12 \mathrm{~mA}$ (Note 5)		-1.0	-1.5		-1.0	-1.5	V	
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=6.4 \mathrm{~mA} \\ & (\text { Note 6) } \end{aligned}$		0.35	0.50		0.35	0.5	V	
lolk	Output Leakage Current	$\begin{aligned} & V_{C C}=M A X, V_{O U T}=5.5 V \\ & \text { (Note 4) } \end{aligned}$		1	60		1	40	$\mu \mathrm{A}$	
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-150		-10	-100	$\mu \mathrm{A}$	
I_{IH}	High Level Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		1	40		1	25	$\mu \mathrm{A}$	
$I_{\text {cc }}$	$V_{\text {CC }}$ Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}($ Note 3)		150	200		150	190	mA	
$\mathrm{CiN}_{\text {I }}$	Input Capacitance	$V_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		5			5		pF	
Cout	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$		8			8		pF	

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. ${ }^{I} \mathrm{CC}$ is measured with the write enable and memory enable input grounded, all other inputs at 4.5 V , and the outputs open.
4. Measured with $V_{I H}$ applied to $\overline{C E}$.
5. Test each input one at the time.
6. Measured with the logic " 0 " stored. Output sink current is supplied through a resistor to V_{CC}.
7. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

AC TEST LOAD

NOTES:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.
3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE

ADDRESS ACCESS TIME
$\xrightarrow{\text { ADDRESS }}$

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid
$T_{C D}$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TwsC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.

TWD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.

TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

1024x1 BIT BIPOLAR RAM OPEN COLLECTOR (82S10) TRI-STATE (8211)

FEBURARY 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The $82 \mathrm{~S} 10 / 11$ is a high speed 1024 -bit random access memory organized as 1024 words X 1 bit. With a typical access time of 30 ns , it is ideal for cache buffer applications and for systems requiring very high speed main memory.

Both the 82S10 and 82S11 require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both 82S10 and 82S11 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify $\mathrm{N} 82 \mathrm{~S} 10 / 11$, I. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S $10 / 11$, I.

FEATURES

- ORGANIZATION - 1024×1

- ADDRESS ACCESS TIME:

> S82S10/11 - 70ns, MAXIMUM

N82S10/11 - 45ns, MAXIMUM

- WRITE CYCLE TIME:

S82S10/11 - 75ns, MAXIMUM N82S10/11 - 45ns, MAXIMUM

- POWER DISSIPATION $-0.5 \mathrm{~mW} / \mathrm{BIT}$, TYPICAL
- INPUT LOADING:

S82S10/11 - (-150 $\mu \mathrm{A})$ MAXIMUM N82S10/11 - $(-100 \mu A)$ MAXIMUM

- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

82S10 - OPEN COLLECTOR
$82 S 11$ - TRI-STATE

- NON-INVERTING OUTPUT
- BLANKED OUTPUT DURING WRITE
- 16 PIN CERAMIC PACKAGE

APPLICATIONS

HIGH SPEED MAIN FRAME
CACHE MEMORY
BUFFER STORAGE
WRITABLE CONTROL STORE

PIN CONFIGURATION

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	DIN	DOUT	
				$\mathbf{8 2 S 1 0}$	82S11
READ	0	1	X	STORED DATA	STORED DATA
WRITE "0"	0	0	0	1	High-Z
WRITE "1"	0	0	1	1	High-Z
DISABLED	1	X	X	1	High-Z

$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {in }}$	Input Voltage	+5.5
$V_{\text {OH }}$	High Level Output Voltage (82S10)	+5.5
$V_{\text {O }}$	Off-State Output Voltage (82S11)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	Vdc
	(N82S10/11)	0° to $+75^{\circ}$
	(S82S10/11)	-55° to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$

ELECTRICAL CHARACTERISTICS ${ }^{9} \quad$ S82S $10 / 11 \quad-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5$

PARAMETER		TEST CONDITIONS	S82S10/11			N82S10/11			UNIT	
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$V_{C C}=\operatorname{MIN}$ (Note 1)	2.1	-1.0	. 80	2.1	-1.0	. 85	V
$V_{\text {IH }}$	High Level Input Voltage	$V_{C C}=$ MAX (Note 1)	V							
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { MIN, } \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \\ & \text { (Note 1, 7) } \end{aligned}$	-1.5			-1.5			V	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$V_{C C}=M I N, I_{O L}=16 \mathrm{~mA}$ (Note 1, 8)	0.35		0.50	0.35		0.45	V	
V_{OH}	High Level Output Voltage (82S11)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, I_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & (\text { Note 1, 5) } \end{aligned}$		2.4		2.4	1	40	V	
Iolk	Output Leakage Current (82S10)	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=5.5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	1		60				$\mu \mathrm{A}$	
Io(off)	Hi-Z State Output	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	1		100		1	60	$\mu \mathrm{A}$	
	Current (82S11)	$\begin{aligned} & \mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	-1		-100		-1	-60	$\mu \mathrm{A}$	
$I_{\text {IL }}$	Low Level Input Current	$V_{\text {IN }}=0.45 \mathrm{~V}$	-10		-150		-10	-100	$\mu \mathrm{A}$	
$I_{1 H}$	High Level Input Current	$V_{\text {IN }}=5.5 \mathrm{~V}$	1		40		1	25	$\mu \mathrm{A}$	
los	Short Circuit Output Current (82S11)	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=0 V \\ & (\text { Note 3) } \end{aligned}$	-20	$\begin{array}{r} 120 \\ 95 \end{array}$	-100	-20	$\begin{array}{r} 120 \\ 95 \end{array}$	-100	mA	
Icc	$\mathrm{V}_{\text {CC }}$ Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}(\text { Note 4) } \\ 0<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \geqslant 25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \leqslant 0^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & 155 \\ & 130 \\ & 170 \end{aligned}$			$\begin{aligned} & 155 \\ & 130 \\ & 170 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		4	170		4		pF	
Cout	Output Capacitance	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		7			7		pF	

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ${ }^{\mathrm{C}} \mathrm{C}$ is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic " 1 " stored.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Test each input one at the time.
8. Measured with a logic " 0 " stored. Output sink current is supplied through a resistor to V_{CC}.
9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\phi_{\text {JA }}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} /$ Watt
$\phi_{\text {JA }}$ Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\phi_{J A}$ Junction to Case $-20^{\circ} \mathrm{C} /$ Watt

SWITCHING CHARACTERISTICS ${ }^{3} \quad \begin{array}{lll}\text { S82S } 10 / 11 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \\ \text { N82S } 10 / 11 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.45 \mathrm{~V} \leqslant \mathrm{~V}_{c} \leqslant 5.25\end{array}$
 N82S10/11 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

PARAMETER	TEST CONDITIONS	S82S10/11			N82S10/11			UNIT
		MIN	TYP ${ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX	
Propagation Delays								
TAA Address Access Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=270 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$		30	70		30	45	ns
TCE Chip Enable Access Time			15	45		15	30	ns
$T_{C D} \quad$ Chip Enable Output Disable Time			15	45		15	30	ns
TWD Write Enable to Output Disable Time			20	45		20	30	ns
TWR Write Recovery Time			20	45		20	30	ns
Write Set-up Times								
TWSA Address to Write Enable		15	0		5	0		ns
TWSD Data In to Write Enable		55	35		40	35		ns
Twsc $\overline{\mathrm{CE}}$ to Write Enable		5	0		5	0		ns
Write Hold Times								
TWHA Address to Write Enable		10	0		5	0		ns
TWHD Data In to Write Enable		5	0		5	0		ns
TWHC $\overline{\mathrm{CE}}$ to Write Enable		5	0		5	0		ns
TWP Write Enable Pulse Width (Note 2)		50	25		35	25		ns

AC TEST LOAD

NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.
3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\theta_{\text {JA }}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} / \mathrm{Watt}$
$\theta_{\text {JA }}$ Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\theta_{\text {JA }}$ Junction to Case $-20^{\circ} \mathrm{C} /$ Watt

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE
ADDRESS ACCESS TIME
ADDRESS

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TWR Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid-not as shown.)

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D}$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
T_{AA} Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TWSC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.
TwP Width of WRITE ENABLE pulse.
TwSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.
TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
TWD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.

TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The $82 \mathrm{~S} 12 / 112$ is a Schottky TTL 32 bit multiport memory organized in 8 words of 4 bits each. The device is ideally suited for high speed accumulators and buffer memories.

Stored data is addressed through 2 independent sets of 3 -input decoders, and read out when the corresponding output enable line is low. Two separate word locations can, therefore, be read at the same time by enabling both the A and B output drivers. In addition, data can be read and written at the same time by utilizing the " A " address to specify the location of the word to be written, and the " B " address to specify the word to be read.

The 82S12/112 can be used in larger memory arrays since it includes all the control logic required to disable the chip and the outputs are open-collector devices suitable for "Wire-ORing."

FEATURES

- LOW CURRENT INPUT BUFFERS ($-25 \mu A$ TYPICAL)
- SEPARATE INPUT DECODERS FOR EACH WORD
- SEPARATE OUTPUT ENABLE LINES FOR EACH WORD
- OPEN COLLECTOR (82S12) OR TRI-STATE (82S112) OUTPUTS
- 2 WRITE ENABLE LINES
- FAST ACCESS (20 ns TYPICAL)
- USEFUL 8×4 ORGANIZATION
- TTL COMPATIBLE
- NON INVERTING DATA LINES

BLOCK DIAGRAM

APPLICATIONS

SCRATCH PAD MEMORY
BUFFER MEMORY
ACCUMULATOR REGISTER
GENERAL REGISTER
PIN CONFIGURATION

TRUTH TABLE

\bar{R} / \mathbf{W}	R/ $/ \bar{W}$	$\frac{\text { A }}{\text { OUTPUT }}$	$\frac{\text { B }}{\text { OUTPUT }}$	MODE	OUTPUTS	
					A	B
0	x	1	1	Outputs Disabled	"1"	"1"
0	x	1	0	Read	"1"	Data
0	x	0	1	Read	Data	"1"
0	\times	0	0	Read	Data	Data
1	1	1	1	Read	"1"	"1"
1	1	1	0	Read	"1"	Data
1	1	0	1	Read	Data	"11"
1	1	0	0	Read	Data	Data
1	0	1	1	Write	"1"	"1"
1	0	1	0	Write	"1"	Data
						"B' Address
1	0			Write	Data	"1"
		0	1		Being	
					Written	
1	0	0	0	Write	Data	Data
					Being	"B'
					Written	Address

OBJECTIVE ELECTRICAL SPECIFICATIONS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C} ;-4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$.

CHARACTERISTICS	LIMITS			UNITS	TEST CONDITIONS
	MIN.	TYP.	MAX.		
Input " 0 ' Current			-250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}$
Input "1" Current			25	$\mu \mathrm{A}$	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$
Input "0'0 Threshold Voltage			0.85	V	
Input "1" Threshold Voltage	2.0			V	
Input Clamp Voltage	-1.2			V	$\mathrm{l}_{\text {in }}=-18 \mathrm{~mA}$
Output " 0 ' Current	16			mA	$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$
Output "0' Current	9.6				$\mathrm{V}_{\text {out }}=0.45 \mathrm{~V}$
Output "1" Voltage (825112)	2.6			Volts	$\mathrm{I}_{\text {out }}=-3.2 \mathrm{~mA}$
Output Off Current (82S12)			40	$\mu \mathrm{A}$	$V_{\text {out }} \leqslant 5.5 \mathrm{~V}$
Output Off Current (82S112)	-40		+40	$\mu \mathrm{A}$	$0.45 \leqslant V_{\text {out }} \leqslant 5.5 \mathrm{~V}$
Power Consumption		110/550	160/840	$\mathrm{mA} / \mathrm{mW}$	Outputs Enabled
Write Pulse Width $\quad T_{1}$		15	30	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Only
T1			45	ns	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}$
Address Set Up Time $\quad \mathrm{T}_{2}$		10		ns	
Address Hold Time \quad T3		0		ns	
Data Input Hold Time T_{4}		15		ns	
Write Access Time T_{5}		30		ns	
Data Input Set Up Time T_{6}		5		ns	
Output Enable Time $\quad \mathrm{T}_{7}$		10	20	ns	
Output Disable Time T_{8}		10	20	ns	
Address Access Time \quad T9		20	30	ns	

TIMING DIAGRAM

NOTES

*" B " Address functions identically in read mode. No write mode through B address decoder.
**R/W input is either the reverse of R/W or held high.
Outputs can be disabled during write cycle to penetrate a known output state during write.

FEBRUARY 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S16 and 82S17 are Schottky clamped TTL, read/ write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to $25 \mu \mathrm{~A}$ for a " 1 " level, and $-250 \mu \mathrm{~A}$ (S82S16/17) or $-100 \mu \mathrm{~A}$ (N82S 16/17) for a " 0 " level.
During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.
Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

Both 82S16 and 82S17 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S16/17, B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S $16 / 17, \mathrm{~F}$ only.

FEATURES

- ORGANIZATION - 256×1
- ADDRESS ACCESS TIME: S82S16, S82S17 - 70ns, MAXIMUM N82S16, N82S17 - 50ns, MAXIMUM
- WRITE CYCLE TIME: S82S16, S82S17 - 70ns, MAXIMUM N82S16, N82S17 - 55ns, MAXIMUM
- POWER DISSIPATION - 1.5mW/BIT TYPICAL
- INPUT LOADING:

S82S16, S82S17 - (-250 $\mu \mathrm{A})$ MAXIMUM
N82S16, N82S17 - $(-100 \mu A)$ MAXIMUM

- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- 16 PIN CERAMIC DIP
- OUTPUT OPTION:

TRI-STATE - 82S16
OPEN COLLECTOR - 82S17

APPLICATIONS

BUFFER MEMORY
WRITABLE CONTROL STORE
MEMORY MAPPING
PUSH DOWN STACK
SCRATCH PAD

PIN CONFIGURATION

TRUTH TABLE

MODE	$\overline{\mathrm{CE}}{ }^{*}$	$\overline{W E}$	DIN	$\overline{\text { DOUT }}$	
				82S16	82S17
READ	0	1	X	$\frac{\text { STORED }}{\overline{\text { DATA }}}$	$\frac{\text { STORED }}{\overline{\text { DATA }}}$
WRITE " 0 "	0	0	0	1	1
WRITE "1"	0	0	1	0	0
DISABLED	1	X	X	High-Z	1

*" $0^{\prime \prime}=$ All $\overline{\mathrm{CE}}$ inputs low; " 1 " = one or more $\overline{\mathrm{CE}}$ inputs high.
$X=$ Don't care .

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Power Supply Voltage	+7
$\mathrm{~V}_{\text {IN }}$	Input Voltage	+5.5
$\mathrm{~V}_{\text {OUT }}$ High Level Output Voltage (82S17)	+5.5	Vdc
V_{O}	Off-State Output Voltage (82S16)	+5.5
$\mathrm{~T}_{\text {A }}$	Operating Temperature Range	Vdc
	S82S16/17	
	N82S16/17	-55° to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	0° to $+75^{\circ}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S } 82 \mathrm{~S} 16 / 17 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N } 82 \mathrm{~S} 16 / 17 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

	PARAMETER	TEST CONDITIONS		N82S16/17			S82S16/17			UNIT	NOTES
				MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX		
$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I C} \end{aligned}$	High-Level Input Voltage Low-Level Input Voltage Input Clamp Voltage	$\begin{aligned} & V_{C C}=\text { MAX } \\ & V_{C C}=M I N \\ & V_{C C}=M I N, I_{I N}=-12 \mathrm{~mA} \end{aligned}$		2.0	-1.0	$\begin{aligned} & 0.85 \\ & -1.5 \end{aligned}$	2.0	-1.0	$\begin{array}{r} 0.8 \\ -1.5 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ V	$\begin{gathered} 1 \\ 1,8 \end{gathered}$
V_{OH}	High-Level Output Voltage (82S16)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$		2.6			2.4			V	1, 6
V_{OL}	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.35	0.45		0.35	0.5	V	1, 7
IOLK	Output Leakage Current (82S17)	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	40		1	40	$\mu \mathrm{A}$	5
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ State Output Current (82S16)	$\frac{V_{\text {OUT }}=5.5 \mathrm{~V}}{V_{\text {OUT }}=0.45 \mathrm{~V}}$			$\begin{array}{r} 1 \\ -1 \end{array}$	$\begin{array}{r} 40 \\ -40 \end{array}$		$\begin{array}{r} 1 \\ -1 \end{array}$	50 -50	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
$I_{1 H}$ IIL	High-Level Input Current Low-Level Input Current	$\begin{aligned} & V_{C C}=M A X, V_{I N}=5.5 V \\ & V_{C C}=M A X, V_{I N}=0.45 V \end{aligned}$			$\begin{array}{r} 1 \\ -10 \end{array}$	$\begin{array}{r} 25 \\ -100 \end{array}$		$\begin{array}{r} 1 \\ -10 \end{array}$	$\begin{array}{r} 25 \\ -250 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
los	Short-Circuit Output Current (82S16)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		-20		-70	-20		-70	mA	3
ICc	V_{CC} Supply Current (82S16/17) V_{CC} Supply Current (82S16/17)	$\begin{aligned} & V_{C C}=\text { MAX } \\ & V_{C C}=M A X, T_{A}=+125^{\circ} C \end{aligned}$			80	115		80	$\begin{aligned} & 120 \\ & 99 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	4 4
$C_{\text {IN }}$ Cout	Input Capacitance Output Capacitance	$\frac{V_{\text {IN }}=2.0 \mathrm{~V}}{V_{\text {OUT }}=2.0 \mathrm{~V}}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5 8			5 8		pF pF	

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 V, T_{A}=+25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{1 H}$ applied to $\overline{C E 1}, \overline{C E 2}$ and $\overline{C E 3}$.
6. Measured with a logic " 0 " stored and $V_{1 L}$ applied to $\overline{C_{1}}, \overline{C E_{2}}$ and $\overline{C E_{3}}$.
7. Measured with a logic " 1 " stored. Output sink current is supplied through a resistor to V_{CC}.
8. Test each input one at the time.

SWITCHING CHARACTERISTICS
$\begin{array}{ll}\text { S82S16/17 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S } 16 / 17 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

PARAMETER	TEST CONDITIONS	S82S16/17			N82S16/17			UNIT
		MIN	TYP ${ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX	
Propagation Delay								
TAA Address Access Time			40	70		40	50	ns
TCE Chip Enable Access Time	$\mathrm{R}_{1}=270 \Omega$		30	40		30	40	ns
TCD Chip Enable Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40		30	40	ns
TWD Write Enable to Output Valid Time			30	55		30	40	ns
Write Set-up Times								
TWSA Address to Write Enable	$\mathrm{R}_{1}=270 \Omega$	20	5		20	5		ns
TWSD Data In to Write Enable	$\mathrm{R}_{2}=600 \Omega$	50	40		40	30		ns
TWSC $\overline{C E}$ to Write Enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10	0		10	0		ns
Write Hold Times								
TWHA Address to Write Enable	$\mathrm{R}_{1}=270 \Omega$	10	0		5	0		ns
TWHD Data In to Write Enable	$\mathrm{R}_{2}=600 \Omega$	10	0		5	0		ns
TWHC ${ }_{\text {CE }}$ to Write Enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10	0		5	0		ns
TWP Write Enable Pulse Width	Note 2	40	20		30	15		ns

AC TEST LOAD

NOTES:

1. Typical values are at $V_{C C}=+5.0 V$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE

ADDRESS ACCESS TIME

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.

TCD Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid

TwsC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.

TwD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.

TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

64-BIT BIPOLAR HIGH SPEED WRITE-WHILE-READ RAM (32×2 RAM)

DESCRIPTION

The 82S21 is a TTL 64 bit Write-While-Read Random Access Memory organized in 32 words of 2 bits each. The 82 S 21 is ideally suited for high speed buffers and as the memory element in high speed accumulators.

Words are selected through a 5 input decoder when the Read-Write enable input, CE is at logic " 1 ". $\overline{W_{0}}$ and $\overline{W_{1}}$ are the write inputs for bit 0 and bit 1 of the word selected. $\overline{\mathrm{C}}$ is the write control input. When $\overline{\mathrm{W}}_{\mathrm{X}}$ and $\overline{\mathrm{C}}$ are both at logic " 0 " data on the I_{0} and I_{1} data lines are written into the addressed word. The read function is enabled when either \bar{W}_{X} or \bar{C} is at logic " 1 ".

An internal latch is on the chip to provide the Write-WhileRead capability. When the latch control line, \bar{L}, is logic " 1 " and data is being read from the $82 S 21$, the latch is effectively bypassed. The data at the output will be that of the addressed word. When \bar{L} goes from a logic " 1 " to logic " 0 " the outputs are latched and will remain latched regardless of the state of any other address or control line. When \bar{L} goes from " 0 " to " 1 " the outputs unlatch and the outputs will be that of the present address word.

FEATURES

- BUFFERED ADDRESS LINES
- ON CHIP LATCHES
- ON CHIP DECODING
- BIT MASKING CONTROL LINES
- ENABLE CONTROL LINE
- OPEN COLLECTOR OUTPUTS WITH

40mA CAPABILITY

- PROTECTED INPUTS
- VERY HIGH SPEEDS (25ns TYP)

TRUTH TABLE

CE	$\overline{\mathrm{C}}$	$\overline{W_{0}}$	$\overline{W_{1}}$	\bar{L}	Mode	Outputs
X	X	X	X	0	Output Hold	Data from last addressed word when CE = "1"
0	X	X	x	1	Read \& Write Disabled	Disabled logic "1"
1	1	X	X	x	Read	Data stored in addressed word
1	0	1	1	X	Read	Data stored in addressed word
1	0	0	0	0	Write Data	Data from last word address when L went from " 1 " to " 0 "
1	0	0	0	1	Write Data	Data being written into memory
1	0	0	1	X	Write Data into Bit 0 Only	If $\bar{L}=0$: Data from last word address when L went from " 1 " to " 0 "
1	0	1	0	X	Write Data into Bit 1 Only	If $\bar{L}=1$: Data being written into the selected bit location and stored in other addressed location

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SWITCHING CHARACTERISTICS $0 \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

CHARACTERISTICS		LIMITS				TEST CONDITIONS	NOTES
		MIN.	TYP.	MAX.	UNITS		
Read Access Time Address to Output	t_{1}		25	50	ns		
Address Set-Up Time	t_{2}		8	15	ns		
Data Set-Up Time	${ }^{\text {t }}$		15	20	ns		
Address Hold Time	t_{4}			0	ns		
Control or Write Pulse Width	t_{5}		15	20	ns		
Write Access Time	${ }^{6} 6$		20	25	ns		
Address to Latch Set-Up Time	${ }^{1} 7$		25	50	ns		
Latch Address to Address Hold Time	${ }_{8}$		7	10	ns		
Delatch Access Time	t9		15	25	ns		
Data Hold Time	t_{10}		0	5	ns		

AC WAVEFORM

TEST LOAD

AC WAVEFORMS

Fig. 3 Data Setup and Hold Time

Fig. 5 Latch Times

Fig. 4 Write Access Time

TYPICAL APPLICATION

BASIC 8 BIT FULLY BUFFERED ACCUMULATOR
By use of the control lines S_{0} and S_{1} data is loaded into the " A " register through inputs D_{X} or from the outputs of the 74181 's (E_{X}) to the 82S33's and stored in the 82S21's organized as a 32×8 RAM register. Data is loaded directly into the " B " register. With this arrangement, the function $A+B \rightarrow A(A$ plus B into $A)$ can be performed in 70ns, typically, starting from data stored in the 82521 s.

256-BIT BIPOLAR PROGRAMMABLE ROM (32×8 ROM)
(82S23 OPEN COLLECTOR) (82S123 TRI-STATE)
82523 825123

FEBRUARY 1975
 DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82 S 23 (Open Collector Outputs) and the 82 S 123 (Tri-State Outputs) are Bipolar 256-Bit Read Only Memories, organized as 32 words by 8 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S23 and 82S123 devices are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni-Cr link matrix.
The 82S23 and 82S123 are fully TTL compatible, and include on-chip decoding and one chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 82S23 and 82S123 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S23/123, B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$) specify S82S23/123, F only.

PIN CONFIGURATION

[^0]
FEATURES

- ORGANIZATION - 32 X 8

- ADDRESS ACCESS TIME:

S82S23/S82S123 - 65ns, MAXIMUM
N82S23/N82S123 - 50ns, MAXIMUM

- POWER DISSIPATION - 1.3mW/BIT TYPICAL
- INPUT LOADING:

S82S23/123 - ($-150 \mu \mathrm{~A})$ MAXIMUM
N82S23/123 - (-100 $\mu \mathrm{A})$ MAXIMUM

- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

OPEN COLLECTOR - 82S23
TRI-STATE - 82S123

- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE "0" LEVEL
- 16-PIN CERAMIC DIP

APPLICATIONS

PROTOTYPING/VOLUME PRODUCTION
SEQUENTIAL CONTROLLERS
FORMAT CONVERSION
HARDWIRED ALGORITHMS
RANDOM LOGIC
CODE CONVERSION

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage (82S23)	+5.5	Vdc
V_{O}	Off-State Output Voltage (82S123)	+5.5	Vdc
T_{A}	Operating Temperature Range		
	(N82S23/123)	0° to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S23/123)	-55° to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S23/S82S } 123 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S23/N82S } 123 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

\section*{SWITCHING CHARACTERISTICS
 | $\mathrm{S} 82 \mathrm{~S} 23 / \mathrm{S} 82 \mathrm{~S} 123$ | $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$ |
| :--- | :--- |
| $\mathrm{~N} 82 \mathrm{~S} 23 / \mathrm{N} 82 \mathrm{~S} 123$ | $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$ |}

PARAMETER	TEST CONDITIONS ${ }^{1}$	S82S23/S82S123			N82S23/N82S123			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
TAA Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	65		35	50	ns
$\mathrm{T}_{\text {CD }}$ Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		25	40		25	35	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		25	40		25	35	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP	MAX			
Power Supply Voltage							
$\mathrm{V}_{\text {CCP }}{ }^{1}$	To Program		$\begin{aligned} & \mathrm{I}_{\mathrm{ccP}}=250 \pm 50 \mathrm{~mA} \\ & \text { (Transient or steady state) } \end{aligned}$	9.5	10.0	10.5	V
$\mathrm{V}_{\mathrm{CCH}}$	Upper Verify Limit		5.3	5.5	5.7	v	
$\mathrm{V}_{\mathrm{CCL}}$	Lower Verify Limit		4.3	4.5	4.7	v	
$\mathrm{V}_{5}{ }^{3}$	Verify Threshold		0.9	1.0	1.1	V	
${ }^{\text {c CCP }}$	Programming Supply Current	$\mathrm{V}_{\text {CCP }}=+10.0 \pm 0.5 \mathrm{~V}$	200	250	300	mA	
Input Voltage							
$\mathrm{V}_{1 \mathrm{H}}$	Logical " 1 "		2.4		5.5	V	
$V_{\text {IL }}$	Logical " 0 "		0	0.4	0.8	v	
Input Current							
I_{IH}	Logical " 1 "	$\mathrm{V}_{1 \mathrm{H}}=+5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$	
IIL	Logical " 0 "	$\mathrm{V}_{1 \mathrm{LL}}=+0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$	
$V_{\text {OUT }}{ }^{2}$	Output Programming Voltage	$\begin{aligned} & \text { lout }=65 \pm 3 \mathrm{~mA} \\ & \text { (Transient or steady state) } \end{aligned}$	15.0	15.5	16.0	v	
lout	Output Programming Current	$\mathrm{V}_{\text {OUT }}=+15.5 \pm 0.5 \mathrm{~V}$	62	65	68	mA	
T_{R}	Output Pulse Rise Time		10		50	$\mu \mathrm{s}$	
	$\overline{\mathrm{CE}}$ Programming Pulse Width		1		2	ms	
t_{V}	Verify Delay		50			$\mu \mathrm{s}$	
$t_{\text {D }}$	Pulse Sequence Delay		10			$\mu \mathrm{s}$	
$\mathrm{T}_{\text {PR }}$	Programming Time	$\mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCP}}$			2.5	sec	
	Programming Pause	$V_{C C}=0 \mathrm{~V}$	5			sec \%	
$\frac{T_{P R}{ }^{4}}{T_{P R}+T_{P S}}$	Programming Duty Cycle				33	\%	

PROGRAMMING PROCEDURE

1. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to $V_{C C}$.
2. Select the Address to be programmed, and raise V_{CC} to $V_{C C P}=+10 \pm 0.5 \mathrm{~V}$.
3. After 10μ s delay, apply IOUT $=65 \pm 3 \mathrm{~mA}$ to the output to be programmed. Program one output at a time.
4. After 10μ s delay, pulse the $\overline{C E}$ input to logic " 0 " for 1 to 2 ms .
5. After 10μ s delay, remove IOUT from the programmed output.
6. After $10 \mu \mathrm{~s}$ delay, return V_{CC} to 0 V .

NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu F$ capacitor to reduce voltage spikes.
2. Care should be taken to insure that $+15.5 \pm 0.5 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. V_{S} is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a 33\% duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ($V_{\mathrm{CC}}=0 \mathrm{~V}$) of 4 ms .
5. To verify programming, after 50μ s delay, raise $V_{C C}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$, and apply a logic " 0 " level to the $\overline{\mathrm{CE}}$ input. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.5$ $\pm .2 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
6. Raise $V_{C C}$ to $V_{C C P}=+10 \pm 0.5 \mathrm{~V}$ and repeat steps 3 through 7 to program other bits at the same address.
7. After 10μ s delay, repeat steps 2 through 8 to program all other address locations.

AC TEST FIGURE AND WAVEFORM

TYPICAL FUSING PATH

TYPICAL PROGRAMMING SEQUENCE

TIMING SEQUENCE

64-BIT BIPOLAR SCRATCH PAD
MEMORY (16x4 RAM)
M2S $\mathbf{2 5}$
FEBRUARY 1975
DIGITAL 8000 SERIES TTL/MEMORY

DESCRIPTION

The 82S25 is a 64-bit, Schottky clamped TTL, ReadWrite Random Access Memory ideal for use in scratch pad and high-speed buffer memory applications.

The 82S25 is a fully decoded memory array organized as 16 words of 4 bits each, with separate input and output lines. It features PNP inputs, one chip enable line, and open collector outputs for ease of memory expansion.
The outputs of the $82 S 25$ assume a logic " 1 " state during write. This allows both memory inputs and outputs to share a common bus for minimizing interconnections, and more effective utilization of common I/O circuitry.

The $82 S 25$ is available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N 82 S 25 , B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S 82 S 25 , Fonly.

FEATURES

- ORGANIZATION - 16×4
- ADDRESS ACCESS TIME:

S82S25 - 60ns, MAXIMUM
N82S25 - 50ns, MAXIMUM

- WRITE CYCLE TIME:

S82S25-50ns, MAXIMUM
N82S25 - 35ns, MAXIMUM

- POWER DISSIPATION - 6.25mW/BIT, TYPICAL
- INPUT LOADING:

S82S25 - ($-150 \mu \mathrm{~A})$ MAXIMUM
N82S25 - $(-100 \mu A)$ MAXIMUM

- OUTPUT BLANKING DURING WRITE
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- 16 PIN CERAMIC DIP

PIN CONFIGURATION

TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\mathrm{WE}}$	$\mathbf{I n}$	$\overline{\mathrm{D}} \mathbf{n}$
Read	0	1	X	Complement of data stored
Write "0"'	0	0	0	1
Write " 1 "	0	0	1	1
Disabled	1	X	X	1

$X=$ Don't care.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {in }}$	Input Voltage	+5.5
$V_{\text {OH }}$	High Level Output Voltage	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	
	(N82S25)	0° to $+75^{\circ}$
	(S82S25)	-55° to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$
Vdc		

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S25 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S25 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

	PARAMETER	TEST CONDITIONS	S82S25 ${ }^{1,2,3}$			N82S25 ${ }^{1,2,3}$			UNIT
			MIN	TYP ${ }^{8}$	MAX	MIN	TYP ${ }^{8}$	MAX	
$I_{\text {IL }}$	"0" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=0.45 \mathrm{~V}$		-10	-150		-10	-100	$\mu \mathrm{A}$
I_{IH}	"1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			25			10	$\mu \mathrm{A}$
$V_{\text {IL }}$	" 0 " Level Input Voltage	$V_{\text {cC }}=$ MIN			. 80			. 85	V
$\mathrm{V}_{1 \mathrm{H}}$	"1" Level Input Voltage	$V_{C C}=$ MAX	2.0			2.0			V
$V_{\text {IC }}$	Input Clamp Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \text { (Note 6) } \end{aligned}$		-1.0	-1.5		-1.0	-1.5	V
$\mathrm{V}_{\text {OL }}$	"0" Output Voltage	$\begin{aligned} & \text { lout }=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { MIN }(\text { Notes } 4,5) \end{aligned}$		0.35	0.5		0.35	0.45	V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1 H}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5			5		pF
Cout	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{CE}=" 1 " \end{aligned}$		8			8		pF
Icc	Power Supply Current	(Note 5)		80	120		80	105	mA
Iolk	Output Leakage Current	$\begin{aligned} & \overline{C E}="{ }^{\prime} ", V_{\text {OUT }}=5.5 \mathrm{~V}, \\ & V_{\mathrm{CC}}=\text { MIN } \end{aligned}$		<1	100		<1.0	100	$\mu \mathrm{A}$

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Positive current is defined as into the terminal referenced.
3. Positive logic definition: " 1 " = HIGH $\approx+5.0 \mathrm{~V}$; " O " = LOW \approx GRD.
4. Output sink current is supplied through a resistor to V_{CC}.
5. All sense outputs in " 0 " state.
6. Test each input one at a time.
7. To guarantee a WRITE into the slowest bit.
8. Typical values are at $V_{C C}=+5.0 \vee$ and $T_{A}=+25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS $\begin{array}{ll}\text { S82S25 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S25 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}^{2}\end{array}$
 N82S25 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	S82S25			N82S25			UNIT
		MIN	TYP ${ }^{8}$	MAX	MIN	TYP ${ }^{8}$	MAX	
Propagation Delays								
TAA Address Access Time			35	60		35	50	ns
TCE Chip Enable Access Time			20	35		20	35	ns
$T_{C D} \quad$ Chip Enable Output Disable Time			20	35		20	35	ns
TWD Write Enable to Output Disable Time			20	30		20	25	ns
TWR Write Recovery Time			35	60		35	50	ns
Write Set-up Times	$\begin{aligned} & \mathrm{R}_{1}=270 \Omega \\ & \mathrm{R}_{2}=600 \Omega \end{aligned}$							
TwsA Address to Write Enable	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10	-8		0	-8		ns
TWSD Data In to Write Enable		25	5		20	5		ns
TWSC $\overline{\mathrm{CE}}$ to Write Enable		0	-5		0	-5		ns
Write Hold Times								
TWHA Address to Write Enable		10	0		5	0		ns
TWHD Data In to Write Enable		10	-3		5	-3		ns
TWHC $\quad \overrightarrow{C E}$ to Write Enable		5	0		5	0		ns
TWP Write Enable Pulse Width (Note 7)		30	18		30	18		ns

AC TEST LOAD AND WAVEFORMS

SWITCHING PARAMETERS MEASUREMENT INFORMATION

READ CYCLE

CHIP ENABLE/DISABLE TIMES

WRITE CYCLE

MEMORY TIMING DEFINITIONS

TWR Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid - not as shown.)

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.

TCD Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.

TAA Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TwSC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TwHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TwSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.
TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
$T_{\text {WD }} \quad$ Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.

Twhc Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

DESCRIPTION

The 82527 is a Bipolar 1024-Bit Read Only Memory, organized as 256 words by 4 bits per word. It is FieldProgrammable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82527 is supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni -Cr link matrix.
The 82S27 is fully TTL compatible, and includes on-chip decoding, two chip enable inputs, and open collector outputs for ease of memory expansion.

The 82 S 27 is available in the commercial temperature range. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S27, F.

FEATURES

- ORGANIZATION - 256 X 4
- ADDRESS ACCESS TIME - 40ns, MAXIMUM
- POWER DISSIPATION - 0.6mW/BIT, TYPICAL
- INPUT LOADING - 1.6mA, MAXIMUM
- TWO CHIP ENABLE INPUTS
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE " 0 " LEVEL
- 16-PIN CERAMIC DIP

PIN CONFIGURATION

BLOCK DIAGRAM

AC TEST FIGURE AND WAVEFORM

TYPICAL FUSING PATH

TYPICAL PROGRAMMING SEQUENCE

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
V_{OH}	High Level Output Voltage	+5.5	Vdc
T_{A}	Operating Temperature Range	0° to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT
			MIN	TYP ${ }^{2}$	MAX	
$\mathrm{V}_{\text {OL }}$	"0' Output Voltage	$\mathrm{l}_{\text {OUT }}=32 \mathrm{~mA}$	2.0	0.45	0.50	V
IOLK	Output Leakage Current	$\overline{C E S E_{1}}$ or $\overline{C E_{2}}=" 1 ", V_{\text {OUT }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
I_{H}	"1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
IIL	" 0 " Input Current	$\mathrm{V}_{\mathrm{IN}}=0.50 \mathrm{~V}$			-1.6	mA
$V_{\text {IL }}$	"0' Level Input Voltage				. 80	V
V_{IH}	"1" Level Input Voltage					V
ICC	$V_{\text {cC }}$ Supply Current			120	140	mA
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$		-1.0	-1.5	\checkmark
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{CE}_{1} \text { or } \overline{\mathrm{CE}_{2}}=" 1 " \text { " } \end{aligned}$		8		pF

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT
		MIN	TYP ${ }^{2}$	MAX	
Propagation Delay					
$\mathrm{T}_{\text {AA }}$ Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40	ns
$T_{C D}$ Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		15	20	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

MANUAL PROGRAMMER

TIMING SEQUENCE

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT
		MIN	TYP	MAX	
Power Supply Voltage					
$\mathrm{V}_{\text {CCP }}{ }^{1}$ To Program	$\mathrm{I}_{\mathrm{CCP}}=300 \pm 50 \mathrm{~mA}$ (Transient or steady state)	5.0		5.25	v
$V_{\text {CCH }} \quad$ Upper Verify Limit		5.0	5.25	5.5	V
$V_{\text {CCL }}$ Lower Verify Limit		4.5	4.75	5.0	V
$\mathrm{V}^{3}{ }^{3} \quad$ Verify Threshold		0.9	1.0	1.1	\checkmark
ICCP Programming Supply Current	$V_{\text {CCP }}=+5.0 \pm 0.25 \mathrm{~V}$	250	300	350	mA
Input Voltage					
$V_{1 H} \quad$ Logical " ${ }^{\prime \prime}$ (Except $\overline{\mathrm{CE}_{1}}$)		3.0		5.0	V
$V_{\text {IN }} \quad$ Program Level ($\overline{\mathrm{CE}}_{1}$ Only $)$		14.0	14.5	15.0	V
$V_{\text {IL }}$ Logical " 0 '		0	0.4	0.5	V
Input Current					
$\mathrm{I}_{1 H}$ Logical "1"	$V_{1 H}=+3.0 \mathrm{~V}$			100	$\mu \mathrm{A}$
IIL Logical "0"	$V_{\text {IL }}=+0.5 \mathrm{~V}$			-1.6	mA
IIN Program Level ($\overline{\mathrm{CE}}_{1}$ Only)	$V_{\text {IN }}=+15.0 \mathrm{~V}$			15	mA
Vout ${ }^{2}$ Output Programming Voltage	$\mathrm{I}_{\text {OUT }}=115 \pm 10 \mathrm{~mA}$ (Transient or steady state)	16.5	17.0	17.5	V
Iout Output Programming Current	$V_{\text {OUT }}=+17.0 \pm 0.5 \mathrm{~V}$	105	115	125	mA
$\mathrm{T}_{\mathrm{R}}{ }^{5} \quad$ Output Pulse Rise Time		0.2		0.5	$\mu \mathrm{s}$
tp Programming Pulse Width		1		2	ms
$t_{\text {D }} \quad$ Pulse Sequence Delay		10			$\mu \mathrm{s}$
$T_{\text {PR }} \quad$ Programming Time	$V_{C C}=V_{C C P}$			2.5	sec
```TPS Programming Pause TPR}\mp@subsup{}{}{4```	$V_{C C}=0 \mathrm{~V}$	5			sec
$\frac{T_{P R}+T_{P S}}{}$ Programming Duty Cycle				33	\%

## PROGRAMMING PROCEDURE

The 82S27 is shipped with all bits at logical " 0 " (low) To write logical " 1 ", proceed as follows:

## SET-UP

a. Apply GND to pin 12.
b. Terminate all device outputs with a $10 \mathrm{k} \Omega$ resistor to $V_{C C}$.
c. Set $\overline{C E}_{2}$ to logic " 0 ".

## PROGRAM-VERIFY SEQUENCE

Step 1 Raise $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CCP}}$, and address the word to be programmed by applying TTL " 1 " and " 0 " logic levels to the device address inputs.

Step 2 After $10 \mu$ s delay, apply to $\overline{C E}_{1}$ (pin 13) a voltage source of $14.5 \pm 0.5 \mathrm{~V}$, with 15 mA sourcing current capability.

Step 3 After $10 \mu$ s delay, apply a voltage source of +17.0 $\pm 0.5 \mathrm{~V}$ to the output to be programmed. The source must have a current limit of 115 mA . Program one output at the time.

Step 4 After $10 \mu$ s delay, remove +17.0 V supply from programmed output.
Step 5 To verify programming, after $10 \mu$ s delay, return $\overline{C E}_{1}$ to 0 V . Raise $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.25 \pm .25 \mathrm{~V}$. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.75 \pm .25 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
Step 6 Raise $V_{C C}$ to $V_{C C P}$, and repeat steps 2 through 5 to program other bits at the same address.

Step 7 Repeat steps 1 through 6 to program all other address locations.

NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
2. Care should be taken to insure the $17 \pm 0.5 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. $V_{S}$ is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a $33 \%$ duty cycle is maintained. This may be accomplished by following each Program Verify cycle with a Rest period ( $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ) of 4 ms .
5. Measured with a 1 k dummy load connected across the fusing source.

## DESCRIPTION

The 82S100 (Tri-State Outputs) and the 82S 101 (Open Collector Outputs) are Bipolar Programmable Logic Arrays, containing 48 Product terms (AND terms), and 8 output functions. Each output function can be programmed either true active-High ( Fp ), or true active-Low ( $\mathrm{F}_{\mathrm{p}}^{*}$ ). The true state of the output functions is controlled via an output Sum (OR) Matrix by a logical combination of 16 -input variables, or their complements, up to 48 terms.

Both devices are field-programmable, which means that custom patterns are immediately available by following the fusing procedure outlined in this data sheet.
The 82S100 and 82S101 are fully TTL compatible, and include a chip-enable clocking input for output deskewing and inhibit. They feature either Open Collector or Tri-State outputs for ease of expansion of product terms and/or input variables.

## FEATURES

- FIELD PROGRAMMABLE (Ni-Cr LINK)
- INPUT VARIABLES - 16
- OUTPUT FUNCTIONS-8
- PRODUCT TERMS - 48
- ADDRESS ACCESS TIME - 50ns, MAXIMUM
- POWER DISSIPATION - 600mW, TYPICAL
- INPUT LOADING - $(-100 \mu A)$, MAXIMUM
- OUTPUT OPTION:

TRI-STATE OUTPUTS - 82S100
OPEN COLLECTOR OUTPUTS - 82S101

- OUTPUT DISABLE FUNCTION:

TRI-STATE - Hi-Z
OPEN COLLECTOR - Hi

- CERAMIC DIP


## APPLICATIONS

LARGE READ ONLY MEMORY
RANDOM LOGIC
CODE CONVERSION
PERIPHERAL CONTROLLERS
LOOK-UP AND DECISION TABLES
MICROPROGRAMMING
ADDRESS MAPPING
CHARACTER GENERATORS
SEQUENTIAL CONTROLLERS

PIN CONFIGURATION


## TRUTH TABLE

LET:
$P_{n}=\Pi_{0}^{15}\left(k_{m}{ }^{\prime} \mathrm{m}^{+} \mathrm{j}_{\mathrm{m}} \overline{\mathrm{Im}}_{\mathrm{m}}\right) \quad ; \quad \mathrm{k}=0,1, \mathrm{X}$ (Don't Care) $\mathrm{n}=0,1,2, \ldots .47$
where:
Unprogrammed state $\quad: \mathrm{j}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}}=0$
Programmed state
: $\mathrm{j}_{\mathrm{m}}=\overline{\mathrm{k}_{\mathrm{m}}}$
$S_{r}=f\left(\Sigma_{0}^{47} P_{n}\right)$
; $r \equiv p=0,1,2, \ldots, 7$

MODE	$\mathrm{P}_{\mathrm{n}}$	$\overline{\mathrm{CE}}$	$F_{p}$	$\mathrm{F}_{\mathrm{p}}^{*}$	$\mathrm{S}_{\mathrm{r}} \stackrel{?}{=}\left(\mathrm{P}_{\mathrm{n}}\right)$
$\begin{aligned} & \text { Disabled } \\ & \text { (82S101) } \end{aligned}$	X	1	1	1	X
$\begin{aligned} & \hline \text { Disabled } \\ & (82 S 100) \end{aligned}$			$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	
Read	1	0	1	0	YES
	0	0	0	1	
	X	0	0	1	NO

## BLOCK DIAGRAM



FPLA TYPICAL LOGIC PATH


## ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {in }}$	Input Voltage	+5.5
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage (82S101)	+5.5
$\mathrm{~V}_{\mathrm{O}}$	Off-State Output Voltage (82S100)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	$0^{\circ}$ to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$
Vdc		

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		LIMITS			UNIT	NOTES		
		MIN	TYP ${ }^{2}$	MAX						
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA} \end{aligned}$		2	-0.8	$\begin{array}{r} 0.8 \\ -1.2 \end{array}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$	1
$V_{\text {IL }}$	Low-Level Input Voltage	1								
VIC	Input Clamp Voltage	1, 7								
$\mathrm{V}_{\mathrm{OH}}$	High-Level Output Voltage (82S100)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4			V	1,5		
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA}$			0.35	0.45	V	1, 8		
IOLK	Output Leakage Current (82S101)	$V_{C C}=5.25 \mathrm{~V}$	$\begin{aligned} & V_{\text {OUT }}=5.25 \mathrm{~V} \\ & V_{\text {OUT }}=5.25 \mathrm{~V} \\ & V_{\text {OUT }}=0.45 \mathrm{~V} \end{aligned}$		1	40	$\mu \mathrm{A}$	6		
IO(OFF)	Hi-Z State Output Current (82S100)				-1	40 -40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		
$\begin{aligned} & l_{I H} \\ & l_{I L} \end{aligned}$	High-Level Input Current   Low-Level Input Current	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & V_{I N}=0.45 \mathrm{~V} \end{aligned}$			$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{array}{r} 25 \\ -100 \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$			
Ios	Short-Circuit Output Current (82S100)	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		-20		-70	mA	3, 7		
$\mathrm{I}_{\mathrm{CC}}$	$V_{\text {CC }}$ Supply Current (82S100, 82S101)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			120	170	mA	4		
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{O}} \end{aligned}$	Input Capacitance Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\begin{aligned} & V_{\text {IN }}=2.0 \mathrm{~V} \\ & V_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$		5 8		pF   pF	6		

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Duration of short circuit should not exceed one second.
4. ICC is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.
5. Measured with VIL applied to $\overline{C E}$ and a logic "1" stored.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Test each output one at the time.
8. Measured with a programmed logic condition for which the output under test is at a "0" logic level. Output sink current is supplied thru a resistor to $\mathrm{V}_{\mathrm{CC}}$.

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	LIMITS			UNIT
		MIN	TYP ${ }^{2}$	MAX	
Propagation Delay					
TIA Input to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	50	ns
$\mathrm{T}_{\text {CD }} \quad$ Chip Disable to Output	$\mathrm{R}_{1}=270$		15	20	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600$		15	20	ns

AC TEST FIGURE AND WAVEFORM


NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=5.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

## OBJECTIVE PROGRAMMING PROCEDURE

The 82S100/101 are shipped in an unprogrammed state, characterized by:
A. All internal Ni-Cr links are intact.
B. Each product term ( P -term) contains both true and complement values of every input variable $I_{m}$ ( $P$-terms always logically "FALSE").
C. The Sum Matrix contains all 48 P-terms.
D. The polarity of each output is set to active HIGH ( $F_{p}$ function).
E. All outputs are at a LOW logic level.

To program each of 8 Boolean logic functions of 16 true or complement variables, including up to 48 P -terms, follow the Program/Verify procedures for the Product Matrix, Sum Matrix, and Output Polarity outlined below.

## OUTPUT POLARITY

PROGRAM ACTIVE LOW ( $F_{p}^{*}$ Function)
Program output polarity before programming Product Matrix and Sum Matrix. Program one output at the time.

1. Set GND ( $\operatorname{pin} 14$ ) to OV.
2. Do not apply power to the device ( $V_{C C}$, pin 28 , open).
3. Apply $\mathrm{V}_{\text {OUT }}=+18 \mathrm{~V}$ to the appropriate output for 1 ms , and return to OV .
4. Repeat step 3 to program other outputs.

## VERIFY OUTPUT POLARITY

1. Set GND (pin 14) to $O V$, and $V_{C C}$ (pin 28) to +5 V .
2. Enable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to LOW logic level.
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to all inputs $\mathrm{I}_{0}$ through $\mathrm{I}_{15}$.
4. Verify output polarity by sensing the logic state of outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{7}$. All outputs at a HIGH logic level are programmed active HIGH ( $F_{p}$ function), while all outputs at a LOW logic level are programmed active LOW ( $F_{p}^{*}$ function).
5. Remove $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ from inputs $\mathrm{I}_{0}$ through $\mathrm{I}_{15}$.

## PRODUCT MATRIX

## PROGRAM INPUT VARIABLE

Program one input at the time and one P-term at the time. All input variable links of unused P-terms are not required to be fused. However, unused input variables must be programmed as Don't Care for all programmed P-terms.

1. Set GND (pin 14) to $O V$, and $V_{C C}$ (pin 28) to +5 V .
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to HIGH logic level.
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to all inputs $\mathrm{I}_{0}$ through $\mathrm{I}_{15}$.
4. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to
outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{5}$ with $\mathrm{F}_{0}$ as LSB. Use standard TTL logic levels.
5 a . If the P -term contains neither $\mathrm{I}_{0}$ nor $\overline{\bar{I}_{0}}$ (input is a Don't Care), fuse both $\mathrm{I}_{0}$ and $\overline{\mathrm{I}}_{0}$ links by executing both steps $5 b$ and 5 c , before continuing with step 7 .
$5 b$. If the $P$-term contains $I_{0}$, set to fuse the $\bar{I}_{0}$ link by lowering the input voltage to $I_{0}$ from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level. Execute step 6.
5 c . If the P -term contains $\overline{\mathrm{I}_{0}}$, set to fuse the $\mathrm{I}_{0}$ link by lowering the input voltage to $I_{0}$ from $V_{I N}=+10 \mathrm{~V}$ to a LOW logic level. Execute step 6.
6a. After $10 \mu$ s delay, raise FE ( pin 1 ) from 0 V to +17 V . The source must have a current limit of 250 mA , and rise time of 10 to $50 \mu \mathrm{~s}$.
6b. After $10 \mu \mathrm{~s}$ delay, pulse the $\overline{\mathrm{CE}}$ input to +10 V for a period of 1 ms .
6c. After $10 \mu$ s delay, return FE input to OV.
5. Return input $\mathrm{I}_{0}$ to a disable state by applying $\mathrm{V}_{\mathrm{IN}}=$ +10 V .
6. Repeat steps 5 through 7 for all other input variables.
7. Repeat steps 4 through 8 for all other P -terms.
8. Remove $\mathrm{V}_{I N}=+10 \mathrm{~V}$ from all input variables.

## VERIFY INPUT VARIABLE

1. Set GND (pin 14) to $0 V$, and $V_{C C}(p i n 28)$ to $+5 V$.
2. Enable $F_{7}$ output by setting $\overline{C E}$ to +10 V .
3. Disable input variables by applying $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$ to inputs $I_{0}$ through $I_{15}$.
4. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{5}$.
5. Interrogate input variable $I_{0}$ as follows:
A. Lower the input voltage to $I_{0}$ from $V_{I N}=+10 \mathrm{~V}$ to a HIGH logic level, and sense the state of output $\mathrm{F}_{7}$.
B. Lower the input voltage to $I_{0}$ from a HIGH to a LOW logic level, and sense the logic state of output $\mathrm{F}_{7}$.
The state of $\mathrm{I}_{0}$ contained in the P -term is determined in accordance with the following truth table:

$I_{0}$	$F_{7}$	Input Variable State   Contained In P-Term
0	1	$\overline{I_{0}}$
1	0	$I_{0}$
0	0	Dont Care
1	1	
0	1	$\left(I_{0}\right),\left(\overline{I_{0}}\right)$
1	1	
0	0	0

Note that two tests are required to uniquely determine the state of the input variable contained in the P -term.
6. Return input $I_{0}$ to a disable state by applying $V_{I N}$ $=+10 \mathrm{~V}$.
7. Repeat steps 5 and 6 for all other input variables.
8. Repeat steps 4 through 7 for all other P-terms.
9. Remove $\mathrm{V}_{1 \mathrm{~N}}=+10 \mathrm{~V}$ from all input variables.

## SUM MATRIX <br> PROGRAM PRODUCT TERM

Program one output at the time for one $P$-term at the time. All $P_{n}$ links of unused P-terms in the Sum Matrix are not required to be fused.

1. Set GND ( pin 14 ) to 0 V , and $\mathrm{V}_{\mathrm{CC}}$ ( pin 28 ) to +8.5 V .
2. Disable the chip by setting $\overline{\mathrm{CE}}$ (pin 19) to a HIGH logic level.
3. Address the P-term to be programmed (No. 0 through 47) by applying the corresponding binary code to input variables $I_{0}$ through $I_{5}$, with $I_{0}$ as LSB. Use standard TTL levels.
4a. If the P -term is contained in output function $\mathrm{F}_{0}$ ( $F_{0}=1$ or $F_{0}^{*}=0$ ), go to step 6.
4b. If the $P$-term is not contained in output function $F_{0}\left(F_{0}=0\right.$ or $\left.F_{0}^{*}=1\right)$, set to fuse the $P_{n}$ link by applying $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$ to output $\mathrm{F}_{0}$.
5a. After $10 \mu$ s delay, raise FE ( pin 1 ) from 0 V to +17 V .
5b. After $10 \mu$ s delay, pulse the $\overline{\mathrm{CE}}$ input to +10 V for a period of 1 ms .
5c. After $10 \mu \mathrm{~s}$ delay, return FE input to 0 V .
4. Repeat steps 4 and 5 for all other output functions.
5. Repeat steps 3 through 6 for all other P-terms.
6. Remove +8.5 V from $\mathrm{V}_{\mathrm{CC}}$.

## VERIFY PRODUCT TERM

1. Set GND (pin 14) to $0 V$, and $V_{C C}$ (pin 28) to +8.5 V .
2. Enable the chip by setting $\overline{C E}$ (pin 19) to a LOW logic level.
3. Address the P-term to be verified (No. 0 through 47) by applying the corresponding binary code to input variables $I_{0}$ through $I_{5}$, with $I_{0}$ as the LSB. Use standard TTL levels.
4. To determine the status of the $P_{n}$ link in the Sum Matrix for each output function $F_{p}$ or $F_{p}^{*}$, sense the state of outputs $\mathrm{F}_{0}$ through $\mathrm{F}_{7}$. The status of the link is given by the following truth table:

Output		
Active HIGH   $\left(F_{p}\right)$	Active LOW   $\left(F_{\mathbf{p}}^{*}\right)$	P-term Link
0	1	
1	0	PRESENT

5. Repeat steps 3 and 4 for all other P-terms.
6. Remove +8.5 V from $\mathrm{V}_{\mathrm{CC}}$.

2048-BIT BIPOLAR ROM ( $256 \times 8$ PROM)
4096-BIT BIPOLAR ROM (512×8 PROM)

DIGITAL 8000 SERIES TTL/MEMORY

## DESCRIPTION

The 82S114 and 82S115 are Schottky-clamped Read Only Memories, incorporating on-chip data output registers. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S114 and 82 S 115 are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni-Cr link matrix.
The 82S114 and 82S115 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature Tri-State outputs for optimization of word expansion in bussed organizations. A D-type latch is used to enable the Tri-State output drivers. In the TRANSPARENT READ mode, stored data is addressed by applying a binary code to the address inputs while holding STROBE high. In this mode the bit drivers will be controlled solely by $\overline{\mathrm{CE}}$ and CE2 lines. In the LATCHED READ mode, after the desired address is applied and both $\overline{\mathrm{CE}} 1$ and CE2 are enabled, data will enter the output latches following the positive transition of STROBE, and the data out lines will be locked into their last valid state following the negative transition of STROBE. The latches will remain set and the outputs enabled until the chip is disabled and STROBE is brought high.
Both 82 S 114 and 82 S 115 devices are available in the commercial temperature range. For the commercial temperature range, $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S $114 / 115$, I.

## FEATURES

- ORGANIZATION:

82S114-256 X 8
82S115-512 X 8

- ADDRESS ACCESS TIME - 60ns, MAXIMUM
- POWER DISSIPATION - $165 \mu$ W/BIT, TYPICAL
- INPUT LOADING - $(-100 \mu A)$, MAXIMUM
- ON-CHIP ADDRESS DECODING
- ON-CHIP STORAGE LATCHES
- TRI-STATE OUTPUTS
- FAST PROGRAMMING - 5 SEC., MAXIMUM
- PIN COMPATIBLE TO N8204/N8205 ROMs


## APPLICATIONS

## MICROPROGRAMMING

 HARDWIRE ALGORITHMS CHARACTER GENERATIONCONTROL STORE
SEQUENTIAL CONTROLLERS

## PIN CONFIGURATION



## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {IN }}$	Input Voltage	+5.5
$V_{O}$	Off-State Output Voltage	+5.5
$T_{A}$	Operating Temperature Range	$0^{\circ}$ to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$
Vdc		

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

PARAMETER		TEST CONDITIONS	LIMITS ${ }^{1}$			UNIT	
		MIN	TYP ${ }^{2}$	MAX			
$I_{\text {IL }}$	" 0 ' Input Current		$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IH}}$	"1" Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			25	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IL }}$	" 0 " Level Input Voltage				. 85	v	
$\mathrm{V}_{1 \text { H }}$	"1" Level Input Voltage		2.0			$v$	
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0,8	-1.2	V	
$\mathrm{V}_{\text {OL }}$	"0" Output Voltage	$\mathrm{I}_{\text {OUT }}=9.6 \mathrm{~mA}$			0.5	v	
$\mathrm{V}_{\mathrm{OH}}$	" 1 " Output Voltage	$\begin{aligned} & \overline{C E}_{1}=" 0^{\prime \prime}, \mathrm{CE}_{2}="{ }^{\prime \prime}{ }^{\prime \prime}, \\ & \text { IOUT }=-2 \mathrm{~mA}, " 1 " \text { STORED } \end{aligned}$	2.7	3.3		v	
Io(off)	HI-Z State Output Current	$\begin{aligned} & \overline{\mathrm{CE}_{1}}=" 1 " \text { or } C E_{2}=0, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \overline{\mathrm{CE}}_{1}=" 1 " \text { or } C E_{2}=0, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$			40 -40	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$		5		pF	
Cout	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.0 \mathrm{~V} \\ & \mathrm{CE}_{1}=" 1^{\prime \prime} \text { or } C E_{2}=0 \end{aligned}$		8		pF	
${ }^{\text {Icc }}$	$\mathrm{V}_{\text {cC }}$ Supply Current			135	185	mA	
los	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 3)	-20		-70	mA	

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$


NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
3. No more than one output should be grounded at the same time and strobe should be disabled. Strobe is in " 1 " state.
4. If the strobe is high, the device functions in a manner identical to conventional bipolar ROMs. The timing diagram shows valid data will appear $T_{A}$ nanoseconds after the address has changed and $T_{C E}$ nanoseconds after the output circuit is enabled. $T_{C D}$ is the time required to disable the output and switch it to an "off" or high impedance state after it has been enabled.
5. In Latched Read Mode data from any selected address will be held on the output when strobe is lowered. Only when strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.

## MEMORY TIMING

TRANSPARENT READ ${ }^{5}$ (Output Latches Not Used)


LATCHED READ ${ }^{6}$ (Output Latches Used)


## AC TEST LOAD AND WAVEFORMS



TYPICAL FUSING PATH


## RECOMMENDED PROGRAMMING PROCEDURE

The $82 S 114 / 115$ are shipped with all bits at logical " 0 " (low). To write logical " 1 ", proceed as follows:

## SET-UP

a. Apply GND to pin 12.
b. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to VCC.
c. Set $\overline{C E} 1$ to logic " 0 ", and CE2 to logic " 1 " (TTL levels).
d. Set Strobe to logic " 1 " level.

## PROGRAM-VERIFY SEQUENCE

Step 1 Raise $V_{C C}$ to $V_{C C P}$, and address the word to be programmed by applying TTL " 1 " and " 0 " logic levels to the device address inputs.

Step 2 After $10 \mu$ s delay, apply to FE1 (pin 13) a voltage source of $+5.0 \pm 0.5 \mathrm{~V}$, with 10 mA sourcing current capability.

Step 3 After $10 \mu$ delay, apply a voltage source of $+\mathbf{1 7 . 0}$ $\pm 1.0 \mathrm{~V}$ to the output to be programmed. The source must have a current limit of 200 mA . Program one output at the time.
Step 4 After $10 \mu$ s delay, raise FE2 (pin 11) from OV to $+5.0 \pm 0.5 \mathrm{~V}$ for a period of 1 ms , and then return to OV. Pulse source must have a 10 mA sourcing current capability.
Step 5 After $10 \mu$ s delay, remove +17.0 V supply from programmed output.
Step 6 To verify programming, after $10 \mu$ s delay, return FE1 to OV. Raise $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$. The programmed output should remain in the " 1 " state. Again, lower $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CCL}}=+4.5 \pm .2 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
Step 7 Raise $V_{C C}$ to $V_{C C P}$, and repeat steps 2 through 6 to program other bits at the same address.

Step 8 Repeat steps 1 through 7 to program all other address locations.

## TYPICAL PROGRAMMING SEQUENCE



PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $T_{A}=+25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		MIN	TYP	MAX			
Power Supply Voltage			$\mathrm{I}_{\mathrm{CCP}}=200 \pm 25 \mathrm{~mA}$ (Transient or steady state)				
$\mathrm{V}_{\mathrm{CCP}}{ }^{1}$	To Program	4.75		5.0	5.25	v	
$\mathrm{V}_{\mathrm{CCH}}$	Upper Verify Limit	5.3		5.5	5.7	v	
$\mathrm{V}_{\text {CCL }}$	Lower Verify Limit	4.3		4.5	4.7	$v$	
$\mathrm{V}_{\mathrm{s}}{ }^{3}$	Verify Threshold	0.9		1.0	1.1	V	
$\mathrm{I}_{\text {CCP }}$	Programming Supply Current	$\mathrm{V}_{\mathrm{CCP}}=+5.0 \pm .25 \mathrm{~V}$	175	200	225	mA	
Input Voltage							
$V_{\text {IL }}$	Low Level Input Voltage		0	0.4	0.8	$v$	
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2.4		5.5	v	
Input Current ( $\mathrm{FE}_{1}$ \& $\mathrm{FE}_{2}$ Only)							
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=+0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{1 \mathrm{H}}=+5.5 \mathrm{~V}$			10	mA	
Input Current (Except $\mathrm{FE}_{1}$ \& $\mathrm{FE}_{2}$ )							
$\mathrm{I}_{\mathrm{IL}}$	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=+0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{IH}}$	High Level Input Current	$\mathrm{V}_{\mathrm{IH}}=+5.5 \mathrm{~V}$			25	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OUT }}{ }^{2}$	Output Programming Voltage	$\begin{aligned} & \text { IOUT }=200 \pm 20 \mathrm{~mA} \\ & \text { (Transient or steady state) } \end{aligned}$	16.0	17.0	18.0	V	
Iout	Output Programming Current	$\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$	180	200	220	mA	
$T_{R}$	Output Pulse Rise Time		10		50	$\mu \mathrm{s}$	
$t_{p}$	$\mathrm{FE}_{2}$ Programming Pulse Width		1		1.5	ms	
$t_{D}$	Pulse Sequence Delay		10			$\mu \mathrm{s}$	
$T_{\text {PR }}$	Programming Time	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCP }}$			10	sec	
$\mathrm{T}_{\text {PS }}$	Programming Pause	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	7			sec	
$\mathrm{TPR}^{4}$	Programming Duty Cycle				60	\%	
$T_{\text {PR }}+T_{\text {PS }}$	Pogramming Duty Cycle						

## NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu \mathrm{~F}$ capacitor to reduce voltage spikes.
2. Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. $V_{S}$ is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a $60 \%$ duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ( $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ) of 3 mS .

## 82S114/115 MANUAL PROGRAMMER



TIMING SEQUENCE


# FEBRUARY 1975 DIGITAL 8000 SERIES TTL/MEMORY 

82S116 $82 S 117$

## DESCRIPTION

The 82S116 and 82S117 are Schottky clamped TTL, read/write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state output options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, 3 chip enable inputs and PNP input transistors which reduce input loading to $25 \mu \mathrm{~A}$ for a " 1 " level, and $-100 \mu \mathrm{~A}$ for a " 0 " level.
During WRITE operation, the logical state of the output of both devices follows the complement of the data input being written. This feature allows faster execution of WRITE-READ cycles, enhancing the performance of systems utilizing indirect addressing modes, and/or requiring immediate verification following a WRITE cycle.
Both devices have fast read access and write cycle times, and thus are ideally suited in high-speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.

Both 82S116 and 82S117 devices are available in the commercial temperature range. For the commercial temperature range, $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify $\mathrm{N} 82 \mathrm{~S} 116 / 117$, B or F .

## FEATURES

- ORGANIZATION - $256 \times 1$
- ADDRESS ACCESS TIME - 40ns, MAXIMUM
- WRITE CYCLE TIME - 25ns, MAXIMUM
- POWER DISSIPATION - 1.5mW/BIT TYPICAL
- INPUT LOADING - $(\mathbf{- 1 0 0} \mu \mathrm{A})$ MAXIMUM
- OUTPUT FOLLOWS COMPLEMENT OF DATA INPUT DURING WRITE
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

TRI-STATE - 82S116 OPEN COLLECTOR - 82S117

- 16 PIN CERAMIC DIP


## APPLICATIONS

BUFFER MEMORY
WRITABLE CONTROL STORE
MEMORY MAPPING
PUSH DOWN STACK
SCRATCH PAD

## PIN CONFIGURATION



## TRUTH TABLE

MODE	$\overline{\mathrm{CE}}$ *	$\overline{W E}$	DIN	$\overline{\text { DOUT }}$	
				82S116	82S117
READ	0	1	$x$	$\begin{aligned} & \text { STORED } \\ & \overline{\text { DATA }} \end{aligned}$	$\frac{\text { STORED }}{\overline{\text { DATA }}}$
WRITE "0'	0	0	0	1	1
WRITE " 1 "	0	0	1	0	0
DISABLED	1	X	X	High-Z	1

*" $O^{\prime \prime}=A l l \overline{C E}$ inputs low; "1" = one or more $\overline{C E}$ inputs high.
$X=$ Don't care.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$\mathrm{V}_{\mathrm{CC}}$	Power Supply Voltage	+7
$\mathrm{~V}_{\text {IN }}$	Input Voltage	+5.5
$\mathrm{~V}_{\text {OUT }}$ High Level Output Voltage (82S117)	+5.5	Vdc
$\mathrm{V}_{\mathrm{O}}$	Off-State Output Voltage (82S116)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	$0^{\circ}$ to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		LIMITS			UNIT	NOTES		
		MIN	TYP ${ }^{2}$	MAX						
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage			$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			V	
$V_{\text {IL }}$	Low-Level Input Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$			0.85		V	1		
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$		-1.0	-1.5		V	1,8		
$\mathrm{V}_{\mathrm{OH}}$	High-Level Output Voltage (82S116)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$		2.6			V	1,6		
$\mathrm{V}_{\mathrm{OL}}$	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.35	0.45	V	1,7		
Iolk	Output Leakage Current (82S117)	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	40	$\mu \mathrm{A}$	5		
IO(OFF)	HI-Z State Output Current (82S116)	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			1	40	$\mu \mathrm{A}$	5		
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$			-1	-40	$\mu \mathrm{A}$	5		
$\mathrm{I}_{\mathrm{IH}}$	High-Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \end{aligned}$			1	25	$\mu \mathrm{A}$	8		
$I_{\text {IL }}$	Low-Level Input Current				-10	-100	$\mu \mathrm{A}$	8		
los	Short-Circuit Output Current (82S116)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$		-20		-70	mA	3		
$I_{\text {cc }}$	$\mathrm{V}_{\mathrm{CC}}$ Supply Current (82S116)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$			80	115	mA	4		
	$\mathrm{V}_{\mathrm{CC}}$ Supply Current (82S117)				80	115	mA	4		
$\mathrm{C}_{\mathrm{IN}}$   Cout	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5		pF			
	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$			8		pF			

## NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{I H}$ applied to $\overline{C E 1}, \overline{C E 2}$ and $\overline{C E 3}$.
6. Measured with a logic " 0 " stored and $V_{I L}$ applied to $\overline{C E_{1}}, \overline{C E_{2}}$ and $\overline{C E_{3}}$.
7. Measured with a logic "1" stored. Output sink current is supplied through a resistor to $V_{C C}$.
8. Test each input one at the time.

## SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	NOTE	
		MIN	TYP ${ }^{1}$	MAX				
Propagation Delays								
$\mathrm{T}_{\text {AA }}$	Address Access Time				30	40	ns	
TCE	Chip Enable Access Time	$\mathrm{R}_{1}=270 \Omega$		15	25	ns		
$\mathrm{T}_{\text {CD }}$	Chip Enable Output Disable Time	$\mathrm{R}_{2}=600 \Omega$		15	25	ns		
TWD	Write Enable to Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40	ns		

## Write Set-up Times

TWSA Address to Write Enable		0	-5		ns	
TWSD Data In to Write Enable		25	15		ns	
TWSC	$\overline{C E}$ to Write Enable		0	-5		ns

## Write Hold Times

TWHA	Address to Write Enable		0	-5		ns
$T_{\text {WHD }}$	Data In to Write Enable		0	-5		ns
$T_{\text {WHC }}$	$\overline{\text { CE }}$ to Write Enable		0	-5		ns
$T_{\text {WP }}$	Write Enable Pulse Width		25	15		ns

AC TEST LOAD


NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.

## SWITCHING PARAMETERS MEASUREMENT INFORMATION

## READ CYCLE



CHIP ENABLE/DISABLE TIMES


## WRITE CYCLE



## MEMORY TIMING DEFINITIONS

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D}$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.
TwSC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TwHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
TWD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT reflects complement of DATA INPUT.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

## DESCRIPTION

The 82S126 (Open Collector Outputs) and the 82S129 (Tri-State Outputs) are Bipolar 1024-Bit Read Only Memories, organized as 256 words by 4 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S126 and 82S129 devices are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a $\mathrm{Ni}-\mathrm{Cr}$ link matrix.

The 82S126 and 82S129 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 82S126 and 82S129 devices are available in the commercial and military temperature ranges. For the commercial temperature range ( $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ) specify N82S126/129, B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S $126 / 129, \mathrm{~F}$ only.

## FEATURES

- ORGANIZATION - $256 \times 4$
- ADDRESS ACCESS TIME:

S82S126/129 - 70ns, MAXIMUM
N82S126/129 - 50ns, MAXIMUM

- POWER DISSIPATION - 0.5mW/BIT TYPICAL
- INPUT LOADING:

S82S126/129 - $(-150 \mu \mathrm{~A})$ MAXIMUM N82S126/129 - (-100 $\mu$ A) MAXIMUM

- TWO CHIP ENABLE INPUTS
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

OPEN COLLECTOR - 82S126
TRI-STATE - 82S129

- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE "0" LEVEL
- 16-PIN CERAMIC DIP


## APPLICATIONS

PROTOTYPING/VOLUME PRODUCTION
SEQUENTIAL CONTROLLERS
MICROPROGRAMMING
HARDWIRED ALGORITHMS
CONTROL STORE
RANDOM LOGIC
CODE CONVERSION

PIN CONFIGURATION


## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT	
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$V_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage (82S126)	+5.5	Vdc
$\mathrm{V}_{\mathrm{O}}$	Off-State Output Voltage (82S129)	+5.5	Vdc
$\mathrm{T}_{\mathrm{A}}$	Operating Temperature Range		
	(N82S126/129)	$0^{\circ}$ to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S126/129)	$-55^{\circ}$ to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S } 126 / \mathrm{S} 82 S 129 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S126/N82S } 129 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$


SWITCHING CHARACTERISTICS ${ }^{\text {S82S } 126 / 129 ~} \quad-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	S82S126/129			N82S126/129			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
$\mathrm{T}_{\text {AA }}$ Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	70		35	50	ns
$T_{\text {CD }}$ Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		15	35		15	20	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		15	35		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Power Supply Voltage						
$\mathrm{V}_{\mathrm{CCP}}{ }^{1}$	To Program	$I_{C C P}=350 \pm 50 \mathrm{~mA}$   (Transient or steady state)	8.5	8.75	9.0	V
$\mathrm{V}_{\mathrm{CCH}}$	Upper Verify Limit		5.3	5.5	5.7	V
$\mathrm{V}_{\mathrm{CCL}}$	Lower Verify Limit		4.3	4.5	4.7	V
$V_{S}{ }^{3}$	Verify Threshold		0.9	1.0	1.1	$\checkmark$
$I_{\text {CCP }}$	Programming Supply Current	$\mathrm{V}_{\mathrm{CCP}}=+8.75 \pm .25 \mathrm{~V}$	300	350	400	mA
Input Voltage						
$\mathrm{V}_{\text {IH }}$	Logical "1"		2.4		5.5	V
$V_{\text {IL }}$	Logical "0"		0	0.4	0.8	V
Input Current						
$I_{\text {IH }}$	Logical "1"	$V_{\text {IH }}=+5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
	Logical " 0 "	$\mathrm{V}_{\text {IL }}=+0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}{ }^{2}$	Output Programming Voltage	$\mathrm{I}_{\mathrm{OUT}}=200 \pm 20 \mathrm{~mA}$   (Transient or steady state)	16.0	17.0	18.0	V
I OUT	Output Programming Current	$\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$	180	200	220	mA
$\mathrm{T}_{\mathrm{R}}$	Output Pulse Rise Time		10		50	$\mu \mathrm{s}$
	$\overline{\mathrm{CE}}$ Programming Pulse Width		1		2	ms
$t_{D}$	Pulse Sequence Delay		10			$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{PR}}$	Programming Time	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CCP }}$			2.5	sec
$\mathrm{T}_{\mathrm{PS}}$	Programming Pause	$V_{C C}=0 \mathrm{~V}$	5			sec
$T_{P R}{ }^{4}$					33	\%
$\overline{T_{P R}+T_{P S}}$	Programming Duty Cycle					

## PROGRAMMING PROCEDURE

1. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to $V_{C C}$.
2. Select the Address to be programmed, and raise $V_{C C}$ to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$.
3. After $10 \mu$ s delay, apply $\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$ to the output to be programmed. Program one output at the time.
4. After $10 \mu \mathrm{~s}$ delay, pulse both $\overline{\mathrm{CE}}$ inputs to logic " 0 " for 1 to 2 ms .
5. After $10 \mu$ s delay, remove +17 V from the programmed output.
6. To verify programming, after $10 \mu$ s delay, lower $V_{C C}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$, and apply a logic " 0 " level to both $\overline{\mathrm{CE}}$ inputs. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.5 \pm .2 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
7. Raise $V_{C C}$ to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$, and repeat steps 3 through 6 to program other bits at the same address.
8. After $10 \mu$ s delay, repeat steps 2 through 7 to program all other address locations.

## NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu F$ capacitor to reduce voltage spikes.
2. Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. $V_{S}$ is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a $33 \%$ duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ( $V_{C C}=0 \mathrm{~V}$ ) of 4 ms .

## AC TEST FIGURE AND WAVEFORM



## TYPICAL FUSING PATH



## TYPICAL PROGRAMMING SEQUENCE



MANUAL PROGRAMMER


TIMING SEQUENCE


APRIL 1975

## DESCRIPTION

The 82S130 (Open Collector Outputs) and the 82S131 (Tri-State Outputs) are Bipolar 2048-Bit Read Only Memories, organized as 512 words by 4 bits per word. They are Field-Programmable, which means that custom patterns are immediately available by following the fusing procedure given in this data sheet. The standard 82S130 and 82S131 are supplied with all outputs at logical " 0 ". Outputs are programmed to a logic " 1 " level at any specified address by fusing a Ni-Cr link matrix.
The 82S130 and 82S131 are fully TTL compatible, and include on-chip decoding and one chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 82S130 and 82S131 devices are available in the commercial and military temperature ranges. For the commercial temperature range ( $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ) specify N82S130/131, F. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S $130 / 131, \mathrm{~F}$.

## FEATURES

- ORGANIZATION - $512 \times 4$
- ADDRESS ACCESS TIME:

S82S130/131 - 70ns, MAXIMUM N82S130/131 - 50ns, MAXIMUM

- POWER DISSIPATION - 0.3mW/BIT TYPICAL
- INPUT LOADING: S82S130/131 - $(-150 \mu \mathrm{~A})$ MAXIMUM N82S130/131 - ( $-100 \mu \mathrm{~A})$ MAXIMUM
- ONE CHIP ENABLE INPUT
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS: 82S130 - OPEN COLLECTOR 82S131 - TRI-STATE
- NO SEPARATE "FUSING" PINS
- UNPROGRAMMED OUTPUTS ARE "0" LEVEL
- 16-PIN CERAMIC DIP


## APPLICATIONS

## PROTOTYPING/VOLUME PRODUCTION <br> SEQUENTIAL CONTROLLERS <br> MICROPROGRAMMING <br> HARDWIRED ALGORITHMS <br> CONTROL STORE <br> RANDOM LOGIC <br> CODE CONVERSION

PIN CONFIGURATION


## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT	
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (82S130)	+5.5	Vdc
$\mathrm{V}_{\mathrm{O}}$	Off-State Output Voltage (82S131)	+5.5	Vdc
$\mathrm{T}_{\mathrm{A}}$	Operating Temperature Range		
	(N82S130/131)	$0^{\circ}$ to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S130/131)	$-55^{\circ}$ to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S } 130 / 131 & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S } 130 / 131 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$



SWITCHING CHARACTERISTICS
$\begin{array}{ll}\text { S82S 130/131 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ \text { N82S } 130 / 131 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

PARAMETER	TEST CONDITIONS ${ }^{1}$	S82S130/131			N82S130/131			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
$\mathrm{T}_{\text {AA }}$ Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		40	70		40	50	ns
$\mathrm{T}_{\text {CD }}$ Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		20	30		20	30	ns
$T_{C E}$ Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		20	30		20	30	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=5.0 V, T_{A}=+25^{\circ} \mathrm{C}$.

AC TEST FIGURE AND WAVEFORM


## TYPICAL FUSING PATH



## TYPICAL PROGRAMMING SEQUENCE



PROGRAMMING SPECIFICATIONS (Testing of these limits may cause programming of device.) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Power Supply Voltage						
$\mathrm{V}_{\text {CCP }}{ }^{1}$	To Program	$\mathrm{I}_{\mathrm{CCP}}=350 \pm 50 \mathrm{~mA}$   (Transient or steady state)	8.5	8.75	9.0	V
$\mathrm{V}_{\mathrm{CCH}}$	Upper Verify Limit		5.3	5.5	5.7	V
$\mathrm{V}_{\mathrm{CCL}}$	Lower Verify Limit		4.3	4.5	4.7	V
$V_{S}{ }^{3}$	Verify Threshold		0.9	1.0	1.1	$\checkmark$
$I_{\text {CCP }}$	Programming Supply Current	$\mathrm{V}_{\mathrm{CCP}}=+8.75 \pm .25 \mathrm{~V}$	300	350	400	mA
Input Voltage						
$\mathrm{V}_{\text {IH }}$	Logical "1"		2.4		5.5	V
$V_{\text {IL }}$	Logical "0"		0	0.4	0.8	V
Input Current						
$\mathrm{I}_{\mathrm{IH}}$	Logical "1"	$\mathrm{V}_{1 \mathrm{H}}=+5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
$I_{\text {IL }}$	Logical "0"	$\mathrm{V}_{\mathrm{IL}}=+0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$
$V_{\text {OUT }}{ }^{2}$	Output Programming Voltage	$\mathrm{I}_{\text {OUT }}=200 \pm 20 \mathrm{~mA}$   (Transient or steady state)	16.0	17.0	18.0	V
I OUT	Output Programming Current	$\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$	180	200	220	mA
$\mathrm{T}_{\mathrm{R}}$	Output Pulse Rise Time		10		50	$\mu \mathrm{s}$
	$\overline{\mathrm{CE}}$ Programming Pulse Width		1		2	ms
${ }^{\text {t }}$	Pulse Sequence Delay		10			$\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{PR}}{ }^{5}$	Programming Time	$V_{C C}=V_{C C P}$			2.5	sec
TPS	Programming Pause	$V_{C C}=0 V$	5			sec
$T_{P R}{ }^{4}$					33	\%
$\overline{T_{P R}+T_{P S}}$						

## PROGRAMMING PROCEDURE

1. Terminate all device outputs with a $10 \mathrm{~K} \Omega$ resistor to VCC.
2. Select the Address to be programmed, and raise $\mathrm{V}_{\mathrm{CC}}$ to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$.
3. After $10 \mu$ s delay, apply $\mathrm{V}_{\text {OUT }}=+17 \pm 1 \mathrm{~V}$ to the output to be programmed. Program one output at the time.
4. After $10 \mu \mathrm{~s}$ delay, pulse the $\overline{\mathrm{CE}}$ input to logic " 0 " for 1 to 2 ms .
5. After $10 \mu \mathrm{~s}$ delay, remove +17 V from the programmed output.
6. To verify programming, after $10 \mu$ s delay, lower $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CCH}}=+5.5 \pm .2 \mathrm{~V}$, and apply a logic " 0 " level to the $\overline{\mathrm{CE}}$ input. The programmed output should remain in the " 1 " state. Again, lower $V_{C C}$ to $V_{C C L}=+4.5 \pm .2 \mathrm{~V}$, and verify that the programmed output remains in the " 1 " state.
7. Raise $V_{C C}$ to $V_{C C P}=8.75 \pm .25 \mathrm{~V}$, and repeat steps 3 through 6 to program other bits at the same address.
8. After $10 \mu \mathrm{~s}$ delay, repeat steps 2 through 7 to program all other address locations.

## NOTES:

1. Bypass $V_{C C}$ to $G N D$ with a $0.01 \mu F$ capacitor to reduce voltage spikes
2. Care should be taken to insure the $17 \pm 1 \mathrm{~V}$ output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit.
3. $V_{S}$ is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt.
4. Continuous fusing for an unlimited time is also allowed, provided that a $33 \%$ duty cycle is maintained. This may be accomplished by following each Program-Verify cycle with a Rest period ( $V_{C C}=O V$ ) of 4 ms .
5. On the first programming attempt (from cold start) a maximum limit of 5 sec. is allowed. In most cases, depending on the truth table, this will decrease total programming time

N82S130/131 MANUAL PROGRAMMER


TIMING SEQUENCE


## DESCRIPTION

The 82S214 and 82S215 are Schottky-clamped Read Only Memories, incorporating on-chip data output registers.

The 82S214 and 82S215 are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature Tri-State outputs for optimization of word expansion in bussed organizat uns. A D-type latch is used to enable the Tri-State output d ivers. In the TRANSPARENT READ mode, stored data is addressed by applying a binary code to the address inputs while holding STROBE high. In this mode the bit drivers will be controlled solely by $\overline{\mathrm{CE}} 1$ and CE2 lines.

In the LATCHED READ mode, outputs are held in their previous state ( 1,0 , or high $Z$ ) as long as STROBE is low, regardless of the state of address or chip enable. A positive STROBE transition causes data from the applied address to reach the outputs if the chip is enabled, and causes outputs to go to the high $Z$ state if the chip is disabled.
A negative STROBE transition causes outputs to be locked into their last Read Data condition if the chip was enabled, or causes outputs to be locked into the high $Z$ condition if the chip was disabled.

Both 82S214 and 82S215 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify $\mathrm{N} 82 \mathrm{~S} 214 / 215 \mathrm{I}$. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ) specify S82S214/215 I.

## FEATURES

```
- ORGANIZATION:
 82S214 - 256 X 8
 82S215-512 X 8
- ADDRESS ACCESS TIME:
 S82S214/215 - 90ns, MAXIMUM
 N82S214/215 - 60ns, MAXIMUM
- POWER DISSIPATION - 165 \muW/BIT, TYPICAL
- INPUT LOADING:
 S82S214/215 - (-150\muA) MAXIMUM
 N82S214/215 - (-100\muA) MAXIMUM
- ON-CHIP STORAGE LATCHES
- TRI-STATE OUTPUTS
- FULLY COMPATIBLE WITH 82S114 AND 82S115
 SIGNETICS PROMS
```


## APPLICATIONS

MICROPROGRAMMING
HARDWIRE ALGORITHMS
CHARACTER GENERATION
CONTROL STORE
SEQUENTIAL CONTROLLERS

## PIN CONFIGURATION



## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$V_{\text {cc }}$	Power Supply Voltage	+7	Vdc
$V_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	$0^{\circ}+75^{\circ}$	
	(N82S214/215)	$0^{\circ}$ to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S214/215)	$-55^{\circ}$ to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS N82S214/215 $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5$

S82S214/215 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$


SWITCHING CHARACTERISTICS N82S214/215 $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V}$ S82S214/215 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$


NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $V_{C C}=+5.0 V$ and $T_{A}=+25^{\circ} \mathrm{C}$.
3. No more than one output should be grounded at the same time and strobe should be disabled. Strobe is in " 1 " state.
4. If the strobe is high, the device functions in a manner idential to conventional bipolar ROMs. The timing diagram shows valid data will appear $T_{A}$ nanoseconds after the address has changed and $T_{C E}$ nanoseconds after the output circuit is enabled. $T_{C D}$ is the time required to disable the output and switch it to an "off" or high impedance state after it has been enabled.
5. In Latched Read Mode data from any selected address will be held on the output when strobe is lowered. Only when strobe is raised will new location data be transferred and chip enable conditions be stored. The new data will appear on the outputs if the chip enable conditions enable the outputs.

## MEMORY TIMING



## AC TEST LOAD AND WAVEFORMS



## DESCRIPTION

The 82S226 (Open Collector Outputs) and the 82S229 (Tri-State Outputs) are Bipolar 1024-Bit Read Only Memories, organized as 256 words by 4 bits per word. They are fully TTL compatible, and include on-chip decoding and two chip enable inputs for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.

Both the 82S226 and 82S229 are also fully compatible with the 82S126/129, Signetics' 1024-Bit Programmable Read Only Memories.

Both 82S226 and 82S229 devices are available in the commercial and military temperature ranges. For the commercial temperature range ( $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ) specify N82S226/229, B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ) specify S82S226/229, F only.

## FEATURES

- ORGANIZATION - 256 X 4
- ADDRESS ACCESS TIME:

> S82S226/229 - 70ns, MAXIMUM
> N82S226/229 - 50ns, MAXIMUM

- POWER DISSIPATION - 0.5mW/BIT, TYPICAL
- INPUT LOADING:

S82S226/229 - (-150 $\mu$ A) MAXIMUM
N82S226/229 - (-100 A ) MAXIMUM

- TWO CHIP ENABLE INPUTS
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

82S226 - OPEN COLLECTOR
82S229 - TRI-STATE

- 16-PIN CERAMIC PACKAGE
- FULLY COMPATIBLE WITH 82S126/129, SIGNETICS' 256 X 4 PROM


## APPLICATIONS

VOLUME PRODUCTION
SEQUENTIAL CONTROLLERS
MICROPROGRAMMING
HARDWIRED ALGORITHMS
CONTROL STORE
RANDOM LOGIC
CODE CONVERSION

## ORDERING INFORMATION

Customer may specify patterns for the 1024-Bit Read Only Memory by completing the truth table/order blank in Signetics' Digital/Linear/MOS data book.

## PIN CONFIGURATION



## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {IN }}$	Input Voltage	+5.5
$V_{\text {OH }}$	High Level Output Voltage (82S226)	+5.5
$V_{\mathrm{O}}$	Off-State Output Voltage (82S229)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	Vdc
	(N82S226/229)	$0^{\circ}$ to $+75^{\circ}$
	(S82S226/229)	$-55^{\circ}$ to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$

ELECTRICAL CHARACTERISTICS $\begin{array}{ll}\text { S82S226/229 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \\ \text { N82S226/229 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25\end{array}$

PARAMETER		TEST CONDITIONS ${ }^{1}$	S82S226/229			N82S226/229			UNIT	
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX			
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					. 80			. 85	v
$V_{\text {IH }}$	High Level Input Voltage		2.0			2.0			v	
$V_{\text {IC }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.8	-1.2		-0.8	-1.2	V	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	I ${ }_{\text {OUT }}=16 \mathrm{~mA}$			0.5			0.5	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (82S229)	$\begin{aligned} & \overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=" 0^{\prime \prime}, \\ & \text { IouT }=-2 \mathrm{~mA}, \\ & \text { " } 1 \text { " STORED } \end{aligned}$	2.4			2.4			v	
Iolk	Output Leakage Current (82S226)	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}="^{\prime \prime}{ }^{\prime \prime}, \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$			60			40	$\mu \mathrm{A}$	
Io(off)	Hi-Z State Output Current (82S229)	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \text { or } \overline{\mathrm{CE}}_{2}=" 1^{\prime \prime}, \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \\ & \mathrm{CE}_{1} \text { or } \overline{\mathrm{CE}}_{2}=" 1^{\prime \prime}, \\ & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$			60 -60			40 -40	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
1 IL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-150			-100	$\mu \mathrm{A}$	
${ }_{1 / \mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			50			40	$\mu \mathrm{A}$	
los	Output Short Circuit Current (82S229)	$V_{\text {OUT }}=0 \mathrm{~V}$	-15		-85	-20		-70	mA	
${ }^{\text {Icc }}$	$V_{\text {CC }}$ Supply Current			105	125		105	120	mA	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$		5			5		pF	
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{aligned}$		8			8		pF	

SWITCHING CHARACTERISTICS ${ }^{\text {S82S226/229 }}-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$
N82S226/229 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	S82S226/229			N82S226/229			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
TAA Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	70		35	50	ns
$T_{C D}$ Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		15	35		15	20	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		15	35		15	20	ns

NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

## AC TEST FIGURE AND WAVEFORM



## JULY 1975 DIGITAL 8000 SERIES TTL/MEMORY

## DESCRIPTION

The 82S230 (Open Collector Outputs) and the 82S231 (Tri-State Outputs) are Bipolar 2048-Bit Read Only Memories, organized as 512 words by 4 bits per word.
The 82S230 and 82S231 are fully TTL compatible, and include on-chip decoding and one chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 82S230 and 82S231 devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N82S230/231, F. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S82S230/231, F.

## FEATURES

- ORGANIZATION - $512 \times 4$
- ADDRESS ACCESS TIME:

S82S230/231 - 70ns, MAXIMUM
N82S230/231 - 50ns, MAXIMUM

- POWER DISSIPATION - 0.3mW/BIT TYPICAL
- INPUT LOADING:

S82S230/231 - ( $-150 \mu \mathrm{~A})$ MAXIMUM
N82S230/231 - ( $-100 \mu \mathrm{~A})$ MAXIMUM

- ONE CHIP ENABLE INPUT
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

82S230 - OPEN COLLECTOR
82S231 - TRI-STATE

- FULLY COMPATIBLE WITH 82S130 AND 82S131 SIGNETICS PROMS
- 16-PIN CERAMIC DIP


## APPLICATIONS

SEQUENTIAL CONTROLLERS
MICROPROGRAMMING
HARDWIRED ALGORITHMS
CONTROL STORE
RANDOM LOGIC
CODE CONVERSION

## PIN CONFIGURATION



## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (82S230)	+5.5	Vdc
$\mathrm{V}_{\mathrm{O}}$	Off-State Output Voltage (82S231)	+5.5	Vdc
$\mathrm{T}_{\mathrm{A}}$	Operating Temperature Range		
	(N82S230/231)	$0^{\circ}$ to $+75^{\circ}$	${ }^{\circ} \mathrm{C}$
	(S82S230/231)	$-55^{\circ}$ to $+125^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS <br> S82S230/231 <br> $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$ <br> N82S230/231 <br> $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$



SWITCHING CHARACTERISTICS | S82S230/231 | $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$ |
| :--- | :--- |
|  | N82S230/231 |$\quad 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS ${ }^{1}$	S82S230/231			N82S230/231			UNIT
		MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX	
Propagation Delay								
TAA Address to Output	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		40	70		40	50	ns
TCD Chip Disable to Output	$\mathrm{R}_{1}=270 \Omega$		20	30		20	30	ns
TCE Chip Enable to Output	$\mathrm{R}_{2}=600 \Omega$		20	30		20	30	ns

## NOTES:

1. Positive current is defined as into the terminal referenced.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

## AC TEST FIGURE AND WAVEFORM



## DESCRIPTION

The 54/74S200/201 and 54/74S301 are Schottky clamped TTL, read/write memory arrays organized as 256 words of one bit each. They feature either open collector or tri-state outputs options for optimization of word expansion in bussed organizations. Memory expansion is further enhanced by full on-chip address decoding, three chip enable inputs and PNP input transistors which reduce input loading to $25 \mu \mathrm{~A}$ for a " 1 " level and $-250 \mu \mathrm{~A}$ (S54S200/201/301) or $-100 \mu \mathrm{~A}(\mathrm{~N} 74 \mathrm{~S} 200 / 201 / 301$ ) for a " 0 " level.

The additional feature of output blanking during write ( $\overline{D_{0}}$ terminal " H " or " $\mathrm{Hi}-\mathrm{Z}^{\prime \prime}$ state) permits $\overline{\mathrm{D}_{0}}$ and $\mathrm{D}_{I N}$ terminals to share a common I/O line to reduce system interconnections. Both devices have fast read access and write cycle times and thus are ideally suited in high speed memory applications such as "Cache", buffers, scratch pads, writable control stores, etc.
Both devices are available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$ ) specify N74S200/201/301, B or F. For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S54S200/201/301, F only.

## FEATURES

- ORGANIZATION - $256 \times 1$
- ADDRESS ACCESS TIME:

S54S200/201/301 - 70ns MAXIMUM
N74S200/201/301 - 50 ns MAXIMUM

- WRITE CYCLE TIME:

S54S200/201/301 - 60ns MAXIMUM
N74S200/201/301 - 50ns MAXIMUM

- POWER DISSIPATION - 1.5mW/BIT TYPICAL
- INPUT LOADING:

S54S200/201/301 - (-250 $\mu \mathrm{A})$ MAXIMUM
N74S200/201/301 - $(-100 \mu A)$ MAXIMUM

- OUTPUT BLANKING DURING WRITE
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTION:

TRI-STATE - 54/74S200/201
OPEN COLLECTOR - 54/74S301

## - 16 PIN CERAMIC DIP

## APPLICATIONS

BUFFER MEMORY
WRITABLE CONTROL STORE
MEMORY MAPPING
PUSH DOWN STACK
SCRATCH PAD

## PIN CONFIGURATION



## TRUTH TABLE

MODE	$\overline{\mathbf{C E}}{ }^{*}$	$\overline{W E}$	DIN	$\overline{\text { DOUT }}$	
				54/74S301	54/74S200/201
READ	0	1	X	$\frac{\text { STORED }}{\overline{\text { DATA }}}$	$\frac{\text { STORED }}{\text { DATA }}$
WRITE " 0 "	0	0	0	1	High-Z
WRITE " 1 "	0	0	1	1	High-Z
DISABLED	1	X	X	1	High-Z

*" 0 " = All $\overline{C E}$ inputs low; " $1 "$ = One or more $\overline{C E}$ inputs high. X = Don't care.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT	
$V_{\text {CC }}$	Power Supply Voltage	+7	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	+5.5	Vdc
$\mathrm{V}_{\text {OUT }}$	High Level Output Voltage (54/74S301)	+5.5	Vdc
$\mathrm{V}_{\mathrm{O}}$	Off-State Output Voltage $(54 / 74 \mathrm{~S} 200 / 201)$	+5.5	Vdc
$\mathrm{T}_{\text {A }}$	Operating Temperature Range		
	S54S200/201/301	$-55^{\circ}$ to $+125^{\circ}$	$0^{\circ} \mathrm{C}$
	N74S200/201/301)	$0^{\circ}$ to $+70^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS

S54S200/201/301 $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$
N74S200/201/301 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS	S54S200/201/301			N74S200/201/301			UNIT	NOTES
			MIN	TYP ${ }^{2}$	MAX	MIN	TYP ${ }^{2}$	MAX		
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{C C}=$ MAX	2.0			2.0			V	1
$V_{\text {IL }}$	Low Level Input Voltage	$V_{C C}=$ MIN			0.8			0.85	V	1
$V_{\text {IC }}$	Input Clamp Voltage	$V_{C C}=$ MIN, $I_{\text {IN }}=-18 \mathrm{~mA}$		-0.8	-1.2		-0.8	-1.2	V	1,8
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (N74S200/201)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{I}_{\mathrm{OH}}=-10.3 \mathrm{~mA} \end{aligned}$				2.4			V	1,6
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (S54S200/201)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA} \end{aligned}$	2.4						V	1,6
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.35	0.50		0.35	0.45	V	1,7
Iolk	Output Leakage Current (54/74S301)	$\begin{array}{ll} V_{C C}=\mathrm{MIN} & V_{O}=2.4 V \\ V_{I H}=2 V & V_{O}=5.5 \mathrm{~V} \end{array}$		1	50 50		1	40 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$	5 5
IO(OFF)	Hi-Z State Output Current (54/74S200/201)	$\begin{array}{ll} V_{C C}=\mathrm{MAX} & V_{\mathrm{O}}=5.5 \mathrm{~V} \\ V_{\mathrm{IH}}=2 \mathrm{~V} & V_{\mathrm{O}}=0.4 \mathrm{~V} \end{array}$		1 -1	50 -50		1 -1	40 -40	$\mu \mathrm{A}$ $\mu \mathrm{A}$	5 5
11	Input Current at $\mathrm{V}_{\text {IN }}$ MAX	$V_{C C}=$ MAX, $V_{\text {IN }}=5.5 \mathrm{~V}$			1			1	mA	8
$I_{\text {IH }}$	High Level Input Current	$V_{C C}=M A X, V_{1 H}=2.7 \mathrm{~V}$		1	25		1	25	$\mu \mathrm{A}$	8
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$		-10	-250		-10	-100.	$\mu \mathrm{A}$	8
Ios	Short Circuit Output   Current (54/74S200/201)	$V_{C C}=\mathrm{MAX} \quad \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-30		-100	-30		-100	mA	3
ICC	$\mathrm{V}_{\mathrm{CC}}$ Supply Current   (54/74S200/201/301)	$V_{C C}=$ MAX		80	130		80	130	mA	4
	$\mathrm{V}_{\mathrm{CC}}$ Supply Current   (54S200/201/301)	$V_{C C}=M A X, T_{A}=+125^{\circ} \mathrm{C}$			99				mA	4
$\mathrm{Cin}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5			5		pF	
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5.0 \mathrm{~V}$		8			8		pF	

NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $V_{C C}=5 V, T_{A}=+25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{I H}$ applied to $\overline{C E 1}, \overline{C E 2}$ and $\overline{C E 3}$.
6. Measured with logic " 0 " stored, and $V_{I L}$ applied to $\overline{C E 1}, \overline{C E 2}$ and $\overline{\text { CE3 }}$.
7. Measured with a logic "1" stored. Output sink current is supplied through a resistor to $V_{C C}$.
8. Test each input one at the time.

SWITCHING CHARACTERISTICS $\begin{array}{lll}\text { S54S301 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V} \\ \text { N74S301 } & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V}\end{array}$


SWITCHING CHARACTERISTICS $\begin{array}{lll}\text { S54S200/201 } & -55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.5 \mathrm{~V} \\ \text { N } 74 \mathrm{~S} 200 / 201 & 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}\end{array}$

PARAMETER		TEST CONDITIONS		S54S200/201			N74S200/201			UNIT	NOTES ${ }^{1}$
		S54S200/201	N74S200/201	MIN	TYP ${ }^{1}$	MAX	MIN	TYP ${ }^{1}$	MAX		
$t_{\text {PLH }}$   $\mathrm{t}_{\mathrm{PHL}}$   $\mathrm{t}_{\mathrm{ZH}}$   $\mathrm{t}_{\mathrm{zL}}$   thz   tLz   $t_{H Z}$   tLZ   $\mathrm{t}_{\mathrm{zH}}$   $\mathrm{t}_{\mathrm{ZL}}$   $t_{w}$	Access Time From Address   Enable Time From Chip Enable   Disable Time From Chip Enable   Disable Time From Write Enable   Sense-Recovery Time   Width of Write Enable Pulse	$\begin{aligned} & R_{\mathrm{L}}=270 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \begin{array}{l} \mathrm{R}_{\mathrm{L}}=270 \Omega \\ \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$	50	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 45 \\ & 45 \\ & 30 \\ & 30 \\ & 40 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	40	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 35 \\ & 35 \\ & 20 \\ & 20 \\ & 30 \\ & 30 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { B, D, E } \\ & \text { B, D, E } \\ & \text { C, D, F, G } \\ & \text { C, D, F, G } \\ & \text { C, D, F, G } \\ & \text { C, D, F, G } \\ & \text { D, G } \\ & \text { D, G } \\ & \text { D, F } \\ & \text { D, F } \\ & \text { H } \end{aligned}$
$t_{\text {setup }}$   thold	Setup Time:   Address-to-Write Enable   Data-to-Write Enable   Chip Enable-to-   Write Enable   Hold Time:   Address-From-Write   Enable   Data-From-Write Enable   Chip Enable-FromWrite Enable	$\begin{aligned} & R_{L}=270 \Omega \\ & C_{L}=15 \mathrm{pF} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=270 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	0   50   0   10   10   0			0   40   0   10   10   0			ns   ns   ns   ns   ns   ns	D

NOTES: 1. All typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 2. See Notes on Switching Parameter Measurement Information.

SWITCHING PARAMETER MEASUREMENT INFORMATION


AC TEST LOAD


54/74S301

$C_{L}$ INCLUDES PROBE AND JIG CAPACITANCE. ALL DIODES ARE 1N3064.

## NOTES:

A. Waveform 1 is for the output with internal conditions such that the output is low except when disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
B. When measuring delay times from address inputs, the chip enable inputs are low and the write enable input is high.
C. When measuring delay times from chip enable inputs, the address inputs are steady-state and the write enable input is high.
D. Input waveforms are supplied by pulse generators having the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2.5 \mathrm{~ns}, \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, and $\mathrm{Z}_{\mathrm{out}} \approx 50 \Omega$.
E. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay time, low-to-high-level output, tPHL propagation delay time, high-to-low-level output.
F. ${ }^{\prime} Z \mathrm{ZH}$ propagation delay time, hi-Z to high-level output, $\mathrm{t}_{\mathrm{ZL}}$ propagation delay time, hi- Z to low-level output.
G. $t^{H} Z$ propagation delay time, high-level to hi-Z output, $t_{L Z}$ propagation delay time, low-level to hi- $Z$ output.
$H$. Minimum required to guarantee a WRITE into the slowest bit.

## DESCRIPTION

The 3101A is a 64-bit, Schottky clamped TTL, ReadWrite Random Access Memory ideal for use in scratch pad and high-speed buffer memory applications.

The 3101A is a fully decoded memory array organized as 16 words of 4 bits each, with separate input and output lines. It features PNP inputs, one chip enable line, and open collector outputs for ease of memory expansion.

The outputs of the 3101 A assume a logic " 1 " state during write. This allows both memory inputs and outputs to share a common bus for minimizing interconnections, and more effective utilization of common I/O circuitry.
The 3101A is available in the commercial and military temperature ranges. For the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ specify N3101A, B or F . For the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ specify S3101A, Fonly.

## FEATURES

- ORGANIZATION - $16 \times 4$
- ADDRESS ACCESS TIME:

S3101A - 50ns, MAXIMUM
N3101A - 35ns, MAXIMUM

- WRITE CYCLE TIME:

S3101A - 25ns, MAXIMUM
N3101A - 25ns, MAXIMUM

- POWER DISSIPATION - $6.25 \mathrm{~mW} / \mathrm{BIT}$, TYPICAL
- INPUT LOADING:

S3101A - $(-150 \mu A)$ MAXIMUM
N3101A - $(-100 \mu A)$ MAXIMUM

- OUTPUT BLANKING DURING WRITE
- ON-CHIP ADDRESS DECODING
- OPEN COLLECTOR OUTPUTS
- 16 PIN CERAMIC DIP


## APPLICATIONS

## SCRATCH PAD MEMORY

## BUFFER MEMORY

PUSH DOWN STACKS

## CONTROL STORE

PIN CONFIGURATION


TRUTH TABLE

MODE	$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\mathbf{I}_{\mathbf{N}}$	$\overline{\mathrm{D}}_{\mathbf{N}}$
READ	0	1	X	Complement   of Data Stored
WRITE "0"'	0	0	0	1
WRITE "1"	0	0	1	1
DISABLED	1	X	X	1

$X=$ Don't care.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER ${ }^{1}$	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$V_{\text {in }}$	Input Voltage	+5.5
$V_{\text {OH }}$	High Level Output Voltage	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	
	(N3101A)	$0^{\circ}$ to $+75^{\circ}$
	(S3101A)	$-55^{\circ}$ to $+125^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$
Vdc		

## ELECTRICAL CHARACTERISTICS <br> $$
\begin{aligned} & \text { S3101A }-55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V} \\ & \text { N3101A } 0^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V} \end{aligned}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{3}{|c|}{S3101A \({ }^{1,2,3}\)} \& \multicolumn{3}{|c|}{N3101A \({ }^{1,2,3}\)} \& \multirow[b]{2}{*}{UNIT} \\
\hline \& \& \& MIN \& TYP \({ }^{8}\) \& MAX \& MIN \& TYP \({ }^{8}\) \& MAX \& \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
\(I_{I L}\) \\
\(I_{I H}\) \\
\(V_{\text {IL }}\) \\
\(V_{\text {IH }}\) \\
\(V_{\text {IC }}\)
\end{tabular}} \& \multirow[t]{6}{*}{\begin{tabular}{l}
" 0 " Input Current \\
" 1 " Input Current \\
" 0 " Level Input Voltage \\
"1" Level Input Voltage \\
Input Clamp Voltage
\end{tabular}} \& \multirow[t]{6}{*}{\begin{tabular}{l}
\[
\begin{aligned}
\& V_{I N}=0.45 \mathrm{~V} \\
\& V_{\text {IN }}=5.5 \mathrm{~V} \\
\& V_{C C}=\mathrm{MIN} \\
\& V_{C C}=\text { MAX } \\
\& I_{I N}=-12 \mathrm{~mA}, V_{C C}=\text { MIN }
\end{aligned}
\] \\
(Note 6)
\[
I_{I N}=-18 \mathrm{~mA}, V_{C C}=\mathrm{MIN}
\] \\
(Note 6)
\end{tabular}} \& \multirow{11}{*}{2.0} \& \multirow[t]{6}{*}{-10

-0.8} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
-150 \\
25 \\
.80
\end{array}
$$} \& \multirow{11}{*}{2.0} \& \multirow[t]{4}{*}{-10} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
-100 \\
10 \\
.85
\end{array}
$$

\]} \& \multirow[t]{4}{*}{| $\mu \mathrm{A}$ |
| :--- |
| $\mu \mathrm{A}$ |
| V |
| V |} <br>

\hline \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& -1.0 \& -1.5 \& V <br>
\hline \& \& \& \& \& -1.2 \& \& \& \& V <br>

\hline $\mathrm{V}_{\text {OL }}$ \& " 0 " Output Voltage \& $$
\begin{aligned}
& \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \\
& (\text { Notes } 4,5)
\end{aligned}
$$ \& \& 0.35 \& 0.5 \& \& 0.35 \& 0.45 \& V <br>

\hline $\mathrm{C}_{\text {IN }}$ \& Input Capacitance \& $\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ \& \& 5 \& \& \& 5 \& \& pF <br>

\hline Cout \& Output Capacitance \& $$
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\
& \mathrm{CE}=" 1^{\prime \prime}
\end{aligned}
$$ \& \& 8 \& \& \& 8 \& \& pF <br>

\hline ICC \& Power Supply Current \& (Note 5) \& \& 80 \& 105 \& \& 80 \& 105 \& mA <br>

\hline \& Output Leakage Current \& $$
\begin{aligned}
& \overline{\mathrm{CE}}=" 1^{\prime \prime}, V_{\text {OUT }}=5.5 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN} \\
& \overline{\mathrm{CE}}=" 1^{\prime \prime}, V_{\text {OUT }}=2.4 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}
\end{aligned}
$$ \& \& $<1$

$<1$ \& 100
40 \& \& $<1.0$ \& 100 \& $\mu \mathrm{A}$
$\mu \mathrm{A}$ <br>
\hline
\end{tabular}

NOTES:

1. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
2. Positive current is defined as into the terminal referenced.
3. Positive logic definition: " 1 " $=$ HIGH $\approx+5.0 \mathrm{~V}$; " 0 " = LOW $\approx$ GRD.
4. Output sink current is supplied through a resistor to $V_{C C}$.
5. All sense outputs in " 0 " state.
6. Test each input one at a time.
7. To guarantee a WRITE into the slowest bit.
8. Typical values are at $V_{C C}=+5.0 \vee$ and $T_{A}=+25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS
S3101A $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$
$\mathrm{~N} 3101 \mathrm{~A} 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C} 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$
N3101A $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	S3101A			N3101A			UNIT
		MIN	TYP ${ }^{8}$	MAX	MIN	TYP ${ }^{8}$	MAX	
Propagation Delays	$\begin{aligned} & \mathrm{R}_{1}=270 \Omega \\ & \mathrm{R}_{2}=600 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$							
TAA Address Access Time			25	50	10		35	ns
TCE Chip Enable Access Time			12	25	5		17	ns
TCD Chip Enable Output Disable Time			12	25	5		17	ns
TWD Write Enable to Output Disable Time			15	25			20	ns
TWR Write Recovery Time			22	40			35	ns
Write Set-up Times								
TwSA Address to Write Enable		0			0	-8		ns
TWSD Data In to Write Enable		25			20	5		ns
TWSC $\overline{\mathrm{CE}}$ to Write Enable		0			0	-5		ns
Write Hold Times								
TWHA Address to Write Enable		0			0			ns
TWHD Data In to Write Enable		0			0	-3		ns
TWHC $\overline{\mathrm{CE}}$ to Write Enable		0			0			ns
TWP Write Enable Pulse Width (Note 7)		25	18		25	18		ns

## AC TEST LOAD AND WAVEFORMS



## SWITCHING PARAMETERS MEASUREMENT INFORMATION

## READ CYCLE



CHIP ENABLE/DISABLE TIMES


## WRITE CYCLE



## MEMORY TIMING DEFINITIONS

TWR Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid-not as shown.)

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D} \quad$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TwsC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.

TwP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.

TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
TWD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.

TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.
TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

## PRELIMINARY INFORMATION

## DESCRIPTION

The 10139 is an ECL 256-Bit Read Only Memory organized as 32 words with 8 bits per word. The words are selected by five binary address lines; full word decoding is incorporated on the chip. A chip enable input is provided for additional decoding flexibility, which causes all eight outputs to go to low state when the chip enable input is high. This device is fully compatible with all of Signetics series 10,000 products. Address to output access time is 15 ns typical. Power dissipation is 580 milliwatts typical with separate internal bond wires and metal systems for $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC} 2}$. The 10139 may be programmed to any desired pattern by the user. The 10139 is suitable for use in high performance ECL systems. A Truth Table/Order Blank is attached.

## TEMPERATURE RANGE

-30 to $+85^{\circ} \mathrm{C}$ Operating Ambient

RECOMMENDED OPERATING VOLTAGE
$\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%$

## DIGITAL 54/74 TTL SERIES

## FEATURES

- 15 ns TYPICAL ACCESS TIME
- 16 PIN PACKAGE
- EASY PROGRAMMING
- FULLY DECODED
- FULLY COMPATIBLE WITH ECL 10,000 SERIES
- HIGH IMPEDANCE INPUTS 50K OHM PULLDOWN
- OPEN EMITTER OUTPUTS


## APPLICATIONS <br> PROGRAMMABLE LOGIC CONTROL STORES MICROPROGRAMMING VOLUME PRODUCTION HARDWIRED ALGORITHMS

## PACKAGE TYPE

F: 16 Pin CERDIP

## BLOCK DIAGRAM



PRELIMINARY ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\right)$

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Power Supply Drain Current	IEO		110	145	mAdc
Input Current $\begin{aligned} & V_{I H}=-0.810 \mathrm{~V}, \\ & V_{I L}=-1.850 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {in }} \mathrm{H} \\ & \mathrm{I}_{\text {in }} \mathrm{L} \end{aligned}$	30		265	$\mu A d c$ $\mu$ Adc
Output Voltage   Logic " 1 " ( $\left.\mathrm{V}_{\mathrm{IH}}=-0.810 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.850 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{OH}}$	-0.960		-0.810	Vdc
Logic " 0 " ( $\left.\mathrm{V}_{\text {IH }}=-0.810 \mathrm{~V}, \mathrm{~V}_{\text {ILA }}=1.850 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{OL}}$	-1.990		-1.650	Vdc
Threshold Voltage   Logic " 1 " $\left(V_{\text {IHA }}=-1.105 \mathrm{~V}, \mathrm{~V}_{\text {ILA }}=-1.475 \mathrm{~V}\right)$	VOHA	-0.980			Vdc
	VolA			-1.630	Vdc

PRELIMINARY ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=O \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega\right.$ )

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Chip Enable Prop Delay			10	15	ns
Output Rise Time (20 to 80\%)			4.2		ns
Output Fall Time (20 to 80\%)			4.2	ns	
Access Time Address to Output	TAD		15	20	ns

## RECOMMENDED PROGRAMMING <br> PROCEDURE

The 10139 is shipped with all bits at logical " 0 " (low). To write logical " 1 's", proceed as follows:

MANUAL (see Fig. 1)

## STEP 1

Connect $\mathrm{V}_{\mathrm{EE}}\left(\right.$ Pin 8) to ground and $\mathrm{V}_{\mathrm{CC}}($ (Pin 16) to +5.2 volts. Address the word to be programmed by applying 4.0 to 4.6 volts for a logic " 1 " and 0.0 to 1.0 volts for a logic " 0 " to the appropriate address inputs.

## STEP 2

Raise $\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 16)$ to 12 volts.

## STEP 3

After $V_{\mathrm{CC}}$ has stabilized at 12 volts (including any ringing which may be present on the $V_{C C}$ line) apply a current pulse of 2.5 mA to the output pin corresponding to the bit to be programmed to a logic " 1 ".

## STEP 4

Return $\mathrm{V}_{\mathrm{CC}}$ to 5.2 volts.
CAUTION: To prevent excessive chip temperature rise, $\mathrm{V}_{\mathrm{CC}}$ should not be allowed to remain at 12 volts for more than 1 sec ond.

## STEP 5

Verify that the selected bit has programmed by connecting a $460 \Omega$ resistor to ground and measuring the voltage at the output pin. If a logic " 1 " is not detected at the output, the procedure should be repeated once.

## STEP 6

If verification is positive, proceed to the next bit to be programmed.

## AUTOMATIC (see Fig. 2)

## STEP 1

Connect $\mathrm{V}_{\mathrm{EE}}($ Pin 8$)$ to ground and $\mathrm{V}_{\mathrm{CC}}$ (Pin 16) to +5.2 volts. Apply the proper address data and raise $\mathrm{V}_{\mathrm{CC}}$ (Pin 16) to 12 volts.

## STEP 2

After a minimum delay of $100 \mu \mathrm{~s}$ and a maximum delay of 1.0 ms , apply a 2.5 mA current pulse to the first bit to be programmed $(0.5 \leqslant \mathrm{PW} \leqslant 1 \mathrm{~ms})$.

## STEP 3

Repeat Step 2 for each bit of the selected word specified as a logic " 1 ". (Program only one bit at a time; The delay between output programming pulses should be equal to or less than 1.0 ms .)

## STEP 4

After all the desired bits of the selected word have been programmed, change address data and repeat Steps 2 and 3.

NOTE: If all the maximum times listed above are maintained, the entire memory will program in less than 1 second. Therefore, it would be permissible for $V_{C C}$ to remain at 12 volts during the entire programming time.

## STEP 5

After stepping through all address words, return $\mathrm{V}_{\mathrm{CC}}$ to +5.2 and verify that each bit has programmed. If one or more bits have not programmed, repeat the entire procedure once.

## PROGRAMMING SPECIFICATIONS

CHARACTERISTIC	SYMBOL	LIMITS			UNITS	CONDITIONS
		MIN.	TYP.	MAX.		
Power Supply Voltage To Program To Verify	$\begin{aligned} & \mathrm{v}_{\mathrm{CCP}} \\ & \mathrm{v}_{\mathrm{CCV}} \end{aligned}$	$\begin{array}{r} 11.5 \\ 5.0 \end{array}$	$\begin{array}{r} 12.0 \\ 5.2 \end{array}$	$\begin{array}{r} 12.5 \\ 5.4 \end{array}$	Volts   Volts	
Programming Supply Current	${ }^{\text {'CCP }}$			250	mA	$\mathrm{V}_{\mathrm{CC}}=12.0$ Volts
Address Voltage logical " 1 " logical " 0 "	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 4.6 \\ & 1.0 \end{aligned}$	Volts   Volts	
Max. Time at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CCP }}$				1.0	Sec.	
Output Programming Current	$\mathrm{I}_{\mathrm{OP}}$	2.0	2.5	3.0	mA	
Output Program Pulse Width	$\mathrm{t}_{\mathrm{p}}$	0.5		1.0	ms	
Output Pulse Rise Time				10	$\mu \mathrm{s}$	
Programming Pulse Delay (1) following $\mathrm{V}_{\mathrm{CC}}$ change between output pulses	$\begin{aligned} & \mathrm{t}_{\mathrm{d}} \\ & \mathrm{t}_{\mathrm{d}} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.01 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	

NOTE:
(1) Maximum is specified to minimize the amount of time $\mathrm{V}_{\mathrm{CC}}$ is at $\mathbf{1 2}$ volts.

MANUAL PROGRAMMING CIRCUIT


## AUTOMATIC PROGRAMMING CIRCUIT



DIGITAL 8000 SERIES TTL MEMORY

## DESCRIPTION

The 93415A and 93425A are high speed 1024-bit random access memories organized as 1024 words $\times 1$ bit. With a typical access time of 30ns, they are ideal for cache buffer applications and for systems requiring very high speed main memory.
Both the 93415A and 93425A require a single +5 volts power supply and feature very low current PNP input structures. They are fully TTL compatible, and include on-chip decoding and a chip enable input for ease of memory expansion. They feature either Open Collector or Tri-State outputs for optimization of word expansion in bussed organizations.
Both 93415A and 93425A devices are available in the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$.

## FEATURES

## - ORGANIZATION - 1024 X 1

- ADDRESS ACCESS TIME - 45ns, MAXIMUM
- WRITE CYCLE TIME - 45ns, MAXIMUM
- POWER DISSIPATION - 0.5mW/BIT, TYPICAL
- INPUT LOADING - $(-100 \mu \mathrm{~A})$ MAXIMUM
- ON-CHIP ADDRESS DECODING
- OUTPUT OPTIONS:

93415A - OPEN COLLECTOR
93425A - TRI-STATE

- NON-INVERTING OUTPUT
- bLANKED OUTPUT DURING WRITE
- 16 PIN CERAMIC PACKAGE


## APPLICATIONS

HIGH SPEED MAIN FRAME
CACHE MEMORY
BUFFER STORAGE
WRITABLE CONTROL STORE

PIN CONFIGURATION


## TRUTH TABLE

MODE	$\bar{\sim} \mathbf{C E}$	$\overline{\text { WE }}$	$\mathrm{D}_{\text {IN }}$	DOUT	
				93415A	93425A
READ	0	1	X	STORED   DATA	STORED   DATA
WRITE "0"	0	0	0	1	High-Z
WRITE "1"	0	0	1	1	High-Z
DISABLED	1	X	X	1	High-Z

$X=$ Don't care.

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

PARAMETER 1	RATING	UNIT
$V_{\text {CC }}$	Power Supply Voltage	+7
$\mathrm{~V}_{\text {in }}$	Input Voltage	+5.5
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage (93415A)	+5.5
$\mathrm{~V}_{\mathrm{O}}$	Off-State Output Voltage (93425A)	+5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	$0^{\circ}$ to $+75^{\circ}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ}$
Vdc		

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

PARAMETER		TEST CONDITIONS	93415A/93425A			UNIT	
		MIN	TYP ${ }^{2}$	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$V_{C C}=$ MIN (Note 1)			. 85	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ MAX ( Note 1)	2.1			$V$	
$\mathrm{V}_{\text {IC }}$	Input Clamp Voltage	$V_{C C}=M I N, I_{I N}=-12 \mathrm{~mA}$   (Note 1, 7)		-1.0	-1.5	V	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & (\text { Note 1, 8) } \end{aligned}$		0.35	0.45	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage (93425A)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & (\text { Note } 1,5) \end{aligned}$	2.4			V	
IoLk	Output Leakage Current (93415A)	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=5.5 \mathrm{~V} \\ & (\text { Note } 6) \end{aligned}$		1	40	$\mu \mathrm{A}$	
IO(OFF)	Hi-Z State Output Current (93425A)	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$		1 -1	60 -60	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
$I_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{IH}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		1	25	$\mu \mathrm{A}$	
los	Short Circuit Output Current (93425A)	$\begin{aligned} & V_{C C}=M A X, V_{\text {OUT }}=O V \\ & (\text { Note 3) } \end{aligned}$	-20		-100	mA	
${ }^{\text {cc }}$	$\mathrm{V}_{\text {cc }}$ Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{MAX}(\text { Note } 4) \\ 0<\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \geqslant 25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} \leqslant 0^{\circ} \mathrm{C} \end{gathered}$		$\begin{array}{r} 120 \\ 95 \end{array}$	$\begin{aligned} & 155 \\ & 130 \\ & 170 \end{aligned}$	mA mA mA	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		4		pF	
Cout	Output Capacitance	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		7		pF	

## NOTES:

1. All voltage values are with respect to network ground terminal.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Duration of the short-circuit should not exceed one second.
4. ICC is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V , and the output open.
5. Measured with $V_{I L}$ applied to $\overline{C E}$ and a logic " 1 " stored.
6. Measured with $V_{I H}$ applied to $\overline{C E}$.
7. Test each input one at the time.
8. Measured with a logic " 0 " stored. Output sink current is supplied through a resistor to $V_{C C}$.
9. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\phi_{J A}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} /$ Watt
$\phi_{\text {JA }}$ Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\phi_{J A}$ Junction to Case $-20^{\circ} \mathrm{C} /$ Watt

SWITCHING CHARACTERISTICS ${ }^{3} 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25$

PARAMETER	TEST CONDITIONS	93415A/93425A			UNIT
		MIN	TYP ${ }^{1}$	MAX	
Propagation Delays					
TAA Address Access Time			30	45	ns
TCE Chip Enable Access Time			15	30	ns
$\mathrm{T}_{\text {CD }} \quad$ Chip Enable Output Disable Time			15	30	ns
TWD Write Enable to Output Disable Time			20	30	ns
TWR Write Recovery Time			20	30	ns
Write Set-up Times					
TwSA Address to Write Enable	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{R}_{1}=270 \Omega \end{aligned}$	5	0		ns
TWSD Data In to Write Enable	$\mathrm{R}_{2}=600 \Omega$	40	35		ns
TWSC $\overline{\text { CE }}$ to Write Enable		5	0		ns
Write Hold Times					
TwHA Address to Write Enable		5	0		ns
TWHD Data In to Write Enable		5	0		ns
TWHC $\overline{\mathrm{CE}}$ to Write Enable		5	0		ns
TWP Write Enable Pulse Width (Note 2)		35	25		ns

AC TEST LOAD


## NOTES:

1. Typical values are at $V_{C C}=+5.0 \mathrm{~V}$, and $T_{A}=+25^{\circ} \mathrm{C}$.
2. Minimum required to guarantee a WRITE into the slowest bit.
3. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:
$\theta_{\text {JA }}$ Junction to Ambient at 400 fpm air flow $-50^{\circ} \mathrm{C} /$ Watt
$\theta$ JA Junction to Ambient - still air $-90^{\circ} \mathrm{C} /$ Watt
$\theta_{\text {JA }}$ Junction to Case $-20^{\circ} \mathrm{C} /$ Watt

## SWITCHING PARAMETERS MEASUREMENT INFORMATION

## READ CYCLE

ADDRESS ACCESS TIME
ADDRESS

CHIP ENABLE/DISABLE TIMES


## WRITE CYCLE



## MEMORY TIMING DEFINITIONS

TWR Delay between end of WRITE ENABLE pulse and when DATA OUTPUT becomes valid. (Assuming ADDRESS still valid-not as shown.)

TCE Delay between beginning of CHIP ENABLE low (with ADDRESS valid) and when DATA OUTPUT becomes valid.
$T_{C D} \quad$ Delay between when CHIP ENABLE becomes high and DATA OUTPUT is in off state.
$T_{A A}$ Delay between beginning of valid ADDRESS (with CHIP ENABLE low) and when DATA OUTPUT becomes valid.

TwSC Required delay between beginning of valid CHIP ENABLE and beginning of WRITE ENABLE pulse.

TWHD Required delay between end of WRITE ENABLE pulse and end of valid INPUT DATA.
TWP Width of WRITE ENABLE pulse.
TWSA Required delay between beginning of valid ADDRESS and beginning of WRITE ENABLE pulse.
TWSD Required delay between beginning of valid DATA INPUT and end of WRITE ENABLE pulse.
TWD Delay between beginning of WRITE ENABLE pulse and when DATA OUTPUT is in off state.
TWHC Required delay between end of WRITE ENABLE pulse and end of CHIP ENABLE.

TWHA Required delay between end of WRITE ENABLE pulse and end of valid ADDRESS.

## B PACKAGE



NOTES:

1. Lead Material: Alloy 42 or equivalent. 6. Body dimensions do not include molding flash.
2. Body Material: Plastic.
3. Tolerances non cumulative.
4. Signetics symbol denotes Lead No. 1.
5. Lead spacing shall be measured within this zone.
6. Thermal Resistance: $\Theta \mathrm{Ja}=.16^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.08^{\circ} \mathrm{C} / \mathrm{mW}$.
7. All dimensions shown in parentheses are English. (Inches)

## FJ PACKAGE



NOTES:

1. Lead material: Alloy 42 or equivalent, tin plated.

Body material: Ceramic with glass seal.
3. Tolerances non cumulative.
4. Signetics symbol denotes Lead No. 1.
5. Lead spacing shall be measured within this zone.
6. Thermal resistance: $\Theta \mathrm{Ja}=.090^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.025^{\circ} \mathrm{C} / \mathrm{mW}$.
7. All dimensions shown in parentheses are English. (Inches)

## IJA PACKAGE



NOTES

1. Lead material: Kovar or equivalent, tin plated.
. Body material: Ceramic with Kovar or equivalent.
2. Lid material: Ceramic, glass seal.
3. Tolerances non cumulative.
4. Signetics symbol denotes Lead No. 1.
5. Lead spacing shall be measured within this zone.

## INB PACKAǴE



NOTES:

1. Lead material: Kovar or equivalent, gold plated.
2. Body material: Ceramic with Kovar or equivalent.
3. Lid material: Kovar or equivalent, gold plated, alloy seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Thermal resistance: $\Theta$ Ja $=.080^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.020^{\circ} \mathrm{C} / \mathrm{mW}$.
7. All dimensions shown in parentheses are English. (Inches)
8. Lead spacing shall be measured within this zone.
9. Thermal resistance: $\Theta$ Ja $=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $015 \mathrm{C} / \mathrm{mW}$.
10. All dimensions shown in parentheses are English (Inches)


NOTES:

1. Lead material: Kovar or equivalent, tin plated.
2. Body material: Ceramic with Kovar or equivalent.
3. Lid material: Ceramic, glass seal.
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Lead spacing shall be measured within this zone.
7. Thermal resistance: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $.010^{\circ} \mathrm{C} / \mathrm{mW}$.
8. All dimensions shown in parentheses are English. (Inches)

## N PACKAGE



NOTES:

1. Lead Material: Alloy 42 or equivatent.
2. Body dimensions do not include molding flash.
3. Body Material: Plastic
4. Tolerances non cumulative.
5. Signetics symbol denotes Lead No. 1.
6. Lead spacing shall be measured within this zone.
7. Thermal Resistance: $\Theta \mathrm{Ja}=.12^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=$ $05^{\circ} \mathrm{C} / \mathrm{mW}$
8. All dimensions shown in parentheses are English (Inches)

## 댐ㅁㅁtar

Q11 EAST ARQLES AVENUE
SUNNYVALE, CALIFORNIA $94 O B E$ TELEPHONE: (408) $739-7700$



[^0]:    *B - Plastic
    F - Cerdip

