SICNETICS DICHIAL

 54/7400 DATA BOOK

Signetics Corporation reserves the right to make changes in the products contained in this book in order to improve design or performance and to supply the best possible product.

Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

TABLE OF CONTENTS

TITLE
PAGE

TABLE OF CONTENTS (Continued)

2	$\begin{aligned} & \text { 54/74XX ELECTRI } \\ & \text { S54160/S54161 } \\ & \text { S54162/S54163 } \\ & \text { N74160/N74161 } \\ & \text { N74162/N74163 } \end{aligned}$	AL CHARACTERISTICS (Continued) Synchronous 4-Bit Counter	143
	S54164/N74164	8-Bit Parallel-Out Serial Shift Register	147
	S54165/N74165	Parallel-Load 8-Bit Shift Register	151
	S54166/N74166	8-Bit Shift Register	153
	S54170/N74170	4X4 Register File	155
	S54175/N74175	Quadruple D-Type Edge-Triggered Flip-Flop	159
	S54180/N74180	8-Bit Odd/Even Parity Generator/Checker	163
	S54181/N74181	High-Speed Arithmetic Logic	165
	S54182/N74182	Look-Ahead Carry Generator	169
	S54192/N74192	Synchronous Decade Up/Down Counter with Preset Inputs	171
	S54193/N74193	Synchronous 4-Bit Binary Up/Down Counter with Preset Inputs	175
	S54194/N74194	4-Bit Bidirectional Universal Shift Register	179
	S54195/N74195	4-Bit Parallel-Access Shift Register	181
	S54198/N74198	8-Bit Shift Register	183
	S54199/N74199	8-Bit Shift Register	185
3	HIGH SPEED 54H/7	H SERIES SSI	187
	S54H00/N74H00	Quadruple 2-Input Positive NAND Gate	189
	S54H01/N74H01	Quadruple 2-Input Positive NAND Gate with Open Collector Output	191
	S54H04/N74H04	Hex Inverter	193
	S54H05/N74H05	Hex Inverter with Open Collector Output	195
	S54H08/N74H08	Quadruple 2-Input Positive AND Gate	197
	S54H10/N74H10	Triple 3-Input Positive NAND Gate	199
	S54H11/N74H11	Triple 3-Input Positive AND Gate	201
	S54H20/N74H20	Dual 4-Input Positive NAND Gate	203
	S54H21/N74H21	Dual 4-Input Positive AND Gate	205
	S54H22/N74H22	Dual 4-Input Positive NAND Gate with Open Collector Output	207
	S54H30/N74H30	8-Input Positive NAND Gate	209
	S54H40/N74H40	Dual 4-Input Positive NAND Buffer	211
	S54H50/S54H51 N74H50/N74H51	Dual 2-Wide 2-Input AND-OR-Invert Gate	213
	S54H52/N74H52	4-Wide 2-2-2-3-Input AND-OR Gate	215
	S54H53/S54H54		
	N74H53/N74H54	Expandable 2-2-2-3 Input AND-OR-Invert Gate	217
	S54H55/N74H55	Expandable 4-Input AND-OR-Invert Gate	219
	S54H60	Dual 4-Input Expander (For Use with S54H50, S54H53, S54H55 Circuits)	221
	N74H60	Dual 4-Input Expander (For Use with N74H50, N74H53, N74H55 Circuits)	223
	S54H61/N74H61	Triple 3-Input Expander (For Use with S54H52, N74H52 Circuits)	225
	S54H62	3-2-2-3-Input AND-OR Expander (For Use with S54H50, S54H53, S54 H55 Circuits)	227
	N74H62	3-2-2-3-Input AND-OR Expander (For Use with N74H50, N74H53, N74H55 Circuits)	229
	S54H71/N74H71		231
	S54H72/N74H72	J-K Master-Slave Flip-Flop	233
	S54H73/N74H73	Dual J-K-Master-Slave Ḟlip-Flop	235
	S54H74/N74H74	Dual D-Type Edge Triggered Flip-Flop	237
	S54H76/N74H76	Dual J-K Master-Stave Flip-Flop	239
	S54H101/N74H101	J-K Edge-Triggered Flip-Flop	241
	S54H102/N74H102	J-K Edge-Triggered Flip-Flop with AND Inputs	243
	S54H103/N74H103	Dual J-K Edge-Triggered Flip-Flop	245
	S54H106/N74H106	Dual-J-K Edge-Triggered Flip-Flop	247
	S54H108/N74H108	Dual J-K Edge-Triggered Flip-Flop	251
4	SCHOTTKY TTL (5	/74S SSI DEVICES)	253
	Schottky-Clamped T	nsistor Transistor Logic for High Speed, High-Performance Digital Systems	254
5	S54S/N74SXX ELEC	RICAL CHARACTERISTICS	255
	$\begin{aligned} & \text { S54S00/S54S03 } \\ & \text { N74S00/N74S03 } \end{aligned}$	Open Collector Positive NAND Gate	257
	S54S04/S54S05		
	N74S04/N74S05	Open Collector Positive-Hex Inverter	259
	S54S20/N74S20	Positive-NAND Gate	261
	S54S22/N74S22	Positive-NAND Gate with Open-Collector Outputs	263
	S54S112/N74S112	Dual J-K Edge-Triggered Flip-Flop	265
	$\begin{aligned} & \text { S54S113/S54S1144 } \\ & \text { N74S113/N74S114 } \end{aligned}$	Dual J-K Edge-Triggered Flip-Flop	267
	$\begin{aligned} & \text { S54S40/S54S140 } \\ & \text { N74S40/N74S140 } \end{aligned}$	Dual 4-Input Positive-NAND Buffer/Line Driver	269
6	54/74 AND 54/74H	YPICAL A.C. LOADS AND WAVEFORMS	271
7	SIGNETICS SURE 8	PROGRAM	273
8	SIGNETICS SALES	FICES	280

EXPANDERS	
54/74H60	Dual 4-Input Expander
54/74H61	Triple 3-Input Expanders
54H62	3-2-2-3-Input AND-OR Expander
74H62	3-2-2-3-Input Expander
FLIP-FLOPS	
54/74H71	J-K Master-Slave Flip-Flop (AND-OR Inputs)
54/74H72	J-K Master-Slave Flip-Flops (AND Inputs)
54/74H73	Dual J-K Master-Slave Flip-Flops
54/74H74	Dual D-Type Edge-Triggered Flip-Flops
54/74H76	Dual J-K Master-Slave Flip-Flops w/ Preset and Clear
54/74H103	Dual J-K Negative Edge-Triggered Flip-Flops (50 MHz)
54/74H106	Dual J-K Negative Edge-Triggered Flip-Flops (50 MHz) w/ Preset and Clear
54/74H108	Dual J-K Negative Edge-Triggered Flip-Flops (50 MHz) (Common Clock)
ASYNCHRONOUS COUNTERS	
54/7490	Decade Counters
54/7492	Divide-by-Twelve Counters
54/7493	4-Bit Binary Counters
SYNCHRONOUS COUNTERS	
54/74160	Synchronous Decade Counters
54/74161	Synchronous 4-Bit Binary Counters
54/74192	Synchronous Up/Down Decade Counters (Two Clock Lines)
54/74193	Synchronous Up/Down 4-Bit Binary Counters (Two Clock Lines)
SHIFT/STORAGE REGISTERS	
54/7491	8-Bit Shift Registers
54/7494	4-Bit Shift Registers (Parallel-In, Serial-Out)
54/7495	4-Bit Universal Shift Registers (Parallel-In, Parallel-Out)
54/7496	5-Bit Shift Registers (Dual-Parallel-In, Parallel-Out)
54/74164	8-Bit Parallel-Out Shift Registers
54/74165	Parallel-Load 8-Bit Shift Registers
54/74166	Parallel-Load 8-Bit Shift Registers
54/74195	4-Bit Parallel-In, Parallel-Out Shift Register (J-K Inputs to First Stage)
54/74198	8-Bit Parallel-In, Parallel-Out Bidirectional Shift Registers
54/74199	8-Bit Parallel-In, Parallel-Out Shift Registers (J-K Inputs to First Stage)
DECODERS/DEMULTIPLEXERS	
54/7442	BCD-to-Decimal Decoders
54/7443	Excess-3-to-Decimal Decoders
54/7444	Excess-3-Gray-to-Decimal Decoders
54/74154	4-Line-to-16-Line (1 of 16) Decoders/ Demultiplexers
54/74155	Dual 2-Line-to-4-Line Decoders/Demultiplexers
54/74156	Dual 2-Line-to-4-Line Decoders/Demultiplexers (w/ Open-Collector Output)
DECODERS/LAMP DRIVERS/BUFFERS	
54/7441	BCD to Decimal Decoders/Drivers with Blanking
54/7445	BCD-to-Decimal Decoders/Drivers with 30V Output
54/74145	BCD-to-Decimal Decoders/Drivers with 15V Output
7446	BCD-to-Seven-Segment Decoders/Drivers with 30 V Output
7447	BCD-to-Seven-Segment Decoders/Drivers with 15V Output
7448	BCD-to-Seven-Segment Decoders
74141	BCD-to-Decimal Decoder/Driver
LATCHES	
$\begin{aligned} & 54 / 7475 \\ & 54 / 74100 \end{aligned}$	Quadruple Bistable Latches 8-Bit Bistable Latches
MEMORIES	
7488	256-Bit Read-Only Memory
7489	64-Bit Read/Write Memory (RAM)
54/74170	4-By-4 Register Files

54/74 FAMILY LINES (Cont'd)

ARITHMETIC ELEMENTS	
$54 / 7480$	Gated Full Adders
$54 / 7483$	4-Bit Binary Full Adders
$54 / 7486$	Quadruple 2-Input Exclusive-OR Gates
$54 / 74180$	8-Bit Odd-Even Parity Generators/Checkers
$54 / 74181$	4-Bit Arithmetic Logic Unit (ALU) and Function
	Generators
$54 / 74182$	Look-Ahead Carry Generators (for ALU)
DATA SELECTORS/MULTIPLEXERS	
$54 / 74150$	16-Bit Data Selectors/Multiplexers
$54 / 74151$	8-Bit Data Selectors/Multiplexers with Strobe
$54 / 74152$	8-Bit Data Selectors/Multiplexers
$54 / 74153$	Dual 4-Line-to-1-Line Data Selectors/Multiplexers
$54 / 74157$	Quad 2-1 Multiplexer
SCHOTTKY	
74500	Positive-NAND Gate
$74 S 03$	Positive-NAND Gate
$74 S 04$	Positive-Hex Inverters
$74 S 05$	Positive-Hex Inverters
$74 S 20$	Positive-NAND Gate
$74 S 22$	Positive-NAND Gate (w/ Open-Collector Outputs)
$74 S 112$	Dual J-K Edge-Triggered Flip-Flop
$74 S 113$	Dual J-K Edge-Triggered Flip-Flops
74 S114	Dual J-K Edge-Triggered Flip-Flops
$74 S 140$	Dual 4-Input Positive-NAND Buffers/Line Drivers

8200 MSI FAMILY LINES

REGISTERS/LATCHES	
8200	Dual 5-Bit Buffer Register
8201	Dual 5-Bit Buffer Register with D Complement
8202	10-Bit Buffer Register
8203	10-Bit Buffer Register with D Complement
8270	4-Bit Shift Register
8271	4-Bit Shift Register
8273	10-Bit Serial-In, Parallel-Out
8274	10-Bit Parallet-In, Serial-Out
8275	Quad Latch
8276	8-Bit Shift Register
8277	Dual 8-Bit Shift Register
MULTIPLEXERS	
8230	8-Input Digital Multiplexer
8231	8-Input Digital Multiplexer
8232	8-Input Digital Multiplexer
8233	2-Input, 4-Bit Digital Multiplexer
8234	2-Input, 4-Bit Digital Multiplexer
8235	2-Input, 4-Bit Digital Multiplexer
8263	3-Input, 4-Bit Digital Multiplexer
8264	3-Input, 4-Bit Digital Multiplexer
8266	2-Input, 4-Bit Digital Multiplexer
8267	2-Input, 4-Bit Digital Multiplexer
COUNTERS	
8280	Presettable Decade Counter/Storage Register
8281	Presettable Binary Counter/Storage Register
8284	Binary Synchronous Up/Down Counter
8285	BCD Synchronous Up/Down Counter
8288	Presettable Divide-by-12 Counter/Storage Register
8290	High Speed Presettable Decade Counter
8291	High Speed Presettable Binary Counter
8292	Low Power Presettable Decade Counter
8293	Low Power Presettable Binary Counter

8200 MSI FAMILY LINES (Cont'd)

DECODERS/DISPLAY DRIVERS	
8250	Binary-to-Octal Decoder
8251	BCD-to-Decimal Decoder
8252	BCD-to-Decimal Decoder
8 T 01	Nixie* Decoder/Driver (68V, 5mA)
8 804	Seven-Segment Decoder/Driver (Active low -40 mA current sink)
8T05	Seven-Segment Decoder/Driver (Active high -2.5mA current source)
8T06	Seven-Segment Decoder/Driver (Active high - bare collector)
PARITY FUNCTIONS	
8241	Quad Exclusive OR
8242	4-Bit Comparator
8262	9-Bit Parity Generator and Checker
8269	4-Bit Comparator
ARITHMETIC ELEMENTS	
8260	Arithmetic Logic Element
8261	Fast Carry Extender
8268	Full Adder
SCALER (Asynchronous Shift Register)	
8243	8-Bit Position Scaler
MEMORIES	
8204	2048 Bit ROM (256×8)
8205	4096 Bit ROM (512×8)
8220	High Speed Content Addressable Memory (CAM)
8223	256 Bit FROM
8224	256 Bit ROM
8225	64 Bit RAM
8226	1024 Bit FROM
8228	4096 Bit ROM
8229	1024 Bit FROM (Tri-State Outputs)
INTERFACE ELEMENTS	
$8 \mathrm{8T01}$	Nixie* Decoder/Driver (68V, 5mA)
8T04	Seven-Segment Decoder/Driver (Active low -40mA current sink)
8 T 05	Seven-Segment Decoder/Driver (Active high -2.5mA current source)
8T06	Seven-Segment Decoder/Driver (Active high - bare collector)
8T09	Quad Bus Driver
8 810	Quad D-Type Bus Flip-Flop
8 8T13	Dual Line Driver
8T14	Triple Line Receiver
$8 \mathrm{C15}$	Dual Communications Line Driver
8T16	Dual Communications Line Receiver
8T18	Dual 2-Input NAND Interface Gate
8 T 23	Dual Line Driver (IBM Compatible)
8T24	Triple Line Receiver (IBM Compatible)
8 T 80	Quad 2-Input NAND Interface Gate
8T90	Hex Inverter Interface Element
74S TO BE ANNOUNCED	
$74 \mathrm{S10}$ Triple 3 NAND Gate	
74511 Triple 3 NAND Gate	
74S15 Triple 3 NAND Gate with open collector	
74S64 4-2-3-2 AND-OR-Invert Gate	
74565 4-2-3-2 AND-OR-Invert Gate with open collector	
74574 Dual D Flip-Flop	
*Trademark of Burroughs Corporation	

GENERAL DESCRIPTION

ABSOLUTE MAXIMUM RATINGS (over operating free-air temperature range unless otherwise noted)
Supply Voltage VCC (See Note 1)
Input Voltage, $\mathrm{V}_{\text {in }}$ (See Note 1
Interemitter Voltage (See Note 2)
Resistor Node Voltage, 54121, 74121
(See Note 1)
Operating Free-Air Temperature Range: Series 54 Circuits Series 74 Circuits
Storage Temperature Range Series 74 Circuits
NOTES:

1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multipleemitter transistor.
Series 54/74 Logic Family
The $54 / 74 X X$ logic family is medium speed TTL, and high speed TTL integrated circuits. The family includes a multiple number of functions in a variety of packages. The $54 \times X$ devices are characterized for the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The 74XX devices are characterized for the limited temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

INPUT CLAMPING DIODES

Although not shown on all schematic diagrams, all of these SSI circuits incorporate input diodes. Each clamping diode is capable of limiting negative excursions at the input to a maximum of 1.5 volts below ground, even if -12 mA of current is drawn.

DESIGN CONSIDERATIONS

Logic Definition

Series 54/74 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
LOW VOLTAGE = LOGICAL " 0 "
HIGH VOLTAGE $=$ LOGICAL " 1 "
Unused Inputs
For optimum switching times and minimum noise susceptibility unused inputs should be maintained at a positive voltage greater than 2.4 V but not to exceed the absolute maximum rating of 5.5 V . This eliminates the distributed capacitance associated with the float-ing-input-transistor emitter, bond wire, and package load, and ensures that no degradation will occur in the propagation delay times. Some possible ways of handling input emitters are:
a. Connect unused inputs to a supply voltage. Preferably, this voltage should be between 2.4 V and 5.5 V .
b. Connect unused inputs to a used input if maximum fanout of the driving output will not be exceeded. Each input presents a full load in the logical " 1 " state to the driving output.
Input-Current Requirements
Input-current requirements reflect worst-case $V_{C C}$ and temperature condition. Currents into the input terminals are specified as positive values.

54/74 Logic

Each input of the multiple-emitter input transistor that utilizes a 4 $\mathrm{K} \Omega$ resistor requires no more than -1.6 mA flow out of the input at a logical " 0 " voltage level; therefore, one load ($\mathrm{N}=1$) for 54/74 logic is -1.6 mA maximum. Each input requires current into the input at a logical " 1 " voltage level. This current is $40 \mu \mathrm{~A}$ maximum for each emitter input.

Fanout Capability

Fanout reflects the ability of an output to sink current from a number of loads (N) at a logical " 0 " voltage level and to supply current at a logical " 1 " voltage level. Each standard $54 / 74$ output is capable of sinking current or supplying current to 10 loads ($N=10$). The buffer gate (54/7440) is capable of sinking current or supplying current to 30 loads ($N=30$).

ELECTRICAL CHARACTERISTICS

These are guaranteed over the applicable operating free-air temperature range, unless otherwise noted, as shown in Section 2 of the handbook.

NOTE
Any product available in an A or B package can also be supplied in the F cer-cip package.

A PACKAGE (TO-116)

14 Pin dual in-line, molded

NOTES:

1. LEAD MATERIAL: ALLOY 42 OR EQUIVALENT.
2. BODY MATERIAL: SILICONE MOLDED.
3. TOLERANCES NON CUMULATIVE.
. SIGNETICS SYMBOL DENOTES LEAD NO. 1.
4. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE
5. BODY DIMENSIONS DO NOT INCLUDE MOLDING FLASH.
6. THERMAL RESISTANCE: $\mathfrak{t \rightarrow} \mathrm{Ja}=.16 \mathrm{C} / \mathrm{mw}, \mapsto \mathrm{Jc}=.08 \mathrm{C} / \mathrm{mW}$
7. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

B PACKAGE

16 Pin dual in-line, molded

NOTES:

1. LEAD MATERIAL: ALLOY 42 OR EQUIVALENT.
2. BODY MATERIAL: SILICONE MOLDED.
3. tolerances non cumulative.
4. SIGNETICS SYMBOL DENOTES LEAD NO. 1
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE
6. BODY DIMENSIONS DO NOT INCLUDE MOLDING FLASH.
7. THERMAL RESISTANCE: $(\rightarrow) \mathrm{Ja}=.16 \mathrm{C} / \mathrm{mW}, ~ \rightarrow \mathrm{Jc}=.08^{\circ} \mathrm{C} / \mathrm{mW}$.
8. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

PHYSICAL DIMENSIONS (Cont'd)

F PACKAGE

14 Lead dual in-line

NOTES:

1. LEAD MATERIAL: KOVAR OR EQUIVALENT, TIN PLATED.
2. BODY MATERIAL: CERAMIC WITH GLASS SEAL
3. TOLERANCES NON CUMULATIVE.
4. SIGNETICS SYMBOL DENOTES LEAD NO. 1
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.
6. THERMAL RESISTANCE: $\Theta \mathrm{Ja}=.065^{\circ} \mathrm{C} / \mathrm{mW}, ~ \Theta \mathrm{Jc}=.020^{\circ} \mathrm{C} / \mathrm{mW}$.
7. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

F PACKAGE
16 Lead dual in-line

NOTES:

1. LEAD MATERIAL: KOVAR OR EQUIVALENT, TIN PLATED

BODY MATERIAL: CERAMIC WITH GLASS SEAL
3. TOLERANCES NON CUMULATIVE
4. SIGNETICS SYMBOL DENOTES LEAD NO. 1.
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.
6. THERMAL RESISTANCE: $\Theta \mathrm{Ja}=.090^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=.023^{\circ} \mathrm{C} / \mathrm{mW}$
7. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

N PACKAGE

24 Pin dual in-line, molded

NOTES:

1. LEAD MATERIAL: ALLOY 42 OR EQUIVALENT.
2. BODY MATERIAL: SILICONE MOLDED

TOLERANCES NON CUMULATIVE.
4. SIGNETICS SYMBOL DENOTES LEAD NO. 1.
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.
6. BODY DIMENSIONS DO NOT INCLUDE MOLDING FLASH.
7. THERMAL RESISTANCE: $\rightarrow \mathrm{Ja}=.12^{-} \mathrm{C} / \mathrm{mW}, \leftrightarrow \mathrm{Jc}=.05 \mathrm{C} / \mathrm{mW}$.
all dimensions shown in Parentheses are metric equivalents. (millimeters)

Q PACKAGE

24 Pin flat ceramic

NOTES:

1. LEAD MATERIAL: KOVAR OR EQUIVALENT, GOLD PLATED body material: ceramic with glass seal at leads
2. LID MATERIAL: CERAMIC, GLASS SEAL
3. TOLERANCES NON CUMULATIVE
4. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.
5. SIGNETICS SYMBOL OR ANGLE CUT DENOTES LEAD NO. 1.
6. RECOMMENDED MINIMUM OFFSET BEFORE LEAD BEND.
7. THERMAL RESISTANCE: $\leftrightarrow \mathrm{Ja}=.150^{\circ} \mathrm{C} / \mathrm{mW}, \leftrightarrow \mathrm{Jc}=.050^{\circ} \mathrm{C} / \mathrm{mW}$.
8. MAXIMUM GLASS CLIMB, LID SKEW, OR FRIT SQUEEZE OUT IS . 010
9. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

W PACKAGE

14 Pin flat cerpac

NOTES:

1. LEAD MATERIAL: ALLOY 42 OR EQUIVALENT, Tin PLATED.
2. BODY MATERIAL: CERAMIC WITH GLASS SEAL AT LEADS
3. LID MATERIAL: CERAMIC, GLASS SEAL
4. TOLERANCES NON CUMULATIVE.
tOLERANCES NON CUMULATIVE.
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.

SIGNETICS SYMBOL OR ANGLE CUT DENOTES LEAD NO. 1
RECOMMENDED MINIMUM OFFSET BEFORE LEAD BEND.
RECOMMENDED MINIMUM OF
8. MAXIMUM GLASS CLIMB .010 .
10. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

W PACKAGE
16 Pin flat cerpac

NOTES:

1. LEAD MATERIAL: ALLOY 42 OR EQUIVALENT, TIN PLATED.
2. BODY MATERIAL: CERAMIC WITH GLASS SEAL AT LEADS.
3. LID MATERIAL: CERAMIC, GLASS SEAL
4. TOLERANGES NON CUMULATIVE.
5. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE,
. SIGNETICS SYMBOL OR ANGLE CUT DENOTES LEAD NO. 1 .
6. RECOMMENDED MINIMUM OFFSET BEFORE LEAD BEND.
7. MAXIMUM GLASS CLIMB 010
8. THERMAL RESISTANCE: $\Theta \mathrm{Ja}=.200 \mathrm{C} / \mathrm{mW}, \leftrightarrow \mathrm{Jc}=.085 \mathrm{C} / \mathrm{mW}$
9. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

NOTES:
. LEAD MATERIAL: KOVAR OR EQUIVALENT, GOLD PLATED.
2. BODY MATERIAL: CERAMIC WITH KOVAR OR EQUIVALENT.
3. LID MATERIAL: KOVAR OR EQUIVALENT, GOLD PLATED, ALLOY SEAL.
4. TOLERANCES NON CUMULATIVE

SIGNETICS SYMBOL DENOTES LEAD NO. 1.
SIGNETICS SYMBOL DENOTES LEAD NO. 1 .
6EAD SPACING SHALL BE MEASURED WITHIN THIS ZONE
6. LEAD SPACING SHALL BE MEASURED WITHIN THIS ZONE.
7. THERMAL RESISTANCE: $\Theta \mathrm{Ja}=.050^{\circ} \mathrm{C} / \mathrm{mW}, \Theta \mathrm{Jc}=.010^{\circ} \mathrm{C} / \mathrm{mW}$.
8. ALL DIMENSIONS SHOWN IN PARENTHESES ARE METRIC EQUIVALENTS. (MILLIMETERS)

ORDERING INST•RUCTIONS

Electrical Characteristics
*Availability of a circuit device in a particular package and temperature range is indicated on the appropriate device. Electrical Characteristics Data Sheet is shown in Section 2 of this handbook.

Manufacturer reserves the right to make design and process changes and improvements.

QUADRUPLE 2-INPUT POSITIVE NAND GATE

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage ${ }_{\text {CC }}$: S5400 Circuits N7400 Circuits Normalized Fan-Out from each Output, N Operating Free-Air Temperature Range, T_{A} :		4.5	5	5.5	V
		4.75	5	5.25	V
				10	
	S5400 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7400 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }(1)}$	Logical 1 input voltage required at both input terminals to ensure logical 0 level at output	$V_{C C}=$ MIN		2			V
$V_{\text {in }(0)}$	Logical 0 input voltage required at either input terminal to ensure logical 1 level at output	$v_{C C}=M I N$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$v_{\text {in }}=0.8 \mathrm{~V}$,	2.4	3.3		V
Vout(0)	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
In(1)	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=\mathrm{MAX}, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 40 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Ios	Short circuit output current ${ }^{\text {t. }}$	$V_{C C}=$ MAX	$\begin{aligned} & \text { S5400 } \\ & \text { N7400 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S5400 • N7400

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X,$	$V_{\text {in }}=5 V$		12	22	mA
${ }^{\prime} \mathrm{Cc}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$v_{i n}=0$			8	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd}(0)$	Propagation delay time to logical 0 level	$C_{L}=15 p F$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		7	15	ns
${ }^{t} \mathrm{pd}(1)$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		11	22	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the appicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
\dagger Not more than one output should be shorted at a time.

QUADRUPLE 2-INPUT POSTITVE NAND GATE WITH OPEN COLLECTOR OUTPUT

S5401-A,F,W • N7401-A,F
DIGITAL 54/74 TTL SERES
PIN CONFIGURATIONS

SCHEMATIC (each gate)

NOTE: Component values shown are nominal.

A,F PACKAGE

* No pull-up provided

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }(1)}$	Logical 1 input voltage required at both input terminals to ensure logical 0 (on) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2	0.8		V
$V_{\text {in }}(0)$	Logical 0 input voltage required at either input terminal to ensure logical 1 (off) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					V
lout(1)	Output reverse current	$\begin{aligned} & V_{C C}=M I N \\ & V_{\text {out }(1)}=5.5 V \end{aligned}$	$V_{\text {in }}(0)=0.8 \mathrm{~V}$			250	$\mu \mathrm{A}$
$V_{\text {out }}(0)$	Logical 0 output voltage (on level)	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$I_{\text {in }(0)}$	Logical 0 level input current (each input)	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input	$V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
${ }^{\prime} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX,	$V_{\text {in }}=5 \mathrm{~V}$		12	22	mA
${ }^{1} \mathrm{Cc}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$V_{\text {in }}=0$		4	8	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

PARAMETER		test conditions		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{pd}} 0$	Propagation delay time to logical 0 level		$R_{L}=400 \Omega$		8	15	ns
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=4 \mathrm{k} \Omega$		35	45	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{\text {CC }}$: \quad S5402 Circuits		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, $\mathrm{T}_{\mathbf{A}}$:	S5402 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7402 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	max	UNIT
$\mathrm{v}_{\text {in }(1)}$	Logical 1 input voltage required at either input terminal to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			v
$\mathrm{v}_{\text {in }(0)}$	Logical 0 input voltage required at both input terminals to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$	2.4	3.3		v
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	v
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{l}_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
'os	Short circuit output Current \dagger	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}$		$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$V_{\text {in }}=5 \mathrm{~V}$		14	27	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=0$		8	16	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		8	15	ns
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		12	22	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
+ Not more than one output should be shorted at a time.

QUADRUPLE 2-INPUT POSITIVE NAND GATE WITH OPEN COLLECTOR OUTPUT

S5403-A,F • N7403-A,F

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{\text {CC: }} \quad \begin{aligned} & \text { S5403 Circuits } \\ & \\ & \text { N7403 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5403 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7403 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at both input terminals to ensure logical 0 (on) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at either input terminal to ensure logical 1 (off) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$V_{\text {in }}=0.8 \mathrm{~V}$			0.8	V
Iout(1)	Output reverse current	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & V_{\text {out }(1)}=5.5 V \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			250	$\mu \mathrm{A}$
$V_{\text {out (0) }}$	Logical 0 output voltage (on level)	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$				0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{I}_{\text {in }(1)}$	Logical 1 level input current (each input)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 40 \\ 1 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$	$V_{\text {in }}=5 \mathrm{~V}$		12	22	mA
${ }^{1} \mathrm{CC}(1)$	Logical level supply current	$V_{C C}=$ MAX	$v_{\text {in }}=0$		4	8	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{p d 0}$	Propagation delay time to logical 0 level Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	UNIT
$\mathrm{t}_{\mathrm{pd} 1} 1$	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \mathrm{pF}$,	8	15	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
digital 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{C C}: & \begin{array}{l}\text { S5404 Circuits } \\ \\ \text { N7404 Circuits }\end{array}\end{array}$	4.5	5	5.5	V
	4.75	5	5.25	V
Normalized Fan-Out from Output, N			10	
Operating Free-Air Temperature Range, $\mathrm{T}_{\text {A }}$: S5404 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7404 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at input terminal to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	$V_{C C}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4	3.3		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=$ MAX	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
In(1)	Logical 1 level input current	$\begin{aligned} & V_{C C}=\text { MAX }, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \end{array}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current \dagger	$V C C=$ MAX		$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP	MAX	UNIT
${ }^{\prime} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX	$\mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}$		18	33	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=0$		6	12	mA.

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		test conditions		MIN	TYP	MAX	UNIT
	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		8	15	ns
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		12	22	ns

[^0]
HEX INVERTER WITH OPEN COLLECTOR OUTPUT

S5405-A,F,W • N7405-A,F

SCHEMATIC (each inverter)

NOTE: Component values shown are nominal.

PIN CONFIGURATIONS

A,F PACKAGE

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{C C}$: $\begin{aligned} & \text { S5405 Circuits } \\ & \text { N7405 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5405 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7405 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{i n(1)}$	Logical 1 input voltage required at input terminal to ensure logical 0 (on) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in(0) }}$	Logical 0 input voltage required at input terminal to ensure logical 1 (off) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
Iout(1)	Output reverse current	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\text {out }(1)}=5.5 V \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
$V_{\text {out (0) }}$	Logical 0 output voltage (on level)	$\begin{aligned} & V_{C C}=M I N \\ & I_{\sin k}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$I_{\text {in }(0)}$	Logical 0 level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$I_{\text {in (1) }}$	Logical 1 level input current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	μA $m A$
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=5 \mathrm{~V}$,		18	33	mA
${ }^{\dagger} \mathrm{Cc}(1)$	Logical 1 level supply current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$v_{\text {in }}=0$,		6	12	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		8	15	ns
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=4 \mathrm{k} \Omega$		40	55	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

DIGITAL 54/74 TTL SERIES

DESCRIPTION
The 54/7406 and 54/7416 Hex Inverter Buffer/Drivers features standard TTL inputs with inverted high voltage, high current, open collector outputs for interface with MOS, lamps or relays. The $54 / 7406$ minimum output breakdown is 30 volts and the $54 / 7416$ minimum output breakdown is 15 volts.

SCHEMATIC (each inverter)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathrm{V}_{\text {CC }}$	S5406, 55416			N7406, N7416			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
Output Voltage, V_{OH} : $55406, \mathrm{~N} 7406$			30			30	
S5416, N7416			15			15	V
Low-level output current, IOL			30			40	mA
Operating Free-air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$V_{1 H}$	High-level input voltage		2			V
$V_{\text {IL }}$	Low-level input voltage				0.8	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
		$V_{C C}=\mathrm{MIN}, \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$			0.7	V
$V_{\text {OL }}$	Low-level sutput voltage	$V_{C C}=\mathrm{MIN}, V_{1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	V
	High-level input current	$V_{C C}=M A X, V_{1}=2.4 V$			40	$\mu \mathrm{A}$
IH	(each input)	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IL }}$	Low-level input current (each input)	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output	$V_{C C}=M A X, V_{1}=0$		30	42	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=M A X, V_{1}=5 V$		27	38	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

HEX BUFFER/DRIVER WITH OPEN COLLECTOR HIGH VOLTAGE OUTPUTS
 digital 54/74 TTL SERIES

DESCRIPTION

The 54/7407 and 54/7417 Hex Buffer/Driver features standard TTL inputs with non-inverted high voltage, high current open collector outputs for interface with MOS, lamps or relays. The 54/7407 minimum output is 30 volts and the 54/7417 minimum output is 15 volts.

SCHEMATIC (each buffer/driver)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Output Voltage, V_{OH} : S5407, N7407	S5407, 55417			N7407, N7417			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	v
			30			30	
			15			15	v
Low-Level Output Current, IOL			30			40	mA
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS *	MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$V_{\text {IL }}$	Low-level input voltage				0.8	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$V_{C C}=$ MIN, $V_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$			0.7	V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	V
	High-level input current	$V_{C C}=$ MAX, $V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	(each input)	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IL }}$	Low-level input current (each input)	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5 \mathrm{~V}$		29	41	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0$		21	30	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S5407 • S5417 • N7407 • N7417
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {P PLH }}$	Propagation delay time, low-to-high-level output	$C_{L}=15 p F$,	$R_{L}=110 \Omega$		6	10	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=110 \Omega$		20	30	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC: $\begin{aligned} & \text { S5408 Circuits } \\ & \text { N7408 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5408 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7408 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$v_{\text {in }}(1)$	Logical 1 input voltage required at both input terminals to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$v_{\text {in }}(0)$	Logical 0 input voltage required at either input terminal to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
$\mathrm{V}_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$,	2.4	3.3		v
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$,		0.22	0.4	v
$\mathrm{I}_{\text {in }}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$\mathrm{I}_{\text {in (}}$ ($)$	Logical 1 level input current (each input)	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{v}_{\mathrm{CC}}=\mathrm{MAX}, \end{aligned}$	$\begin{aligned} & v_{\text {in }}=2.4 \mathrm{~V} \\ & v_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 40 \\ 1 \end{array}$	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$v_{C C}=$ MAX	$\begin{aligned} & S 5408 \\ & \text { N7408 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \\ & \hline \end{aligned}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=5 \mathrm{~V}$		10	15	mA
${ }^{1} \mathrm{Cc}(0)$	Logical 0 level supply current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$v_{\text {in }}=0$		18	26	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		12	19	ns
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		17.5	27	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
t Not more than one output should be shorted at a time.

QUAD 2-INPUT AND GATE WITH OPEN COLLECTOR OUTPUTS

S5409-A,F,W • N7409-A,F
digital 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

	S5409			N7409			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N			10			10	
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS *	MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	v
${ }^{\text {I OH }}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	V
	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	(each input)	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$			1	mA
I/L	Low-level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathbf{1}}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{\mathrm{I}} \mathrm{CCH}$	Supply current, high-level output	$V_{C C}=$ MAX, $V_{1}=5 \mathrm{~V}$		10	15	mA
${ }^{\prime} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=M A X, V_{1}=0$		18	26	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP
	Propagation delay time, $t_{P L H}$ low-to-high-level output Propagation delay time, high-to-low-level output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	21	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : S 5410 Circuits N7410 Circuits		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5410 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7410 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- |

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX	$V_{\text {in }}=5 \mathrm{~V}$		9	16.5	mA
${ }^{\prime} \mathrm{Cc}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$V_{i \underline{1}}=0$			6	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	UNIT
$\mathrm{t}_{\mathrm{pd} 1}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	15	ns	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V ${ }_{\text {CC }}$: $\begin{aligned} & \text { S5411 Circuits } \\ & \\ & \text { N7411 Circuits }\end{aligned}$		MIN	NOM	MAX	UNIT
		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5411 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7411 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$	Logical 1 input voltage required at all input terminals to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$,	2.4	3.3		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {Sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,		0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=$ MAX	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X \\ & V_{C C}=M A X \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 40 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
! OS	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		$\begin{aligned} & -20 \\ & -18 \\ & \hline \end{aligned}$		$\begin{array}{r} -55 \\ -55 \\ \hline \end{array}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{\text {c }} \mathrm{C}(1)$	Logical 1 level supply current	$V_{C C}=$ MAX,	$v_{\text {in }}=5 \mathrm{~V}$		7.5	12	mA
${ }^{\prime} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX,	$v_{\text {in }}=0$		13.5	20	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		test conditions		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ d0	Propagation delay time to logical 0 level	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		12	19	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		17.5	27	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
\dagger Not more than one output should be shorted at a time.

DESCRIPTION

The 5413 and 7413 dual Schmitt triggers consist of two identical Schmitt-trigger circuits in monolithic integrated circuit form. Logically, each circuit functions as a four-input NAND gate, but because of the Schmitt action, the gate has different input threshold levels for positive- and negative-going signals. The hysteresis, or backlash, which is the difference between the two threshold levels, is typically 800 mV .

An important design feature is the built-in temperature compensation which ensures very high stability of the threshold levels and the hysteresis over a very wide temperature range. Typically, the hysteresis changes by 3% over the temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and the upper threshold changes by 1% over the same range. The $5413 / 7413$ can be triggered from the slowest of input ramps and still give clean, jitter-free output signals. It can not be triggered from straight dc levels.

These circuits are fully compatible with most other TTL, DTL, or MSI circuits. The 5413 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the 7413 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

RECOMMENDED OPERATING CONDITIONS

	5413			7413			UNIT
	MIN	NOM	MAX	MIIN	NOM	MAX	
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Fan--Out From Each Output, $\mathrm{N} \quad \begin{aligned} & \text { High Logic Level } \\ & \text { Low Logic Level }\end{aligned}$			20 10			20 10	
Operating Free-Air Temperature Range, T_{A} Maximum Input Rise and Fall Times	No Restriction			0	25 Restric	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {T+ }}$	Positive-going threshold voltage	$V_{C C}=5 \mathrm{~V}$		1.5	1.7	2	V
$V_{T}{ }^{\text {- }}$	Negative-going threshold voltage	$V_{C C}=5 \mathrm{~V}$		0.6	0.9	1.1	
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysteresis	$V_{C C}=5 \mathrm{~V}$		0.4	0.8		V
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
VOH	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I O H=-800 \mu \mathrm{~A} \end{aligned}$	$V_{1}=0.6 \mathrm{~V}$,	2.4	3.3		V
VOL	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & { }^{\prime} O L=16 \mathrm{~mA} \end{aligned}$	$V_{1}=2 \mathrm{~V}$,		0.22	0.4	V
${ }^{1} \mathrm{~T}+$	'Input current at positive-going threshold	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathbf{1}}=\mathrm{V}_{\mathrm{T}+}$		-0.65		mA
${ }^{1}$ T-	Input current at negative-going threshold	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{T}-}$		-0.85		mA
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA
${ }_{1} \mathrm{H}$	High-level input current	$V_{C C}=$ MAX,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$		-1	-1.6	mA
Ios	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=\mathrm{MAX}$,		-18		-55	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output	$V_{C C}=M A X$,	$V_{1}=0$		14	23	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=$ MAX,	$V_{1}=4.5 \mathrm{~V}$		20	32	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP
TPLH	Propagation delay time, low-to- high-level output Propagation delay time, high-to- low-level output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	UNIT
tPHL	$R_{L}=400 \Omega \mathrm{pF}$,	18	27	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

TYPICAL CHARACTERISTICS

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V ${ }_{\text {CC }}$: $\begin{aligned} & \text { S5420 Circuits } \\ & \\ & \\ & \text { N7420 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5420 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7420 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$V_{C C}=$ MIN		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 V$,	2.4	3.3		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V
$\operatorname{lin}(0)$	Logical 0 level input current (each input)	$v_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\prime} \mathrm{Os}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,		$\begin{array}{r} -20 \\ -18 \\ \hline \end{array}$		$\begin{array}{r} -55 \\ -55 \\ \hline \end{array}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX	$V_{\text {in }}=5 \mathrm{~V}$		6	11	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$V_{C C}=$ MAX	$v_{\text {in }}=0$		2	4	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ d0	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		8	15	ns
${ }^{\text {p }}$ d1	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		12	22	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{C C}$: $\begin{aligned} & \text { S5421 Circuits } \\ & \text { N7421 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5421 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7421 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{\prime} \mathrm{Cc}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$	$V_{\text {in }}=5 \mathrm{~V}$		5	8	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$v_{\text {in }}=0$		9	13	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level			
$t_{\text {pd1 }}$Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	UNIT	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DESCRIPTION

The 54/7426 Quad 2-Input NAND Gate features standard TTL inputs with high voltage (15 volts) open collector outputs for interface with MOS, lamps or relays.

SCHEMATIC (each gate)

PIN CONFIGURATION

RECOMMENDED OPERATING CONDITIONS

	S5426			N7426			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
Output Voltage, V_{OH}			15			15	V
Low-Level Output Current, ' OL			16			16	mA
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SIGNETICS DIGITAL 54/74 TTL SERIES - S5426 • N7426
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {t PLH }}$	Propagation delay time, low-to-high-level output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=1 \mathrm{k} \Omega$		16	24	ns
${ }^{\text {tPHL }}$	Propagation delay time high-to-low-level output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=1 \mathrm{k} \Omega$		11	17	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

SCHEMATIC DIAGRAM

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC: $\begin{aligned} & \text { S5430 Circuits } \\ & \text { N7430 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5430 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7430 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }(0)}$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	$V_{C C}=$ MIN				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$,	2.4	3.3		v
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V
$\mathrm{I}_{\mathrm{in}(0)}$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$I_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \end{array}$
${ }^{\text {I OS }}$	Short circuit output current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,		$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

	PARAMETER	TEST CONDITIONS*		MIN	TYP **	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=5 \mathrm{~V}$		3	6	mA
${ }^{\prime} \mathrm{Cc}(1)$	Logical 1 level supply current	$V_{C C}=$ MAX,	$v_{\text {in }}=0$			2	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=\mathbf{5 V}, \mathbf{T}_{\text {A }}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		8	15	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		13	22	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DESCRIPTION

The S5437/N7437 is a NAND Gate (output low only when all inputs are high) the same as N7400 except that it will drive 3 times as many loads. The S5438/N7438 is also a NAND Gate but is open-collector similar to N7403. Each one is the same pinout.
The S5437/N7437 and S5438/N7438 contain four 2-input NAND gates in a package with a guaranteed fan-out of 30 -Series 54/74 loads in both the logical " 1 " (1.2 mA), and logical " 0 " (48 mA) states. The S5438/N7438 has an open collector output for "WIREAND" applications but still retains the high sink current capability of the S5437/N7437.

ABSOLUTE MAXIMUM RATINGS (over operating temperature range unless otherwise noted)

Supply Voltage $V_{\text {CC }}$ (See Note 1)	7 V
Input Voltage (See Note 1)	5.5 V
Intermitter Voltage (See Note 2)	5.5 V
Output Voltage (See Notes 1 and 3):	
S5438, N7438 Circuits	5.5 V
Operating Free-Air Temperature Range:	
S5437, S5438 Circuits	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
N7437, N7438 Circuits	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTES:

1. Voltage values, except intermitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. This is the maximum voltage which should be applied to any output when it is in the off state.

PIN CONFIGURATIONS

SCHEMATICS (each buffer)

S5437, N7437 (Totem-Pole Output)
S5438, N7438 (Open-Collector Output)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC}
Normalized Fan-Out from each Output, N Operating Free-Air Temperature Range, T_{A}

S5437, S5438			N7437, N7438			UNIT
MIN	TYP	MAX	MIN	TYP	MAX	
4.5	5	5.5	4.75	5	5.25	V
		30			30	
-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS *		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MAX	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OH}}=1.2 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{1 H}=2 \mathrm{~V}$,	2.4	3.3		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$,		0.22	0.4	V
$1 /$	Input current at max. input voltage	$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1	mA
${ }^{1} \mathrm{IH}$	High-level input current	$V_{C C}=$ MAX	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
${ }_{\text {IL }}$	Low-level input current	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		$\begin{aligned} & -20 \\ & -18 \end{aligned}$		-55 -55	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output	$V_{C C}=$ MAX,	See Note 2		15	22	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=M A X$,	See Note 3		23	38	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

[^1]DIGITAL 54/74 TTL SERIES
pin Configurations

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{C C}: & \begin{array}{l}\text { S5440 Circuits } \\ \\ \text { N } 7440 \text { Circuits }\end{array}\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5440 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7440 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$V_{C C}=\mathrm{MIN}$			2			V
$V_{\text {in }(0)}$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	$V_{C C}=\mathrm{MIN}$,					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \\ & I_{\text {Ioad }}=-1.2 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,		2.4	3.3		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=48 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.28	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				40 1	$\mu \mathrm{A}$ mA
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,		$\begin{aligned} & \text { S5440 } \\ & \text { N7440 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=5 \mathrm{~V}$		17	27	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{v}_{\text {in }}=0$		4	6.8	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{3 0}$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=133 \Omega$	UNIT
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=133 \Omega$	15

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

BCD-TO-DECIMAL DECODER/DRIVER $\mathbf{N 7 4 4 1}$

N7441B

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATION

The N7441B Nixie* Decoder/Driver is a one-out-of-ten decoder which has been designed to provide the necessary high voltage characteristics required for driving gas-filled cold-cathode indicator tubes.
It may also be utilized in driving relays or other high voltage interface circuitry. The element is designed using TTL techniques and is therefore completely compatible with DTL and TTL elements.
The specially designed output drivers provide the necessary stable output state. There are no input codes where all outputs are "off" or where more than one output can be turned "on".

RECOMMENDED OPERATING CONDITIONS
 Supply Voltage V_{CC} (See Note 1$)$
 4.75 to 5.25 V
 Maximum Voltage on any Output 70 V

NOTE:

1. These voltage values are with respect to network ground terminal.

SCHEMATIC DIAGRAM

LOGIC DIAGRAM

TRUTH TABLE

ELECTRICAL CHARACTERISTICS, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER		TEST CONDITIONS		MIN	TYP*	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$				0.8	\checkmark
$V_{\text {on }}$	On-state output voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\text {on }}=7 \mathrm{~mA}$			2.5	V
loff	Off-state reverse current	$\begin{aligned} & v_{C C}=5.25 \mathrm{~V}, \\ & v_{\mathrm{CC}}=5.25 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{\text {out }}=55 \mathrm{~V} \\ & V_{\text {out }}=70 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$ mA
$\mathrm{l}_{\mathrm{in}(1)}$	Logical 1 level input current at B, C, or D	$\begin{aligned} & v_{C C}=5.25 \mathrm{~V} \\ & v_{C C}=5.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	$\mu \mathrm{A}$ mA
$\mathrm{I}_{\text {in }}(1)$	Logical 1 level input current at A	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			80 1	$\mu \mathrm{A}$ mA
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current at B, C, or D	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at A	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-3.2	mA
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			21	42	mA

* All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
*Trademark Burroughs Corporation.

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 54/7442 BCD-to-Decimal Decoder is a TTL MSI array utilized in decoding and logic conversion applications. The 54/7442 decodes a four bit BCD number to one of ten outputs.

Logic diagram

truth table

$\begin{gathered} \text { S5442/N7442 } \\ \text { BCD } \\ \text { INPUT } \end{gathered}$				ALL TYPES DECIMAL OUTPUT									
D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
1	0	1	0	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX
Supply Voltage $V_{\text {CC: }}$: S5442 Circuits				
N7442 Circuits				
Normalized Fan-Out				
		4.5	5	5.5

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {pdo }}$	Propagation delay time to logical 0 level through two logic levels	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10	22	30	ns
${ }^{\text {tpd0 }}$	Propagation delay time to logical 0 level through three logic levels	$C_{L}=15 p F,$	$R_{L}=400 \Omega$		23	35	ns
${ }^{\text {p }}$ d1	Propagation delay time to logical 1 level through two logic levels	$C_{L}=15 p F,$	$R_{L}=400 \Omega$	10	17	25	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level through three logic levels	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		26	35	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

PIN CONFIGURATIONS

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX
Supply Voltage $V_{\text {CC }}:$	U5443 Circuits			
N7443 Circuits				
Normalized Fan-Out from each Output, N				

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$	Input voltage required to ensure logical 1 at any input terminal Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN		2			V
$V_{i n(0)}$		$V_{C C}=$ MIN				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \\ & I_{\text {load }}=-400 \mu \end{aligned}$	$v_{\text {in }(0)}=0.8 \mathrm{~V}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{~V} \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$v_{\text {in }(0)}=0.8 \mathrm{~V}$			0.4	V
$l_{\text {in(1) }}$	Logical 1 level input current (each input)	$V_{C C}=$ MAX,				40	$\mu \mathrm{A}$
		$V_{C C}=M A X$,				1	mA
$I_{\text {in }(0)}$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,				-1.6	mA
${ }^{\text {I OS }}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	S5443	-20		-55	mA
		$V_{C C}=$ MAX,	N7443	-18		-55	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=$ MAX	S5443		28	41	$m A$
		$V_{C C}=$ MAX,	N7443		28	56	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 0$	Propagation delay time to logical 0 level through two logic levels	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10	22	30	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level through three logic levels	$C_{L}=15 p F,$	$R_{L}=400 \Omega$		23	35	ns
${ }^{\text {pd }} 1$	Propagation delay time to logical 1 level through two logic levels	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	17	25	ns
$t_{p d 1}$	Propagation delay time to logical 1 level through three logic levels	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		26	35	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions of the applicable device type.
* * All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

EXCESS 3-GRAY-TO-DECIMAL DECODER

S5444

S5444-B,W • N7444-B,F
DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

TRUTH TABLE

S5444/N7444 EXCESS 3 GRAY INPUT				ALL TYPES DECIMAL OUTPUT									
D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	1	1	1	1	1	1	1	1
0	1	1	0	1	0	1	1	1	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
1	1	0	0	1	1	1	1	1	0	1	1	1	1
1	1	0	1	1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1	1	1	1	0	1
1	0	1	0	1	1	1	1	1	1	1	1	1	0
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS

| | | | |
| :--- | ---: | ---: | ---: | :---: |
| Supply Voltage $V_{C C}: ~ S 5444$ Circuits | | | |
| N7444 Circuits | | | |
| Normalized Fan-Out from each Output, N | | | |

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			v
$v_{\text {in }(0)}$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	v
$\mathrm{V}_{\text {out(1) }}$		$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {Ioad }}=-400 \mu \mathrm{~A} \end{aligned}$		2.4			v
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V},$			0.4	v
${ }^{\prime} \mathrm{in}(1)$	Logical 1 level input current (each input)	$V_{C C}=$ MAX, $V^{\text {a }}$				40	$\mu \mathrm{A}$
		$V_{C C}=$ MAX,				1	mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}$				-1.6	mA
	Short-circuit output current ${ }^{\dagger}$		S5444	-20		-55	mA
		$V_{C C}=$ MAX,	N7444	-18		-55	mA
${ }^{\prime} \mathrm{Cc}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	S5444		28	41	mA
			N7444		28	56	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpd0 }}$	Propagation delay time to logical 0 level through two logic levels	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10	22	30	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level through three logic levels	$C_{L}=15 p F,$	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		23	35	ns
$t_{\text {pd } 1}$	Propagation delay time to logical 1 level through two logic levels	$C_{L}=15 p F,$	$R_{L}=400 \Omega$	10	17	25	ns
$t_{\text {pdi }}$	Propagation delay time to logical 1 level through three logic levels	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		26	35	ns

[^2]
BCD-TO-DECIMAL DECODER/DRIVER WITH OPEN COLLECTOR HIGH VOLTAGE OUTPUTS

S5445-F,W •S54145-F,W • N7445-B• N74145-B
DIGITAL 54/74 TTL SERIES

DESCRIPTION
The 54/7445 and 54/74145 BCD-to-Decimal Decoder/Driver is a TTL MSI array. It features standard TTL inputs and high voltage, high current (80 mA) outputs. The $54 / 7445$ minimum output breakdown is 30 volts and the $54 / 74145$ minimum output breakdown is 15 volts.

LOGIC DIAGRAM

NOTE: 1. These voltage values are with respect to network ground terminal.

PIN CONFIGURATIONS

TRUTH TABLE

INPUTS				OUTPUTS									
D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
1	0	1	0	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		test conditions*		MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			v
$V_{\text {in }(0)}$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	v
$V_{\text {on }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \end{aligned}$			0.5	0.9 0.4	v
$V_{\text {off }}$	Off-state output voltage (S5445 or N7445)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	20 $\mu \mathrm{A}$	30			v
$V_{\text {off }}$	Off-state output voltage (S54145 or N74145)	$V_{C C}=$ MAX,	$50 \mu \mathrm{~A}$	15			v
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \end{aligned}$				40 1	$\mu \mathrm{A}$ mA
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current (each input)	$V_{C C}=$ MAX,				-1.6	mA
${ }^{\prime} \mathrm{Cc}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	S5445, S54145 N7445, N74145		43 43	62 70	mA mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \boldsymbol{T}_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 1$	Propagation delay time logical 1 level	$C_{L}=15 p F, \quad R_{L}=100 \Omega$			60	- ns
${ }^{t_{p d 0}}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}, \quad R_{L}=100 \Omega$.		60	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 7446 and 7447 BCD-to-Seven Segment Decoder/Driver are TTL monolithic devices consisting of the necessary logic to decode a BCD code to seven segment readout plus selected signs.

Incorporated in this device is a blanking circuit allowing leading and trailing zero suppression. Also included is a lamp test control to turn on all segments.
The 7446 and 7447 provide bare collector output transistors for directly driving lamps. The output transistor breakdown of the 7446 is 30 volts and the 7447 is 15 volts.

PIN CONFIGURATION

LOGIC DIAGRAM

TRUTH TABLE

\square INPUTS _ _ OUTPUTS _ _ _															
$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	LT	RBI	D	C	B	A	BI/RBO	a	b	c	d	e	f	g	NOTE
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1
1	1	x	0	0	0	1	1	1	0	0	1	1	1	1	1
2	1	x	0	0	1	0	1	0	0	1	0	0	1	0	
3	1	x	0	0	1	1	1	0	0	0	0	1	1	0	
4	1	x	0	1	0	0	1	1	0	0	1	1	0	0	
5	1	x	0	1	0	1	1	0	1	0	0	1	0	0	
6	1	x	0	1	1	0	1	1	1	0	0	0	0	0	
7	1	\times	0	1	1	1	1	0	0	0	1	1	1	1	
8	1	x	1	0	0	0	1	0	0	0	0	0	0	0	
9	1	x	1	0	0	1	1	0	0	0	1	1	0	0	
10	1	x	1	0	1	0	1	1	1	1	0	0	1	0	
11	1	x	1	0	1	1	1	1	1	0	0	1	1	0	
12	1	x	1	1	0	0	1	1	0	1	1	1	0	0	
13	1	x	1	1	0	1	1	0	1	1	0	1	0	0	
14	1	x	1	1	1	0	1	1	1	1	0	0	0	0	
15	1	x	1	1	1	1	1	1	1	1	1	1	1	1	
BI	\times	x	\times	x	x	\times	0	1	1	1	1	1	1	1	2
RBI	1	0	0	0	0	0	0	1	1	1	1	1	1	1	3
LT	0	\times	\times	\times	\times	\times	1	0	0	0	0	0	0	0	4

NOTES:

1. BI/BRO is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a logical 1 when output functions 0 through 15 are desired and ripple-blanking input (RBI) must be open or at a logical 1 during the decimal 0 input. $X=$ input may be high or low.
2. When a logical O is applied to the blanking input (forced condition) all segment outputs go to a logical 1 regardless of the state of any other input condition.
3. When ripple-blanking input (RBI) is at a logical 0 and $A=B=$ $C=D=$ logical O, all segment outputs go to a logical 1 and the ripple-blanking output goes to a logical 0 (response condition).
4. When blanking input/ripple-blanking output is open or held at a logical 1, and a logical 0 is applied to lamp-test input, all segment outputs go to a logical 0 .

SEGMENT IDENTIFICATION

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$ (See Note 1): N7446, N7447 Circuits	4.75	5	5.25	V
Continuous Voltage at Outputs a through g: N7446 Circuits			30	V
N7447 Circuits			15	V
Normalized Fan-Out From Outputs a through g to Series 54/74 loads:				
N7446, N7447 Circuits			12	
Normalized Fan-Out From BI/RBO Node to Series 54/74 loads:				
N7446, N7447 Circuits			5	
Output Sink Current, $\mathrm{I}_{\text {sink }}$: N7446, N7447 Outputs a through g			20	mA
N7446, N7447, BI/RBO Node			8	mA

NOTES:

1. These voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal.
3. This rating applies when the output is off.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *		MIN	TYP**	MAX	UNIT
$V_{i n(1)}$	Input voltage required to ensure logical 1 at any point	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$=$	2			V
$V_{i n(0)}$	Input voltage required to ensure logical 0 at any input	$V_{C C}=\mathrm{MIN}$				0.8	V
$V_{\text {on }}$	On-state output voltage at outputs a through g	$V_{C C}=$ MIN,	40 mA		0.27	0.4	V
$V_{\text {out }}(0)$	Logical 0 output voltage at $\mathrm{BI} / \mathrm{RBO}$ node	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$8 \mathrm{~mA}$		0.3	0.4	V
$V_{\text {off }}$	Off-state output voltage at outputs a through g (S5446 and N7446 only)	$V_{C C}=$ MAX	250 A	30			V
$v_{\text {off }}$	Off-state output voltage at outputs a through g (S5447 and N7447 only)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	250 A	15			V
$V_{\text {out (1) }}$	Logical 1 output voltage at BI/RBO node	$\mathrm{V}_{\mathrm{CC}}=$ MIN,	200 A	2.4	3.7		V
$I_{\text {in }(0)}$	Logical 0 level input current at any input except $\mathrm{BI} /$ RBO node	$\mathrm{V}_{\text {CC }}=$ MAX	$0.4 \mathrm{~V}$			-1.6	mA
$I_{\text {in }}(0)$	Logical 0 level input current at $\mathrm{BI} / \mathrm{RBO}$ node	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	0.4 V			-4.2	mA
$I_{\text {in }}(1)$	Logical 1 level input current at any input except $\mathrm{BI} /$ RBO node	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 5.5 \mathrm{~V} \end{aligned}$			40 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Ios	Short-circuit output current at BI/RBO node	$V_{C C}=M A X$				-4	mA
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	N7446, N7447		53	90	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {p pd }} 1$	Propagation delay time to logical 1 level from A input to any output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$			100	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation delay time to logical 0 level from A input to any output	$c_{L}=15 \mathrm{pF},$	$R_{L}=280 \Omega$			100	ns
${ }^{\mathrm{t}} \mathrm{pd} 1$	Propagation delay time to logical 1 level from RBI input to any output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=280 \Omega$			100	ns
${ }^{t_{\text {pd0 }}}$	Propagation delay time to logical 0 level from RBI input to any output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$			100	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

DESCRIPTION
The 7448 BCD-to-Seven Segment Decoder/Driver is a TTL monolithic device consisting of the necessary logic to decode a BCD code to seven segment readout plus selected signs.

Incorporated in this device is a blanking circuit allowing leading and trailing zero suppression. Also included is a lamp test control to turn on all segments.

The 7448 has resistor pull up on the outputs to provide source current to drive interface elements.

PIN CONFIGURATIONS

LOGIC DIAGRAM

TRUTH TABLE

INPUTS \square OUTPUT															
FUNCTION	LT	RBI	D	C	B	A	BI/RBO	a	b	c	d	e	f	g	NOTE
0	1	1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	1	x	0	0	0	1	1	0	1	1	0	0	0	0	1
2	1	x	0	0	1	0	1	1	1	0	1	1	0	1	
3	1	x	0	0	1	1	1	1	1	1	1	0	0	1	
4	1	x	0	1	0	0	1	0	1	1	0	0	1	1	
5	1	x	0	1	0	1	1	1	0	1	1	0	1	1	
6	1	x	0	1	1	0	1	0	0	1	1	1	1	1	
7	1	x	0	1	1	1	1	1	1	1	0	0	0	0	
8	1	x	1	0	0	0	1	1	1	1	1	1	1	1	
9	1	x	1	0	0	1	1	1	1	1	0	0	1	1	
10	1	x	1	0	1	0	1	0	0	0	1	1	0	1	
11	1	x	1	0	1	1	1	0	0	1	1	0	0	1	
12	1	x	1	1	0	0	1	0	1	0	0	0	1	1	
13	1	x	1	1	0	1	1	1	0	0	1	0	1	1	
14	1	x	1	1	1	0	1	0	0	0	1	1	1	1	
15	1	x	1	1	1	1	1	0	0	0	0	0	0	0	
BI	x	\times	\times	x	\times	x	0	0	0	0	0	0	0	0	2
RBI	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3
LT	0	\times	\times	\times	\times	\times	1	1	1	1	1	1	1	1	4

NOTES:

1. $B 1 / B R O$ is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a logical 1 when output functions 0 through 15 are desired and ripple-blanking input ($R B I$) must be open or at a logical 1 during the decimal 0 input. $X=$ input may be high or low.
2. When a logical 0 is applied to the blanking input (forced condition) all segment outputs go to a logical 1 regardless of the state
of any other input condition.
3. When ripple-blanking input ($R B I$) is at a logical 0 and $A=B=$ $C=D=$ logical 0 , all segment outputs go to a logical 1 and the ripple-blanking output goes to a logical 0 (response condition).
4. When blanking input/ripple-blanking output is open or held at a logical 1, and a logical 0 is applied to lamp-test input, all segment outputs go to a logical 1.

SEGMENT IDENTIFICATION

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}($ See Note 1): N 7448 Circuit	4.75	5	5.25	V
Normalized Fan-Out From Outputs a through g to Series 54/74 loads: N7448 Circuits			4	
Normalized Fan-Out From BI/RBO Node to Series 54/74 Loads: N7448 Circuits			5	
$\begin{array}{ll}\text { Output Sink Current, } \text { I }_{\text {sink }}: & \text { N7448 Outputs a through g } \\ & \text { N7448 BI/RBO Node }\end{array}$			$\begin{array}{r} 6.4 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTES:

1. These voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network
ground terminal.
3. This rating applies when the output is off.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SIGNETICS DIGITAL 54/74 TTL SERIES - N7448
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from A input to any output	$C_{L}=15 \mathrm{pF}$			100	ns
${ }^{\mathrm{t} p d 0}$	Propagation delay time to logical 0 level from A input to any output	$C_{L}=15 \mathrm{pF}$			100	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from RBI input to any output	$C_{L}=15 \mathrm{pF}$			100	ns
${ }^{t_{\mathrm{pd}}}$	Propagation delay time to logical 0 level from RBI input to any output	$C_{L}=15 \mathrm{pF}$			100	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

NOTES:

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding.
3. If expander is not used leave X and \bar{X} pins open.

PIN CONFIGURATIONS

4. Make no external connection to X and \bar{X} pins of the $S 5451$ and N7451.
5. A total of four expander gates can be connected to the expander inputs.

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	$V_{C C}=$ MIN				0.8	V
$\mathrm{V}_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \\ & \text { IIoad }=-400 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4	3.3		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$I_{\text {in }(0)}$	Logical 0 level input current (each input)	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input	$V_{C C}=$ MAX,	$V_{\text {in }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	current (each input)	$V_{C C}=$ MAX ,	$V_{\text {in }}=5.5 \mathrm{~V}$				1	mA
'os	Short circuit output	$V_{C C}=\mathrm{MAX}$		S5450, S5451	-20		-55	mA
	current ${ }^{\dagger}$			N7450, N7451	-18		-55	
${ }^{1} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=M A X,$	$\mathrm{V}_{\text {in }}=5 \mathrm{~V}$			7.4	14	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=0$			4	8	mA

ELECTRICAL CHARACTERISTICS (S5450 circuits) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{X}$	Expander current	$V_{1}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			2.9	mA
$\mathrm{V}_{\mathrm{BE}}(\mathrm{Q})$	Base-emitter voltage of output transistor (Q)	$\begin{aligned} & I_{\text {sink }}=16 \mathrm{~mA}, \\ & \mathrm{R}_{1}=0 \end{aligned}$	$\mathrm{I}_{1}=0.41 \mathrm{~mA}$,			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-400 \mu \mathrm{~A}, \\ & I_{2}=-0.15 \mathrm{~mA} \end{aligned}$	$11_{1}=0.15 \mathrm{~mA}$,	2.4	3.3		V
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & I_{\text {sink }}=16 \mathrm{~mA}, \\ & R_{1}=138 \Omega \end{aligned}$	$\mathrm{I}_{1}=0.3 \mathrm{~mA}$,		0.22	0.4	V

ELECTRICAL CHARACTERISTICS (N7450 circuits) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{X}$	Expander current	$V_{1}=0.4 \mathrm{~V}$,	$I_{\text {sink }}=16 \mathrm{~mA}$			3.1	mA
$V_{B E}(\mathrm{Q})$	Base-emitter voltage of output transistor (Q)	$\begin{aligned} & 1_{\text {sink }}=16 \mathrm{~mA}, \\ & R_{1}=0 \end{aligned}$	$\mathrm{I}_{1}=0.62 \mathrm{~mA}$,			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & l_{\text {load }}=-400 \mu \mathrm{~A} \\ & I_{2}=-270 \mu \mathrm{~A} \end{aligned}$	$I_{1}=270 \mu \mathrm{~A}$,	2.4	3.3		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & I_{\text {sink }}=16 \mathrm{~mA} \\ & R_{1}=130 \Omega \end{aligned}$	$I_{1}=0.43 \mathrm{~mA}$,		0.22	0.4	V

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS*		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ pd0	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		8	15	ns
$t_{p d} 1$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		13	22	ns

[^3]
4-WIDE 2-INPUT AND-OR-INVERT GATE S5453
 S5453-A,F,W • S5454-A,F,W •N7453-A,F • N7454-A,F
 dIGITAL 54/74 TTL SERIES

SCHEMATIC DIAGRAM

NOTES:

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding
3. If expander is not used leave X and \bar{X} pins open.

PIN CONFIGURATIONS

4. Make no external connection to X and X pins of the S5454 and N7454.
5. A total of four expander gates can be connected to the expander inputs.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{C C}: & \begin{array}{l}\text { S5453, S5454 Circuits } \\ \\ \text { N7453, N7454 Circuits }\end{array}\end{array}$	4.5	5	5.5	V
	4.75	5	5.25	V
Normalized Fan-Out from Output, N			10	
Operating Free-Air Temperature Range, T_{A} : S5453, S5454 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7453, N7454 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at both input terminals of one AND section to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 level at output	$V_{C C}=$ MIN				0.8	V
$V_{\text {out }}(1)$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4	3.3		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,		0.22	0.4	V

ELECTRICAL CHARACTERISTICS (Cont'd)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {in(0) }}$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$l_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				40 1	$\underset{m A}{\mu A}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		$\begin{aligned} & \text { S5453, S5454 } \\ & \text { N7453, N7454 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{\text {in }}=5 \mathrm{~V}$			5.1	9.5	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=0$			4	8	mA

ELECTRICAL CHARACTERISTICS (S5453 circuits) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
${ }^{1} \mathrm{X}$	Expander current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$				2.9	mA
$\mathrm{V}_{\mathrm{BE}}(\mathrm{Q})$	Base-emitter voltage of output transistor (Q)	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$,	$\mathrm{I}_{1}=0.41 \mathrm{~mA}$,	$\mathrm{R}_{1}=0$			1	V
$\mathrm{V}_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-400 \mu \mathrm{~A} \\ & I_{2}=-0.15 \mathrm{~mA} \end{aligned}$	$\mathrm{I}_{1}=0.15 \mathrm{~mA}$,		2.4	3.3		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$,	$I_{1}=0.3 \mathrm{~mA}$,	$\mathrm{R}_{1}=138 \Omega$		0.22	0.4	V

ELECTRICAL CHARACTERISTICS (N7453 circuits) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
1 x	Expander current	$V_{1}=0.4 \mathrm{~V}$,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$				3.1	mA
$V_{B E}(\mathrm{Q})$	Base-emitter voltage of output transistor (Q)	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$,	$\mathrm{I}_{1}=0.62 \mathrm{~mA}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-400 \mu \mathrm{~A} \\ & I_{2}=-270 \mu \mathrm{~A} \end{aligned}$	$1_{1}=270 \mu \mathrm{~A}$,		2.4	3.3		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$,	$I_{1}=0.43 \mathrm{~mA}$,	$R_{1}=130 \Omega$		0.22	0.4	V

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	TEST CONDITIONS*	MIN	TYP
$t_{\text {pdO }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	MAX
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15

[^4]
DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$
Maximum number of expanders that may be fanned-in to one S5450 or one S5453 circuit

ELECTRICAL CHARACTERISTICS (unless otherwise noted $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$)

	PARAMETER	TEST CONDITIONS			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$V_{C C}=4.5 \mathrm{~V}$			2			V
$V_{\text {in(0) }}$	Logical 0 input voltage required at any input terminal to ensure output is in the off state	$V_{C C}=4.5 \mathrm{~V}$					0.8	V
$V_{\text {on }}$	On-state output voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & R=1.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=1 \mathrm{~V}$,			0.4	V
'off	Off-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & R=1.2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{\text {in }}=0.8 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=4.5 \mathrm{~V}$			150	$\mu \mathrm{A}$
Ion	On-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	$V_{1}=1 \mathrm{~V}$,	-0.3			mA
$\mathrm{I}_{\text {in }}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S5460

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{I}_{\mathrm{in}}(1)$	Logical 1 level input	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$V_{\text {in }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	current (each input)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$V_{\text {in }}=5.5 \mathrm{~V}$				1	mA
${ }^{1} \mathrm{CC}(\mathrm{on)}$	On-state supply current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$V_{\text {in }}=5 \mathrm{~V}$,	$V_{1}=0.85 \mathrm{~V}$		1.2	2.5	mA
${ }^{\text {I CC(off) }}$	Off-state supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$v_{\text {in }}=0$,	$\mathrm{v}_{1}=0.85 \mathrm{~V}$		2	4	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, N=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ (0	Propagation delay time to logical 0 level (through S5450 or S5453 circuit)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		10	20	ns
${ }_{t}{ }_{\text {pd }} 1$	Propagation delay time to logical 1 level (through S5450 or S5453 circuit)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		15	30	ns

** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$
4.75 to 5.25 V

Maximum number of expanders that may be fanned-in to one N 7450 or one N 7453 circuit

ELECTRICAL CHARACTERISTICS (unless otherwise noted $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

PARAMETER		TEST CONDITIONS			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$V_{C C}=4.75 \mathrm{~V}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure output is in the off state	$V_{C C}=4.75 \mathrm{~V}$					0.8	V
$v_{\text {on }}$	On-state output voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & R=1.1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2 \mathrm{~V}, \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=1 \mathrm{~V}$,			0.4	V
$I_{\text {off }}$	Off-state output current	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & \mathrm{R}=1.2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{\text {in }}=0.8 \mathrm{~V} \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$	$V_{1}=4.5 \mathrm{~V}$			270	$\mu \mathrm{A}$
Ion	On-state output current	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$V_{\text {in }}=2 V$,	$V_{1}=1 \mathrm{~V}$	-0.43			mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\operatorname{lin}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V}, \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{gathered} 40 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$

ELECTRICAL CHARACTERISTICS (Cont'd)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 0 level (through N7450 or N7453)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		10	20	ns
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level (through N7450 or N7453)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		15	30	ns

** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

The S5470/N7470 is a monolithic, edge-triggered J-K flip-flop featuring gated inputs, direct clear and preset inputs, and complementary Q and $\overline{\mathrm{Q}}$ outputs. Input information is transferred to the outputs on the positive edge of the clock pulse.

Direct-coupled clock triggering occurs at a specific voltage level of the clock pulse; and after the clock input threshold voltage has been passed, the gated inputs are locked out.

The S5470/N7470 flip-flop is ideally suited for medium- and high-speed applications, and can be used for a significant saving in system power dissipation and package count where input gating is required.

TRUTH TABLE

LOGIC

J_{n}	K_{n}	Q_{n+1}	PRESET	CLEAR	Q
0	0	Q_{n}	0	0	\dagger
1	0	1	1	0	0
0	1	0	0	1	1
1	1	\bar{o}_{n}	1	1	0

$J=J_{1} J_{2} J^{*} \quad K=K_{1} K_{2} K^{*}$
n is time prior to clock
$\mathrm{n}+1$ is time following clock
\dagger Both outputs in \mathbf{O} state

POSITIVE LOGIC

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Preset or clear function can occur only when clock input is low.

SCHEMATIC DIAGRAM

NOTE: Component values are typical.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : S5470 Circuits	4.5	5	5.5	V
N7470 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} : \quad S5470 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7470 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fanout from each Output, N			10	
Clock Pulse Transition Time to Logical 1 Level, t_{1} (clock)	5		150	ns
Width of Clock Pulse, t_{p} (clock)	20			ns
Width of Preset Pulse, $\mathrm{t}_{\mathrm{p} \text { (preset) }}$	25			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{p} \text { (clear) }}$	25			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$I_{\text {load }}=-400 \mu \mathrm{~A}$		2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current at J1, J2, J \star, K1, K2, K*, or clock	$V_{C C}=M A X,$	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{l}_{\mathrm{in}}(0)$	Logical 0 level input current at preset or clear	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at J1, J2, Jぇ, K1, K2, K *, or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input current at preset or clear	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,	$V_{\text {in }}=0$	$\begin{aligned} & \text { S5470 } \\ & \text { N7470 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -75 \\ & -75 \end{aligned}$	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$,	$V_{\text {in }}=5 \mathrm{~V}$			13	26	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	35		MHz
$\mathrm{t}_{\text {setup }}$	Minimum Input Setup time	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		10	20	ns
thold	Minimum input hold time	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		0	5	ns
$t_{p d} 1$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$			50	ns
${ }^{\text {p }}$ d0	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=15 p F$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$			50	ns
$t_{p d 1}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 p F$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	10	27	50	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 p F$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	10	18	50	ns

[^5]
DESCRIPTION

These J-K flip-flops are based on the master-slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

TRUTH TABLE

LOGIC
$\qquad$$t_{n}$ t_{n+1} J K Q^{\prime} 0 0 Q_{n} 0 1 0 1 0 1 1 1 \bar{Q}_{n}

NOTES:

1. $\mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3$
2. $K=K 1 \cdot K 2 \cdot K 3$
3. $t_{n}=$ Bit time before clock pulse.
4. $t_{n+1}=$ Bit time after clock pulse.
5. $\mathrm{NC}=$ No Internal Connection.

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

CLOCK WAVEFORM

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: $\mathrm{S5472}$ Circuits		4.5	5	5.5	V
N7472 Circuits		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S5472 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7472 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out From each Output, N				10	
Width of Clock Pulse, t_{p} (clock)		20			ns
Width of Preset Pulse, $t_{p(p r e s e t)}$		25			ns
Width of Clear Pulse, t_{p} (clear)		25			ns
Input Setup Time, ${ }_{\text {setup }}$		$\geqslant t_{\text {p }}$ (clock)			
Input Hold Time, thold		0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	20		MHz
${ }_{\text {t }}{ }^{\text {d }} 1$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		16	25	ns
${ }^{\text {p }}$ pdo	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
${ }_{\text {t }}^{\text {pd1 }} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10	16	25	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	25	40	ns

[^6]
DUAL J-K MASTER-SLAVE FLIP-FLOP
 S5473-A,F,W • N7473-A,F
 S5473
 N7473

DIIITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

DESCRIPTION
The S5473/N7473 J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from J and K inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.

TRUTH TABLE

LOGIC

(Each Flip-Flop)		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES:

1. $t_{\mathrm{n}}=$ Bit time before clock pulse.
2. $t_{n+1}=$ Bit time after clock pulse.

SCHEMATIC (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S5473 Circuits	4.5	5	5.5	V
N7473 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} : \quad S5473 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7473 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Puise, $t_{\text {p (clock) }}$	20			ns
Width of Clear Pulse, t_{p} (clear)	25			ns
Input Setup Time, ${ }_{\text {setup }}$	$\geqslant t_{\text {p }}$ (Clock)			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$v_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=$ MIN			2			V
$V_{\text {in }}(0)$	input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$,					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$I_{\text {load }}=-400 \mu \mathrm{~A}$		2.4	3.5		V
$V_{\text {out }}(0)$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current at J or K	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{l}_{\mathrm{in}(0)}$	Logical 0 level input current at clear or clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current at J or K	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
$\operatorname{lin}(1)$	Logical 1 level input current at clear or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,	$v_{\text {in }}=0$	$\begin{aligned} & \text { S5473 } \\ & \text { N7473 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	mA
${ }^{\prime} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX	$V_{\text {in }}=5 \mathrm{~V}$			20	40	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }_{\text {f clock }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	20		MHz
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clear to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		16	25	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from clear to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	16	25	ns
$t_{\text {pdO }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	25	40	ns

[^7]
DUAL D-TYPE EDGE-TRIGGERED

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

POSITIVE LOGIC - Low input to preset sets Q to logical 1 Low input to clear sets Q to logical 0 ; Preset and clear are independent of clock

SCHEMATIC DIAGRAM

NOTE: 1/2 of unit shown. Component values are typical.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
	4.5	5	5.5	V
N7474 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} : \quad S5474 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7474 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	30			ns
Width of Preset Pulse, t_{p} (preset)	30			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{p} \text { (clear) }}$	30			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | | | TEST CONDITIONS |
| :--- | :--- | :--- | :---: | :---: |

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	25		MHz
$\mathrm{t}_{\text {setup }}$	Minimum input setup time	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		15	20	ns
thold	Minimum input hold time	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		2	5	ns
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$			25	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	10	14	25	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	20	40	ns

[^8]
DESCRIPTION

The S5475B/N7475B is a monolithic, quadruple, bistable latch with complementary Q and $\overline{\mathrm{Q}}$ outputs. Information present at a data (D) input is transferred to the Q output when the clock is high, and the Q output will follow the data input as long as the clock remains high. When the clock goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the clock is permitted to go high.

This latch is ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units.

TRUTH TABLE

LOGIC					
(Each Latch)					
t_{n}	t_{n+1}				
D	Q	\bar{Q}			
1	1	0			
0	0	1			

NOTES:

1. $\mathrm{t}_{\mathrm{n}}=$ bit time before clock pulse.
2. $t_{n+1}=$ bit time after clock pulse
3. These voltages are with respect to network ground terminal.

PIN CONFIGURATIONS

SCHEMATIC (each latch)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC (See Note 3): $\begin{array}{ll}\text { S5475 Circuits } \\ & \text { N7475 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from Outputs				10	
Operating Free-Air Temperature Range, T_{A} :	S5475 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7475 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 level at any input terminal	$V_{C C}=\mathrm{MIN}$		2			V
$V_{\text {in }(0)}$	Input voltage required to ensure logical 0 level at any input terminal	$V_{C C}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=\mathrm{MIN}$,	$l_{\text {load }}=-400 \mu \mathrm{~A}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=\mathrm{MIN}$,	$I_{\text {sink }}=16 \mathrm{~mA}$			0.4	V

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$I_{\text {in }(0)}$	Logical 0 level input current at D	$V_{C C}=\mathrm{MAX}$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-3.2	mA
$I_{\text {in }(0)}$	Logical 0 level input current at clock	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,				-6.4	mA
$I_{\text {in(1) }}$	Logical 1 level input	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$V_{\text {in }}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
	current at D	$V_{C C}=$ MAX,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input	$V_{C C}=$ MAX	$V_{\text {in }}=2.4 \mathrm{~V}$			160	$\mu \mathrm{A}$
	current at clock	$V_{C C}=\mathrm{MAX}$	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
'OS	Short circuit output	$V_{\text {CC }}=$ MAX ,	S5475			-75	mA
	current ${ }^{\dagger}$	$V_{\text {out }}=0$	N7475	-18		-75	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{\text {CC }}=$ MAX,	S5475		32	46	mA
			N7475		32	53	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathbf{c c}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tsetup1 }}$	Minimum logical 1 level input setup time at D input	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		7	20	ns
$\mathrm{t}_{\text {setup }} 0$	Minimum Iogical 0 level input setup time at D input	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		14	20	ns
thold 1	Maximum logical 1 level input hold time required at D input	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	0	151		ns
thold0	Maximum logical 0 level input hold time required at D input	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	0	64		ns
${ }^{\text {tpd1(}}$ (D-Q)	Propagation delay time to logical 1 level from D input to Q output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{\text {tpdO(D-Q) }}$	Propagation delay time to logical 0 level from D input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		14	25	ns
${ }^{\text {tpd1 }}$ (D- $\overline{\mathrm{Q}}$)	Propagation delay time to logical 1 level from D input to $\overline{\mathrm{Q}}$ output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{\text {pdo }}$ (D- $\left.\overline{\mathrm{Q}}\right)$	Propagation delay time to logical 0 level from D input to $\overline{\mathrm{Q}}$ output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	15	ns
${ }^{\text {tpd }}$ ($(\mathrm{C}-\mathrm{Q})$	Propagation delay time to logical 1 level from clock input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{\text {tpdO }}$ (C-Q)	Propagation delay time to logical 0 level from clock input to Q output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	15	ns
$\mathrm{t}_{\text {pd }} 1(\mathrm{C}-\overline{\mathrm{Q}})$	Propagation delay time to logical 1 level from clock input to $\overline{\mathrm{Q}}$ output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{\text {t }} \mathrm{pdO}(\mathrm{C}-\overline{\mathrm{Q}})$	Propagation delay time to logical 0 level from clock input to $\overline{\mathrm{Q}}$ output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	15	ns

[^9]
DUAL J-K MASTER-SLAVE FLIP.FLOP WITH PRESET AND CLEAR

S5476-B,F,W • N7476-B,F
S5476
N7476

DESCRIPTION

The S5476B/N74768 J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

Isolate slave from master
Enter information from J and K inputs to master
Disable J and K inputs
4. Transfer information from master to slave.

TRUTH TABLE

LOGIC

(Each Flip-Flop)		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES:

1. $t_{n}=$ bit time before clock pulse.
2. $\mathrm{t}_{\mathrm{n}+1}=$ bit time after clock pulse.

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

CLOCK WAVEFORM
\square

POSITIVE LOGIC
Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0 Clear and preset are independent from clock

SCHEMATIC (each flip-flop)

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : \quad S5476 Circuits	4.5	5	5.5	V
N7476 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, $\mathrm{T}_{\text {A }}$: S5476 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7476 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fanout from each Output, N			10	
Width of Clock Pulse, t_{p} (clock)	20			ns
Width of Preset Pulse, t_{p} (preset)	25			ns
Width of Clear Pulse, t_{p} (clear)	25			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$	$\geqslant t_{p(c l o c k)}$			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=$ MIN			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{\text {load }}=-400 \mu \mathrm{~A}$		2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{t}_{\text {sink }}=16 \mathrm{~mA}$			0.22	0.4	V
$I_{\text {in }(0)}$	Logical 0 level input current at J or K	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clear, preset, or clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current at J or K	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
$1 \mathrm{in}(1)$	Logical 1 level input current at clear, preset, or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 80 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	$v_{\text {in }}=0$	$\begin{aligned} & \text { S5476 } \\ & \text { N7476 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	mA
${ }^{\prime} \mathrm{Cc}$	Supply current (each flip-flop)	$V_{C C}=M A X$,	$V_{\text {in }}=5 \mathrm{~V}$			20	40	mA

SWITCHING CHARACTERISTICS, $V_{c C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {c }}$ lock	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	20		MHz
$t_{\text {pd } 1}$	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	25	ns
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	16	25	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega 2$	10	25	40	ns

[^10]DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
		4.5	5	5.5	V
$\begin{array}{ll}\text { Supply Voltage } V_{\text {CC }}(\text { See Note 3): } & \text { S5477 Circuits } \\ & \text { N7477 Circuits }\end{array}$		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5477 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7477 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

SCHEMATIC (each latch)

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$v_{\text {in }}(1)$	Input voltage required to ensure logical 1 level at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			2			v
$v_{\text {in }}(0)$	Input voltage required to ensure logical 0 level at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					0.8	v
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$l_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$V_{C C}=$ MIN ,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
1 in (0)	Logical 0 level input current at D	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clock	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,					-6.4	mA
1 in(1)	Logical 1 level input current at D	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & v_{\text {in }}=2.4 \mathrm{~V} \\ & v_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 80 \\ 1 \end{array}$	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
1 in(1)	Logical 1 level input current at clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{\text {in }}=2.4 V, \\ & V_{C C}=M A X, \end{aligned}$	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$				160	$\mu \mathrm{A}$
'os	Short circuit output current ${ }^{\dagger}$	$\begin{aligned} & v_{\text {cc }}=\mathrm{MAX}, \\ & \mathrm{v}_{\text {out }}=0 \end{aligned}$		$\begin{aligned} & \text { S5477 } \\ & \text { N7477 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\mathrm{mA}_{\mathrm{mA}}$
${ }^{\text {I C C }}$	Supply current	$v_{C C}=\mathrm{MAX}$,		S5477 N7477		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tsetup }} 1$	Minimum logical 1 level input setup time at D input	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		7	20	ns
$\mathrm{t}_{\text {setup }}$	Minimum logical 0 level input setup time at D input	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		14	20	ns
thold1	Maximum logical 1 level input hold time required at D input	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	0	154		ns
thold0	Maximum logical 0 level input hold time required at D input	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	0	64		ns
$t_{\text {pd1 }}(\mathrm{D}-\mathrm{Q})$	Propagation delay time to logical 1 level from D input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{\text {tpdO }}$ (D-Q)	Propagation delay time to logical 0 level from D input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		14	25	ns
${ }^{\text {tpd1 (C-Q) }}$	Propagation delay time to logical 1 level from clock input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	30	ns
$t_{\text {pdo }}$ (C-Q)	Propagation delay time to logical 0 level from clock input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		7	15	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
I These typical times indicate that period occurring prior to the fall of clock pulse (t_{0}) below 1.5 V when data at the D input will still be recognized and stored.

DESCRIPTION

The S5480/N7480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum (Σ and $\bar{\Sigma}$) outputs and inverted carry output. Designed for medium- and high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistortransistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlingtonconnected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform fulladder functions.

TRUTH TABLE (See Notes 1,2, and 3)
LOGIC

C_{n}	B	A	C_{n+1}	$\bar{\Sigma}$	Σ
0	0	0	1	1	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	0	1

NOTES:

1. $A=\overline{A^{*} \cdot A_{c}}, B=\overline{B^{*} \cdot B_{c}}$ where $A^{*}=\overline{A_{1} \cdot A_{2}}, B^{*}=\overline{B_{1} \cdot B_{2}}$.
2. When A^{*} or B^{*} are used as inputs, A_{1} and A_{2} or B_{1} and B_{2} respectively, must be connected to GND.

PIN CONFIGURATIONS

3. When A_{1} and A_{2} or B_{1} and B_{2} are used as inputs, A^{*} or B^{*} respectively, must be open or used to perform Dot-OR logic.
4. The voltages are with respect to ground terminal.
4. The voltages are with respect to ground terminal.
5. Input signals must be zero or positive with respect to network ground terminal.

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } \mathrm{V}_{\text {CC }} \text { : } \quad \text { S5480 Circuits } \\ & \text { N7480 Circuits }\end{array}$	4.5	5	5.25	V
	4.75	5	5.25	V
Normalized Fan-Out from Outputs: $\overline{C_{n}+1}, N$ Σ or $\bar{\Sigma}, N$			5	
			10	
A^{*} or B*, N			3	
Operating Free-Air Temperature Range, ${ }^{\text {A }}$: ${ }^{\text {a }}$ S 5480 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7480 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=$ MIN			2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN				0.22	0.4	V
$\operatorname{lin}(0)$	Logical 0 level input current at $\mathrm{A}_{1}, \dot{\mathrm{~A}}_{2}, \mathrm{~B}_{1}$, $\mathrm{B}_{2}, \mathrm{~A}_{\mathrm{c}}$ or B_{c}	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at $A \star$ or $B \star$	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-2.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at C_{n}	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}$				-8	mA
$I_{\text {in(1) }}$	Logical 1 level input current at A_{1}, A_{2}, B_{1}, B_{2}, A_{c} or B_{c}	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$				15 1	$\mu \mathrm{A}$ mA
$I_{\text {in }}(1)$	Logical 1 level input current at C_{n}	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				200	$\mu \mathrm{A}$ mA
${ }^{\text {IOS }}$	Short circuit output current at Σ or $\bar{\Sigma} \dagger$	$V_{C C}=M A X$,		$\begin{aligned} & \text { S5480 } \\ & \text { N7480 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
'OS	Short circuit output current at $\overline{\mathrm{C}_{\mathrm{n}+1}}{ }^{\dagger}$	$V_{C C}=M A X$,		$\begin{aligned} & \text { S5480 } \\ & \text { N7480 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,		$\begin{aligned} & \text { S5480 } \\ & \text { N7480 } \end{aligned}$		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

[^11]
4-BIT BINARY FULL ADDER (LOOK AHEAD CARRY)

S5483-B,F,W • N7483-B, F

DESCRIPTION
The $54 / 7483$ is a 4 -Bit Binary Full Adder for adding two four bit binary numbers. A Carry Look Ahead circuit is included to provide minimum carry propagation delays.

Propagation delays of carry-in to carry-out is typically 12 nsec.
TRUTH TABLE

INPUT				OUTPUT					
				$\begin{aligned} & \text { WHE } \\ & \mathrm{C}_{0}= \end{aligned}$	$\begin{aligned} & N \\ & =0 \\ & C_{2} \end{aligned}$	HEN 0	CH_{0}	$\begin{gathered} \mathrm{N} \\ 1 \\ \mathrm{C}_{2} \end{gathered}$	HEN
A_{1}		$\sqrt{A_{2}}$	B_{2}	$\sqrt{\Sigma_{3}}$	$\sqrt{\Sigma_{2}}$			$\sqrt{\Sigma_{2}}$	$\left[c_{2}\right.$
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
1	1	0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1	1	0
1	0	1	0	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	0	1
0	1	0	1	1	1	0	0	0	1
1	1	0	1	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
1	0	1	1	1	0	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1

NOTES:
Input conditions at $A_{1}, A_{2}, B_{1}, B_{2}$, and C_{0} are used to determine outputs Σ_{1} and Σ_{2}, and the value of the internal carry C_{2}. The

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

values at $C_{2}, A_{3}, B_{3}, A_{4}$, and B_{4}, are then used to determine outputs Σ_{3}, Σ_{4}, and C_{4}.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage ${ }_{\text {CC }}$: $($ See Note 1)		MIN	NOM	MAX	UNIT
	S5483 Circuits	$\begin{array}{r} 4.5 \\ 4.75 \end{array}$	5	5.5	V
	N7483 Circuits		5	5.25	V
Normalized Fan-Out From Outputs:	C_{4}			5	
	$\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ or Σ_{4}			10	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted $\mathrm{N}=10$

PARAMETER \ddagger		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ pd1	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		23	34	ns
$t_{\text {pdo }}$	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		20	34	ns
${ }^{\text {p }}$ d1	From C_{0} to 2	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		24	35	ns
${ }^{\text {pdo }}$	From C_{0} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		22	35	ns
${ }^{\text {t }}$ pd1	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
${ }^{\text {pdo }}$	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{\text {t }}$ pd1	From C_{0} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
$\mathrm{t}_{\mathrm{pd} 0}$	From C_{0} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		28	50	ns
${ }^{\text {t }}{ }_{\text {pd1 }}$	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=780 \Omega$		12	20	ns
${ }^{\text {p }}$ pd0	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=780 \Omega$		12	20	ns
${ }^{\text {t }}{ }_{\text {pd1 }}$	From A_{2} or B_{2} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{\text {t }}{ }_{\text {d }} 0$	From A_{2} or B_{2} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns
$\mathrm{t}_{\mathrm{pd} 1}$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{\text {p }}$ pd0	From A_{4} of B_{4} to 4	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns

${ }^{\dagger} \mathrm{T}_{\text {pd } 1}$ is propagation delay time to logical 1 level. $t_{\text {pdO }}$ is propagation delay time to logical 0 level.

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time. NOTE 1: These voltage values are with respect to network ground terminal.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathrm{V}_{\text {CC }}$ (See Note 1): \quad S5486 Circuits	MIN	NOM	MAX	UNIT
	4.5	5	5.5	V
	4.75	5	5.25	V
Normalized Fan-Out from each output, N: Logical 0			10	
Logical 1			20	

NOTE: 1. These voltage values are with respect to network ground terminal.
ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		test conditions*		MIN	TYP**	MAX	UNIT
$v_{\text {in }(1)}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$		2			v
$v_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$				0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{~V}_{\text {in }(1)}=2 \mathrm{~V}, \\ & V_{\text {in }(0)}=0.8 \mathrm{~V}, \mathrm{I}_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$		2.4			v
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, \\ & V_{\text {in }(0)} 0.8 \mathrm{~V}, I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$				0.4	v
$\mathrm{l}_{\text {in (1) }}$	Logical 1 level input	$v_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	current (each input)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current (each input)	$V_{C C}=M A X, V_{\text {in }}=0.4 V$				-1.6	mA
'os	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX, $V_{\text {in }(1)}=4.5 \mathrm{~V}$,	S5486	-20		-55	mA
		$V_{\text {in }(0)}=0$	N7486	-18		-55	mA
${ }^{\text {I Cc }}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5486 } \\ & \text { N7486 } \end{aligned}$		30 30	43 50	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t}{ }_{\text {pdO }}$	Propagation delay time to logical 0 level (other input low)	$C_{L}=15 p F$,	$R_{L}=400$		11	17	ns
${ }^{\text {p }}$ d1	Propagation delay time to logical 1 level (other input low)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400$		15	23	ns
${ }^{t}{ }_{\text {pdo }}$	Propagation delày time to logical 0 level (Other input high)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400$		13	22	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level (other input high)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	$R_{L}=400$		18	30	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+ Not more than one output should be shorted at a time.

N7488

N7448-B,W
DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 7488 is a TTL 256-Bit Read Only Memory organized as 32 word with 8 bits per word. The words are selected by five binary address lines with full word decoding incorporated on the chip. A Chip Select input is provided for additional decoding flexibility, which will cause all eight outputs to go to the high state when the Chip Select input is taken high.

This device is fully TTL or DTL compatible. The outputs are uncommitted collectors, which allows wired-OR operation with the outputs of other TTL or DTL devices. These outputs are capable of sinking twelve standard DCL loads. Propagation delay time is 50 ns maximum. Power dissipation is 310 milliwatts with 400 milliwatts maximum.

Customer may specify patterns for the 256-Bit Read Only Memory by completing the truth table/order blank.

PIN CONFIGURATIONS

LDGIC DIAGRAM

ELECTRICAL CHARACTERISTICS

256-BIT READ ONLY MEMORIES TRUTH TABLE/ORDER BLANK

CUSTOMER: P.O. NO.: \qquad YOUR PART NO.: \qquad DATE: \qquad						THIS PORTION TO BE COMPLETED BY SIGNETICS PART NO.: \qquad S.D. NO.: \qquad DATE RECEIVED: \qquad								
INPUTS							OUTPUTS							
WORD	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	ENABLE	B_{7}	B_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}	${ }^{B} \mathbf{0}$
0	0	0	0	0	0	0								
1	0	0	0	0	1	0								
2	0	0	0	1	0	0								
3	0	0	0	1	1	0								
4	0	0	1	0	0	0								
5	0	0	1	0	1	0								
6	0	0	1	1	0	0								
7	0	0	1	1	1	0								
8	0	1	0	0	0	0								
9	0	1	0	0	1	0								
10	0	1	0	1	0	0								
11	0	1	0	1	1	0								
12	0	1	1	0	0	0								
13	0	1	1	0	1	0								
14	0	1	1	1	0	0								
15	0	1	1	1	1	0								
16	1	0	0	0	0	0								
17	1	0	0	0	1	0								
18	1	0	0	1	0	0								
19	1	0	0	1	1	0								
20	1	0	1	0	0	0								
21	1	0	1	0	1	0								
22	1	0	1	1	0	0								
23	1	0	1	1	1	0								
24	1	1	0	0	0	0								
25	1	1	0	0	1	0								
26	1	1	0	1	0	0								
27	1	1	0	1	1	0								
28	1	1	1	0	0	0								
29	1	1	1	0	1	0								
30	1	1	1	1	0	0								
31	1	1	1	1	1	0								
ALL	X	X	X	X	\times	1	1	1	1	1	1	1	1	1

\qquad
N7489-B
DIGITAL 54/74 TTL SERIES

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PaAameter	test conditions	min TyP max	Unit
	for Pin-for-Pir		

PIN CONFIGURATIONS

The S5490/N7490 is a high-speed, monolithic decade counter consisting of four dual-rank, master-slave flip-flops internally interconnected to provide a divide-by-two counter and a divide-by-five counter. Gated direct reset lines are provided to inhibit count inputs and return all outputs to a logical " 0 " or to a binary coded decimal (BCD) count of 9. As the output from flip-flop A is not internally connected to the succeeding stages, the count may be separated in three independent count modes:

1. When used as a binary coded decimal decade counter, the BD input must be externally connected to the A output. The A input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table shown above. In addition to a conventional " 0 " reset, inputs are provided to reset a BCD 9 count for nine's complement decimal applications.
2. If a symmetrical divide-by-ten count is desired for frequency synthesizers or other applications requiring division of a binary count by a power of ten, the D output must be externally connected to the A input. The input count is then applied at the $B D$ input and a divide-by-ten square wave is obtained at output A.
3. For operation as a divide-by-two counter and divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The BD input is used to obtain binary divide-by-five operation at the B, C, and D outputs. In this mode, the two counters operate independently; however, all four flip-flops are reset simultaneously.
The 5490/7490 is completely compatible with Series 54 and Series 74 logic familes. Average power dissipation is 160 mW .

LOGIC TRUTH TABLES

BCD COUNT SEQUENCE (See Note 1)
RESET/COUNT (See Note 2)

	OUTPUT				
COUNT	D	C	B	A	
0	0	0	0	0	
1	0	0	0	0	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	

RESET INPUTS				OUTPUT	
$\mathrm{R}_{\mathrm{O}(2)}$	$\mathrm{R}_{0(2)}$	$\mathrm{R}_{9(1)}$	$\mathrm{R}_{9(2)}$		C B A
1	1	0	\times	0	00
1	1	x	0		00
X	x	1	1		00
X	0	\times	0		COUNT
0	x	0	x		COUNT
0	x	x	0		count
x	0	0	\times		COUNT

NOTES:

1. Output A connected to input $B D$ for BCD count.
2. X indicates that either a logical 1 of a logical 0 may be present.
3. Fanout from output A to input $B D$ and to 10 additional Series 54/74 loads is permitted

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN					0.8	V
$\mathrm{V}_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$1_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at R_{O} (1), $\mathrm{R}_{0(2)}, \mathrm{Rg}_{\mathrm{g}(1) \text {, or }}$ R9(2)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{gathered} 40 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$l_{\text {in }}(1)$	Logical 1 level input current at input A	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \end{array}$
$l_{\text {in(1) }}$	Logical 1 level input current at input BD	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				160	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(0)$	Logical 0 level input current at $\left.\mathrm{R}_{\mathrm{O}}{ }_{1}\right)$, $R_{0(2)}, R_{9(1)}$, or Rg(2)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{I}_{\mathrm{in}(0)}$	Logical 0 level input current at input A	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
1 in (0)	Logical 0 level input current at input BD	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-6.4	mA
${ }^{1} \mathrm{OS}$	Short circuit output current \dagger	$V_{C C}=M A X$,	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	$\begin{aligned} & \text { S5490 } \\ & \text { N7490 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5490 } \\ & \text { N7490 } \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum frequency of input count pulses	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level from input count pulse to output C	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		60	100	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation delay time to logical 0 level from input count pulse to output C	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		60	100	ns

[^12]DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

SCHEMATIC DIAGRAM

DESCRIPTION

The S5491/N7491 is a monolithic serial-in, serial-out 8-bit shift register utilizing high-speed transistor-transistor logic (TTL) circuits. The shift register, composed of eight R-S master-slave flip-flops, includes input gating and a clock driver. The register is capable of storing and transferring data at clock rates up to 18 MHz while maintaining a typical noise-immunity level of 1 volt. Power dissipation is typically 175 milliwatts, and full fan-out of 10 is available from the outputs.

Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. Each of the inputs (A, B, and $\overline{C P}$) appear as only one TTL input load.

The clock pulse inverter/driver causes the S5491/N7491 to shift information to the output on the positive edge of an input clock pulse, thus enabling the shift-register to be fully compatible with the S5470/N7470 flip-flop and the S5474/N7474 dual D-type flip-flop.

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{\text {CC }} \text { : } & \text { S5491 Circuits } \\ & \text { N7491 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S5491 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7491 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Width of Clock Pulse, t_{p} (clock)		25			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$		25			ns
Input Hold Time, thold		0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS* |
| :--- | :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum shift frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
$t_{\text {pd } 1}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{\text {p }}$ pd0	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		27	40	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DIVIDE-BY-TWELVE COUNTER (DIVIDE-BY-TWO AND DIVIDE-BY-SXX)

S5492-A,F,W • N7492-A,F

DESCRIPTION

The S5492/N7492 is a high-speed monolithic 4-bit binary counter consisting of four master-slave flip-flops which are internally interconnected to provide a divide-by-two counter and a divide-by-six counter. A gated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flops outputs to a logical 0 . As the output from flip-flop A is not internally connected to the succeeding flip-flops the counter may be operated in two independent modes:

1. When used as a divide-by-twelve counter, output A must be externally connected to input BC. The input count pulses are applied to input A. Simultaneous division of 2, 6, and 12 are performed at the A, C, and D outputs as shown in the truth table.
2. When used as a divide-by-six counter, the input count pulses are applied to input BC. Simultaneously, frequency division of 3 and 6 are available at the C and D outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the divide-by-six counter.

The S5492/N7492 is completely compatible with Series 54 and Series 74 logic families. Average power dissipation is 155 mW .

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

TRUTH TABLE (See Notes 1 and 2)

COUNT	OUTPUT			
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1

COUNT	OUTPUT			
	D	C	B	A
6	1	0	0	0
7	1	0	0	1
8	1	0	1	0
9	1	0	1	1
10	1	1	0	0
11	1	1	0	1

NOTES:

1. Output A connected to input B.
2. To reset all outputs to logical 0 , both $\mathrm{R}_{\mathrm{O}(1)}$ and $\mathrm{R}_{\mathrm{O}(2)}$ inputs must be at logical 1 .

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{C C}: \begin{aligned} & \text { S5492 Circuits } \\ & \text { N7492 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S5492 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7492 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Input Count Pulse, $\mathrm{t}_{\mathrm{p} \text { (in) }}$		50			ns
Width of Reset Pulse, $\mathrm{t}_{\mathrm{p} \text { (reset) }}$		50			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *			MIN	TYP**	MAX	UNIT
$V_{i n}(1)$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	\prime^{\prime} load $=-400 \mu \mathrm{~A}$		2.4			V
Vout(0)	Logical 0 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
$\mathrm{l}_{\mathrm{in}(1)}$	Logical 1 level input current at $\mathrm{R}_{0(1)}$ or $\mathrm{R}_{0(2)}$ inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at input A	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at input BC	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				160	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{l}_{\text {in }(0)}$	Logical 0 level input current at $\mathrm{R}_{\mathrm{O}(1) \text { or }}$ $R_{0(2)}$ inputs	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{lin}(0)$	Logical 0 level input current input A	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current at input BC	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-6.4	mA
${ }^{1} \mathrm{OS}$	Short circuit output current \dagger	$V_{C C}=$ MAX,	$V_{\text {out }}=0$	$\begin{aligned} & \text { S5492 } \\ & \text { N7492 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\prime} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5492 } \\ & \text { N7492 } \end{aligned}$		$\begin{aligned} & 31 \\ & 31 \end{aligned}$	44	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum frequency of input count pulses	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
$t_{\text {pd } 1}$	Propagation delay time to logical 1 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		60	100	ns
t_{pd}	Propagation delay time to logical 0 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		60	100	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DESCRIPTION

The S5493/N7493 is a high-speed, monolithic 4-bit binary counter consisting of four master-slave flip-flops which are internally interconnected to provide a divide-by-two counter and a divide-byeight counter. A gated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flop outputs to a logical 0. As the output from flip-flop A is not internally connected to the succeeding flip-flops the counter may be operated in two independent modes:

1. When used as a 4-bit ripple-through counter output A must be externally connected to input B. The input count pulses are applied to input A. Simultaneous divisions of $2,4,8$, and 16 are performed at the A, B, C, and D outputs as shown in the truth table.
2. When used as a 3-bit ripple-through counter, the input count pulses are applied to input B. Simultaneous frequency divisions of 2,4 , and 8 are available at the B, C, and D outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the 3-bit ripple-through counter.

The S5493/N7493 is completely compatible with Series 54 and Series 74 logic families. Average power dissipation is 32 mW per flip-flop (128mW total).

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

TRUTH TABLE (See Notes 1 and 2)

LOGIC									
COUNT	OUTPUT				COUNT	OUTPUT			
	D	C	B	A		D	C	B	A
0	0	0	0	0	9	1	0	0	1
1	0		0	1	10	1	0	1	0
2	0	0	1	0	10	1	0	1	0
3	0	0	1	1	11	1	0	1	1
4	0	1	0	0	12	1	1	0	0
5	0	1	0	1	13	1	1	0	1
6	0	1	1	0	14	1	1	1	0
7	0	1	1	1	14	1	1	1	0
8	1	0	0	0	15	1	1	1	1

NOTES:

1. Output A connected to input B.
2. To reset all outputs to logical 0 , both $\mathrm{R}_{\mathrm{O}(1)}$ and $\mathrm{R}_{\mathrm{O}(2)}$ inputs must be at logical 1 .

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathrm{V}_{\text {CC }}$: $\begin{aligned} & \text { S5493 Circuits } \\ & \\ & \text { N7493 Circuits }\end{aligned}$		MIN	NOM	MAX	UNIT
		4.5	5	5.5	V
		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S5493 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7493 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Input Count Pulse, t_{p} (in)		50			ns
Width of Reset Pulse, $\mathrm{t}_{\mathrm{p} \text { (reset) }}$		50			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$1_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$				0.4	\checkmark
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at $\mathrm{R}_{0(1)}$ or $\mathrm{R}_{\mathrm{O}(2)}$ inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(1)$	Logical 1 level input current at A or B inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$	-			$\begin{array}{r} 80 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
$1 \mathrm{in}(0)$	Logical 0 level input current at $\mathrm{R}_{0(1)}$ or $\mathrm{R}_{0(2)}$ inputs	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\mathrm{I}_{\text {in(}}(0)$	Logical 0 level input current at A or B inputs	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
Ios	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X,$	$V_{\text {out }}=0$	$\begin{aligned} & \text { S5493 } \\ & \text { N7493 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Icc	Supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\mathrm{in}}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5493 } \\ & \text { N7493 } \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {f max }}$	Maximum frequency of input count pulses	$C_{L}=15 \mathrm{FF}$,	$R_{L}=400 \Omega$	10	18		MHz
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from input count pulse to output D	$C_{L}=15 p F,$	$R_{L}=400 \Omega$		75	135	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from input count pulse to output D	$C_{L}=15 p \mathrm{~F}$,	$R_{L}=400 \Omega$		75	135	ns

[^13]
DESCRIPTION

This monolithic shift register, utilizing transistor-transistor logic (TTL) circuits in the familiar Series 74 configuration, is composed of four R-S master-slave flip-flops, four AND-OR-INVERT gates, and four inverter-drivers. Internal interconnections of these functions provide a versatile register which performs right-shift operations as a serial-in, serial-out register or as a dual-source, parallel-toserial converter. A number of these registers may be connected in series to form an n-bit register.
All flip-flops are simultaneously set to the logical 0 state by applying a logical 1 voltage to the clear input. This condition may be applied independent of the state of the clock input, but not independent of state of the preset input. Preset input is independent of the clock and clear states.
The flip-flops are simultaneously set to the logical 1 state from either of two preset input sources. Preset inputs 1A through 1D are activated during the time that a positive pulse is applied to preset 1 if preset 2 is at a logical 0 level. When the logic levels at preset 1 and preset 2 are reversed, preset inputs $2 A$ through $2 D$ are active.
Transfer of information to the outputs occurs when the clock input goes from a logical 0 to a logical 1. Since the flip-flops are R-S master-slave circuits, the proper information must appear at the R-S inputs of each flip-flop prior to the rising edge of the clock input waveform. The serial input provides this information for the first flip-flop. The output of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input, preset 1, and preset 2 must be at a logical 0 when clocking occurs.
This register is completely compatible for use with TTL and DTL logic circuits and when used with other TTL circuits, noise margins are typically one volt. Typical average power dissipation is 175 milliwatts, and propagation delay times from clock to output are typically 25 nanoseconds.

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$ (See Note 1): S5494 Circuits N7494 Circuits	MIN	TYP	MAX	UNIT
	4.5	5	5.5	\checkmark
	4.75	5	5.25	V
Normalized Fan-Out From Each Output			10	
Width of Clock Pulse, t_{p} (clock)	35			ns
Width of Clear Pulse, $t_{p(c l e a r)}$	30			ns
Width of Preset Pulse, $\mathrm{t}_{\mathrm{p} \text { (preset) }}$	30			ns
Serial Input Setup Time: $\mathrm{t}_{\text {setup }}(1)$	35			ns
${ }^{\text {t }}$ setup(0)	25			ns
Serial Input Hold Time, hold	0			

NOTE: 1. The voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
$V_{\text {in (1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2		0.8	V	
$v_{\text {in }(0)}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=M I N$				V		
$V_{\text {out }}(1)$	Logical 1 output voltage	$V_{C C}=M I N, I_{\text {load }}=-400 \mu \mathrm{~A}$		2.4	3.5		V	
$V_{\text {out }}(0)$	Logical 0 output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			0.22		0.4	V
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current	$V_{C C}=M A X, V_{i n}=2.4 V$				40	$\mu \mathrm{A}$	
	and preset 2	$v_{C C}=M A X, V_{\text {in }}=5.5$				1	mA	
$I_{\text {in(1) }}$	Logical 1 level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}$				160	$\mu \mathrm{A}$	
	at preset 1 and preset 2 Logical 0 level input current	$V_{C C}=M A X, V_{\text {in }}=5.5 V$				1	mA	
$\mathrm{I}_{\text {in(0) }}$	at any input except preset 1 and preset 2	$V_{C C}=M A X, V_{\text {in }}=0.4 V$				-1.6	mA	
$I_{\text {in(0) }}$	Logical 0 level input current at preset 1 and preset 2	$V_{C C}=M A X, V_{\text {in }}=0.4 V$				-6.4	mA	
${ }^{\text {I OS }}$	Short-circuit input current ${ }^{\dagger}$	$V_{C C}=M A X, V_{\text {out }}=0$	S5494	-20		-57	mA	
			N7494	-18		-57	mA	
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=\mathrm{MAX}$	S5494		35	50	mA	
			N7494		35	58	mA	

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency	$C_{L}=15 p F$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	10			MHz
$t_{\text {pd1 }}$	logical 1 level from clock to output to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		25	40	ns
$t_{\text {pdO }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
$t_{p d 1}$	Propagation delay time to logical 1 level from preset to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$			35	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clear to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns

[^14]
4-BIT RIGHT-SHIFT Left-Shift register

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

DESCRIPTION

The 54/7495 is a monolithic universal 4-Bit Shift Register designed with standard TTL techniques. The circuit layout consists of 4 R-S master-slave flip-flops, 4 AND-OR-INVERT gates, and 6 inverters configured to form a versatile register which will perform right-shift, left-shift, or parallel-in, parallel-out operations depending on the logical input level to the mode control.

Right-shift operations are performed when a logical 0 level is applied to the mode control. Serial data is entered at the serial input D_{S} and shifted one position right on each clock 1 pulse. In this mode, clock 2 and parallel inputs D_{A} thru D_{D} are inhibited.

Parallel-in, parallel-out operations are performed when a logical 1 level is applied to the mode control. Parallel data is entered at parallel inputs D_{A} thru D_{D} and is transferred to the data outputs A_{0} thru D_{0} on each clock 2 pulse. In this mode, shift-left operations may be implemented by externally tying the output of each flipflop to the parallel input of the previous flip-flop (D_{0} to D_{C} and etc.), with serial data entry at input D_{D}.

Information must be present at the R-S inputs prior to clocking and transfer of data occurs on the falling edge of the clock pulse.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } \mathrm{V}_{\text {CC }} \text { (See Note 1): } & \text { S5495 Circuits } \\ & \text { N7495 Circuits }\end{array}$	$\begin{gathered} 4.5 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{gathered} 5.5 \\ 5.25 \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
Normalized Fan-Out From Each Output			10	
Width of Clock Pulse $t_{\text {p } \text { (clock) }}$ S5495 Circuits	20 15	10		ns
Setup Time Required at Serial, A, B, C, or D Inputs $\mathrm{t}_{\text {setup }}$	15 10	10		ns
Hold Time Required at Serial, A, B, C, or D Inputs thold	0	10		ns
(With Respect to Clock 1 inputs)	15			ns
Logical 1 level Setup Time Required at Mode Control (With Respect to Clock 2 input)	15			ns
Logical 0 Level Setup Time Required at Mode Control (With Respect to Clock 2 input)	5			ns
Logical 1 Level Setup Time Required at Mode Control (With Respect to Clock 1 input)	5			ns

NOTES:

1. Voltage values are with respect to network ground terminal.
2. Input voltages must be zero or positive with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$V_{i n}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$V_{i n}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN			0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{\text {CC }}=$ MIN, $I_{\text {load }}=-400 \mu \mathrm{~A}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			0.4	V
$\mathrm{i}_{\mathrm{in}}(0)$	Logical 0 level input current at any input except mode control	$V_{C C}=$ MAX, $V_{\text {in }}=0.4 V$			-1.6	mA
$I_{\text {in }(0)}$	Logical 0 level input current at mode control	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-3.2	mA
$I_{\text {in(1) }}$	Logical 1 level input current at any input except mode control	$\begin{aligned} & V_{C C}=M A X, V_{\text {in }}=2.4 V \\ & V_{C C}=M A X, V_{\text {in }}=5.5 V \end{aligned}$			40 1	μA $m A$
	Logical 1 level input current	$V_{C C}=M A X, V_{\text {in }}=2.4 V$			80	$\mu \mathrm{A}$
$I_{\text {in(1) }}$	at mode control	$V_{C C}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
'OS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX	-18		-57	mA
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\text {CC }}=$ MAX ${ }^{\text {a }}$ (7495	39	50	63	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum shift frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	25	36		MHz
	Propagation delay time to						-
${ }^{\text {tpd }} 1$	logical 1 level from clock 1 or clock 2 to outputs	$C_{L}=15 p F,$	$R_{L}=400 \Omega$		18	27	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level from clock 1 or clock 2 to outputs	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		21	32	ns

[^15]DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

Transfer of information to the output pins occurs when the clock input goes from a logical 0 to a logical 1 . Since the flip-flops are R-S master-slave circuits, the proper information must appear at the R-S inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a logical 1 and the preset input must be at a logical 0 when clocking occurs.

DESCRIPTION

This shift register consists of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to the logical 0 state by applying a logical 0 voltage to the clear input. This condition may be applied independent of the state of the clock input.

The flip-flops may be independentiy set to the logical 1 state by applying a logical 1 to both the preset input of the specific flip-flop and the common preset input. The common preset input is provided to allow flexibility of either setting each flip-flop independently or setting two or more flip-flops simultaneously. Preset is also independent of the state of the clock input or clear input.

LOGIC DIAGRAM

-

RECOMMENDED OPERATING CONDITIONS

	MIN	TYP	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$ (See Note 1): S5496 Circuits	4.5	5	5.5	V
N7496 Circuits	4.75	5	5.25	V
Normalized Fan-Out from Output			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	35			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{p} \text { (clear) }}$	30			ns
Width of Preset Puise, t_{p} (preset)	30			ns
Serial Input Setup Time, $\mathbf{t}_{\text {setup }}$	30			ns
Serial Input Hold Time, thold	0			ns

NOTE: 1. This voltage value is with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{i n}(0)$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN, $I_{\text {load }}=-400$		2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN, $I_{\text {sink }}=16 \mathrm{~m}$			0.22	0.4	V
$I_{\text {in(1) }}$	Logical 1 level input current at any input except preset (pin (8)	$\begin{aligned} & V_{C C}=M A X, V_{\text {in }}=2.4 \\ & V_{C C}=M A X, V_{\text {in }}=5.5 \end{aligned}$				40 1	$\mu \mathrm{A}$ mA
	Logical 1 level input current	$V_{\text {CC }}=M A X, V_{\text {in }}=2.4$				200	$\mu \mathrm{A}$
In(1)	at preset (pin (8) 1 Logical 0 level input current	$V_{C C}=M A X, V_{i n}=5.5$				1	mA
$I_{\text {in }(0)}$	at any input except preset (pin (8))	$V_{C C}=M A X, V_{\text {in }}=0.4$				-1.6	mA
$\mathrm{I}_{\mathrm{in}(0)}$	Logical 0 level input current at preset (pin (8))	$V_{C C}=M A X, V_{\text {in }}=0.4$				-8	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=M A X, V_{\text {out }}=0$	S5496 N7496	-20 -18		-57 -57	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX	$\begin{aligned} & \text { S5496 } \\ & \text { N7496 } \end{aligned}$		48 48	68 79	mA mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10			MHz
$t_{\text {pd } 1}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{\text {tpdO }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from preset to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$			35	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from preset to output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		28	40	ns
${ }^{t} \text { pdo }$	Propagation delay time to logical 0 level from clear to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400$			55	ns

[^16]DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

LOGIC DIAGRAM (each latch)

SCHEMATIC DIAGRAM (each latch)

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V					
CC	(See Note 3):	S54100	4.5	5	5.5
	N74100	4.75	5	5.25	V
Normalized Fan-Out from Output					

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tsetup }} 1$	Minimum logical 1 level input setup time at D input	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	20	ns
$\mathrm{t}_{\text {setup }}$	Minimum logical 0 level input setup time at D input	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		14	20	ns
${ }_{\text {hold }}$	Maximum logical 1 level input hold time required at D input	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$	0	154		ns
${ }^{\text {hold }}$ (Maximum logical 0 level input hold time required at D input	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	0	61		ns
${ }^{t} \mathrm{pd} 1$ (D-Q)	Propagation delay time to logical 1 level from D input to Q output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{t} \mathrm{pdO}(\mathrm{D}-\mathrm{Q})$	Propagation delay time to logical 0 level from D input to Q output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		14	25	ns
${ }^{t} \mathrm{pd} 1(\mathrm{D}-\overline{\mathrm{Q}}$)	Propagation delay time to logical 1 level from D input to \bar{Q} output (S5475, N7475)	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{t} \mathrm{pd} 1(\mathrm{C}-\mathrm{Q})$	Progagation delay time to logical 1 level from clock input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	30	ns
${ }^{\mathrm{t}} \mathrm{pdO}(\mathrm{C}-\mathrm{Q})$	Propagation delay time to logical 0 level from clock input to Q output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		7	15	ns

[^17]
DUAL J-K-MASTER-SLAVE FLIP-FLOP $\mathbf{S 5 4 1 0 7}$
 S54107-A,F • N74107-A,F

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

NOTES:

1. $t_{n}=$ bit time before clock pulse.
2. $t_{n+1}=$ bit time after clock pulse.

DESCRIPTION

The S54107A/N74107A J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
See S5473/N7473 waveform.

1. Isolate slave from master
2. Enter information from J and K inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.

TRUTH TABLE

LOGIC			NOTES: 1. $t_{n}=$ bit time before clock pulse. 2. $t_{n+1}=$ bit time after clock pulse.
(Each Flip-Flop)			
t_{n}		t_{n+1}	
J	K	0	
0	0	Q_{n}	
0	1	0	
1	0	1	
1	1	$\overline{\mathrm{o}}_{\mathrm{n}}$	

SCHEMATIC (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }(1)}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }(0)}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{l}_{\text {load }}=-400 \mu \mathrm{~A}$	2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$		0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 leveì input current at J or K	$V_{C C}=$ MAX	$V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
$I_{\text {in }}(0)$	Logical 0 level input current at clear or clock	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$			-3.2	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at J or K	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			40 1	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input current at clear or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			80	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
${ }^{1} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	$\begin{array}{ll} V_{\text {in }}=0 & \text { S54107 } \\ & \text { N74107 } \end{array}$	-20 -18		-57 -57	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,	$V_{\text {in }}=5 \mathrm{~V}$		20	40	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ clock	Maximum clock frequency	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	15	20		MHz
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clear to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		16	25	ns
${ }^{\text {pdo }}$	Propagation delay time to logical 0 level from clear to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{\text {p }}$ pd1	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$	10	16	25	ns
${ }^{\text {pdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	25	40	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DIGITAL 54/74 TTL SERIES

DESCRIPTION

This monolithic TTL monostable multivibrator features d-c triggering from positive or gated negative-going inputs with inhibit facility. Both positive and negative-going output pulses are provided with full fan-out to 10 normalized loads.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the B input allows jitter-free triggering from inputs with transition times as slow as $1 \mathrm{volt} /$ second, providing the circuit with an excellent noise immunity of typically 1.2 volts. A high immunity to $V_{C C}$ noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions on the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse lengths may be varied from 40 nanoseconds to 40 seconds by choosing appropriate timing components. With no external timing components (i.e., pin (9) connected to pin (14), pins (10),
(11) open) an output pulse of typically 30 nanoseconds is achieved which may be used as a dc triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Pulse width is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and V_{CC} range for more than six decades of timing capacitance (10 pF to $10 \mu \mathrm{~F}$) and more than one decade of timing resistance ($2 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$). Throughout these ranges, pulse width is defined by the relationship t_{p} (out) $=C_{T} R_{T} \log _{e} 2$.

Circuit performance is achieved with a nominal power dissipation of 90 milliwatts at 5 volts (50% duty cycle) and a quiescent dissipation of typically 65 milliwatts.

Duty cycles as high as 90% are achieved when using $R_{T}-40 \mathrm{k} \Omega$. Higher duty cycles are achievable if a certain amount of pulse-width jitter is allowed.

PIN CONFIGURATIONS

TRUTH TABLE

t_{n} INPUT			$\mathrm{t}_{\mathrm{n}+1}$ INPUT			OUTPUT
A1	A2	B	A1	A2	B	
1	1	0	1	1	1	Inhibit
0	X	1	0	X	0	Inhibit
x	0	1	x	0	0	Inhibit
0	x	0	0	x	1	One Shot
X	0	0	x	0	1	One Shot
1	1	1	x	0	1	One Shot
1	1	1	0	X	1	One Shot
x	0	0	x	1	0	Inhibit
0	x	0	1	x	0	Inhibit
x	0	1	1	1	1	Inhibit
0	x	1	1	1	1	Inhibit
1	1	0	x	0	0	Inhibit
1	1	0	0	X	0	Intibit

$$
1=\mathrm{v}_{\text {in }(1)} \geqslant 2 \mathrm{~V} \quad 0=\mathrm{v}_{\text {in }(0)} \leqslant 0.8 \mathrm{~V}
$$

1. A1 and A2 are negative-edge-triggered logic inputs, and will trigger the one shot when either or both go to logical 0 with B at logical 1.
2. B is a positive Schmitt-trigger input for slow edges or level detection, and will trigger the one shot when B goes to logical 1 with either A1 or A2 at logical 0 . (See Truth Table)
3. External timing capacitor may be connected between pin (10) (positive) and pin (11). With no external capacitance, an output pulse width of 30 ns is obtained typically.
4. To use the internal timing resistor ($2 \mathrm{k} \Omega$ nominal), connect pin (9) to pin (14).
5. To obtain variable pulse width connect external variable resistance between pin (9) and pin (14). No external current limiting is needed.
6. For accurate repeatable pulse widths connect an external resistor between pin (11) and pin (14) with pin (9) open-circuit.
7. $t_{n}=$ time before input transition.
8. $t_{n+1}=$ time after input transition.
9. x indicates that either a logical 0 or 1 , may be present.

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\mathrm{T}^{+}}$	Positive-going threshold voltage at A input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			1.4	2	V
$\mathrm{V}_{\mathrm{T}^{-}}$	Negative-going threshold voltage at A input	$V_{C C}=\mathrm{MIN}$		0.8	1.4		V
$\mathrm{V}_{\mathbf{T}}{ }^{+}$	Positive-going threshold voltage at B input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			1.55	2	V
$V^{\prime}{ }^{-}$	Negative-going threshold voltage at B input	$V_{C C}=$ MIN		0.8	1.35		V
$V_{\text {out (}}(0)$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$		0.22	0.4	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{l}_{\text {load }}=-400 \mu \mathrm{~A}$	2.4	3.3		V
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current at A_{1} of A_{2}	$V_{C C}=$ MAX	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$		-1	-1.6	mA
In (0)	Logical 0 level input current at B	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$		-2	-3.2	mA
	Logical 1 level input	$V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$		2	40	$\mu \mathrm{A}$
in (1)	current at A_{1} of A_{2}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		0.05	1	mA
1 in (1)	Logical 1 level input	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		4	80	$\mu \mathrm{A}$
in (1)	current at B	$V_{C C}=\mathrm{MAX},$	$V_{i n}=5.5 \mathrm{~V}$		0.05	1	mA
	Short circuit output			-20	-25	-55	mA
${ }^{\text {I OS }}$	current at \mathbf{Q} or $\overline{\mathbf{Q}}^{\boldsymbol{\dagger}}$	$V_{C C}=\operatorname{MAX}$		-18	-25	-55	mA
${ }^{1} \mathrm{CC}$	Power supply current in quiescent (unfired) state	$v_{C C}=M A X$			13	25	mA
${ }^{1} \mathrm{CC}$	Power supply current in fired state	$V_{C C}=M A X$			23	40	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from B input to Q output	$C_{L}=15 \mathrm{pF}$,	$\mathrm{C}_{\mathrm{T}}=80 \mathrm{pF}$	15	35	55	ns
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from A1/A2 inputs to Q output	$C_{L}=15 \mathrm{pF},$	$\mathrm{C}_{\mathrm{T}}=80 \mathrm{pF}$	25	45	70	ns
${ }^{\mathrm{t}} \mathrm{pd} 0$	Propagation delay time to logical 0 level from B input to $\overline{\mathrm{O}}$ output	$C_{L}=15 \mathrm{pF},$	$\mathrm{C}_{\mathrm{T}}=80 \mathrm{pF}$	20	40	65	ns
${ }^{t}{ }_{\text {pd0 }}$	Propagation delay time to logical 0 level from A1/A2 inputs to $\overline{\mathrm{C}}$ output	$C_{L}=15 p \mathrm{~F}$,	$\mathrm{C}_{\mathrm{T}}=80 \mathrm{pF}$	30	50	80	ns
$\mathrm{t}_{\text {plout }}$	Pulse width obtained using internal timing resistor	$\begin{aligned} & C_{L}=15 p F, \\ & R_{T}=O p e n, \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=80 \mathrm{pF} \\ & \text { Pin (9) to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	70	110	150	ns
${ }^{\text {t }}$ (out)	Pulse width obtained with zero timing capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=\text { Open, } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=0 . \\ & \operatorname{Pin} \text { (9) to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	20	30	50	ns
$\mathrm{t}_{\text {p }}$ (out)	Pulse width obtained using external timing resistor	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=100 \mathrm{pF}, \\ & \text { Pin (9) Open } \end{aligned}$	600	700	800	ns
${ }^{\text {p }}$ (out)	Pulse width obtained using external timing resistor	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=1 \mu \mathrm{~F}, \\ & \operatorname{Pin}(9) \text { Open } \end{aligned}$	6	7	8	ms
$t_{\text {hold }}$	Minimum duration of trigger pulse	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{T}}=\text { Open, } \end{aligned}$	$\begin{aligned} & C_{T}=80 \mathrm{pF}, \\ & \text { Pin } 9 \text { to } V_{C C} \end{aligned}$		30	50	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Cont'd)

PROPAGATION DELAY TIME TO LOGICAL 1 LEVEL

PROPAGATION DELAY TIME TO LOGICAL O LEVEL
(B INPUT TO Q OUTPUT)
VERSUS
FREE-AIR TEMPERATURE

VARIATION IN INTERNAL TIMING RESISTOR VALUE
VERSUS

DESCRIPTION

These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. N74122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired. Applications requiring more precise pulse widths and not requiring the clear feature can best be satisfied with N74121.

The output pulse is primarily a function of the external capacitor and resistor. For $C_{e x t}>1000 \mathrm{pF}$, the output pulse width (t_{w}) is defined as:

$$
t_{W}=0.32 R_{T} C_{e x t}\left(1+\frac{0.7}{R_{T}}\right)
$$

where
R_{T} is in $k \Omega$ (either internal or external
timing resistor)
$C_{e x t}$ is in pF
t_{w} is in ns

For pulse widths when $C_{\text {ext }} \leqslant 1000 \mathrm{pF}$, see Figure B.

These circuits are fully compatible with most TTL or DTL families. Inputs are diode-clamped to minimize reflections due to transmissionline effects, which simplifies design. Typical power dissipation per one shot is 115 milliwatts; typical average propagation delay time to the Q output is 21 nanoseconds. The N74122 and N74123 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

TRUTH TABLE (See Note A)

N74122

INPUTS				OUTPUTS	
A_{1}	A_{2}	B_{1}	B_{2}	0	0
H	H	X	X	L	H
X	X	L	X	L	H
X	x	X	L	L	H
L	x	H	H	L	H
L	X	\uparrow	H	Ω	■
L	X	H	\uparrow	Ω	๖
x	L	H	H	L	H
X	L	\uparrow	H	Ω	凹
X	L	H	\uparrow	\curvearrowleft	凹
H	\downarrow	H	H	\cdots	■
\downarrow	\downarrow	H	H	Ω	■
	H	H	H	Ω	ப

S54123,N74123

INPUTS		OUTPUTS	
A	B	Q	\bar{Q}
H	X	L	H
X	L	L	H
L	\uparrow	Ω	U
\downarrow	H	Ω	\amalg

NOTES:

A. $H=$ high level (steady-state), $L=$ low level (steady-state), $\uparrow=$ transition from low to high level, $\downarrow=$
transition from high to low level, $\Omega=$ one high-level pulse, $\square=$ one low-level pulse, $\mathrm{X}=$ irrelevant (any input, including transitions).
B. $N C=$ No internal connection.
C. To use the internal timing resistor of $N 74122$ ($10 \mathrm{k} \Omega$ nominal), connect $R_{\text {int }}$ to $V_{\text {CC }}$.
D. An external timing capacitor may be connected between $C_{\text {ext }}$ and $R_{\text {ext }} / C_{\text {ext }}$ (positive).

RECOMMENDED OPERATING CONDITIONS

	High Logic Level Low-Logic Level	S54123, N74122, N74123			UNIT
		MIN	NOM	MAX	
Supply Voltage V_{CC}		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				20 10	
Input data setup time, $\mathrm{t}_{\text {setup }}$ (See Note 3)		$40 \dagger$			ns
Input data hold time, thold (See Note 4)		40^{\dagger}			ns
Width of Clear Pulse, $\mathrm{t}_{\text {w }}$ (clear)		40^{\dagger}			ns
External Timing Resistance		5		50	k Ω
External Capacitance		No Restriction			
Wiring Capacitance at $R_{\text {ext }} / C_{\text {ext }}$ Terminal Operating Free-Air Temperature, T_{A}		0	25	50 70	${ }^{\mathrm{p}}{ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ These conditions are recommended for use at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 1. Voltage values, except intermitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor. For the N74122 circuit, this rating applies to each A input with respect to the other and to each B input with respect to the other.
3. Setup time for a dynamic input is the interval immediately preceding the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure recognition of the transition.
4. Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure continued recognition of the transition.
5. Ground $\mathrm{C}_{\mathrm{ext}}$ to measure $V_{O H}$ at $\mathrm{Q}, \mathrm{V}_{\mathrm{OL}}$ at $\overline{\mathrm{Q}}$, or I_{OS} at Q . $\mathrm{C}_{\text {ext }}$ is open to measure $V_{O H}$ at $Q, V_{O L}$ at Q, or $I_{O S}$ at \bar{Q}.
6. Quiescent I CC is measured (after clearing) with 2.4 V applied to all clear and A inputs, Binputs grounded, all outputs open. $C_{\text {ext }}=0.02 \mu \mathrm{~F}$, and $R_{\text {ext }}=25 \mathrm{k} \Omega$. $R_{\text {int }}$ of $S 54122 / \mathrm{N} 74122$ is open.
7. ${ }^{I} \mathrm{CC}$ is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open. $C_{\text {ext }}=0.02 \mu \mathrm{~F}$, and $R_{\text {ext }}=25 \mathrm{k} \Omega$. $R_{\text {int }}$ of $S 54122 / \mathrm{N} 74122$ is open.

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$I_{1}=-12 m A$			-1.5	V
VOH	High-level output voltage	$V_{C C}=\mathrm{MIN},$ See Note 5	$\mathrm{I}^{\mathrm{OH}}=-800 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN},$ See Note 5	${ }^{1} \mathrm{OL}=16 \mathrm{~mA}$,		0.22	0.4	V
11	Input current at maximum input.voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA
1/H	High-level input current $\begin{aligned} & \text { data inputs } \\ & \text { clear input }\end{aligned}$	$V_{C C}=M A X$,	$V_{1}=2.4 V$			40 80	$\mu \mathrm{A}$
IIL	Low-level input current $\begin{aligned} & \text { data inputs } \\ & \text { clear input }\end{aligned}$	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6 -3.2	mA
'OS	Short-circuit output current ${ }^{\dagger}{ }^{\text {chear }}$ input	$V_{C C}=M A X$,	See Note 5	-10		-3.2 -40	mA
${ }^{1} \mathrm{Cc}$	Supply current (quiescent or triggered)	$V_{C C}=M A X$ See Notes 6 and 7	$\begin{aligned} & \text { N74122 } \\ & \text { N74123 } \end{aligned}$		$\begin{aligned} & 23 \\ & 46 \end{aligned}$	28 66	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

* For conditions shown as MIN or MAX, use the value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DESCRIPTION

These monolithic TTL retriggerable monostable multivibrators feature dc triggering from gated low-level-active (A) and high-levelactive (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. A full fan-out to 10 normalized Series 54/74 loads is available from each of the outputs at the low logic level, and in the high-level state, a fan-out of 20 is available. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C .

Figure A illustrates triggering the one-shot with the high-level-active (B) inputs.

TYPICAL INPUT/OUTPUT PULSES (Figure A)

OUTPUT PULSE CONTROL USING CLEAR INPUT

TYPICAL CHARACTERISTICS (Figure B)

OUTPUT PULSE WIDTH
EXTERNAL TIMING CAPACITANCE

NOTE:
When using electrolytic capacitor, insure that minimum rating is 20 volts so that 5% reverse voltage rating is $\mathbf{1 . 0}$ volt or greater.

BCD-TO-DECODER/DRIVER WITH BLANKING

N74141

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

DESCRIPTION

The N74141 is a BCD-to-decimal decoder designed specifically to drive cold-cathode indicator tubes. This decoder demonstrates an improved capability to minimize switching transients in order to maintain a stable display.
Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore the N74141, combined with a minimum of external circuitry, can use these invalid codes in blanking leading- and/or trailing-edge zeros in a display as shown in the typical application data. The then highperformance, n-p-n output transistors have a maximum reverse current of 50 microamperes at 55 volts.
Low-forward-impedance diodes are also provided for each input to clamp negative-voltage transitions in order to minimize transmissionline effects. Power dissipation is typically 55 milliwatts, which is about one-half the power requirement of earlier designs.' The N74141 is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

LOGIC DIAGRAM

TRUTH TABLE

INPUT				OUTPUT ON*
D	C	B	A	
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8
H	L	L	H	9
H	L	H	L	NONE
H	L	H	H	NONE
H	H	L	L	NONE
H	H	L	H	NONE
H	H	H	L	NONE
H	H	H	H	NONE

$H=$ high level, $L=$ low level *All other outputs are off

SIGNETICS DIGITAL 54/74 TTL SERIES - N74141
RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX
Supply Voltage VCC (See Note 1)	4.75	5	5.25
Output Voltage (See Notes 1 and 2)			V^{\prime}
Operating Free-Air Temperature Range	0	65	V^{\prime}

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$V_{\text {IL }}$	Low-level input voltage				0.8	V
V_{0} (on)	On-state output voltage	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{0}=7 \mathrm{~mA}$			2.5	V
V_{0} (off)	Off-state output voltage	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{I}_{0}=0.5 \mathrm{~mA}$	65			V
O(off)	for input counts 0 thru 9	$V_{C C}$ MAX, $\mathrm{O}_{0}=0.5 \mathrm{~mA}$				\checkmark
${ }^{1} 0$ (off)	Off-state reverse current	$V_{C C}=M A X, V_{0}=55 \mathrm{~V}$			50	$\mu \mathrm{A}$
${ }^{1} 0$ (off)	Off-state reverse current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{0}=30 \mathrm{~V}$			5	$\mu \mathrm{A}$
	for input counts 10 thru 15					
	High-level input current	$V_{C C}=M A X, V_{1}=2.4 V$			40	4 A
IH		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IL }}$	Low-level input current into A					
IIL	Low-level input current into				-1.6	mA
	B, C, or D	$V_{C C}=$ MAX, $V_{1}=0.4$			-3.2	$m A$
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		11	16	mA

** For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
** \quad This typical value is at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

NOTE: SEE THE 8 T02 FOR IMPROVED PERFORMANCE IN THE SAME PIN CONFIGURATION.
DESCRIPTION

DESCRIPTION
The $54 / 74150$ is a one-of-sixteen data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N-lines to one-line
The S54150/N74150 is provided with a strobe-input which, when taken to a logical 0 , enables the function of these multiplexers.
This data selector/multiplexer is fully compatible for use with other TTL or DTL circuit. Each input represents only one normalized Series 54/74 load, and full fan-out to 10 normalized Series 54/74 loads is available from each of the outputs in the logical 0 state. A fan-out to 20 normalized Series $54 / 74$ loads is provided in the logical 1 state to facilitate connection of unused inputs to used inputs. Typical power dissipations are:

S54150/N74150-200 milliwatts.

16-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER

S54150
N74150
DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

LOGIC DIAGRAM

TRUTH TABLE

INPUTS																					OUTPUT
D	c	B	A	Strobe	${ }_{0}{ }_{0}$	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}	ε_{9}	E_{10}	E_{11}	E_{12}	E_{13}	E_{14}	E_{15}	w
		\times	-	1	\times	-	1														
0	0	-	0	0	0 1 1	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	1							
$\stackrel{0}{0}$	0	${ }^{\circ}$	1	$\stackrel{0}{0}$	\times	${ }_{0}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	-	\times	\times	$\stackrel{\times}{\times}$	\times	\times	\times	\times \times \times \times \times	+	+ \times	$\stackrel{\times}{\times}$	1
0	0	0	1	0	\times	$\stackrel{1}{x}$	\times	$\stackrel{\times}{x}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times	\times	\times	\times	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{\times}$	0
-	0	1	-	0	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	0 1 1	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\mathrm{x}}{\times}$	$\stackrel{\times}{\times}$	\times	O						
0	0	1	1	0	\times	\times	\times	0	\times	\times	\times	\times	\times	\times	$\stackrel{\times}{\times}$	\times	\times	\times	\times \times \times	\times	1
-	1	1	1	$\stackrel{\square}{0}$	$\stackrel{\times}{x}$	\times \times \times \times	\times \times \times \times	${ }^{1}$	${ }_{0}$	x \times \times	\times \times \times \times	$\stackrel{\mathrm{x}}{\times}$	-	\times \times \times \times	$\stackrel{\times}{\times}$	x \times \times \times	\times \times \times \times \times 	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	1
0	1	-	0	0	\times	\times	\times	\times	1	x	\times	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{\times}$	$\stackrel{\mathrm{x}}{\times}$	+	$\stackrel{\times}{\times}$	x \times \times	$\stackrel{+}{\times}$	${ }_{0}$
$\stackrel{1}{\circ}$	1	-	1	$\stackrel{0}{0}$	$\stackrel{x}{x}$	\times \times \times \times \times	\times \times \times \times	x \times \times	\times \times \times \times	${ }_{1}^{0}$	x \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times \times	\times	$\stackrel{\mathrm{x}}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times} \times$	$\stackrel{\times}{\times}$	\times \times \times \times	1
0	1	1	0	0	\times	\times	\times	\times	\times	\times	0	\times	\times	\times	\times	x	\times	\times	\times	\times	1
0	1	1	0	0	$\stackrel{x}{x}$	$\stackrel{\times}{\times}$	$\stackrel{x}{x}$	$\stackrel{x}{x}$	\times	$\stackrel{\times}{\times}$	$\stackrel{1}{x}$	${ }^{x}$	$\stackrel{\mathrm{x}}{\times}$	$\stackrel{\times}{x}$	\times	$\stackrel{\times}{\times}$	${ }^{\times}$	\times	$\stackrel{\times}{\times}$	\times	${ }^{1}$
0	1	1	1	${ }_{0}$	\times	\times	$\stackrel{\times}{\times}$	-	\times	-	$\stackrel{1}{\times}$	${ }_{1}$	\times	-	¢	¢	${ }^{\times}$	x	x \times \times	¢	-
1	0	-	-	0	\times	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{x}$	\times	\times	\times	0	$\stackrel{\times}{\times}$	- \times	x \times \times	\times	\times	\times	$\stackrel{\times}{\times}$	1
1	${ }_{0}$	${ }^{\circ}$	1	${ }_{0}$	\times	x \times \times \times	\times \times \times \times	x \times \times	\times	-	\times \times \times \times	x \times \times \times	\times	${ }_{0}$	\times	$\stackrel{\times}{\times}$	\times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	1
	0	-	1	0	\times	\times	x	\times	\times	\times	\times	\times	\times	1	\times	x	\times	\times	\times	\times	0
1	-	1	0	${ }_{0}$	\times	x \times \times	$\stackrel{\mathrm{x}}{\times}$	\times \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times \times	\times \times \times	1	x \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times \times	\times \times \times \times	1
1	0	1	1	0	\times	\times	\times	\times	+	\times	+	\times	$\stackrel{\times}{x}$	\times	\times	${ }_{0}$	-	\times	\times	\times	1
1	0	1	1	0	\times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{x}$	$\stackrel{\times}{\times}$	$\stackrel{1}{x}$	\times	\times	\times	$\stackrel{\times}{\times}$	0						
1	1	-	-	0	\times	\times	\times	x	\times	x	x	-	\times	\times	\times	\times	1	x	x	+	0
1	1	O	1	0	$\stackrel{\times}{\times}$	\times \times \times \times	$\stackrel{\mathrm{x}}{\mathrm{x}} \mathrm{x}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times	$\stackrel{\times}{\times}$	x \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times \times \times	0	\times \times \times	$\stackrel{\times}{\times}$	1
1	1	1	0	\times	\times	\times	-	x	\times	$\stackrel{\text { x }}{ } \times$	\times	\times	\times	\times	\times	\times	+	\times	0	\times	1
1	1	1	0	0	$\stackrel{\times}{x}$	\times	$\stackrel{\times}{\times}$	x \times \times	\times \times \times	$\stackrel{\times}{\times}$	\times \times \times	x \times \times	\times \times \times \times	\times \times \times \times	$\stackrel{\times}{x}$	$\stackrel{\mathrm{x}}{\mathrm{x}}$	\times	$\stackrel{\times}{\times} \times$	$\stackrel{1}{\times}$	${ }_{0}^{\times}$	${ }_{1}^{0}$
1	1	1	1	0	\times	x	\times	+	1	\bigcirc											

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS *	MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$V_{i n(0)}$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\text {in }(1)}=2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V} \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
	Logical 1 level input	$V_{C C}=M A X, V_{\text {in }}=2.4 V$			40	$\mu \mathrm{A}$
in(1)	(each input)	$V_{C C}=M A X, V_{i n}=5.5 V$			1	mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$V_{C C}=$ MAX,	-20		-55	mA
'OS	current ${ }^{\dagger}$	$\mathrm{V}_{\text {OUT }}=0$	-18		-55	mA
${ }^{\text {cc }}$	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		40	68	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ pd0	$A, B, o r C(4)$ levels $)$	Y			20	30	ns
$\mathrm{t}_{\mathrm{pd} 1}$	A, B,orC(4levels)	Y			35	52	ns
$\mathrm{t}_{\text {pdO }}$	$A, B, C, o r D(3$ levels)	W			22	33	ns
$\mathrm{t}_{\text {pd1 }}$	$A, B, C, o r D(3$ levels)	W			23	35	ns
$\mathrm{t}_{\text {pd0 }}$	STROBE	Y			19	30	ns
$\mathrm{t}_{\text {pd1 }}$	STROBE	Y	$C_{L}=15 p F, \quad R_{L}=400 \Omega$		35	52	ns
$\mathrm{t}_{\text {pd0 }}$	STROBE	W			21	30	ns
$\mathrm{t}_{\text {pd1 }}$	STROBE	W			15.5	24	ns
$\mathrm{t}_{\text {pdo }}$	D_{0} thru D_{7}	Y			16	24	ns
$\mathrm{t}_{\text {pd1 }}$	D_{0} thru D_{7}	Y			19	29	ns
t_{pd}	E_{0} thru E_{15}	W			8.5	14	ns
$\mathrm{t}_{\mathrm{pd} 1}$	E_{0} thru E_{15}	W			13	20	ns

[^18]
8-LINE TO 1.LINE \mid S54151 DATA SELECTOR/MULTIPLEXER

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

TRUTH TABLE

INPUTS												OUTPUTS	
C	B	A	STROBE	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	Y	W
X	X	X	1	X	X	X	X	X	\times	\times	X	0	1
0	0	0	0	0	x	x	x	X	X	x	x	0	1
0	0	0	0	1	x	x	x	x	\times	x	x	1	0
0	0	1	0	x	0	x	x	x	x	x	x	0	1
0	0	1	0	x	1	x	x	x	x	x	x	1	0
0	1	0	0	x	x	0	x	x	x	x	X	0	1
0	1	0	0	x	x	1	x	x	x	x	x	1	0
0	1	1	0	x	x	x	0	x	x	x	x	0	1
0	1	1	0	x	x	x	1	x	x	x	x	1	0
1	0	0	0	X	x	X	X	0	X	X	X	0	1
1	0	0	0	x	x	x	x	1	x	x	x	1	0
1	0	1	0	x	x	x	x	x	0	x	x	0	1
1	0	1	0	x	x	x	x	x	1	x	x	1	0
1	1	0	0	x	x	x	x	x	X	0	X	0	1
1	1	0	0	x	x	x	X	x	X	1	X	1	0
1	1	1	0	x	x	x	x	x	x	x	0	0	1
1	1	1	0	x	x	x	x	X	x	x	1	1	0

When used to indicate an input, $\mathrm{X}=$ irrelevant.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage ${ }^{\text {CC }}$: S54151 Circuits	MIN	NOM	MAX	UNIT
	4.5	5	5.5	V
N74151 Circuits	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: Logical 0			10	
Logical 1			20	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$V_{i n}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$V_{i n(0)}$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	V
$V_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\text {in }(1)}=2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=\operatorname{MIN}, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
	Logical 1 level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
in(1)	(each input)	$V_{C C}=M A X, V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$V_{C C}=M A X$,	-20		-55	mA
OS	current ${ }^{\dagger}$	$V_{\text {out }}=0$	-18		-55	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X, V_{\text {in }}=4.5 V$		29	48	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ pd0	A, B,orC(4 levels)	Y			20	30	ns
${ }^{\text {t pd1 }}$	A,B,orC(4 levels)	Y			35	52	ns
$\mathrm{t}_{\text {pdo }}$	A,B,C,orD(3 levels)	W			22	33	ns
${ }^{\text {tpd1 }}$	$A, B, C, o r D(3$ levels)	W			23	35	ns
t_{pd}	STROBE	Y			19	30	ns
${ }_{\text {tpd1 }}$	STROBE	Y	$C_{L}=15 p F, \quad R_{L}=400 \Omega$		35	52	ns
$\mathrm{t}_{\text {pdo }}$	STROBE	W			21	30	ns
$\mathrm{t}_{\mathrm{pd} 1}$	STROBE	W			15.5	24	ns
${ }_{\text {t }}^{\text {pdo }}$	D_{0} thru D_{7}	Y			16	24	ns
${ }_{\text {tpd1 }}$	D_{0} thru D_{7}	Y			19	29	ns
$\mathrm{t}_{\mathrm{pd} 0}$	E_{0} thru E_{15}	W			8.5	14	ns
$\mathrm{t}_{\mathrm{pd} 1}$	E_{0} thru E_{15}	W			13	20	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

8-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

DESCRIPTION

The S54152 is a one-of-eight data selector which performs parallel to serial data conversion. The S54152 is identical to the S54152 with the exclusion of the true output and strobe. It is available in the 14 -pin flatpak only.

LOGIC DIAGRAM

TRUTH TABLE

INPUTS												OUTPUTS	
c	B	A	Strobe	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	Y(1)	w
x	x	X	1	X	X	\times	\times	X	x	X	x	0	1
0	0	0	0	0	x	x	x	x	x	x	x	0	1
0	0	0	0	1	x	x	x	x	x	x	x	1	0
0	0	1	0	x	0	x	x	x	x	x	x	0	1
0	0	1	0	x	1	x	x	x	x	\times	x	1	0
0	1	0	0	x	x	0	x	X	X	x	X	0	1
0	1	0	0	x	x	1	x	x	x	x	x	1	0
0	1	1	0	x	x	x	0	x	x	x	X	0	1
0	1	1	0	x	x	x	1	x	x	x	x	1	0
1	0	0	0	x	x	x	x	0	x	x	x	0	1
1	0	0	0	x	x	x	x	1	X	X	X	1	0
1	0	1	0	x	x	\times	x	x	0	x	x	0	1
1	0	1	0	x	x	x	x	x	1	X	x	1	0
1	1	0	0	x	x	x	x	x	x	0	x	0	1
1	1	0	0	x	x	x	x	x	x	1	x	1	0
1	1	1	0	x	x	x	x	x	x	x	0	0	1
1	1	1	0	x	x	x	x	x	x	x	1	1	0

When used to indicate an input, $X=$ Irrelevant

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{\text {CC }}:$ S54152 Circuits	MIN	NOM	MAX	UNIT
Normalized Fan-Out from each Output, N: Logical 0				
Logical 1	4.5	5	5.5	V

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS *	MIN	TYP**	MAX	UNIT
$V_{\text {in }(1)}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$V_{\text {in }(0)}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$			0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{~V}_{\text {in }(1)}=2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
	Logical 1 level input	$V_{C C}=M A X, V_{i n}=2.4 V$			40	$\mu \mathrm{A}$
in(1)	(each input)	$V_{C C}=M A X, V_{\text {in }}=5.5 V$			1	mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$V_{C C}=M A X$,	-20		-55	mA
${ }^{\text {O OS }}$	current ${ }^{\dagger}$	$V_{\text {out }}=0$	-18		-55	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		26	43	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {pdo }}$	$A, B, \operatorname{orC}(4$ levels)	Y			20	30	ns
$\mathrm{t}_{\mathrm{pd} 1}$	$A, B, \operatorname{orC}(4$ levels)	Y			35	52	ns
${ }^{\text {p }}$ d0	$A, B, C, o r D(3$ leveis)	W			22	33	ns
${ }_{\text {tpd }}$	$A, B, C, o r D(3$ levels)	W			23	35	ns
t_{pd}	STROBE	Y			19	30	ns
${ }_{\text {tod1 }}$	STROBE	Y	$C_{L}=15 p F, \quad R_{L}=400 \Omega$		35	52	ns
${ }_{\text {t }}^{\text {pdo }}$	STROBE	W			21	30	ns
$\mathrm{t}_{\mathrm{pd} 1}$	STROBE	W			15.5	24	ns
$t_{\text {pdO }}$	D_{0} thru D_{7}	Y			16	24	ns
$\mathrm{t}_{\text {pdi }}$	D_{0} thru D_{7}	Y			19	29	ns
${ }_{\text {pdo }}$	E_{0} thru E_{15}	W			8.5	14	ns
${ }_{\text {tpd1 }}$	E_{0} thru E_{15}	W			13	20	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+ Not more than one output should be shorted at a time.

DIGITAL 54/74 TTL SERIES

DESCRIPTION
Each of these monolithic, data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

These data selectors/multiplexers are fully compatible for use with most TTL and DTL circuits. Each diode-clamped input represents only one normalized Series 54/74 load, and full fan-out to 10 normalized Series $54 / 74$ loads is available from each of the outputs in the low-level state. A fan-out to 20 normalized Series 54/74 loads is provided in the high-level state to facilitate connection of unused inputs to used inputs. Typical power dissipation is 180 milliwatts.

Resistor values in the OR function have been reduced to values used with Series 54 H . This minimizes the capacitive effects of paralleling the phase-splitter transistors and reduces the propagation delay times. The S54153 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N 74153 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TRUTH TABLE

ADDRESS INPUTS		DATA INPUTS				STROBE	OUTPUT
B	A	C0	C1	C2	C3	G	Y
\times	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	x	x	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs A and B are common to both sections. $H=$ high level, $L=$ low level, $X=$ irrelevant.

LOGIC DIAGRAM

PIN CONFIGURATIONS

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$ Normalized Fan-Out from each Output, N High Logic Level Low Logic Level Operating Free-Air Temperature Range, T_{A}	S54153			N74153			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
VOH	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & V_{I H}=2 \mathrm{~V} \\ & I_{O H}=-800 \mu \mathrm{~A} \end{aligned}$	2.4	3.1		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
		$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$1{ }_{1}$	High-level input current (each input)	$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1	mA
IIL	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA
Ios	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	S54153 N 74153	-20 -18		-55	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=M A X$,	$\begin{aligned} & \text { S54153 } \\ & \text { N74153 } \end{aligned}$		$\begin{aligned} & 36 \\ & 36 \end{aligned}$	52 60	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tPLH}}$	Data	Y			12	18	ns
tPHL	Data	Y			15	23	ns
${ }^{\text {tPLH }}$	Address	Y	$C_{L}=30 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$		22	34	ns
${ }^{\text {tPHL }}$	Address	Y	$C_{L}=30 p F, \quad R_{L}=400 \Omega$		22	34	ns
${ }^{\text {tPLH}}$	Strobe	Y			19	30	ns
tPHL	Strobe	Y			15	23	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 54/74154 decodes 4 binary-coded inputs to one of 16 mutually exclusive outputs when each of the two strobe inputs are low. The demultiplexing function is achieved by using the 4 input lines for output addressing and data from one strobe input while the other strobe input is held low.

PIN CONFIGURATIONS

LOGIC DIAGRAM

TRUTH TABLE

INPUTS						OUTPUTS															
G1	G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	\times	X	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	\times	X	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ High, $L=$ Low, $X=$ Irrelevant

RECOMMENDED OPERATING CONDITIONS

	S54154			N74154			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: Low logic level			10			10	
High logic level			20			20	
Operating Free-Air Temperature Range	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{1 H}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, I \end{aligned}$		2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, I \\ & V_{I L}=0.8 V, I \end{aligned}$				0.4	V
	High-level input current	$V_{C C}=M A X$,				40	A
IH	(each input)	$V_{C C}=M A X$,				1	mA
$I_{\text {IL }}$	Low-level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				-1.6	mA
Ios	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=\mathrm{MAX}$	S54154 N74154	-20 -18		-55 -57	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$	S54154 N74154		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{array}{r} 49 \\ 56 \end{array}$	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DUAL 2.LINE TO 4-LINE DECODER/DEMULTIPLEXER

DESCRIPTION

These monolithic transistor-transistor-logic (TTL) circuits feature dual 1 -line to 4 -line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common binaryaddress inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4 -bit sections as desired.

Data applied to input 1C is inverted at its outputs and data applied at 2 C is not inverted through its outputs. The inverter following the 1 C data input permits use as a 3 - to 8 -line decoder or 1 - to 8 -line demultiplexer without external gating. See typical applications data and the truth tables for more details.

The S54155/N74155 circuits, with totem pole outputs, are rated to fan-out to 10 normalized Series 54/74 loads in the low-level output state, and to 20 loads in the high-level output state. The S54156/N74156 circuits, with open-collector outputs, are rated to sink 16 milliamperes at a low-level output voltage of less than 0.4 volt. Input-clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design.

Typical power dissipation is 125 milliwatts. Typical average prop agation delay times are 16 nanoseconds through 2 levels of logic and 21 nanoseconds through 3 levels of logic for the S54155/N74155.

The S54155 and S54156 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ the N 74155 and N74156 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATION

LOGIC DIAGRAM

TRUTH TABLES
TRUTH TABLES ($H=$ High Level, $L=$ Low Level, $X=$ Irrelevant $)$

2-LINE TO 4-LINE DECODER OR 1-LINE TO 4-LINE DEMULTIPLEXER

INPUTS				OUTPUTS			
SELECT	STROBE	DATA					
B	A	1G	1C	1Y0	1Y1	1Y2	1Y3
X	X	H	X	H	H	H	H
L	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
X	X	X	L	H	H	H	H

INPUTS				OUTPUTS			
SELECT		STROBE	DATA				
B	A	2G	2C	2Y0	2Y1	2 Y 2	2Y3
X	X	H	X	H	H	H	H
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
X	X	X	H	H	H	H	H

3-LINE TO 8-LINE DECODER TO 1-LINE TO 8-LINE DEMULTIPLEXER

INPUTS				OUTPUTS							
SELECT			STROBE OR DATA	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
c^{\dagger}	B	A	G \ddagger	2Y0	2Y1	2Y2	2 Y 3	1Y0	1Y1	1Y2	$1 Y 3$
X	X	X	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H
L	H	L	L	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	L	H	H	H	H
H	L	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	L	H	H
H	H	L	L	H	H	H	H	H	H	L	H
H	H	H	L.	H	H	H	H	H	H	H	L

${ }^{\dagger} C=$ inputs $1 C$ and $2 C$ connected together
$\ddagger \mathrm{G}=$ inputs 1 G and 2 G connected together

RECOMMENDED OPERATING CONDITIONS

	S54155			N74155			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: High logic level			20			20	
Low logic level			10			10	
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$
		S5415			N741		
	MIN	NOM	MAX	MIN	NOM	MAX	-
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Low-level Output Current, IOL			16			16	mA
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		S54155,N74155			UNIT		
		MIN	TYP**	MAX					
$\mathrm{V}_{\text {IH }}$	High-level input voltage					2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V		
V_{OH}	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	$V_{1 H}=2 \mathrm{~V}$,	2.4			V		
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{O L}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$,			0.4	V		
11 H	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$		
${ }_{1}$	(each input)	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA		
IIL	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA		
${ }^{\text {I OS }}$	Short-circuit output current \dagger	$V_{C C}=$ MAX	S54155	-20		-55	mA		
			N74155	-18		-57			
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=\mathrm{MAX}$	S54155 N74155		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	mA		

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		S54156,N74156			UNIT		
		MIN	TYP**	MAX					
$V_{\text {IH }}$	High-level input voltage					2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V		
${ }^{1} \mathrm{OH}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	$V_{1}=2 \mathrm{~V}$,			250	$\mu \mathrm{A}$		
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$			0.4	V		
	High-level input current	$V_{C C}=$ MAX,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$		
$\mathrm{I}_{1 \mathrm{H}}$	(each input)	$V_{C C}=M A X,$	$V_{1}=5.5 \mathrm{~V}$			1	mA		
$1 / \mathrm{L}$	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA		
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=\operatorname{MAX}$	S54156 N74156		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	35 40	mA		

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER ${ }_{\text {¢ }}$	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	MIN	$\begin{aligned} & \text { S54155 } \\ & \text { N74155 } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{gathered} \hline \text { S54156 } \\ \text { N74156 } \\ \text { TYP } \end{gathered}$	MAX	UNIT
${ }^{\text {t PLH }}$	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, 2 \mathrm{C} \\ & 1 \mathrm{G}, \operatorname{or} 2 \mathrm{G} \end{aligned}$	Y	2			13	20		15	23	ns
${ }^{\text {tPHL }}$	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, 2 \mathrm{C} \\ & 1 \mathrm{G}, \text { or } 2 \mathrm{G} \end{aligned}$	Y	2	$C_{L}=15 \mathrm{pF}$,		18	27		20	30	ns
${ }^{\text {t PLH }}$	A or B	Y	3	$R_{L}=400 \Omega$		21	32		23	34	ns
${ }^{\text {t PHL }}$	A or B	Y	3			21	32		23	34	ns
${ }^{\text {tPLH }}$	1 C	Y	3			16	24		18	27	ns
${ }^{\text {t }}$ PHL	1 C	Y	3			20	30		22	33	ns

[^19]TYPICAL APPLICATION DATA
The S54155, N74155, S54156, or N74156 may be used as a dual 2 -line to 4 -line decoder or a 1 -line to 4 -line demultiplexer. These applications are identical except as follows:

When decoding, the 2 -line code is applied to select inputs A and B. The 4 -line output section ($1 \mathrm{Y} 0,1 \mathrm{Y} 1,1 \mathrm{Y} 2,1 \mathrm{Y} 3$) is enabled by taking strobe 1 G low and input 1C high. The other 4 -line output section ($2 \mathrm{Y} 0,2 \mathrm{Y} 1,2 \mathrm{Y} 2,2 \mathrm{Y} 3$) is enabled by taking both strobe 2G and input 2C low. Note that the separate enable lines permit the user complete flexibility in decoding at either or both of the output sections. The strobe also permits cascading and allows disabling of the circuits until the addressing transients have passed.

When demultiplexing, the serial data is applied to the data inputs 1 C and 2 C and distribution to the outputs is controlled by the A and B select inputs. Again, the separate strobe inputs, $1 G$ and $2 G$, permit demultiplexing to occur at either or both output sections, and cascading.

Any of these circuits may also be used as a 3-line to 8 -line decoder or a 1 -line to 8 -line demultiplexer.

When used as a decoder, data inputs 1C and 2C are connected together and serve as the third (C) select line. The strobes are also connected together and are used for enabling and/or cascading.

When used as a demultiplexer, the common strobe line serves as the data input.

DUAL 2-LINE TO 4-LINE DECODER/1TO 4-LINE DEMULTIPLEXER

S54155, N74155, S54156, N74156

3-LINE TO 8-LINE DECODER/1-
TO 8-LINE DEMULTIPLEXER
S54155, N74155, S54156, N74156

QUADRUPLE 2-INPUT DATA SELECTOR/MULTIPLEXER

S54157

DESCRIPTION

The S54157/N74157 and S54158/N74158 are identical with the exception of the S54158/N74158 being inverted. These devices are logical implementations of a four-pole two-position switch, with the position of the switch being set by the logic levels supplied to the one select input. Both assertion and negation outputs are provided. The enable input (E) is active low. When it is not activated the negation output is high and the assertion output is low regardless of all other inputs. The devices provide the ability, in one package, to select four bits of either data or control from two sources. By proper manipulation of the inputs, it can generate four functions of two variables with one variable common. Thus any number of random topic elements used to generate unusual truth tables can be replaced. All outputs are low when disabled (enable high). Both inputs and outputs are buffered.

TRUTH TABLE

INPUTS				OUTPUT Y
ENABLE	SELECT	A B	S54/N74157	
H	X	X	X	L
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

$H=$ High Level, $L=$ Low Level, $X=$ Irrelevant

PIN CONFIGURATION

LOGIC DIAGRAMS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{\text {CC }}$ Normalized Fan-Out from each Output, N High Logic Level Low Logic Level Operating Free-Air Temperature, T_{A}	S54157/58			N74157/58			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		S54157/58			N74157/58			UNIT
				MIN	TYP**	MAX	MIN	TYP**	MAX	
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			2			\checkmark
$V_{I L}$	Low-level input voltage					0.8			0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MAX	$\mathrm{I}_{1}=-12 m A$			-1.5			-1.5	V
		$V_{C C}=\mathrm{MIN}$,	$V_{1 H}=2 \mathrm{~V}$,	2.4			2.4			V
VOH	High-level output voltage	$V_{\text {IL }}=0.8 \mathrm{~V}$,	$\mathrm{IOH}=-800 \mu \mathrm{~A}$	2.4			2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{\text {II }}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OI}}=16 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
11	Input current at maximum input voltage	$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1			1	mA
1 IH	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
Ios	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		-20		-55	-18		-55	mA
ICC	Supply current	$V_{C C}=$ MAX			30	48		30	48	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM	TO	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {P PHL }}$	Data	Output			9	14	ns
tpLH	Data	Output	$C_{L}=15 p F, \quad R_{L}=400$		9	14	ns
${ }^{\text {tPHL }}$	Enable	Any Output			14	21	ns
${ }^{\text {PPLH}}$	Enable	Any Output			13	20	ns
${ }^{\text {tPHL }}$	Select	Any Output			18	27	ns
tPLH	Select	Any Output			15	23	ns

[^20]
DIGITAL 54/74 TTL SERIES

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting schemes. The S54160, S54162, N74160, and N74162 are decade counters and the S54161, S54163, N74161, and N74163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four J-K masterslave flip-flops on the rising (positive-going) edge of the clock input waveform.

All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. A full fan-out to ten normalized Series 54/74 loads is available from each of the outputs in the lowlevel state. A fan-out to 20 normalized Series $54 / 74$ loads is provided in the high-level state to facilitate connection of unused inputs and power dissipation is typically 325 milliwatts.

PIN CONFIGURATION

LOGIC DIAGRAM
S54160/N74160 SYNCHRONOUS DECADE COUNTERS
(S54162/N74162 synchronous decade counters are similar; however the clear is synchronous as shown for the S54163/N74163 binary counters).

LOGIC DIAGRAM (Cont'd)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level	S54160, S54161S54162, S54 163			$\begin{aligned} & \text { N74160, N74161 } \\ & \text { N74162, N74163 } \end{aligned}$			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Clock Frequency, $\mathrm{f}_{\text {clock }}$	0		25	0		25	MHz
Width of Clock Pulse, $\mathrm{t}_{\text {w }}$ (clock)	25			25			ns
Width of Clear Pulse, $\mathrm{t}_{\text {w }}$ (clear)	20			20			ns
Setup Time, $\mathrm{t}_{\text {setup }}$ (Data Inputs, A, B, C, D	15			15			
Enable P	20			20			
Load	15			15			ns
Clear	20			20			
Hold Time at any Input, ${ }_{\text {hold }}$	0			0			ns
Operating Free-Air Temperature, $\mathrm{T}_{\text {A }}$	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise specified)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{f}$ max	Maximum input clock frequency	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$	25	32		MHz
${ }^{\text {t PLH }}$	Propagation delay time, low-to-high-level carry output from clock			23	35	
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level carry output from clock			23	35	
${ }^{\text {P PLH }}$	Propagation delay time, low-to-high-level Q output from clock			13	20	
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level Q output from clock			15	23	ns
${ }^{\text {t PLH }}$	Propagation delay time, low-to-high-level carry output from enable T			8	13	
${ }^{\text {t }}$ PHL	Propagation delay time, high-to-low-level carry output from enable T			10	15	
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level Q output from clear			20	30	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
NOTES:

3. ${ }^{1} \mathrm{CCH}$ is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
4. ' CCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. The input pulses are supplied by a generator having the following characteristics: $t_{r} \leqslant 10 n s ; t_{f} \leqslant 10 n s$. PRR $\leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%$, $Z_{\text {out }} \approx 50 \Omega$. Vary PRR to measure $f_{\text {max }}$.
B. Outputs Q_{D} and carry are tested at t_{n+10} for the $S 54160, S 54162, N 74160$, and $N 74162$, and at t_{n+16} for the S54161,S54163,N74161, and N74163, where t_{n} is the bit time when all outputs are low.

NOTES:
A. The input pulses are supplied by a generator having the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns} ; \mathrm{PRR} \leqslant 1 \mathrm{MHz}$, duty cycle $\leqslant 50 \%$; $Z_{\text {out }} \approx 50 \Omega$.
B. Enable P and enable T setup times are measured at $t_{n}=0$.

8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

DESCRIPTION

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-level transition of the clock input.

All inputs are diode-clamped to minimize transmission-line effects, and are buffered to represent only one Series $54 / 74$ load which simplifies system design. Power dissipation is typically 21 milliwatts per bit. Maximum input clock frequency is typically 36 megahertz.

The S54164 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N 74164 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
truth table

SERIAL INPUTS A AND B		
		$\begin{array}{r} \text { OUTPUT } \\ \text { ATt }_{\mathrm{n}}{ }^{+1} \end{array}$
A	B	$\mathrm{O}_{\mathbf{A}}$
H L H L	H H L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		S54164		N74164		UNIT
				MIN	TYP** MAX	MIN	TYP** MAX	
$V_{1 H}$	High-level input voltage			2		2		V
$V_{\text {IL }}$	Low-level input voltage				0.8		0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MAX,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$		-1.5		-1.5	V
${ }^{\mathrm{OHH}}$	High-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4		2.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & { }^{\mathrm{I} O L}=8 \mathrm{~mA} \end{aligned}$		0.4		0.4	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$		1		1	mA
${ }^{\prime}$ IH	High-level input current	$V_{C C}=$ MAX,	$V_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
1 IL	Low-level input current	$V_{C C}=$ MAX ,	$V_{1}=0.4 \mathrm{~V}$		-1.6		-1.6	mA
${ }^{\text {I OS }}$	Short-circuit output current \dagger	$V_{C C}=\mathrm{MAX}$		-10	-27.5	-9	-27.5	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$ See Note	$\begin{aligned} & V_{1 \text { (clock) }}=0.4 \mathrm{~V} \\ & V_{1(\text { clock })}=2.4 \mathrm{~V} \end{aligned}$		$\begin{array}{ll} 30 & \\ 37 & 54 \end{array}$		$\begin{array}{ll} 30 & \\ 37 & 54 \end{array}$	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=5$

	PARAMETER		MIN	TYP	MAX	UNIT
$\begin{aligned} & f_{\max } \\ & t_{\text {PHL }} \end{aligned}$	Maximum input count frequency Propagation delay time, high-to-low-level Q outputs from clear input	$\begin{aligned} & C_{L}=15 p F \\ & C_{1}=15 p F \end{aligned}$	25	3624	36	MHz
		$C_{L}=15 p F$				ns
		$C_{L}=50 \mathrm{pF}$		28	42	
	Propagation delay time, low-to-high-level Q outputs from clock	$C_{L}=50 \mathrm{pF}$	8	17	27	ns
${ }^{\text {tPLH }}$	high-level Q outputs from clock input		10	20	30	
	Propagation delay time, high-to-low-level Q outputs from clock input	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	10	21	32	
${ }^{\text {tPHL }}$		$C_{L}=50 \mathrm{pF}$	10	25	37	ns

[^21]TYPICAL CLEAR, INHIBIT, SHIFT, CLEAR, AND INHIBIT SEQUENCES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 10 \mathrm{~ns}$, duty cycle $\leqslant 50 \%, \mathrm{Z}_{\text {out }} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.
C. All diodes are 1 N 3064 .
D. Q_{A} output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.
E. Outputs are set to the high level prior to the measurement of $t_{P H L}$ from the clear input.

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {f max }}$				20	26		MHz
${ }^{\text {t PLH }}$	Load	Any			21	31 40	ns
${ }^{\text {t PLH }}$	Clock	Any	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$,		16	27	ns
${ }^{\text {tPHL }}$			$\mathrm{L}_{\mathrm{L}} 15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}$		21	34	
${ }^{\text {tPLH}}$					11	20	
${ }^{\text {t }}$ PHL	H	Q_{H}			24	36	ns
${ }^{\text {P PLH }}$					18	27	
${ }^{\text {P PHL }}$	H	a_{H}			18	27	ns

NOTE: With the outputs open, clock inhibit and shift/load at 4.5 V , and a clock pulse applied to the clock input, C ce is measured first with the parallel inputs at 4.5 V , then with the parallel inputs grounded.

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
${ }_{*}^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
$f_{\text {max }} \equiv$ Maximum input count frequency
${ }^{t_{P L H}} \equiv$ Propagation delay time, low-to-high-level output
${ }^{{ }^{\mathrm{P}} \mathrm{PH}} \mathrm{L} \equiv$ Propagation delay time, high-to-low-level output

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

DESCRIPTION

These 8 -bit shift registers are compatible with most other TTL, DTL, and MSI logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 35 megahertz and power dissipation is typically 360 mW .
All Series 54 devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series 74 devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
These parallel-in or serial-in, serial-out shift registers have a complexity of 77 equivalent gates on a monolithic chip. They feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the gate input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock and sets all flip-flops to zero. Average power dissipation per gate is typically 4.7 mW .

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level	S54166			N74166			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	$\begin{aligned} & 5.5 \\ & 20 \\ & 10 \\ & 25 \end{aligned}$	4.75	5	$\begin{array}{r} 5.25 \\ 20 \\ 10 \\ 25 \end{array}$	v
Input Count Frequency, $\mathrm{f}_{\text {count }}$	0			0			MHz
Width of Clock or Clear Pulse, t_{w}	20			20			ns
Mode-Control Setup Time, $\mathrm{t}_{\text {setup }}$	30			30			ns
Data Setup Time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Hold Time at any Input, ${ }_{\text {hold }}$	0			0			ns
Operating Free-Air Temperature, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		S54166			N74166			UNIT
				MIN	TYP**	MAX	MIN	TYP*	MAX	
$V_{\text {IH }}$	High-level input voltage			2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V
	Input clamp voltage	$V_{C C}=$ MAX,	$I_{I}=-12 m A$			-1.5			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN} \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{1 H}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & { }^{\prime} \mathrm{OL}=16 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
I_{1}	Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}$,	$V_{1}=5.5 \mathrm{~V}$			1			1	mA
${ }^{\prime} \mathrm{IH}$	High-level input current	$V_{C C}=$ MAX,	$V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
'OS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		-20		-57	-18		-57	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX	able Below		72	104		72	116	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input count frequency			25	35		MHz
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clear				23	35	ns
${ }^{t_{P H L}}$	Propagation delay time, high-to-low-level output from clock	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	8	20	30	ns
${ }^{\text {PLH }}$	Propagation delay time, low-to-high-level output from clock			8	17	26	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.
TEST CONDITIONS FOR ${ }^{\text {CC }}$ (all outputs are open)

TYPE	APPLY 4.5V	FIRST GROUND, THEN APPLY 4.5V	GROUND
S54166, N74166	Serial Input	Clock	All other inputs

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 54170 and 74170 MSI 16 -bit TTL register files incorporate the equivalent of 98 gates on a monolithic chip. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location.

Four data inputs are available which are used to supply the 4 -bit word to be stored. Location of the word is determined by the write address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write enable input, G_{W} is high, the data inputs are inhibited and their states can cause no change in the information stored in the internal latches. When the read enable output, G_{R}, is high, the data outputs are inhibited and remain high.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates
are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement-data-entry addressing separate from data-read addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (45 nanoseconds maximum) and the read time (35 nanoseconds maximum). The register file has a nondestructive readout in that data is not lost when addressed.

All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the readaddress function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length.

Power dissipation is typically 500 mW total or 5 mW per gate. The 54170 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the 74170 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (over operating free-air temperature range unless otherwise noted)

Supply voltage V_{CC} (see Note 1) 7 V
Input voltage (see Note 1) 5.5 V
Output voltage (see Notes 1 and 2) 5.5 V
Operating free-air temperature range
54170 Circuits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
74170 N Circuits $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTES:

1. Voltage values are with respect to network ground terminal.
2. This is the maximum voltage which should be applied to any output when it is in the off state.

PIN CONFIGURATION
B,F,W, PACKAGE

RECOMMENDED OPERATING CONDITIONS

		54170			74170			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage V_{CC}		4.5	5	5.5	4.75	5	5.25	V
Low-level output current, IOL				16			16	mA
Width of write-enable or read-enable puise, t_{w}		25			25			ns
	data input with respect to write enable, $\mathrm{t}_{\text {setup }}(\mathrm{D})$	10			10			ns
Setup times, high- or low-level data (See Note 3)	write select with respect to write enable, tsetup(W)	15			15			ns
	read select with respect to read enable, $\mathrm{t}_{\text {setup }}(\mathrm{R})$	5			5			ns
	data input with respect to write enable, thold(D)	0			0			ns
Hold times, high- or low-level data (See Note 4)	write select with respect to write enable, thold(W)	5			5			ns
	read select with respect to read enable, thold(R)	5			5			ns
Latch time for new data, tlatch (See Note 5)		25			25			ns
Operating free-air temperature range, T_{A}		-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES:
3. Setup time is the interval immediately preceding the negative-going edge of the enable pulse during which interval the data or address to be recognized must be maintained at the input to ensure its recognition.
4. Hold time is the interval immediately following the positive-going edge of the enable pulse during which interval the data or address to be recognized must be maintained at the input to ensure its continued recognition.
5. Latch time is the time required for the internal output of the latch to assume the state of new data. See Figure 1 . This is important only when attempting to read from a location immediately after that location has received new data.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP \ddagger	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$V_{C C}=$ MIN,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			30	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$,			0.4	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
1/H	High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{1} \mathrm{CC}$	Supply current	$\begin{aligned} & V_{C C}=M A X, \\ & \text { see Note } 6 \end{aligned}$	$\begin{aligned} & 54170 \\ & 74170 \end{aligned}$		$\begin{aligned} & 125 \text { ? } \\ & 125 \text { } \end{aligned}$	$\begin{aligned} & 140 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\#Typical power dissipation shown is an average for 50% duty cycle at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 6:
Maximum ICC is guaranteed for the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high-level output, from read enable to any Q	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		10	15	ns
tPHLq	Propagation delay time, high-to-low-level output, from read enable to any Q	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		20	30	ns

LOGIC

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)						
WRITE INPUTS			WORD			
W_{B}	$W_{\text {A }}$	GW	0	1	2	3
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{n}	O_{n}	Q_{n}
L	H	L	O_{n}	$\mathrm{Q}=\mathrm{D}$	O_{n}	Q_{n}
H	L	L.	O_{n}	Q_{n}	$\mathrm{Q}=\mathrm{D}$	O_{n}
H	H	L	O_{n}	Q_{n}	Q_{n}	$\mathrm{Q}=\mathrm{D}$
x	x	H	O_{n}	Q_{n}	O_{n}	O_{n}

READ FUNCTION TABLE (SEE NOTES A AND D)						
READ INPUTS			OUTPUTS			
$\mathbf{R}_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{A}}$	$\mathrm{G}_{\mathbf{R}}$	10	20	30	40.
L	L	L	WOB1	WOB2	W0B3	W0B4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	H	H	H	H

NOTES:

A. $H=$ high level, $L=$ low level, $X=$ irrelevant
B. $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
C. $Q_{n}=$ No change.
D. WOB1 $=$ The first bit of word 0 , etc.

SWITCHING CHARACTERISTICS

\square

VOLTAGE WAVEFORMS

NOTES:
A. Hign-level inputs are illustrated; however, low-level setup and hold times are the same.
B. Waveforms are supplied by generators with the following characteristics: $P R R \leqslant 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$, duty cycle $\leqslant 50 \%$, $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$.
C. This applies only when reading from a location immediately after that location has received new data.

QUADRUPLE D-TYPE EDGE-TRIGGERED FLIP-FLOPS

DIGITAL 54/74 TTL SERIES

DESCRIPTION

These monolithic, positive-edge-triggered flip-flops utilize TTL circuits to implement the D-type flip-flop logic. Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D-input signal has no effect.

These circuits are fully compatible for use with most TTL or DTL circuits. A full fan-out to 10 low logic-level loads and 20 high-logic-level loads is available from each of the outputs. This simplifies system design by allowing unused inputs to be tied to driven inputs. Maximum clock frequency is typicaliy 25 megahertz, with a typical power dissipation of 38 milliwatts per flip-flop.

TRUTH TABLE

INPUT	OUTPUT
t_{n}	$t_{n}+1$
D	Q
H	H
L	L

$t_{n}=$ Bit time before clock pulse transition.
$t_{n}+1=$ Bit time after clock pulse transition.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (over operating free-air temperature range unless other wise noted)

Supply voltage $V_{C C}$ (See Note 1)	7 V
Input voltage (See Note 1)	5.5 V
Operating free-air temperature range:	
54175 Circuits	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\quad 74175$ Circuits	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE 1:
Voltage values are with respect to network ground terminal.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	54175			74175			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
$\begin{array}{ll}\text { Normalized fan-out from } & \text { High Logic } \\ \text { each output, } N & \text { Level }\end{array}$			20			20	
Low Logic Level			10			10	
Input clock frequency, $\mathrm{f}_{\text {clock }}$	0		25	0		25	MHz
Width of clock or clear pulse, t W	20			20			ns
Data setup time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Hold time thold	0			0			ns
Operating free-air temperature, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$
Clear release setup, $\mathrm{t}_{\text {release }}$	25			25			ns

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input clock frequency			25	35		MHz
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output Q from clear	$C_{L}=15 \mathrm{pF}$	$R_{L}=400$		23	35	ns
tPLH	Propagation delay time low-to-high-level output Q from clear (54175, 74175)				16	30	ns
tPHL	Propagation delay time, high-to-low-level output from clock				21	30	ns
tPLH	Propagation delay time, low-to-high-level output from clock				20	30	ns

8-BIT ODD/EVEN PARITY
 GENERATOR/CHECKER

S54180-A,F,W • N74180-A,F
S54180
N74180
DIGITAL 54/74 TTL SERIES

DESCRIPTION
The 54/74180 8-Bit Odd/Even Parity Generator/Checker is a TTL monolithic array featuring gating logic arranged to generate or check odd or even parity.

LOGIC DIAGRAM

PIN CONFIGURATIONS

TRUTH TABLE

INPUTS		OUTPUTS		
Σ OF 1's AT 0 THRU 7	EVEN	ODD	Σ EVEN	Σ ODD
EVEN	1	0	1	0
ODD	1	0	0	1
EVEN	0	1	0	1
ODD	0	1	1	0
X	1	1	0	0
X	0	0	1	1

X = irrelevant

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} (See Note 1): $\quad \begin{aligned} & \text { S54180 } \\ & \\ & \\ & \\ & \\ & \end{aligned} 74180$	MIN	NOM	MAX	UNIT
	$\begin{array}{r} 4.5 \\ 4.75 \end{array}$	5	5.5	V
		5	5.25	V
Normalized Fan-Out from each Output, N: Logical 0 Logical 1			10	V
			20	V

NOTE: 1. These voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpd1 }}$	Data	$\boldsymbol{\Sigma}$ Even	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		40	60	ns
$t_{\text {pdo }}$	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		25	38	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		32	48	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		45	68	ns
${ }_{\text {tpd1 }}$	Data	$\boldsymbol{\Sigma}$ Even	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		32	48	ns
$\mathrm{t}_{\text {pd0 }}$	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		45	68	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		40	60	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	38	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Even or Odd	Σ Even or Σ Odd	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		13	20	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Even or Odd	Σ Even or Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	10	ns

[^22] device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

DESCRIPTION

The 54181 and 74181 are high-speed arithmetic logic units (ALU)/ function generators which have a complexity of 75 equivalent gates on a monolithic chip. This circuit performs 16 binary arithmetic operations on two 4 -bit words as shown in the function table. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in the $54181 / 74181$ for fast, simultaneous carry generation with a group carry propagate (P) and carry generate (G) for the 4 bits in the package. When used in conjunction with the 54182 or 74182 full carry look-ahead circuits, high-speed arithmetic operations can be performed. For example, the typical addition time for the $54181 / 74181$ is 24 nanoseconds for 4 bits. When expanding to 16 -bit addition with the 54182/74182, only 13 nanoseconds, further delay is added so that the total addition time is 35 nanoseconds, or 2.2 nanoseconds per bit. One 54182/74182 is needed for every 16 bits (four 54181/74181 circuits).

These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in the function table and include exclusiveOR, NAND, AND, NOR and OR functions.

The $54181 / 74181$ is designed with a Darlington output configuration $(54 \mathrm{H} / 74 \mathrm{H}$ type) to reduce the high-logic-level output impedance and thereby improve the turn-off propagation delay time. All outputs are rated at a normalized fan-out of ten at the low logic level and increased to a fan-out of 20 at the high logic level. The increased high-logic-level fan-out allows the system designer more freedom in tying unused inputs to driven inputs.

DIGITAL 54/74 TTL SERIES
The 54181 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the 74181 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

TRUTH TABLES

TABLE OF ARITHMETIC OPERATIONS

FUNCTION SELECT				OUTPUT FUNCTION	
S3	S2		S0	LOW LEVELS ACTIVE	HIGH LEVELS ACTIVE
L	L	L	L	$F=A$ minus 1	$F=A$
L	L	L	H	$F=A B$ minus 1	$F=A+B$
L	L	H	L	$F=A \bar{B}$ minus 1	$F=A+\bar{B}$
L	L	H	H	$\begin{aligned} & F=\text { minus } 1(2 \text { 's } \\ & \text { complement }) \end{aligned}$	$\begin{aligned} & F=\text { minus } 1(2 ' s \\ & \text { complement) } \end{aligned}$
L	H	L	L	$F=A$ plus $(A+\bar{B})$	$F=A$ plus $A \bar{B}$
L	H	L	H	$F=A B$ plus $(A+\bar{B})$	$F=(A+B)$ plus $A \bar{B}$
L	H	H	L	$F=A$ minus B minus 1	$F=A$ minus B minus 1
L	H	H	H	$F=A+\bar{B}$	$F=A \bar{B}$ minus 1
H	L	L	L	$F=A$ plus $(A+B)$	$F=A$ plus $A B$
H	L	L	H	$F=A$ plus B	$F=A$ plus B
H	L	H	L	$F=A \bar{B}$ plus ($A+B$)	$F=(A+\bar{B})$ plus $A B$
H	L	H	H	$F=A+B$	$F=A B$ minus 1
H	H	L	L	$F=A$ plus A^{\dagger}	$F=A$ plus A^{\dagger}
H	H	L	H	$F=A B$ plus A	$F=(A+B)$ plus A
H	H	H	L	$F=A \bar{B}$ plus A	$F=(A+\bar{B})$ plus A
H	H	H	H	$F=A$	$F=A$ minus 1

TABLE OF LOGIC FUNCTIONS

FUNCTION SELECT				OUTPUT FUNCTION	
				NEGATIVE LOGIC	POSITIVE LOGIC
L.	L	L	L	$F=\bar{A}$	$F=\bar{A}$
L	L	L	H	$F=\overline{A B}$	$F=\overline{\underline{A}+B}$
L	L	H	L	$F=\vec{A}+B$	$F=\bar{A} B$
L	L	H	H	$F=$ Logical 1	$F=$ Logical 0
L	H	L	L	$F=\overline{A+B}$	$F=\overline{A B}$
L	H	L	H	$F=\bar{B}$	$F=\bar{B}$
L	H	H	L	$F=\overline{A+B}$	$F=A+B$
L	H	H	H	$F=\bar{A}+\bar{B}$	$F=A \bar{B}$
H	L	L	L	$F=\bar{A} B$	$F=\bar{A}+B$
H	L	L	H	$F=A+B$	$F=\overline{A+B}$
H	L	H	L	$F=B$	$F=B$
H	L	H	H	$F=A+B$	$F=A B$
H	H	L	L	$F=$ Logical 0	$F=$ Logical 1
H	H	L	H	$F=A B$	$F=A+\bar{B}$
H	H	H	L	$F=A B$	$F=A+B$
H	H	H	H	$F=A$	$F=A$

NOTES:

With mode control (M) and C_{n} low
${ }^{\dagger}$ Each bit is shifted to the next more significant position.

With mode control (M) high: C_{n} irrelevant For positive logic: logical $1=$ high voltage logical $0=$ low voltage
For negative logic: logical $1=$ low voltage logical $0=$ high voltage

LOGIC DIAGRAM

recommended operating characteristics

	S54181			N74181			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage $V_{C C}$ Normalized Fan-Out from each Output, N: High logic level Low logic level	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage				2			v
$V_{\text {IL }}$	Low-level input voltage						0.8	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN} \\ & V_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O H}=-800 \mu \mathrm{~A} \end{aligned}$		2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN} \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$				0.4	V
I_{IH}	High-level input current (mode input)						40	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (any \bar{A} or \bar{B} input)						120	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (any S input)	$V_{C C}=$ MAX	$V_{1}=2.4 \mathrm{~V}$				160	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (carry input)						200	$\mu \mathrm{A}$
${ }_{1} \mathrm{H}$	High-level input current (any input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=5.5 \mathrm{~V}$				1	mA
$I_{\text {IL }}$	Low-level input current (mode input)						-1.6	mA
${ }^{1}$ IL	Low-level input current (any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ input)						-4.8	mA
$I_{\text {IL }}$	Low-level input current (any S input)	$V_{C C}=$ MAX	$v_{1}=0.4 \mathrm{~V}$				-6.4	mA
$I_{\text {IL }}$	Low-level input current (carry input)						-8	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current	$\mathrm{V}_{\mathrm{CC}}=$ MAX		S54181	-20 -18		-55	mA
OS		$V_{C C}$ MAX		N74181	-18		-57	mA
${ }^{1} \mathrm{Cc}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		S54181			127	mA
CC		CC MAX		N74181		88	140	
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		S54181 N74181		$\begin{aligned} & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 135 \\ & 150 \end{aligned}$	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10\left(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega\right)$

PARAMETER ${ }^{\text { }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
					12	18	
${ }^{\text {tPLH }}$	C_{n}	C_{n+4}				19	ns
${ }^{\text {tPHL }}$							
	C_{n}	Any F			13	19	
			(SUM or DIFF mode)		12	18	ns
${ }^{\text {tPHL }}$							
${ }^{\text {P PLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}$,		13	19	
${ }^{\text {P PHL }}$			S1 $=$ S2 $=0 V$ ($\overline{S U M}$ mode $)$		13	19	ns
${ }^{\text {P PLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	$\overline{\mathrm{G}}$	$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=53=0 \mathrm{~V}$,		17	25	
${ }^{\text {tPHL}}$			$\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}$ ($\overline{\mathrm{DIFF}}$ mode $)$		17	25	ns
${ }^{\text {P PLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	\bar{P}	$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}$,		13	19	
${ }^{\text {tPHL}}$			$\mathrm{S} 1=\mathrm{S} 2=0 \mathrm{~V}(\overline{\text { SUM }}$ mode $)$		17	25	ns
${ }^{\text {P PLH }}$	Any \bar{A} or \bar{B}	\bar{p}	$M=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}$,		17	25	
${ }^{\text {t }} \mathrm{PHL}$			$\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}}$ mode$)$		17	25	ns
${ }^{\text {P PLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	Any $\overline{\mathrm{F}}$	$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=4.5 \mathrm{~V}$,		28	42	
${ }^{\text {tPHL}}$			S1 $=$ S2 $=0 V(\overline{S U M}$ mode $)$		21	32	ns
${ }^{\text {tPLH }}$	Any $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$	Any $\overline{\mathrm{F}}$	$\mathrm{M}=0 \mathrm{~V}, \mathrm{SO}=\mathrm{S} 3=0 \mathrm{~V}$,		32	48	
${ }^{\text {tPHL}}$			$\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}}$ mode$)$		23	34	ns
${ }^{\text {P PLH }}$	Any A or B	Any $\overline{\mathrm{F}}$	$\mathrm{M}=4.5 \mathrm{~V}$ (logic model)		32	48	
${ }^{\text {tPHL }}$	Any A or	Any F			23	34	ns
${ }^{\text {P PLH }}$			$M=0 V, S 0=S 3=0 V$,		35	50	
${ }^{\text {t PHL }}$	Any A or B	$\bar{A}=\bar{B}$	$\mathrm{S} 1=\mathrm{S} 2=4.5 \mathrm{~V}(\overline{\mathrm{DIFF}}$ mode$)$		32	48	ns

[^23]TYPICAL APPLICATION DATA

LOOK-AHEAD CARRY GENERATOR

S54182-B,F,W • N74182-B, F
S54182

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

The S54182, N74182 is a high-speed, look-ahead carry generator capable of anticipating a carry across four binary adders or group of adders. It is cascadable to perform full look-ahead across n-bit adders, with only 13 nanoseconds delay for each level of look-ahead. Carry, generate-carry, and propagate-carry functions are provided as enumerated in the pin designation table above.
The S54182 or N74182, when used in conjunction with the S54181 or N74181 arithmetic logic unit (ALU), provides full high-speed carry look-ahead capability for up to n-bit words. Each S54182/ N74182 generates the look-ahead (anticipated carry) across a group of four ALUs and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. Applications data for the S54181/N74181 illustrates cascading of S54182/N74182 circuits to perform multi-level look-ahead.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	S54182			N74182			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N: High logic level			20			20	
Low logic level			10			10	
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & V_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=\text { MIN, } \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O L}=16 \mathrm{~mA} \end{aligned}$			0.4	V
${ }_{1} \mathrm{H}$	High-level input current (C_{n} input)					80	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (P3 input)					120	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (P2 input)					160	$\mu \mathrm{A}$
$I_{1 H}$	High-level input current (PO, P1, or G3 input)	$V_{C C}=\mathrm{MAX}$,	$V_{1}=2.4 \mathrm{~V}$			200	$\mu \mathrm{A}$
${ }_{1} \mathrm{H}$	High-level input current (GO or G2 input)					360	$\mu \mathrm{A}$
$I_{1 H}$	High-level input current (G1 input)					400	$\mu \mathrm{A}$
${ }^{1} \mathrm{IH}$	High-level input current (any input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IL }}$	Low-level input current (C_{n} input)					-3.2	mA
$I_{\text {IL }}$	Low-level input current (P3 input)					-4.8	mA
$I_{\text {IL }}$	Low-level input current (P2 input)					-6.4	mA
$I_{\text {IL }}$	Low-level input current (P0, P1, or G3 input)	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-8	mA
$I_{\text {IL }}$	Low-level input current (G0 or G2 input)					-14.4	mA
$I_{\text {IL }}$	Low-level input current (G1 input)					-16	mA
Ios	Short-circuit output current \dagger	$V_{C C}=M A X$		-40		-100	mA
${ }^{1} \mathrm{CCH}$	Supply current, all outputs high	$V_{C C}=M A X$	S54182 N74182		27		mA
${ }^{\mathrm{I}} \mathrm{CCL}$	Supply current, all outputs low	$V_{C C}=$ MAX	S54182 N74182		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 77 \end{aligned}$	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

[^24]
SYNCHRONOUS DECADE UP/DOWN COUNTER WITH PRESET INPUTS

DESCRIPTION

This is a synchronous reversible (up/down) counter having a complexity of 55 equivalent gates. The S54192 and N74192 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The outputs of the master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

These counters are fully programmable; that is, the outputs may be present to any state by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. An input buffer has been placed on the clear, count, and load inputs to lower the drive requirements to one normalized Series $54 / 74$ load. This is important when the output of the driving circuitry is somewhat limited.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up-and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

Power dissipation is typically 325 milliwatts for either the decade or binary version. Maximum input count frequency is typically 32 megahertz and is guaranteed to be 25 MHz minimum.

PIN CONFIGURATIONS

LOGIC DIAGRAM

DECADE COUNTER (typical clear, load, and count sequences)
lllustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to BCD seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N	S54192			N74192			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			10			10	
Input Count Frequency, $\mathrm{f}_{\text {count }}$	0		$25 *$	0		25*	MHz
Width of Any Input Pulse, t_{w}	20*			20*			ns
Data Setup Time, $\mathrm{t}_{\text {setup }}$ (See Note 2)	20*			20*			ns
Data Hold Time, thold (See Note 3)	0			0			ns
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES:

1. Voltage values are with respect to network ground terminal.
2. Setup time is the interval immediately preceding the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
3. Hold time is the interval immediately following the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
*These conditions are recommended for use at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$ (See Note)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$f_{\text {max }} \quad$ Maximum input count	$C_{L}=15 p F, \quad R_{L}=400 \Omega$	25		MHz
$\mathrm{t}_{\text {setup }}$ Minimum input setup time			20	ns
Propagation delay time, low- ${ }^{\text {t PLH }}$ to-high-level carry output from count-up input			26	ns
Propagation delay time, high-to-low-level carry output			24	ns
from count-up input				
Propagation delay time, low- ${ }^{\text {t PLH }}$ to-high-level borrow output			24	ns
from count-down input				
Propagation delay time, highto low-level borrow output			24	ns
from count-down input				
Propagation delay time, low-				
$\mathrm{t}_{\text {PLH }}$ to-high-level Q output from			38	ns
either count input				
Propagation delay time, high-				
$\mathrm{t}_{\text {PHL }} \quad$ to-low-level Q output from			47	ns
either count input				
tplh load				
tplh Load			40	
tPHL CLEAR			25	

NOTE: Above Switching Table Applies to (S54192 \& N74192)
*For conditions shown as MIN or MAX, use the appropriate value specitied under recommended operating conditions for the applicable circuit type.
${ }^{*}$ *All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

CASCADING

Circuitry is provided internally for cascading these counters. The mode of cascading shown is ripple borrow/carry. No external components are required.

SYNCHRONOUS 4-BIT BINARY UP/DOWN COUNTER WITH PRESET INPUTS

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S54193 and N74193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The oututs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, the outputs may be preset to any state by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. An input buffer has been placed on the clear, count, and load inputs to lower the drive requirements to one normalized Series 54/74 load. This is important when the output of the driving circuitry is somewhat limited.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

Power dissipation is typically 325 milliwatts for either the decade or binary version. Maximum input count frequency is typically 32 megahertz and is guaranteed to be 25 MHz minimum. All inputs are
buffered and represent only one normalized Series 54/74 load. Input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

PIN CONFIGURATIONS

LOGIC DIAGRAM

BINARY COUNTER (typical clear, load, and count sequences)
lllustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to BCD seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

RECOMMENDED OPERATING CONDITIONS

	S54193			N74193			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N			10			10	
Input Count Frequency, $\mathrm{f}_{\text {count }}$	0		25*	0		25*	MHz
Width of Any Input Pulse, ${ }_{\text {w }}$	20^{*}			20^{*}			ns
Data Setup Time, $\mathrm{t}_{\text {setup }}$ (See Note 2)	20*			20*			ns
Data Hold Time, thold (See Note 3)	0			0			ns
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES:

1. Voltage values are with respect to network ground terminal.
2. Setup time is the interval immediately preceding the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
3. Hold time is the interval immediately following the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
*These conditions are recommended for use at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

[^25]SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$ (See Note)

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

CASCADING

Circuitry is provided internally for cascading these counters. The mode of cascading shown is ripple borrow/carry. No external components are required.

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

DIIITAL 54/74 TTL SERIES

DESCRIPTION

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

	MODE CONTROL	
	S1	S0
Parallel (Broadside) Load	H	H
Shift Right (In the direction Q_{A} toward Q_{D})	L	H
Shift Left (In the direction Q_{D} toward Q_{A})	H	L
Inhibit Clock (Hold)	L	L

In the parallel-load mode, data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. Clocking of the flip-flops is inhibited when both modecontrol inputs are low. The mode controls should be changed only while the clock input is high.

These 4-bit shift registers are compatible with most other TTL and DTL logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamp-
ing diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 36 megahertz and power dissipation is typically 195 mW .

The S54194 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N 74194 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level	S54194			N74194			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Clock Frequency, $\mathrm{f}_{\text {clock }}$	0		25	0		25	MHz
Width of Clock or Clear Pulse, t_{w}	20			20			ns
Setup Time, $\mathrm{t}_{\text {setup }}$: Mode control	30			30			ns
Serial and parallel data	20			20			ns
Clear inactive-state	25			25			ns
Hold Time at any Input, thold	0			0			ns
Operating Free-Air Temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
$1 /$	Input clamp voltage	$V_{C C}=$ MIN,	$I_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{1 H}=2 V \\ & I_{O H}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O L}=16 \mathrm{~mA} \end{aligned}$			0.4	V
1	Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IH }}$	High-level input current	$V_{C C}=$ MAX	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current \dagger	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	S54194 N74194	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		-57 -57	mA
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	See Note 2		39	63	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input clock frequency			25	36		MHz
t_{PHL}	Propagation delay time, high-to-low-level output from clear	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		19	30	ns
${ }^{t_{P L H}}$	Propagation delay time, low-to-high-level output from clock			7	14	22	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clock			7	17	26	ns

[^26]
4-BIT PARALLEL-ACCESS SHIFT REGISTER

DESCRIPTION

These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear.
The registers have two modes of operation:
Parallel (Broadside) Load
Shift (In direction Q_{A} toward Q_{D})
Parallel loading is accomplished by applying the 4 bits of data and taking the shift/load control input low. The data are loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode are entered at the J-K inputs. These inputs permit the first stage to perform as a J-K, D-, or T-type flip-flop as shown in the truth table.
These shift registers are fully compatible with most other TTL and DTL families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, including the clock input. Maximum input clock frequency is typically 39 megahertz and power dissipation is typically 195 milliwatts. The $\$ 54195$ is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N 74195 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TRUTH TABLE

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input clock frequency			30	39		MHz
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clear				19	30	ns
${ }^{\text {tPLH}}$	Propagation delay time, low-to-high-level output from clock	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	6	14	22	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clock			7	17	26	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
NOTE With all outputs open, shift/load grounded, and 4.5 V applied to the J, \bar{K}, and data inputs, ${ }^{1} \mathrm{Cc}$ is measured by applying a momentary ground, followed by 4.5 V , to clear, and then applying a momentary ground, followed by 4.5 V , to clock.

DESCRIPTION

These 8-bit shift registers are compatible with most other TTL, DTL, and MSI logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 35 megahertz and power dissipation is typically 360 mW .

All Series 54 devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series 74 devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The bidirectional registers are designed to incorporate virtually all of the features a system designer may want in a shift register. These circuits contain 87 equivalent gates and feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (Broadside) Load
Shift Right (In the direction Q_{A} toward Q_{H})
Shift Left (In the direction Q_{H} toward Q_{A})
Inhibit Clock (Do nothing)
Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_{0} and S_{1}, high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_{0} is high and S_{1} is low. Serial data for this mode is entered at the shift-right data input. When S_{0} is low and S_{1} is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

Average power dissipation per gate is typically 4.15 mW .

PIN CONFIGURATIONS

TRUTH TABLE

OPERATION OF MODE CONTROL		
INPUTS		MODE
$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	
L	L	INHIBIT CLOCK
H	L	SHIFT LEFT
L	H	SHIFT RIGHT
H	H	PARALLEL LOAD

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	S54198			N74198			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage $V_{C C}$ Normalized Fan-Out from each Output, N: High logic level Low logic level	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Count Frequency, $\mathbf{f}_{\text {count }}$	0		25	0		25	MHz
Width of Clock or Clear Pulse, t_{w}	20			20			ns
Mode-Control Setup Time, $\mathrm{t}_{\text {setup }}$	30			30			ns
Data Setup Time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Hold Time at any Input, $\mathrm{t}_{\text {hold }}$	0			0			ns
Operating Free-Air Temperature, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CON	DITIONS*	S54198			N74198			UNIT
				MIN	TYP**	MAX	MIN	TYP**	MAX	
$V_{1 H}$	High-level input voltage			2			2			V
$V_{1 L}$	Low-level input voltage					0.8			0.8	V
V_{1}	Input clamp voltage	$V_{C C}=\mathrm{MAX}$,	$I_{1}=-12 m A$			-1.5			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			2.4			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1			1	mA
$I_{\text {IH }}$	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low-level input current	$V_{C C}=\mathrm{MAX}$,	$V_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
${ }^{1} \mathrm{OS}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		-20		-57	-18		-57	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=$ MAX,	Table Below		72	104		72	116	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
TEST CONDITIONS FOR ICC (all outputs are open)

TYPE	APPLY 4.5V	FIRST GROUND, THEN APPLY 4.5V	GROUND
S54198, N74198	Serial input, $\mathrm{S}_{0}, \mathrm{~S}_{1}$	Clock	Clear, Inputs A thru H

PIN CONFIGURATIONS

TRUTH TABLE

INPUTS at t_{n}		OUTPUT t_{n+1}
J	K	\mathbf{Q}_{A}
L	H	$Q_{A n}$
L	L	L
H	H	$\bar{H}_{A n}$
H	L	$\bar{Q}_{A n}$

NOTES:
A. $\mathrm{t}_{\mathrm{n}}=$ bit time before
clock pulse
B. $\mathrm{t}_{\mathrm{n}+1}=$ bit time after clock pulse

H - high level, L = low level

These shift registers contain the equivalent of 79 TTL gates. Average power dissipation per gate is typically 4.55 mW .

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out From each output, N: High logic level Low logic level	S54199			N74199			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Count Frequency, $\mathrm{f}_{\text {count }}$	0		25	0		25	MHz
Width of Clock or Clear Pulse, ${ }^{\text {t }}$ w	20			20			ns
Mode-Control Setup Time, $\mathrm{t}_{\text {setup }}$	30			30			ns
Data Setup Time, $\mathrm{t}_{\text {setup }}$	20			20			ns
Hold Time at any Input, thold	0			0			ns
Operating Free-Air Temperature, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *		S54199			N74199			UNIT
				MIN	TYP**	MAX	MIN	TYP *	MAX	
$V_{1 H}$	High-level input voltage			2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	\checkmark
V_{1}	Input clamp voltage	$V_{C C}=$ MAX,	$I_{1}=-12 m A$			-1.5			-1.5	V
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{IOH}^{\prime}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			2.4			V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O L}=16 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1			1	mA
$I_{1 H}$	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=$ MAX,	$V_{1}=0.4 \mathrm{~V}$			-1.6			-1.6	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C C}=M A X$		-20		-57	-18		-57	mA
${ }^{\prime} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	Table Below		72	104		72	116	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input count frequency		25	35		MHz
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clear			23	35	ns
${ }^{\text {t }}$ HLL	Propagation delay time, high-to-low-level output from clock	$C_{L}=15 p F, \quad R_{L}=400 \Omega$	8	20	30	ns
${ }^{\text {P PLH }}$	Propagation delay time, low-to-high-level output from clock		8	17	26	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.
TEST CONDITIONS FOR ICC (all outputs are open)

TYPE	APPLY 4.5V	FIRST GROUND, THEN APPLY 4.5V	GROUND
S54199, N74199	J, \bar{K}, Inputs A thru H	Clock	Clock Inhibit, Clear, Shift/Load

54H/74H
 High Speed Series SSI

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : $\begin{aligned} & \text { S54H00 Circuits } \\ & \text { N74H00 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S54H00 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H00 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required of any input terminal to ensure logical 1 level at output	$V_{C C}=M I N,$				0.8	V
$\mathrm{V}_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {Ioad }}=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V} \end{aligned}$			50	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,		-40		-100	mA
${ }^{1} \mathrm{CCO}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		26	40	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$V_{\text {in }}=0$		10	16.8	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ d0	Propagation delay time to logical 0 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		6.2	10	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		5.9	10	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.

QUADRUPLE 2-INPUT POSITIVE NAND GATE WITH OPEN COLLECTOR OUTPUT

S54H01-A,F,W • N74H01-A,F
S54H01
N74HO1
DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

recommended operating conditions

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS* |
| :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP**	MAX	UNIT
${ }^{\text {ppdo }}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		7.5	12.0	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		10.0	15.0	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Load resistor R_{L} is connected from $V_{c c}$ to the output, and load capacitor C_{L} is connected from the output to ground.

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $V_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pdO }}$	Propagation delay time to logical 0 level Propagation delay time to logical 1 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	UNIT
$t_{\text {pd1 }}$	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	6.5	10

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{c c}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each inverter)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

$\begin{array}{ll}\text { Supply Voltage } \mathrm{V}_{\mathrm{CC}} \text { : } & \text { S54H05 Circuits } \\ \\ \text { N74H05 Circuits }\end{array}$		MIN	NOM	MAX	UNITV
		$\begin{array}{r} 4.5 \\ 4.75 \end{array}$	55	$\begin{array}{r} 5.5 \\ 5.25 \end{array}$	
					V
Normalized Fan-Out from each Output, N				10	${ }^{\circ} \mathrm{C}$
Operating Free-Air Temperature Range, T_{A} :	S54H05 Circuits	-55	25	125	
	N74H05 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at input terminal to ensure logical $0_{(o n)}$ level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at input terminal to ensure logical ${ }^{1}$ (off) level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				0.8	V
lout(1)	Output reverse current	$\begin{aligned} & V_{C C}=M I N_{1} \\ & V_{\text {out }(1)}=5.5 \mathrm{~V} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
$V_{\text {out (0) }}$	Logical 0 output voltage (on level)	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$\operatorname{lin}_{\text {in }}(0)$	Logical 0 level input current	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		40.0	58.0	$m A$
${ }^{1} \mathrm{CCC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=0$		16.0	26.0	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H05 • N74H05
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 0$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		10	15	ns
${ }^{\text {p }}$ d1	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		13	18	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Load resistor R_{L} is connected from $V_{C C}$ to the output, and load capacitor C_{L} is connected from the output to ground.

QUADRUPLE 2-INPUT POSITIVE AND GATE

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : S54H08 Circuits N74H08 Circuits				
	4.5	5	5.5	V
	4.75	5	5.25	V
Normalized Fan-Out from each Output, N	4.75		10	
Operating Free-Air Temperature Range, T_{A} :			125	C
S54H08 Circuits	-55 0	25	125 70	${ }^{\circ} \mathrm{C}$
N74H08 Circuits		25		

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$V_{C C}=$ MIN,	$V_{\text {out }}(0) \leqslant 0.4 \mathrm{~V}$	2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required of any input terminal to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{V}_{\text {out }(1)} \geqslant 2.4 \mathrm{~V}$			0.8	V
$V_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & I_{\text {load }}=500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$			0.4	V
$\operatorname{lin}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1{ }_{\text {in }}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\text {I OS }}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		-40		-100	mA
${ }^{1} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$V_{\text {in }}=4.5 \mathrm{~V}$		40	64	mA
${ }^{1} \mathrm{Cc}(1)$	Logical 1 level suppiy current	$V_{C C}=$ MAX ,	$v_{\text {in }}=0$		24	40	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
v_{Cl}	Input negative clamp voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{in}}=-12.0 \mathrm{~mA}$			-1.5	v

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		test conditions		MIN	TYP**	MAX	UNIT
$\mathrm{t}_{\mathrm{pd}} 0$	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		8.8	12	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		7.6	12	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recornmended operating conditions for the applicable device type.
** All typical values at: $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

TRIPLE 3-INPUT POSITIVE NAND GATE
 S54H10-A,F,W • N74H10-A,F
 S54H10
 N74H1O
 DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: $\begin{aligned} & \text { S54H10 Circuits } \\ & \text { N74H10 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S54H10 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H10 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$V_{C C}=$ MIN,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required of any input terminal to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {load }}=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			- 2	mA
$I_{\text {in }}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$ mA
'os	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$		-40		-100	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H10 • N74H10

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		19.5	30	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$V_{C C}=\mathrm{MAX}$,	$v_{\text {in }}=0$		7.5	12.6	mA

SWITCHING CHARACTERISTICS, ${ }^{\mathbf{V}} \mathbf{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		6.3	10	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		5.9	10	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		8.8	12	ns
${ }^{\text {pdd }} 1$	Propagation delay time	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		7.6	12	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

W PACKAGE

A,F PACKAGE

recommended operating conditions

Supply Voltage V_{CC} : S54 H 20 Circuits		MIN	NOM	MAX	UNIT
	S54H20 Circuits	4.5	5	5.5	V
N74H20 Circuits		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S54H20 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H20 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- | :--- |

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H20 • N74H20
SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{pdO}}$	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		7	10	ns
$t_{p d} 1$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		6	10	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

DUAL 4-INPUT POSITIVE AND GATE $\mathbf{S 5 4 H 2 1}$
 S54H21-A,F,W • N74H21-A,F
 DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure logical 1 level at output	$V_{C C}=\mathrm{MIN}$,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required of any input terminal to ensure logical 0 level at output	$V_{C C}=M I N$,				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & 1 \text { load }=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}(1)=2 V$.	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}(0)=0.8 V$,			0.4	V
$\mathrm{t}_{\mathrm{in}}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	-40		-100	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$V_{\text {in }}=0$		20	32	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		12	20	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H21 • N74H21

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		test conditions		MIN	TYP**	MAX	UNIT
${ }^{\mathrm{t} p \mathrm{~d}} \mathrm{O}$	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		8.8	12	ns
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		7.6	12	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

DUAL 4-INPUT POSITIVE NAND GATE WITH OPEN COLLECTOR OUTPUT

S54H22-A,F,W • N74H22-A,F
DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} : S 54 H 22 Circuits	MIN	NOM	MAX	UNIT
	4.5	5	5.5	V
N74H22 Circuits	4.75	5	5.25	V
Normalized Fan-Out from each Output, N			10	
Operating Free-Air Temperature Range: S54H22 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H22 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals to ensure logical $0_{\text {(on) }}$ level at output	$V_{C C}=$ MIN,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure logical ${ }^{1}$ (off) level at output	$V_{C C}=\mathrm{MIN}$,				0.8	V
'out(1)	Output reverse current	$\begin{aligned} & V_{C C}=M I N \\ & V_{\text {out }(1)}=5.5 \mathrm{~V} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
$V_{\text {out }}(0)$	Logical 0 output voltage (on level)	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$ mA
${ }^{1} \mathrm{Cc}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		13	20	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$V_{C C}=\mathrm{MAX}$,	$V_{\text {in }}=0$		3.4	5.0	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H22 • N74H22
SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

| | PARAMETER | TEST CONDITIONS ${ }^{\dagger}$ | MIN | TYP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time and duration of short circuit test should not exceed 1 second.

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- | :--- |

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H30 • N74H30
SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP**	MAX	UNIT
$t_{\text {pdo }}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		8.9	12	ns
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		6.8	10	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values at: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
+ Duration of short circuit test should not exceed 1 second.

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

NOTES:

1. Component values shown are nominal.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } \mathrm{V}_{\text {CC }} \text { : } & \text { S54H40 Circuits } \\ & \text { N74H40 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				30	
Operating Free-Air Temperature Range, T_{A} :	S54H40 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H40 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$V_{\text {in (1) }}$	Logical 1 input voltage required at all input terminals to ensure logical 0 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				0.8	V
$\mathrm{V}_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MiN}, \\ & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & 1_{\text {sink }}=60 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\text {OS }}$	Short circuit output current ${ }^{* *}$	$V_{C C}=$ MAX		-40		-125	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		25	40	mA
${ }^{1} \mathrm{CCO}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$v_{\text {in }}=0$		10.4	16	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=30$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {pd0 }}$	Propagation delay time to logical 0 level					
Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=93 \Omega$	6.5	12	ns	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.
+ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SCHEMATIC (each gate)

NOTES:

1. Component values are nominal.
2. Both expander inputs are used simultaneously for expanding. 3. If expander is not used leave X and X pins open.
3. Expander inputs X and \bar{X} are functional on the 554 H 50 and N74H50 circuits only. Make no external connection to X and \bar{X} pins of the S 54 H 51 and N 74 H 51 .
4. A total of four $\mathrm{S} 54 \mathrm{H} 60 / \mathrm{N} 74 \mathrm{H} 60$ expander gates or one S54H62/N74H62 expander gate may be connected to the expander inputs.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP \dagger	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {load }}=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\prime} \mathrm{OS}$	Short circuit output current**	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-40		-100	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X,$	$V_{\text {in }}=4.5 \mathrm{~V}$		15.2	24	mA
${ }^{1} \mathrm{Cc}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$v_{\text {in }}=0$		8.2	12.8	mA

ELECTRICAL CHARACTERISTICS (S54H50 circuits only) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\operatorname{lin} \bar{X}$	Expander-node input current	$V \bar{X}=1.4 V$					-5.85	mA
$V_{B E}(Q)$	Base-emitter voltage of output transistor Q	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$I_{1}=700 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A} \\ & I_{2}=-320 \mu \mathrm{~A} \end{aligned}$	$I_{1}=320 \mu \mathrm{~A}$,		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$I_{1}=470 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=68 \Omega$			0.4	V

ELECTRICAL CHARACTERISTICS (N74H50 circuits only) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$l_{\text {in }} \bar{X}$	Expander-node input current	$\mathrm{V} \overline{\mathrm{X}}=1.4 \mathrm{~V}$					-6.3	mA
$V_{B E}(Q)$	Base-emitter voltage of output transistor Q	$I_{\text {sink }}=20 \mathrm{~mA}$,	$\mathrm{I}_{1}=1.1 \mathrm{~mA}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A}, \\ & I_{2}=-570 \mu \mathrm{~A} \end{aligned}$	$1_{1}=570 \mu \mathrm{~A}$,		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$t_{1}=600 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=63 \Omega$			0.4	V

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$, expander pins are open

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level					
Propagation delay time to logical 1 level	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	6.2	11	ns	

SWITCHING CHARACTERISTICS, (S54H50/N74H50 circuits only), $\mathrm{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}, \mathrm{C}_{\mathrm{X}}=\mathbf{1 5} \mathrm{pF}$

PARAMETER		test conditions		MIN	TYP	MAX	UNIT
${ }^{\text {p }}$ d0	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		7.4		ns
$t_{p d 1}$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		11		ns

[^27]DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

SCHEMATIC DIAGRAM

NOTE:

1. A total of six expander gates may be connected to the expander input.

RECOMMENDED OPERATING CONDITIONS

$\begin{array}{lll}\text { Supply Voltage } \mathrm{V}_{\mathrm{CC}}: & \text { S54H52 Circuits } \\ & \text { N74H52 Circuits }\end{array}$		MIN	NOM	MAX	UNIT
		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S54H52 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H52 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals of one AND section to ensure logical 1 at output	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$		2		0.8	V
$V_{\text {in }(0)}$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 0 at output	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$					V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{c c}=M I N \\ & I_{\text {load }}=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	2.4			V

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H52 • N74H52

ELECTRICAL CHARACTERISTICS (Cont'd)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,			0.4	V
$\mathrm{I}_{\mathrm{in}(0)}$	voltage Logical 0 level input current (each input)	$\begin{aligned} & I_{\text {sink }}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input	$V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
(1)	current (each input)	$V_{\text {CC }}=$ MAX,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
'os	Short circuit output	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	-40		-100	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=M A X$,	$V_{\text {in }}=0$		15.2	24	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		20	31	mA

ELECTRICAL CHARACTERISTICS (S54H52 circuits only) using expander input, $\mathrm{V}_{\mathbf{C C}}=4.5 \mathrm{~V}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$1 \mathrm{in} x$	Expander-node input current	$\begin{aligned} V_{X} & =1 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \end{aligned}$	$Y_{\text {load }}=-500 \mu \mathrm{~A}$,	-2.7		-4.5	mA
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{X}} & =1 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {load }}=-500 \mu \mathrm{~A}$,	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{in}} \mathrm{X}=-300 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA},$			0.4	V

ELECTRICAL CHARACTERISTICS (N74H52 circuits only) using expander input, $\mathbf{V}_{\mathbf{C C}}=4.75 \mathrm{~V}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\operatorname{lin} X$	Expander-node input current	$V_{x}=1 \mathrm{~V}$,	$l_{\text {load }}=-500 \mu \mathrm{~A}$,	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-2.9		-5.35	mA
$V_{\text {out (1) }}$	Logical 1 output voltage	$v_{x}=1 \mathrm{~V}$,	$I_{\text {load }}=-500 \mu \mathrm{~A}$,	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {in } X}=-300 \mu \mathrm{~A}$,	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			0.4	V

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$, expander pin is open

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pdO }}$	Propagation delay time to logical 0 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	9.2
$\mathrm{t}_{\text {pd1 }}$	Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	15

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10, \mathrm{C}_{\mathrm{X}}=15 \mathrm{pF}$

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pdO }}$	Propagation delay time to logical 0 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	9.8
$\mathrm{t}_{\mathrm{pd} 1} 1$	Propagation delay time to logical 1 level	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	ns

[^28]
EXPANDABLE 2-2-2-3-INPUT AND-OR-INVERT GATE

S54H53 S54H54

S54H53-A,F,W • S54H54-A,F,W • N74H53-A,F • N74H54-A,F

SCHEMATIC DIAGRAM

NOTES:

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding.
3. If expander is not used leave X and \bar{X} pins open.
4. Expander inputs X and \bar{X} are functional on the 554 H 53 and

PIN CONFIGURATIONS

N74H53 circuits only. Make no external connection to X and \bar{X} pins of the S 54 H 54 and N 74 H 54 .
5. A total of four $\mathrm{S} 54 \mathrm{H} 60 / \mathrm{N} 74 \mathrm{H} 60$ expander gates or one S54H62/N74H62 expander gate may be connected to the expander inputs.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
$\begin{array}{lll}\text { Supply Voltage } \mathrm{V}_{\mathrm{CC}}: & \mathrm{S} 54 \mathrm{H} 53, \mathrm{~S} 54 \mathrm{H} 54 \text { Circuits } \\ & \text { N74H53, N74H54 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, T_{A} :	S54H53, S54H54 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H53, N74H54 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP \dagger	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals of one AND section to ensure logical 0 at output	$V_{C C}=$ MIN,		2			V
$V_{\text {in(0) }}$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,				0.8	V
Vout(1)	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M 1 N \\ & I_{\text {load }}=-500 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out }(0)}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$\operatorname{lin}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA

ELECTRICAL CHARACTERISTICS (Cont'd)

ELECTRICAL CHARACTERISTICS (S54H53 circuits only) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\prime_{\text {in }} \bar{X}$	Expander-node input current	$v \bar{X}=1.4 V$					-5.85	mA
$V_{B E}(0)$	Base-emitter voltage of output transistor Q	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$\mathrm{I}_{1}=700 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A} \\ & I_{2}=-320 \mu \mathrm{~A} \end{aligned}$	$I_{1}=320 \mu \mathrm{~A},$		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$	$I_{1}=470 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=68 \Omega$			0.4	V

ELECTRICAL CHARACTERISTICS (N74H53 circuits only) using expander inputs, $V_{C C}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {in }} \bar{X}$	Expander-node input current	$V \bar{X}=1.4 V$					-6.3	mA
$V_{B E}(0)$	Base-emitter voltage of output transistor Q	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$I_{1}=1.1 \mathrm{~mA}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A}, \\ & I_{2}=-570 \mu \mathrm{~A} \end{aligned}$	$I_{1}=570 \mu \mathrm{~A}$,		2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$I_{\text {sink }}=20 \mathrm{~mA}$,	$I_{1}=600 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=63 \Omega$			0.4	V

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$, expander pins are open

	PARAMETER	TEST CONDITIONS	MIN	TYP
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	6.2
$t_{p d 1}$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	11

SWITCHING CHARACTERISTICS, (S54H53/N74H53 circuits only) $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10, \mathrm{C}_{\mathrm{X}}=15 \mathrm{pF}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {pdO }}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		7.4		ns
$t_{p d 1}$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		11.4		ns

[^29]DIGITAL 54/74 TTL SERIES

SCHEMATIC DIAGRAM

NOTES:

1. Component values shown are nominal.
2. Both expander inputs are used simultaneously for expanding.
3. If expander is not used, leave X and X pins open.
4. A total of four $\mathrm{S} 54 \mathrm{H} 60 / \mathrm{N} 74 \mathrm{H} 60$ expander gates or one $\mathrm{S} 54 \mathrm{H} 62 /$ N74H62 expander gate may be connected to the expander inputs.

PIN CONFIGURATIONS

recommended operating conditions

		MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } \mathrm{V}_{\mathrm{CC}} \text { : } & \text { S54H55 Circuits } \\ & \text { N74H55 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N Operating Free-Air Temperature Range, T_{A} :				10	
	S54H55 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H55 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$v_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals of either AND section to ensure logical 0 at output	$\mathrm{V}_{\mathrm{CC}}=$ MIN		2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output	$V_{C C}=\mathrm{MIN}$				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=\text { MIN }, \\ & \text { I load }=-500 \mu \mathrm{~A} \end{aligned}$	$V_{\text {in }}=0.8 \mathrm{~V}$,	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{\text {sink }}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,			0.4	V
$I_{\text {in }}(0)$	Logical 0 level input current (each input)	$V_{\text {CC }}=$ MAX ,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\operatorname{lin}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$ mA
${ }^{\text {IOS }}$	Short circuit output current**	$V_{C C}=$ MAX ,		-40		-100	mA
${ }^{1} \mathrm{CC}(0)$	Logical 0 level supply current	$V_{C C}=$ MAX	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		7.5	12	mA
${ }^{1} \mathrm{CC}(1)$	Logical 1 level supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$v_{\text {in }}=0$		4.5	6.4	mA

ELECTRICAL CHARACTERISTICS (S54H55 circuits only) using expander inputs, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\operatorname{lin} \bar{X}$	Expander-node input current	$V \bar{X}=1.4 V$					-5.85	mA
$V_{B E}(\mathrm{Q})$	Base-emitter voltage of output transistor Q	$I_{\text {sink }}=20 \mathrm{~mA}$,	$\mathrm{I}_{1}=700 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A}, \\ & I_{2}=-320 \mu \mathrm{~A} \end{aligned}$	$\mathrm{I}_{1}=320 \mu \mathrm{~A}$,		2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$\mathrm{I}_{1}=470 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=68 \Omega$			0.4	V

ELECTRICAL CHARACTERISTICS (N 74 H 55 circuits only) using expander inputs, $\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
$\mathrm{l}_{\text {in }} \bar{X}$	Expander-node input current	$V_{\bar{X}}=1.4 \mathrm{~V}$					-6.3	mA
$V_{B E}(\mathrm{Q})$	Base-emitter voltage of output transistor Q	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$1_{1}=1.1 \mathrm{~mA}$,	$\mathrm{R}_{1}=0$			1	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\begin{aligned} & I_{\text {load }}=-500 \mu \mathrm{~A} \\ & I_{2}=-570 \mu \mathrm{~A} \end{aligned}$	$\mathrm{I}_{1}=570 \mu \mathrm{~A}$,		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$,	$I_{1}=600 \mu \mathrm{~A}$,	$\mathrm{R}_{1}=63 \Omega$			0.4	V

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$, expander pins are open

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {pdo }}$	Propagation delay time to logical 0 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		6.5	11	ns
$t_{p d 1}$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		7	11	ns

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10, \mathrm{C}_{\mathrm{X}}=15 \mathrm{pF}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {pdo }}$	Propagation delay time to logical 0 level	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		7.7		ns
$t_{p d 1}$	Propagation delay time to logical 1 level	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		11.4		ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander pins are open.
** Duration of short circuit test should not exceed 1 second.
+ All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DUAL 4-INPUT EXPANDER (FOR USE WITH S54H50,S54H53, S54H55 CIRCUITS)

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each expander)

NOTES:

1. Connect to X input of $S 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or S 54 H 55 circuit.
2. Connect to \bar{X} input of $\mathrm{S} 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or S 54 H 55 circuit.
3. Component values shown are nominal.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS
Supply Voltage V_{CC}
Maximum number of expanders that may be fanned-in to one $\mathrm{S} 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or
$\quad \mathrm{S} 54 \mathrm{H} 55$ circuit

ELECTRICAL CHARACTERISTICS (unless otherwise noted $\mathrm{T}_{\mathrm{A}}=\mathbf{- 5 5 ^ { \circ }} \mathbf{C}$ to $125^{\circ} \mathrm{C}$)

	PARAMETER	TEST CONDITIONS			MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$			2			V
$V_{\text {in }(0)}$	Logical 0 input voltage required at any input terminal to ensure output is in the off state	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$					0.8	V
$v_{\text {on }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=5.85 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{On}}=7.85 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2 \mathrm{~V} \\ & T_{A}=-55^{\circ} \\ & V_{\text {in }}=2 \mathrm{~V} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1}=1 \mathrm{~V} \\ & \mathrm{~V}_{1}=0.6 \mathrm{~V} \end{aligned}$			0.4 0.4	V v
loff	Off-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & R=575 \Omega \end{aligned}$	$\begin{aligned} & V_{\text {in }}=0.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=4.5 \mathrm{~V}$			320	$\mu \mathrm{A}$
Ion	On-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	$V_{1}=1 \mathrm{~V}$,	-470			$\mu \mathrm{A}$
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & v_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & v_{\mathrm{CC}}=5.5 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ $m A$
ICC(on)	On-state supply current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{1}=0.85 \mathrm{~V} \end{aligned}$	$V_{\text {in }}=4.5 \mathrm{~V}$,			1.9	3.5	mA
${ }^{1} \mathrm{CC}(\mathrm{off})$	Off-state supply current	$\begin{aligned} & V_{C C}=5.5 V \\ & V_{1}=0.85 V \end{aligned}$	$\mathrm{V}_{\text {in }}=0$,			3	4.5	mA

[^30]SIGNETICS DIGITAL 54/74 TTL SERIES - S54H60
OUTPUT CAPACITANCE $V_{C C}$ and GND terminals open, $\boldsymbol{T}_{A}=25^{\circ} \mathrm{C}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP
C_{X}	Effective capacitance of output transistor Q_{1}	$\mathrm{f}=1 \mathrm{MHz}$	UNIT	

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each expander)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

```
Supply Voltage V 
    4.75V to 5.25V
Maximum number of expanders that may be
    fanned-in to one N74H50,N74H53, or
    N74H55 circuit
4
```

ELECTRICAL CHARACTERISTICS (unless otherwise noted $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure output is in the off state	$V_{C C}=4.75 \mathrm{~V}$					0.8	V
$\mathrm{V}_{\text {OS }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=6.3 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2 \mathrm{~V}, \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=1 \mathrm{~V}$,			0.4	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=7.4 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{1}=0.6 \mathrm{~V}$,			0.4	V
${ }^{\text {off }}$	Off-state output current	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \\ & \mathrm{R}=575 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	$V_{1}=4.5 \mathrm{~V}$,			570	$\mu \mathrm{A}$
Ion	On-state output current	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	$\mathrm{V}_{1}=1 \mathrm{~V}$,	-600			$\mu \mathrm{A}$
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$V_{C C}=5.25 \mathrm{~V}$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
${ }^{1} \mathrm{CC}(\mathrm{on})$	On-state supply current	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{1}=0.85 \mathrm{~V} \end{aligned}$	$V_{\text {in }}=4.5 \mathrm{~V}$,			1.9	3.5	mA
${ }^{1} \mathrm{CC}(\mathrm{off})$	Off-state supply current	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & V_{1}=0.85 \mathrm{~V} \end{aligned}$	$V_{\text {in }}=0$,			3	4.5	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - N74H60

OUTPUT CAPACITANCE $V_{C C}$ and GND terminals open, $\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP
$\mathrm{CX} \quad$Effective capacitance of output transistor Q_{1}	$\mathrm{f}=1 \mathrm{MHz}$	1.3	

+ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

TRIPLE 3-INPUT EXPANDER (FOR USE WITH S54H52, N74H52 CIRCUITS)

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each expander)

NOTES:

1. Component values shown are nominal.
2. A total of six expander gates may be connected to the S54H52/N74H52 expander input.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP \dagger	MAX	UNIT
$V_{\text {in }}(0)$	Logical 0 input voltage required at any input terminal to ensure output is in the off state	$V_{C C}=\mathrm{MIN}$				0.8	V
$\mathrm{I}_{\text {Off }}$	Off-state reverse current	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\text {Off }}=2.2 V, \end{aligned}$	$\begin{aligned} & V_{\text {in }}(0)=0.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MAX} \end{aligned}$			50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$I_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ $m A$
${ }^{\text {I }} \mathrm{CC}(\mathrm{on})$	On-state supply current	$V_{C C}=M A X$,	$V_{\text {in }}=4.5 \mathrm{~V}$		7.2	12	$m A$
${ }^{1} \mathrm{CC}$ (off)	Off-state supply current	$V_{C C}=$ MAX ,	$V_{\text {in }}=0$		3	5	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H61 • N74H61
ELECTRICAL CHARACTERISTICS S54H61 circuits only

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		2		1	V
$V_{\text {on }}$	On-state output voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & I_{o n}=4.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{\text {in }}(1)=2 \mathrm{~V}, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$				V

ELECTRICAL CHARACTERISTICS N74H61 circuits only

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$V_{\text {in(}}$ (1)	Logical 1 input voltage required at all input terminals to ensure output is in the on state	$V_{C C}=4.75 \mathrm{~V}$		2		1	V
$v_{\text {on }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=5.35 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & V_{\text {in }}(1)=2 V, \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$				V

OUTPUT CAPACITANCE, $V_{C C}$ and GND terminals open, $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
CX	Effective capacitance of output transistor Q_{1}	$\mathrm{f}=1 \mathrm{MHz}$	1.3	

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\dagger All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

NOTES:

1. Connect to X input of $S 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or S 54 H 55 circuit
2. Connect to \bar{X} input of $\mathrm{S} 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or S 54 H 55 circuit
3. Component values shown are nominal.

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

```
Supply Voltage \(V_{C C}\)
```

Maximum number of expanders that may be fanned-in to one $\mathrm{S} 54 \mathrm{H} 50, \mathrm{~S} 54 \mathrm{H} 53$, or S 54 H 55 circuit

ELECTRICAL CHARACTERISTICS (unless otherwise noted $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$)

	PARAMETER	TEST CONDITIONS			MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals of one AND section to ensure output is in the on state	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure output is in the off state	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,					0.8	V
$V_{\text {on }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=5.85 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=7.85 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2 \mathrm{~V}, \\ & \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in }}=2 \mathrm{~V}, \\ & \mathrm{~T}_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{1}=1 \mathrm{~V} \\ & V_{1}=0.6 \mathrm{~V} \end{aligned}$			0.4 0.4	V V
Ioff	Off-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \\ & R=575 \Omega, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=0.8 \mathrm{~V}, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$V_{1}=4.5 \mathrm{~V}$,			320	$\mu \mathrm{A}$
$I_{\text {on }}$	On-state output current	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	$V_{1}=1 \mathrm{~V}$	-470			$\mu \mathrm{A}$

SIGNETICS DIGITAL 54/74 TTL SERIES - S54H62

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current (each input)	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\mathrm{l}_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \\ & v_{C C}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & v_{\text {in }}=2.4 \mathrm{~V} \\ & v_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$ mA
${ }^{\text {I CCCon) }}$	On-state supply current	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \\ & v_{1}=0.85 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$,		3.8	7	mA
${ }^{\text {I CCloff) }}$	Off-state supply current	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \\ & v_{1}=0.85 \mathrm{~V} \end{aligned}$	$\mathrm{v}_{\text {in }}=0$,		6	9	mA

OUTPUT CAPACITANCE, V_{CC} and GND terminals open, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP
C×Effective capaitance of output transistor O_{1}	$\mathrm{f}=1 \mathrm{MHz}$	1.3	

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

3-2-2-3-INPUT AND-OR EXPANDER (FOR USE WITH N74H50, N74H53, N74H55 CIRCUITS)

DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC}
Maximum number of expanders that may be fanned-in to one $\mathrm{N} 74 \mathrm{H} 50, \mathrm{~N} 74 \mathrm{H} 53$, or
N74H55 circuit

ELECTRICAL CHARACTERISTICS (unless otherwise noted $\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

	PARAMETER	TEST CONDITIONS			MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in }}(1)$	Logical 1 input voltage required at all input terminals of one AND section to ensure output is in the on state	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage required at one input terminal of each AND section to ensure output is in the off state	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$					0.8	V
$v_{\text {on }}$	On-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=6.3 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{On}}=7.4 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2 \mathrm{~V}, \\ & T_{A}=0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {in }}=2 \mathrm{~V}, \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{1}=1 \mathrm{~V} \\ & V_{1}=0.6 \mathrm{~V} \end{aligned}$			0.4 0.4	V V
$I_{\text {off }}$	Off-state output current	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & R=575 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=0.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	$V_{1}=4.5 \mathrm{~V}$			570	$\mu \mathrm{A}$
Ion	On-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$,	$\mathrm{V}_{1}=1 \mathrm{~V}$,	-600			$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$I_{\text {in(1) }}$	Logical 1 level input current (each input)	$\begin{aligned} & v_{C C}=5.25 \mathrm{~V} \\ & v_{\mathrm{CC}}=5.25 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V} \end{aligned}$			50 1	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
${ }^{1} \mathrm{CCO}(\mathrm{on)}$	On-state supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0.85 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$,		3.8	7	mA
${ }^{1} \mathrm{CC}(\mathrm{off})$	Off-state supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0.85 \mathrm{~V} \end{aligned}$	$v_{\text {in }}=0,$		6	9	mA

OUTPUT CAPACITANCE $V_{c c}$ and GND terminals open, $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
Cx	Effective capacitance of output transistor Q_{1}	$\mathrm{f}=1 \mathrm{MHz}$	1.3	

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

J-K MASTER-SLAVE FLIP-FLOP

S54H71-A,F,W • N74H71-A,F
S54H71

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

These J-K flip-flops are based on the master-slave principle. The AND-OR gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND-OR gate inputs to master
3. Disable AND-OR gate inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

TRUTH TABLE

SCHEMATIC

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : S54H71 Circuits		4.5	5	5.5	V
N74H71 Circuits		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S54H71 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H71 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$		12			ns
Width of Preset Pulse, $t_{p(p r e s e t)}$		16			ns
Input Setup Time, ${ }_{\text {setup }}$ (See Above)		$\geqslant t_{\text {p }}$ (clock)			
Input Hold Time, thold		0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {clock }}$	Maximum clock frequency	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	25	30		MHz
${ }^{\text {pd1 }}$	Propagation delay time to logical 1 level from preset to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		6	13	ns
${ }^{\text {pdo }}$	Propagation delay time to logical 0 level from preset to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		12	24	ns
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	6	14	21	ns
${ }^{t}{ }_{\text {pdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	10	22	27	ns

[^31]
J-K MASTER-SLAVE FLIP-FLOP
 S54H72-A,F,W • N74H72-A,F

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

CLOCK WAVEFORM

POSITIVE LOGIC

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Preset and clear are independent of clock

DESCRIPTION

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state

TRUTH TABLE

LOGIC

(Each Flip-Fiop)		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	$\bar{\sigma}_{n}$

NOTES:

1. $\mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3$
2. $K=K 1 \cdot K 2 \cdot K 3$
3. $\mathrm{t}_{\mathrm{n}}=$ bit time before clock pulse
4. $t_{n+1}=$ bit time after clock pulse.

SCHEMATIC DIAGRAM

NOTE: Component values shown are nominal

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S54H72 Circuits	4.5	5	5.5	V
N74H72 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} : S 54 H 72 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H72 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	12			ns
Width of Preset Pulse, $\mathrm{t}_{\mathrm{p} \text { (preset) }}$	16			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{p} \text { (clear) }}$	16			ns
Input Setup Time, ${ }_{\text {setup }}$ (See above)	$\geqslant t_{\text {p }}$ (clock)			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in }(1)}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN,				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$l_{\text {load }}=-500 \mu \mathrm{~A}$	2.4			V
$V_{\text {out }}(0)$	Logical 0 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$			0.4	V
$\operatorname{lin}(0)$	Logical 0 level input current at J1, J2, J3, K1, K2, K3, or clock	$V_{C C}=$ MAX	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\operatorname{lin}(0)$	Logical 0 level input current at preset or clear	$V_{C C}=$ MAX	$V_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$\operatorname{lin}(1)$	Logical 1 level input current at J1, J2, J3, K1, K2, or K3	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at clock	$\begin{aligned} & V_{C C}=\mathrm{MAX} \\ & V_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$			50	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at preset or clear	$\begin{aligned} & V_{C C}=\text { MAX, } \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
${ }^{\text {OSS }}$	Short circuit output current**	$V_{C C}=M A X$,	$V_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,			16	25	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum clock frequency	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	25	30		MHz
$t_{p d} 1$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		6	13	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		12	24	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		16	21	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		22	27	ns

[^32]
DESCRIPTION

These J-K flip-flops are based on the master-slave principle. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

TRUTH TABLE

LOGIC

(Each Flip-Flop)		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES:

1. $t_{n}=$ bit time before clock pulse
2. $t_{n+1}=$ bit time after clock pulse

POSITIVE LOGIC

Low input to clear sets Q to logical 0 Clear is independent of clock

PIN CONFIGURATIONS

CLOCK WAVEFORM

SCHEMATIC (each flip-flop)

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S54H73 Circuits	4.5	5	5.5	V
N74H73 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} : \quad S 54 H 73 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H73 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	12			ns
Width of Clear Pulse, t_{p} (clear)	16			ns
Input Setup Time, $t_{\text {setup }}$ (See above)	$\geqslant \mathrm{t} \text { (clock) }$			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS**		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in (1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			V
$v_{i n}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN				0.8	V
$V_{\text {out }}(1)$	Logical 1 output voltage	$V_{C C}=\mathrm{MIN}$,	$I_{\text {load }}=-500 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=\mathrm{MIN}$,	$\mathrm{l}_{\text {sink }}=20 \mathrm{~mA}$			0.4	\checkmark
$\mathrm{I}_{\text {in }(0)}$	Logical 0 level input current at J, K, or clock	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clear	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$1 \mathrm{in}(1)$	Logical 1 level input current at J or K	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
$\operatorname{lin}(1)$	Logical 1 level input current at clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
$1 \mathrm{in}(1)$	Logical 1 level input current at clear	$\begin{aligned} & V_{C C}=M A X \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
Ios	Short circuit output current**	$V_{C C}=M A X$,	$v_{\text {in }}=0$	-40		-100	mA
${ }^{\text {cc }}$	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$			32	50	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum clock frequency	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	25	30		MHz
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from clear to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		6	13	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clear to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		12	24	ns
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		16	21	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		22	27	ns

[^33]
DUAL D-TYPE EDGE TRIGGERED
 FLIP-FLOP

S54H74-A,F,W • N74H74-A,F

DESCRIPTION

These monolithic, high-speed, dual, edge-triggered flip-flops utilize TTL circuitry to perform D-type flip-flop logic. Each flip-flop has individual clear and preset inputs, and also complementary Q and $\overline{\mathrm{Q}}$ outputs.
Information at input D is transferred to the \mathbf{Q} output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D-input signal has no effect.
These circuits are fully compatible for use with most TTL or DTL circuits. Input clamping diodes are provided to minimize transmission line effects and thereby simplify systems design. A full fan-out to 10 normalized Series $54 \mathrm{H} / 74 \mathrm{H}$ loads is available from each of the outputs in the low-level condition. In the high-level state, a fan-out of $\mathbf{2 0}$ is available to facilitate tying unused inputs to used inputs. Maximum clock frequency is 35 megahertz, with a typical power dissipation of 75 milliwatts per flip-flop.

TRUTH TABLE

LOGIC

(Each Flip-Flop)		
t_{n}	t_{n+1}	
Input D	Output Q	Output \bar{Q}
L	L	H
H	H	L

NOTES:

1. $t_{n}=$ bit time before clock pulse
2. $t_{n+1}=$ bit time after clock pulse

PIN CONFIGURATIONS

ASYNCHRONOUS INPUTS

Low input to preset sets Q to high level
Low input to clear sets Q to low level
Preset and clear are independent of clock

SCHEMATIC (each flip-flop)

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage VCC Normalized Fan-Out from each Output, N	S54H74			N74H74			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	\checkmark
Low Logic Level			10			10	
High Logic Level			20			20	
Clock Frequency, flock	$0{ }^{+}$		35^{\dagger}	$0{ }^{+}$		35	MHz
Width of Clock Pulse, $\mathrm{t}_{\text {w }}$ (clock)	15^{\dagger}			15^{\dagger}			ns
Width of Preset Pulse, t_{w} (preset)	$25^{\dagger}{ }^{\dagger}$			25^{\dagger}			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{w} \text { (clear) }}$	25^{\dagger}			25^{\dagger}			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (Sigh-level data (Sote 3): High-level data	10^{\dagger}			10^{\dagger}			ns
Low-level data	15^{\dagger}			15^{\dagger}			ns
Input Hold Time, thold (See Note 4) Operating Free-Air Temperature Range, T_{A}	0			0 0			${ }^{\text {ns }}$
Operating Free-Air Temperature Range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES:
3. Setup time is the interval immediately preceding the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
4. Hold time is the interval immediately following the positive-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.
\dagger These conditions are recommended for use at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{OH}	High-level output voltage	$V_{C C}=\mathrm{MIN}$,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.5		V
V_{OL}	Low-level output voltage	$V_{C C}=$ MIN,	$1 \mathrm{OL}=20 \mathrm{~mA}$		0.22	0.4	V
${ }_{1} \mathrm{H}$	High-level input current into D	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$ $V_{1}=5.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
In		$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA
IIH	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
	High-level input current	$V_{C C}=$ MAX, $V_{C C}=$ MAX	$V_{1}=5.5 \mathrm{~V}$			1	mA
IIH	into clear	$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$ mA
IIL	Low-level input current into preset or D	$V_{C C}=\mathrm{MAX}$,	$V_{1}=0.4 \mathrm{~V}$			-2	mA
IIL	Low-level input current into clear or clock	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-4	mA
Ios	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,		-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=$ MAX,	$\begin{aligned} & \mathrm{S} 54 \mathrm{H} 74 \\ & \mathrm{~N} 74 \mathrm{H} 74 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	42 50	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency			35	43		MHz
tPLH	Propagation delay time, low-to-high-level output, from clear or preset inputs					20	ns
tPHL	Propagation delay time, high-to-low-level output, from clear or preset inputs	$C_{L}=25 p F$,	$R_{L}=280 \Omega$			30	ns
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high-level output from clock input			4	8.5	15	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output, from clock input			7	13	20	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.
\qquad

DESCRIPTION

These dual J-K flip-flops are based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from J and K inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

TRUTH TABLE

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

CLOCK WAVEFORM

POSITIVE LOGIC

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Clear and preset are independent of clock

SCHEMATIC (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage ${ }^{1} \mathrm{CC}$: S54H76 Circuits		4.5	5	5.5	V
N74H76 Circuits		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S54H76 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H76 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Clock Pulse, t_{p} (clock)		12			ns
Width of Preset Pulse, $\mathrm{t}_{\mathrm{p} \text { (preset) }}$		16			ns
Width of Clear Pulse, $t_{p \text { (clear }}$		$\geqslant t_{\text {p }}$ (clock)			
Input Setup Time, ${ }_{\text {setup }}$ (See above)					
Input Hold Time, thold		0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=$ MIN		2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN				0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\text {load }}=-500 \mu \mathrm{~A}$	2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$			0.4	V
$\mathrm{l}_{\mathrm{in}}(0)$	Logical 0 level input current at J, K, or clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clear or preset	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$I_{\text {in }}(1)$	Logical 1 level input current at J,K, or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at clear or preset	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ 1 \end{array}$	$\mu \mathrm{A}$ mA
${ }^{\prime} \mathrm{OS}$	Short circuit output current**	$V_{C C}=M A X$,	$V_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		32	50	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {c }}$ clock	Maximum clock frequency	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	25	30		MHz
$t_{\text {pd }} 1$	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		6	13	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=25 p F$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		12	24	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		16	21	ns
$t_{\text {pdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		22	27	ns

[^34]
DESCRIPTION

These monolithic J-K flip-flops are negative-edge-triggered. The AND-OR gate inputs are inhibited while the clock input is low; when the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable-will perform according to the truth table as long as minimum setup times are observed. Input data are transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE

CLOCK WAVEFORM

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : $\begin{aligned} & \text { S54H101 Circuits } \\ & \mathrm{N} 74 \mathrm{H} 101 \text { Circuits }\end{aligned}$	4.5	5	5.5	V
	4.75	5	5.25	V
$\begin{array}{ll}\text { Operating Free-Air Temperature Range, } \mathrm{T}_{\mathrm{A}}: & \text { S54H101 Circuits } \\ & \text { N74H101 Circuits }\end{array}$	-55	25	125	${ }^{\circ} \mathrm{C}$
	0	25	70	${ }^{\circ} \mathrm{C}$
			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	10			ns
Width of Preset Pulse, t_{p} (preset)	16			ns
Input Setup Time, ${ }_{\text {setup }}$ (See Above): Logical 1	10			ns
Logical 0	13			ns
Input Hold Time, thold	0			ns
Clock Pulse Transition Time, t_{0}			150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in (1) }}$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=\mathrm{MIN}$,	$I_{\text {load }}=-500 \mu \mathrm{~A}$	2.4	3.2		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=\mathrm{MIN}$,	$I_{\text {sink }}=20 \mathrm{~mA}$		0.25	0.4	V
$\mathrm{l}_{\text {in }(0)}$	Logical 0 level input current at J1A, J1B, J2A, J2B, K1A, K1B, K2A, K2B, or preset	$V_{C C}=$ MAX	$V_{\text {in }}=0.4 \mathrm{~V}$		-1	-2	mA
$\operatorname{lin}(0)$	Logical 0 level input current at clock	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$		-3	-4.8	mA
	Logical 1 level input current at	$V_{C C}=M A X$	$V_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
in(1)	J or K	$V_{C C}=M A X$,	$V_{\text {in }}=5.5 \mathrm{~V}$ $V_{\text {in }}=2.4 \mathrm{~V}$			1 100	$m A$ μA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at preset	$V_{C C}=M A X$, $V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$ $V_{\text {in }}=5.5 \mathrm{~V}$			100	μA $m A$
	Logical 1 level input current at	$V_{C C}=$ MAX,	$V_{\text {in }}=2.4 \mathrm{~V}$	0		-1	mA
in(1)	clock	$V_{\text {CC }}=\mathrm{MAX}$,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
los	Short-circuit output current**	$V_{C C}^{C}=M A X,$	$V_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX			20	38	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum input clock frequency	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	40	50		MHz
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from preset to output	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		8	12	ns
$\mathrm{t}_{\mathrm{pdO}}$	Propagation delay time to logical 0 level from preset to output (clock low)	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		23	35	ns
${ }^{\text {pdo }}$	Propagation delay time to logical 0 level from preset to output (clock high)	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		15	20	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	5	10	15	ns
${ }^{t}{ }_{\text {pdO }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	8	16	20	ns

[^35]
J-K EDGE-TRIGGERED FLIP-FLOPS \mid S54H102 WITH AND INPUTS
 DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS
These monolithic J-K flip-flops are negative edge-triggered. They feature gated J-K inputs and an asynchronous clear input. The AND gate inputs are inhibited while the clock input is low; when the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable-will perform according to the truth table as long as minimum setup times are observed. input data are transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE

LOGIC

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
$\mathrm{~J}^{2}$	K	Q
0	0	Q_{n}
0	1	0
1	0	1^{1}
1	1	\bar{Q}_{n}

NOTES:

1. J= J1 • J2 • J3
2. $K=K 1 \bullet K 2 \bullet K 3$
3. $\mathrm{t}_{\mathrm{n}}=$ Bit time before clock pulse.
4. $t_{n+1}=$ Bit time after clock pulse.
5. NC-No Internal Connection.

CLOCK WAVEFORM

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S54H102 Circuits	4.5	5	5.5	V
N74H102 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, $\mathrm{TA}_{\text {A }}$: S 54 H 102 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H102 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, $\mathrm{t}_{\mathrm{p} \text { (clock) }}$	10			ns
Width of Preset Pulse, $\mathrm{t}_{\mathrm{p} \text { (preset) }}$	15			ns
Width of Clear Pulse, $t_{p(c l e a r)}$	15			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (See Above): Logical 1	10			ns
Logical 0	13			ns
Input Hold Time, ${ }_{\text {hold }}$	0			ns
Clock Pulse Transition Time, t_{0}			150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal					0.8	V
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$I_{\text {load }}=-500 \mu \mathrm{~A}$	2.4	3.2		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$I_{\text {sink }}=20 \mathrm{~mA}$		0.25	0.4	V
$I_{\text {in }}(0)$	Logical 0 level input current at J1, J2, J3, K1, K2, K3, preset, or clear	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$		-1	-2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current clock	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$		-3	-4.8	mA
I in(1)	Logical 1 level input current at	$V_{C C}=M A X$,	$V_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
in(1)	J1, J2, J3, K1, K2, or K3	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathrm{in}(1)}$	Logical 1 level input current at clock	$V_{C C}^{C}=M A X,$	$V_{\text {in }}=2.4 \mathrm{~V}$	0		-1	mA
		$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
	Logical 1 level input current	$V_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
in(1)	at preset or clear	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
Ios	Short-circuit output current**	$V_{C C}=M A X$,	$V_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$			20	38	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {c }}$ clock	Maximum input clock frequency	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	40	50		MHz
$\mathrm{t}_{\text {pd1 }}$	Propagation delay time to logical 1 level from preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{\text {p }}$ dO	Propagation delay time to logical 0 level from clear or preset to output (clock low)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		23	35	ns
$t_{\text {pdO }}$	Propagation delay time to logical 0 level from clear or preset to output (clock high)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		15	20	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	5	10	15	ns
${ }^{\text {t }}$ pd0	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	8	16	20	ns

[^36]
DUAL J-K EDGE-TRIGGERED FLIP-FLOP $\mathbf{S 5 4 H 1 0 3}$
 S54H 103-A,F,W • N74H 103-A,F
 DIGITAL 54/74 TTL SERIES

DESCRIPTION

These dual monolithic J-K flip-flops are negative-edge-triggered. They feature individual J, K, clock, and asynchronous clear inputs to each flip-flop. When the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable-will perform according to the truth table as long as minimum setup times are observed. Input data are transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE

CLOCK WAVEFORM

PIN CONFIGURATIONS

LOGIC DIAGRAM (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S54H103 Circuits		4.5	5	5.5	V
N74H103 Circuits		4.75	5	5.25	\checkmark
Operating Free-Air Temperature Range, T_{A} :	S54H103 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H103 Circuits	0	25	70	${ }^{\circ}$
Normalized Fan-Out from each Output, N				10	
Width of Clock Pulse, ${ }_{\text {p }}$ (clock)		10			ns
Width of Clear Pulse, $t_{\text {p }}$ (clear) Input Setup Time, $t_{\text {s }}$		16			ns
Input Setup Time, ${ }_{\text {setup }}$: Logical 1		10			ns
Input Hold Time, thold Clock Pulse Transition Time, t_{0}		0		150	ns ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {clock }}$	Maximum input clock frequency	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	40	50		MHz
${ }^{\text {t pdi }}$	Propagation delay time to logical 1 level from clear to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{\text {todo }}$	Propagation delay time to logical 0 level from clear to output (clock low)	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		23	35	ns
${ }^{\text {t }}$ pd0	Propagation delay time to logical 0 level from clear to output. (clock high)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		15	20	ns
${ }^{\text {t }}$ pd1	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	5	10	15	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	8	16	20	ns

[^37]
DUAL J-K EDGE-TRIGGERED FLIP-FLOP \mid S54H106
 S54H106-B,F,W • N54H106-B,F
 DIGITAL 54/74 TTL SERIES

DESCRIPTION

These dual monolithic J-K flip-flops are negative edge-triggered. They feature individual J, K, clock, and asynchronous preset and clear inputs to each flip-flop. When the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE

$\mathbf{t}_{\mathbf{n}}$		$\mathbf{t}_{\mathbf{n}+\mathbf{1}}$
J	K	Q
0	0	a_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES:

1. $t_{n}=$ Bit time before clock pulse.
2. $t_{n+1}=$ Bit time after clock pulse.

PIN CONFIGURATION

CLOCK WAVEFORM

BLOCK DIAGRAM (each flip-flop)

SCHEMATIC DIAGRAM (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC: S54H106 Circuits		4.5	5	5.5	V
N74H106 Circuits		4.75	5	5.25	\checkmark
Operating Free-Air Temperature Range, T_{A} :	S54H106 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H106 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out From Each Output, N				10	
Width of Clock Pulse, $\mathrm{t}_{\text {p }}$ (clock)		10			ns
Width of Preset Pulse, t_{p} (preset)		16			ns
Width of Clear Pulse, t_{p} (clear)		16			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (See Above):	Logical 1	10			ns
	Logical 0	13			ns
Input Hold Time, thold		0			ns
Clock Pulse Transition Time, to				150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS ${ }^{\text { }}$		MIN	TYP§	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$I_{\text {load }}=500 \mu \mathrm{~A}$	2.4	3.2		V
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$		0.25	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current at J, K, preset, or clear	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$		-1	-2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$		-3	-4.8	mA
	Logical 1 level input current at	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
$1 \mathrm{in}(1)$	J or K	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
	Logical 1 level input current at	$V_{C C}=$ MAX,	$V_{\text {in }}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\operatorname{lin}(1)$	present or clear	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
	Logical 1 level input current at	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	0		-1	mA
$1 \mathrm{in}(1)$	clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
Ios	Short-circuit output current \ddagger	$V_{C C}=M A X$,	$V_{\text {in }}=0$	-40		-100	mA
ICC	Supply current	$V_{C C}=M A X$			40	76	mA

†For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
\ddagger Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
§All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum input clock frequency	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	40	50		MHz
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from preset or clear to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from preset or clear to output (clock low)	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		23	35	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from preset or clear to output (clock high)	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		15	20	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	5	10	15	ns
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	8	16	20	ns

DIGITAL 54/74 TTL SERIES

DESCRIPTION

These dual monolithic J-K flip-flops are negative-edge-triggered. They feature individual J, K, and asynchronous preset inputs to each flip-flop as well as common clock and asynchronous clear inputs. When the clock goes high, the inputs are enabled and data is accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable performs according to the truth table as long as minimum set-up times are observed. Data input is transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V_{CC} : S54H108 Circuits		4.5	5	5.5	V
N74H108 Circuits		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S54H108 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H108 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Clock Pulse, $\mathrm{t}_{\text {p (clock) }}$		10			ns
Width of Preset Pulse, $t_{\text {p }}$ (preset)		15			ns
Width of Clear Pulse, t_{p} (clear)		16			ns
Input Setup Time, $\mathrm{t}_{\text {setup: Logical }} 1$		10			ns
Logical 0		13			ns
Clock Pulse Transition Time, t_{0}		0		150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER		test conditions		MIN	TYP	MAX	UNIT
1 in 1	Logical 1 level input current at	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {in }}$ (1)	preset	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
1	Logical 1 level input current at	$V_{C C}=$ MAX,	$v_{\text {in }}=2.4 \mathrm{~V}$			200	$\mu \mathrm{A}$
in 1 (clear	$V_{C C}=$ MAX,	$V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
'os	Short-circuit output current **	$V_{C C}=$ MAX,	$v_{\text {in }}=0$	-40		-100	mA
${ }^{\text {c }} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX			40	76	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Maximum input clock frequency	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	40	50		MHz
${ }^{\text {tpd1 }}$	Propagation delay time to logical 1 level from preset or clear to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{\text {p }}$ pdo	Propagation delay time to logical 0 level from preset or clear to output (clock low)	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		23	35	ns
t_{pd}	Propagation delay time to logical 0 level from preset or clear to output (clock high)	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		15	20	ns
$t_{\text {pd1 }}$	Propagation delay time to logical 1 level from clock to output	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	5	10	15	ns
${ }^{\text {p }}$ pd0	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	8	16	20	ns

[^38]
Schottky TLL 54S/74S SSI Devices

SCHOTTKY-CLAMPED TRANSISTOR-TRANSISTOR LOGIC FOR HIGH-SPEED, HIGH-PERFORMANCE DIGITAL SYSTEMS

DESCRIPTION

Series 54S/74S Schottky TTL circuits are implemented with full Schottky-barrier-diode clamping to achieve ultra-high speeds previously obtainable only with emitter-coupled logic, yet they retain the desirable features of, and are completely compatible with, most of the popular saturated logic circuits. Schottky TTL circuits currently offer the best speed-power product of any high-speed logic family.

Schottky-barrier-diode clamping prevents transistors from achieving classic saturation and thereby effectively eliminates excess charge storage and subsequent recovery times. These recovery times contribute significantly to overall propagation delays experienced with saturated digital-logic circuits.

Series 54S/74S circuits are completely compatible with the Series $54 / 74$, Series $54 \mathrm{H} / 74 \mathrm{H}$, and Series $54 \mathrm{~L} / 74 \mathrm{~L}$ TTL logic families. Ease of use and compatibility with other TTL families result in flexibility of choice within the four speed-power ranges offered (Series 54/74, 54H/74H,54L/74L, 54S/74S) to achieve highly efficient system grading to specific performance requirements.

Definitive specifications are provided for operating characteristics over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for Series 54 S circuits and over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for Series 74S circuits.

FEATURES

VERY-HIGH-SPEED, LOW-POWER OPERATION

- 3-ns typical gate propagation delay time
- $19-\mathrm{mW}$-per-gate power dissipation at 50% duty cycle-speed-power product $=57 \mathrm{pJ}$
- $125-\mathrm{MHz}$ typical J-K flip-flop maximum input clock frequency ($\mathrm{d}-\mathrm{c}$ coupled)

EASE OF SYSTEM DESIGN

- fully compatible with Series $54 / 74,54 \mathrm{H} / 74 \mathrm{H}$, and $54 \mathrm{~L} / 74 \mathrm{~L}$ TTL (including MSI/LSI), and most DTL
- Schottky-diode-clamped inputs simplify system design
- terminated, controlled-impedance lines not normally required
- low output impedance: provides low AC noise susceptability drives highly capacitive loads

IMPROVED CIRCUIT PERFORMANCE

- switching times virtually insensitive to power supply and/or temperature variations
- power dissipation remains relatively low at operating frequencies up to 100 MHz
- high-fan-out: $2054 \mathrm{~S} / 74 \mathrm{~S}$ loads at the high logic level 10 54S/74S loads at the low logic level
- high DC noise margin-typically 1 volt

ABSOLUTE MAXIMUM RATINGS (over operating free-air temperature range unless otherwise noted)

Supply Voltage VCC	7 V
Input Voltage	5.5 V
Intermitter Voltage	5.5 V
Output Voltage	7 V
Operating Free-Air Temperature Range:	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Series 54 S Circuits	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Series 74 S Circuits	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTES:

1. Voltage values, except intermitter voltage, are with respect to network ground terminal.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. This is the maximum voltage which should be applied to any open-collector output when it is in the off state.

UNUSED INPUTS OF POSITIVE-AND/NAND GATES

For optimum switching times and minimum noise susceptibility, unused inputs of AND or NAND gates should be maintained at a voltage greater than 2.7 V , but not to exceed the absolute maximum rating of 5.5 V . This eliminates the distributed capacitance associated with the floating input emitter, bond wire, and package lead, and ensures that no degradation will occur in the propagation delay times. Some possible ways of handling input emitters are:
a. Connect unused inputs to an independent supply voltage. Preferably, this voltage should be between 2.7 V and 3.5 V .
b. Connect unused inputs to a used input if maximum fan-out of the driving output will not be exceeded. Each additional input presents a full load to the driving output at a high-level voltage but adds no loading at a low-level voltage.
c. Connect unused inputs to $V_{C C}$ through a $1-\mathrm{k} \Omega$ resistor so that if a transient which exceeds the $5.5-\mathrm{V}$ maximum rating should occur, the impedance will be high enough to protect the input. One to 25 unused inputs may be connected to each $1-k \Omega$ resistor.

INPUT-CURRENT REQUIREMENTS

Input-current requirements reflect worst-case V_{CC} and temperature conditions. Each input of the multiple-emitter input transistors requires a maximum of 2 mA out of the input at a low logic level which is defined as 1 normalized load. Each input requires current into the input at a high logic level. This current is $50 \mu \mathrm{~A}$ maximum for each emitter. Currents into the input terminals are specified as positive values.

FAN-OUT CAPABILITY

Fan-out (N) reflects the ability of an output to supply current to a number of normalized loads at a high logic level and to sink current at the low logic level. At the high logic level, each standard output is capable of supplying current to drive 20 Series $54 \mathrm{H}, 74 \mathrm{H}, 54 \mathrm{~S}$, or 74 S loads ($\mathrm{N}_{\mathrm{H}}=20$). Currents out of the output are specified as negative values. At the low logic level, each standard output is capable of sinking current from 10 Series $54 \mathrm{H}, 74 \mathrm{H}, 54 \mathrm{~S}$, or 74 S loads ($\mathrm{N}_{\mathrm{L}}=10$).

RECOMMENDED OPERATING CONDITIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{3}{|c|}{SERIES 54S CIRCUITS} \& \multicolumn{3}{|c|}{SERIES 74S CIRCUITS} \& \multirow[t]{2}{*}{UNIT} \\
\hline \& MIN \& NOM \& MAX \& MIN \& NOM \& MAX \& \\
\hline \begin{tabular}{l}
Supply Voltage \(V_{C C}\) \\
Operating Free-Air Temperature, \(\mathrm{T}_{\mathrm{A}}\)
\end{tabular} \& \[
\begin{array}{r}
4.5 \\
-55
\end{array}
\] \& 5 \& \[
\begin{array}{r}
5.5 \\
125
\end{array}
\] \& \[
\begin{array}{r}
4.75 \\
0
\end{array}
\] \& 5 \& \[
\begin{array}{r}
5.25 \\
70
\end{array}
\] \& V

C

\hline
\end{tabular}

S54S/N74SXX Electrical Characteristics

PIN CONFIGURATIONS

SCHEMATIC (each gate)

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation dellay time, low-to-	$C_{L}=15 \mathrm{pF}$,	$R_{L}=280 \Omega$		3	4.5	ns
	high-level output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=280 \Omega$		4.5		
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-	$C_{L}=15 p F$,	$R_{L}=280 \Omega$	2	3	5	ns
	level output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		5		

S54/N74S03

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
${ }^{\prime} \mathrm{OH}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & 1 O L=20 \mathrm{~mA} \end{aligned}$	$V_{1 H}=2 \mathrm{~V}$,			0.5	V
11	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
${ }_{1} 1 \mathrm{H}$	High-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.5 \mathrm{~V}$			-2	mA
${ }^{\mathrm{CCH}}$	Supply current, high-level output (average per gate)	$V_{C C}=M A X$,	All inputs at 0 V		1.5	3.3	mA
${ }^{\text {I CCL }}$	Supply current, low-level output (average per gate)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	All inputs at 5 V		5	9	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.
NOTES:
A. The pulse generator has the following characteristics: $V_{\text {in }(1)}=3 V, V_{\text {in }}(0)=0 V, t_{1}=t_{0}=2.5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$, duty cycle $=50 \%$, and $Z_{\text {out }} \approx 50 \Omega$.
B. Inputs not under test are at 2.7 V .
C. C_{L} includes probe and jig capacitance.

OPEN COLLECTOR POSTIVE-HEX INVERTER

S54504
S54S05
S54S04-A,F,W • S54S05-A,F,W •N74S04-A,F,W • N74S05-A,F
N74504
DIGITAL 54/74 TTL SERIES
N74505
PIN CONFIGURATIONS

SCHEMATIC (each gate)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{\text {CC }}$Normalized Fan-Out from each Output, N :	High logic level Low logic level	S54S04			N74S04			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
		4.5	5	5.5	4.75	5	5.25	V
				20			20	
				10			10	
Operating Free-Air Temperature, T_{A}		-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$1_{1}=-18 \mathrm{~mA}$			-1.2	\checkmark
V_{OH}	High-level output voltage	$V_{C C}=$ MIN,	$V_{\text {IL }}=0.8 \mathrm{~V}$,	2.5	3.4		V
VOH	High-level output voltage	$1 \mathrm{OH}=-1 \mathrm{~mA}$		2.7	3.4		V
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{O L}=20 \mathrm{~mA} \end{aligned}$	$V_{1 H}=2 \mathrm{~V}$,			0.5	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA
${ }^{1} \mathrm{IH}$	High-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
IIL	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.5 \mathrm{~V}$			-2	mA
IOS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX		-40		-100	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output (average per gate)	$V_{C C}=M A X$,	All inputs at OV		2.5	4	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output (average per gate)	$V_{C C}=$ MAX,	All inputs at 5V		5	9	mA

SIGNETICS DIGITAL 54/74 TTL SERIES - S54S04 • S54S05 • N74S04 • N74S05

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {t PLH }}$	Propagation delay time, low-to-highlevel output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=280 \Omega \\ & R_{\mathrm{L}}=280 \Omega \end{aligned}$	2	3 4.5	4.5	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & R_{L}=280 \Omega \\ & R_{L}=280 \Omega \end{aligned}$	2	3 5	5	ns

S54/N74S05

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
${ }^{1} \mathrm{OH}$	High-level output current	$V_{C C}=$ MIN,	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
		OH					
VOL	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & I_{O L}=20 \mathrm{~mA} \end{aligned}$	$V_{\text {IH }}=2 \mathrm{~V}$,			0.5	V
1	Input current at maximum input voltage	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
1 H	High-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
1 IL	Low-level input current (each input)	$V_{C C}=M A X$,	$V_{1}=0.5 \mathrm{~V}$			-2	mA
${ }^{1} \mathrm{CCH}$	Supply current, high-level output (average per gate)	$V_{C C}=\mathrm{MAX}$,	All inputs at 0 V		1.5	3.3	mA
${ }^{1} \mathrm{CCL}$	Supply current, low-level output (average per gate)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	All inputs at 5 V		5	9	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

NOTES:

A. The pulse generator has the following characteristics: $V_{i n(1)}=3 V, V_{i n(0)}=0 V, t_{1}=t_{0}=2.5 n s, P R R=1 \mathrm{MHz}, \mathrm{duty} \mathrm{cycle}=50 \%$, and $Z_{\text {out }} \approx 50 \Omega$.
B. Inputs not under test are at 2.7 V .
C. C_{L} includes probe and jig capacitance.

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level Operating Free-Air Temperature, T_{A}	S54S20			N74S20			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-highlevel output	$\begin{aligned} & c_{L}=15 \mathrm{pF}, \\ & C_{L}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=280 \Omega \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	2		4.5	ns
${ }^{\text {t PHL }}$	Propagation delay time, high-to-lowlevel output	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & C_{L}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & R_{L}=280 \Omega \\ & R_{L}=280 \Omega \end{aligned}$	2	3	5	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.
NOTES:
A. The pulse generator has the following characteristics: $V_{i n(1)}=3 V, V_{i n(0)}=0 V, t_{1}=t_{0}=2.5 n s, P R R=1 M H z, d u t y c y c l e=50 \%, a n d$ $Z_{\text {out }} \approx 50 \Omega$.
B. Inputs not under test are at 2.7 V .
C. C_{L} includes probe and jig capacitance.

S54S22-A,F,W • N74S22-A,F
DIGITAL 54/74 TTL SERIES

SCHEMATIC (each gate)

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

	S54S22			N74S22			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from any Output, N			10			10	
Operating Free-Air Temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *		MIN	TYP **	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$V_{C C}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V} \end{aligned}$	$V_{\text {IL }}=0.8 \mathrm{~V}$,			250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$	$V_{1 H}=2 V$,			0.5	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$V_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IH }}$	High-level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low-level input current (each input)	$V_{C C}=M A X$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-2	mA
${ }^{\mathbf{C C H}}$	Supply current, high-level output (average per gate)	$V_{C C}=M A X$,	All inputs at 0 V		1.5	3.3	mA
${ }^{\text {I CCL }}$	Supply current, low-level output (average per gate)	$V_{C C}=M A X$,	All inputs at 5 V		5	9	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high- level output	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & C_{L}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	2	5	7.5	ns
			$\mathrm{R}_{\mathrm{L}}=280 \Omega$		7.5		
${ }^{\text {tPHL }}$	Propagation delay time, high-to-	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$	$\mathrm{R}_{\mathrm{L}}=280 \Omega$	2	4.5	7	ns
	low-level output		$R_{L}=280 \Omega$		7		

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTES:
A. The pulse generator has the following characteristics: $V_{i n(1)}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(0)}=0 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=2.5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{duty} \mathrm{cycle}=50 \%$, and $Z_{\text {out }} \approx 50 \Omega$.
B. Inputs not under test are at 2.7 V .
C. C_{L} includes probe and jig capacitance.

DUAL J-K EDGE-TRIGGERED FLIP-FLOP

S54S112-B,F,W •N74S112-B

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

positive Logic

SCHEMATIC (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level	S54S112			N74S112			UNIT
	Min	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Clock Frequency, $\mathrm{f}_{\text {clock }}$	0		80	0		80	MHz
Width of Clock Pulse, ${ }_{\text {w }}$ (clock)	6			6			ns
Width of Preset Pulse, t_{w} (preset)	8			8			ns
Width of Clear Pulse, ${ }_{\text {w }}$ (clear)	8			8			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (See Note 1)	3			3			ns
Input Hold Time, thold (See Note 2)	0			0			ns
Operating Free-Air Temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER		TEST CONDITIONS *	MIN	TYP **	MAX	UNIT
$V_{1 H}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	V
V_{1}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	\checkmark
V^{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{11}=0.8 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, & \mathrm{~S} 54 \mathrm{~S} 112 \\ \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \mathrm{~N} 74 \mathrm{~S} 112 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$		v
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=0.8 V, \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O L}=20 \mathrm{~mA} \end{aligned}$			0.5	V
11	Input current at maximum input voltage	$V_{C C}=$ MAX,	$V_{1}=5.5 \mathrm{~V}$			1	mA
${ }^{1} \mathrm{IH}$	High-level input current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=2.7 V \end{aligned}$	J or K input Clock, preset, or clear			50 100	$\mu \mathrm{A}$
1 L	Low-level input current	$\begin{aligned} & V_{C C}=M A X, \\ & V_{1}=0.5 V \end{aligned}$	J or K input Clock Preset or clear			-1.6 -4 -7	mA
'OS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,		-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,	See Note 3		30	50	$m A$

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {max }}$	Maximum clock frequency	$C_{L}=15 p F, \quad R_{L}=280 \Omega$		80	125		MHz
${ }^{\text {PLLH }}$	Propagation delay time, low-to-highlevel output, from clear or preset			2	4	7	ns
${ }^{\text {TPHL }}$	Propagation delay time, high-to-lowlevel output, from clear or preset			2	5	7	ns
${ }^{\text {tPLH }}$	Propagation delay time, low-to-highlevel output, from clock			2	4	7	ns
${ }^{\text {tPHL}}$	Propagation delay time, high-to-lowlevel output, from clock			2	5	7	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second. NOTES:

1. Setup time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
2. Hold time is the interval immediately following the negative-going edge of the clock pulse during which interval the data to be recognized must be maintained at the input to ensure its continued recognition.
3. ${ }^{\mathrm{CC}}$ is measured with outputs open, clock grounded, and J-K preset and clear at 4.5 V .

DESCRIPTION

The S54S113 and N74S113 offer individual J, K, preset, and clock inputs. The S54S114 and N74S114 offer common clock and common clear inputs and individual J, K, and preset inputs.

These monolithic dual flip-flops are designed so that when the clock goes high, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is high and the bistable will perform according to the truth table as long as minimum setup times are observed. Input data are transferred to the outputs on the negative-going edge of the clock pulse.

PIN CONFIGURATIONS

TRUTH TABLE

t_{n}		t_{n+1}
J	K	Q
L	L	Q_{n}
L	H	L
H	L	H
H	H	\bar{Q}_{n}

NOTES:
A. $t_{n}=$ bit time before clock pulse
B. $\mathrm{t}_{\mathrm{n}+1}=$ bit time after clock pulse

LOGIC DIAGRAM (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage V_{CC} Normalized Fan-Out from each Output, N: High logic level Low logic level	S54S113, S54S114			N74S113, N74S114			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Clock Frequency, $\mathrm{f}_{\text {clock }}$	0		80	0		80	MHz
Width of Clock Pulse, $\mathrm{t}_{\text {w }}$ (clock)	6			6			ns
Width of Preset Pulse, $\mathrm{t}_{\text {w }}$ (preset)	8			8			ns
Width of Clear Puise, t_{w} (clear): S54S114, N74S114	8			8			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$	3			3			ns
Input Hold Time, thold	0			0			ns
Operating. Free-Air Temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

[^39]SCHEMATIC (each gate)

RECOMMENDED MAXIMUM FAN-OUT FROM EACH OUTPUT

	60
Loads at a high logic level	30

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

NOTES:

A. The pulse generator has the following characteristics: $V_{\text {in(1) }}=3 V, V_{\text {in }}(0)=0 V, t_{1}=t_{0}=2.5 n s, P R R=1 \mathrm{MHz}$, duty cycle $=50 \%$, and $Z_{\text {out }}$ $\approx 50 \Omega$.
B. Inputs not under test are at 2.7 V .
C. C_{i} includes probe and jig capacitance.

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{3 0}$

	PARAMETER Pröpagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=93 \Omega$	2	4	6.5	ns
		$C_{L}=150 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=93 \Omega$		6		ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=93 \Omega$	2	4	6.5	ns
		$C_{L}=150 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=93 \Omega$		6		ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable series on the second page of this section.
** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed 100 milliseconds.

54/74 And 54/74H Typical A.C. Loads And Waveforms

TYPICAL A.C. LOADS

TYPICAL A.C. WAVEFORM

Signetics Sure 883 Program

SECTION 7

The Signetics SURE*/883 Program consists of a combination of 100 percent and statistical sample tests designed to assure specified performance, continuing uniformity, and long term reliability of Signetics products. These tests are made regularly at no extra cost to the user and are performed in addition to the 40 quality assurance inspections and tests to which every circuit is subjected before final seal. The tests, tabulated below for the specifier's convenience, are performed in accordance with the following conditions, sequence, and schedules on equipment calibrated to meet all requirements of MIL-Q-9858A and MIL-C-45662A.

Every circuit of every lot is processed to the environmental screens shown in Table 1. These screens are performed in production and include 100% final production electrical tests. Any unit failing either the environmental screens or the final production electrical tests is rejected and removed from the lot.

After completion of Table 1 tests, each manufacturing lot is sampled and tested by Quality Assurance for conformance to the requirements of Table II. The unsampled portion of the lot is held pending acceptance of the lot sampie. Detailed electrical test limits and conditions applicable to each subgroup are shown in the Electrical Characteristics table of the individual part type data sheets.

Tables IIIA, IIBB, and HIC provide a complete process qualification and verification program in accordance with the conditions of MIL-STD-883, Group A, B and C tests. These tests are performed once in every 90 day manufacturing period, on representative devices from each standard production die process family and on each production package family. The representative circuits and packages selected are changed routinely, and the tests performed monitor and qualify all structurally similar devices produced by the same process and production during that period. A summary of these test results is available on request at the time of order placement.

* Systematic Uniformity and Reliability Evaluation

Table II - Signetics Acceptance Tests (See Notes 2 and 3)

SIGNETICS SUBGROUP	TEST	CONDITIONS	AQL	MIL-STD-105 INSPECTION LEVEL
A-1	Visual and Mechanical Inspection	MIL-STD-883 Method 2009	1.0\%	III
A-2	DC Parameters	$T_{A}=+25^{\circ} \mathrm{C}$	1.0\%	III
A. 3	DC Parameters	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.0\%	III
A-4	DC Parameters	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	1.0\%	III
A-5	DC Parameters	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	1.0\%	III
A. 6	AC Parameters	$T_{A}=+25^{\circ} \mathrm{C}$	1.0\%	III

TABLE IIIA. MIL-STD-883 GROUP A
ELECTRICAL TESTS

MIL-STD-883 GROUP A SUBGROUP	SIGNETICS SUBGROUP	TEST DESCRIPTION
A1	A. 2, A. 3	Static tests at $25^{\circ} \mathrm{C}$
A2	A. 4	Static tests at maximum rated operating temperature.
A3	A-5	Static tests at minimum rated operating temperature.
A4	A. 6	Dynamic tests at $25^{\circ} \mathrm{C}$,
A5	C 2, when applicable	Dynamic tests at maximum rated operating temperature.
A6	C 2, when applicable	Dynamic tests at minimum rated operating temperature.
A 7	*	Functional tests at $25^{\circ} \mathrm{C}$.
A8	A.4, A. 5	Functional tests at maximum and minimum rated operating temperatures.
A9	A. 6	Switching tests at $25^{\circ} \mathrm{C}$.
A 10	C.2, when applicable	Switching tests at maximum rated operating temperature.
A11	C. 2 , when applicable	Switching tests at minimum rated operating temperature.

TABLE IIIB. MIL-STD-883 GROUPS B AND C ENVIRONMENTAL TESTS

MIL.STD-883 GROUP B \& C SUBGROUP	TEST DESCRIPTION	MIL-STD-883 METHOD	CONDITIONS	LTPD
B_{1}	Physical Dimersions	2008	Test Condition A	15
B_{2}	Marking Permanency Visual and Mechanical Bond Strength	$\begin{aligned} & 2008 \\ & 2008 \\ & 2011 \\ & \hline \end{aligned}$	Test Condition B, Para. 3,2,1 Test Condition B Test Condition D	4 devices/no fallure 1 device/no failure 15
83	Solderability	2003	Solder Temperature $260^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	15
B_{4}	Lead Fatigue Hermeticity a. Fine b. Gross	$\begin{aligned} & 2004 \\ & 1014 \end{aligned}$	Test Condition B_{2} See Note 4 Test Condition A or B Test Condition C	15
C_{1}	Pre-Test Electrical Parameters Thermal Shock Temperature Cycle Moisture Resistance End Point Electrical Parameters FAILURE CRITERIA	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \end{aligned}$	Signetics Subgroup A-3 15 Cycles. Test Condition C. $+150^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$ 10 Cycles. Test Condition C, $150^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$ Omit initial conditioning. Signetics Subgroup A. 3 Refer to Table IV.	15
C_{2}	Pre-Test Electrical Parameters Mechanical Shock Vibration Variable Frequency Constant Acceleration End Point Electrical Parameters FAILURE CRITERIA	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \end{aligned}$	Signetics Subgroup A•3 Test Condition B Test Condition A Test Condition E Signetics Subgroup A-3 Refer to Table IV.	15
C_{3}	Salt Atmosphere	1009	Test Condition A. Omit initial conditioning.	15
C4	Pre.Test Electrical Parameters High Temperature Storage End Point Electrical Parameters FAILURE CRITERIA	1008	Signetics Subgroup A. 3 $T_{A}=+150^{\circ} \mathrm{C}, t=1000 \text { hours }$ Signetics Subgroup A. 3 Refer to Table IV.	$\lambda=15$

TABLE IIIC. MIL-STD-883 GROUPS B AND C HIGH TEMPERATURE OPERATING LIFE TESTS

MIL-STD-883 GROUP B \& C SUBGROUP	TEST DESCRIPTION	MIL-STD-883 METHOD	CONDITIONS	LTPD
	Pre-Test arid Design Verification Electrical Parameters		Table IIIA as applicable, data sheet groups $A \& C$.	
C6	High Temperature Steady State Reverse Bias End Point Electrical Parameters FAILURE CRITERIA	1015	Test Condition A. $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$ $t=72$ hours. Signetics Subgroup A-3 Refer to Table IV	$\lambda=10$
B_{5} \& C_{5}	High Temperature Operating Life End Point Electrical Parameters FAILURE CRITERIA	1005	Test Condition D or E as applicable. $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ or $+85^{\circ} \mathrm{C}$, per Part Data Sheet. $t=1000$ hours. Signetics Subgroup A-3 Refer to Table IV.	$\lambda=10$

[^40]Table IV - Signetics Failure Criteria

TEST	'1' Input Current	' 1 ' Output Voltage	"0" Input Current	"0" Output Voltage	Expansion Node Current
LIMITS	Data Sheet Limits and: 10X Initial Value for DTL $5 \times$ Initial Value for TTL	Data Sheet Limits and: $\pm 20 \%$ Initial Value	Data Sheet Limits $\pm 20 \%$ Initial Value	Data Sheet Limits and: $\pm 0.1 \mathrm{~V}$	Data Sheet Limits and: $\pm 20 \%$ Initial Value

Optional High Reliability Screening

To maximize reliability in critical application, the Optional High Reliability Screening of Table V provides for three levels of 100% screening per MIL-STD-883, Method 5004 at extra cost. This series eliminates the necessity for special specification, minimizes cost and provides the shortest possible delivery time. This series is applied after the normal Group A acceptance test. Circuits subjected to this Preconditioning Series are clearly distinguishable from standard products in the following ways:

1. Individual serial number on each circuit (Class A only).
2. The first letters of a part number are either RA, RB, or RC.
```
RA = Class A
RB = Class B
RC=Class C
i.e., RA8880J = 100% screening of Table V, Class A.
```

3. Individual device variables parametric test data is supplied with each shipment (Class A only).

Consult your local representative for price information. Device types should be specified with the appropriate letter prefixes.

Notes:

1. Not applicable to solid molded packaged devices.
2. All test equipment calibrated to meet requirements of MIL-Q-9858A and MIL-C-45662A.
3. Detailed tests, conditions, and limits applicable to each subgroup are given in the Signetics data sheet ELECTRICAL CHARACTERISTICS table. See Table lliA for the corresponding Group A tests of MIL-STD-883.
4. The Hermeticity tests are not employed for solid molded packages.
5. Class B and Class C may be subjected to thermal shock as an alternate.
6. The test sequence of fine and gross leak may be reversed when fluorocarbons are utilized for gross leak.
7. The individual MIL-STD-883 Test Methods are, in many cases designed to "stand alone" as a sole screen or sole Group B environmental sampling test. But since 5004 specifies a screening series or flow, some of the measurements, etc., specified in an individual Test Method are not intended to be applicable in the screening series.

TABLE V - MIL-STD-883 METHOD 5004, HIGH RELIABILITY SCREENING

TEST	MIL-STD-883 METHOD	CLASS A	CLASS B	CLASS C	CLARIFICATIONS (See Note 7)
Internal Visual (preseal)	2010.1	Cond. A	Cond. B	Cond. B	Test Condition A, Paragraph 3.1.1.7, a, delete the words "and parameter".
Stabilization Bake	1008 (24 hours)	Cond. C	Cond. C	Cond. C	Condition $\mathrm{C}\left(150^{\circ} \mathrm{C}\right)$ max. for au/al metallization system. Cond. D $\left(200^{\circ} \mathrm{C}\right)$ max. for al/al metallization system. No electrical measurements at this point.
Thermal Shock	1011	Cond C	Not required. NOTE 5	Not required. NOTE 5	Cond. $\mathrm{C}\left(150^{\circ} \mathrm{C}\right)$ max. for au/al metallization system. Cond. $D \quad\left\{200^{\circ} \mathrm{C}\right)$ max. for al/al motallization system. No electrical measurements, no external visual inspection at this point.
Temperature Cycling	1010	Cond. C	Cond. C NOTE 5	Cond. C NOTE 5	$\left(150^{\circ} \mathrm{C}\right)$ max. for au/al metallization system. Cond. $\mathrm{D}\left(200^{\circ} \mathrm{C}\right)$ max. for al/al metallization system. No electrical messurements, no external visual inspaction, no hermeticity tests at this point.
Mechanical Shock	2002. Y1 plane only	Cond. B	Not Required	Not Required	No electrical measurements at this point.
Centrifuge	2001	Cond. E Y2 then Y1 plane	Cond. E $Y 1$ plane	Cond. E Y 1 plane	
Hermeticity A. Fine Leak B. Gross Leak	1014, Note 6 (Hermetic devices only)	$\begin{aligned} & \text { Cond. A or B } \\ & \text { Cond. C } \end{aligned}$	Cond. A or \mathbf{B} Cond. C	$\begin{aligned} & \text { Cond. A or B } \\ & \text { Cond. } \mathbf{C} \end{aligned}$	
Critical Electrical Parameters	Signetics Subgroup A. 3	Read and Record	Not Required	Not Required	
Burn-In Test	1015, $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	240 hours Cond. D or E (as applicable)	168 hours Cond. D or E (as applicable)	Not Required	
Critical Electrical Parameters	Signetics Subgroup A. 3	Read and Record	Not Required	Not Required	
Signatics FAILURE CRITERIA		Table IV	Not Required	Not Required	
Reverse Bias Burn in	$\begin{aligned} & \text { 1015. } \mathrm{T}_{A}=+150^{\circ} \mathrm{C} \\ & \mathrm{t}=72 \text { hours } \end{aligned}$	Cond. A or C	Not Required	Not Required	Required only when specified in the applicable procurement document. Signetics standard burn-in (above) includes reverse bias of unused junctions.
Final Electrical Test	Perform ga no go measurements of Signetics Subgroup A Parameters	Signetics Subgroups A 2, A 4, A.5, A 6 . Functional tests. ruth table when applicable	Signetics Subgroups A 2,A 3, A 6. Functional tests. truth table when applicable	Signetics Subgroups A 2. A 3 Functional tesis, truth table when applicable	
Radiographic inspection	2012	Yes	Not Required	Not Required	
External Visual	2009	Yes	Yes	Yes	

Signetics Sales Offices

SALES OFFICES

- New England Regional Sales Office: Miller Building, Suite 11

594 Marrett Road, Lexington, Massachusetts 02173 Phone (617) 861-0840 TWX: (710) 326-6711

- Atlantic States Regional Sales Office: 2460 Lemoine Ave., Fort Lee, New Jersey 07024
Phone: (201) 947-9870 TWX: (710) 991-9794
Florida: 3267 San Mateo, Clearwater 33515
Phone: (813) 726-3469 TWX: (810) 866-0437
Florida: 4347 Northwest 2nd Court
Boca Raton, Florida 33432
Phone: (305) 391-8318 TWX: (510) 953-7538
Maryland: Silver Springs
Phone: (301) 946-6030
Pennsylvania and Southern New Jersey: P. O. Box 431
Oakwood Drive, Medford, New Jersey 08055
Phone: (609) 665-5071
Virginia: 12001 Whip Road, Reston 22070
Phone: (301) 946-6030
- Central Regional Sales Office: 5105 Tollview Drive, Suite 209

Rolling Meadows, Illinois 60008
Phone: (312) 259-8300 TWX: (910) 687-0765
Minnesota: 7710 Computer Ave., Suite 132, Minneapolis 55435
Phone: (612) 922-2801 TWX: (910) 576-2740
Ohio: 3300 So. Dixie Drive, Suite 220, Dayton 45439
Phone: (513) 294-8722

- Northwest Regional Sales Office: 811 E. Arques,

Sunnyvale, CA 94086
Phone (408) 739-7700 TWX: (910) 339-9220 (910) 339-9283

- Southwest Regional Sales Office: 2061 Business Center Dr.

Suite 214, Irvine, CA 92664
Phone: (714) 833-8980, (213) 924-1668 TWX: (910) 595-1506
Arizona: 4747 No. 16th St., Suite D-102, Phoenix Phone: (602) 265-3153
California: P. O. Box 788, Del Mar 92014
Phone: (714) 453-7570

REPRESENTATIVES

ALABAMA
Huntsville 35801: Compar Corp., 904 Bob Wallace Ave., Suite A Phone: (205) 539-8476

ARIZONA

Scottsdale 85252: Compar Corp., Box 1607
Phone: (602) 947-4336 TWX: (910) 950-1293

CALIFORNIA

San Diego 92123: Celtec Company, Inc., 8799 Balboa Avenue
Phone: (714) 279-7961 TWX: (910) 335-1512

CANADA

Toronto 17, Ontario: Corning Glass Works of Canada, Ltd., 135 Vanderhoff Ave.
Phone: (416) 421-1500 TWX: (610) 491-2155
Montreal 265, Quebec: Corning Glass Works of Canada, 7065 Chester Ave.
COLORADO
Denver 80237: Parker Webster Company, 8213 E. Kenyon Dr. Phone: (303) 770-1972

CONNECTICUT

Hamden 06518: Compar Corp., P. O. Box 5204
Phone: (203) 288-9276 TWX: (710) 465-1540

FLORIDA

Altamonte Springs 32701: WMM Associates, Inc., 515 Tivoli Ct. Phone: (305) 831-4645
Clearwater 33516: WMM Associates, Inc., 1260A S. Highland Ave. Phone: (813) 446-0075

Pompano Beach 33060: WMM Associates, Inc.,
721 South East 6th Terrace
Phone: (305) 943-3091

INDIANA

Indianapolis 46250: R. H. Newsom Associates, 6320 Woburn Dr. Phone: (317) 849-4442

MARYLAND

Silver Springs 20904: Mechtronics Sales, Inc., 11700 Old Columbia Pike, Suite L-6 Phone: (301) 622-2420

MASSACHUSETTS

Newton Highlands 02161: Compar Corp., 88 Needham Street Phone: (617) 969-7140 TWX: (710) 335-1686

MICHIGAN

Grosse Pointe Park 48230: Greiner Associates, Inc., 15324 E. Jefferson Phone: (313) 499-0188, (313) 499-0189 TWX: (801) 221-5157

MINNESOTA

Minneapolis 55416: Compar Corp., P. O. Box 16183
Phone: (612) 922-7011

MISSOURI

St. Louis 63141: Compar Corp., 11734 Lackland Industrial Drive Phone: (314) 567-3399 TWX: (910) 764-0839

UPSTATE NEW YORK

Dewitt 13214: TriTech Electronics, Inc.,
P. O. Box C Phone: (315) 446-2881

NORTH CAROLINA
Winston-Salem 27101: Compar Corp., 1106 Burke Street
Phone: (919) 723-1002 TWX: (510) 931-3101

OHIO

Dayton 45405: Compar Corp., P. O. Box 57, Forest Park Branch Phone: (415) 435-1301
Fairview Park 44126: Compar Corp., P. O. Box 4791
Phone: (216) 333-4120 TWX: (810) 421-8396

TEXAS

Richardson 75080: Semiconductor Sales Associates,
312 North Central Expressway, Suite 213
Phone: (214) 231-6181

WASHINGTON

Bellevue 98009: Western Technical Sales, P. O. Box 902
Phone: (206) 454-3906 TWX: (910) 443-2309

DISTRIBUTORS

ARIZONA

Phoenix 85009: Hamilton/Avnet Electronics, 1739 N. 28th Ave. Phone: (602) 269-1391 TELEX: 667-450

CALIFORNIA

Burlingame 94010: Compar Corp., 820 Airport Blvd. Phone: (415) 347-5411 TWX: (910) 374-2366

Culver City 90230: Hamilton Electro Sales, 10912 W. Washington Phone: (213) 559-3311 TELEX: 677-100, 674-381, 674-354

El Monte 91731: G. S. Marshall, 9674 Telstar Avenue Phone: (213) 686-1500 TWX: (910) 587-1565

Los Angeles 90022: KT/Wesco Electronics, 5650 Jillson Street Phone: (213) 685-9525 TWX: (910) 580-1980

Mountain View 94041: Hamilton/Avnet Electronics, 340 East Middlefield Road
Phone: (415) 961-7000 TELEX: 348-201
Palo Alto 94303: Wesco Electronics, 3973 East Bayshore Road Phone: (415) 968-3475 TWX: (910) 379-6488

San Diego 92111: G. S. Marshall, 7990 Engineer Road, Suite 1 Phone: (714) 278-6350 TWX: (910) 587-1565

San Diego 92123: Hamilton/Avnet Electronics, 5567 Keeny Villa Rd.
Phone: (714) 279-2421
San Diego 92123: Kierulff Electronics, 8797 Balboa Avenue Phone: (714) 278-2112 TWX: (910) 335-1182

CANADA
Toronto, Ontario: Cesco Electronics, Ltd., 24 Martin Ross Avenue Phone: (416) 638-5250

Montreal, Quebec: Cesco Electronics, Ltd., 4050 Jean Talon West Phone: (514) 735-5511 TWX: (610) 421-3445

Ottawa, Ontario: Cesco Electronics, Ltd., 1300 Carling Avenue Phone: (613) 729-5118

Quebec: Cesco Electronics, Ltd., 98 St. Vallier Street
Phone: (418) 524-3518
COLORADO
Denver 80216: Hamilton/Avnet Electronics, 1400 W. 46th Avenue Phone: (303) 433-8551 TELEX: 45872

FLORIDA

Hollywood 33021: Hamilton/Avnet Electronics, 4020 No. 29th Ave. Phone: (305) 925-5401 TELEX: 51-4328

Orlando 32805: Hammond Electronics, 911 West Central Bivd. Phone: (305) 241-6601 TWX: (810) 850-4121

ILLINOIS

Elmhurst 60126: Semiconductor Specialists, Inc.,
195 Spangler Avenue, Elmhurst Industrial Park
Phone: (312) 279-1000 TWX: 254-0169
Schiller Park 60176: Hamilton/Avnet Electronics, 3901 Pace Court
Phone: (312) 678-6310 TELEX: 728-330

KANSAS

Prairie Village 66208: Hamilton/Avnet Electronics,
3500 West 75th Street
Phone: (913) 362-3250

MARYLAND

Hanover 21076: Hamilton/Avnet Electronics, 7255 Standard Drive, P. O. Box 8647

Phone: (301) 796-5000 TELEX: 879-68
Rockville 20850: Pioneer Washington Electronics, Inc., 1037 Taft Street Phone: (301) 424-3300

MASSACHUSETTS

Burlington 01803: Hamilton/Avnet Electronics 207 Cambridge Street
Phone: (617) 272-3060 TELEX: 9494-61
Needham Heights 02194: Kierulff/Schley, 14 Charles Street Phone: (617) 449-3600 TWX: (710) 325-1179

MICHIGAN

Livonia 48150: Hamilton/Avnet Electronics, 13150 Wayne Rd. Phone: (313) 522-4700

Detroit 48240: Semiconductor Specialists, Inc.,
25127 W. Six Mile Road
Phone: (313) 255-0300 TWX: (910) 254-0169

MINNESOTA

Minneapolis 55420: Semiconductor Specialists, Inc., 8030 Cedar Avenue, South
Phone: (612) 854-8841
MISSOURI
Hazelwood 63042: Hamilton/Avnet Electronics, 400 Brookes Lane Phone: (314) 731-1144 TELEX: 442348

NORTHERN NEW JERSEY

Cedar Grove 07009: Hamilton/Avnet Electronics, 220 Little Falls Road
Phone: (201) 239-0800 TELEX: 138313

SOUTHERN NEW JERSEY AND PENNSYLVANIA

Cherry Hill, N. J. 08034: Hamilton/Avnet Electronics, 1608-10 W. Marlton Pike
Phone: (609) 662-9337 TELEX: 834737
Cherry Hill, N. J. 08034: Milgray-Delaware Valley, 1165 Marlkress Road
Phone: N.J. (609) 424-1300 Phila. (215) 228-2000
TWX: (710) 896-0405

NEW YORK

Buffalo 14202: Summit Distributors, Inc., 916 Main Street
Phone: (716) 884-3450 TWX: (710) 522-1692
Farmingdale, L. I., 11735: Arrow Electronics, 900 Broad Hollow Rd.
Phone: (516) 995-2100
Hauppauge, L.I. 11787: Semiconductor Concepts, Inc.,
Engineer Road
Phone: (516) 273-1234 TWX: (510) 227-6232
Syracuse 13211: Hamilton/Avnet Electronics, 222 Boss Rd. Phone: (315) 437-2642

Woodbury, L.I. 11797: Harvey Radio, 60 Crossways Park West Phone: (516) 921-8700 TWX: (510) 221-2184

OHIO
Cleveland 44105: Pioneer Standard Electronics, 5403 Prospect Ave., P. O. Box 05100
Phone: (216) 587-3600 TWX: (810) 421-8238
Kettering 45429: Arrow Electronics, 3100 Plainfield Road
Phone: (513) 253-9176 TWX: (810) 459-1611

TEXAS

Dallas 75207: Hamilton/Avnet Electronics, 2403 Farrington Ave. Phone: (214) 638-2850 TELEX: 732359

Dallas 75220: Solid State Electronics Company,
2643 Manana Dr., P. O. Box 20299
Phone: (214) 352-2601
Houston 77019: Hamilton/Avnet Electronics, 1216 West Clay Street
Phone: (713) 526-4661 TELEX: 762589

WASHINGTON

Seattle 98121: Hamilton/Avnet Electronics, 2320 Sixth Avenue Phone: (206) 624-5930 TELEX: 32249

STOCKING DISTRIBUTORS

AUSTRALIA

Pye Industries, Ltd., Technico Electronics Division, 53 Carrington Rd., Marrickville, Sydney, N.S.W.
Phone: 55-0411 TELEX: 790-21490
Pye Industries, Ltd., Technico Electronics Divsion, 2-18 Normanby Road, South Melbourne, Vic.
Phone 69-60-61 TELEX: 31240

BELGIUM

Klaasing Benelux S.A., 30 Rue Leon Frederic, 1040 Brussels Phone: (02) 33-62-63, 34-20-30 TELEX: 25003

WEST GERMANY

EBV Elektronik GmbH. Augustenstrasse 79, D-8 Muenchen 2 Phone: (0811) 52-53-40/48 TELEX: 524535
EBV Elektronik GmbH. Myliusstrasse 54 D-6 Frankfurt/Main 1 Phone: (0611) 72-04-16/18 TELEX: 413590
EBV Elektronik GmbH. Scheurenstrasse 1, D-4 Duesseldorf Phone: (0211) 8-48-46/47 TELEX: 8587267
"Muetron" Muller \& Co. KG, Postfach 164, Bornstrasse 65, D-28 Bremen 1
Phone: (0421) 31-04-85 TELEX: 245-325
Dima-Elektronik Karl Manger KG, Postfach 800744 Robert-Leichtstrasse 43, D-7 Stuttgart-Vaihingen 80 Phone (0711) 73-40-50/9 TELEX: 255-642
Distron GmbH, D-1 Berlin 31, Wilhelmsaue 39.41
Phone: 0311/870144 TELEX: 18-27-58
Signetics GmbH, Eulenkrugstr, 81 E, D-2 Hamburg 67 Phone: (411) 60-35-242

AUSTRIA

Ing. Ernst Steiner, Beckgasse 30, A-1130 Wien Phone: (222) 82-10-605

SWITZERLAND
Dewald AG, Seestrasse 561, CH 8038, Zuerich
Phone: (051) 45-13-00 TELEX: 52012

FRANCE

S. A. Gallec Electronique, 78, Avenue des Champs-Elysees, Paris 8 e Phone: 359-58-38/255-67-10/255-67-11
R.T.F., 73, Av. de Neuilly, 92 - Neuilly sur Seine, Paris Phone: 722.70.40 TELEX: 65.933
Elic 38, le Bureau Barisien S.A.R.L., 8-10 Avenue du Grand Sablon, 38 La Tronche Phone: (76) 87-67-71 TELEX: 32-739

ITALY

Metroelettronica S.A.S., Viale Cirene 18, 1-20135 Milano Phone: 546-26-41 TELEX: 33-168 Metronic

ISRAEL

Rapac Electronics Ltd., P. O. Box 18053, 15 Karl Herbst St., Tel-Baruch, Tel-Aviv Phone: 7771 15,6,7 TELEX: TV 528

INTERNATIONAL SALES

EUROPEAN HEADQUARTERS

Signetics International Corp., Yeoman House, 63 Croydon Road, Penge, London, S.E. 20, England
Phone: (01) 6592111 TELEX: 946619

FRANCE

Signetics S.A.R.L., 90 Rue Baudin, F 92 Levallois-Perret, France Phone: 739-85-80/739-96-40 TELEX: 62014

WEST GERMANY

Signetics GmbH, Ernsthaldenstrasse 17, D 7 Stuttgart 80, West Germany
Phone: (0711) 73-50-61 TELEX: 7255798
UNITED KINGDOM
Quarndon Electronics Ltd., Slack Lane, Derby, Derbyshire Phone: (0332) 32651 TELEX: 37163
S.D.S. (Portsmouth) Ltd., Hilsea Industrial Estate

Portsmouth, Hampshire
Phone: 65311 TELEX: 86114
Semicomps Ltd., 5 Northfield Industrial Estate, Beresford Ave., Wembley, Middiesex
Phone: (01) 903-3161 TELEX: 935243
A. M. Lock \& Co. Ltd., 79 Union St., Oldham, Lancs, England Phone: 061-624-6832

SCOTLAND

Semicomps Northern Ltd., 44, The Square, Kelso, Roxburghshire Phone: 2366 TELEX: 72692

SWEDEN, NORWAY, FINLAND

A. B. Kuno Kallman, Jarntorget 7, S-413 04 Goteberg SV,

Phone: 17-01-20 TELEX: 21072

DENMARK

E. Friis-Mikkelsen A/S, Krogshojvej 51, DK-2880 Bagsvaerd Phone: (01) 986333 TELEX:2350

THE NETHERLANDS
Mulder-Hardenberg, P. O. Box 5059, Westerhoutpark 1-A, Haarlem Phone: (023) 319184 TELEX: 41431

JAPAN

Asahi Glass Co., Ltd., 1-2 Marunouchi, 2 Chome Chiyoda-ku, Tokyo Phone: 218-5536 TELEX: 4616

REPRESENTATIVES

SWEDEN, NORWAY, FINLAND

A. B. Kuno Kallman, Jarntorget 7, S-413 04 Goteborg SV, Sweden Phone 17-01-20 TELEX: 21072

ISRAEL
Rapac Electronics Ltd., P. O. Box 18053, 15 Karl Herbst St., Tel-Baruch, Tel-Aviv Phone: 7771 15,6,7 TELEX: TV 528

JAPAN

Asahi Glass Co., Ltd., 1-2 Marunouchi, 2 Chome, Chiyoda-ku, Tokyo Phone 218-5536 TELEX: 4616

SWITZERLAND

Dewald AG, Seestrasse 561, CH 8038 Zuerich
Phone: (051) 45-13-00 TELEX: 52012

INDIA

Semiconductors Limited, Radia House, 6, Rampart Row,
Fort, Bombay - 1
Phone: 293667 TELEX: Transducer, Bombay

811 EAST ARQUES AVENUE SUNNWALE, GAIIFORNA 94086 IEL: (408) 739-7700
TWX: (910) 339-9283

[^0]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 t Not more than one output should be shorted at a time.

[^1]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^2]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
 t Not more than one output should be shorted at a time.

[^3]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander inputs X and \bar{X} are open.
 ** All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^4]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander inputs X and \bar{X} are open.
 * All typical values are at $V_{c c}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^5]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^6]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \quad+$ Not more than one output should be shorted at a time.

[^7]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
 \dagger Not more than one output should be shorted at a time.

[^8]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{c c}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time

[^9]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 \| These typical times indicate that period occurring prior to the fall of clock pulse (t_{0}) below 1.5 V when data at the D input will still be recognized and stored.

[^10]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 * All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^11]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 \dagger Not more than one output should be shorted at a time
 4 $\mathrm{t}_{\mathrm{pd} 1}$ is propagation delay time to logical 1 level. $\mathrm{t}_{\text {pdo }}$ is propagation delay time to logical 0 level.

[^12]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^13]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^14]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^15]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 ${ }^{\dagger}$ Not more than one output should be shorted at a time.

[^16]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^17]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 4 These typical times indicate that period occurring prior to the fall of clock pulse (to) below 1.5 V when data at the D input will still be recognized and stored.

[^18]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^19]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.
 |f $\mathrm{t}_{\mathrm{PLH}}=$ propagation delay time, low-to-high-level output ${ }^{t_{P H H L}}=$ propagation delay time, high-to-low-level output

[^20]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^21]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than two outputs should be shorted at a time.

[^22]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions of the applicable

[^23]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \|t $\mathrm{PLH}=$ propagation delay time, low-to-high-level output
 ${ }^{\mathrm{t}_{\mathrm{PHL}}}=$ propagation delay time, high-to-low-level output

[^24]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

[^25]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 t Not more than one output should be shorted at a time.

[^26]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^27]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander pins are open.
 ** Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^28]: * For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions for the applicable device type. Expander pin is open.
 ** Duration of short circuit test should not exceed 1 second.
 \dagger All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.

[^29]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander pins are open.
 ** Duration of short circuit test should not exceed 1 second.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^30]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^31]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
 \dagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

[^32]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.
 + All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

[^33]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short circuit test should not exceed 1 second.
 + All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

[^34]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 ** Not more than one output should be shorted at a time.

[^35]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^36]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
 t All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^37]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed one second.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^38]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
 All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^39]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. See Figures 64 through 69 of the Series $54 \mathrm{H} / 74 \mathrm{H}$ section for test circuits.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.
 NOTE 1: ICC is measured with outputs open, clock grounded, and J, K, preset, and clear at 4.5V.

[^40]: *Signetics performs a truth table test.

