5innoties

DIGITAL
54/7400 TTL
SUPPLEMENT

TABLE OF CONTENTS

UTILOGIC II and MSI Parts List 2
54/74 Parts List 3GENERAL INFORMATION 54/743
Design Considerations 3
Electrical Characteristics 3
Package Types 4
Absolute Maximum Ratings 6
Ordering instructions 6
II
54/74XX ELECTRICAL CHARACTERISTICS
54/7406 Hex Inverter Buffer/Driver with Open Collector High Voltage Outputs 8
54/7416 Hex Inverter Buffer/Driver with Open Collector High Voltage Outputs 8
54/7407 Hex Buffer/Driver with Open Collector High Voltage Outputs 9
54/7417 Hex Buffer/Driver with Open Collector High Voltage Outputs 9
54/7409 Quad 2-Input AND Gate with Open Collector Outputs 10
54/7426 Quad 2-Input High Voltage NAND Gate 11
54/7442 BCD - to - Decimal Decoder 12
54/7443 Excess 3-to - Decimal Decoder 14
54/7444 Excess 3 - Gray - to - Decimal Decoder 16
54/7445 BCD-to-Decimal Decoder/Driver with Open Collector High Voltage Output 18
54/74145 BCD-to-Decimal Decoder/Driver with Open Collector High Voltage Outputs 18
7446/47 BCD-to-Seven Segment Decoder/Driver 20
7448 BCD-to-Seven Segment Decoder/Driver 23
54/7483 4-Bit Binary Full Adder (Look Ahead Carry) 26
54/7486 Quad 2-Input Exclusive OR Gate 28
7488 256-Bit Read-Only Memory 30
7489 64-Bit Read/Write Memory (RAM) 32
Linear Product Line 33
54/7494 4-Bit Shift Register (Parallel-In,Serial-Out) 34
54/7495 4-Bit Right-Shift Left-Shift Register 36
54/7496 5-Bit Shift Register 38
54/74121 Monostable Multivibrator 40
MOS Product Line 43
54/74122 Retriggerable Monostable Multivibrator with Clear 44
74141 BCD-to-Decoder/Driver with Blanking 46
54/74150 16-Line to 1-Line Data Selector/Multiplexer 48
54/74151 8-Line to 1-Line Data Selector/Multiplexer 50
54/74152 8-Line to 1-Line Data Selector/Multiplexer 52
54/74154 4-Line to 16 Line Decoder/Demultiplexer 54
54/74180 56
8-Bit Odd/Even Parity Generator/Checker
54/74192 58
54/74193 Synchronous 4-Bit Binary Up/Down Counter with Preset Inputs 61
Digital Line Drivers and Receivers 64

The following is a parts list of Signetics Digital Product lines, now available, as described in the Utilogic II and MSI Handbooks.

UTILOGIC II/SP600 FAMILY LINE

NOR Gates	
317A	Dual 4-Input Expandable NOR Gate
370A	Triple 3-Input NOR Gate
380A	Quad 2-Input NOR Gate
$381 \mathrm{~A}$ OR Gates	Quad 2-Input NOR Gate (Open-Collector)
333A	Dual 3-Input Expandable OR Gate
334A	Dual 4-Input Expandable OR Gate
374A	Triple 3-Input OR Gate
375A	Triple 2-Input Expandable OR Gate
384A AND Gates	Quad 2-Input OR Gate
302A	Quad 2-Input AND Gate
304A	Dual 4-Input AND Gate (Expandable)
305A	Single 6-Input AND Gate
306A	Single 6-Input AND Gate
306A	Dual 3-Input AND Gate
NAND Gates	
337A	Dual 4-Input Expandable NAND Gate
337A	Triple 3-Input NAND Gate
387A	Quad 2-Input NAND Gate
391A	Hex Inverter (Open Collector)
Gate Expanders	
300A	Dual 3-Input Expander for OR and NOR Gates
301A	Quad 2-Input Diode Expander for NAND Gates
Buffer Drivers	
352A	Dual 3-Input Expandable NAND Buffer Driver (Open Collector)
356A	Dual 4-Input Expandable NAND Buffer Driver
357 A	Quad 2-Input NAND Power Driver
358A	Quad 2-Input NAND Power Driver (Open Collector)
Binaries	
321A	Dual J-K Binary
322A	Dual J-K Binary
328A	Dual D Binary
Pulse Shapers	
362A	Monostable Multivibrator
363A	Dual Zero Crossing Detector
Shift Register	
3271 B	4-Bit Shift Register
Counters	
3280A	BCD Decade Counter
3281A	4-Bit Binary Counter
NAND Gates	
616A	Dual 4-Input Expandable NAND Gate
670A	Triple 3-Input NAND Gate
680A	Quad 2-Input NAND Gate
Buffer Driver	
659A J-K Binary	Dual 4-Input Buffer/Driver
620A	Single J-K Binary
RS/T Binary	
629A	Single RS/T Binary
Inverter	
690A Expander	Hex Inverter
631 A	Gate Expander

MSI DIGITAL LINE

8200	Dual 5-Bit Buffer Register - D Inputs
8201	Dual 5-Bit Buffer Register - D Inputs
8202	10-Bit Buffer Register - D Inputs
8203	10-Bit Buffer Register - D Inputs
8220	High Speed Content Addressable Memory Element (CAM)
8224	256 Bit ROM, ASCII to EBCDIC Code Converter, Alphabet Only
8225	Signetics 64-Bit Bipolar Scratch Pad Memory
8230	8-Input Digital Multiplexer
8231	8 -Input Digital Multiplexer
8232	8-Input Digital Multiplexer
8233	2-Input 4-Bit Digital Multiplexers
8234	2-Input 4-Bit Digital Multiplexers
8235	2-Input 4-Bit Digital Multiplexers
8241	Quad Exclusive-OR Element
8242	4-Bit Digital Comparator (Quad Exclusive-NOR)
8243	8--Bit Position Scaler
8250	Binary-to-Octal Decoder
8251	BCD-to-Decimal Decoder
8260	Arithmetic Logic Element
8261	Fast Carry Extender
8262	9-Bit Parity Generator and Checker
8263	3-Input, 4-Bit Digital Multiplexer
8264	3-Input, 4-Bit Digital Multiplexer
8266	2-Input, 4-Bit Digital Multiplexer
8267	2-Input, 4-Bit Digital Multiplexer
8268	Gated Full Adder
8270	4-Bit Shift Registers
8271	4-Bit Shift Registers
8275	Quad Bistable Latch
8276	8-Bit Shift Register
8277	Dual 8-Bit Shift Register
8280	BCD Decade Counter/Storage Element
8281	4-Bit Binary Counter/Storage Element 8281
8284	Binary Hexadecimal Synchronous Up/Down Counter
8285	BCD Decade Synchronous Up/Down Counter
8288	Divide-by-Twelve Counter/Storage Element
8290	Presettable High Speed Decade Counter
8291	Presettable High Speed Binary Counter
8292	Presettable Low Power Decade Counter
8293	Presettable Low Power Binary Counter
$\begin{aligned} & 8 \mathrm{TO1} \\ & 8 \mathrm{TO4} \end{aligned}$	Nixie ${ }^{*}$ Decoder/Driver Seven Segment Decoder/Lamp Driver
8 805	Seven Segment Decoder/Transistor Driver
8T06	Seven Segment Decoder/Display Driver
8 813	Dual Line Driver
8T14	Triple Line Receiver
8T15	Dual Communications EIA/MIL Line Driver
8T16	Dual Communications EIA/MIL Line Receiver
	To Be Announced 2nd Quarter
8269	4-Bit Comparator
8273	10-Bit Serial-In-Parallel-Out Shift Register
8T09	Quad Bus High-Speed Buffer Gate
8 T 22	Retriggerable One-Shot (Replacement for 9601)

The following is a parts list of Signetics 54/74 Products now available, as described in the 54/74 Handbook.

54/74XX / 54/74HXX FAMILY LINES

54/7400	Quadruple 2-Input Positive NAND Gate
54/7401	Quadruple 2-Input Positive NAND Gate (With open collector output)
54/7402	Quadruple 2-Input Positive NOR Gate
54/7403	Quadruple 2-Input Positive NAND Gate (With open collector output)
54/7404	Hex Inverter
54/7405	Hex Inverter (With open collector output)
54/7408	Quadruple 2-Input Positive AND Gates
54/7410	Triple 3-Input Positive NAND Gate
54/7411	Triple 3-Input Positive AND Gate
54/7420	Dual 4-input Positive NAND Gate
54/7421	Dual 4-Input AND Gate
54/7430	8-Input Positive NAND Gate
$54 / 7440$	Dual 4-Input Positive NAND Buffer
N7441	BCD-to-Decimal Decoder/Driver
54/7450	Expandable Dual 2-Wide 2-Input AND-OR-Invert Gate
54/7451	Expandable Dual 2-Wide 2-Input AND-OR-Invert Gate
54/7453	4-Wide 2-Input AND-OR-Invert Gate
54/7454	4-Wide 2-Input AND-OR-Invert Gate
S5460	Dual 4-Input Expander
N7460	Dual 4-Input Expander
54/7470	J-K Flip-Flop
54/7472	J-K Master-Slave Flip-Flop
54/7473	Dual J-K Master-Slave Flip-Flop
54/7474	Dual D-Type Edge-Triggered Flip-Flop
54/7475	Quadruple Bistable Latch
54/7476	Dual J-K Master-Slave Flip-Flop with Preset and Clear
54/7477	Quadruple Bistable Latch
54/7480	Gated Full Adder
54/7490	Decade Counter
54/7491	8-Bit Shift Register
54/7492	Divide-by-Twelve Counter (Divide-by-Two \& Divide-by-Six)
54/7493	4-Bit Binary Counter
54/74107	Dual J-K Master Slave Flip-Flop
54/74H00	Quadruple 2-Input Positive NAND Gate
54/74H01	Quadruple 2-Input Positive NAND Gate (With open collector output)
54/74H04	Hex Inverter
54/74H05	Hex Inverter (With open collector output)
54/74H08	Quadruple 2-Input Positive AND Gate
54/74H10	Triple 3-Input Positive N AND Gate
54/74H11	Triple 3-Input Positive AND Gate
$54 / 74 \mathrm{H} 20$	Dual 4-Input Positive NAND Gate
$54 / 74 \mathrm{H} 21$	Dual 4-Input Positive AND Gate
54/74H22	Dual 4-Input Positive NAND Gate (With open collector output)
54/74H30	8 -Input Positive NAND Gate
54/74 H 40	Dual 4-Input Positive NAND Buffers
54/74H50	Dual 2 -Wide 2-Input AND-OR-Invert Gates
54/74H51	Dual 2 -Wide 2 -Input AND-OR-Invert Gates
54/74H52	4-Wide 2-2-2-3-Input AND-OR-Gate
54/74H53	Expandable 2-2-2-3-Input AND-OR-Invert Gate
54/74H54	Expandable 2-2-2-3-Input AND-OR-Invert Gate
$\begin{aligned} & 54 / 74 H 55 \\ & 54 \mathrm{H} 60 \end{aligned}$	Expandable 4-Invut AND-OR-Invert Gate Dual 4-Input Expander (For use with S 54 H 50 , S54 H53, S54H55 circuits)
74H60	Dual 4-Input Expander (For use with N 74 H 50 , N74H53, N74H55 circuits)
54/74H61	Triple 3-Input Expanders (For use with S54H52, N74H52 circuits)
S54H62	3-2-2-3-Input AND-OR Expander (For use with S54H50, S54H53, S54H55 circuits)
N74H62	3-2-2-3-Input AND-OR Expander (For use with $\mathrm{N} 74 \mathrm{H} 50, \mathrm{~N} 74 \mathrm{H} 53, \mathrm{~N} 74 \mathrm{H} 55$ circuits)
54/74H72	J-K Master Slave Flip-Fiops
54/74H73	Dual J-K-Master-Slave Flip-Flops
$54 / 74 \mathrm{H} 74$	Dual D-Type Edge-Triggered Flip-Flops
54/74H76	Dual J-K Master-Slave Flip-Flops

To Be Announced

74181
74181
74182
74157
74166

74198
74199
74195
Dual-Retriggerable Monostable Multivibrator W/Clear
74153 Data Selector/Multiplexer Dual 4-to-1 Line
74H71 J-K Master Slave Flip-Flop

GENERAL DESCRIPTION

Series 54/74 Logic Family

The 54/74XX logic family is medium speed TTL, and high speed TTL integrated circuits. The family includes a multiple number of functions in a variety of packages. The 54XX devices are characterrized for the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The $74 \times X$ devices are characterized for the limited temperature range of 0° to $+70^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Logic Definition

Series 54/74 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:

```
LOW VOLTAGE = LOGICAL 'O''
HIGH VOLTAGE = LOGICAL "1"
```


Unused Inputs

For optimum switching times and minimum noise susceptibility unused inputs should be maintained at a positive voltage greater than 2.4 V but not to exceed the absolute maximum rating of 5.5 V . This eliminates the distributed capacitance associated with the floating-input-transistor emitter, bond wire, and package load, and ensures that no degradation will occur in the propagation delay times. Some possible ways of handling input emitters are:
a. Connect unused inputs to a supply voltage. Preferably, this voltage should be between 2.4 V and 5.5 V .
b. Connect unused inputs to a used input if maximum fanout of the driving output will not be exceeded. Each input presents a full load in the logical " 1 " state to the driving output.

Input-Current Requirements
Input-current requirements reflect worst-case V_{cc} and temperature condition. Currents into the input terminals are specified as positive values.

54/74 Logic

Each input of the multiple-emitter input transistor that utilizes a 4 $\mathrm{K} \Omega$ resistor requires no more than $-\mathbf{1 . 6} \mathrm{mA}$ flow out of the input at a logical " 0 " voltage level; therefore, one load ($\mathrm{N}=1$) for 54/74 logic is -1.6 mA maximum. Each input requires current into the input at a logical " 1 " voltage level. This current is $40 \mu \mathrm{~A}$ maximum for each emitter input.

Fanout Capability

Fanout reflects the ability of an output to sink current from a number of loads (N) at a logical " 0 " voltage level and to supply current at a logical " 1 " voltage level. Each standard 54/74 output is capable of sinking current or supplying current to 10 loads ($N=10$). The buffer gate (54/7440) is capable of sinking current or supplying current to 30 loads ($N=30$).

ELECTRICAL CHARACTERISTICS

These are guaranteed over the applicable operating free-air temperature range, unless otherwise noted, as shown in Section 2 of the handbook.

Section One

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (unless otherwise noted)

Supply Voltage $V_{\text {cc }}$ (See Note 1)	7 V	
Input Voltage $V_{\text {in }}$ (See Note 1)	5.5 V	
Operating Free-Air Temperature Range:	Series 54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	Series 74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE: 1. Voltage values are with respect to network ground terminal.

ORDERING INSTRUCTIONS

[^0]54/74XX
ELECTRICAL CHARACTERISTICS

Hex Inverter Buffer/Driver with Open Collector

A,F PACKAGE

DESCRIPTION

The 54/7406 and 54/7416 Hex Inverter Buffer/Drivers feature standard TTL inputs with inverted high voltage, high current,open collector outputs for interface with MOS, lamps or relays. The 54/7406 minimum output breakdown is 30 volts and the $54 / 7416$ minimum output breakdown is 15 volts.

SCHEMATIC (each inverter)

Note: Component values shown are nominal

RECOMMENDED OPERATING CONDITIONS.

Supply voltage V_{CC}	S5406, S5416			N7406, N7416			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
Output voltage, V_{OH} S5406, N7406			30			30	V
Output voltage, $\mathrm{V}_{\text {OH }}$ S5416, N7416			15			15	V
Low-level output current, $\mathrm{I}^{\text {OL }}$			30			40	mA
Operating free-air temperature range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {t PLH }}$	Propagation delay time, low-to-high-level output	$C_{L}=15 p F, R_{L}=110 \Omega$		10	15	ns
	Propagation delay time, high-to-low-level output	$C_{L} 15 p F, R_{L}=110 \Omega$		14	23	ns

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

N7407A, Q
Hex Buffer/Driver S5407A, Q,F N7417A, Q with Open Collector S5417A, Q,F

A,F PACKAGE

Q PACKAGE

DESCRIPTION

The 54/7407 and 54/7417 Hex Buffer/Driver features standard TTL inputs with non-inverted high voltage, high current open collector outputs for interface with MOS, lamps or relays. The $54 / 7407 \mathrm{~min}$ imum output is 30 volts and the $54 / 7417$ minimum output is 15 volts.

SCHEMATIC (each buffer/driver)

Note: Component values shown are nominal

RECOMMENDED OPERATING CONDITIONS.

	S5407, S5417			N7407, N7417			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Output voltage, V_{OH} S5407, N7407			30			30	V
Output voltage, $\mathrm{V}_{\mathrm{OH}} \mathrm{OH}$ S517, N7417			15			15	V
Low-level output current, I OL			30			40	mA
Operating free-air temperature range, $T_{\text {A }}$	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			v
$V_{\text {IL }}$	Low-level input voltage				0.8	v
${ }^{1} \mathrm{OH}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{MAX}$			250	$\mu \mathrm{A}$
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$			0.7	v
OL	Lowlevel output volage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{1}=0.8 \mathrm{~V}, \mathrm{I}^{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	v
	High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
	(each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
IIL	Low-level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
	Supply current, high-level output	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5 \mathrm{~V}$		29	41	mA
${ }^{\prime} \mathrm{CCL}$	Supply current, low-level output	$V_{C C}=M A X, V_{1}=0$		21	30	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

[^1]Quad 2-Input AND Gate with Open Collector Outputs

A,F PACKAGE

Q PACKAGE

DESCRIPTION
The 54/7409 Quad 2-Input AND Gate with open collector outputs provides the capability of expanding AND logic functions.

SCHEMATIC (each gate)

Note: Component values shown are nominal

RECOMMENDED OPERATING CONDITIONS.

	S5409			N7409			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, N			10			10	
Operating free-air temperature range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high-level output	$C_{L}=15 \mathrm{pF}$,		21	32	ns
${ }^{\mathrm{t} P H L}$	Propagation delay time, high-to-low-level output	$R_{L}=400 \Omega$		16	24	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
**All typical values at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Quad 2-Input High Voltage
N7426A
NAND Gate

A,F PACKAGE

DESCRIPTION

The 54/7426 Quad 2-Input NAND Gate features standard TTL inputs with high voltage (15 volts) open collector outputs for interface with MOS, lamps or relays.

SCHEMATIC (each gate)

Note: Component values shown are nominal
RECOMMENDED OPERATING CONDITIONS.

	S5426			N7426			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage	4.5	5	5.5	4.75	5	5.25	V
Output voltage, V_{OH}			15			15	V
Low-level output current, IOL			16			16	mA
Operating free-air temperature range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$

[^2]

B,E,R PACKAGE

DESCRIPTION

The 54/7442 BCD-to-Decimal Decoder is a TTL MSI array utilized in decoding and logic conversion applications. The 54/7442 decodes a four bit BCD number to one of ten outputs.

LOGIC DIAGRAM

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

Supply Voltage V_{CC}			MIN	NOM	MAX	UNIT
	S5442,	Circuits	4.5	5	5.5	V
	N7442,	Circuits	4.75	5	5.25	V
Normalized Fan-Out from each Output (N)					10	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$v_{\text {in }}(1)$ Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$	2		0.8	V
$V_{\text {in }}(0)$ Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$				V
Vout(1) Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	2.4			V
Vout(0) Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }}(0)=0.8 \mathrm{~V}, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
Logical 1 level input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
in(1) current (each input)	$V_{C C}=M A X, V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
Logical 0 level input In (0) current (each input)	$V_{C C}=M A X, V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	S5442	-20		-55	mA
${ }^{\text {I OS }}$ Short-circuit output current ${ }^{\dagger}$	$V_{C C}=\mathrm{MAX}$ N7442	-18		- 55	mA
	S5442		28	41	mA
${ }^{\text {I CC }}$ Supply current	$V_{C C}=M A X, \quad N 7442$		28	56	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level through two logic levels	$C_{L}=15 p F, R_{L}=400 \Omega$	10	22	30	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation delay time to logical 0 level through three logic levels	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		23	35	ns
${ }^{t_{\text {pd }} 1}$	Propagation delay time to logical 1 level through two logic levels	$C_{L}=15 p F, R_{L}=400 \Omega$	10	17	25	ns
${ }^{t}$ pd1	Propagation delay time to logical 1 level through	$C_{L}=15 p \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		26	35	ns

[^3]

B,E,R PACKAGE

DESCRIPTION

The 54/7443 Excess 3 Code to Decimal Decoder is a TTL MSI array utilized in decoding and logic conversion application. The 54/7443 decodes excess 3 code numbers to one of ten outputs.

TRUTH TABLE

		174 ESS UT						L 1	YP				
D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1	1	1
0	1	0	1	1	1	0	1	1	1	1	1	1	1
0	1	1	0	1	1	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	1	0	1	1
1	0	1	1	1	1	1	1	1	1	1	1	0	1
1	1	0	0	1	1	1	1	1	1	1	1	1	0
1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS.

		MIN	NOM	MAX	UNIT
	Supply Voltage $V_{\text {CC }}$	4.5	5	5.5	V
Normalized Fan-Out from each Output (N)	N7443, Circuits	4.75	5	5.25	V

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	test conditions*	MIN	TYP**	MAX	UNIT
$V_{\text {in (1) }}$ Input voltage, required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$	2		0.8	v
Input voltage required to $V_{\text {in }}(0)$ ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$				v
$V_{\text {out (1) }}$ Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }}(1)=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	2.4			v
Vout(0) Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	v
Lin(1) Logical 1 level input	$V_{C C}=M A X, V_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
in(1) current (each input)	$V_{\text {CC }}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$\mathrm{I}_{\mathrm{in}(0)}$ Logical 0 level input current (each input)	$V_{\text {CC }}=$ MAX, $V_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{\text {O }}$ OS Short-circuit output current ${ }^{\dagger}$	$\begin{array}{ll}V_{C C}=\text { MAX, } & \text { S5443 } \\ & \text { N7433 }\end{array}$	-20		-55 -55	mA
	MAX S5443		28	41	mA
${ }^{1}$ CC Supply current	$V_{C C}=$ MAX, $N 7443$		28	56	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time to $t_{\text {pd0 }}$ logical 0 level through two logic levels	$C_{L}=15 p F, R_{L}=400 \Omega$	10	22	30	ns
Propagation delay time to logical 0 level through three logic levels	$C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=400 \Omega$		23	35	ns
Propagation delay time to ${ }^{t}$ pd1 logical 1 level through two logic levels	$C_{L}=15 \mathrm{pF}, R_{L}=400 \Omega$	10	17	25	ns
Propagation delay time to logical 1 level through	$C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=400 \Omega 2$		26	35	ns

[^4]

B,E,R PACKAGE

DESCRIPTION

The 54/7444 Excess-3-Gray Code to Decimal Decoder is a TTL MSI array utilized in decoding and logic conversion applications. The 54/7444 decodes excess three gray code to one of ten outputs.

LOGIC DIAGRAM

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

		MOM	MIN	NOM	MAX
Supply Voltage $V_{\text {CC }}$	S5444, Circuits	4.5	5	5.5	V
Normalized Fan-Out from each Output (N)	N7444, Circuits	4.75	5	5.25	V

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time to $t_{\text {pdO }}$ logical 0 level through two logic levels		$C_{L}=15 p F, R_{L}=400 \Omega$	10	22	30	ns
Propagation delay time to $t_{\text {pdO }}$ logical 0 level through three logic levels		$C_{L}=15 p F, R_{L}=400 \Omega$		23	35	ns
Propagation delay time to $t_{\text {pd1 }}$ logical 1 level through two logic levels		$C_{L}=15 \mathrm{pF}, R_{L}=400 \Omega$	10	17	25	ns
Propagation delay time to ${ }^{t}{ }^{\text {pd1 }}$ logical 1 level through		$C_{L}=15 \mathrm{pF}, R_{L}=400 \Omega 2$		26	35	ns

[^5]

B,E,R PACKAGE

DESCRIPTION

The 54/7445 and 54/74145 BCD-to-Decimal Decoder/Driver is a TTL MSI array. It features standard TTL inputs and high voltage, high current $(80 \mathrm{~mA})$ outputs. The $54 / 7445$ minimum output breakdown is 30 volts and the $54 / 74145$ minimum output breakdown is 15 volts.

LOGIC DIAGRAM
TRUTH TABLE

OUTPUTS									
0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1
1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

NOTE: 1. These voltage values are with respect to network ground terminal.
RECOMMENDED OPERATING CONDITIONS.

Supply Voltage $\mathrm{V}_{\mathrm{CC}}($ See Note 1$)$:		MIN	NOM	MAX	UNIT
	S5445, S54145 Circuits	4.5	5	5.5	V
	N7445, N74145 Circuits	4.75	5	5.25	V
Voltage on any Output	S5445, N7445 Circuits			30	V
	S54145, N74145 Circuits			15	V

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {pd1 }}$	Propagation delay time logical 1 level	$C_{L}=15 p F, R_{L}=100 \Omega$			60	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega$			60	ns

[^6]B PACKAGE

DESCRIPTION

The 7446 and 7447 BCD-to-Seven Segment Decoder/Driver are TTL monolithic devices consisting of the necessary logic to decode a BCD code to seven segment readout plus selected signs.
Incorporated in this device is a blanking circuit allowing leading and trailing zero suppression. Also included is a lamp test control to turn on all segments.
The 7446 and 7447 provide bare collector output transistors for directly driving lamps. The output transistor breakdown of the 7446 is 30 volts and the 7447 is 15 volts.

LOGIC DIAGRAM

TRUTH TABLE

NOTES:

1. $B I / R B O$ is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a logical 1 when output functions 0 through 15 are desired and ripple-blanking input (RBI) must be open or at a logical 1 during the decimal 0 input. $X=$ input may be high or low.
2. When a logical \mathbf{O} is applied to the blanking input (forced condi-
tion) all segment outputs go to a logical 1 regardless of the state of any other input condition.
3. When ripple-blanking input ($R B I$) is at a logical 0 and $A=B=$ $C=D=$ logical 0 , all segment outputs to to a logical 1 and the ripple-blanking output goes to a logical 0 (response condition).
4. When blanking input/ripple-blanking output is open or held at a logical 1, and a logical 0 is applied to lamp-test input, all segment outputs go to a logical 0 .

SEGMENT IDENTIFICATION

RECOMMENDED OPERATING CONDITIONS.

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$ (see Note 1):				
N7446, N7447 Circuits	4.75	5	5.25	V
Continuous Voltage at Outputs a through g:				
N7446 Circuits			30	V
N7447 Circuits			15	V
Normalized Fan-Out From Outputs a through g to Series 54/74 loads: N7446, N7447 Circuits			12	
Normalized Fan-Out From BI/RBO Node to Series 54/74 loads: N7446, N7447 Circuits			5	
Output Sink Current, $I_{\text {sink }}$: N7446, N7447 Outputs a through g			20	mA
N7446, N7447, BI/RBO Node			8	mA

NOTES:

1. These voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal.
3. This rating applies when the output is off.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	test Conditions*	MIN	TYP**	MAX	UNIT
$v_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			v
$V_{\text {in }}(0)$	Input voltage reguired to ensure logical 0 at any input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	v
$V_{\text {on }}$	On-state output voltage at outputs a through g	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {sink }}=20 \mathrm{~mA}$		0.27	0.4	V
$\begin{aligned} & v_{\text {out }} \\ & (0) \end{aligned}$	Logical 0 output voltage at $\mathrm{BI} /$ RBO node	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {sink }}=8 \mathrm{~mA}$		0.3	0.4	V
$V_{\text {off }}$	Off-state output voltage at outputs a through g (S5446 and N7446 only)	$V_{C C}=M A X, I_{\text {off }}=250 \mu A$	30			v

ELECTRICAL CHARACTERISTICS (Cont'd)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level from A input to any output	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$			100	ns
$\mathrm{t}_{\mathrm{pd}} 0$	Propagation delay time to logical 0 level from A input to any output	$C_{L}=15 p F, R_{L}=280 \Omega$			100	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level from RBI input to any output	$C_{L}=15 p F, R_{L}=280 \Omega$			100	ns
$\mathrm{t}_{\mathrm{pdo}}$	Propagation delay time to logical 0 level from RBI input to any output	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega$			100	ns

[^7]

B PACKAGE

DESCRIPTION

The 7448 BCD-to-Seven Segment Decoder/Driver is a TTL monolithic device consisting of the necessary logic to decode a BCD code to seven segment readout plus selected signs.
Incorporated in this device is a blanking circuit allowing leading and trailing zero suppression. Also included is a lamp test control to turn on all segments.
The 7448 has resistor pull up on the outputs to provide source current to drive interface elements.
LOGIC DIAGRAM

TRUTH TABLE

$\begin{array}{\|c} \hline \text { OECIMAL } \\ \text { OR } \\ \text { FUNCTION } \end{array}$	Lt	R81	D	c	B	A	B1/Rво	-	-	c	d	-	,	9	note
\bigcirc	;	'	0	-	:	\bigcirc	1	!	1		$\begin{array}{\|l} 1 \\ 0 \end{array}$		$\begin{array}{\|l\|} \hline 1 \\ 0 \end{array}$	\bigcirc	1
2	,	\times \times \times \times	\bigcirc	o	,	-	1	1	,	\bigcirc	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	\bigcirc	\bigcirc	1
${ }_{4}^{3}$,	$\stackrel{\mathrm{x}}{\mathrm{x}} \times$	\bigcirc	\bigcirc	1	$\stackrel{1}{0}$	\vdots	!	1	1	1	\bigcirc	\bigcirc	i	
5	,	+	-	,	-	,	,	1	-	,	1	-	1	,	
${ }^{6}$;	${ }^{\times}$	-	\therefore	1	\bigcirc	;	\bigcirc	-	'	1	1	-	1	
7	,	$\stackrel{\times}{x}$	${ }_{1}$	-	:	$\stackrel{1}{0}$!	1	:	1	\bigcirc	$\stackrel{0}{1}$	0	\bigcirc	
9	,	\times	1	\bigcirc	-	1	1	'	,	1	-	-	1	,	
${ }_{11}^{10}$	'	\times \times \times \times	1	\bigcirc	1	\bigcirc	:	\bigcirc	\bigcirc	\bigcirc	1	-	\bigcirc	i	
12	,	\times	1	-	-	-	+	-	,	-	-	-	1	,	
13	1	${ }^{\times}$;	;	\bigcirc	1	'	1	0	0	'	-	\bigcirc	1	
14 15	;	$\stackrel{\times}{\times}$;	'	-	${ }^{\circ}$:	\bigcirc	\bigcirc	\bigcirc	-	$\stackrel{1}{0}$	-	'	
в1	\times	\times	,	\times	\times	\times	,	-	0	-	-	-	-	o	
${ }_{\text {REI }}$	-	\bigcirc	\bigcirc	${ }^{\circ}$	-	$\stackrel{0}{0}$	0.	-	\bigcirc	0	-	\bigcirc	-	\bigcirc	3
LT	\bigcirc	\times	\times	\times	\times	\times	1	+	1		1		1	1	4

NOTES:

1. $\mathrm{BI} / \mathrm{RBO}$ is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output ($R B O$). The blanking input must be open or held at a logical 1 when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a logical 1 during the decimal 0 output. $X=$ input may be high or low.
2. When a logical 0 is applied to the blanking input (forced condi-
tion) all segment outputs go to a logical 0 regardless of the state of any other input condition.
3. When ripple-blanking input ($R B I$) is at a logical 0 , and $A=B=C$ $=D=$ logical 0 , all segment outputs go to a logical 0 and the ripple-blanking output goes to a logical 0 (response condition).
4. When blanking input/ripple-blanking output is open or held at a logical 1, and a logical 0 is applied to lamp-test input, all segment outputs go to a logical 1.

SEGMENT IDENTIFICATION

RECOMMENDED OPERATING CONDITIONS.

Nupply Voltage $V_{\text {CC }}$ (See Note 1):	MIN	NOM	MAX
N7448 Circuit			
Normalized Fan-Out From Outputs a through g to Series 54/74 Loads:			
N7448 Circuits			
Normalized Fan-Out From BI/RBO Node to Series 54/74 Loads:			
N7448 Circuits			
Output Sink Current, Isink:			
N7448 Outputs a through g		5	
N7448 BI/RBO Node			

NOTES:

1. These voltage values are with respect to network ground terminal.
2. Input voltage must be zero or positive with respect to network ground terminal.
3. This rating applies when the output is off.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP

ELECTRICAL CHARACTERISTICS (Cont'd)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$,

[^8]

R PACKAGE

DESCRIPTION
The $54 / 7483$ is a 4-Bit Binary Full Adder for adding two four bit binary numbers. A Carry Look Ahead circuit is included to provide minimum carry propagation delays.
Propagation delays of carry-in to carry-out is typically 12 nsec .

TRUTH TABLE

NOTE:
Input conditions at $A_{1}, A_{2}, B_{1}, B_{2}$, and C_{0} are used to determine outputs Σ_{1} and Σ_{2}, and the value of the internal carry C_{2}. The values at $C_{2}, A_{3}, B_{3}, A_{4}$, and B_{4}, are then used to determine outputs Σ_{3}, Σ_{4}, and C_{4}.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

Supply Voltage $\mathrm{V}_{\text {cc }}$: (See Note 1)		MIN	NOM	MAX	UNIT
	S5483 Circuits N7483 Circuits	4.5	5	5.5	V
		4.75	5	5.25	v
Normalized Fan-Out From Outputs:					
C_{4}				5	
$\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ or Σ_{4}				10	

NOTE: 1. These voltage values are with respect to network ground terminal.

[^9]ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted $\mathrm{N}=10$

	PARAMETER ${ }^{\dagger}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tpd }} 1$	From C_{0} to 1	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		23	34	ns
${ }^{\text {tpd0 }}$	From C_{0} to 1	$C_{L}=50 p F, R_{L}=400 \Omega$		20	34	ns
$t_{\text {pd1 }}$	From C_{0} to 2	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		24	35	ns
$t_{\text {pdo }}$	From C_{0} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		22	35	ns
${ }^{\text {t }}$ pd1	From C_{0} to 3	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		30	50	ns
$t_{\text {pd0 }}$	From C_{0} to 3	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		24	40	ns
$t_{\text {pd1 }}$	From C_{0} to 4	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		30	50	ns
${ }^{\text {t }}$ pd0	From C_{0} to 4	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		28	50	ns
$t_{\text {pd1 }}$	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=780 \Omega$		12	20	ns
$\mathrm{t}_{\text {pdo }}$	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=780 \Omega$		12	20	ns
$t_{\text {pd1 }}$	From A_{2} or B_{2} to 2	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$			40	ns
$t_{\text {pd0 }}$	From A_{2} or B_{2} to 2	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$			35	ns
$t_{\text {pd1 }}$	From A_{4} of B_{4} to 4	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$			40	ns
$t_{\text {pdo }}$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$			35	ns

${ }^{\neq} \mathbf{T}_{\text {pd } 1}$ is propagation delay time to logical 1 level. $t_{\text {pdo }}$ is propagation delay time to logical 0 level.
NOTE: Electrical Characteristics Notes see Page 26.

A,F PACKAGE

DESCRIPTION

The 54/7486 Quad 2-Input Exclusive OR Gate is a TTL element providing the function $A \bar{B}+\bar{A} B$ at the output.

TRUTH TABLE

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	0

RECOMMENDED OPERATING CONDITIONS.

			MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$ (See Note 1) :	S5486 Circuits N7486 Circuits		4.5	5	5.5	V
			4.75	5	5.25	V
Normalized Fan-out from each output, N :		Logical 0			10	'
		Logical 1			20	

NOTE: 1. These voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$\begin{gathered} v_{i n} \\ (1) \end{gathered}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$	2			V
$v_{\text {in }}$ (0)	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$			0.8	v
$V_{\text {out }}$ (1)	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, \\ & V_{\text {in }(0)}=0.8 \mathrm{~V}, I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			v
$V_{\text {out }}$ (0)	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, \\ & V_{\text {in }(0)} 0.8 \mathrm{~V}, I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	v
	Logical 1 level input	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
in(1)	current (each input)	$V_{C C}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$1 \mathrm{in}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
		$V_{C C}=$ MAX, $V_{\text {in }(1)}=4.5 \mathrm{~V}, \quad \mathrm{~S} 5486$	-20		-55	mA
${ }^{\text {Ios }}$	Short circuit output current ${ }^{\dagger}$	$\mathrm{V}_{\text {in }}(0)=0$ N7486	-18		-55	mA
		MAX $\mathrm{V}_{\text {in }}=4.5 \mathrm{~V} \quad \mathrm{~S} 4886$		30	43	mA
	upply current	$V_{C C}=$ MAX, $V_{\text {in }}=4.5 \mathrm{~V}$ N7486		30	50	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		test Conditions *	MIN	TYP**	MAX	UNIT
$t_{\text {pdo }}$	Propagation delay time to logical 0 level (other input low)	$C_{L}=15 p F, R_{L}=400 \Omega$		11	17	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation delay time to logical 1 level (other input low)	$c_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=400 \Omega$		15	23	ns
$\mathrm{t}_{\mathrm{pd} 0}$	Propagation delay time to logical 0 level (other input high)	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$		13	22	ns
$\mathrm{t}_{\mathrm{pd}} 1$	Propagation delay time to logical 1 level (other input high)	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$		18	30	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
*All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

B,R PACKAGE

DESCRIPTION
The 7488 is a TTL 256-Bit Read Only Memory organized as 32 word with 8 bits per word. The words are selected by five binary address lines with full word decoding incorporated on the chip. A Chip Select input is provided for additional decoding flexibility, which will cause all eight outputs to go to the high state when the Chip Select input is taken high.
This device is fully TTL or DTL compatible. The outputs are uncommitted collectors, which allows wired-OR operation with the outputs of other TTL or DTL devices. These outputs are capable of sinking twelve standard DCL loads. Propagation delay time is 50 ns maximum. Power dissipation is 310 milliwatts with 400 milliwatts maximum.
Customer may specify patterns for the 256-Bit Read Only Memory by completing the truth table/order blank.
LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS

OUSTOMER: \qquad P.O. NO.: \qquad YOUR PART NO.: \qquad DATE: \qquad							THIS PORTION TO BE COMPLETED BY SIGNETICS PART NO.: \qquad S.D. NO.: \qquad DATE RECEIVED: \qquad							
INPUTS							OUTPUTS							
WORD	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	enable	B_{7}	\mathbf{B}_{6}	B_{5}	B_{4}	B_{3}	B_{2}	B_{1}	${ }^{\mathbf{B}} \mathbf{0}$
0	0	0	0	0	0	0								
1	0	0	0	0	1	0								
2	0	0	0	1	0	0								
3	0	0	0	1	1	0								
4	0	0	1	0	0	0								
5	0	0	1	0	1	0								
6	0	0	1	1	0	0								
7	0	0	1	1	1	0								
8	0	1	0	0	0	0								
9	0	1	0	0	1	0								
10	0	1	0	1	0	0								
11	0	1	0	1	1	0								
12	0	1	1	0	0	0								
13	0	1	1	0	1	0								
14	0	1	1	1	0	0								
15	0	1	1	1	1	0								
16	1	0	0	0	0	0								
17	1	0	0	0	1	0								
18	1	0	0	1	0	0								
19	1	0	0	1	1	0								
20	1	0	1	0	0	0								
21	1	0	1	0	1	0								
22	1	0	1	1	0	0								
23	1	0	1	1	1	0								
24	1	1	0	0	0	0								
25	1	1	0	0	1	0								
26	1	1	0	1	0	0								
27	1	1	0	1	1	0								
28	1	1	1	0	0	0								
29	1	1	1	0	1	0								
30	1	1	1	1	0	0								
31	1	1	1	1	1	0								
ALL	X	X	X	X	X	1	1	1	1	1	1	1	1	1

DESCRIPTION

The 7489 is a TTL 64-Bit Read-Write Random Access Memory organized as 16 -words of 4 bits each. The 7489 is ideally suited for application in scratch pads and high speed buffer memories.
Words are selected through a 4-input binary decoder when the chip select input $\left(C_{E}\right)$ is at logic " 0 ". Data is written into the memory when Read Enable (R_{E}) is at logic " 0 " and read from the memory when R_{E} is at logic " 1 ".

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

Signetics Linear Product Line

LINEAR

B,E PACKAGE

R PACKAGE

DESCRIPTION

The 54/7494 4-Bit Shift Register is a TTL monolithic array configured to perform parallel-in to serial-out or serial-to-serial transfers of data.
Two sets of parallel preset inputs are provided to allow selection of data from two sources.
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

	MIN	TYP	MAX	UNIT
S5494 Circuits	4.5	5	5.5	V
Supply Voltage VCC (See Note 1) N7494 Circuits	4.75	5	5.25	V
Normalized Fan-Out From Each Output			10	
Width of Clock Pulse, t_{p} (clock)	35			ns
Width of Clear Pulse, t_{p} (clear)	30			ns
Width of Preset Pulse, t_{p} (preset)	30			ns
(${ }_{\text {setup (1) }}$	35			ns
Serial Input Setup Time: $t_{\text {setup }}(0)$	25			ns
Serial Input Hold Time, thold	0			

NOTE: 1. These voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

[^10]A,F PACKAGE

DESCRIPTION

The $54 / 7495$ is a Universal 4-Bit Shift Register designed with standard TTL techniques. The register consists of logic configured to perform right, left shift or parallel-in, parallel-out operations depending on the logical input level at the mode control.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

	MIN	NOM	MAX	UNIT
S5495 Circuits	4.5	5	5.5	V
Supply Voltage VCC (See Note 1): N7495 Circuits	4.75	5	5.25	V
Normalized Fan-Out From Each Output			10	
Width of Clack Pulse (${ }^{\text {a }}$ S 5495 Circuits	20	10		ns
Width of Clock Pulse t_{p} (clock) \quad N7495 Circuits	15	10		ns
Setup Time Required at Serial, A_{0} B, C, or D Inputs $\mathrm{t}_{\text {setup }}$	20	10		ns
Hold Time Required at Serial, A, B, C, or D Inputs thold	0	10		ns
Logical 0 Level Setup Time Required at Mode Control (With Respect to Clock 1 input)	20			ns
Logical 1 Level Setup Time Required at Mode Control (With Respect to Clock 2 input)	20			ns
Logical 0 Level Setup Time Required at Mode Control (With Respect to Clock 2 input)	10			ns
Logical 1 Level Setup Time Required at Mode Control (With Respect to Clock 1 input)	10			ns

[^11]2. input voltages must be zero or positive with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

[^12]

R PACKAGE

DESCRIPTION

The 54/74965-Bit Shift Register is designed with standard TTL techniques. The 5-Bit register is configured to perform parallel-to-serial or serial-to-parallel transfers of data. Each flip-flop has a preset input which is controlled by the preset enable. The preset is independent of the state of the clock input.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

	MIN	TYP	MAX	UNIT
S5496 Circuits	4.5	5	5.5	V
Supply Voltage $\mathrm{V}_{\mathbf{C C}}$ (See Note 1): \quad N7496 Circuits	4.75	5	5.25	V
Normalized Fan-Out from Output			10	
Width of Clock Pulse, t_{p} (clock)	35			ns
Width of Clear Pulse, t_{p} (clear)	30			ns
Serial Input Setup Time, ${ }_{\text {setup }}$	30			ns
Serial Input Hold Time, thold	0			ns

NOTE: 1: This voltage value is with respect to network ground terminal.
ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Cont'd)

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

[^13]

DESCRIPTION

The 54/74121 Monostable Multivibrator is a monolithic TTL device providing triggering from either positive or negative going inputs. Both the true and complement output pulses are provided.
Pulse duration is determined by addition of an external timing capacitor between pins 10 and 11.
TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *	MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\mathrm{T}^{+}}$	Positive-going threshold voltage at A input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		1.4	2	V
$\mathrm{V}_{\mathrm{T}^{-}}$	Negative-going threshold voltage at A input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	0.8	1.4		V
$V_{T}{ }^{+}$	Positive-going threshold voltage at B input	$V_{C C}=$ MIN		1.55	2	V

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER	TEST CONDITIONS *	MIN	TYP **	MAX	UNIT
$V_{T^{-}} \quad \begin{aligned} & \text { Negative-going threshold } \\ & \text { voltage at } B \text { input } \end{aligned}$	$V_{C C}=$ MIN	0.8	1.35		V
$V_{\text {out (0) }}$ Logical 0 output voltage	$\mathrm{V}_{\text {CC }}=$ MIIN, $\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$		0.22	0.4	V
$V_{\text {out (1) }}$ Logical 1 output voltage	$V_{\text {CC }}=$ MIN, $I_{\text {load }}=-400 \mu \mathrm{~A}$	2.4	3.3		v
Logical 0 level input In(0) current at A_{1} or A_{2}	$V_{C C}=$ MAX, $V_{\text {in }}=0.4 \mathrm{~V}$		-1	-1.6	mA
$\operatorname{lin}(0) \begin{aligned} & \text { Logical } 0 \text { level input } \\ & \text { current at B } \end{aligned}$	$V_{C C}=$ MAX, $V_{\text {in }}=0.4 \mathrm{~V}$		-2	-3.2	mA
Logical 1 level input	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$		2	40	$\mu \mathrm{A}$
in(1) current at A_{1} of A_{2}	$V_{\text {CC }}=$ MAX, $V_{\text {in }}=2.4 \mathrm{~V}$		0.05	1	mA
Logical 1 level input	$V_{\text {CC }}=$ MAX, $V_{\text {in }}=2.4 \mathrm{~V}$		4	80	$\mu \mathrm{A}$
in(1) current at B	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$		0.05	1	mA
Short circuit output	$V_{C C}=$ MAX S54121	-20	-25	-55	mA
OS current at Q or $\overline{\mathrm{Q}}^{\dagger}$	$V_{C C}=$ MAX \quad N74121	-18	-25	-55	mA
$\begin{array}{ll}\text { ICC } & \begin{array}{l}\text { Power supply current in } \\ \text { quiescent (unfired) state }\end{array}\end{array}$	$V_{C C}=M A X$		13	25	mA
ICC Power supply current in	$V_{C C}=$ MAX		23	40	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

NOTE: Electrical Characteristics Notes See Page 42

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
* All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.
TYPICAL CHARACTERISTICS

SCHMITT TRIGGER THRESHOLD VOLTAGE VERSUS
 FREE-AIR TEMPERATURE

VARIATION IN OUTPUT PULSE WIDTH VERSUS FREE-AIR TEMPERATURE

OUTPUT PULSE WIDTH
VERSUS
TIMING RESISTOR VALUE

Signetics MOS Roundup

Q PACKAGE
description
The 54／74122 Retriggerable Monostable Miltivibrator with clear is a monolithic TTL device providing triggering from either a positive or negative going pulse．Both the true and complement output pulses are provided．A direct clear input is provided and will override the output pulse．
Pulse duration is determined by addition of an external capacitor between pins 11 and 13.

LOGIC DIAGRAM

TRUTH TABLE

INPUTS				OUTPUTS	
A1	A2	B1	B2	Q	$\overline{\mathbf{Q}}$
H	H	X	X	L	H
X	X	L	X	L	H
X	X	X	L	L	H
L	X	H	H	L	H
L	X	\uparrow	H	Ω	凹
L	X	H	\uparrow	Ω	Ч
X	L	H	H	L	H
x	L	\uparrow	H	Ω	Ч
X	L	H	\uparrow	Ω	凹
H	\downarrow	H	H	Ω	T
\downarrow	\downarrow	H	H	Ω	Ч
\downarrow	H	H	H	Ω	凹
NOTE：A．$H=$ high level（steady state），$L=$ low level （steady state），$\uparrow=$ transition from low to high level，$\downarrow=$ transition from high to low level，$\zeta=$ one high－level pulse，$\Omega=$ one low－level pulse，$X=$ irrelevant（any input，including transitions．）．					

RECOMMENDED OPERATING CONDITIONS．

		S54122			N74122		UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage， $\mathrm{V}_{\text {CC }}$	4.5	5	5.5	4.75	5	5.25	V
Normalized fan－out from each output， N High logic level			20			20	
Normalized fan－out from each output，N Low logic level			10			10	
Input data setup time， $\mathrm{t}_{\text {setup }}$（see Note 3 and Figure 2）	40^{\dagger}			40^{\dagger}			ns
Input data hold time，thold（see Note 4 and Figure 2）	40^{\dagger}			40^{\dagger}			ns
Width of clear pulse，t_{w}（clear）	40^{\dagger}			40^{\dagger}			ns
External timing resistance	5		25	5		50	$k \Omega$
External capacitance	No restriction			No restriction			
Wiring capacitance at $\mathrm{R}_{\mathrm{ext}} / \mathrm{C}_{\text {ext }}$ terminal			50			50	pF
Operating free－air temperature，T_{A}	－55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES：

1．Voltage values，except intermitter voltage，are with respect to network ground terminal．
2．This is the voltage between two emitters of a multiple－emitter transistor．For the S54122／N74122 circuit，this rating applies to each A input with respect to the other and to each B input with respect to the other．
3．Setup time for a dynamic input is the interval immediately preceding the transition which constitutes the dynamic input，during which inter－ val a steady－state logic level must be maintained at the input to ensure recognition of the transition．
4．Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input，during which inter－ val a steady－state logic level must be maintained at the input to ensure continued recognition of the transition．
5．Ground $C_{e x t}$ to measure $V_{O H}$ at $\bar{Q}, V_{O L}$ at Q ，or $I_{O S}$ at Q ．$C_{e x t}$ is open to measure $V_{O H}$ at $\bar{Q}, V_{O L}$ at Q ，or $I_{O S}$ at \bar{Q} ．
6．Quiescent ${ }_{C C}$ is measured（after clearing）with 2.4 V applied to all clear and A inputs，B inputs grounded，all outputs open，$C_{e x t}=0.02 \mu F$ ， and $R_{\text {ext }}=25 \mathrm{k} \Omega, R_{\text {int }}$ of S54122／N74122 is open．
7．${ }^{\mathrm{C}} \mathrm{CC}$ is measured in the triggered state with 2.4 V applied to all clear and B inputs，A inputs grounded，all outputs open， $\mathrm{C}_{\mathrm{ext}}=0.02 \mu \mathrm{~F}$ ，and $R_{\text {ext }}=25 \mathrm{k} \Omega$ ．$R_{\text {int }}$ of $S 54122 / N 74122$ is open．

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

B PACKAGE

DESCRIPTION

The 74141 BCD-to-Decimal Decoder/Driver is a one-of-ten decoder which has been designed to provide the necessary high voltage characteristics required for driving gas-filled cold-cathode indicator tubes.
Blanking (outputs turned off) is provided for binary codes 10 through 15.
LOGIC DIAGRAM

TRUTH TABLE

INPUT				$\begin{aligned} & \text { OUTPUT } \\ & \text { ON* } \end{aligned}$	
D	C	B	A		
L	L	L	L	0	
L	L	L	H	1	
L	L	H	L	2	
L	L	H	H	3	
L	H	L	L	4	
L	H	L	H	5	
L	H	H	L	6	
L	H	H	H	7	
H	L	L	L	8	
H	L	L	H	9	
H	L	H	L	NONE	
H	L	H	H	NONE	
H	H	L	L	NONE	
H	H	L	H	NONE	$H=$ high level, L = low level
H	H	H	L	NONE	
H	H	H	H	NONE	

RECOMMENDED OPERATING CONDITIONS.

	MIN	NOM	MAX	UNIT
	4.75	5	5.25	V
Supply voltage V_{CC} (see Note 1)	4.25	V		
Optput voltage (see Notes 1 and 2)			65	${ }^{\circ} \mathrm{C}$

NOTES:

1. Voltage values are with respect to network ground terminal.
2. This is the maximum voltage which should be applied to any output when it is in the off state.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

NOTE: SEE THE 8 T02 FOR IMPROVED PERFORMANCE IN THE SAME PIN CONFIGURATION.

[^14]

N,Y PACKAGE

DESCRIPTION

The 54/74150 is a one-of-sixteen data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N-lines to one-line;

LOGIC DIAGRAM

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{\text {CC }}$	S54150 Circuit	4.5	5	5.5	V
Normalized Fan-Out from Each Output (N):	N74150 Circuit	Logical 0			
	Logical 1			5.25	V
				10	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$\begin{aligned} & v_{\text {in }} \\ & (1) \end{aligned}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$\begin{aligned} & v_{\text {in }} \\ & (0) \end{aligned}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=M I N$			0.8	V
$\begin{array}{\|l} v_{\text {out }} \\ (1) \end{array}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			v
$V_{\text {out }}$ (0)	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	v
1 in	Logical 1 level input	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
(1)	(each input)	$V_{\text {CC }}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
${ }^{\prime}$ in (0)	Logical 0 level input current (each input)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$V_{C C}=$ MAX,	-20		-55	mA
OS	current ${ }^{\dagger}$	$\mathrm{V}_{\text {out }}=0$	-18		-55	mA
${ }^{\text {'cc }}$	Supply current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		40	68	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {p }}$ (00	A,B,orC(4 levels)	Y		20	30	ns
${ }^{\text {t pd } 1}$	A, B,orC(4 levels)	Y		35	52	ns
${ }^{\text {p }}$ pdo	A, B, C, orD(3 levels)	w		22	33	ns
${ }^{t} \mathrm{pd} 1$	A, B,C,orD(3 levels)	w		23	35	ns
${ }^{t} \mathrm{pd0}$	Strobe	Y		19	30	ns
${ }^{t} \mathrm{pd} 1$	Strobe	Y	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{L}=400 \Omega$	35	52	ns
${ }^{\text {tpdo }}$	Strobe	w		21	30	ns
${ }^{\text {p }}$ d1	Strobe	w		15.5	24	ns
${ }^{\text {tpdo }}$	D_{0} thru D_{7}	Y		16	24	ns
${ }^{\text {tpd1 }}$	D_{0} thru D_{7}	Y		19	29	ns
${ }^{\text {t }}$ pd0	E_{0} thru E_{15}	w		8.5	14	ns
${ }^{\text {tpd1 }}$	E_{0} thru E_{15}	w		13	20	ns

[^15]

B,E PACKAGE

R PACKAGE

DESCRIPTION

The $54 / 74151$ is a one-of-eight data selector which performs parallel-to-serial data conversion. The unit incorporates an enable circuit for chip select. This allows multiplexing from N -lines to one-line. Both true and complement outputs are available.

LOGIC DIAGRAM

TRUTH TABLE

inputs												OUTPUTS	
c	B	A	Strobe	D_{0}	D_{1}	O_{2}	O_{3}	D_{4}	D_{5}	D_{6}	D_{7}	v(1)	w
\times			1	\times	${ }^{\times}$	\times	\times	\times	\times	x	x	0	1
\bigcirc	0	0	- 0	0	${ }^{\times}$	\times	\times	$\stackrel{\times}{\times}$	${ }^{\times}$	x x x	\times \times \times	\bigcirc	$\stackrel{1}{0}$
\bigcirc	\bigcirc	0	:	$\stackrel{1}{x}$	${ }_{0}$	$\stackrel{\times}{x}$	x \times \times \times \times	x \times \times \times	x \times \times \times	\times \times \times \times \times	x \times \times \times	:	\bigcirc
-	0	1	\bigcirc	\times	,	\times	\times	${ }^{x}$	\times	${ }^{x}$	x \times \times \times	1	\bigcirc
\bigcirc	;	\bigcirc	:	$\stackrel{\mathrm{x}}{\times}$	x x x	$\stackrel{1}{1}$	$\stackrel{\times}{\times}$	\times \times \times \times	$\stackrel{\times}{\times}$	x	x \times \times \times	$\stackrel{1}{\circ}$	\bigcirc
0	1	1	0	x	\times	\times	-	\times	${ }^{x}$	\times	x	-	1
\bigcirc	1	1	0	x \times \times \times	x x \times	x \times \times	$\stackrel{1}{x}$	${ }^{\text {x }}$	x	$\stackrel{\times}{x}$	x	:	$\stackrel{0}{1}$
1	0	-	-	¢ ${ }^{\text {x }}$	\times	x	$\stackrel{1}{x}$	1	x	${ }^{\text {x }}$	x	;	-
1	0	1	\bigcirc	x	${ }^{\times}$	$\stackrel{\times}{x}$	\times	\times	0	${ }^{\mathrm{x}} \times$	${ }^{\mathrm{x}} \times$	\bigcirc	\bigcirc
1	\bigcirc	1	:	¢ ${ }_{\text {x }}$	${ }^{\times}$	\times \times \times ¢	x \times \times \times	x x x x	${ }^{1}$	x 0 0	¢ \times	!	$\stackrel{\square}{\square}$
,	;	-	\bigcirc	x	+	-	x \times \times \times	x \times \times \times	\times	1	+	,	\bigcirc
	?	!	\bigcirc	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times	\times \times \times	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	\times	$\stackrel{1}{0}$	\bigcirc	1

NOTES:

1. S54151/N74151 only.
2. When used to indicate an input, $X=$ irrelevant.

RECOMMENDED OPERATING CONDITIONS.

Supply Voltage $\mathrm{V}_{\mathrm{CC}}($ See Note 1$)$:		MIN	NOM	MAX	UNIT
	S54151 Circuit	4.5	5	5.5	V
	N74151 Circuit	4.75	5	5.25	V
Normalized Fan-Out from Each Output (N) :	Logical 0			10	
	Logical 1			20	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}$ (1)	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			V
$\begin{aligned} & V_{\text {in }} \\ & (0) \end{aligned}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=M I N$			0.8	V
$V_{\text {out }}$ (1)	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V} \\ & I_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			V
$V_{\text {out }}$ (0)	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 V, V_{\text {in }(0)}=0.8 V \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
1 in	Logical 1 level input current	$V_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
(1)	(each input)	$V_{\text {CC }}=\mathrm{MAX}, \quad V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
$\operatorname{lin}(0)$	Logical 0 level input current (each input)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$V_{C C}=$ MAX ,	-20		-55	mA
'OS	current ${ }^{\dagger}$	$V_{\text {out }}=0$	-18		-55	mA
${ }^{\prime} \mathrm{Cc}$	Supply current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		29	48	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

| PARAMETER | FROM
 (INPUT) | TO
 (OUTPUT) | TEST CONDITIONS |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^16]

Q PACKAGE

DESCRIPTION

The 54/74152 is a one-of-eight data selector which performs parallel to serial data conversion. The 54/74152 is identical to the $54 / 74151$ with the exclusion of the true output and strobe. It is available in the 14 -pin flatpak only.

LOGIC DIAGRAM

TRUTH TABLE

When used to indicate an input, $X=$ Irrelevant.

RECOMMENDED OPERATING CONDITIONS.

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{\text {CC }}$ (See Note 1):	S54152 Circuit	4.5	5	5.5	
	N74152 Circuit	4.75	5	5.25	V
Normalized Fan Out from Each Output (N):	Logical 0				
	Logical 1				

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$\begin{aligned} & v_{\text {in }} \\ & (1) \end{aligned}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	2			v
$v_{\text {in }}$ (0)	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=M I N$			0.8	v
$\begin{aligned} & v_{\text {out }} \\ & (1!) \end{aligned}$	Logical 1 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\text {load }}=-800 \mu \mathrm{~A} \end{aligned}$	2.4			v
$V_{\text {out }}$ (0)	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N, V_{\text {in }(1)}=2 \mathrm{~V}, V_{\text {in }(0)}=0.8 \mathrm{~V}, \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$			0.4	v
lin	Logical 1 level input	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
(1)	(each input)	$V_{C C}=M A X, \quad V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
I in (0)	Logical 0 level input current (each input)	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-1.6	mA
	Short circuit output	$\mathrm{V}_{C C}=\mathrm{MAX}$,	-20		-55	mA
	current ${ }^{\dagger}$	$\mathrm{V}_{\text {out }}=0$	-18		-55	mA
${ }^{\text {I Cc }}$	Supply current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$		26	43	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tpdo }}$	A, B,orC(4 levels)	Y	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{L}=400 \mathrm{~s} 2$		20	30	ns
$\mathrm{t}_{\mathrm{pd} 1}$	A, B,orC(4 levels)	Y			35	52	ns
${ }^{\text {p }}$ d0	A, B, C, orD(3 levels)	w			22	33	ns
$\mathrm{t}_{\mathrm{pd} 1}$	$A, B, C, o r D(3$ levels)	w			23	35	ns
$\mathrm{t}_{\text {pdo }}$	StRobe	Y			19	30	ns
${ }^{\text {p }}$ d1 1	Strobe	Y			35	52	ns
${ }^{\text {t }}$ pdo	Strobe	w			21	30	ns
${ }^{\text {t }} \mathrm{d} 11$	Strobe	w			15.5	24	ns
${ }^{\text {ppdo }}$	D_{0} thru D_{7}	Y			16	24	ns
$t_{\text {pd1 }}$	D_{0} thru D_{7}	Y			19	29	ns
${ }^{\text {p }}$ pdo	E_{0} thru E_{15}	W			8.5	14	ns
${ }^{\text {tpd1 }}$	E_{0} thru E_{15}	w			13	20	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
* All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

N,Y,P PACKAGE

DESCRIPTION

The 54/74154 decodes 4 binary-coded inputs to one of 16 mutually exclusive outputs when each of the two strobe inputs are low. The demultiplexing function is achieved by using the 4 input lines for output addressing and data from one strobe input while the other strobe input is held low.

LOGIC DIAGRAM

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
$V_{1 H}$	High-level input voltage	$\begin{aligned} & V_{C C}=\mathrm{MIN}, V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{1 \mathrm{H}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		2		0,8	V	
$V_{\text {IL }}$	Low-level input voltage				v			
V_{OH}	High-level output voltage			2.4			v	
V_{OL}	Low-level output voltage				0.4	V		
$\mathrm{I}_{1 \mathrm{H}}$	High-level input current	$v_{C C}=$ MAX	1 $=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	(each input)	$V_{C C}=$ MAX	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA	
IIL	Low-level input current (each input)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	$1=0.4 \mathrm{~V}$			-1.6	mA	
${ }^{\text {I O }}$	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX	S54154 N74154	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -57 \end{aligned}$	mA	
${ }^{\text {I CC }}$	Supply current	$V_{C C}=M A X$	S54154 N74154		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 49 \\ & 56 \end{aligned}$	mA	

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low-to-high-level output, from A, ${ }^{\mathrm{t}} \mathrm{PLH}$ B, C, or D inputs through 3 levels of logic	$C_{L}=15 p F, R_{L}=400$		24	36	ns
Propagation delay time, high-to-low-level output, from A, ${ }^{\text {t PHL }}$ B, C, or D inputs through 3 levels of logic			22	33	ns
Propagation delay time, low${ }^{\text {tPLH }}$ to-high-level output, from either strobe input			20	30	ns
Propagation delay time, high-to-low-level output, from either strobe input			18	27	ns

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

A,F PACKAGE

Q PACKAGE

DESCRIPTION

The 54/74180 8-Bit Odd/Even Parity Generator/Checker is a TTL monolithic array featuring gating logic arranged to generate or check odd or even parity.

LOGIC DIAGRAM

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS.

		MIN	NOM	MAX
Supply Voltage $V_{\text {CC }}$ (See Note 1):	S54180	4.5	5	5.5
Normalized Fan-Out from Each Output (N):	N74180	Logical 0		
Logical 1	4.75	5	5.25	

NOTE: 1. These voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
Input voltage required to $V_{\text {in (1) }}$ ensure logical 1 at any input terminal Input voltage required to	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2		0.8	v	
$\mathrm{V}_{\text {in }}(0)$ ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$		2.4			v	
Vout(1) Logical 1 output voltage	$\begin{aligned} & V_{C C}=\operatorname{MIN}, V_{\text {in }(1)}=2 \mathrm{~V}, \\ & V_{\text {in }(0)}=0.8 \mathrm{~V}, I_{\text {load }}=-800 \mu \mathrm{~A} \\ & V_{C C}=\mathrm{MIN}, V_{\text {in }(1)}=2 \mathrm{~V} \\ & V_{\text {in }(0)}=0.8 \mathrm{~V}, I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$					v	
$V_{\text {out }}(0) \quad$ Logical 0 output voltage				0.4	v		
Logical 1 level input current at each data input	$\begin{aligned} & V_{C C}=\text { MAX, } V_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$					40	$\mu \mathrm{A}$
					1	mA	
Lin(0) Logical 0 level input current $\operatorname{lin}(0)$ at each data input	$V_{C C}=M A X, ~ V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA	
Iin(1) Logical 1 level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$				80	$\mu \mathrm{A}$	
In(1) at even or odd input	$V_{C C}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$				1	mA	
$\operatorname{lin}(0)$ Logical 0 level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA	
Short-circuit output current ${ }^{\dagger}$	$v_{C C}=$ MAX	S54180	-20		-55	mA	
		N74180	-18		-55	mA	
upply current		S54180		34	49	mA	
	$V_{C C}=$ MAX	N74180		34	56	mA	

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {t }}$ d 1	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		40	60	ns
${ }^{t} \mathrm{pdO}$	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	38	ns
${ }^{t} \mathrm{pd} 1$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		32	48	ns
${ }^{\text {p }}$ pd0	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		45	68	ns
${ }^{\text {pd1 }}$	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		32	48	ns
$t_{\text {pdo }}$	Data	Σ Even	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		45	68	ns
${ }^{\text {tpd1 }}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		40	60	ns
${ }^{\text {pdo }}$	Data	Σ Odd	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		25	38	ns
${ }^{\text {tpd1 }}$	Even or Odd	Σ Even or Σ Odd	$C_{L}=15 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		13	20	ns
${ }_{\text {tpd0 }}$	Even or Odd	Σ Even or Σ Odd	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		7	10	ns

[^17]
N74192B,R
 Synchronous Decade Up/Down
 S54192B,R,E Counter with Preset Inputs

B,E PACKAGE

DESCRIPTION

The 54/74192 Synchronous Decode Up/Down Counter with preset inputs is a TTL monolithic array containing gates and binaries interconnected to provide a bi-directional divide-by-ten sequence as a function of the clock inputs.
The counter is capable of being preset to any number of addressing the data inputs while the load input is low.
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

NOTES:

1. Voltage values are with respect to network ground terminal.
2. Setup time is the interval immediately preceding the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
3. Hold time is the interval immediately following the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
${ }^{*}$ These conditions are recommended for use at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

DECADE COUNTER (typical clear, load, and count sequences)

NOTES:
A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
N74192					
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage		2			v
$V_{\text {IL }} \quad$ Low-level input voltage				0.8	v
V_{OH} High-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4			v
$\mathrm{V}_{\text {OL }}$ Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$			0.4	v
	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIH High-level input current	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$			1	mA
IIL Low-level input current	$V_{C C}=$ MAX, $V_{1}=0.4 \mathrm{~V}$			-1.6	m A
${ }^{\text {I OS }}$ Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX	-18		-65	mA
ICC Supply current	$V_{C C}=$ MAX		65	102	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$ (See Note)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum input count frequency	$C_{L}=15 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=400 \Omega$	25	32		MHz
$\mathrm{t}_{\text {setup }}$	Minimum input setup time Propagation delay time, low-			14	20	ns
${ }^{\text {PLLH }}$	to-high-level carry output from count-up input			17	26	ns
${ }^{\text {t PHL }}$	Propagation delay time, high to-low-level carry output from count-up input			16	24	ns
${ }^{\text {P PLH }}$	Propagation delay time, low-to-high-level borrow output from count-down input			16	24	ns
${ }^{\text {tPHL }}$	Propagation delay time, high to low-level borrow output from count-down input			16	24	ns
${ }^{\mathrm{t}} \mathrm{PLH}$	Propagation delay time, low-to-high-level Q output from either count input			25	38	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation delay time, high to-low-level Q output from either count input			31	47	ns

NOTE: Above Switching Table Applies to (S54192 \& N74192)

[^18]

B,E PACKAGE

DESCRIPTION

The 54/74193 Synchronous 4-Bit Binary Up/Down Counter with preset inputs is a TTL monolithic array containing gates and binaries interconnected to provide a bi-directional divide-by-sixteen sequence as a function of the clock inputs.
The counter is capable of being preset to any number by addressing the data inputs while the load input is low.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS.

	554193			N74193			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage V_{CC}	4.5	5	5.5	4.75	5	5.25	V
Normalized fan-out from each output, \mathbf{N}			10			10	
Input count frequency, $\mathrm{f}_{\text {count }}$	0		$25 *$	0		$25 *$	MHz
Width of any input pulse, t_{w}	20*			20**			ns
Data setup time, $\mathrm{t}_{\text {setup }}$ (see Note 2)	20*			$20 *$			ns
Data hold time, thold (see Note 3)	0			0			ns
Operating free-air temperature range, T_{A}	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

NOTES:

1. Voltage values are with respect to network ground terminal.
2. Setup time is the interval immediately preceding the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
3. Hold time is the interval immediately following the positive-going edge of the load pulse during which interval the data to be recognized must be maintained at the input to ensure its recognition.
*These conditions are recommended for use at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

BINARY COUNTER (typical clear, load, and count sequences)

Illustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to $B C D$ seven.
3. Count up to eight, nine, carry, zero, one, and two.
4. Count down to one, zero, borrow, nine, eight, and seven.

NÓTES:
A. Clear overides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

ELECTRICAL CHARACTERISTICS (Cont'd)

PARAMETER	TEST CONDITIONS*	MIN** TYP	MAX	UNIT
N74193				
$\mathrm{V}_{1 H} \quad$ High-level input voltage		2		V
$V_{\text {IL }}$ Low-level input voltage			0.8	V
V_{OH} High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \quad V_{I H}=2 \mathrm{~V} \\ & V_{I L}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$	2.4		V
V_{OL} Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, V_{I H}=2 V \\ & V_{I L}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$		0.4	V
	$V_{C C}=M A X, \quad V_{1}=2.4 V$		40	$\mu \mathrm{A}$
IH High-level input current	$V_{C C}=M A X, V_{1}=5.5 \mathrm{~V}$		1	$m A$
IIL Low-level input current	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1.6	$m A$
'OS Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX	-18	-65	$m A$
${ }^{\text {I CC }}$ Supply current	$V_{C C}=$ MAX	65	102	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$ (See Note)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{f}_{\text {max }}$	Maximum input count frequency	$C_{L}=15 p F, \quad R_{L}=400 \Omega$	25	32		MHz
${ }_{\text {t }}$ setup	Minimum input setup time Propagation delay time, low-			14	20	ns
${ }^{\text {P PLH }}$	to-high-level carry output from count-up input			17	26	ns
${ }^{\mathrm{t} P H L}$	Propagation delay time, high-to-low-level carry output from count-up input			16	24	ns
${ }^{\mathrm{t}} \text { PLH }$	Propagation delay time, low-to-high-level borrow output from count-down input			16	24	ns
${ }^{\text {tPHL }}$	Propagation delay time, highto low-level borrow output from count-down input			16	24	ns
${ }^{\text {PPLH}}$	Propagation delay time, low-to-high-level Q output from either count input			25	38	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level Q output from either count input			31	47	ns

NOTE: Above Switching Table Applies to (S54193 \& N74193)
*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Not more than one output should be shorted at a time.

See Signetics for Line Driving and Receiving Capability

B11 EAST ARGUES AVENUE GUNNYVALE, CALIFORNIA

[^0]: * Availability of a circuit device in a particular package and temperature range is indicated on the appropriate device. Electrical Characteristics Data Sheet is shown in Section 2 of this handbook.

[^1]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^2]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^3]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^4]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions of the applicable device type.
 ${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^5]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 ${ }^{\dagger}$ Not more than one output should be shorted at a time.

[^6]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^7]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^8]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^9]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 **All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^10]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Not more than one output should be shorted at a time.

[^11]: NOTES: 1. Voltage values are with respect to network ground terminal.

[^12]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

 * *All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 ${ }^{\dagger}$ Not more than one output should be shorted at a time.

[^13]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 t Not more than one output should be shorted at a time.

[^14]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ** Th is typical value is at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

[^15]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ${ }^{* *}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 ${ }^{\dagger}$ Not more than one output should be shorted at a time.

[^16]: For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit trpe.

 * All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 ${ }^{\dagger}$ Not more than one output should be shorted at a time.

[^17]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions of the applicable device type
 ${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

[^18]: *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
 ** All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \dagger Not more than one output should be shorted at a time.

