
Introduction to

The SOTM
Desktop Computer

!ii!lDOliC!i
a subsidiary of U.S. Philips Corporation

Introduction to

The
Desktop Computer

by

J. E. Doll

·9jg10bG9
a subsidiary of U.S. Philips Corporation

Signetics reserves the right to make changes in the products contained in this
book in order to improve design or performance and to supply the best possible
products. Signetics also assumes no responsibility for the use of any circuits de
scribed herein, conveys no license under any patent or other right, and makes no
representations that the circuits are free from patent infringement. Applications
for any integrated circuits contained in this publication are for illustration pur
poses only and Signetics makes no representation or warranty that such applica
tions will be suitable for the use specified without further testing or modification.
Reproduction of any portion hereof without the prior written consent of
Signetics is prohibited.

© 1978 Signetics Corporation

PREFACE

Computers today are a pervasive part of our society. No longer the

exclusive domain of large corporations, computers are now available to

nearly everyone at a price comparable to good stereo equipment. Specialized

computers are already being used in home appliances, video games, and

automobiles.

This manual is written especially for people just starting to explore

the world of computers. It is designed to give you background information,

an understanding of how computers work, and insights into their functions.

As you read the manual, you will be introduced to a lot of new terminology.

You are urged to pay particluar attention to these new terms, called

"buzz words," as they are defined. Each buzz word embodies a basic

concept of computer or electronic technology. They will be underlined in

the text as they appear. Through an understanding of these concepts,

you will become familiar with your Instructor 50 or any other micro

computer. If you are not sure you understand a term or concept, it is

wise to review its definition or explanation before you proceed.

Armed with your new knowledge you will be able to apply your Instructor

50 to a variety of functions. This variety is limited only by your own

imagination. As a stand-alone unit, the Instructor 50 can be used as a

home message center, a digital clock, a stop watch, or a game center.

By connecting it to other external devices it can be used to play music

on your stereo, provide video games on your T.V., keep your household

records, and compute your financial records.

So, welcome to the world of computers! You have nothing to fear.

Computers are no longer mysterious giants; they are as easy to operate

as your automobile or microwave oven.

TABLE OF CONTENTS

PREFACE

CHAPTER I INTRODUCTION AND BACKGROUND

Historical Perspectives •

Concept of Computer • • • • • •

CHAPTER II THE BUILDING BLOCKS OF COMPUTERS

Logic Signals •

Combining Logic Signals •

Flip/Flops: The ,Next Level of Complexity .

Combining Flip/Flops into Counting Circuits •

Combining Flip/Flops into Registers • • • • •

CHAPTER III HOW COMPUTERS COUNT

I.

II.

III.

IV.

The Binary Numbering System

Conversion from Binary to Decimal • •

Conversion from Decimal to Binary •

Binary Arithmetic

Addition

Subtraction • .

Multiplication and Division •

V. The Hexadecimal Numbering System

A Convenient Compromise •

CHAPTER IV INSIDE YOUR INSTRUCTOR 50

I.

II.

Basic Computer Organization •

Memory System • • • • • •

The Arithmetic and Logic System •

The Input/Output System • • •

The Timing and Control System

Central Processor Unit

Computer Wares . . . • •

What is a Program?

1-1

1-2

2-1

2-2

2-9

2-13

2-16

3-1

3-5

3-6

3-8

3-8

3-10

3-13

3-14

4-1

4-2

4-4

4-6

4-8

4-9

4-9

4-10

III.

IV.

V.

Moving Information Between Blocks • • • • • • • • • •

Software vs. Firmware • • • •

Organization of the 2650 CPU

• • • • • • • • • • • •
·" ~

The Program Status Word • • • • • • • • • • • • • • •

How It All Works Together • • • • • • • • • • • • • • • •

Instruction is Fetched
Instruction is Executed • • • • • • • • • • • • • • •

Example: A One-Instruction Program • • • • • • • • •

Example: A Two-Instruction Program • • • • • • • • •

Types of Instructions (What Instructions Can Do) • • •

Arithmetic Instructions • • • ·
Input/OUtput (I/O) Instructions •••••••
Load and Store Instructions •

Logical Instructions ••••

· . . .
· . .

• • • • • • •

• • • • • •
Branch Instructions • • • • • • • • • • • • • • • • •

Multi-Byte Instructions • • • • • • • • • • • • • • •

Addressing Modes •••• • • • • • • • • . .
Interpreting Instruction Descriptions • • • • • • • • • •

Making it Work •••••••••••••.•••• • •

CHAPTER V PROGRAMMING TECHNIQUES

I.

II.

III.

IV.

Organizing Your Program • • • • • • • • • • • • • • • • •

Looping and Branching ·
Subroutines • • . . • • • • • • • •

Nested Subroutines
Interrupts ·

CHAPTER VI •

GLOSSARY

4-10

4-12

4-13

4-16

4-17

4-17

4-18

4-19

4-21

4-22

4-23

4-23

4-23

4-23

4-25

4-27

4-29

4-35

4-38

5-1

5-9

5-13

5-20

5-22

5-27

FIGURES

1.1

1.2

1.3

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.B

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.1B

2.19

2.20

2.21

2.22

4.1

4.2

4.3

4.4

4.5

LIST OF TABLES AND FIGURES

THE 2650 MICROPROCESSOR

ABACUS

FUNDAMENTAL COMPUTING TASK

DOORBELL CIRCUIT

ALARM CIRCUIT • • •

IDGIC SYMBOL FOR INVERTER •

TRUTH TABLE FOR INVERTER

AND CIRCUIT ••••••••••

LOGIC SYMBOL FOR AND GATE •

TRUTH TABLE FOR AND GATE

OR CIRCUIT

LOGIC SYMBOL FOR OR GATE

TRUTH TABLE FOR OR GATE

EXCLUSIVE-OR CIRCUIT • • • • •

LOGIC SYMBOL FOR EXCLUSIVE-OR GATE

TRUTH TABLE FOR EXCLUSIVE-OR GATE • •

LOGIC SYMBOL AND TRUTH TABLE FOR NAND GATE

SYMBOL AND TRUTH TABLE FOR NOR GATE • • • • •

IDGIC SYMBOL AND SCHEMATIC FOR D-TYPE FLIP/FLOP •

FLIP/FLOP TIMING DIAGRAM

FLIP/FIDP TRUTH TABLE •

DOORBELL MEMORY CIRCUIT •

DOORBELL COUNTING CIRCUIT •

OUTPUT STATES OF DOORBELL COUNTING CIRCUIT

AN B-BIT REGISTER • • • • • • • • • •

BASIC COMPUTER ORGANIZATION • •

DIAGRAM OF 2650 MEMORY

ARITHMETIC AND LOGIC SYSTEM BLOCK DIAGRAM •

ALU LOGICAL OPERATIONS

INPUT/OUTPUT SYSTEM • • • •

1-2

1-3

1-4

2-1

2-3

2-3

2-3

2-4

2-5

2-5

2-6

2-6

2-6

2-7

2-7

2-7

2-B

2-9

2-9

2-11

2-12

2-13

2-14

2-15

2-17

4-1

4-2

4-4

4-5

4-7

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

COMPUTER COMMUNICATIONS PATHS

2650 CPU REGISTERS • • • • •

EXAMPLES OF LOGICAL INSTRUCTIONS

OPERATION OF BRANCH INSTRUCTION •

OPERATION OF CONDITIONAL BRANCH.INSTRUCTION •

FORMAT OF BeTA INSTRUCTION

FORMAT OF ADDZ INSTRUCTION--REGISTER ADDRESSING •

FORMAT OF ADDI INSTRUCTION--IMMEDIATE ADDRESSING

FORMAT OF ADDR INSTRUCTION--RELATIVE ADDRESSING • •

4.15 FORMAT OF ADDA INSTRUCTION--ABSOLUTE

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

TABLES

3.1

3.2

3.3

ADDRESSING WITH INDEXING

A SIMPLE FLOW CHART ••••

MNEMONIC.LISTING ON CODING FORM •

DEFINING LABELS • • • • •

CODING THE INSTRUCTIONS •

A CONDITIONAL LOOP

FLOWCHART TO FLASH LIGHT

A ONE SECOND TIME DELAY •

PROGRAM WITH SUBROUTINE

TIME DELAY SUBROUTINE •

FLOW CHART TO FLASH LED IS. •

PROGRAM TO FLASH LED I S

NESTED SUBROUTINES • • • • •

PROGRAM USING ,INTERRUPT.

CODE FOR PROGRAM USING INTERRUPT

CODE FOR PROGRAM USING INDIRECT INTERRUPT • • •

FLIP/FLOP COUNTING PATTERN

DECIMAL AND BINARY EQUIVALENTS

BINARY EQUIVALENTS OF POWERS OF 2

4-10

4-14

4-24

4-26

4-27

4-28

4-30

4-30

4-32

4-33

5-2

5-3

5-5

5-7

5-10

5-10

5-12

5-15

5-17

5-18

5-19

5-20

5-23

5-24

5-26

3-2

3-3

3-6

1. INTRODUCTION AND BACKGROUND

Historical Perspectives

In the early 1950s the very first commercial computers began to appear

on the scene. At that time a computer was built of vacuum tubes, filled

a one-story building, and required a specialized staff to maintain and

operate it. It cost between half a million and a million dollars, and

those were 1950 dollars. Market researchers for large corporations

analyzed the new device and most of them concluded that due to its high

cost of production and maintenance that perhaps 50 to 200 computers

could be built and sold. After that they predicted the market would be

flooded.

In spite of advice to the contrary, several corporations, notably IBM

Corporation, added the computer to their product line. By the late

1950s and early 1960s many large corporations were using computers for

their data processing operations. What is astounding is not the short

sightedness of the market researchers, but the technological advances

which have occurred within the computer industry in the past few decades.

With the invention of transistors, computers could be built for a small

fraction of the size and cost of their vacuum tube counterparts. Soon

it was discovered that thousands of transistors could be integrated onto

a single tiny chip of silicon semiconducting material. Again, with the

advent of these integrated circuits, the size, power, and cost require

ments for a computer decreased dramatically. Funding provided for space

program research during the 1960s provided a strong impetus for many of

these technological breakthroughs. And as the size and cost of computer

power was decreasing it became possible to produce more and more powerful

computers, with more sophisticated functions. The 2650 microprocessor,

the integrated circuit at the heart of your Instructor 50, provides more

1-1

sophisticated computational power than early commercial computers of the

1950s.

Figure 1.1 THE 2650 MICROPROCESSOR

While the size and cost of computing power was diminishing, sophisti

cation available in commercial machines was increasing. But the basic

principles of construction have remained essentially the same. These

principles are used in virtually all computers being produced today, and

are the basis for your Instructor 50. It is these principles which this

manual will introduce and explain.

concept of Computer

One of the earliest computing devices was the abacus. An abacus is an

arrangement of beads which are slid along rods to form different patterns.

Various positions of the beads represent different numbers. By mani

pulating the beads the operator of the abacus can perform mathematical

problems quickly and accurately. Modern day digital computers are

descendents of the abacus. The word digital is often associated with

modern computers, implying that they operate using digits or numerical

values. In reality, of course, what is manipulated is not numerical

1-2

values but electronic signals. We simply assign numerical value to the

signals that are being manipulated just as the operator of the abacus

assigns numerical value to the position of his beads.

Figure 1.2 ABACUS

With the computer, however, the process of sequentially manipulating the

beads (substitute electronic signals) is automated. A human operator is

not required. A computer, then, is a device for manipulating numbers.

Unlike the abacus operator who can decide himself what problems to solve

and how to solve them, the computer cannot make these decisions. These

decisions are the job of the computer programmer.

First the programmer reduces the task to a sequence of manipulations

which can be performed by the computer. The computer then carries out

these manipulations, or operations on numbers, in the sequence specified

by the programmer. This sequence of operations or manipulations is

called a computer program. The computer is designed to carry out these

operations automatically, one at a time, similarly to the way in which

the operator of the abacus solves his problem by manipulating beads. As

you can see, the computer itself is not possessed of judgment any more

than is the abacus. Any intelligence that a computer may appear to

possess comes from its human programmer. Once the program has been

specified the computer can carry out the tasks of the program at a rapid

pace.

1-3

The fundamental computing task is diagrammed in Figure 1.3.

INPUT
(DATA)

VISUAL INPUT

"THAT'S A TREE"

(VERBAL OUTPUT)

OUTPUT
(PROCESSED

DATA)

Figure 1.3 FUNDAMENTAL COMPUTING TASK

First, information is input to the computer representing the data to be

manipulated. This data is presented to the computer in the form of

electronic signals in a very specific format. For instance, if the task

of the computer is to add together two numbers, electrical signals

representing the two numbers will be input to the computer.

The computer program, then, directs the computer to perform the manipu

lations necessary to add the two numbers together and to come up with an

answer. This is called the processing of ,the data. Finally, the com

puter presents another set of electrical signals to the outside world.

These signals represent the numerical or logical result of the compu

tation and are called output. These three activities, input, processing,

and output are fundamental to any computing activity. We humans also

engage in input, processing, and output activities constantly and on a

much more complex scale.

For example, imagine that you are taking a stroll through the woods.

You are constantly receiving input. You see the green foliage, smell

1-4

the damp ferns, hear the wind rustling through the tree branches. In an

instantaneous process you interpret that you are walking in the woods.

You match this input to the memory of another stroll through the woods

or perhaps to something you have read or heard about. The process is so

rapid and subtle that you may not even be aware it is occurring. Sud

denly a companion asks, "Isn't it a beautiful day?" Your brain rapidly

recognizes the verbal input as a question requiring an affirmative or

negative response. The brain then evaluates (processes) all sensory

data important to defining what a beautiful day is. "It certainly is,"

you respond with verbal output. You may also nod your head in an

affirmative body gesture. Obviously the range of electronic signals

that a computer can accept as input and the signals that it can generate

as output are feeble indeed in comparison to the variety of inputs and

outputs that are available to human beings.

There is no point in writing a computer program to solve a problem that

occurs only occasionally and is easy to solve. Problems uniquely suited

to solution by a computer program are those which are either tedious and

repetitive, or those which appear often enough to justify the effort of

programming. Some examples are keeping track of a checking account or a

charge account balance.

For these problems to be solved by a computer, they must first be re

duced to digital or numerical form. Fortunately, a number of ingenious

methods have been devised to accomplish this task. These methods have

evolved over the years from an analysis of fundamental logical and

mathematical processes. An understanding of these basic concepts pro

vides the foundation for designing the building blocks of computers.

1-5

2. THE BUILDING BLOCKS OF COMPUTERS

Logic Signals

The logic signal is the most fundamental concept used in building modern

computers. It is a signal which can exist in only two conditions, and

is used to represent some meaningful concept. For instance, the two

states of a logic signal can represent the concepts "yes" and "no"; "on"

and "off"; "true" and "false"; "present" and "absent"; "now" and "not

now"; "active" and "not active."

A number of physical devices can be used to represent these abstract

concepts. For Paul Revere, it was one lantern if by land, two if by

sea. Mr. Revere may not have recognized the .fact, but he was trans

mitting a simple logic signal which had only two possible conditions.

The meanings of those two conditions were agreed upon in advance by Mr.

Revere and his fellow revolutionaries.

A more familiar everyday example of a logic signal is provided by your

doorbell. Consider Figure 2.1, a simple doorbell circuit. When a

finger is applied to the doorbell pushbutton an electrical contact is

closed. This allows electrical current to flow from the battery through

the switch, through the bell and back into the battery. The sound of

the bell indicates that there is someone at the door.

BELL (OUTPUT)

/""---------..
(CURRENT

,--- I
~----~I r-----------------------------~

BATTERY

Figure 2. 1 DOORBELL CIRCUIT

2-1

In this case, electrical current has been used to transmit a logic

signal. If the current is on or flowing someone is pushing the doorbell.

The input is provided by the finger pushing the doorbell. After pushing

the button the form of the logic signal is changed into an electrical

current. Finally, it is changed from current into sound by the bell and

transmitted through the air to your ear. While the physical represen

tation of the signal changes forms several times during its transmission,

the meaning of the signal does not change. It is always present or

absent, true or false, and always means that someone is pushing the

button or someone isn't.

Computers generally use two electrical voltage levels.on wires to

transmit logic signals from one place to another. Inside your Instructor

50, a logic signal is represented by presence or absence of an electrical

voltage on a wire. If a computer could only transmit logic signals from

one place to another, it would be hardly more remarkable than your

doorbell. A computer, however, has the ability to manipulate logic

signals as well.

Combining Logic Signals

The simplest manipulation that can be performed on a logic signal is to

invert it. That is, if the signal is true, make it false; if it is

false, make it true. This can be very useful at times.

Let us suppose, for example, that a secret society has been formed to

meet and discuss certain sensitive subjects. The first meeting takes

place at a member's home and, since the meeting must be secret, they

elect to post a guard at the door. TO make sure the guard hasn't fallen

asleep he is instructed to keep his finger on the doorbell. It soon

becomes evident that the business of the meeting cannot be conducted

over the constant din of the doorbell. The meeting cannot continue.

This unfortunate circumstance could have been avoided had the society

been familiar with the inversion of logic signals. Consider, for

2-2

r

i-
I

example, the alarm circuit of Figure 2.2. This is similar to the door

bell circuit of Figure 2.1 except that the pushbutton is constructed to

turn the current off when a finger is applied to the button. Thus, so

long as the guard pushes the button (inp~t), the alarm (output) does not

sound. The pushbutton has been wired to invert the logic signal.

FINGER (INPUT)

~ -- - ...-..
(
\

CURRENT

'--- '11-----------'
BATTERY

Figure 2.2 ALARM CIRCUIT

Inversion is very common in computer circuits. And the circuit that

performs this function, the inverter, has a special symbol of its own,

shown in Figure 2.3.

_______ A _______ [> ______ X ______ __
(INPUT) (OUTPUT)

Figure 2.3 LOGIC SYMBOL FOR INVERTER

A logic signal which we have labeled A is applied to the input side of

this circuit. The output side of the circuit, which we have labeled X

is always the opposite logic condition from the input. This is shown in

the truth table for the inverter circuit of Figure 2.4.

INPUT

A

o
1

OUTPUT

X
1
o

Figure 2. 4 TRUTH TABLE FOR INVERTER

2-3

Recall that a logic signal can have only two possible states. It is

common practice to label these two states ~ and 1. ThuSt in our truth

table under the input A we show that when A is a ~the output X is a 1.

And when the input A is a 1, the output X is a ~.

It would be well at this point to explain that it is common practice

among programmers to represent zeroes with a slash through them to

distinguish them from upper case O·s. We will do this throughout this

manual to avoid confusion.

The information in this truth table can also be expressed in the form of

an equation:

X=A

The little bar above the A indicates inversion. This equation may be

read "X equals A not," or !IX equals not A" or "X equals A bar. II

It is also possible to combine two or more logic signals to produce a

logical result. Our simple doorbell example, above, showed only one

pushbutton. Consider the two pushbutton circuit of Figure 2.5. This is

called an AND circuit because both button A AND B must be pushed simul

taneously to produce an output. If button A or button B is not pushed,

the bell is silent.

INPUTB INPUT A

r------<Y----~o------t ,---------.
I
\ CURRENT

'- - ~ '1...--------------..1
BATTERY

Figure 2.5 AND CIRCUIT

2-4

The logic symbol for the AND circuit, or AND gate as it is sometimes

called, is shown in Figure 2.6.

A (INPUT)
X (OUTPUT)

B (INPUT)

Figure 2.6 LOGIC SYMBOL FOR AND GATE

Note that the logic symbol has two inputs and one ou~pu~. The function

of the AND ga~e can be described by the truth table of Figure 2. 7. The

truth table shows that when input A is a ~ AND input B is a ~ the output,

X, is a~. When input A is a 1 but B is a ~ the output X is still a ~.

When input B is a 1 but input A is a ~, the output X is a~. Only in

the case in which both inputs A AND B are Is is the output, X, a 1.

INPUTS OUTPUT
B A X

~ ~ ~
~ 1 ~
1 ~ ~
1 1 1

Figure 2. 7 TRUTH TABLE FOR AND GATE

This can also be expressed in equation form:

X = A'B

read "X equals A AND B." Thus we see that AND is a simple l09ic opera

tion which combines two inputs to form one ou~pu~.

Similarly, it is possible to combine two logic signals in an OR function.

Oonsider the pushbutton circuit of Figure 2.8. When pushbutton A is

pushed, the bell is connected to the battery through button A. When

pushbutton B is depressed the bell is connected to the battery through

2-5

button B. Pushing either button A OR button B will cause the bell to

ring.

INPUTB

~N;UTA - - --;
~-------.~----~ ~--~~--------~ ...---_/- - - - - -'-----..

(CURRENT
\

--- II....---------~
BATTERY

Figure 2.8 OR CIRCUIT

The logic symbol for an OR gate is shown in Figure 2.9. Its operation

is described by the truth table of Figure 2.10. This truth table shows

that when both inputs A and B are ~s the output, X, is a~. When input

A is a 1 but input B is a ~ the output, X, is a 1, or if input B is a 1

but input A is a ~ the output, X, is a 1. If either A OR B (or both)

is a 1 the output is a 1. This can also be expressed in equation form

by writing:

X = A + B

read "X equals A OR B."

Figure 2.9 LOGIC SYMBOL FOR OR GATE

INPUTS OUTP UT
B A X

~ f6 f6
~ 1 1
1 ~ 1
1 1 1

Figure 2. 10 TRUTH TABLE FOR OR GATE

2-6

The final logic function with which we will concern ourselves is the

Exclusive-OR function. Using our pushbutton analogy, it is shown by the

circuit of Figure 2.11.

INPUT
A

INPUT
B

\.
O""'-------ill~---------------J

BATTERY

Figure 2.11 EXCLUSIVE-OR CIRCUIT

By following the current paths in Figure 2.11 you can see that if button

A is pushed the bell will ring. Or if button B is pushed the bell will

ring. But if both buttons A and B are pushed simultaneously the current

path will be broken and the bell will not ring. The logic symbol for

the Exclusive-OR gate is shown in Figure 2.12.

~:~)))~~x_

Figure 2.12 LOGIC SYMBOL FOR EXCLUSIVE-OR GATE

Its function is described by the truth table of Figure 2.13.

INPUTS OUTPU T
B A X
~ ~ ~
~ 1 1
1 ~ 1
1 1 ~

Figure 2.13 TRUTH TABLE FOR EXCLUSIVE-OR GATE

Note that if inputs A and B are both ~ the output, X, is~. And if

inputs A and B are both Is, the output, X, is~. Only if input A is a

1 and input B is a ~, or if input B is a 1 and input A is a ~, is the

2-7

output X, a 1. The i~puts A and B must be opposite in their logic

values for the output to be a logic 1. This can be expressed by the

equation:

X=AE&B

read "x equals A Exclusive-OR B."

These four logic gates, the inverter, the AND gate, the OR gate, and the

Exclusive-OR gate are the fundamental building blocks from which all

digital computers are built. You will see similar logic symbols used in

great abundance in the Instructor SO schematic diagram shown in the back

of your Instructor SO User's Guide.

A schematic diagram is simply a diagram which shows the scheme for

connecting various simple circuits to form a larger, more complicated

circuit. In drawing these diagrams it is common to combine the functions

of an inverter circuit with one of the other logic gates. For instance,

the output of an AND gate may be inverted to produce the opposite of the

AND function. This might be called the not-AND function, but is more

commonly called the NAND function. The logic diagram and truth table

for the NAND function are shown in Figure 2.14.

INPUTS OUTPUT

B
I)_x_ B A X

!6 fI 1
!6 1 1
1 !6 1 x = A·B

A

1 1 !6

Figure 2.14 LOGIC SYMBOL AND TRUTH TABLE FOR NAND GATE

The little circle at the output of the symbol for the NAND gate denotes

the inve~sion function. Similarly, the symbol for a NOR gate and its

corresponding truth table are shown in Table 2.15. Again, the little

circle denotes inversion. Note that the output column of these truth

tables is exactly opposite the truth tables for their AND and OR counter

parts.

2-8

~

I
\

I
!

INPUT OUTPUT
B A X

B
))_X_ flJ flJ 1

flJ 1 $I
1 $I $I

X = A+B

A

1 1 flJ

Figure 2.15 SYMBOL AND TRUTH TABLE FOR NOR GATE

Flip/Flops: The Next Level of Complexity

By connecting these simple logic gates together in certain ways, it is

possible to build circuits that do a variety of useful things. Several

common connections have already been designed, and rather than showing

the individual logic gates on the diagrams for these common circuits, it

is customary to show them simply as blocks on a schematic diagram.

One common connection of gates often used in computers is called a flip/

flop. A logic symbol for a D-type flip/flop is shown in Figure 2.16,

along with a schematic diagram for the internal connection of its gates.

The schematic diagram has been included only to convince you that this

circuit can indeed be built by connecting simple logic gates and we will

not analyze it in detail. Instead, we will describe the behavior of

this circuit in terms of its inputs and outputs.

R a
0 a

c Q

Q

R

0-----1

Figure 2.16 LOGIC SYMBOL AND SCHEMATIC FOR D-TYPE FLIP/FLOP

This circuit has two outputs labeled Q and Q, and three inputs labeled

D, C, and R. Of course, the logic values that appear at the outputs of

2-9

this circuit depend on the logic values that are presented to the

inputs of the circuit. The outputs are labeled Q and Q because they

always assume opposite logic values. If Q is a 1, then Q is a~. If

Q is. a ~, then Q is a 1.

The input labeled C is a timing or clock signal. A transition on this

signal from a logic 1 to a logic ~ determines When the output is allowed

to change state. When a transition occurs on the clock (e) input from

a 1 to a ~, the Q output will assume the logic value which is presented

to the D, or ~ input. For instance, if the D input sees a logic 1,

and the clock input makes the transition from a logic 1 to a logic ~,

then logic 1 will appear on the Q output and logic ~ on the Q output.

This condition will remain at the outputs until two things occur:

First, a logic ~ must appear on the D input. Concurrently, another

trahsition from a logic 1 to a logic ~ must occur on input e. Another

way of looking at this is that the input appearing on D is delayed from

reaching the output until the transition (l-to-~) occurs on e.

Input R is the Reset function for the flip/flop. All of the foregoing

is true so long as input R is at a logio~. Whenever input R is a logic

1, the Q output becomes a ~ and the Q output becomes a Ii independent of

what happens at the C and D inputs.

The behavior of this circuit may be further illustrated by the timing

diagram of Figure 2.17. Let us assume that the clock input is fluctu

ating between a logic 1 and logic ~, as shown in the timing diagram.

(Incidentally, in your Instructor 50 a logic 1 is represented by a

voltage level of +5 volts, and a logic ~ by a voltage level of about ~

volts. This is a common practice with logic circuits, so that engineers

sometimes refer to a logic 1 as a +5 volts, and a logic ~ as ~ volts, or

to a logic 1 as a high level and a logic ~ as a low level.) The critical

instant is that in which the clock signal makes the transition from a

logic 1 to a logic ~.

2-10

R (RESET)

C(ClOCK)

D(DATA)

Q(OUTPUT)

o (OUTPUT)

i
t 2 4 6 10 11

Figure 2. 17 FLIP /FWP TIMING DIAGRAM

We've drawn vertical dotted lines on the diagram to indicate these

instants, and have labeled them as clock times 1 through 13. During

clock times 1, 2, and 3 the Reset signal is a high, or logic 1. There

fore, the Q output is a low. This is independent of any activity on the

D input. Since the Q output must always be opposite the Q output, the

Q output is a high at this time.

At the occurrence of clock time 4 the Reset signal is a ~ but the D

input is also a ~, so the Q output remains a ~, and the Qoutput remains

a 1. At clock time 5 the D input is a logic 1, so the Q output becomes

a logic 1 to match the D input, and theQ output becomes a logic ~. At

clock time 6 the D input is again a logic 1 so the Q output remains a

logic 1 and the Q output remains a logic ~. At clock time 7, the D

input is a logic ~ so the Q output goes to a logic ~, and Q becomes a

logic 1.

At clock time 8, the D input is still a logic ~, so the Q output remains

a logic ~ and the Q output remains a logic 1. At clock time 9 the D

input is a logic 1 but the Reset signal has also become a logic 1.

Therefore, the Q output remains a logic ~ and the Q output remains a

logic 1.

This is also true for clock time 10, and clock time 11. At clock time

12 the Reset signal has fallen back to ~ and the D input is now a 1, so

2-11

the Q output becomes a 1 and the Q output a~. At clock time 13 the D

input has fallen to a ~, so the Q output becomes a ~ and the Q output

becomes a 1.

This behavior can be summarized the the truth table of Figure 2. 18. On

the input side of the diagram we show the conditions of the input at

clock time t , that is, at a particular time at which the clock signal
n

makes a transition from a 1 to a~. The output side shows how the

outputs will look at clock time t + 1 (when the next clock transition
n

occurs). The first line of the truth table shows that when input R or

Reset is aI, output Q is a ~ and output Q is a 1. The "X" indicates

that it doesn't matter what the condition of input D is. If input R is

a ~ and input D is a ~, then after the clock transition occurs, output Q

will become a ~ and output Q will become a 1. Also if input R is ~,

and input D is a 1, after the clock transition output Q will become a 1

and output Q will become a ~.

t t + 1 n n

INPUT R INPUT D OUTPUT Q OUTPUT Q
1 X ~ 1

~ .~ ~ 1

~ 1 1 ~

Figure 2.18 FLIP/FLOP TRUTH TABLE

Flip/flops are very important in computers because of their ability to

"rem~r" the logic value on their D input until the occurrence of a

subsequent clock transition. It is said that a flip/flop can store one

bit of information. The word "bit" is a contraction of the words

"BInary digiT." Through the use of logic signals we have the ability to

transmit bits from one place to another within the computer. Through

the use of logic gates we have the ability to combine two or more logic

bits to form a resultant bit. And with the flip/flop we have the ability

to store the logic bit for subsequent examination.

2-12

For example, let's say that you would like to know if anyone rings your

doorbell while you're away from home. This could be accomplished by

hooking your doorbell into the circuit shown in Figure 2.19. Before you

leave the house you momentarily push the Reset button connecting the

Reset input to +5 volts or logic 1, and forcing the Q output to a logic

~ or ~ volts. No indication will be present on the meter.

METER

r---..... ---..... -------tD QJ----I

+5 VOLTS ----c:>----CJl> c

RESET
BUTTON

R

Figure 2.19 DOORBELL MEMORY CIRCUIT

This condition will remain until someone presses the doorbell button.

At that time, the clock input will be momentarily disconnected from the

+5 volts or logic 1, and will be connected to ~ volts or logic ~.

This will cause the logic 1 wired to input D to appear at the Q output.

When the button is released the Q output will retain the logic 1. When

you return home you may examine the meter to determine if anyone has

pushed your doorbell button. If it reads about 5 volts, someone has.

The fact that the button has been pushed has been "remembered" by the

flip/flop as one bit of information.

Combining Flip/Flops into Counting Circuits

Let's say that you're not content with knowing simply that your doorbell

has been pushed. You'd also like to know how many times it was pushed

while you were gone. TO accomplish this, you might connect the circuit

of Figure 2.20. Again, before you leave the house, you push the Reset

2-13

button momentarily connecting the Reset inputs to +5 volts or a logic 1

and setting all of the Q outputs (Q~, Ql' and Q2) to a logic~. Because

the Q outputs are opposite the Q outputs in logic value, all of the D

inputs are now connected to a logic 1.

C fIFO

R 00 0,
R

Figure 2.20 DOORBELL COUNTING CIRCUIT

When the doorbell button is pushed the clock input of flip/flop ~ makes

a momentary transition from a logic 1 to a logic~. This causes the 1

which appears on the D input to be transferred to the output Q~. Q~

becomes a ~ at this time. Since the clock input of flip/flop 1 made a

transition from a logic ~ to a logic 1 the output of flip/flop 1 does

not change state. Since no change occurred on the inputs of flip/flop 2

the output of flip/flop 2 does not change state.

Now let's see what happens when we push the button again. This time

when we push the button the D input of flip/flop ~ sees a logic ~.

Therefore, when the button is pushed this logic ~ will appear on its

output Q~. When this happens flip/flop 1 will see a transition on its

clock line from a 1 to a~. Since its D input is a 1, its output, Ql
will become a logic 1. On the third button push the D input to flip/

flop ~ is again a logic 1. Therefore, the output Q~ becomes a logic 1

when the button is pushed a third time. Since. the clock line of flip/

flop 1 is making a transition from a ~ to a 1, no change in state occurs

at the output of flip/flop 1. Since flip/flop 2 sees no change on its

inputs no change in flip/flop 2's outputs occur.

2-14

When the button is pushed the fourth time the output of flip/flop ~,

Q~, becomes a logic ~. This causes a l-to-~ transition on the clock

line of flip/flop 1 and output Ql also becomes a logic ~. This causes

a l-to-~ transition on the clock line of flip/flop 2. The output of

flip/flop 2, Q2' now becomes a logic 1.

This action is summarized in Figure 2.21.

BUTTON PUSH Q~ Ql Q2

~ ~ ~ ~

1 1 ~ ~

2 ~ 1 ~

3 1 1 ~

4 ~ ~ 1

5 1 ~ 1

6 ~ 1 1

7 1 1 1

8 ~ ~ ~

Figure 2.21 OUTPUT STATES OF DOORBELL COUNTING CIRCUIT

Notice that each time the button is pushed the output Q~ changes state.

If it has been a ~ it becomes a 1. If it has been a 1 it becomes a ~.

Each time output Q~ makes the transition from a 1 to a ~ the output Ql
changes state. Likewise, each time the output Ql makes a transition

from a 1 to a ~ the output Q2 changes state. In this manner, output Q~

cycles completely for each two times the button is pushed. OUtput Ql
cycles completely each time Q~ cycles twice or each four times the

button is pushed. And output Q2 cycles completely for each two .. cycles

of Ql' each four cycles Q~, or each eight times the button i~ pushed.

2-15

By looking at this table you could apply your volt meter to the outputs

Q~, QI' and Q2' determine what combination of states appeared, and

figure out how many times your doorbell had been pushed while yoti were

gone. However, this only works for up to seven pushes of the button.

For the eighth push of the button, all three flip/flops see a transition

on their clock lines from a logic I to a logic ~, and all three outputs

become logic~. So it is impossible to tell the eighth button push from

no button pushes at all. However, if you had hooked up another flip/

flop to the output of flip/flop 2 in similar fashion, its output would

have become a logic 1, while the other three were reverting to logic ~s

when the eighth button push occurred.

Extending the circuit by adding flip/flops in this manner would allow

one to count to an arbitrarily high number. Notice that for each flip/

flop the time to cycle from a ~ to a 1 and back to ~ is twice as long as

that for the preceding flip/flop. For flip/flop ~ it is two button

pushes. For flip/flop I it is four button pushes. For flip/flop 2 it

is eight button pushes. For four flip/flops the number would be 2 x 2

x 2 x 2 = 16 button pushes. And for 5 flip/flops it would be 2 x 2 x 2

x 2 x 2 = 32 button pushes.

Combining Flip/Flops into Registers

In the preceding sections we saw how a single flip/flop could store one

bit of information. While this is often useful in a computer it is more

often useful to store a group of bits at once. This is usually done by

means of a register. A register is nothing more than a group of flip/

flops arranged as a single circuit as shown in Figure 2.22. When the

clock line makes a transition from a 1 to a ~, whatever combination of

bits appears on the input lines will be stored in the flip/flops, and

will appear on the output lines, until another clock transition takes

place. This is true unless the Reset line is momentarily raised to a

logic 1, or as it may be said, pulsed to a logic 1, forcing all of the

flip/flops to revert to the Reset condition with their outputs at logic

~. This operation is known as clearing the register. In microcomputers

2-16

it is especially common to arrange registers as groups of exactly 8

flip/flops. According to common convention 8 bits of information are

called 1 byte of information.

Given that each byte of information contains 8 bits and that each bit

can exist in two possible conditions, how many unique combinations of

bits can occur within one byte? This is easy to calculate. Each bit

has two possibilities. In one byte there are 2 x 2 x 2 x 2 x 2 x 2 x 2

x 2 = 28 = 256 possible combinations.

PLACE DATA TO BE STORED HERE
/r __________________________________ ~I--------------------------~

R R R R R R

CLOCK

RESET

,'-------------------------------r-----------------------------~/ - I
STORED DATA MAY BE FOUND HERE

Figure 2.22 AN 8-BIT REGISTER

In computers, registers are used to store data. The data generally

represent numbers, logic values, or computer programs. Exactly what is

represented by the combination of Is and ~s stored in a register must

be kept track of by the computer programmer.

2-17

3. HOW COMPUTERS COUNT

THE BINARY NUMBERING SYSTEM

The processes of counting and assigning numerical value are fundamental

to any computing activity. You engage in these processes many times

daily. At an early age it became second nature to you so that the

process itself required little attention. In today's computers the

counting process is reduced to its simplest possible level. The nota

tion we use to describe computer counting may not be familiar to you

yet. The principles involved are familiar, however, as we shall presently

see. With a little practice you can quickly learn to express the counting

process in computer notation. Perhaps you recognized in the section on

counting circuits in the last chapter how a counting process was actually

taking place. The state of each flip/flop in our "counting circuit" can

be represented by one of two symbols, ¢ or 1. If we assume that the

three flip/flops are all in the ~ state to begin with, we can see that

each clock pulse will produce a new and unique pattern of ~s and Is, as

shown in Table 3.1. Notice how a unique combination of three "bits" was

produced for each of the first 7 clock pulses. Notice also that on the

8th clock pulse that these three bits revert to ~-¢-~ and begin another

cycle of the same counting pattern.

Had another flip/flop been added to our circuit it would have been

switched to the 1 state during the second cycle. By connecting still

more flip/flops to our circuit we could count to an arbitrarily high

number. Each clock pulse would have a unique bit pattern associated

with it. What we have really been doing is counting in the binary

numbering system. As you can see each unique bit pattern is associated

with a given clock pulse. If you examine this sequence closely, you may

also see that a simple rule applies in progressing from one binary

number (bit pattern) to the next: On each clock pulse, the state of the

3-1

first flip/flop, flip/flop ~, changes. For every 2 clock pulses the

state of the second flip/flop, flip/flop 1, changes; for every 4 clock

pulses the state of the 3rd flip/flop, flip/flop 2, changes and so on.
n For every 2 clock pulses the state of the F IF changes. ·n

Table 3.1 FLIP/FLOP COUNTING PATTERN

CLOCK PULSE NUMBER (F/F 3) F/F2 F/Fl F/F~

~ ~ ~ ~

1 j3 ~ I

2 j3 1 j3

3 j3 1 1

4 1 ~ j3

5 I ~ 1

6 1 1 ~

7 1 1 1

8 (1) j3 ~ j3

9 (1) j3 ~ 1

There is a strong similarity between this binary system of counting and

the decimal system we use in everyday life. To point out their similar

ities, let's examine a longer table of decimal numbers and their binary

equivalents. See Table 3.2.

As we move down the decimal column of the table, notice what happens.

First, we sequence through our entire vocabulary of unique symbols, (~-

9) in the least significant (right hand) digit. We then increase the

value of the tens column by 1 and repeat the sequence of the least

significant digits. This process is repeated until, when we reach 99,

our symbol vocabulary is exhausted for the tens column. We then in

crement the hundreds column in a similar fashion.

Exactly the same process is taking place on the binary side of the

table, except that we have reduced the number of unique symbols used

from 10 to 2. Thus, when we reach a count of one in the least significant

digit, our symbol vocabulary is exhausted, and we must increment the

3-2

Table 3.2 DECIMAL AND BINARY EQUIVALENTS

Decimal Binary

f6 f6
1 1
2 1f6
3 11
4 1f6f6
5 1f61
6 llf6
7 111
8 1f6f6!1
9 1!1f61

1f6 1!11f6
11 1f611
12 11f6f6
13 11f61
14 111f6
15 1111
16 1f6f6f6f6
17 1!1f6f61
18 1f6f61f6
19 1f6f611
2f6 1f61f6f6
21 1f61f61

29 111f61
3f6 1111f6
31 11111
32 1f6f6f6f6f6
33 1!1f6f6f61

99 11f6f6f611
1f6f6 11f6f61f6f6
If61 IIf6f61f61

199 11f6!1f6111
2f6f6 I1f6f61f6f6!1
2f61 11f6f61f6f61

254 1111111f6
255 11111111
256 If6f6f6f6f6f6!1f6

3-3

next least significant digit. While in the decimal system the next

least significant digi t had a "weight" of ten, the binary system has a

"weight" of only two. The weight of each successive digit in the binary

system increases by a factor of two. Thus, a 1 in the least significant

column is worth 1. A "I" in the next least significant column is worth

2 times 1 or 2. The second least significant column is worth 2 times 2

or 4. The third least significant column is worth 2 times 4 or 8, and

so on. Instead of the ones, tens, and hundreds columns of the decimal

system, we have the ones, twos, fours, eights, sixteens (etc.) columns

of the binary system.

To further illustrate the binary counting process, consider the odometer

in your car. In theory, it would be a simple matter to build a binary

odometer. If you were to take your present odometer, erase the numbers

from all the wheels and paint a ~ on one side of each and a 1 on the

other side of each you would then have a binary odometer. Of course,

for it to read correctly in miles you would have to change the gearing

ratio to the odometer. As the right hand wheel turns around, it would

progress from the binary digit ~ to 1. As the ~ came around again it

would increase the next odometer wheel to 1. While the notation has

changed, the counting process is similar to that used in the decimal

system.

Let us quickly review some things about the decimal and binary number

systems. When we write a number in the decimal number system, such as

254, we know that the four means four units or four ones because it

appears in the right hand, least significant, or lowest order, column.

We know the five means 50 because it appears in the next least sig

nificant, or tens column. We know the two means 200 because it appears

in the third least significant column, or hundreds column. The meaning

of the decimal number 254, is really

2 1 ~ 2 x (l~ x l~) + 5 x l~, + 4 x 1 or 2 x l~ + 5 x l~ + 4 x l~ •

3-4

It is not legitimate to write down the character sequence 254 in the

binary number system, because only the characters ~ and 1 are allowable

as binary digits. In the binary system the least significant or lowest

order column is the ones column. However, the next least significant

digit is not the tens column but the twos column. The third least

significant is the fours column. Each column increases in weight by the

base of the number system, in this case, two. The base of the number

system is determined by how many unique symbols are used in the number

system.

CONVERSION FROM BINARY TO DECIMAL

If we understand the weighting of the columns in binary notation, it is

a simple matter to convert a number from its binary form into its decimal

equivalent. For instance, let's look at the binary number lll~l. The

first step is to be aware of the weight of each column. Starting with

the right hand column the weights are successively 1, 2, 4, 8, and 16.

The weight of each column is twice as great as that to its immediate

right. A 1 appearing in the sixteens column means 1 x 16. A 1 appear

ing in the eights column means 1 x 8. A 1 appearing in the fours column

means 1 x 4. A ~ appearing in the twos column means ~ x 2. And a 1

appearing in the ones column means 1 x 1. Thus we have

1 x 16 + 1 x 8 + 1 x 4 + ~ x 2 + 1 x 1

16 + 8 + 4 + ~ + 1 29.

Notice that lll~l is the binary number shown as equivalent to the decimal

number 29 in Table 3.2. To distinguish this number in binary notation

from the decimal number ll,l~l we may write 291~ = 111~12.

script denotes the base of the number system.

The sub-

To further illustrate the behavior of binary columns let us extract some

special numbers from Table 3.2. Let's take all of the decimal numbers

which are even powers of 2. In this manner we may construct Table 3.3.

3-5

Table 3.3 BINARY EQUIVALENTS OF POWERS OF 2

DECIMAL BINJ.\RY POWER OF 2

ll~ = 12 ;:: 2~

2l~ :; 1~2 ;:: 21

4l~ = 1~f62 = 22

8l~ = lf6f6f62 ;:: 23

l6l~ = lf6~~f62 = 24

32l~ = lf6f6f6f6f62 ;:: 25

64l~ = 1~f6f6f6f6f62 = 26

l28lf6 = lf6f6f6f6f6f6f62 = 27

256l~ = 1~f6f6f6f6f6f6f62 = 28

As an exercise, make up a few binary numbers. Convert them to their

decimal equivalents and see if they come out the same as the decimal

equivalents shown in Table 3.2.

CONVERSION FROM DECIMAL TO BINARY

Converting numbers from decimal form into their binary equivalents is

nearly as straightforward as the other way around. Of course, the

simplest way to do this is to look up the binary equivalent in a table

such as 3.2. However, if you don't have a table handy the following

method will work.

First, divide the decimal number by two and write down the remainder.

Repeat this process until the number has been reduced to f6. The first

remainder is the least significant digit of your binary number. The

last remainder is the most significant digit of your binary number. For

example, let's convert the decimal number 25f6 into binary form. We have

3-6

I
I

25~ = 125 R ~
2

125 62 R 1 --=
2

62
31 R ~ -=

2

31 15 R 1 -=
2

15 7 R 1 -=
2

7 3 R 1 = 2

3 1 R 1 = 2

1
~ R 1 =

l 2

1 1 1 1 1 1

The binary number is thus 11111~1~. Or 11111~1~2 = 25~1~.

Let's go back to our original example and see why this works. When we

divided 25~ by 2 we ~ound that there were 125 twos and no ones. If

1251~ were a legitimate binary digit we could put it in the twos column

and a ~ in the ones co 1umn and we would be done. Since it isn't, the

question is now of the 125 twos, how many fours are there? If we divide

125 by 2 we find that there are 62 fours, and one two. Again if 62 were

a legitimate binary digit we could put it in the fours column, the 1 in

the twos column and the ~ in the ones column and we would be done. But

since 62 is not a legitimate binary number we must again divide by 2 to

find out how many eights there are. This results in an answer of 31

3-7

eights and no fours. Again 31 is not a legitimate binary digit so we

divide it by 2 to determine that there are 15 sixteens and one eight.

15 T 2 means 7 32s and 1 sixteen. 7 divided by 2 tells us that there

are three 64s and one 32. 3 divided by 2 tells us that there is one 128

and -one 64. And 1 divided by 2 tells us that there are no 256s and one

128. In this case the last step would not have been necessary, since we

already knew there was one 128, and one is a legitimate binary digit.

As art exercise try converting the following decimal numbers into their

binary equivalents.

a. d.

b. e.

c. f.

BINARY ARITHMETIC

Binary numbers can be added, subtracted, multiplied, and divided in a

manner similar to the equivalent processes for decimal numbers. As a

matter of fact, these possibilities are considerably simpler for the

binary number system than they are in decimal. Consider the process of

addition. In adding two binary digits, there are only four possibilities:

a) f6 + fI = fI
b) f6 + 1 = 1

c) 1 + fI = 1

d) 1 + 1 -= fI and a carry.

Let's do some examples of

their binary equivalents:

Decimal

5

+ 2

7

Addition

simple decimal addition problems shown with

3-8

Binary

Olfll

In this example we have 1 + ~ = 1 for the ones column, ~ + 1 = 1 for the

twos column, and 1 + ~ = 1 for the fours column. Note that leading

zeroes are understood (as shown by) when they are not explicitly

stated.

Next, let's try a slightly more complicated example, in which a carry

occurs:

Decimal Bina;:x

carry l~ l' , I

6 -, I 1 ~ '.I , 1 ,
I ,

+ 2 Ij' ~ I 1 ~ , ,
8 1 '~ 'f6 ~

Here we have ~ + ~ = ~ for the ones column. In the twos column, we have

1 + 1 = f6 and a carry to the fours column. In the fours column we have

1 + ~ = 1 which, when added to the carry, gives 1 + 1 = ~ with another

carry. In the eights column we have ~ + ~ = f6 which, when added to the

carry, produces 1 + f6 = 1.

One further example will illustrate the use of carries:

Decimal Bina!y

carry l~ l~ , I

11 1 ~ ~ 1 ! 1 , ,
+ 3 ~ ~ 11, 1 , ,

14 1 1 "1 ~f6

In the ones column, 1 + 1 = ~ and a carry to the twos column. In the

twos column, 1 + 1 = f6 and a carry to the fours column. Adding the

carry into the twos column we have 1 + f6 = 1. In the fours column we

have ~ + ~ = ~ which, added to the carry, gives 1 + ~ = 1. In the

eights column, we have 1 + f6 = 1.

Make up a few examples for yourself and try them to see that the answer

to an addition problem is the same, whether it is performed in binary

notation or decimal notation.

3-9

Subtraction

Binary subtraction can be carried out in a method analogous to decimal

subtraction. However, most computers do not have the necessary hardware

to carry out this function directly. Suppose, for example, that a large

number is to be subtracted from a small number. The result would be a

negative answer. Thus, it is necessary to be able to represent negative

numbers in binary notation. Since a representation for negative numbers

is required anyway, it turns out to be simpler to convert a positive

number to its negative equivalent and add, rather than to carry out the

subtraction process directly.

Several schemes have been proposed for representing negative numbers in

binary notation. One possible method is to reserve one bit to indicate

the sign of the number using the rest of the bits to indicate the

numerical value. This works nicely. If the most significant bit of a

binary number is called the sign bit, a ~ in this bit means that the

number is positive. A 1 in this bit means that this number is negative.

In attempting to represent negative numbers in binary form, we must use

a notation which meets these additional requirements:

1. The sum of two negative numbers must be a negative number of proper

magnitude.

2. The sum of a positive and negative number must be of proper sign

and magnitude.

It turns out that this can be accomplished by what is called two's

complement notation. The two's complement of a binary number is its

negative equivalent. To convert a binary number into its two's com

plement, follow these two steps:

1. Invert all bits in the number. In other words, wherever there is a

I write down a~. Wherever there is a ~ write down a 1.

2. Then add I to the resulting number. Tb illustrate, consider some

examples using 8-bit binary numbers. Let's take the binary equivalent

3-10

I,
I

of the decimal number 5, which is ~~~~~l~l and convert it to negative 5

(in two's complement notation). (When the bits are inverted we have

lllll~l~. Adding 1 to this we get lllll~ll.)

Original number

(1) Invert all bits

(2) Add 1

~~~~~1~12 

lllll~l~ 

lllll~112 = -5l~ 

This is the binary two's complement notation for the decimal number -5. 

Notice that the most significant bit is a 1, the most significant bit 

being the sign bit, and indicates that the sign is negative. If this is 

a valid representation for -5, we should be able to take its two's 

complement again and come up with +5. Let's try. 

Original number 

Invert all bits 

Add 1 

11111~112 = -51~ 

~~~~~l~~ 

~~~~~1~12 = 5l~ 

First we invert all the bits, coming up with ~~~~~l~~. Then add 1 and 

we get ~~~~~l~l, which is indeed the binary representation of +5. To 

prove that this notation works let's do a couple of sample problems. 

For instance, let's subtract 5 from 7, and see if we get 2. The way 

we'll actually do this problem is 7 + (-5) = 2. 

Two's complement of 5 lllll~ll = -51~ 

Add to 7 lllll~ll 

+ ~~~~~l1l 

= ~~~~~~1~2 

First, we take the two's complement of the number 5 which is lllll~ll. 

This is then added to 7. lllll~ll + ~~~~~lll yields ~~~~~~l~, the binary 

equivalent of 2. There is a carry out of the most significant digit. This 

3-11 



will always be true when a smaller number is subtracted from a larger 

one and must be ignored. 

To prove that this works if we subtract a larger number from a smaller 

one, consider the example 5 - 7. 

Binary 7 

Complement all bits lllll~~~ 

Add I to get two's complement 11111~~1 

Add binary equivalent of 5 

lllllll~ 

First we convert 7 to its two's complement equivalent. Inverting all 

the bits we get lllll~~~, adding I we get lllll~~l. Adding to this the 

binary equivalent for 5 we add ~~~~~l~l, the result being lllllll~. We 

can immediately see that the result is a negative number because the 

sign bit is a 1. 

Let's take the two's complement of this number to see if we get the 

equivalent of binary 2. 

Invert all bits 

Add 1 

Inverting all the bits we get ~~~~~~~l. Adding 1 we get ~~~~~~l~, which 

is indeed the binary equivalent of 2. 

As a final example, let's add two negative numbers together to see if we 

get a negative result. For this example, we'll add -3 and -4 to perform 
? 

(-3) + (-4) ~ -7. First, we write down the binary equivalent for each 

number. 

3-12 



Binary equivalent 

Binary equivalent 

Two's complement 

Two's complement 

Add together 

Ignore carry 

Two's complement 

of 3 

of 4 

of 3 

of 4 

of result 

~~~~~~ll 

~~~~~l~~ 

llllll~l 

+ llllll~~ 

lllll~~l with a carry 

We have ~~~~~~ll for 3, and ~~~~~l~~ for 4. Taking the two's comple

ments for these numbers we get llllll~l for 3 and llllll~~ for 4. 

Adding the two two's complement numbers we get 111ll~~1 with a carry. 

Ignoring the carry and taking the two's complement of our resultant 

number we get ~~~~~lll, which is indeed the binary equivalent for 7. 

A carry is generated in the case of (1) adding two negative numbers and 

(2) adding a large negative number to a small positive number. This is 

expected and must be ignored. By using this expedient it is possible to 

easily perform addition and subtraction operations and get accurate 

results working with both positive and negative numbers. 

Notice that a number in two's complement notation, if it is a negative 

number, is much different in value from the same combination of binary 

digits in direct binary notation. Either signed or unsigned notation 

may be used in solving a particular problem. It is up to the computer 

programmer to keep track of what notation he is using. 

Multiplication and Division 

Multiplication and division problems can be solved using binary notation 

by successive addition or subtraction of the multiplier or divisor. The 

familiar rules used in working with the decimal number system also work 

in binary notation. For instance, using binary notation we should be 

able to multiply 6 x 5 to get 30 and divide 30 by 5 to get 6. This 

would be done as follows: 

3-13 



6 
x 5 
3~ 

6 

5f3T 

11.0 
x 1.01 

11.0 
.0.0.0fl 

.0.0.011.0.0.0 

.0.0.01111.0 

11.0 
l.0ll11U~ 

1.01 
1.01 
l~l 

flf6fl 
~ 

f6 

Try this also: Multiply 9 x 3 to get 27, then divide 27 by 3 to get 9. 

lf6.0l 
xU 
1.0.01 

l~.0l.0 
llnl112 = 27 ,., 1.0 

lf6f6l 2 = 
lllUf6ll 

11 
.0f6 
.0fl 

f6l 
f6f6 

11 
11 

f6 

9 
1!CJ 

THE HEXADECIMAL NUMBERING SYSTEM 
A CONVENIENT COMPROMISE 

Most microcomputers, including the Instructor 50, store binary numbers 

in 8-bit bytes. A string of 8 or more Is and .0s is easy for the computer 

to understand. It gets very confusing for us humans, however, if we 

have to remember and work with a long string of Is and f6s. But, if we 

work with our more familiar decimal number system, we find that we 

constantly have to convert between decimal and binary numbers. This 

3-14 

1 

1\ 



becomes a tedious and time consuming process. Fortunately, there is a 

convenient compromise. 

This compromise is a third numbering system called a hexadecimal 

system. The hexadecimal system is a base 16 number system, and as such 

it has 16 unique symbols in its vocabulary. The first 10 symbols are 

the familiar characters ~ through 9. For the remaining 5 symbols we use 

the alphabetic symbols A, B, C, 0, E, and F. Numbers written in the 

hexadecimal system are more similar in appearance to our familiar decimal 

numbers. However, they are very easy to convert back and forth between 

hexadecimal and binary forms. In fact, with a little practice, you will 

be able to convert between binary and hexadecimal notations by inspection. 

A hint of why this is true may be seen by examining Table 3.4, which is 

a comparison of binary, hexadecimal, and decimal numbering systems. 

Notice that for the 16 unique symbols in the hexadecimal numbering 

system, ~ through F, there are 16 possible combinations (and only 16 

possible combinations) of 4 binary digits. Therefore, each hexadecimal 

digit may be thought of as representing 4 binary digits, or each group 

of 4 binary digits may be thought of as representing 1 hexadecimal 

digit. 

For example, let's convert the hexadecimal number B7l6 into its binary 

equivalent. The most significant hexadecimal digit, B, translates into 

binary l~ll. The least significant hexadecimal digit, 7, transmits into 

~lll. Therefore, the binary number equivalent to hexadecimal B7 is 

l~ll~lll. The conversion from binary notation into hex-notation is 

equally straightforward. 

two hexadecimal digits 

B 7 

II /\ 
19111 91111 

eight binary digits 

3-15 

eight binary digits 

~!nl IjjJljjJ 

\/ \/ 
3 A 

two hexadecimal digits 



Table 3.4 COMPARISON OF DECIMAL, HEXADECIMAL, AND BINARY NOTATION 

DECIMAL (BASE 10) = HEXADECIMAL (BASE 16) BINARY (BASE 2) 

~ ~ ~!1!1!1J 2 unique 

1 1 ~!1!1l 
symbols 

2 2 ~!1l~ 

3 3 ~!111 

4 
l~ unique 4 ~1!1!1 

5 symbols 5 ~l~l 

6 6 ~11!1 

7 7 
16 unique ~l1l 

8 8 symbols l!6!1!1 

9 9 116161 

l~ A 116116 

11 B 1~11 

12 C 11~!1 

13 D 11161 

14 E 11116 

15 F 1111 

For instance, let us take the binary number ~!6lll!6l!6. First, starting 

with the least significant digit we group the binary digits in groups of 

4. On the right hand side then we have l~l~ and on the left hand side 

we have ~!6ll. Next, we simply substitute the corresponding hexadecimal 

digits for these combinations of binary digits. The resulting hexa

decimal number is 3A. 

It is also relatively easy to convert hexadecimal numbers to and from 

decimal form. To convert a hexadecimal number into decimal form we use 

the principal of column weighting as was done with the binary system. 

In the hexadecimal system each relatively more significant column in

creases in weight by the factor of 16. Thus, the least significant 

hexadecimal digit appears in the ones column, the second least significant 

hexadecimal digit in the l6s column, the third least significant hexa

decimal digit is in the 256s column and so on. The method is as follows: 

3-16 



Consider the hexadecimal number A29C. This can be re-written 

This is the same as 

1~1~ x 4~96 + 2 x 256 + 9 x 16 + 12 x 1 

To convert this number back into hexadecimal form we use the successive 

division method that we used in converting decimal numbers into binary. 

In this case, however, instead of doing successive division by 2 we must 

successively divide by 16. The method is shown below. 

= 

= 

= 

= or R A16l 

A 

3-17 

2 9 = 



As each remainder is brought down it is converted into its hexadecimal 

digit equivalent. Thus, we have been able to take the hexadecimal 

number A29C from hexadecimal form into decimal form and back into hexa

decimal form again. As a further example, this 4 digit hexadecimal 

number may be converted into a 16 digit binary equivalent by substitu

ting the appropriate 4 bit grouping for each hexadecimal digit. We then 

have A29C16 = 1~1~~~1~1~~ll1~~2' 

As an exercise, convert this binary number into decimal form and show 

that it is equal to 4l,628l~' 

A 2 9 

I \ I \ 1\ 
1~1~ ~~l~ 1~~1 

3-18 



4. INSIDE YOUR INSTRUCTOR 50 

BASIC COMPUTER ORGANIZATION 

In Chapter Two we learned about the basic building blocks of computers: 

logic signals, gates, flip/flops, and registers. In Chapters Two and 

Three we saw how these circuits could be made to count, store, and 

represent numbers. We also got a glimpse of how two numbers might be 

compared by our computer to make a logical decision. 

In this chapter, we get our first real look at how an actual computer is 

organized. Much of this information is general in nature and applicable 

to nearly any computer. The Instructor 50 is particularly appropriate 

for this purpose, since the details of its construction are similar to 

both mini-computers and micro-computers. 

For all modern general-purpose computers, from hand-held calculators to 

large data processing systems, the basic organization is similar to that 

shown in Figure 4.1. 

TIMING AND CONTROL 

r- .... -
I OUTSIDE 

L~~~ 

+ lif , -• I: ARITHMETIC 
I - INPUT! -'" - MEMORY 

OUTPUT AND LOGIC ... -
L~ UNIT -

Figure 4.1 BASIC COMPUTER ORGANIZATION 

4-1 



Memory System 

The memory section is simply a collection of registers in which binary 

numbers can be stored. Each register occupies a position in memory 

which is known as its location or address. In your Instructor 50, each 

memory location contains 8 bits (1 byte) of data (see Figure 4.2). 

ADDRESS ADDRESS 
(DECIMAL) (HEX) 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 A 
11 B 
12 C 
13 D 
14 E 
15 F 
16 10 
17 11 

32,764 7 FFC 
32,765 7 FFD 
32,766 7 FFE 
32,767 7 FFF 

~ ~ 

1 I I I I I I I J 
Figure 4.2 DIAGRAM OF 2650 MEMORY 

It is important to keep in mind that there are two distinct values 

associated with each location in memory: the address of the location 

and the contents of the location. The address of a location is similar 

to a street address or a post office box number. It specifies the 

position or location in the memory at which a given byte of data is 

stored. The contents of a memory location is the actual data stored. 

Data can be retrieved from memory (or stored in memory) only by first 

specifying the address at which the desired data is to be found (or 

stored). Just how this is done will be explained later. 

4-2 



Of the 32,768l~ locations available in the memory space of the 2650 

microprocessor, only 2688l~ of them have been physically implemented in 

your Instructor 50. Of these, the first 5l2l~ locations (addresses 

~~~~16 through ~lFF16) are available to you as a user to store and 

retrieve data. You may wish to verify this on your Instructor 50 by

storing data in a few locations, then retrieving it to the display. The

following exercise will illustrate how to do this.

Exercise:

To store and retrieve data from your Instructor 50, follow the instruc

tions below:

1. Plug your Instructor 50 into the wall socket. As soon as you

connect the plug, the screen should display "Hello." The left-hand

keyboard is a series of function keys. Find the one labelled "MEM."

Press it to display ".Ad.=" This is the symbol for address.

2. The right-hand keyboard contains the hexadecimal (numerical) keys.

Enter the number l~~. The display will show ".Ad.= l~~." You have now

specified address 1~~16.

3. Press the ENT/NXT key on the function (left-hand) keyboard to

display ".~n~~ xx" where xx is a random number. For instance, if the

display reads ".~1~13 FA". This means that the data in address 11311 is

currently FA.

4. Enter into address l~~ the hexadecimal code ~l by pressing the keys

"~" and "I" on the keyboard. Press the ENT/NXT key. The display now

reads ".~l~l xx. At this point, you have entered ~l into location

~1~13, and displayed the contents of location 111~1.

5. For now, however, press MEM to return the display to ". Ad= II

Enter the address l~~ from the hexadecimal keyboard. Press the ENT/NXT

4-3

key. Your display will show ".$61$6$6 .01" --the data you entered into

address 1.0$6.

Now using the steps above enter this following data into addresses 5$616

to 5\6.

Data

Location

76 2$6 IF f1$6 95 $6C

5$6 51 52 53 54 55

After you have completed entering your data, press the MEM key and check

each address to see that the entries are correct.

Access location 2$6$616 and enter the data $61 as you did above. Press the

ENT/NXT key. What is the display?

Note: In attempting to store data into location 2$6$616 you tried to

access a non-implemented memory location. The message "Error 3" on the

display indicates that your attempt has not been successful.

The Arithmetic and Logic System

A simplified block diagram of a typical computer's arithmetic and logic

system is shown in Figure 4.3.

~ MEMORY -- I/O ~

A _ .. --- DATA ARITHMETIC ---. SELECTOR AND LOGIC
X STEERING ---. (MUL TIPLEXORj - LOGIC ---. UNIT (ALU)

~

-- B -
~ -
~
~

REGISTERS

Figure 4.3 ARITHMETIC AND LOGIC SYSTEM BLOCK DIAGRAM

4-4

This system contains several registers for the temporary storage of

data, usually in the form of eight bit bytes. A data selector, sometimes

called a multiplexor connects the contents of one or two of these registers

to the two inputs of the arithmetic and logic unit (ALU). The arithmetic

and logic unit combines the two (eight-bit) inputs into one (eight-bit)

output. It is called an arithmetic and logic unit because of the way

its output is produced from its two inputs. For instance, the two

inputs A and B may be added together as two binary numbers to produce a

binary result, X, the sum of A and B. Or B may be subtracted from A in

binary fashion to produce output X which is the difference between A and

B. These are the arithmetic operations that it can perform. The logical

operations consist of ANDing, ORing, or Exclusive-ORing the two inputs,

or shifting or complementing one of the inputs. The results of these

logical operations are illustrated in Figure 4.4.

b7 b6 b5 b4 b3 b2 b, bO b7 b6 b5 b4 b3 b2 b, bO

A I 1 0 1 1 0 0 1 0 I 0 0 0 0 0 0 0 X = A "AND" B

B I 0 0 0 1 1 0 1 I 0 1 1 1 X = A "OR" B

INPUTS 1 0 0 1 1 X = A "XOR" B

0 0 1 0 0 X = A "SHIFTED RIGHT"

0 1 0 0 1 1 0 1 X = A = A "COMPLEMENT"

OUTPUTS

Figure 4.4 ALU LOGICAL OPERATIONS

In each case the outputs are the result of doing some logical manipu

lation on the inputs. For the case, output X equals A AND B, each bit of

the two input bytes is combined in an AND function to produce a bit

of the output word. For instance, bit ~ of input A is ANDED to bit ~

of input B to produce bit ~ of the output word. Similar reasoning

applies to the output in the case when X equals A OR B, or when X equals

A Exclusive-ORed with B. The logical operation known as shifting simply

4-5

means that each bit of the input byte is moved to the right one position

or to the left one position, depending on whether a left shift or a

right shift is being implemented. In the case of the right shift, as

illustrated in Figure 4.4, a ~ was entered in the bit 7 position, or

most significant bit. If an input is to be complemented each bit in the

output byte is the opposite of the corresponding bit in the input byte.

Each ~ becomes a 1 and each 1 becomes a ~.

Once an output byte is produced by the arithmetic and logic unit it is

directed by the steering logic into one of the registers, or into a

memory location or to the computer's input/output system.

Blocks representing the memory and input/output systems of the computer

are shown in Figure 4.3, because, while they are not part of the arith-

meti c and logic system, communication with them is sometimes necessary.

The registers of Figure 4.3, are sometimes also called accumulators,

because they accumulate the results of arithmetic and logical operations.

The Input/Output System

A computer would be of little use if it were impossible to get data into

it from the outside world and to return processed data back to the

outside world. This is the purpose of the input/output system of a

computer.

The input/output (I/O) system of a computer consists primarily of an

array of registers as illustrated in Figure 4.6. The primary difference

between these registers and other registers of the computer is that

signals to these registers are brought out to an electrical connector

for connection to some external device.

Each of these registers is called a port. Depending on whether the

function of the port is to bring data into the computer or transmit data

out from the computer it is called an input pqrt or an output port. For

data to be input to the computer an external device is hooked up to the

4-6

8

8

r----, I-I
TO COMPUTER I

ARITHMETIC AND .--+8"----1 DATA
LOGIC SYSTEM SELECTOR 81 -+---t EXTERNAL'

I/O ADDRESS
FROM TIMING AND -------.,~
CONTROL SYSTEM

...----,~I ~

• • •

I
I • • •

(INPUT) I
DEVICE i

L_-.J
r--,

8
FROM COMPUTER
ARITHMETIC AND _+8'-1" STLEOEGRIICNG t---....

I
I
I ~~~ EXTERNAL I,

(OUTPUT)
DEVICE ,

LOGIC SYSTEM

• • •

8

8

I
I
LINPUT/OUTPUTJ

PORT ---

• • •
Figure 4.5 INPUT/OUTPUT SYSTEM

L_--1

inputs of one of the input ports. Other input ports are likewise

connected to their own separate external devices. For example, in your

Instructor 50 the function keyboard, hexadecimal keyboard and eight

toggle switches are connected to input ports.

The data selector logic then selects data from one of the several input

ports and connects it to the arithmetic and logic system of the computer.

In this manner, the computer may examine the signals being input from

any external device, although only one external device may be examined

at anyone time. Since the sequence of examination may be very rapid,

however, it will appear to the user of the computer that all inputs are

being examined simultaneously.

An output port is very similar to an input port except that it is the

outputs of the registers making up the output port which are connected

to an external device. In operation a byte of data from the computer's

arithmetic and logic system is presented to the steering logic of the

4-7

I/O system which connects it to one of several ouput ports available.

This byte of data is then stored in the register corresponding to the

selected output port and becomes available to the external device.

The output port registers are also sometimes called latches because they

latch the data presented to them and hold it for the external device. On

your Instructor 50 the eight digit LED display and the eight LEOs to the

left of the operator's panel are connected to output ports. In computer

terminology it is common to group a single input port with a single output

port calling the combination an input/output port (I/O port).

The input/output system, then, may be thought of as a series of input/

output ports, each of which is identified by an address or location

called the input/output address. The purpose of the data selector for

input ports and the steering logic for output ports is to select a

particular port depending on the address that is presented to it by the

computer. Notice that there is a strong similarity between the input/

output system described here and the memory system described earlier.

Data may be stored at a particular address, which is connected to an

external output device. Data may be also retrieved from a particular

address, which is connected to an external input device. This similarity

is so strong that some computer designers elect to eliminate the input/

output system entirely. Instead, input and output devices are connected

as if they were locations in memory. This concept is illustrated on the

operator panel of your Instructor 50. The eight LEOs and eight toggle

switches form an eight-bit input/output port. The three position toggle

switch just below this grouping allows you to connect the LEOs and switches

either to memory location ~FF, or to a port of the input/output system.

Exercise: Connect to ~FFF and read/write using MEM key.

The Timing and Control System

The timing and control block sends logic signals to the other three

blocks (arithmetic and logic, memory, and input/output) to control their

4-8

operations. It manipulates the input/output, arithmetic and logic, and

memory circuits in a precisely timed sequence to make them perform the

correct operations at the correct time. In this regard it is much like

a puppeteer who operates a marionette by pulling on each of its strings

in a precisely timed sequence to produce desired movements.

It is the timing and control section which tells the memory system when

to store data into one of its locations, or to present data from one of

its locations to the arithmetic and logic unit. Signals from the

timing and control section also tell the data selector portion of the

arithmetic and logic system which register to select, or to select data

from the input/output system or memory system. It tells the arithmetic

and logic unit what arithmetical or logical operation to perform. And

it tells the steering logic where to direct the output of the arithmetic

or logical calculation. The timing and control section also directs

signals to the input/output system to tell it which external device

(which input/output port) to select, when to transfer data from the

external device to the computer, and when to transfer data from the

computer to an output port.

Central Processor Unit

In your Instructor 50 the functions of the timing and control system and

the arithmetic and logic system are combined on the 2650 microprocessor

chip. This is a common practice with microcomputer systems and the

combination is called the central processing unit or CPU.

COMPUTER "WARES"

Perhaps you've heard the terms hardware, software, and firmware before

in connection with computers. Each of these "wares" is contained in

your Instructor 50. In the discussion of the basic computer block

diagram (Figure 4.1) you learned something about computer hardware, the

physical stuff of which a computer is built. In the following sections

we'll delve more deeply into the operation of these blocks as they are

implemented in the Instructor 50. In the process we'll also learn about

software, a term used in referring to computer programs.

4-9

What is a Program?

This question will take a while to answer and will become clearer as we

progress. Briefly a program is a sequence of instructions to the

computer which tell it what to do. These instructions are interpreted

by the timing and control section of the computer. Each one specifies

a sequence of logic signals which are output by the timing and control

section to make the other sections perform some specific operation (such

as adding two numbers together in the arithmetic and logic unit, or

outputting data to a particular external device).

These instructions take the form of binary numbers, or codes, which are

stored in memory locations. It is impossible to tell by examining the

contents of any memory location whether these contents represent an

instruction or some other data. For now suffice it to say that when the

computer examines the contents of a certain memory location it expects

those contents to be an instruction code, and interprets them as such.

Moving Information Between Blocks

By now it should be evident that much of a computer's activity involves

moving bytes of information from one place to another within the computer.

Figure 4.5 illustrates how this is accomplished. Basically, Figure 4.5

is similar to Figure 4.1 except that it is redrawn to emphasize communi

cations paths.

,---, CENTRAL PROCESSOR I EXTERNAL I UNIT (CPU)
DEVICES

L-T-~ I TIMING J
AND CONTROL

+ I ARITHMETIC ~
INPUT/OUTPUT AND LOGIC MEMORY

SYSTEM SYSTEM

~ ~ ~ •
TIM AD/WRITE

UT ~ TI

ING I()
DATA BUSS

'X.RE
ADDRESS BUSS

INPUT/OUTP MING

CONTROL BUSS

Figure 4.6 COMPUTER COMMUNICATIONS PATHS

4-10

I
I

A buss is a collection of several electrical conductors (wires) across

which information may be transmitted. There are three primary busses in

most computer systems: the data buss, the address buss, and the control

buss.

The function of the data buss is to move bytes of data from one block to

another. In your Instructor 50 the data buss consists of eight separate

conductors, each carrying one bit of information. Thus, at anyone

time, a complete byte of information may be transmitted via the data

buss. Information flow on the data buss may be either from the Central

Processing Unit to the memory or to the input/output system or from the

memory system or input/output system to the Central Processing Unit.

This buss is thus said to be bi-directional in nature.

The address buss in your Instructor 50 consists of 15 conductors. Each

conductor carries one bit of information. These 15 bits considered as a

binary number can specify 215 or 32,768 individual addresses. The

binary value transmitted on the address buss determines the source or

destination of data travelling across the data buss. For instance, the

Central Processor Unit may store data in memory system location 15 by

placing the number 15 on the address buss and the data to be stored on

the data buss.

The control buss is a collection of miscellaneous signals which transmits

various timing and control information from the Central Processor Unit

to the other parts of the system. The address buss and the control buss

are uni-directional in nature. That is, they transmit information only

in the direction from the Central Processor Unit to the memory system or

input/output system.

To see how all of this works in practice let's look at a couple of

examples. Let us assume an instruction has been interpreted which calls

for the Central Processor Unit to store the data byte B316 in memory

location 516 • The Central Processor Unit then places the data B3 on the

data buss and the address ~~~5l6 on the address buss. On the control

4-11

buss a logic signal which tells the memory whether the operation is to

be a read or write, that is, move data to the CPU from memory or to

memory from the CPU, is placed in the write condition. When all of

these signals are in readiness, a timing pulse, a logic signal which

makes a short transition from a logic ~ to a logic 1 and back to logic

~ again, is issued on the timing control line. When the timing pulse

occurs the memory system performs the operation indicated by its other

inputs, i.e., it stores the data B3 (found on the data buss) in location

5 (as specified by the address buss.)

Later on another instruction may specify that the CPU is to retrieve the

data previously stored in memory location 5. This is done by placing

the address ~~~516 on the address buss and placing the read/write

control signal in the read position. The CPU then issues the timing

pulse on the control buss causing the memory system to place the contents

of the location specified by the address buss (in this case location 5)

onto the data buss, (in this case B3). The CPU then transfers the data

on the data buss (B3) into one of its internal registers and removes the

timing signal. When the timing signal is removed the memory system

disconnects itself from the data buss.

Transfers of data between the CPU and input/output system work in an

analogous fashion. The differences are that instead of specifying a

location in memory on the address buss, the address now specifies a

particular input/output port. And rather than a read/write signal on

the control buss the control signal is an input/output signal.

Software VS. Firmware

In the discussion of the memory system above we described the memory

system as a series of registers providing locations in which data could

be stored for future retrieval. We also saw how data was stored in

memory and retrieved from it via the dat~ address, and control busses.

What we were describing was random access memory, abbreviated RAM. Any

location may be accessed at random, and either read from or written

4-12

into. We also mentioned that a program was nothing more than a sequence

of binary numbers stored in memory locations. Under some circumstances

it is not desirable to store programs in this type of memory because one

of the instructions could be overwritten accidentally and lost. This is

doubly true since random access memory has a characteristic of losing

its data when power is disconnected. These problems can be solved by

placing permanent programs in read-only memory, or memory which can be

read from but not written into. Read-only memory is abbreviated as ROM.

In a read-only memory the data in each memory location is permanently

stored at the time of manufacture.

In your Instructor 50 when power is first applied, the message "Hello"

is always displayed on the eight digit display_ When you push a button

some specific activity occurs. The reason your Instructor 50 responds

this way is because it has been pre-programmed at the factory to perform

these functions. This program, called the USE Monitor Program, is

stored in read-only memory in your Instructor 50. It is this program

which recognizes what buttons you have pushed and displays appropriate

messages. Altogether your Instructor 50's Monitor Program occupies

about 2000 memory locations. When a computer program is stored in read

only memory it is often referred to as firmware, that is, a program

(software) stored in read-only memory (hardware).

Organization of the 2650 CPU

Earlier we discussed the general way in which a Central Processor Unit

is organized. In this section we will look at the specific organization

of the 2650 microprocessor used in your Instructor 50. From a user's

point of view we may describe this organization completely by simply

describing the registers contained in the Central Processor Unit and how

each of them behaves. It is understood that a great deal of logic is

. required in the Central Processor Unit in addition to these registers to

make them behave in the way described. The function of this additional

logic, however, is simply to manipulate data and move it from one register

to another. With this in mind, refer to the CPU register diagram of

4-13

Figure 4.7. This diagram does not show all the registers within the

2650 Central Processor Unit but it shows those that are important to our

discussion. Other special purpose registers will be described later as

they are needed in examples. (For a complete description of 2650 CPU

registers see Chapter 9 of your User's Guide.)

GENERAL
PURPOSE

REGISTERS

REGISTER
BANK 1

REGISTER
BANKO

I

I

111111111 :::

I I I I I I I I

R3

R2

R1

b7 b6 bS b4 b3 b2 b1 bO

I I I I I I I I RO

b7 bs. bS b4 ba b2 b1 bO

I S I F III I I ISP21 sp11spo I PSU
'-r---" '--r-"

NOT L- STACK
USED POINTER

'----, ____ :~~~:.~UPT

L-______ FLAG

L-_______ SENSE

b7 b6 bS b4 b3 b2 b1 bO

ICC11ccolIDC IRS IwclOVFfOMI C I PSL

'---r--" ~~ILCARRY L LOGICAL/ARITH. COMPARE

OVERFLOW

WITH/WITHOUT CARRY

REGISTER BANK SELECT

INTER·DIGIT CARRY

'--------- CONDITION CODE

I I I I I I I I I I I I
PROGRAM COUNTER

(INSTRUCTION ADDRESS REGISTER)
INSTRUCTION REGISTER

Figure 4.7 2650 CPU REGISTERS

PROGRAM
STATUS
WORD (PSW)

In programming your Instructor 50 the register with which you will deal

most often is Register~. This is an eight bit register and is called

a General Purpose Register because it may be used for a number of

purposes, such as temporarily storing data retrieved from or to be

placed into memory. Or it may serve as a place to store the result of

arithmetic or logical computations. Register ~ may also be correctly be

called an accumulator, because it often accumulates (stores) the results

of arithmetic calculations. It is possible to examine and alter the

contents of this register through the keyboard and display on your

Instructor 50. To see how this is done perform the following exercise:

4-14

1. Apply power or press the MON key to obtain the message "Hello" on

the Instructor SO display.

2. Press the Register Function button, REG, to obtain the message

"r = "

3. Press the numerical button f6. The display now reads ".r~ = XX,"

where XX is the current contents of Register ~ displayed in hexadecimal

notation.

4. You may now change the contents of Register ~ by pressing any two

numerical keys in sequence. For instance, if you wish to change the

contents of Register ~ to SAl6 press S then A.

S. If you now again press REG you'll again see the message "r = "

6. Press the numerical key f6. You will now see the message "r~ = SA,"

the number you previously stored in Register ~.

There are six more general purpose registers in your Instructor SO

organized as two banks of three registers each. Bank ~ contains Registers

1,2, and 3. Bank 1 contains Registers 1',2', and 3'.

Registers 1, 2, and 3 may be examined and altered by following the

method described above except that instead of specifying R~ you must

specify Rl, R2, or R3. Registers 1', 2', and 3' may be similarly

accessed from the keyboard by specifying Registers R4, RS, and R6,

respectively.

You may at this point wonder why Registers 1,2, and 3, and I', 2', 3'

are considered to be two banks of three registers each. While all seven

of these registers are equally accessible from the keyboard, only ~

is always accessible by a 26S0 instruction. A 26S0 instruction may

specify only ~, Rl, R2, or R3. Whether the Rl, R2, or R3 referred to in the

instruction comes from bank f6 or bank 1 is determined by the setting of

a single bit in the Program Status Word (PSW).

4-IS

The Program Status Word

The program Status Word (PSW) is contained in a l6-bit register shown on

the right hand side of Figure 4.7. For convenience, this l6-bit word is

considered to be two separate 8-bit bytes, labeled PSU (Program Status

upper) and PSL (Program Status Lower). Each bit of the Program Status

Word has significance for certain operations of the 2650. Bit 4 of PSL

is the Register Bank Select bit. When this bit is a ~, 2650 instructions

specifying Register Rl, R2, or R3 will act upon Register Bank ~. When

the Register Bank Selected bit is a I, 2650 instructions referring to

Rl, R2, or R3 will operate on the registers in Register Bank 1.

The contents of the Program Status Word are also accessible from the

function keys on your Instructor 50. The key sequence REG, 7 will

display the contents of the Program Status Word Upper byte. These

contents may then be altered as described above. Similar~y, the key

sequence REG, 8 will display the contents of PSL, the lower byte of the

program Status Word. Its contents may also be altered as described

above. Try this out on your Instructor 50 keyboard. While each bit in

a Program Status Word has a specific function significant to operation

of the 2650 it is not necessary to describe each of these in detail

here. This is done in Chapter 9 of your User's Guide.

The Instruction Register shown in Figure 4.7 may be considered part of

the Timing and Control section of the Central Processor Unit. As we

mentioned earlier each instruction consists of a binary code which is

normally stored in memory until it is needed. When an instruction is

needed it is temporarily stored in the Instruction Register of the

Central Processor Unit, where the instruction code is available to the

timing and control logic. The Instruction Register is not accessible

from your Instructor 50 keyboard.

The Program Counter, also known as the Instruction Address Register, is

another special purpose register of the 2650 microprocessor. Its

function is to hold the memory address of the instruction Which will be

needed next by the timing and COntrol section.

4-16

,
I

I

Since, as we mentioned earlier, the 2650's address buss is 15 bits in

width, this must be a IS-bit register. It is accessible from the Instruc

tor 50 keyboard by pressing the key sequence REG, C. When this key

sequence is pushed the contents of the Program Counter is displayed as a

4 digit hexadecimal number. Its contents may also be altered from the

keyboard as described above.

HOW IT ALL WORKS TOGETHER

In actual operation all of these registers perform their functions in a

carefully timed sequence, much as the individual component parts of an

automobile, the pistons, transmission, wheels, and so on, all operate

together to move the automobile forward. Recall that we described a

computer program as a sequence of instructions stored in sequential

locations in the memory system.

Instruction is Fetched

Before any instruction can be carried out, it must be brought to the

Central Processor Unit. This operation is known as fetching the in

struction (from memory). Here is how it works.

1. As we said earlier the Program Counter contains the address (location

in memory) of the next instruction to be fetched.

2. When it is time to fetch an instruction from memory the Timing and

Control system connects the Program Counter to the address buss (refer

to Figure 4.6) •

3. The Timing and COntrol logic also specifies that a read operation

is to be performed by placing the read/write control line to memory in

the read position.

4. Next a timing pulse is issued to the memory system. The memory

system responds by placing on the data buss the contents of the memory

4-17

location specified by the address buss (which is also the location

specified by the Program Counter).

5. The Timing and Control logic then connects the data buss to the

Instruction Register, where the code which appears on the data buss is

stored.

6. Next the Timing and Control logic disconnects from the address buss

and control busses.

7. The memory system disconnects itself from the data buss. While

this is happening the value in the Program Counter is incremented by 1.

This completes the fetch operation. At this point the binary code for

the instruction to be carried out is contained in the Instruction Register.

The Program Counter has been incremented by 1, and thus contains the

address of the next location in memory beyond that from which the

current instruction was fetched.

Instruction is Executed

Once an instruction has been fetched from memory it may be executed. To

execute an instruction simply means to carry it out or to perform the

operation indic,ated by its binary code. To do this the Timing and

Control logic examines the Is and ~s contained in the Instruction Register.

Based on the combination found, it issues timing pulses to other sections

of the computer. In this manner the arithmetic and,; logic unit, memory

system, or input/output system is manipulated to perform the required

operation. When the instruction has been executed, the contents of the

Program Counter are again placed on the address buss and another fetch

cycle occurs. A new instruction from the next location in memory is

transferred to the Instruction Register and is subsequently executed.

When a sequence of instructions (program) is executed in this fashion,

we may say that we have executed the program.

4-18

,

I
I
I

Example: A One Instruction Program

Now that you've learned about the various functions and registers in the

Instructor 50 you are ready to actually execute a simple program.

Before the program can be executed, however, it must be entered (into

memory) by pressing appropriate keys on the Instructor 50 keyboard.

The particular instruction that we will execute in this example is

abbreviated "ADDZ Rl." This is an abbreviated way of saying, "add to

Register ~ the contents of Register 1." When this instruction is

executed, the contents of Register ~ and Register 1 will be added together

and the result will be stored in Register~. The hexadecimal code for

this instruction is 8116 , To enter and execute this instruction follow

the sequence indicated below.

Note: It is important that you not press the MON button except as

specified during the key sequence indicated below. If you do, the

contents of some internal registers may be altered and you will have to

start again.

1. Press MON button to obtain the "Hello" message.

2. Press the sequence MEM, ~, ENT/NXT, 8, 1. This enters the hexa

decimal code for our instruction (8116) in memory location ~.

3. Next, initialize the value of Register ~ to a 1 by pressing the

sequence REG, ~, 1.

4. Initialize the contents of Register 1 to a 2 by pressing the key

sequence, ENT/NXT, 2.

5. Initialize the contents of PSU to FF by pressing the sequence REG

7, F, F.

6. Initialize the contents of PSL to ~~ by pressing the key sequence

ENT/NXT, ~.

4-19

7. Initialize the Program Counter to ¢ by pressing the key sequence

REG, C, $3.

Now everything is in readiness to execute your program. If you like,

you may go back and examine the contents of all of the registers that

you just initialized. But be careful not to press the MON button or the

contents of some registers may be changed.

B. To execute your program push STEP. The display should now read

"¢¢~l XX," with XX indicating the contents of memory location 1. Again

without pushing MON, let's go back and examine the contents of the

various 2650 registers to see what effect our instruction had.

Since our instruction was supposed to add the contents of Register ~

and 1 and store the result in Register $3, and since Register $3 initially

contained 1 and Register 1 a 2, we should now find a 3 (1 + 2) stored in

Register $3. To find out if this is true, press the key sequence REG,

~. The display should read ".r$3 = $33."

Register 1 initially contained a 2. Since we've done nothing to alter

this the 2 should still remain. To find out if it does press ENT/NXT.

The display should now read ".r! = ~2." Finally, the Program Counter

was initially a $3. Recall that we said that the Program Counter is

automatically incremented by 1 during execution of an instruction. To

see if it contains a 1, press the key sequence REG, C. The display

should read ". PC = $391911." The instruction code Bl contained in memory

location 91 should also still be there. To find it, press the key sequence

MEM, 91, ENT/NXT. The display should read ".$3$3~$3 81." We may surmise

that our instruction code Bl has indeed been fetched from memory by the

Central Processor Unit. The contents of Registers $3 and 1, a 1 and a 2

respectively, have been added together to produce the result 3 stored in

Register $3. The Program Counter which was initally set to $3 specifying

the address of our instruction cod~ has now been incremented to contain

a 1. Try executing this program again with different initial values in

4-20

!-

Register ~ and Register 1, and verify that their sum is indeed stored in

Register ~ by your program.

COngratulations! If you have followed the text so far, you've just

executed your first computer program. From here on, it's all downhill.

Example: A Two Instruction Program

In this example we double the complexity of your program by adding

another instruction. The instruction we will add is abbreviated "WRTD,"

which is short for "Write Data." This instruction transfers the contents

of Register ~ to the "non-extended data port" of your Instructor 50.

The 8 LEDs toward the left hand side of your Instructor 50 operator's

panel may be connected to this output port, by placing the 3 position

switch in the lower left hand corner to the full downward position

labeled "NON-EXT Data Port." The binary code for the WRTD instruction

is F~. Thus, our two in~truction program will read as follows.

CODE

81

F~

INSTRUCTION

ADDZ R~

WRTD

To enter and execute this program follow the steps below.

1. As in the previous example enter the code for the ADDZ R~ instruc

tion into memory location ~ by pressing the. key sequence MEM, ~, ENT/NXT,

8, 1.

2. Enter the code for the WRTD instruction into memory location 1, by

pressing the sequence ENT/NXT, F, ~.

3. This time let's initialize Register ~ to a 3 with the key sequence

REG, ~, 3.

4. Register 1 may be initialized to a 2 with the key sequence REG, 1,

2.

4-21

5. As before, we must initialize the Program Status Word with the key

sequence REG, 7, F, F, ENT/NXT, ~.

6. Finally, we initialize the Program Counter to ~ with the key sequence

REG, C, ~.

7. Now push the STEP button once. Notice that the display reads

"~~~l F~." This means that the Program Counter is "pointing at" memory

location 1 which contains the code for our WRTD instruction, F~. Since

the contents of Register ~ and Register 1 have now been added together

and since they contained a 3 and a 2 respectively, the contents of

Register ~ should now be a 5. You may verify this by pressing the key

sequence REG, ~.

8. Now press the STEP button again to execute the WRTD instruction.

Note that the code ~~~~~l~l is displayed on the 8 LEDs connected to the

non-extended data port. You should also be able to verify that Register

~ contains a 5, Register 1 contains a 2, and the Program Counter (Register

C) contains a 2.

The STEP button is a very useful function of your Instructor 50. It

allows yop to execute instructions one at a time. After the STEP button

is pressed and the instruction is executed, the display will indicate

the contents of the memory location "pointed to" by the Program Counter.

Since the contents of this location are always the next instruction that

will be executed when you push the STEP button again, this provides a

convenient method to verify that each instruction code is as it should

be while you are stepping through a program.

TYPES OF INSTRUCTIONS (WHAT INSTRUCTIONS CAN DO)

In the above examples you saw two specific instructions and the operations

they performed. Your Instructor 50 has a "vocabulary" of 75 such instruc

tions, each of which performs a specific simple task. Each of these

instructions is described in detail in your Instructor 50 User's Guide.

Depending on the type of operation that a specific instruction performs

4-22

it may be thought of as belonging to a class or type of similar instruc

tions. These types are described briefly below.

Arithmetic Instructions

Arithmetic instructions are instructions which perform an arithmetic

operation such as the ADDZ instruction described above. .These instruc

tions may add the contents any two registers or subtract the contents of

one register from another.

Input/Output (I/O) Instructions

Input/output instructions are used for getting data into or out of the

computer. They operate by copying a byte of data from an input port to

a register or from a register to some output port. The WRTD instruction

described above is an example of an output instruction.

Load and Store Instructions

Load and Store instructions are used to copy a byte of data in one

location or register into another location or register. A register is

said to be loaded when a byte of information is copied into it from some

memory location or from some other register. The contents of a register

are said to be stored when its contents are copied into a memory location

or into some other register. Load and store instructions are somewhat

similar to input/output instructions except that the operations are

completely internal.

Logical Instructions

Logical instructions are similar to arithmetic instructions except that

they perform logical operations such as AND, OR, Exclusive-OR, Rotate,

and Compare. Examples of each of these types of instructions are given

below, in Figure 4.8.

4-23

R, l' 1 1 0 0 0 1 11~ANDZR1/ll 1 1 0 0 0 1 1 I R,

l' 1 I.?' (41 ,6) ~I'
RO 0 0 1 , 0 0 0 0 0 0 0 0 1 1 RO

"AND TO REGISTER ZERO REGISTER ONE"

R, l' 1 1 0 0 0 1
1 I "'IORZ R, /1' 1 1 0 0 0 1 1 I R,

I, 11/ (61 ,6) ~I'
RO 0 0 1 1 0 0 1 1 1 1 0 1 1 I RO

"INCLUSIVE-OR TO REGISTER ZERO REGISTER ONE"

R, l' 1 1 0 0 0 1 '1 ~EORZRl /1' 1 1 0 0 0 1 1 1 R,

/ (21 , 6) ~
RO 1, 0 0 1 1 0 0 1 I I 0 1 1 1 1 0 1 01 RO

"EXCLUSIVE-OR TO REGISTER ZERO REGISTER ONE"

RO l' 0 0 1 1 0 0 '1 ~~~~,:r-.I 0
0 1 1 0 0 1 1 I

"ROTATE REGISTER LEFT, REGISTER ZERO"

R, l' 1 1 0 0 0 1 'l~cOMZR1/1' 1 1 0 0 0 1 1 1
.?' (El ,6) ~

1 I RO 10 0 0 1 1 0 0 ,I ~ 0 0 1 1 0 0

CC, CCo

I 1 I o I
"COMPARE TO REGISTER ZERO REGISTER ONE"

Figure 4.8 EXAMPLES OF LOGICAL INSTRUCTIONS

The operators AND, OR (also known as Inclusive-OR) and Exclusive-OR are

straightforward and require no further explanation. The operation of

the Rotate and Compare instructions deserves further comment.

The operation of the Rotate Register Left instruction is affected by a

bit in the Program status Word, labeled ~ or With Carry, in Figure 4.6.

If this bit (bit 3 in the lower byte of the Program Status Word) is a

~, the operation of the Rotate Register Left R~ instruction is as shown

in Figure 4.8. That is, each bit of Register ~ is moved to the left one

position with the most significant bit being rotated around and occupying

the least significant position. If, however, the With Carry bit in the

Program Status Word is set to a 1, the most significant bit is not

shifted into the least significant bit position. Instead, it is shifted

4-24

into the Carry bit which is another bit of the Program Status Word. The

Carry bit in the PSW is shifted into the least significant position of

Register f6.

Operation of the Compare instruction involves three more bits in the

PSW. When the Compare instruction is executed, neither of the two

registers whose contents are being compared is altered. However, the

contents of the two Condition Code bits in the PSW, CCf6 and eel, are set

with a value which indicates whether the contents of Register 1 was

greater than, equal to, or less than the contents of Register~. In the

example shown, the contents of Register 1 is greater than that of Register

~ if the two are considered as straight binary numbers. Therefore, the

Condition Code bits are set to 1 and f6 as shown.

In this example it was assumed that the COM bit in the PSW was a ~.

This is the logical/arithmetic Compare bit. If this bit were a 1, the

contents of Register f6 and Register 1 would have been interpreted by the

Compare instruction as binary two's complement numbers. Since the most

significant bit of Register 1 in the example is a 1, this represents a

negative number. The contents of Register f6 represents a positive

number. Thus considered as two's complement numbers, the contents of

Register f6 is greater in value than the contents of Register 1, and the

resulting Condition Code setting would be ~l rather than l~.

A Compare operation is particularly useful when executed just before a

branch instruction, which is described below.

Branch Instructions

Normally, the sequence of instructions for a program is drawn from

sequential locations in memory. As each instruction is executed, the

Program Counter is incremented by 1. Thus the Program Counter keeps

track of the location in memory from which the next instruction is to

come. The function of a branch instruction is to alter the contents of

the Program Counter. The effect of doing this is that the next instruc

4-25

tion for the program will not be taken from the next sequential location

in memory but will be taken instead from an address which is specified

by the branch instruction. The operation of a branch instruction is

illustrated in Figure 4.9.

MEMORY LOCATION

a
1
2
3
4
5

FE
FF
100
101

CONTENTS

INSTRUCTION A
INSTRUCTION B
INSTRUCTION C
BRANCH TO 100
XX
XX

xx
XX
INSTRUCTION D
INSTRUCTION E

Figure 4.9 OPERATION OF BRANCH INSTRUCTION

We begin executing our program, for instance, at memory location ~.

Instructions are executed in sequence until the branch instruction is

encountered. When the branch instruction is encountered the next

instruction is taken not from the next sequential location in memory but

from the location specified by the branch instruction, location l~~ in

the example. From-this point instructions are again executed in sequence.

In many cases it is desirable for the program to branch to another

location in memory only if some condition is met. An instruction to

perform this operation (alter the contents of the Program Counter only

if some condition is satisfied) is called a conditional branch instruction.

In your Instructor 50 the Condition Code bits (CC~ and CC1) in the PSW

may be examined by a branch instruction to see if a specified condition

is satisfied.

For instance, let us say that we wish to compare the contents of Register

1 and Register ~ and branch to another location in memory only if the

value in Register 1 is equal to the value in Register~. This would be done

as illustrated in the Figure 4.10. Again, we assume that our program.

starts at memory location ~ and instructions A and B are executed.

4-26

We then compare the contents of Register I to those of Register ~ with

the COMZ Rl instruction. The result of this instruction as discussed

above is to set the Condition Code bits in the PSW. These two bits will

both be set to ~ if Register I and Register ~ contain equal values.

MEMORY LOCATION

o
1
2
3

100

CONTENTS

INSTRUCTION A
INSTRUCTION B
COMZ Rl

/ BCTA, 0, 100

'
I INSTRUCTION C

INSTRUCTION D

\
~INSTRUCTION E

INSTRUCTION F

COMMENTS

(THIS SETS CONDITION CODE BITS IN PSW)
BRANCH TO 100 ONLY IF CONDITION
CODE BITS ARE ZERO.
THIS INSTRUCTION EXECUTED IF RO <I R,

THESE INSTRUCTIONS EXECUTED IF RO = R,

Figure 4.10 OPERATION OF CONDITIONAL BRANCH INSTRUCTION

The next instruction is the BCTA or Branch on Condition True Absolute

instruction. The branch will occur only if the contents of the Condition

Code bits are ~~. If the contents of Register 1 are equal to the contents

of Register ~ when the Compare instruction occurs, instruction E will be

executed immediately following the branch instruction. If the

branch does not occur, that is, if the contents of Register 1 did not

equal the contents of Register~, instructions C, D, and so on will be

executed. Branch instructions are also sometimes called jump instructions

because they cause the normal execution of the program to jump from one

location in memory to another.

Multi-Byte Instructions

In our discussions so far, we have assumed that each computer instruc

tion occupied one byte in memory. Some instructions, however, require

that more information be specified than the amount which can be con

tained in a single byte. For instance, the Branch on Condition True

Absolute instruction, discussed in the previous example, must not only

specify that a branch must occur if some condition is satisfied, but it

4-27

must also specify the value of the Condition Code bits and an address

from which the next instruction is to be fetched if the specified condition

is satisfied. Since the address requires fifteen bits of information it

is specified in two successive bytes following the first byte of the

Branch on Condition True Absolute instruction. This instruction there

fore occupies three sequential bytes in memory. Its format is illus

trated in Figure 4.11.

BCTA CC

(01010i 1 11 1,'ITI
FIRST BYTE

(MEMORY LOCATION 4)
SECOND BYTE

(MEMORY LOCATION 5)

BRANCH ADDRESS ,

THIRD BYTE
(MEMORY LOCATION 6)

Figure 4.11 FORMAT OF BCTA INSTRUCTION

This type of instruction is executed in a similar fashion·to the single

byte instructions discussed above, except that three fetch cycles are

required before the execution cycle. This works as follows: In the

first fetch cycle the first byte of the instruction is fetched from

memory and put into the CPU's Instruction Register in the normal fashion.

The Timing and Control logic of the CPU then examiries the combination of

ls and Os in the first byte of the instruction and determines that two

additional bytes must be fetched. Since the Program Counter has been

incremented automatically during the fetch cycle, it already contains

the address of the second byte of this instruction. The second byte is

then fetched and placed in an auxiliary register in the Timing and

Control section of the CPU. While this fetch cycle is taking place the

Program Counter is again incremented so that it now contains the address

of the third byte of the instruction. The third byte is fetched and

placed in .another auxiliary register in the Timing and Control logic.

At this point, the entire instruction has been moved into the Central

4-28

Processor unit and the Program counter contains the address of the next

instruction following the branch instruction.

The two least significant bits in the first byte of the instruction are

compared with the two Condition Code bits in the PSW to determine if

their settings are equal. If they are equal the address specified by

the second and third byte of the BCTA instruction is placed in the

Program Counter. Thus the next instruction is fetched from that location.

If the settings of the Condition Code bits do not match those specified

by the two least significant bits of the first byte of BCTA instruction

the Program Counter is not altered and the next instruction is fetched

sequentially from memory. In every case for a multi-byte instruction

the first byte contains enough information to identify the type of

instruction and the fact that additional bytes must be fetched. Allow

ing instructions to be two or three bytes in length permits a great deal

of flexibility in specifying the source of information on which the

instruction is to operate and its de·stination.

Addressing Modes

The way in which the source or destination of information is specified

by an instruction is called an addressing mode. There are four basic

addressing modes which we will describe below in detail. These are

called Register, Immediate, Absolute, and Relative.

1. Register Addressing: An instruction which specifies internal 2650

registers as both the source and destination of data is said to use the

register addressing mode. These instructions require only one byte of

information. For example, the format of the Add to Register Zero (ADDZ)

instruction, is shown in Figure 4.12.

In the Add to Register Zero instruction, the fact that an addition is to

take place whose contents will be stored in Register ~ is specified by

the most significant six bits of the instruction. The least significant

two bits specify which internal register will be added to Register ~ to

4-29

produce the result. For instance, if the Register field (as shown in

Figure 4.12) contains 1~ then the contents of Register 2 will be added

to Register ~ and the results stored in Register~. (1~2 is the binary

equivalent of 21~).

FIRST (AND ONLY) BYTE

Figure 4.12 FORMAT OF ADDZ INSTRUCTION--REGISTER ADDRESSING

2. Immediate Addressing: An instruction is said to be in the immediate

addressing mode if the actual data to be operated on is contained in the

instruction. These instructions require two bytes of information. As

an example, the format for the Add Immediate instruction is shown in

Figure 4.13.

NUMBER TO BE ADDED ,

(:
FIRST BYTE SECOND BYTE

Figure 4.13 FORMAT OF ADDI INSTRUCTION--IMMEDIATE ADDRESSING

When this instruction is executed, the first byte of the instruction

will first be fetched and placed in the Instruction Register in the CPU.

The most significant six bits of this byte indicate that the operation

to be performed is Add Immediate. The two least significant bits desig

nate the Register (~, Rl, R2 or R3), where the result will be stored.

4-30

After the Timing and Control logic obtains this information, it fetches

the second byte of the instruction from memory. This byte contains an

immediate value to be added to the contents of the register specified by

the first byte. For example, let us say that the R field in the first

byte contains a ~l specifying Register 1, and that before execution of

this instruction the contents of Register 1 in the CPU is 5. Let's also

assume that the second byte of the instruction is ~~~~~~ll or 3l~'

After execution of this instruction the contents of Register 1 in the

CPU will be 8. That is, the 5l~ currently in Register 1 was added to

the 3l~ specified by the second byte of the instruction to produce the

result, 8l~' stored in Register 1.

3. Absolute Addressing: An instruction is said to be in the absolute

addressing mode if it requires data stored in a specific location in

memory. This type of instruction requires three bytes, one to specify

the type of instruction and two to specify the specific address in

memory where the required data will be found. The BCTA instruction

discussed above and whose format is shown in Figure 4.11, is an example

of an absolute addressed instruction.

4. Relative Addressing: An instruction using the relative addressing

mode is similar to an instruction using absolute addressing in the sense

that it requires data from some specific location in memory. Instead of

specifying this address absolutely however, the address is specified as

a position relative to the current contents of the Program Counter. To

better understand the concept of relative addressing, consider the

format of the Add Relative (ADDR) instruction shown in Figure 4.14. In

the Add Relative instruction the most significant six bits of the first

byte indicate to the Timing and Control logic that the operation to be

performed is Add Relative. The least significant two bits of the first

byte indicate which register is to be the destination of (hold the

results of) the operation. The second byte of the instruction specifies

a number which is to be added to the current contents of the Program

Counter to determine the location in memory which contains the data to

be added to the specified register.

4-31

ADDR REGISTER /, ______ ~I------~,~

FIRST BYTE
(LOCATION 10016)

DISPLAFEMENT
/'------~~------~,

II I : ~Iati~e ~dres; : I
SECOND BYTE

(LOCATION 10116)

Figure 4.14 FORMAT OF ADDR INSTRUCTION--RELATIVE ADDRESSING

For instance, let us assume that the relative address of this instruction

is a 5. Also assume that the instruction itself is stored at location

l~~ in memory, and that this instruction has just been fetched. The

Program Counter will contain 1~2, the address of the next memory location

beyond this instruction. Thus, the contents of the Program Counter 1~2

will be added to the displacement, 5, to obtain the result 1~7. Data to

be added to Register R then will be obtained from location 1~7l6' This

is somewhat more complicated than the absolute addressing method shown

above. Its advantage lies in that it requires only two bytes to specify

an address rather than three. The displacement value is considered to

be a 7 bit two's complement number, and thus may take on values from +631~

5. Indirect Addressing: In addition to the four basic addressing

modes described above, Register, Immediate, Absolute, and Relative,

there are two variations which may be used under some circumstances.

These are called indirect addressing and indexed addressing. In your

Instructor 50, indirect addressing maybe specified for instructions in

the relative and absolute addressing modes. Indirect addressing is

specified by the most significant bit of the second byte of these instruc

tions, labeled "I" in Figures 4.11 and 4.14 above. When indirect addressing

is specified, the absolute address or relative address specified by the

instruction does not contain the data to be operated upon. Instead, it

contains the first byte of the address of the data to be operated upon. The

second byte of the address of the data to be operated upon is found in

the next sequential location in memory. For our example of Figure 4.14

above, if the Indirect bit is a 1, data would be obtained not from address

4-32

1~7 in memory but from the address in memory specified by the contents

of locations 1~7 and 1~8. While this is a bit complicated, it turns out

to be useful in some programming applications.

6. Indexed Addressing: Indexing is another address modification

technique which may be used with some instructions in the absolute

addressing mode. It may be illustrated by considering the format of the

Add Absolute instruction as shown in Figure 4.15.

INDIRECT
ADDRESSING

ADDA REGISTER
INDEX

CONTROL ABSOLUTE ADDRESS
/ I ,~ I

11 1 0 1 0 10 11 11 1 r o:r xl a high order

FIRST BYTE SECOND BYTE

Figure 4.15 FORMAT OF ADDA INSTRUCTION
ABSOLUTE ADDRESSING WITH INDEXING

THIRD BYTE

In this instruction the first byte specifies that the instruction is to

be an Add Absolute operation. Let's first consider the case where both

the Indirect Addressing and Index Control bits are zeroes. In this

case, the register which will contain the result of the operation is

specified by the least significant two bits of the first byte. The

address in memory from which data is to be obtained to add to this

register is specified by the Absolute Address section of the second and

third bytes. Since only thirteen bits of address information may be

specified and the 2650 address buss is fifteen bits wide, it is assumed

that the most significant two bits of the address are the same as the

most significant two bits of the address in which this instruction itself

is located.

4-33

In the event that Indirect Addressing is specified (by placing a 1 in

the most significant bit of the second byte of the instruction) the

contents of the location specified by the Absolute Address contains the

first byte of the address where the data to be added to the specified

register is stored. The second byte of this address is found in the

next sequential location. If the Index Control bits are non-zero,

the two least significant bits of the first byte no longer specify the

register in which the results of the instruction will be stored. Instead

they specify a register to be used for indexing purposes, or an Index

Register. It is then assumed that the results of the operation will be

stored in Register ~.

When Indexing is specified (by having one or both of the Index Control

bits set to a 1,) an Effective Address is formed by adding the contents

of the specified Index Register to the Absolute Address specified in the

second and third bytes of the instruction. For instance, let us assume

an example in which both Index Control bits are Is, the register speci

fied as an Index Register is Register 3, the Absolute Address portion of

the instruction contains a 5, and the contents of Register 3 is a 1. We

now execute the ADDA instruction. The data to be added to Register ~

will be obtained from location 6 (= 5 + 1). The data contained in

location 6 will be added to the data contained in Register ~, and the

result will be stored in Register ~.

While all this is happening, it may be desirable to automatically incre

ment or decrement the specified Index Register. The Index Control bits

are set to ~l to accomplish this, instead of being set to 11. The

contents of the specified Index Register will be incremented before the

operation is performed. In our example, the contents of Register 3

would become 2. If the Index Control bits are set to l~, the contents

of the specified Index Register will be decremented before the operation

is performed. In our example, the contents of Register 3 would become

~. This is also complicated but is useful in some programming applications.

Let's say, for example, that you've stored a table of data beginning at

location l~~ in memory. You may use an Index Register to keep track of

4-34

which entry in this table you wish to look at. If you set the Absolute

Address portion of an Indexed instruction to 1~~16' and specify the

entry number within your table with an Index Register, this becomes a

convenient method of accessing a particular entry within a table. Don't

be too discouraged if this is not all obvious to you right now. As you

gain more familiarity with programming and programming techniques, these

concepts will become easier to grasp.

INTERPRETING INSTRUCTION DESCRIPTIONS

In the foregoing discussion we've spoken briefly about several instruc

tions and their various formats. In Chapter 9 of your Instructor 50

User's Guide, you'll find detailed descriptions of the operation of each

instruction which your Instructor 50 is capable of performing. In

describing these instructions some notation conventions have been devel

oped which make it easy and compact to represent certain ideas. For

instance, a small "r" designates a particular register. It stands for

Registers R~, Rl, R2, or R3 in the Instructor 50. Parentheses around a

quantity designate the concept, "contents of." For instance, (R~)

means "the contents of Register W' or (r) means "the contents of Reg

ister r." A small "a" is often used to denote an address. Therefore

(a) would be read, "the contents of memory location a." A small "v" is

used to stand for a data value. A left-pointing arrow, is used to stand

for "is replaced by." For instance, we might write

"(r) ~(--- (r) + v."

This would be read, "the contents of Register r is replaced by the

contents of Register r added to the value v." Let us say, for example,

that R~ contains a 5 and value v is a 7. If we wrote

(Rf6) ~<-- (R!il) + v

it would mean in our example

(R~) ~<-- 5 + 7 or (R~) = !ilCl6 •

This type of notation is used in describing instructions in your User's

Guide to make the instruction descriptions more compact and easier to

refer to.

As an example, let's take a look at the description for the Add Absolute

instruction, which you will find in your User's Guide described on page

4-35

37 of Chapter 9. On the top line of this page, you see in the left hand

side the mnemonic for the instruction, "ADDA," followed by some other

notation. On the right hand side you see a brief description of this

instruction, in this case, Add Absolute. When writing instructions to

be interpreted by humans, it is much more understandable to write them

in mnemonic form rather than as hexadecimal or binary codes. After the

instruction's mnemonic in this example we see, "r (*) a (,x) ." The portions

enclosed in parentheses are optional and mayor may not be included in

the notation for the instruction as it is written. The little "r" is

meant to indicate a specific register. The little "a" is meant to

indicate a specific address. For instance, if we wanted to specify

adding the contents of location 5~16 to the contents of Register 1 we

would write "ADDA,R! 5flj." This would specify that the contents of

memory location 5flj are to be added to the contents of Register 1, with

the result stored in Register 1. Optionally, we could write, "ADDA,Rl *5~."

The addition of the optional "*" would indicate Indirect Addressing in

this example. This would mean that the contents of the location specified

by the address contained in locations 5flj and 51 would be added to the

contents of Register 1, with the results stored in Register 1.

Also, we may optionally specify that indexing is to be used with this

instruction. If we write "ADDA,Rflj 5flj, Rl" this means that the contents

of Register 1 is to be added to the specified address value, 5flj, to

calculate the Effective Address where the data to be added to R~ will

be found. Thus we have specified Indexed Absolute Addressing. In the

same shorthand, to denote that we would like to have the Index Register

specified incremented or decremented before indexing occurs, we would

write "ADDA,Rflj 5flj, Rl+" or "ADDA,R~ 5flj, Rl-."

The next line tells us that this instruction occurs in the Absolute

Addressing mode. The third line tells us that the operation codes

possible for this instruction are 8C, 8D, 8E and 8F. This is a hexa

decimal form of expressing the possible binary codes for the first byte

of this instruction.

4-36

Below this we see the format for the binary code for the ADDA instruction,

which is similar to tha.t discussed in Figure 4.15 above. Notice that if

the two least significant bits of the first byte of the instruction are

~~, the hexadecimal notation for this binary code would be BC. If the

two least significant bits of the first byte were 11, the hexadecimal

coding for the first byte of this instruction would be BF.

The next line tells how much time it takes to execute this particular

instruction. This is described in terms of machine cycles. In our

example, four machine cycles are required. The first three machine

cycles are to fetch the three bytes of the instruction. The instruction

is then executed during the fourth machine cycle. Since each machine

cycle is equivalent to three cycles of the clock signal applied to the

2650 microprocessor, 12 cycles or periods of this clock signal are

required. Your Instructor 50's clock signal cycles B95,000 times each

second. Therefore each machine cycle takes about 3.35 microseconds

(millionths of a second) to execute. Since the Add-Absolute instruction

requires four machine cycles, it takes approximately 13.4 microseconds

to execute in your Instructor 50.

The "Operation" section of the page describes the instruction in terms

of the notation we discussed earlier. For instance, the "Operation"

line, the first line, may be read, "the contents of the specified

Register R is replaced by the current contents of Register R plus the

contents of the address specified by the Effective Address of the

instruction." All of. this is true if the contents of the With-Carry bit

in the Program Status Word is a~. If the With-Carry bit in the Program

Status Word contains a 1 then the contents of the specified Register R

is replaced by its current contents added to the contents of the memory

location specified by the Effective Address plus the contents of the

Carry bit in the Program Status Word. The Effective Address in this

case is calculated by taking the a field of the second two bytes of the

instruction and adding the contents of the specified Index Register (if

indexing is specified). This is the Effective Address if the Indirect

bit (bit 7 of Byte 2 of the instruction) is a~. If the Indirect bit is

4-37

a 1 the Effective Address is found in two bytes beginning at the byte

specified by the address calculated above. Note on page 9-36 of your

User's Guide the formulas for calculating the Effective Address of an

instruction based on the states of the Indirect bit and the Index

Control bits in the instruction. The symbols and abbreviations used in

the instruction descriptions are listed on page 9-35 of the User's

Guide.

Below the description of the instruction we see a line that says "PSW

bits affected." When this particular instruction (Add-Absolute) is

executed the Carry, Condition Code, Inter-Digit Carry, and Overflow bits

of the Program Status Word will be set or reset depending on the results

of executing the instruction. In particular, the Condition Code bits,

CC~ and CCl, will be set as shown in the Condition Code setting table.

The first part of Chapter 9 of the User's Guide contains a detailed

description of the 2650 Processor Registers and the function of each bit

in the Program Status Word.

Making It Work

Based on what we have just learned about the Add-Absolute instruction,

let us go through the exercise of actually coding this instruction into

binary form (machine language). You may then execute it on your Instruc

tor 50 to prove that it works as described.

Step 1. Write the entire command in mnemonic form. For our example,

let's take the most complicated possible case, Add-Absolute Indirect

with Auto-Incremented Indexing. (Note: Most instructions will be much

easier than this to code because the complications of Indexing, Indirect

Addressing, and Auto-Incrementing are used only a small percentage of

the time. They are seldom used all at once.) We must first decide

which location in memory will contain the address which will contain our

data to be added to Register~. Let us select location 1 in memory.

Also let's select Register 3 as our Index Register. In mnemonic form

then our instruction would look like this: ADDA,R~ *~~~1,R3+.

Step 2. We can now write down the binary code or machine code for our

instruction. The first byte will be:

4-38

b 7 b6 bS b4 b3 b2 b l b~

I ~ ~ ~ I I I I

where the two least-significant bits specify Register 3 and the six

most-significant bits specify the Add Absolute instruction. In the

second byte of our instruction, the most significant bit must be a I

because we are using Indirect Addressing. The next two bits are the

Index Control bits. Since we've elected to use Indexing with Auto

Incrementing we see from the table on page 9-36 that the proper code for

this option is ~l for the Index Control bits. The next five bits of the

second byte of our instruction are all ~s since the high order bits of

address I in memory are all ~s. Thus the second byte becomes:

b 7

I

Indirect Bit Index Control Bits High Order Address Bits

Finally the third byte contains the low order address bits or

b 7 b6 bS b4 b3 b 2 bl b~

~ ~ ~ ~ ~ ~ ~ I

Thus our final instruction looks like this:

I ~ ~ ~ I I I I

first byte

l~l~~~~~

second byte

~ ~ ~ ~ ~ ~ ~ I

third byte

Step 3. The next step is to convert our binary coded instruction into

hexadecimal form. As diagrammed below the first byte converts into 8F,

the second byte into A~, and the third byte into ~l.

first byte

l~~~ 1111

8 F

second byte

l~l~ ~~~~

A ~

4-39

third byte

~~~~ ~~~l (binary) 

~ I (hexadecimal) 



Now let's see if our instruction works. To do this we must first enter 

it into some memory location. Let's arbitrarily pick location l~~. 

To enter the three bytes of this instruction into three successive 

memory locations beginning at location l~~, press the following sequence 

of buttons on your Instructor 50 keyboard: MEM, 1, ~, ~, ENT/NXT, 8, F, 

ENT/NXT, A, ~, ENT/NXT, ~, 1, ENT/NXT. Next, let's set up the 2650's 

internal registers with some initial data. For some initial data in 

Register ~ let's place a 2. To do this, press the button sequence REG, 

~,2. In Register 3 let's place a 7. To do this press REG, 3, 7. Next 

we must initialize the Program Status Word. We do this by pressing REG, 

7, F, F, ENT/NXT,~. Since we have placed our instruction in memory 

location l~~, we must initialize the Program Counter to this value. 

This is done by pressing REG, C, 1, ~,~. Since we have placed a 7 in 

Register 3 and have specified that Register 3 be incremented before this 

instruction is executed, the Effective Address will be found in the 

following manner. 

The address specified in the instruction (~l) is expected to contain the 

first byte of an address. The next sequential location (~2) is expected 

to contain the second byte of an address. To this address (found in 

locations 1 and 2), the incremented value of our Index Register, R3, will 

be added. Let us place the data for our instruction in location FF by 

pressing the button sequence MEM, FF, ENT/NXT, 5. This places a 5 in 

location FF. When our instruction is executed we expect that this 5 

will be added to the 2 already in Register ~ to produce 7. So that our 

Effective Address will be location FF, we must enter the following 

information in locations 1 and 2: MEM, I, ENT/NXT, ~, ENT/NXT, F, 7. 

Now when the ~~F7 contained in locations land 2 is added to 8, the 

incremented value of our Index Register (R3), the result will be FF, the 

location of our data in memory. Next press STEP. The instruction has 

now executed and Register ~ should contain a 7. To find out if it does, 

press REG,~. Also note that Register 3 should contain an 8 and the 

Program Counter should contain 1~3. 

4-40 



5. PROGRAMMING TECHNIQUES 

ORGANIZING YOUR PROGRAM 

Now that you know how instructions work, how to interpret their descrip

tions and what they can do, you are ready to start writing programs for 

your Instructor 50. When you write a program, what you are trying to do 

is define a sequence of numbers which will be entered into memory loca

tions in your Instructor 50, and which will perform some desired task 

when they are executed as a program. This chapter discusses some of the 

techniques which have been evolved for progressing from a vague idea of 

the task to be accomplished to a completed listing of machine code which 

can be entered into your Instructor 50. 

The first thing you should do is diagram your program in flow chart 

form. The flow chart is your first cut at reducing the solution of your 

problem to an algorithm, that is a specific sequence of manipulations 

which, taken together, will solve the problem. A simple example of a 

flow chart is shown in Figure 5.1. 

This flow chart describes a program which adds together two bytes stored 

in memory. If their sum is greater than 5, the program is to display 

the message "HI" on the a-digit display. If the sum is 5 or less, the 

program is to display the message "LO" on the Instructor 50 display. 

The program starts in the upper left hand corner labeled Start. The 

first operation performed is to get a byte of data from memory and place 

it in Register ~ in the Central Processing Unit. The next task is to 

add to the number stored in Register ~ some other data byte from memory. 

Next, we must make a decision. Is the result of this addition greater 

than 5 or is it not? If the result is not greater than 5, the message 

5-1 



"LO" is displayed. If the result is greater than 5, the message "HI" is 

displayed. The little circle containing the "A" is a connector. In the 

upper right hand corner you see another circle with an "A" meaning that 

the flow chart continues from this point. 

YES 

Figure 5.1 A SIMPLE FlDW CHART 

Additional sequential blocks may be defined until the program comes to 

an end. If the flow chart is written in sufficient detail, it is then 

an easy matter to convert the contents of each block of the flow chart 

to a few corresponding machine instructions. The sequence of instruc

tions is normally written first in mnemonic form on a coding form 

similar to that shown in Figure 5.2. 

For our example program, which is flow charted in Figure 5.1, we might 

begin filling out the symbolic instruction columns of this coding form 

as shown in Figure 5.2. 

Notice that we have begun filling out mnemonics for each instruction 

required by our flow chart in the column labeled "OP CODE." Under the 

5-2 

I
I 

I 



ROUTINE -~ [!TART ~~OO .. . .~ FR-T OFPROG~AM - II 2650 PROGRAMMING FORM 

DESCRIPTION II-I S_H_E_ET ____ ---I 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO B1 B2 
LABEL OPCODE OPERANDS 

COMMENT 

ITj 
~. 1 

I.Q 
s:: 2 
Ii 
CD 3 LODA, RO BYTEI PUT FIRST BYTE IN RO 

lJ1 4 ADDA, RO BYTE2 ADD SECOND BYTE TO RO . 
N 5 SUBI, RO 05 DECIDE IF RESULT >5 

6 BCTA.GT DISPHI IF YES, DISPLAY "HI" 

~ 
~ 
0 

7 BCTA,UN DISPLO IF NO, DISPLAY "LO" 

8 . 
9 

Z 
H 10 

lJ1 
() 

I 
W I:'" 

H 

11 
12 I 

Ul 
1-3 13 

; 

H 

~ 
14 
15 

0 
Z 16 

() 17 
0 
t:l 18 
H 
Z 19 
(j) 

20 
ITj 
0 21 

~ 22 

23 
24 

DIRECT RELATIVE ADDRS: SECOND + 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F ,,::::,:::: 
BYTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 ::".,:,:,., 

- :,,:: 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B 6A 69 68 67 68 65 64 63 62 61 :,<:,:,:,. 
ADD H'80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 38 3C 3D 3E 3F :::=:::::" 
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 4D.4C 4B 4A 49 4B 47 46 45 44 43 42 41 40 



column labeled "OPERANDS," we have lis.ted symbols for any additional 

information required by the instruction. In the "COMMENT" column, we 

placed a short description of what the instructions we've selected are 

expected to do. Notice that our first instruction, Load Absolute into 

Register ~, requires an address which specifies where the byte of data 

to be loaded will be found. Since we haven't yet picked a specific 

address, we substituted for the address the label "BYTE!." 

The second instruction, Add Absolute to Register ~, also requires an 

address. Again, not knowing what the address would be we have labeled 

it "BYTE2." The next instruction, Subtract Immediate from Register ~, 

will have the effect of subtracting the constant 5 from the sum of the 

contents of locations BYTEl and BYTE2. As a result of this operation 

the Condition Code bits (C~ and CCI) in the Program Status Word will be 

set to ~l for positive, ~~ for zero, or l~ for negative. The next 

instruction, Branch on Condition True Absolute if Greater Than, will 

cause the normal sequence of instructions to be changed. The next 

instruction will not be taken from the next location in memory but 

rather from a location which we've labeled "DISPHI." Finally, our last 

instruction Branch on Condition True Absolute Unconditional, will take 

the next instruction from the location in memory which we've labeled 

"DISPLO." 

The labels that we've used above, "BYTEI," IBYTE2," "DISPHI," and 

"DISPLO," must be translated into specific addresses before we can 

develop the machine code for our program. Let us arbitrarily select 

locations l~~ and l~l as storage places for our two data bytes, BYTEl 

and BYTE2. We add this to our coding form as shown in Figure 5.3. 

In the "LABEL" column, we have added the labels BYTEI and BYTE2. Under 

the "OP CODE" column for these two bytes we've written "RES," which is 

simply a note to tell us to reserve a location. (This is not strictly a 

microprocessor instruction.) Under the "OPERANDS" column we've written 

a 1, indicating that we wish to reserve only one location in memory for 

the label "BYTEI" rather than a number of sequential locations. Finally, 

5-4 



U1 
I 

U1 

t"lj ..... 
\Q 

~ 
(l) 

U1 . 
w 

o 
tr:l 
t"lj 
H 
Z 
H 

~ 

~ 
~ 
Ul 

ROUTINE II START A~DR J I PART OF PROGRAM II 2650 PROGRAMMING FORM 

DESCRIPTION 1 ...... 1 S_H_E_ET ____ -' 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO I B1 I B2 
LABEL 

OPCODE I OPERANDS 

2 
3 LODA, RO BYTE I 

4 ADDA, RO BYTE2 

5 SUBI, RO 05 

6 BCTA.GT DISPHI 

7 BCTA,UN DISPLO 

8 
9 

10 

11 

12 

13 
14 
15 

16 100 BYTEI RES 

17 101 BYTE2 RES 

18 
19 102 DISPHI 

20 

21 

22 ISO DISPLO 

23 
24 

DIRECT RELATIVE ADDRS: SECOND + 
BYTE N 

00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

::::::::: 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 
+ -I 20 21 22 23 24 25 26 27 28 29 2A 28 2C 20 2E 2F 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 

ADD H'80' TO DISPLACEMENT FOR 
INDIRECT ADDRESS DEFINITION N 

COMMENT 

PUT FIRST BYTE IN RO 
ADD SECOND BYTE TO RO 
DECIDE IF RESULT >5 

IF YES, DISPLAY "HI" 
IF NO, DISPLAY "LO" 

RESERVE LOCATION 100 
RESERVE LOCATION 101 

10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 1F :::::::::: 
16 17 18 19 20 21 22 23 24 25 26 27 2B 29 30 31 :::::::::: 
ro~~~5C~~p~~H~Mn~~G 
3O~~~~3536~3839~38~m~~5-
~~~~~~~~~~y~~~~nM 
~~~~~~~~~UU45~O~~~ 



in the "ADDRESS" column ("ADDRS") toward the left hand side of the 

coding sheet, we've written l~~ and l~l, the actual addresses in which 

we wish to store Byte I and Byte 2. 

Let us also arbitrarily pick location 1~2 as the address for the program 

segment labeled "DISPHI," and 15~ as the address for the program segment 

labeled "DISPLO." We are now ready to write down the actual machine 

code for the instructions which we've written in mnemonic form in our 

example. There is just one decision left to be made. We must determine 

where in memory we wish our program to begin. 

Since the Instructor 50 takes its first instruction from location ~ 

after the RESET button is pushed, let us begin our program at memory 

location~. Now in the "ADDRS" column opposite our first instruction, 

Load Absolute ~, we may write the address of this instruction, ~~~~, 

as shown in Figure 5.4. 

Next, we look up the format for the Load Absolute instruction in the 

Instructor 50 User's Guide. We see that this is a 3-byte instruction, 

and that if the label "BYTEI" refers to location l~~ and we are not 

using Indirect Addressing or Indexing, the hexadecimal code for this 

instruction must then be ~C ~l ~~. These three hexadecimal codes are 

written in the "DATA" columns labeled "B~," "BI" and "B2" on the coding 

form. Since they are to be placed in three sequential memory locations 

beginning with Address ~, they will occupy locations ~, I and 2 in 

memory. Our next instruction therefore will begin at memory location 3, 

and we may write this value in the "ADDRS" column. Looking up the 

format for the Add Absolute instruction in the Instructor 50 User's 

Guide we see that this is again a 3 byte instruction, and that the 

hexadecimal codes for it are 8C, ~l, ~l. The first byte specifies that 

we are Adding-Absolute to Register ~ and the second two bytes specify 

the location in memory of the data we have labeled "BYTE2." Since this 

is a three byte instruction, it will occupy locations 3, 4 and 5 in 

memory, and the next instruction will begin at location ~~~6, which we 

write in the "ADDRS" column. 

5-6 



ROUTINE-] I START ADDR II PART OF PROGRAM II 2650 PROGRAMMING FORM 

DESCRIPTION ILl S_H_E_ET ____ .....I 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO B1 B2 
LABEL OPCODE OPERANDS COMMENT 

1 

2 
, 

t:r:j ...,. 3 0000 OC 01 00 LODA, RO BYTEI PUT FIRST BYTE IN RO 
\Q 
C 4 0003 8C 01 01 ADDA, RO BYTE2 ADD SECOND BYTE TO RO 
Ii 
C1> 5 0006 A4 05 SUBI, RO 05 DECIDE IF RESULT >5 

lJ1 6 0008 ID 01 02 BCTA.GT DISPHI IF YES, DISPLAY "HI" . 
"" 7 OOOB IF 01 50 BCTA,UN DISPLO IF NO, DISPLAY "LO" 

8 OOOE . 

8 
0 

9 . . 
10 

lJ1 H 
I 2: 

-...J (j) 
11 
12 

1"'3 
gj 13 

14 
H 
2: 15 
til 
1"'3 16 100 BYTEI RES I RESERVE LOCATION 100 

§ 
() 
1"'3 

17 101 BYTE! RES I RESERVE LOCATION 101 

18 
H 
0 19 102 DISPHI · 
2: 
til 20 

. · · 
21 · 
22 150 DISPLO 

· 23 

24 

DIRECT RELATIVE ADDRS: SECOND + 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E 1F /::::::: 
BYTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 :::=::::::: 

- ::::=:::::: 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B 6A 69 68 67 66 65 64 63 62 61 co::::::::: 
ADD H'80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F }::::::: 
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 626364! 

- 60 5F 5E 50 5C 5B 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 4B 4A 49 48 47 46 45 44 43 42 41 40 I 



The description of the Subtract-Immediate instruction in the User's 

Guide indicates that the hexadecimal code for this instruction will be 

A4 ~5. These values are written in the "Bll" and "BI" columns on the 

coding form and will occupy locations 6 and 7 in memory. 

Our next instruction will then appear at location 8 in memory which we 

may write down in the "ADDRS" column followed by the hexadecimal code 

for our Branch on Condition True Absolute if Greater Than instruction. 

Th.e format shown in the User's Guide for this instruction indicates it 

is a three byte instruction whose hexadecimal codes are lD, ~l, 1l2. 

These three bytes will occupy locations 8, 9 and A in memory, and our 

next address on the coding form will be address B. This instruction 

will be coded for unconditional branching to the address of "DISPLO" 

Therefore the three hexadecimal bytes of code for this instruction are 

IF, ~l, 51l. These three bytes will occupy locations B, C and D in 

memory. The next instruction would begin at location E in memory. We 

have now completed the coding for this segment of our program. 

This code may now be entered directly into the Instructor 50's memory 

and executed. You are encouraged to try this out by entering the code 

indicated through the keyboards on your Instructor 50. Since we have 

not completely coded our program however, that is, we have not decided 

which instructions to use at the locations labeled "DISP HI" and "DISP 

LO," Simply pressing the RESET button will produce unpredictable results. 

Therefore, simply set the Program Counter to location ~ and step through 

the program one instruction at a time until the Program Counter contains 

either 1~2 or l5!l. Enter some trial bytes of data in locations lll~ 

and l~l and confirm that the program branches to location 1112 or 1511 

depending on whether the sum of these two numbers is greater than 5 or 

not. To avoid difficulty during this exercise make sure that the 

INTERRUPT SELECTOR switch on the. bottom of your Instructor 50 is placed 

in the KEYBOARD position. 

To sum up the process used in writing a program for your Instructor 50, 

first, define the algorithm in flow chart form. The flow chart should 

5-8 



be sufficiently detailed so that each block may be converted into just a 

few 2650 instructions. Naturally, as you become more and more familiar 

with the instructions which are available to you, this will become 

easier and easier to do. 

Next, write down the list of instructions in mnemonic form on a coding 

form. You may use labels to substitute for addresses when addresses are 

not to be known until later. It is also useful to fill out the "COMMENT" 

column at this point to remind yourself (and others who may read your 

program) of what actions you intended. Finally, the "ADDRS" and "DATA" 

columns may be filled out using the information you have already gen

erated and the instruction descriptions in the User's Guide. As you 

become more familiar with the descriptions of the instructions, you will 

find that the short coding reference table provided on the operator 

panel of your Instructor 50 is sufficient in most cases and you will not 

need to refer to the detailed descriptions contained in the User's 

Guide. 

LOOPING AND BRANCHING 

In our example flow chart of Figure 5.1 we saw a diamond shaped decision 

block which caused the program to branch to one location in memory or 

another depending on whether the result of the calculation was greater 

than 5 or not. Whenever such a decision block occurs in a flow chart 

you may be certain that the actual program involves some sort of con-

ditional branch instruction. When a branch instruction causes a pre-

viously executed instruction to be executed again, a loop is said to be 

formed. The reason for this may be seen by examining the flow chart 

diagrammed in Figure 5.5, a conditional loop. 

On this flow chart the instructions indicated by Block 1 are executed 

followed by those in Blocks 2, 3 and 4. Block 4 is a decision block 

which contains a conditional branch instruction. Depending on whether 

some condition is satisfied, Block 5 or Block 2 may be executed next. 

Blocks 2, 3 and 4 then, may be said to be contained in a loop. The 

5-9 



program will continue going around and around this loop until the con

dition specified in the decision block is satisfied. This then is said 

to be a conditional loop. 

o 
o 
o 
o 

NO 

Figure 5.5 A CONDITIONAL LOOP 

Looping is a very useful programming technique. The instructions 

within the loop may be carried out thousands of times, whereas they need 

only be written down once and only occupy a small number of locations in 

memory. For instance, suppose our computer had just accomplished some 

task which we had programmed it to perform and we wanted it to signal 

when it was finished by flashing a light on and off. This segment of 

our program might be diagrammed by the flow chart in Figure 5.6. 

Figure 5. 6 FLOWCHART TO FLASH LIGHT 

5-10 



Knowing that each instruction takes a little while to execute, the 

"DELAY" Block could be implemented by executing a number of instructions 

which serve no function other than to consume time. Looking around for 

such an instruction we find that "NOP" (No Operation) satisfies this 

criteria. Since a "NOP" does nothing but occupy two machine cycles of 

execution time, we conclude that a sequence of 149,167 "NOP" instruc

tions would accomplish our one second delay. That is if we had enough 

patience to key all these "NOP" instructions into our Instructor 50 and 

it had enough memory to hold them all. A much better choice would be 

the sequence of instructions shown in Figure 5.7. 

In this sequence of instructions, Register 1 is first loaded with the 

hexadecimal value "E9" and Register 91 with the hexadecimal value "FF." 

When the Subtract Immediate instruction is executed, one is subtracted 

from the value in Register 91, leaving FE. We then come to the condi

tional branch instruction, Branch on Condition False Relative, the 

condition being if Register 91 is equal to a 91. The first time through 

it is not, so we branch back to the previous instruction labeled 

"INLOOP" and subtract 1 from the contents of Register 91 again, this time 

obtaining FD as a result. This small loop is repeated until the con

tents of Register 91 have been decremented to a 91. It will take 255191 
times through this loop to make the contents of Register 91 equal to 91. 
Therefore these two instructions beginning with the label "INLOOP" will 

be executed 255 times each. Since the Subtract Immediate instruction 

takes 6.7 microseconds to execute, and the Branch on Condition False 

Relative instruction takes 191.916 microseconds to execute, this small loop 

will occupy 16.76 x 255 or 4,273.8 microseconds of execution time as 

noted in the "COMMENTS" column. After we have been delayed for 4,273.8 

microseconds we will subtract a I from the contents of Register 1, which 

began as E9. If the result is not equal to 91, the next instruction will 

cause us to branch back to the instruction labeled "OUTLOP" which again 

loads Register 91 with an FF. We then begin another 4,273.8 microsecond 

delay. After this time, 1 will again be subtracted from Register 1 

bringing the contents of Register I to E7 and causing a branch back for 

another 4,273.8 microsecond delay. When all this happens 233191 (equals 

5-11 



ROUTINE ----] [Sf ~TAD~~ -] I PART OF PROGRAM II 2650 PROGRAMMING FORM _J 

[OESCRIPT!ON-· ------~ I SHEET ] 

DATA SYMBOLIC INSTRUCTION 
COMMENT LINE ADDRS 

BO B1 B2 
LABEL OPCODE OPERANDS 

1 
2 

'"Jj 3 
..... 

cO 4 05 E9 LODI, Rl E91i'i (233J() 
s:: 
Ii 
(1) 

5 04 FF OUT LOP LOD!, RO FF 16 6.7J.1.S (255 10) 

6 A4 01 INLOOP SUBI, RO 01 (;.7,,"- 1 1(; 7(;,,"- v 7 "",d77':l R ,,,-
U1 . 7 98 7C BCFR,EQ IN LOOP 10.06uS I 
-...J 8 A5 01 SUB!, Rl 01 6.7J.1.S 

9 98 76 BCFR, EQ OUTLOP 1O.06J.1.S 
~ 10 
0 

U1 Z 
I t<:I 

I-' 

11 

12 
f',.J Ul 

t<:I 13 

8 14 
z 
t:1 15 

8 16 
H 

~ 
17 
18 

~ 19 

~ 20 
><: 21 

22 

23 

24 

DIRECT RELATIVE ADDRS: SECOND + 00 01 02 03 04 05 06 07 08 09 OA OB DC 00 OE OF " " " " " " ,. " " " ,. " " ,. " "-BYTE N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
- ....... .: 7F 7E 70 7C 7B 7 A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B 6A 69 68 67 66 65 64 63 62 61 

ADD H'80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

- 60 5F 5E 50 5C 5B 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 4B 4A 49 48 47 46 45 44 43 42 41 40 



E9 ) t " '[)" t 1 "II t" a flI and the branch to "OUTLOP" will 16 1mes, ~eg1S er W1 con a1n p 

not occur. We will have by then delayed approximately one second (233 x 

4273.8 = 995,795.4 microseconds) and the next instruction in sequence 

will be executed. 

In this example, Registers ~ and 1 were used as loop counters. That is, 

they were used to keep track of the number of times the program executed 

their respective loops. The inner loop (program segment beginning with 

the label "INLOOP") was executed 255 191 or FF16 times because FF was the 

number initially loaded into Register~. The outer loop (program seg

ment beginning with "OUTLOP") was executed E9l6 or 2331~ times since E9 

was the number originally loaded into Register 1. The actual machine 

code for these instructions is shown in the "DATA" columns of the coding 

form. Notice that only twelve bytes of memory are required, versus the 

nearly 150,000 bytes which would have been required had we elected to 

use a series of NOP instructions to form our one second delay. 

In this example, it is particularly instructive to note the second byte 

of each of the two Branch on Condition False Relative (BCFR) instruc

tions. These values were obtained directly from the Relative Address 

table provided at the bottom of the coding form. The BCFR instruction 

which branches to "INLOOP" must have a second byte which represents -4, 

as this is the value by which the program counter must be altered to 

bring it to the address "INLOOP." We see from the table the code for 

"_4" is "7C." 

The second BCFR instruction contains a value 76 in its second byte. 

This is the hex code for "-10", the value by which the Program Counter 

must be altered after executing this instruction to effect a branch to 

the location labeled "OUTLOP." 

SUBROUTINES 

In the example above, we developed a short program segment which will 

delay execution by one second. If we had a program which was to flash 

5-13 



several lights on and off for one second each, this program segment 

could be inserted in our program each time we wish to flash a light on 

and off. Rather than having to rewrite this program segment each time 

we wish to use it, it would be convenient if we could write it only once 

and branch to it from any place in our program, and then branch back to 

the main program when this program segment is complete. Such a program 

segment that is used "by various parts of the main program is called a 

subroutine. 

A subroutine may be any program segment that does some useful function 

which may be required often, such as a time delay or calculating the 

square root of a number, or reading an entry from the keyboard or dis

playing a message on the 8-digit display of your Instructor 50. 

Subroutines to perform these last two functions are part of the monitor 

program contained in your Instructor 50's Read Only Memory. These moni

tor subroutines may also be used by programs that you write. What each 

of the monitor program's subroutines does and how each may be used by 

your programs is explained in your User's Guide. 

The use of subroutines is diagrammed in Figure 5.8. 

Instructions of the main program are executed until a Branch to Sub

routine instruction is encountered. The Branch to Subroutine instruc

tion is similar to other branch instructions in that it will specify the 

address of the first instruction of the subroutine. A branch will then 

OCCur to the subroutine as indicated by the arrow labeled I in Figure 

5.8. The instructions of the subroutine are executed until a Return 

from Subroutine instruction is encountered, signalling the end of the 

subroutine. 

The next instruction must then be taken from the main program, and a 

branch must occur along path l' as indicated in Figure 5.8. The main 

program instructions are again executed until another Branch to Subroutine 

5-14 



instruction is encountered. The branch then occurs along path 2 and 

returns along path 2'. 

MAIN PROGRAM I 
INSTRUCTIONS ----

----

tBz§:ZJ:EZ§~~:~> BRANCH TO SUBROUTINE 

I 
II~ 
jill 

! 
m 

I 
.1.: 

e;.z:.:;::z:W> BRANCH TO SUBROUTINE 

~:i: 

Iii: 
::=: 

r :.i. 

Ii: 
:::; 

::.: 

iii 

:1:1 

~lj! 
":: 

r ~~~ 
;: 

BRANCH TO SUBROUTINE 

SUBROUTINE 
PROGRAM 

INSTRUCTIONS 

RETURN FROM SUBROUTINE 

:~: 
.. 1 

::~ i!i 

=j!i 

Figure 5.8 PROGRAM WITH SUBROUTINE 

/ .. 

I 

Subsequently, a third Branch to Subroutine instruction may cause a 

branch along path 3 and return along path 3'. 

There is an important difference between the Branch to Subroutine in

struction and Return from Subroutine instruction and other branch 

instructions which we have discussed earlier. This comes from the fact 

that when the subroutine is completed it is impossible for the Return 

from Subroutine instruction to specify the location of the next in

struction in the main program. This is because this location may 

change depending on where the Branch to Subroutine was encountered in 

the main program. 

5-15 



To circumvent this complication the Branch to Subroutine instruction 

operates in a special way. Instead of simply altering the Program 

Counter as is done in a normal branch instruction, the current contents 

of the Program Counter are first stored in a special register reserved 

for this purpose in the Central Processor Unit, called a Return Address 

Register. The contents of the Program Counter are then altered in the 

normal way to indicate the location of the first instruction in the 

subroutine. When the Return from Subroutine instruction is encountered 

the Central Processor Unit retrieves the location which has been stored 

in the Return Address Register and places it back in the Program Counter. 

This happens automatically as a result of executing the Return from 

Subroutine instruction. Thus, the next instruction to be executed will 

be, the next instruction in the main program following the Branch to 

Subroutine instruction. 

The process of branching to a subroutine is often called Calling a 

subroutine, and the Branch to Subroutine instruction is often called a 

Subroutine Call instruction. If a subroutine is to be used it is impor

tant to access it via the Branch to Subroutine instruction rather than 

some other jump instruction. Each subroutine must end with a Return 

from Subroutine instruction, which replaces the contents of the Program 

Counter with the contents which were stored during the corresponding 

subroutine call. 

As an example of the use of a subroutine, let's convert our time delay 

program segment into a subroutine, and locate the subroutine at memory 

location 11616. We've labeled the subroutine "TIMDLY." In the "ADDRS" 

column we've inserted the addresses in which our instructions codes are 

to be placed beginning with address l16~. See Figure 5.9. Next, let's 

write a simple program which will make use of this subroutine to flash 

the 8 LED's on your Instructor 50 operator's panel on for one second and 

then off for one second and then back on again. 

The flow chart for this program is shown in Figure 5.10. 

5-16 



ROUTINE ----- J [START ~DDR ----- - -11 PART OF PROGRAM-- -- II 2650 PROGRAMMING FORM 

DESCRIPTION II .... S_H_EE_T ___ ---a 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO B1 B2 LABEL OPCODE OPERANDS COMMENT 

1 

2 

'" ..... 3 
I.Q 
~ 4 0100 05 E9 TlMDLY LOD!, Rl E911~ (233 1 fI) 
t1 
CD 5 0102 04 FF OUT LOP LOD!, RO FF11l 6.7p.S (255 1 () 

U1 6 0104 A4 01 IN LOOP SURI, RO 01 6.7p.S 1 16.76p.S x 255=4273.8p.S . 
\0 7 0106 98 7C BCFR,EQ INLOOP 10.06p.S J 

8 0108 A5 01 SURI, Rl 01 6.7p.S 
t-3 
H 9 010A 98 76 BCFR, EQ OUTLOP 10.06p.S 

~ 
U1 
I 

~ I-' 
--..J ~ 

t< 

10 OIOC 17 RETC,UN RETURN FROM SUBROUTINE 
11 
12 
13 

til 14 
c:: 

~ 
15 
16 
17 

H 

~ 
18 
19 
20 
21 

22 
23 
24 

DIRECT RELATIVE ADDRS: SECOND + 00 01 02 03 04 OS 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 1B 1C 10 IE IF :::::::::: 
BYTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 31 ::::::::;: 

- ::::::::::! 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 ro~~~~e~~.~.~uuu~2 
ADD W80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 3B 39 3A 3B 3C 3D 3E 3F :::::;:::: 
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46~~~~~U~K~.~~~UUU 

- 60 5F 5E 50 5C 5B 5A 59 58 57 56 ~ 54 53 52 51 ~~~@~g~~46~464644UU~~ 



(SUBROUTINE) 

(SUBROUTINE) 

Figure 5.10 FLOW CHART TO FLASH LED 'S 

This flow chart may be converted into a program as shown in the coding 

form of Figure 5.11. Notice that the first two instructions in this 

program initialize the Program Status Word to a known value. 

This is generally good practice as the settings of bits in the Program 

Status Word can affect operations of other instructions in the program. 

It may be desirable, depending on the program, to initialize other CPU 

registers to known values as well. Our initialization procedure simply 

clears all the bits in the lower byte of the Program Status Word and 

sets all the bits in the upper byte of the Program Status Word. 

The next instruction, which we have labeled "LooPl" loads Register ~ 

with all ones. This value is then output to the Data I/O port with the 

WRTD instruction. We then branch to the time delay subroutine ("TIMDLY") 

at location l~~. After a one second delay we load Register ~ with an 

all ~ bit pattern and write this pattern to the Data port. 

5-18 



[--.m~T~N-E-- _. -] [START AOO;--- - -] I PART OF PROGRAM II 2650 PROGRAMMING FORM 

DESCRIPTION 1 ,-I S_H_E_ET ____ --' 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO B1 B2 
LABEL OPCODE OPERANDS 

COMMENT 

1 0000 75 FF INIT CPSL FF INITIALIZE PROG RAM STATUS 
2 0002 76 FF PPSU FF WORD 

~ 
1-'- 3 0004 04 FF LOOP 1 LOD!, RO FF TURN ON LED'S 
IQ 

R 
(l) 

4 0006 FO WRTD 

5 0007 3F 01 00 BSTA, UN TIMDLY DELAY L SECOND 

U1 6 OOOA 04 00 LOD!, RO 00 TURN OFF LED'S . 
~ 7 OOOC FO WRTD 
~ 8 DODD 3F 01 00 BSTA UN TIMDLY DELAY 1 SECOND 

9 0010 IF 00 04 BCTA,UN LOOP 1 AND REPEAT CYCLE 
"tI 

U1 ~ 
I (j) 

I-' 

~ 1.0 

10 

11 
12 

13 

<5 14 

~ 15 

~ 16 
CIl 
lJ:: 17 

f;; 
0 

18 

19 -CIl 20 
21 

22 

23 

24 

DIRECT RELATIVE ADDRS: SECOND + 00 01 02 03 04 05 06 07 08 09 OA 08 DC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 1F :;}}: 
. BYTE N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ;;;:::::::: 

- ;:;:;:;:;:; 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B SA 69 68 67 68 65 64 63 62 61 :;:::;:::;: 
ADD W80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 3O~~~~~~~ •• ~HE~.~0 
INDIRECT ADDRESS DEFINITION N ~ ~ 34 ~ 36 37 • • 40 41 42 43 44 45 46 47 4646~~62~U~~~68~~~62a64 

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 ~~~~¢GU4646U464544UG~~ 4«;: 



Again we delay for one second and then branch to the instruction labeled 

"LOOPl" which begins the sequence again. You may try this out on your 

Instructor 50 by loading the code shown in Figures 5.9 and 5.11 into 

memory and then pressing the RST button. Make sure that the three

position switch below the "Parallel Input/Output" port toward the left

hand of your Instructor 50 operator's panel is in the lower position, 

labeled "Non-Extended Data Port." 

Nested Subroutines 

Sometimes, it is convenient for a subroutine to call another subroutine, 

as illustrated in the diagram of Figure 5.12. 

MAIN { PROGRAM 
INSTRUCTIONS 

BRANCH TO SUBROUTINE A 

SUBROUTINE A 

SUBROUTINE A J •• 
INSTRUCTIONS l BRANCH TO SUBROUTINE B 

SUBROUTINE B 

SUBROUTINE B { 
INSTRUCTIONS BRANCH TO SUBROUTINE C 

SUBROUTINE C { 
INSTRUCTIONS 

RETURN FROM SUBROUTINE 

SUBROUTINE C 

RETURN FROM SUBROUTINE 

Figure 5.12 NESTED SUBROUTINES 

As the"main program executes, a Branch to Subroutine is encountered 

which branches the program to Subroutine A along branch path 1. Sub

routine A is then executed along path 2 until another Branch to Sub-

5-20 



routine instruction transfers program control along path 3, at which 

time Subroutine B begins execution along path 4. 

Soon another Branch to Subroutine instruction is encountered which 

transfers control along path 5 to Subroutine C. When Subroutine C is 

completed a branch along path 7 transfers control back to the remainder 

of Subroutine B which upon its completion transfers control along path 9 

to the remainder of Subroutine A. At the completion of Subroutine A 

control is finally transferred along path 11 to the remainder of the 

main program. 

In this example Subroutines B and C are said to be nested subroutines. 

That is, Subroutine B is nested within Subroutine A. And Subroutine C 

is nested within Subroutine B. 

When the Branch to Subroutine B occurs in Figure 5.12, the contents of 

the Program Counter must be stored in a Return Address Register. If 

there were only one Return Address Register in your 2650 microprocessor 

this would mean that the return address for Subroutine A would have to 

be lost. This is prevented in the 2650 microprocessor by providing 

eight Return Address Registers which together are called the Return 

Address Stack~ Which register of the Return Address Stack is currently 

in use is kept track of by three bits in the Program Status Word called 

SP~, SPl, and SP2. These three bits taken together may be considered to 

be a 3-bit binary number which indicates the number of the Return Address 

Register currently in use. They may be said to point to a particular 

Return Address Register, and their name, "SP," is an abbreviation for 

Stack Pointer. 

In operation, when a Branch to Subroutine instruction is encountered by 

the 2650 microprocessor, the processor first increments the value con

tained in the three bits of in the Stack Pointer. The Return Address 

for the subroutine is then stored in the Return Address Register indi

cated by the contents of the Stack Pointer. When a Return from Subroutine 

instruction is encountered the Return Address is retrieved from the 

5-21 



Return Instruction Register indicated by the Stack Pointer and the Stack 

Pointer is automatically decremented by 1. This allows nesting of 

subroutines up to 8 levels. 

INTERRUPTS 

An interrupt is similar to a subroutine call except that it is not 

initiated by a Branch to Subroutine instruction. It is instead, initiated 

by a logic signal applied to one of the pins of the 2650 microprocessor. 

At any time and during the execution of any instruction this pin which 

is called "INTREQ" for "Interrupt Request," may make a transition from a 

logic 1 to a logic~. The effect of this is similar to the effect of 

inserting a Branch to Subroutine instruction following the instruction 

during which the transition from a logic 1 to a logic ~ occurs. 

In your Instructor 50, the subroutine is expected to start at location 7 

in memory. Since this subroutine occurs in response to an interrupt request, 

it is called an interrupt service routine. On your Instructor 50 the 

interrupt signal may be activated by pushing the button labeled INT on 

the Instructor 50 function keyboard. This is true so long as the 

INTERRUPT SELECTOR switch on the bottom of your Instructor 50 is in the 

KEYBOARD position. If the INTERRUPT SELECTOR switch is in the AC LINE 

position an interrupt signal will be generated for each cycle of the 

power line applied to your Instructor 50. In other words, in the 

United States an interrupt request will be generated 60 times each 

second, and in Europe 50 times each second, if the Interrupt Selector 

switch is in the AC LINE position. 

Response to an Interrupt Request will only occur if the Interrupt Inhibit 

bit in the Program Status Word is a~. If this bit contains a 1 and an 

Interrupt Request occurs, it will not be serviced until the Interrupt 

Inhibit bit is changed to a ~, as by execution of a CPSU instruction. 

To illustrate the use of interrupts in your Instructor 50 let's write a 

simple program to change the state of the LED's of the parallel I/O port 

5-22 



whenever the Interrupt button is depressed. Our flow chart might look 

like the one shown in Figure 5.13. 

Figure 5.13 PROGRAM USING INTERRUPT 

First, we will initialize the Program Status Word to make sure that the 

Interrupt Inhibit bit is set to a~. Then we will place the value FF in 

Register f6, and output the contents of Register f6 to the "Non-Extended 

Data" port, thus turning on all the LED's. We will continue looping on 

the last block of this flow chart waiting for an interrupt to occur. 

When the interrupt occurs, the Interrupt Service Routine will complement 

the value in Register f6 and return to the main program. Thus, when the 

Interrupt button is pressed the first time all of the LED's will go off. 

When it is pressed the second time they will go on. Figure 5.14 shows 

this program converted into actual machine code on a coding form. 

The instructions in locations f6 and 2 initialize the Program Status 

Word. The instruction at location 4 branches beyond the Interrupt 

Service Routine which must begin at location 7. The main program begins 

at location A which we have labeled "Resume." It initializes Register 

f6 to contain an FF and then outputs the contents of Register ~ to the 

"Non-Extended Data" port. Finally, the program branches back to the 

output instruction, whose location we have labeled "OUTPUT." The WRTD 

and BeTA instructions will be executed in a loop until an interrupt 

occurs. At that time the Exclusive-Or Immediate instruction, (EORI) 

will complement all of the bits in Register f6. The Return and Enable 

5-23 



ROUTINE I [STAR~~~oo- .. -] I PART OF ~-OGR~-- II 2650 PROGRAMMING FORM 

DESCRIPTION IIL-S_H_E_E_T ____ ~ 

>:rJ 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS 

BO B1 B2 
LABEL OPCODE OPERANDS 

COMMENT 

1-" 
<Q 

1 0000 74 FF CPSU FF INITIALIZE PSW 
s:: 
Ii 
Cl> 

2 0002 75 FF CPSL FF 
3 0004 IF 00 OA BCTA,UN RESUME BRANCH AROUND SERVICE ROUTINE 

(JI 4 0007 24 FF INTSRV EORI, RO FF INTERRUPT SERVICE . 
I-' 

"'" 
5 0009 37 RETE UN ROUTINE 

6 OOOA 04 FF RESUME LOOl, RO FF i'INITIALIZE RO TO FF 

8 
@ 

7 OOOC FO OUTPUT WRTD OUTPUT CONTENTS OF RO 

8 OOOD IF 00 OC BCTA,UN OUTPUT AND WAIT FOR INTERRUPT 

9 
>:rJ 
0 (JI :;0 

I 

10 

11 
N '1j 

"'" el 
G1 

12 

13 

~ 14 

15 
c:: 
Ul 

16 
H 
Z 17 
G1 18 
H 
Z 

19 

~ 20 
:;0 

e1 
~ 

21 

22 

23 

24 

DIRECT RELATIVE ADDRS: SECOND .. 00 01 02 03 04 05 06 07 08 09 OA OB DC 00 OE OF " " " " " " " " " " ,. " " ,. " "-BYTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
- 7F 7E 70 7C 7B 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 6B 6A 69 6B 67 66 65 64 63 62 61 

ADD H'80' TO DISPLACEMENT FOR + 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 38 3C 3D 3E 3F 
INOIRECT ADDRESS OEFINITION N 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 48 4A 49 48 47 46 45 44 43 42 41 40 



instruction is the same instruction used to return from subroutines. It 

will allow the main program to continue with the Inhibit Interrupt bit 

in the Program Status Word set to a ~. 

You are encouraged to load this code into your Instructor 50's memory 

and try it out. Make sure tpa,t the "Direct-Indirect Interrupt" switch 

is placed in the "Direct" position for this program to work. Also, be 

sure that the INTERRUPT SELECTOR switch on the bottom of your Instructor 

50 is placed in the KEYBOARD position, and that the 3-position switch 

below the eight LED's on the left hand side of your Instructor 50 opera

tor's panel is placed in the downward position, labeled "Non-Extended 

Data" port. This allows the LED's to be activated by the WRTD instruction. 

Each time you press the Interrupt button, the eight-LED's should assume 

the condition opposite to what they have previously been. While the 

program is running place the switch on the botton of your Instructor 50 

into the AC LINE position. You should see the LEOs flickering rapidly, 

turning on and off as each cycle of the power line generates an Interrupt 

Request signal. The DESKCLOCK program on your Instructor 50 Introductory 

Cassette makes use of the AC LINE Interrupt to keep track of time. Each 

60 interrupts (50 in Europe) mark the passage of one second of time. 

If we wish to modify this program to use Indirect Interrupting, this may 

be done as shown in Figure 5.15. This is similar to the coding for 

Figure 5.14, except that in location 7 we have placed not the first 

instruction of our Interrupt Service Routine but the address of the 

first instruction of our Interrupt Service Routine. We have selected 

~l~~ as this address. Then at location l~~ in memory we have placed the 

code for the actual Interrupt Service Routine. For this version of the 

program to execute properly on your Instructor 50 the INTERRUPT switch 

just to the lower left hand side of the function keyboard must be in the 

INDIRECT position. Try this modification and verify that it works as 

well. 

5-25 



I'Zj ...,-
'§ 
I; 
(1) 

U1 . 
I-' 
U1 

8 
~ 
I'Zj 
0 
!XI 
ttf 

U1 ~ , (j) 

'" ~ m 

c::: 
Ul 
H 

~ 

!zl 
0 
H 

~ 
(') 
8 
H 
~ 

~ 

~ 
ttf 
8 

ROUTINE I §T-~~~-R 1 [PART OF PROGRAM . ul ~PROGRAMMING FORM 

DESCRIPTION 1 .... 1 S_H_E_E_T ____ ...I 

DATA SYMBOLIC INSTRUCTION 
LINE ADDRS BO B1 B2 LABEL OPCODE OPERANDS COMMENT 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 0000 74 FF CPS U FF INITIALIZE PSW 
12 0002 75 FF CPS L FF t-';.:.....:;..~=~;..;;:...;.'-------------1 

13 0004 IF 00 OA BCTA, UN RESUME BRANCH AROUND SERVICE ROUTINE 
14 0007 0 I 00 INTSRV EORI , RO FF {ADDRESS OF INTERRUPT 

15 ROUTINE 

16 OOOA 04 FF RESUME LODI, RO FF r- INITIALIZE RO TO FF 
r-~=~~~~~~~----------------~ 

17 oooe FO OUTPUT WRTD OUTPUT CONTENTS OF RO 
18 OOOD IF 00 OC BCTA, UN OUTPUT AND WAIT FOR INTERRUPT 

19 
20 0100 24 FF INTSRV EORI, RO FF I--=IN-'-CT;..::E=R.;;.;:R-"'U:..;;P'-"T'-'S=E=R.:...V'-"I:..:.C.;::.E __________ -I 
21 0102 37 RETE, UN ROUTINE 

22 
23 
24 

~--------------------------------~ 

DIRECT RELATIVE ADDRS: SECOND'" 00 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 1F ,:,:,::::> 
8YTE N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 :,:,:,:,:> 

- ,::::::: 7F 7E 70 7C 78 7A 79 78 77 76 75 74 73 72 71 70 6F 6E 60 6C 68 6A 69 68 67 68 65 64 63 62 61 }::::::: 
ADD H'80' TO DISPLACEMENT FOR ... 20 21 22 23 24 25 26 27 28 29 2A 28 2C 20 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F ::::::::::: 
INDIRECT ADDRESS DEFINITION N 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64·· 

- 60 5F 5E 50 5C 58 5A 59 58 57 56 55 54 53 52 51 50 4F 4E 40 4C 48 4A 49 48 47 46 45 44 43 42 41 40 



Note: 

CHAPTER VI 

Since its inception, Chapter Six of this introductory 

manual has been expanded considerably in scope. As 

a convenience to our customers, it is now being 

printed as a separate manual entitled, "The Instructor 

50 111 Computer Applications Manual." 





GLOSSARY 

ACCUMULATOR 

A register of the Arithmetic Logic Unit (ALU) of a central processor 

used as intermediate storage during the formation of algebraic sums, or 

for other intermediate logical and arithmetic operations. 

Register and related circuitry that holds one operand for arithmetic and 

logical operations. 

ADDRESS 

A unique label, name, or number that identifies a memory location or a 

device register for access by a computer. 

A number used by the CPU to specify a location in memory. 

ADDRESSING MODE 

The method of specifying the memory location of an operand. Common 

addressing modes are: REGISTER, IMMEDIATE, ABSOLUTE, RELATIVE, INDIRECT, 

AND INDEXED. These modes are important factors in program efficiency. 

ALGORITHM 

A prescribed set of well-defined rules or processes for the solution of 

a problem. Algorithms are implemented on a computer by a programmed 

sequence of instructions. 

ASSEMBLER PROGRAM 

A computer program which converts a symbolic assembly language program 

into an executable object (binary-coded) program. 

ASSEMBLY LANGUAGE 

A huma~ oriented symbolic-mnemonic source language which is used by the 

programmer to encode programs and associated data bases. Assembly 

language programs are read by the assembler and converted to executable 

machine language programs during the assembly processes. Assembly 

language is easier to remember and manipulate than machine language. 

i 



BIT 

Aminimurn logic element. A binary number of either ~ or 1. A bit is 

the smallest unit of information in a binary system of notation. It is 

the choice between two possible states, usually designated one (1) and 

zero (~). 

BYTE 

A set of contiguous binary bits, usually eight, which are operated on as 

a unit. A byte can also be a subset of a computer word. 

BUSS 

An electrical conductor or group of electrical conductors which provide 

a communication path between two or more devices, such as between a 

central processor, memory, and peripherals. 

CALLING 

See "SUBROUTINE CALL." 

CLEARING 

Setting to binary zero, as with a register or an individual bit. 

CONDITIONAL BRANCH INSTRUCTION (Also Conditional Jump) 

An instruction causing a program transfer to an instruction location 

other than the next sequential instruction only if a specific condition 

tested by the instruction is satisfied. If the condition is not satis

fied, the next sequential instruction in the program line is executed. 

CONDITIONAL LOOP 

A loop which mayor may not be executed depending on a condition tested 

by a Conditional Branch Instruction. 

CONTENTS 

The binary value stored in a flip/flop, register, or memory location. 

ii 

1-



CPU 

Central Processing Unit. Usually contains the Timing and Control section 

and the Arithmetic and Logic section of a computer. 

DECISION BLOCK. 

A diamond shaped element in a flow chart which initiates one of two 

possible actions based on the results of a decision. When translated to 

assembly language, it will include a Conditional Branch Instruction. 

EXECUTE 

To perform a specified computer instruction. To run a program. 

FETCH 

1) The action of obtaining an instruction from a stored program and 

decoding that instruction. Also refers to that portion of a computer's 

instruction cycle when that action is performed. 

2) A process of addressing the memory and reading into the CPU the 

information word, or byte, stored at the addressed location. Most 

often, fetch refers to the reading out of an instruction from the 

membry. 

FIRMWARE 

A computer program stored in Read-Only-Memory (ROM). 

FLIP/FLOP 

A circuit whose output may be set to either a 1 or a ~ by manipulating 

its inputs in a specific sequence. The output is then retained until 

this specific manipulation is performed again. A flip/flop is used to 

store one bit of information. 

FLOWCHART 

A graphical representation of the processing steps performed by a computer 

program or of the sequence of logic operations implemented in hardware. 

iii 



HARDWARE 

The physical material comprising a computer or other electronic system. 

HEXADECIMAL 

The base 16 number system using ~, 1, • • • , A, B, C, 0, E, F to represent 

all the possible values of a 4-bit digit. The decimal equivalent is ~ 

to 15. Two hexadecimal digits can be used to specify a byte. 

INDEX REGISTER 

A register that contains a quantity which may be used to modify the 

memory address specified by an instruction. 

INDEXED ADDRESSING 

An addressing mode in which the address part of an instruction is modified 

by the contents in an auxiliary (index) register during the execution of 

that instruction. 

INDEXING 

The process of using an Index Register. 

INDIRECT ADDRESSING 

An addressing mode in which the address of the operand of an instruction 

is specified by the contents of memory location(s). The address of the 

memory location(s) is, in turn, specified by the instruction. 

INPUT 

Signals entering a computer, circuit, or system from the outside world. 

INPUT/OUTPUT PORT 

A device for connecting a computer to the outside world. 

INSTRUCTION 

A set of bits that defines a computer operation, and is a basic command 

understood by the CPU. It may move data, do arithmetic and logic functions, 

control I/O devices, or make decisions as to which instruction to execute 

next. 
iv 



INTERRUPT 

An interrupt involves the suspension of the normal programming routine 

of a microprocessor in order to handle a sudden request for service • 

. The importance of the interrupt capability of a microprocessor depends 

on the kind of applications to which it will be exposed. When a number 

of peripheral devices interface the microprocessor, one or several 

simultaneous interrupts may occur on a frequent basis. Multiple inter

rupt requests require the processor to be able to accomplish the fol

lowing: to delay or prevent further interrupts; to break into an interrupt 

in order to handle a more urgent interrupt; to establish a method of 

handling interrupt priorities; and, after compl~tion of interrupt 

service, to resume the interrupted program from the point where it was 

interrupted. 

INTERRUPT SERVICE ROUTINE 

Similar to a Subroutine, except that it is initiated by a physical 

signal, called an Interrupt Request, rather than a Branch to Subroutine 

Instruction. 

INTERRUPT REQUEST 

A logic signal applied to the CPU which initiates an Interrupt Service 

Routine. 

JUMP 

1) An instruction which, when executed, can cause the computer to fetch 

the next instruction to be executed from a location other than the next 

sequential location. Synonymous with branch. 

2) A departure from the normal one-step incrementing of the program 

counter. By forcing a new value (address) into the program counter, the 

next instruction can be fetched from an arbitrary location (either 

further ahead or back). For example, a program jump can be used to go 

from the main program to a subroutine, from a subroutine back to the 

main program, or from the end of a short routine back to the beginning 

of the same routine to form a loop. See also BRANCH INSTRUCTION. If 

you reached this point from branch, you have executed a jump. Now 

return. 

v 



LABEL 

A name used to represent a specific location in memory. Labels are 

often used in writing assembly language programs because a) the specific 

location may not be known while the program is being written but may be 

easily identified later by its label and b) the use of labels makes 

assembly language programs easier to read and understand. 

LATCHES 

Flip/flops. 

LEAST SIGNIFICANT 

Of lowest value. The right-most digits of a number. 

LISTING 

A printout of a computer program or data. 

LOCATION 

A specific storage position in memory, identified by its address. 

LOGIC SIGNAL 

An information signal which transmits one of two possible states or 

meanings. 

LOOP 

A program segment which is executed repeatedly, usually until some 

condition is satisfied. 

LOOP COUNTER 

A register which keeps track of the number of times a loop has been 

executed. 

LOWEST ORDER 

Least significant. 

vi 



MACHINE LANGUAGE 

The numeric form of specifying instructions ready for loading into 

memory and execution by the machine. This is the lowest level language 

in which to write programs. The value of every bit in every instruction 

in the program must be specified (e.g., by giving a string of binary, 

octal, or hexadecimal digits for the contents of each word in memory). 

MEMORY 

A general .term which refers to any storage media for binary data. Basic 

memory functional types include read/write and read-only. 

That part of a computer that holds data and instructions. Each instruc

tion or datum is assigned a unique address that is used by the CPU when 

fetching or storing the information. 

MNEMONIC 

Computer instructions written in brief, easy-to-learn, symbolic or 

abbreviated form. Mnemonic code is also recognizable by the assembly 

program. For example, ADD, SUB, CLR, and MOV are mnemonic codes for 

instructions which will be executed as machine code. 

MULTIPLEXOR 

A device which allows several signals to share a single transmission 

path. Typically, a multiplexor is similar to a switch which allows any 

one of several inputs to be connected to its output. 

NESTED SUBROUTINE 

A subroutine which is called by another subroutine. The called sub

routine is said to be nested within the calling subroutine. 

OBJECT CODE/OBJECT PROGRAM 

The binary form of a source program produced by an assembler or a 

compiler. The object program is composed of machine-coded instructions 

that the computer can execute. 

vii 



OPERAND 

The data on which an instruction is to operate. 

POINT TO 

The act of specifying a particular memory location or register. For 

instance, a register which contains the address of a memory location is 

said to point to that location. 

PORT 

See "INPUT/OUTPUT PORT." 

PROCESSING THE DATA 

Manipulating or operating on data as directed by a computer program. 

PROGRAM 

A complete sequence of computer instructions necessary to solve a specific 

problem, perform a specific action, or respond to external stimuli in a 

prescribed manner. As a verb, it means to develop a program. 

PROGRAM STATUS WORD (PSW) 

A special-purpose register within the 2650 processor that contains 

status and control bits. It is 16 bits wide and is divided into two 

bytes called Program Status Upper (PSU) -and the Program Status Lower 

(PSL) • 

PSEUDO-OPERATION 

Also called "pseudo instruction," "assembler directive," or "Pseudo-Op." 

This appears to be an instruction written in assembly language. However, 

instead of translating directly into a machine instruction, it provides 

information for the assembler to use in the process of translating other 

assembly language instructions into machine language. 

RANDOM ACCESS MEMORY 

1) Memory in which any random location may be easily accessed. 

viii 



2) Usually implies that any location may be written into, as well as 

read from. (See Read-Only Memory) 

READ-ONLY MEMORY 

A memory whose data is permanently stored at the time of manufacture. 

Data contained in it may be read, but new data may not be stored. 

REGISTER 

A storage location for a group of one or more bits; especially within a 

cPU. 

RETURN ADDRESS REGISTER 

A register used to save the address of the instruction to be executed 

following the execution of (and return from) a subroutine. 

SOFTWARE 

Computer programs. 

SOURCE CODE/SOURCE PROGRAM 

A program coded in other than machine language (in assembly or compiler 

language) that must be translated into machine language for use. Assembly 

and compiler language programs are human readable whereas object programs 

are machine readable. 

STACK POINTER 

In the 2650 microprocessor, a 3-bit value stored in the Program Status 

Word which points to the Return Address Register which is currently in 

use on the Return Address Stack. 

SUBROUTINE 

1) A short program segment which performs a specific function and is 

available for general use by other programs and routines. 

2) A subprogram (group of instructions) reached from more than one 

place in a main program. The process of passing control from the main 

program to a subroutine is a subroutine call, and the mechanism is a 

ix 



subroutine linkage. Often data or data addresses are made available by 

the main program to the subroutine. The process of returning control 

from subroutine to main program is subroutine return. The linkage auto

matically returns control to the original position in the main program 

or to another subroutine. 

3) Programming technique that allows the same instruction sequence or 

subprogram to be given control and used repeatedly by other sections of 

the program. 

SUBROUTINE CALL 

Transferring program control to a Subroutine while saving the location 

of the instruction to be executed following the Subroutine in a Return 

Address Register. 

TIMING PULSE 

A short transition of a logic signal to its opposite state and back 

again which is used to trigger some event. 

TWO'S COMPLEMENT 

A system of binary notation which can represent both positive and negative 

quantities. In two's complement notation, the most significant bit 

represents the sign of the quantity (~ for positive, I for negative) and 

the remaining bits represent its magnitude. To find the negative equivalent 

of a two's complement number invert all of its bits and add I to the 

result (complement and increment). 

WORD 

A set of binary bits handled by the computer as the primary unit of 

information. The length of a computer word is determined by the hardware 

design. Typically, each system memory location contains one word. 

x 



c: .... 
:J ..... 
~' 

"0 , 
c: , 

'" ..... ..... 
o 
.... 
"'. 
~ 

COMMENT SHEET 

TITLE: 

REVISION: 

This form is not intended to be used as an order blank. Signetics Corporation solicits your comments about this 

manual with a view to improving its usefulness in later editions. 

Applications for which you use this manual. 

Do you find it adequate for your purpose? 

What improvements to this manual do you recommend to better serve your purpose? 

Note specific errors discovered (please include page number reference). 

General comments; 

FROM NAME: POSITION: 
------------------------------------------~~~~~~--------------------------

COMPANY 
NAME: ____________________________________________________________ __ 

ADDRESS:, ____________________________________________________________ _ 

FOLD ON DOTTED LINES AND STAPLE 



STAPLE 

FOLD 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

!i!!)OotiC!i 
a subsidiary of U.S. Philips Corporation 

Signetics Corporation 
P.O. Box 9052 

811 East Arques Avenue 
Sunnyvale, California 94086 

Bin No. 038 MOS Microprocessor Division 

FOLD 

STAPLE 

STAPLE 

STAPLE 

FOLD 

FIRST CLASS 
PERMIT NO. 166 

SUNNYVALE, CALIF. 

FOLD 

, 

I. 

It 
I 
i 





!ii!llllliC!i 
a subsidiary of U.S. Philips Corporation 

Signetics Corporation 
P.O. Box 9052 

811 East Arques Avenue 
Sunnyvale, california 94086 

Telephone 4081739-7700 

It 
I'~ 
I" 
i' 

h-
\' 
I· 
I 
I 


