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Preface

Preface

This document contains the following parts:

m  Chapter 1, “Architecture Overview,"” provides a general description of the TriCore architecture and
its features.

m Chapter 2, “Programming Model,” describes the data formats, data types, addressing modes,
and memory model of the TriCore architecture.

m Chapter 3, “Core Registers,” describes the core registers, which are categorized according to
function.

m Chapter 4, "Managing Tasks and Functions,” describes the TriCore’s task management opera-
tion.

m Chapter 5, “Interrupt System,” describes the elements of the TriCore interrupt system including
arbitration, the priority level scheme, and interrupt handling.

m Chapter 6, “Traps,” lists the eight classes of traps and describes how the TriCore architecture
handles traps.

m Chapter 7 “Protection System,” describes the components of the TriCore protection system in-
cluding access permissions and the connection to the debug system.

m Chapter 8, “Instruction Set Overview,” describes the instructions by type.

m Chapter 9, “TriCore Instruction Set,” describes the individual TriCore instructions.
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Where to Look for More Information

Additional information about the TriCore product line can be found in the following publications.
Please call your regional sales office to request these publications.

m TriCore Instruction Set Simulator User’s Guide
m TriCore Architectural Overview Handbook
® Introducing TriCore (Brochure)

m TriCore Development Tools (Brochure)
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Architecture Overview

TriCore is the first single-core 32-bit microcontrollerDSP architecture optimized for real-time embed-
ded systems. TriCore unifies the best of three worlds—real-time capabilities of microcontrollers, the
computational prowess of DSPs, and the highest performance/price implementations of RISC load-
store architectures.

Figure 1 shows a high-level view of the TriCore architecture.

Bit-fieid, Bit-iogical,
Min/Max, Comparison,
Branch

MAC, Saturated Math, DSP
Addressing Modes, SIMD
Packed Arithmetic

Arithmetic, Logic, Address
Arithmetic & Comparison,
Load/Stare, Context Switch

Load/Store, Arithmetic,
Branch

Floating-Point

Figure 1: TriCore: A Modular Instruction Set Architecture

The architecture supports a uniform, 32-bit address space, with memory-mapped I/Q. It allows for a
wide range of implementations, ranging from simple scalar to superscalar. Furthermore, the ISA is
capable of interacting with different system architectures, including those with multiprocessing. This
flexibility at the implementation and system levels allows for different trade-offs between perfor-
mance and cost at any point in time.

To support TriCore implementations with 32-bit instructions and simplified instruction fetching, the
entire TriCore architecture is represented in 32-bit instruction formats. In addition, the architecture in-
cludes 16-bit instruction formats for the most frequently occurring instructions. These instructions

TriCore Architecture Manual 3
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significantly reduce code space, lowering memory requirements, system cost, and power consump-
tion.

Real-time responsiveness is largely determined by interrupt latency and context-switch time. The
high-performance architecture minimizes interrupt latency by avoiding long multicycle instructions
and by providing a flexible hardware-supported interrupt scheme. Furthermore, the architecture sup-
ports fast context switching.

11 TriCore Architecture Feature Overview

The following list summarizes the basic features of the TriCore architecture.
32-bit architecture

4-GByte unified data, program, and input/output address space
16-/32-bit instructions for reduced code size

Low interrupt latency

Fast automatic context switching

Multiply-accumulate unit

Saturating integer arithmetic

Bit handling

Packed data operations

Zero-overhead loop

Flexible power management

Byte and bit addressing

Little-endian byte ordering

Support for big- and little-endian byte ordering at bus interface

Precise exceptions

Flexible interrupt prioritization scheme

1.2 Program State Registers

The TriCore program state registers consist of 32 general-purpose registers (GPRs), two 32-bit regis-
ters with program status information (PCXI and PSW), and a program counter (PC). PCXI, PSW, and
PC are core special function registers (CSFRs).

4 TriCore Architecture Manual
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3 0 3 0 31 0
A5 (Implicit Base Addr) D15 (Implicit Data) PCXI
Al4 D14 PSW
A13 D13 PC
A12 D12
A1 (Return Address) pn
A10 (Stack Painter) D10 Ss
Ag D9 £§
A8 08 £°
A7 D7
A6 [3
A5 D5
A D4
A3 D3
A2 D2
Al D1
A0 D0
Address Data System

Figure 2: Program State Registers

The 32 general-purpose registers are divided into 16, 32-bit data registers (DO through D15) and 16,
32-bit address registers (A0 through A15). Four GPRs have special functions: D15 is used as an im-
plicit data register, A10 is the stack pointer (SP), A11 is the return address register, and A15 is the im-
plicit base address register.

Registers A0 and A1 in the lower address registers and A8 and A9 in the upper address registers are
defined as SYSTEM GLOBAL REGISTERS. These registers are not included in either context partition, and
are not saved and restored across calls or interrupts. The operating system normally uses them to re-
duce system overhead.

The PCXI and PSW registers contain status flags, previous execution information, and protection in-
formation.

Refer to Chapter 3, “Core Registers,” for complete information on each register.

1.3 Data Types

The TriCore instruction set supports operations on booleans, bit strings, characters, signed fractions,
addresses, signed and unsigned integers, and single-precision floating-point numbers. Most instruc-
tions work on a specific data type, while others are useful for manipulating several data types.

Refer to Section 2.1, “Data Types,” and Section 2.2, "Data Formats,” for more specifics on the data
types and formats, respectively.

TriCore Architecture Manual 5
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1.4 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data elements with-
in data structures like records, randomly and sequentially accessed arrays, stacks, and circular buff-
ers. Simple data elements are 1, 8, 16, 32, or 64 bits wide.

The addressing modes provide efficient compilation of C, easy access to peripheral registers, and ef-
ficient implementation of typical DSP data structures (circular buffers for filters and bit-reversed in-
dexing for FFTs). The following seven addressing modes are supported in the Trillium architecture.

B Absolute

Base + Short Offset

Base + Long Offset
Pre-increment or decrement
Post-increment or decrement

Circular

Bit Reverse

Refer to Section 2.4, "Addressing Model,” for more details on each addressing mode.

1.5 Instruction Formats

The TriCore architecture supports both 16- and 32-bit instruction formats. All instructions have a 32-
bit format; the 16-bit instructions are a subset of the 32-bit instructions, chosen because of their fre-
quency of use and are included to reduce code space.

Refer to Chapter 8, “Instruction Set Overview,” and Chapter 9, “TriCore Instruction Set,” for more
detailed information on the 16-bit and 32-bit instruction formats.

1.6 Tasks and Contexts

Throughout this book, the term TAsk refers to an independent thread of control. There are two types
of tasks: SOFTWARE-MANAGED TASKS {SMTS) and INTERRUPT SERVICE ROUTINES (ISRs). Software-man-
aged tasks are created through the services of a real-time kernel or OS, and dispatched under the
control of scheduling software. ISRs are dispatched by hardware in response to an interrupt. In this
architecture, ISR refers only to the code that is invoked by the hardware directly. Software-managed
tasks are sometimes referred to as USER TASKS, assuming that they will execute in user mode.

Each task is allocated its own permission level. The individual permissions are enabled/disabled pri-
marily by IO mode bits in the Program Status Word (PSW).

Associated with any task is a set of state elements known collectively as the task’'s CONTEXT. The
context is everything the processor needs in order to define the state of the associated task and en-
able its continued execution. It includes the CPU general-purpose registers that the task uses, the

6 TriCore Architecture Manual
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task’s program counter (PC), and its Program Status Information (PCXI and PSW). The TriCore archi-
tecture efficiently manages and maintains the tasks’ contexts through hardware.

Chapter 4, “Managing Tasks and Functions,” provides more details on task management. The
registers associated with task management are described in Section 3.4, “Context Management
Registers.”

1.61 Upper and Lower Contexts

The context is subdivided into the UPPER CONTEXT and the LOWER CONTEXT, as illustrated in Figure 3.
The upper context consists of the upper address registers, A10 - A15, and the upper data registers,
D8 - D15. These registers are designated as non-volatile, for purposes of function calling. The upper
context also includes the PCX| and PSW registers.

Architecture
Overview

The lower context consists of the lower address registers, A2 through A7, the lower data registers,
DO through D7, and the PC.

Both upper and lower contexts include a LINK WORD. Contexts are saved in fixed- size areas (see next
section); they are linked together via the link word.

The upper context is saved automatically on interrupts and is restored on returns. The lower context
is saved and restored explicitly by the interrupt service routine (ISR) if the ISR needs to use more reg-
isters than provided by the upper context.

Refer to Chapter 4, “Managing Tasks and Functions,” for more information.

Lower Context Upper Context

D7 D15

D6 D14

D5 D13

D4 D12

D3 om

D2 D10

D1 D9

] D8

A7 A5

A6 A4

A5 A13

A A12

A3 A11(RA)

A2 A10(SP)

Saved PC PSW

PCXI (Link Word) PCXI {Link Word)

Figure 3: Upper and Lower Contexts
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1.6.2 Context Save Areas

The Trillium architecture uses linked lists of fixed-size CONTEXT SAVE AREAS (CSAs), which accommo-
date systems with multiple interacting threads of control. A CSA is 16 words of on-chip memory stor-
age, aligned on a 16-word boundary. A single CSA can hold exactly one upper or one lower context.
Unused CSAs are linked together on a free list. They are allocated from the free list as needed, and
returned to it when no longer needed. The processor hardware handles the allocation and freeing.
They are transparent to the applications code. Only the system start-up code and certain OS excep-
tion handling routines need to access the CSA lists and memory storage explicitly.

1.6.3 Fast Context Switching

To increase performance, the TriCore architecture implements a uniform context-switch mechanism
for function calls, interrupts, and traps. In all cases, the task’s upper context is automatically saved
and restored by hardware; saving (and restoring) the lower context is left as an option for the new
task.

Fast context switching is further enhanced by the TriCore’s uniqgue memory subsystem design,
which allows transfers of up to 16 data words between processor registers and memory, thus per-
mitting the entire context to be saved in one operation.

1.7 Interrupt System

In this manual, a SERVICE REQUEST is defined as an interrupt request from a peripheral, a DMA re-
guest, or an external interrupt. For simplicity, a service request may also be referred to as an in-
terrupt.

The entry code for the ISR is a block within a vector of code blocks. Each code block provides an en-
try for one interrupt source. Each source is assigned a priority number. All priority numbers are pro-

grammable. The service routine uses the priority number to determine the location of the entry code

block.

The prioritization of service routines enables nested interrupts. A service request can interrupt the
servicing of a lower priority interrupt. Interrupt sources with the same priority cannot interrupt each
other.

Refer to Chapter 5, “Interrupt System,” for more information on service requests and the interrupt
system.

1.8 Trap System

A trap occurs as a result of an exception within one of the following eight classes:
B Reset
B Internal Protection

W Instruction Errors

8 TriCore Architecture Manual
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Context Management
Internal Bus and Peripheral Errors
Assertion

System Call

Non-Maskable Interrupt

The entry code for the trap handler is comprised of a vector of code blocks. Each code block provides
an entry for one trap. When a trap is taken, the trap’s Trap Identification Number (TIN) is placed in
data register D15. The trap handler uses the TIN to identify precisely the cause of the trap. The trap
with the lowest TIN wins during arbitration.

Refer to Chapter 6, “Traps,” for more information.

1.9 Protection System

The protection system allows the programmer to assign access permissions to memory regions for
both data and code. This capability is useful for protecting core system functionality from bugs that
may have slipped through testing and from transient hardware errors.

The TriCore's protection system also provides the essential features needed to isolate errors, and
thus facilitates debugging.

The registers associated with the protection system are defined in Section 3.8, “Memory Protection
Registers.” Chapter 7, “Protection System,” describes the Memory Protection System in more de-
tail. A list of Debug registers is located in Section 3.9, “Debug Registers.”

1.9.1 Permission Levels

The TriCore’s embedded architecture allows each task to be allocated the specific permission level it
needs to perform its function. Individual permissions are enabled through the IO mode bits in the
Program Status Word (PSW). The three permission levels are User-0, User-1, and Supervisor:

B UsER-0 MODE is used for tasks that do not access peripheral devices. Tasks at this level do not
have permission to enable or disable interrupts.

B UsER-1 MODE is used for tasks that access common, unprotected peripherals. Accesses typically
include read/write accesses to SIO ports and read accesses to timers and most I/O status regis-
ters. Tasks at this level may disable interrupts.

B SUPERVISOR MODE permits read/write access to system registers and protected peripheral devic-
es.

1.9.2 Protection Model

The memory protection model for the TriCore architecture is based on address ranges, where each
address range has an associated permission setting. Address ranges and their associated permis-
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sions are specified in two to four identical sets of tables residing in core SFR (CSFR) space. Each set
is referred to as a PROTECTION REGISTER SET (PRS).

When the protection system is enabled, the TriCore checks every load/store or instruction fetch ad-
dress for legality before performing the access. To be legal, the address must fall within one of the
ranges specified in the currently selected PRS, and permission for that type of access must be
present in the matching range.

110 Reset System

Most of the reset functions and options are located external to the core and are not described in this
architecture manual. Several events can force a reset of the TriCore device:

B PowerOn Reset: activated through an external pin when the power to the device is turned on
(cold reset).

B Hard Reset: activated through an externai pin during run time (warm reset).

B Soft Reset: activated through a software write to a reset request register. This register has a spe-
cial protection mechanism to prevent accidental accesses. Implementation-specific controls in
this register facilitate either a partial or a full reset of the device.

B Watchdog Timer Reset: activated through an error condition detected by a watchdog timer.
B Wake-up Reset: activated through an external pin to wake the device from a power saving mode.

A reset status register allows the core to check which one of the different triggers caused the reset.

111 Debug System

The TriCore contains mechanisms and resources to support on-chip debugging. These are used by

the Debug Control Unit, which is an off-core module. Most functions and details of the Debug Con-
trol Unit are implementation specific. Thus, this document does not provide further descriptions of

the debug control unit and its associated registers. Please contact your local Siemens sales office for
literature information.
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Programming Model

This chapter discusses the following aspects of the TriCore architecture that are visible to software:
the supported data types, the formats of the data types in registers and memory, the various ad-
dressing modes that the architecture provides, and the memory model.

2.1 Data Types

The TriCore instruction set supports operations on booleans, bit strings, characters, signed fractions,
addresses, signed and unsigned integers, and single-precision floating-point numbers. Most instruc-
tions operate on a specific data type, while others are useful for manipulating several data types.

Boolean A boolean is either TRUE or FALSE. TRUE is the value one (1) when generated and
non-zero when tested; FALSE is the value zero (0). Booleans are produced as the
result in comparison and logic instructions, and are used as source operands in
logical and conditional jump instructions.

Bit String A bit string is a packed field of bits. Bit strings are produced and used by logical,
shift, and bit field instructions.

Character A character is an eight-bit value that is a very short unsigned integer. No specific
coding is assumed.

Signed Fraction  The TriCore architecture supports 16-bit signed fractional data for DSP arithmetic.
Data values in this format have a single, high-order sign bit, with a value of 0 or -1,
followed by an implied binary point and fraction. Thus their values are in the range
[-1,1). When stored in registers, fractional data occupies the register’s most-signif-
icant 16 bits, with the least-significant 16 bits set to zeros.

Address An address is a 32-bit unsigned value.

Signed/Unsigned Integers

Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned in-
tegers are sign-extended or zero-extended to 32 bits when loaded from memory
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into a register. Multi-precision integers are supported with addition and subtract
using carry. Integers are considered to be bit strings for shifting and masking oper-
ations. Multi-precision shifts can be done using a combination of single-precision
shifts and bit field extracts. '

IEEE-754 single-precision floating-point number

Depending on the particular implementation of the core architecture, IEEE-754
floating-point numbers are supported by direct hardware instructions or by soft-
ware emulation.

2.2 Data Formats

All the general-purpose registers are 32 bits wide, and most instructions operate on word (32-bit) val-
ues. Thus when data with fewer bits than a word is loaded from memory, it must be sign or zero-ex-
tended before operations can be applied to the full word.

Alignment requirements differ for addresses and data. Addresses (32 bits) must be aligned on a
word boundary to permit transfers between address registers and memory. For transfers between
data registers and memory, data may be aligned on any halfword boundary, regardless of size; bytes
may be accessed on any valid byte address.

Figure 4 on page 15 illustrates the supported data formats.

14 TriCore Architecture Manual
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Bit:

Boolean: D

Character/Very Short integer: :

15 0

Short Integer: ( J
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15 0
Short Fraction: | il I
A Binary Point
Word:
3 0
Integer: I J
3 0
Fraction: (S| |
> Binary Point
31
Bit String: |
31 N 23 2 0
Floating-Point: | S' Exponent ‘ Fraction J
= Floating Point
Doubleword:
Integer: )
2 % 0
TAMO02.1
Figure 4: TriCore Data Formats
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The data memory and CPU registers store data in little-endian byte order (the least-significant bytes
are at lower addresses). Figure 5 illustrates the byte ordering. Little-endian memory referencing is
used consistently for data and instructions.

Word 5 Doubleword
Word 4

Word 3

Word 2 lfword
Word 1 Word

Word 0 ‘ e . Byte

TAMO031

Figure 5: Byte Ordering

When the TriCore system is connected to an external big-endian device, translation between big- and
little-endian format is performed by the bus interface.

As stated previously, bytes must be stored on byte boundaries; halfwords, words, and doublewords
must be stored on halfword boundaries.

2.3 Memory Model

The TriCore architecture can access up to 4 Gbytes of memory. The address width is 32 bits. The ad-
dress space is divided into 16 regions or segments (0 through 15). Each segment is 256 Mbytes. The
upper four bits of an address select the specific segment. The first 16-Kbytes of each segment can

be accessed using either absolute addressing or absolute bit addressing.

Segment 0 is the local static data memory space for the core. Segment 1 is the local dynamic data
memory space for the core. Segment 2 is the local code memory space for the core. The upper 16-
Kbytes of the local code space in Segment 2 are reserved for the core special function registers (CS-
FRs).

Segments 14 and 15 are excluded from speculative read accesses. Accesses to this space are initi-
ated only when the core knows that the access will be completed successfully. Segment 14 can be
used for external peripherals. FIFOs, peripherals with status registers, and other devices should be

located in this address segment so that they will receive no speculative reads that could destroy in-
formation. Segment 15 is reserved for the peripheral SFRs (PSFRs) of the internal, on-chip peripher-
als.

Addresses in Segments 3 through 15 are routed to the System bus. Addresses within Segments 3
through 14 may be either on-chip or off-chip. Devices in the Segment 14 are usually off-chip.

16 . TriCore Architecture Manual
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Many data accesses use addresses computed by adding a displacement to the value of a base ad-
dress register. Using a displacement to cross one of the segment boundaries is not allowed, and, if
done, will cause a trap. This restriction allows direct determination of the accessed segment.

Figure 6 shows the TriCore architecture’'s address space mapping. The figure also shows how the

Load/Store Unit, the Instruction Fetch Unit, and other devices on the System bus view the address
space.

Programming
Model
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Figure 6. Address Map and Memory Model
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The Load/Store Unit regards Segments 0 and 1 as the local data memory and the local code Seg-
ment 2 as a “data memory” on the System Bus. This means a data access to the local code memory
(for example, access to data constants in code memory) by the Load/Store Unit is routed to the code
memory via the System Bus. The Load/Store Unit views Segments 2 through 15 to be on the Sys-
tem Bus. No System Bus access is initiated when the unit accesses its local data space in Segments
0 or 1. Accesses to the core SFR space (CSFR) are not allowed and will cause a trap.

The Instruction Fetch Unit regards Segment 2 as the local code memory and the data Segments 0
and 1 as a “code memory” on the System Bus. This means a code access to the local data memory
(for example, execute code out of data memory) by the Instruction Fetch Unit is routed to the data
memory via the System Bus. Instruction fetches from Segments 14 and 15 are not allowed and will
cause a trap. Instruction fetches from the core SFR space (CSFR) are not allowed and will cause a
trap.

Programming
Model

The System bus views the entire address space. Devices on the System bus can access all resourc-
es, including the local code and data memories and the core SFRs.

2.4 Addressing Model

The first subsection in this section describes the addressing modes that the TriCore architecture sup-
ports. The second subsection describes how extended addressing modes can be synthesized
through short instruction sequences.

2.4.1 TriCore Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple data elements with-
in data structures such as records, randomly and sequentially accessed arrays, stacks, and circular
buffers. Simple data elements are 1, 8, 16, 32, or 64 bits wide.

The TriCore architecture supports seven addressing modes, as listed in Table 1. These addressing
modes support efficient compilation of C, easy access to peripheral registers, and efficient imple-
mentation of typical DSP data structures (circular buffers for filters and bit-reversed indexing for
FFTs). Each addressing mode is described in detail in the following subsections.
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Table 1: Addressing Modes of the TriCore Architecture

Addressing Mode Address Register Use Oﬂ(sl;ai::)ize
Absolute None 18
Base + Short Offset Address Register 10
Base + Long Offset Address Register 16
Pre-increment Address Register 10
Post-increment Address Register 10
Circular Address Register Pair 10
Bit-reverse Address Register Pair —

2.411 Absolute Addressing

Absolute addressing is useful for referencing I/O peripheral registers and global data. The instruction
specifies an 18-bit constant as the memory address. As shown in Figure 7, the full 32-bit address re-
sults from moving the four most-significant bits of the 18-bit constant to the four most-significant
bits of the 32-bit address. The other bits are zero filled.

4 1%
| 1 18-bit offset

4 14 14 l

L 1 0000000000000 { ] 32-bit address

TAMO005.1

Figure 7: Translation of Absolute Address to Full Effective Address

The special treatment of the four high-order address bits allows absolute addressing to be used in
the first 16 KBytes of each address segment.

2.41.2 Base+0ffset Addressing

Base-+offset addressing is used for referencing record elements, local variables (using the stack
pointer SP as the base), and static data (using an address register pointing to the static data area).

The effective address is the sum of an address register and the sign-extended offset. The size of the
offset depends on the specific instruction. A few of the most common load/store instructions that
would be generated by a compiler are allocated 16-bit offsets. Less common instructions are allocat-
ed 10 bit offsets.
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2.41.3 Pre-Increment Addressing

Pre-incrementing and pre-decrementing are used to push data onto an upward or downward grow-
ing stack, respectively. The pre-increment addressing mode uses the sum of the address register
and the sign-extended 10-bit offset both as the effective address and as the value written back into
the address register.

2.41.4 Post-Increment Addressing

Post-incrementing and post-decrementing allow forward and backward sequential access of arrays,
respectively. Post-decrementing uses a negative offset. This mode also can be used to pop down
(post-increment) or up (post-decrement) a growing stack.

The post-increment addressing mode uses the value of the address register as the effective ad-
dress, and then updates this register by adding the sign-extended 10-bit offset to its previous value.

2.41.5 Circular Addressing

Circular addressing is used primarily for accessing data values in circular buffers while performing fil
ter calculations.
Aodd L | I

Aeven 8

TAMO06.1
Figure 8: Circular Addressing Mode

The circular addressing mode uses an address register pair to hold the state it requires. The even
register is always a base address (B). The most-significant half of the odd register is the buffer size
(L). The least significant half holds the index into the buffer (l). The effective address is (B+l). The
buffer occupies memory from addresses Bto B + L - 1.

The index is post-incremented using the following algorithm:

tmp = I + sign_ext (offsetl0);
if (tmp < 0)
I = tmp + L;
else if (tmp >= L)
I =tmp - L;
else
I = tmp;

The 10-bit offset is specified in the instruction word and is a byte-offset that can be either positive or
negative. Note that correct “wraparound” behavior is guaranteed as long as the magnitude of the
offset is smaller than size of the buffer.

For example, consider a circular buffer consisting of 25, 16-bit values (50 bytes). If the current index
is 48, then the next item is obtained using an offset of 2 (two bytes per value). The new value of the
index wraps around to 0. If instead the index is 48 and the offset is 4 (two entries per step), the new
value of the index would be 2 ((48 + 4) — 50). If the current index is 4 and the offset is -8, then the
new index would be 46 ((4 — 8) + 50).
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Note that in the end case where a memory access runs off the end of the circular buffer, the data ac-
cess also wraps around to the start of the buffer. For example, consider a circular buffer containing n
elements, where each element is a 16-bit value. If a load word is performed using the circular ad-
dressing mode and the effective address of the operation points to element n-1, the 32-bit result will
contain element n-1 in the bottom 16 bits and element 0 in the top 16 bits.

The size and length of a circular buffer have the following restrictions placed on them:

1. The start of the buffer start must be aligned to a multiple of the data size, where the data size is
determined from the instruction being used to access the buffer. For example, a buffer accessed
using a load word instruction must be aligned to a word boundary and a buffer being accessed
using a load doubleword must be aligned to a doubleword boundary.

2. The length of the buffer must be a mulitiple of the data size, where the data size is determined
from the instruction being used to access the buffer. For example, a buffer accessed using a load
word instruction must be a multiple of four in length and a buffer accessed using a load double-
word instruction must be a multiple of eight in length.

If the two restrictions are not met, then an alignment trap is taken.

2.4.1.6 Bit-Reverse Addressing

Figure 9 shows bit-reverse addressing, which is used to access arrays used in FFT algorithms. The
most common implementation of the FFT ends with results stored in bit-reversed order.
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Figure 9: Bit-Reverse Addressing

Bit-reverse addressing uses an address register pair to hold the required state (see Figure 10).
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Figure 10: Register Pair for Bit-Reverse Addressing

The even register is the base address of the array (B). The least-significant half of the odd register is
the index into the array (I); the most-significant half is the modifier (M), which is added to | after every
access.

The effective address is B+l. The index | is post-incremented; its new value is reverse (reverse (i) +
reverse (M)), where M is the most-significant half of the odd register. The reverse() function exchang-
es bit n with bit (15-n)forn=0, ..., 7.

Programming
Model

2.4.2 Synthesized Addressing Modes

This section describes how addressing not supported directly in the hardware addressing modes
can be synthesized through short instruction sequences.

2.4.21 Indexed Addressing

Indexed addressing can be synthesized using the ADDSC.A instruction, which adds a scaled data
register to an address register. The scale factor can be one, two, four, or eight for addressing indexed
arrays of bytes, halfwords, words, or doublewords.

For support of addressing of indexed bit arrays, the ADDSC.AT instruction scales the index value by
one eighth (shifts right three bits) and adds it to the address register. The two low-order bits of the
resulting byte address are cleared to give the address of the word containing the indexed bit. To ex-
tract the bit, the word containing it is loaded, and the bit index is used in an EXTRACT instruction. A
bit field, beginning at the indexed bit position, can be extracted also. To store a bit or bit field at an
indexed bit position, ADDSC.AT is used in conjunction with the LDMST (Load/Modify/Store) instruc-
tion.

2.4.2.2 PC-Relative Addressing

PC-relative addressing is the normal mode for branches and calls. However, the TriCore architecture
does not support direct PC-relative addressing of data. The main reason is that the separate on-chip
instruction and data memories make data access to the program memory expensive. It typically
adds two cycles of added access time.

When PC-relative addressing of data is required, the address of a nearby code label is placed into an
address register and used as a base register in base + 16-bit offset mode to access the data. Once
the base register is loaded, it can be used to address other PC-relative data items nearby.

A code address can be loaded into an address register in various ways. If the code is statically
linked—as it almost always is for embedded systems—then the absolute address of the code label
is known, and can be loaded using the LEA instruction (load effective address), or with a sequence
to load an extended absolute address {see next subsection below). The absolute address of the PC
relative data is also known, and there'is no need to synthesize PC-relative addressing.
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For code that is dynamically loaded, or assembled into a binary image from position-independent
pieces without the benefit of a relocating linker, the appropriate way to load a code address for use
in PC-relative data addressing is to use the JL (jump and link) instruction. A jump and link to the next
instruction is executed, placing the address of that instruction into the return address register (A11).
Before doing so, it is necessary to copy the actual return address of the current function to another
register.

2.4.2.3 Extended Absolute Addressing

Extended absolute addressing is synthesized using two instructions: the MOVH.A (Move Highword)
instruction and the LEA (load effective address). The LEA instruction loads a 32-bit address into an
address register. After execution of the MOVH.A instruction, a base + 16-bit offset is used to ad-
dress data in order to establish a base register.
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Core Registers

The TriCore architecture defines a set of Core Special Function Registers (CSFRs). These CSFRs con-
trol the operation of the core and provide status information about the core's operation. The CSFRs
are split into the following groups:

Core Registers

Program State Information
Stack Management
Context Management
Interrupt and Trap Control
System Control

Memory Protection

Debug Control

The following sections describe these registers in detail. The CSFRs are complemented by a set of
general purpose registers (GPRs). Table 2 shows all CSFRs and GPRs.

Note that most of the memory protection system and debug control unit is implementation specific,
therefore, this architecture manual only summarizes these topics. Note also that the reset functions
and options are located in a block outside of the core; their functionality is briefly described in this

manual. Please contact your local Siemens Sales office for more information on literature availability.
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Table 2: Core Register Map

R;!:i::' Description Page #
D0 -D15 Data Registers 29
AQ-A15 Address Registers 29
PSW Program Status Word 30
PCXI Previous Context Information 32
PC Pragram Counter (read only) 30
FCX Free Context List Head Painter 34
LCX Free Context List Limit Pointer 35
ISP Interrupt Stack Pointer 35
ICR Interrupt Control Register 36
BV Base Address of Interrupt Vector Table 37
BTV Base Address of Trap Vector Table 37
SYSCON System Configuration Register 38
PMUCON Program Memory Control Register 38
DMUCON Data Memary Control Register 38
DPRx_0—- DPRx_3 Data Segment Protection Register Sets (x=0-3) 39
CPRx_0 - CPRx_3 Code Segment Protection Register Sets {x=0-3) 39
DPMx_0 - DPMx_3 Data Protection Mode Register Sets {x=0-3) 39
CPMx_0 - CPMx_3 Code Protection Mode Register Sets {x=0—3) 39
DBGSR Debug Status Register 44
GPRWB GPR Write Back Trigger 44
EXEVT External Break Input Event Specifier 4
SWEVT Software Break Event Specifier 44
CREVT Core SFR Access Event Specifier 44
TRnEVT Trigger Event n Specifier {n =0, 1) 44

3.1 Access to the Core Registers

The core accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR instruction
(Move From Core Register) moves the contents of the addressed CSFR into a data register. MFCR
can be executed on any privilege level. The MTCR instruction (Move To Core Register) moves the
contents of a data register to the addressed CSFR. To prevent unauthorized writes to the CSFRs, the
MTCR instruction can only be executed on the supervisor privilege level.

The CSFRs are also mapped into the top of the local code segment in the memory address space.
This mapping makes the complete architectural state of the core visible in the address map. This fea-
ture allows efficient debug and emulator support. Note it is not permitted for the core to access the
CSFRs through this mechanism— it must use MFCR and MTCR.
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There are no instructions allowing bit, bit field or load-modify store accesses to the CSFRs. The RSTV
instruction (Reset Overflow Flags) resets only the overflow flags in the PSW, without modifying any
of the other PSW bits. This instruction can be executed at any privilege level.

3.2 General-Purpose Registers (GPRs)

Figure 11 shows the general-purpose registers. The 32-bit wide general-purpose registers are split
evenly into 16 data registers, or DGPRs, (D0 to D15) and 16 address registers, or AGPRs, (AQ to A15).
Separation of data and address registers facilitates efficient implementations in which arithmetic and
memory operations are performed in parallel. Several instructions allow the interchange of informa-
tion between data and address registers in order to create or derive table indexes, etc. Two consec-
utive even-odd data registers can be concatenated to form eight extended-size registers (EO, E2, E4,
E6, E8, E10, E12, and E14), in order to support 64-bit values.

Address GPRs (AGPRs) Data GPRs (DGPRs)

31

A15 (implicit address register) D15 (implicit data registe
Al4 D14
A13 D13
A12 D12
A11 (Return Address / RA) DM
A10 (Stack Pointer / SP) D10
A9 (global address register) D9
A8 (global address register) D8
A7 D7
A6 D6
Ab D5
A4 - D4
A3 D3
A2 D2
A1 (global address register) D1
A0 (global address register) DO

Figure 11: General-Purpose Registers (GPRs)
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Registers A0, A1, A8, and A9 are defined as SYSTEM GLOBAL REGISTERS. Their contents are not saved
and restored across calls, traps, or interrupts. Register A10 is used as the stack pointer (SP); register
A11 is used to store the return address (RA) for calls and linked jumps and to store the return pro-
gram counter (PC) value for interrupts and traps. Refer to Chapter 4, “Managing Tasks and Func-
tions,” for more information.

While the 32-bit instructions have unlimited used of the GPRs, many 16-bit instructions implicitly use
A15 as their address register and D15 as their data register. This implicit use eases the encoding of
these instructions into 16 bits.

In order to support 64-bit data values, an even/odd register pair holds these values. In the assembler
syntax, these register pairs are either referred to as a pair of 32-bit registers (for example, D9/D8) or
as an extended 64-bit register (for example, E8 is the concatenation of D9 and D8, where D8 is the
least significant word of E8).

Note that there are no separate floating-point registers—the data registers are used to perform float-
ing-point operations. The floating-point data is saved/restored automatically using the fast context
switch support.

The GPRs are an essential part of a task’s context. When saving or restoring a task’s context to and
from memory, the context is split into the upper and lower contexts. Registers A2 through A7 and
DO through D7 are part of the lower context. Registers A10 through A15 and D8 through D15 are part
of the upper context. Refer to Section 1.6.1, “Upper and Lower Contexts,” on page 7 and Chapter 4,
“Managing Tasks and Functions,” for more information.

3.3 Program State Information (PC, PSW, and PCXI)

The PC, PSW, and PCXI registers hold and reflect program state information. When storing and re-
storing a task’s context, the contents of these registers are an important part of this procedure and
are stored/restored or modified during this process.

3.31 Program Counter

Figure 12 shows the 32-bit program counter (PC). The PC contains the address of the instruction that
is currently executing. The PC is part of a task’s state information.

3 0

I Program Counter

Figure 12: Program Counter (PC)

3.3.2 Program Status Word (PSW)

Figure 13 shows the Program Status Word (PSW). The five most-significant bits of PSW contain ALU
status flags that are set and cleared by arithmetic instructions. The remaining bits of PSW control the
permission levels, protection register sets, and the call depth counter. The PSW is part of a task’s
state information.
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A single instruction, RSTV, resets all overflow status bits (V, SV, AV, SAV). RSTV can be executed at
any privilege level.

31 3 28 28 27 2% 4 13 12 n w9 8 7 [} 0

[c]v|sv|av]sav] Res | PR | 10 [is |6w] coE| coc |

Figure 13: Program Status Word (PSW)
C — Carry (Bit31) This flag is set when a carry occurs.
V— Overflow (Bit30) This flag is set when an overflow occurs.

SV — Sticky Overflow (Bit 29)
This flag is set when an overflow occurs. This flag remains set until it is explic-
itly reset by an RSTV (Reset Overflow bits) instruction.

AV — Advanced Overflow (Bit 28)
This flag is set when an arithmetic instruction “almost” caused an overflow.
This flag is updated after every arithmetic instruction.

SAV — Sticky Advanced Overflow (Bit 27)
This flag is set when an arithmetic instruction “almost” caused an overflow.
This flag remains set until it is explicitly reset by an RSTV (Reset Overflow
bits) instruction.

PRS — Protection Register Set (Bits 13:12)
This two-bit field selects one of up to four sets of memory protection regis-

ters.
00 Protection Register Set 0
01 Pratection Register Set 1
10 Protection Register Set 2
1 Protection Register Set 3

10 — /0 Privilege (Bits 11:10)This field selects the /O privilege mode.

00 User-0
01 User1
10 Supervisor
1 Reserved
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IS — Interrupt Stack (Bit 9)
This bit reflects the status of the current task.

0 Current task uses a user stack

1. Current task uses the global interrupt stack

GW — Global Register Write Permission (Bit 8)
This bit enables write permission to the global registers.

0 Write permission to global registers A0, A1, A8, A9 is disabled

1 Write permission to global registers AQ, A1, A8, A9 is enabled

CDE — Call Depth Count Enable (Bit 7)
This bit is the enable for call depth counting.

0 Call depth counting is temporarily disabled. It is automatically re-en-
abled following execution of the next Call instruction.

1 Call depth counting is enabled. If CDC = 111.1111,, call depth counting is
disabled regardless of the setting on this bit.

CDC — Call Depth Counter (Bits 6:0) :
The CDC field consists of two variable-width subfields. The first subfield is a
mask field, consisting of a string of zero or more initial “1" bits, terminated by
the first “0” bit. The remaining bits comprise the subfield, which constitutes
the Call Depth Counter. Refer to Section 7.1.1.6, “CDC,” on page 79 for more
information on the call depth counter.

Refer to Section 8.1, "Arithmetic Instructions,” for more information on the ALU status flags C, V, SV,
AV, and SAV. Refer to Chapter 7, “Protection System,” for more information on the PRS, 10, GW,
CDE, and CDC fields. Refer to Section 4.4, " Context Switching with Interrupts,” for more informa-
tion on the IS bit.

3.3.3 Previous Context Information Register (PCXI)

PCXI contains linkage information to the previous execution context, supporting fast interrupts and
automatic context switching. The PCXl is part of a task’s state information.

kil 24 23 22 il 20 19 16 15 0
r PCPN | PIE ] uL | Res | PCXS | PCXO

Figure 14: Previous Context Information Register (PCXI)

PCPN — Previous CPU Priority Number (Bits 31:24)
This field contains the priority level number of the interrupted task.
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PIE — Previous Interrupt Enable (Bit 23)
This bit indicates the state of the interrupt enable bit (ICR.IE) for the interrupt-

ed task.

UL — Upper/Lower Context Tag (Bit 22)
The U/L context tag bit identifies the type of context saved. A one indicates
upper context; a zero indicates lower context. If the type does not match the
type expected when a context restore operation is performed, a trap is gener-
ated.

PCXS — PCX Segment Address (Bits 19:16)
: This field contains the segment address portion of the PCX.

PCX0 — Previous Context Pointer Offset Field (Bits 15:0)
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context. Note that the PCX pointer contained in register PCXl is
used for context management.

Note that the PCX pointer contained in PCXl is used for context management. Section 3.4, “Context
Management Registers,” and Chapter 4, “Managing Tasks and Functions,” provide more informa-
tion on the PCX pointer.

Core Registers

3.4 Context Management Registers

This section describes the context management registers, which are comprised of three pointers.
These pointers handle context management and are used during context save/restore operations.
Refer to Chapter 4, “Managing Tasks and Functions,” for more information on the usage of these
registers. Table 3 summarizes these registers.

Table 3: Context Management Registers

Register Category
FCX Free CSA List Head Pointer
PCX Previous Context Pointer (contained in register PCXI)
LCX Free CSA List Limit Pointer

Each pointer consists of two fields: a 16-bit offset and a 4-bit segment specifier. Figure 15 shows
how the effective address of a CSA is generated using the two fields. A context save area (CSA) is
an address range containing 16 word locations (64 bytes), which is the space required to save one
upper or one lower context. Incrementing the pointer offset value by one always increments the ef-
fective address to the address that is 16 word locations above the previous one. The total usable

TriCore Architecture Manual 33

+ PRELIMINARY EDITION o



Core Registers SIEMENS

range in each address segment for CSAs is 4 MBytes, resulting in storage space for 64 K context
save areas.

31 19 16 15 0
PTR Segm. Pointer Offset
zero fill left shift by six zero-fill
31 28 27 2 N 6 5 0
Segment (0 0 0 0 0 O Offset 00 0 0 0 0

Figure 15: Generation of the Effective Address for the Context Save Areas (CSAs)

Note that the effective address should result in a physical memory address. Address ranges not cov-
ered by physical memories could lead to unexpected results. Segments 14 and 15, which are re-
served for external and internal peripherals, should also not be used for context save areas.

3.4.1 Free CSA List Head Pointer (FCX)

The FCX pointer register holds the free CSA list head pointer, which always points to an available
CSA.

3 20 19 1% 15 0
[ Res [ roxs | FCXO

FCXS — FCX Segment Address Field (Bits 19:16)
This field is used in conjunction with the FCXO field.

FCX0 — FCX Offset Address Field (Bits 15:0)
The FCXO and FCXS fields together form the FCX pointer, which points to the
next available CSA.

3.4.2 Previous Context Pointer (PCX)

The previous context pointer (PCX) holds the address of the CSA of the previous task. PCX is part of
the previous context information register PCXI. Refer to Section 3.3.3, "“Previous Context Informa-
tion Register (PCXI),” for a description of the PCXI register. It is shown below for easy reference. The
bits not relevant to the pointer function are shaded.

PCXS L PCXO
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PCXS — PCX Segment Address Field (Bits 19:16)
This field is used in conjunction with the PCXO field.

PCX0 — Previous Context Pointer Offset Field (Bits 15:0)
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context.

3.4.3 Free CSA List Limit Pointer (LCX)

The LCX pointer register is used to recognize impending CSA list underfiows. If the value of FCX
used on an interrupt or CALL matches the limit value, the context save operation completes, but the
target address is forced to the trap vector address for CSA list depletion.

3 20 19 16 15 0

[ Res | LCXS | LCX0 |

LCXS — PCX Segment Address (Bits 19:16)
This field is used in conjunction with the LCXO field.

LCX0 — Previous Context Pointer Offset Field (Bits 15:0)
The LCXO and LCXS fields form the pointer LCX, which points to the last
available CSA.

3.5 Stack Management

The stack management in the TriCore architecture supports a user stack and an interrupt stack. Ad-
dress register A10, the interrupt Stack Pointer (ISP), and a PSW bit are involved in the management
of the stack.

[ A10/SP ]

Figure 16: A10/SP

3 0
[ ISP

Figure 17: Interrupt Stack Pointer (ISP)

General-purpose address register A10 is used as the stack pointer. The initial contents of this register
are usually set by an RTOS when a task is created, which allows a private stack area to be assigned
to individual tasks.

The Interrupt Stack pointer (ISP) helps to prevent interrupt service routines (ISRs) from accessing the
private stack areas and possibly interfering with the software managed task’s context. An automatic
switch to the use of the interrupt stack pointer instead of the private stack pointer is implemented in
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the TriCore architecture. The PSW.IS bit indicates which stack pointer is in effect. When an interrupt
is taken and the interrupted task was using its private stack (IS = 0), then after saving its contents
with the upper context of the interrupted task (see Chapter 4, “Managing Tasks and Functions,” for
information on context management), SP/A10 is loaded with the current contents of the interrupt
stack pointer ISP

When an interrupt is taken and the interrupted task was already using the interrupt stack (IS = 1),
then no preloading of SP/A10 is performed. The interrupt service routine continues to use the inter-
rupt stack at the point where the interrupted routine had left it.

Usually it is only necessary to initialize ISP once during the initialization routine. However, depending
on application needs, ISP can be modified during execution.

Nothing prevents an ISR or system service routine from executing on a private stack. Usage of the
SP/A10 in an ISR is at the discretion of the application programmer.

3.6 Interrupt and Trap Control

Three CSFRs support interrupt and trap handling: the Interrupt Control Register (ICR), the interrupt
vector table pointer (BIV), and the trap vector table pointer (BTV). Refer to Chapter 5, “Interrupt Sys-
tem,” and Chapter 6, “Traps,” for more information on interrupts and traps, respectively.

3.6.1 Interrupt Control Register (ICR)

The Interrupt Control Register (ICR) holds the current CPU priority number (CCPN), the enable/dis-
able bit for the interrupt system (IE), the pending interrupt priority number (PIPN) and an implemen-
tation specific control for the interrupt arbitration scheme. The other two registers hold the base
addresses for the interrupt and trap vector tables. The Interrupt Control Register (ICR) register is
shown in Figure 18.

K1l 26 25 24 23 16 15 9 8 7 0
Res |ARBcvc[ PIPN [ Res | E | CCPN

Figure 18: Interrupt Control Register (ICR)

ARBCYC — Arbitration Cycle Control (Bits 25:24)
The function of this field is implementation-specific.

PIPN — Pending Interrupt Priority Number (Bits 23:16)
This read-only field contains the priority number of the pending interrupt.

IE — Interrupt System Enable (Bit 8)
This bit determines whether the interrupt system is enabled (IE = 1) or not (IE
= 0).

CCPN — Current CPU Priority Number (Bits 7:0)
This field contains the current CPU priority number.
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Special instructions control the enabling and disabling of the interrupt system. Refer to Section 5.7,
“Enabling/Disabling the Interrupt System,” on page 64 for more details.

3.6.2 Interrupt Vector Table Pointer (BIV)

The BIV contains the base address of the interrupt vector table. When an interrupt is accepted, the
entry address into the interrupt vector table is generated from the priority number (taken from the
PIPN) of that interrupt, left shifted by five bits, and then ORed with the contents of the BIV register.
The left-shift of the interrupt priority number results in a spacing of eight words (32 bytes) between
the individual entries in the vector table.

3 0

[ BIV |

Figure 19: Interrupt Vector Table Pointer (BIV)

Care must be taken regarding the alignment of the address contained in the BIV register. First, the
address in the BIV register must be aligned to an even byte address (halfword address). Second, due
to the simple ORing of the left-shifted priority number and the contents of the BIV register, the align-
ment of the base address of the vector table must be to a power of two boundary. It depends on the
number of interrupt entries used. For the full range of 256 interrupt entries, an alignment to an 8-
KByte boundary is required. If fewer sources are used, the alignment requirements are correspond-
ingly relaxed.

3.6.3 Trap Vector Table Pointer (BTV)

The BTV contains the base address of the trap vector table. When a trap occurs, the entry address
into the trap vector table is generated from the trap identification number (TIN) of that trap, left-shift-
ed by five bits and then ORed with the contents of the BTV register. The left-shift of the trap identifi-
cation number results in a spacing of eight words (32 bytes) between the individual entries in the
vector table.

kil 0
I By |

Figure 20: Trap Vector Table Pointer (BTV)

Care must be taken regarding the alignment of the address contained in the BTV register. First, the
address in the BTV register must be aligned to an even byte address (halfword address). Second,
due to the simple ORing of the left-shifted trap identification number and the contents of the BTV
register, the alignment of the base address of the vector table must be to a power of two boundary.
There are eight different trap classes, resulting in TINs from 0 to 7. Thus, the contents of BTV should
be set at least to a 256-byte boundary (8 TINs * 8 word spacing).

Refer to Section 6.2, “Trap Handling,” for more information on the trap vector table.
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3.7 System Control Registers

Three registers provide system control: the System Configuration Control Register (SYSCON), the lo-
cal Program Memory Unit Control Register (PMUCON), and the local Data Memory Unit Control Reg-
ister (DMUCON).

3.71 SYSCON Register
The SYSCON Register is shown in Figure 21.

3 2 1 0

PRO END
TEN INIT

Res

Figure 21: SYSCON Register

PROTEN — Memory Protection Enabie (Bit 1)This bit enables the memary protection system. Memory
protection is controlled through the memory protection register sets. Note
that it is required to initialize the protection register sets prior to setting
PROTEN to one.

0 Memory Protection is disabled

1 Memory Protection is enabled.

ENDINIT — End of Initialization (Bit 0)This bit controls access to critical configuration and control regis-
ters. Software can set ENDINIT only to one. A one indicates that the basic ini-
tialization and configuration of the device is finished. Once set, ENDINIT can
be cleared only through a reset. Any registers or control bits protected with
ENDINIT are locked against modifications as long as ENDINIT is set. Note that
the exact definition of which registers/control bits are protected with ENDINIT
is implementation-specific.

3.7.2 PMUCON Register

Figure 22 shows the PMUCON Register. Control for the local program memory is implerhentation-
specific. Please contact your local Siemens Sales Office for additional information.

3 0

PMUCON (implementation-specific)

Figure 22: PMUCON Register

3.7.3 DMUCON Register

Figure 23 shows the DMUCON Register. Control for the local data memory is implementation-spe-
cific. Please contact your local Siemens Sales Office for additional information.
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3 0

l DMUCON (implementation-specific) I

Figure 23: DMUCON Register

3.8 Memory Protection Registers

The TriCore architecture incorporates hardware mechanisms that protect userspecified memory
ranges from unauthorized read, write, or instruction fetch accesses. In addition, the protection hard-
ware can be used to generate signals to the debug unit. The TriCore contains register sets that spec-
ify the address range and the access permissions for a number of memory ranges. There are
separate register sets for code and data memory. Figure 24 shows the Data and Code Memory Pro-
tection Register Sets.

Data Memory Protection PSW.PRS = 00 Code Memory Protection ‘%
Register Set 0 ’ z Register Set 0 %
Data Memory Protection PSW.PRS = 01 Code Memory Protection
Register Set 1 2 Register Set 1
Data Memory Protection PSW.PRS = 10 Code Memory Protection
Register Set 2 2 Register Set 2
Data Memory Protection PSW.PRS = 11, Code Memory Protection
Register Set 3 Register Set 3

Figure 24: Memory Protection Register Sets

The two-bit PRS field in the PSW selects which register set is active at a given time. As shown in Fig-
ure 24, two register sets are selected at one time: one data memory protection and one code mem-
ory protection.

The PSW.PRS field allows selection of up to four such register sets (four for data and four for code).
The number of register sets provided for memory protection is specific to each implementation of
the TriCore architecture. Thus this document only describes the generic format of these register
sets. For detailed information on the number of register sets and their organization, please refer to
the appropriate product specifications. Contact your local Siemens Sales Office for additional infor-
mation.

Each register set contains a minimum of four range table entries (see Figure 25). The number of
range table entries is specific to each implementation of the TriCore architecture. Each range table
entry consists of a Segment Protection register pair and a Mode register. The register pair specifies
the lower and the upper boundary addresses of the memory range, while the Mode register con-
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tains the access permission and debug control bits. The control options are different for the data and
the code memory protection.

% 0 Mode Registers
7 0
Segment Protection Register DPMx_0/CPMx_0 Range Table
DPRx_0/CPRx_0 — — Entry 0
3 0
7 0
Segment Protection Register DPMx_1/CPMx_1 Range Table
DPRx_1/CPRx_1 — — Entry 1
31 0
. . 7 0
Segment Protection Register DPMx_2/CPMx_2 Range Table
DPRx_2/CPRx_2 — — Entry 2
3 0
] . ) 7 0
Segment Protection Register DPMx_3/CPMx_3 Range Table
DPRx_3/CPRx_3 — — Entry 3

Figure 25: Range Table Entries in a Protection Register Set

Table 4 lists the Memory Protection Registers. Index x indicates the protection register set number,
while index n indicates the range table entry number.

Table 4: Memory Protection Registers

Register Description
DPRx_n Data Segment Protection Registers (x, n=0, 1,2, 3)
DPMx_n Data Protection Mode Registers (x, n =0, 1,2, 3)
CPRx_n Code Segment Protection Registers (x, n=0, 1,2, 3)
CPMx_n Code Protection Mode Registers (x, n=0, 1,2, 3)

3.8.1 Data and Code Segment Protection Registers

Figure 26 and Figure 27 show the segment protection registers of a range table entry. The register
pair DPRx_n/CPRx_n contains the two word registers specifying the lower and the upper boundary
address of the associated memory range. The range defined by a range table entry is:

lower bound < address < upper bound

Range checking is not performed if the lower bound is greater than the upper bound. If the lower
bound is equal to the upper bound, the range is regarded as empty.

For the generation of debug signals, instead of defining a range, the values in DPRx_n/CPRx_n are
regarded as individual addresses. Signals to the debug unit are generated if the address of a memory
access equals one or more of the DPRx_n/CPRx_n contents (note that for this purpose, an equality
compare with the contents of the upper bound register is performed).

40 TriCore Architecture Manual

+ PRELIMINARY EDITION o



SIEMENS Core Registers

31 0
| Upper Bound |

kil 0

I Lower Bound |

Figure 26: Data Segment Protection Registers (DPRx_n)

3 0
[ Upper Bound |

31 : 0

I Lower Bound l

Figure 27: Code Segment Protection Registers (CPRx_n)

3.8.2 Data Protection Mode Registers

The eight-bit Data Protection Mode Registers determine the access permissions and debug signal
conditions for the ranges specified in their corresponding Data Segment Protection Registers. Figure
28 shows the assignment and definition of bits within a mode table entry for the data range. The WE
and RE bits relate directly to memory protection. The remaining bits generate signals to the Debug
Control Unit.

Core Registers

7 6 5 4 3 2 1 0
IWE | R | ws [ RS lWBLlRBL | weu | ey |

Figure 28: Data Protection Mode Register (DPMx_n)

WE — Address Range Data Write Enable (Bit 7)
This bit controls writes to the addresses in the associated range.

0 Data write accesses to the associated address range are not permitted

1 Data write accesses to the associated address range are permitted

RE — Address Range Data Read Enable (Bit 6)
This bit permits reads to the addresses in the associated range.

0 Data read accesses to the associated address range are not permitted

1 Data read accesses to the associated address range are permitted
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WS — Address Range Data Write Signal (Bit 5)

0 Data write signal is disabled

1 A signal is asserted to the debug unit on data read accesses to the associated
address range.

RS — Address Range Data Read Signal (Bit 4)

0 Data read signal is disabled

1 A signal is asserted to the debug unit on data read accesses to the associated
address range

WBL — Data Write Signal on Lower Bound Access (Bit 3)

0 Data write signal is disabled

1 A signal is asserted to the debug unit on a data write access to an address that matches the
lower bound address of the associated address range

RBL — Data Read Signal on Lower Bound Access (Bit 2)

0 Data read signal is disabled

1 Asignal is asserted to the debug unit on a data read access to an address that matches the low-
er bound address of the associated address range

WBU — Write Signal on Upper Bound Access (Bit 1)

0 Wirite signal is disabled

1 A signal is asserted to the debug unit on a write access to an address that matches the upper
bound address of the associated address range

RBU — Data Read Signal on Upper Bound Access (Bit 0)

0 Data read signal is disabled

1 A signal is asserted to the debug unit on a data read access to an address that matches the up-
per bound address of the associated address range

3.8.3 Code Protection Mode Registers

The eight-bit Code Protection Mode Registers determine the access permissions and debug signal
conditions for their corresponding range as specified in the associated Code Segment Protection
Registers. Figure 29 shows the assignment and definition of bits within a mode table entry for the
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code range. The XE bit is related directly to memory protection. All remaining bits generate signals
to the Debug Control Unit.

7 6 5 4 3 2 1 0

| X | Res | xs [ Bes | B | Rs | Res | BU |

Figure 29: Code Protection Mode Register (CPMx_n)
XE — Address Range Execute Enable (Bit 7)

0 Instruction fetch accesses to the associated address range are not permitted

1 Instruction fetch accesses to the associated address range are permitted

XS — Address Range Execute Signal (Bit 5)

0 Execute signal is disabled
1 A signal is asserted to the debug unit on instruction fetch accesses to the associated address
range

BL — Execute Signal on Lower Bound Access (Bit 3)

0 Lower bound execute signal is disabled

1 A signal is asserted to the debug unit on an instruction fetch access to an address that matches
the lower bound address of the associated address range

BU — Execute Signal on Upper Bound Access (Bit 0)

0 Upper bound execute signal is disabled

1 A signal is asserted to the debug unit on an instruction fetch access to an address that matches
the upper bound address of the associated address range

Refer to Chapter 7, “Protection System,” for a description of the Memory Protection Registers within
the Protection System.
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3.9 Debug Registers

Seven registers are implemented in the core to support debugging. These registers define the con-
ditions under which a debug event is generated, the actions taken on the assertion of a debug event,
and provide status information on the debug control unit. Table 5 summarizes the debug registers.

Table 5: Debug Registers

Register Description
DSR Debug Status Register
GPRWB GPR Write Back Trigger Register
EXEVT External Break Input Event Specifier
SWEVT Debug Instruction Break Event Specifier
CREVT Core SFR Access Break Event Specifier
TRNEVT Trigger Event n Specifier

The functions and details of the Debug Control Unit are implementation specific. Thus this docu-
ment does not provide further descriptions of the Debug Control Unit and its associated registers.
Contact your local Siemens Sales Office for the appropriate literature.
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Most embedded and real-time control systems are designed according to a model in which interrupt
handlers and software-managed tasks are each considered to be executing on their own “virtual”
microcontroller. That model is generally supported by the services of a real time executive or operat-
ing system (RTOS), layered on top of the features and capabilities of the underlying machine architec-
ture.

In the Trillium architecture, however, the RTOS layer can be very “thin.” The hardware can efficiently
handle much of the switching between one task and another. At the same time, the architecture al-
lows for considerable flexibility in the tasking model used. System designers can choose the real-
time executive and software design approach that best suits the needs of their application, with rel-
atively few constraints imposed by the architecture.

The mechanisms for low overhead task switching and for function calling within the TriCore architec-
ture are closely related. They are discussed together in this chapter.

4.1 Upper and Lower Contexts

As stated in Section 1.6, “Tasks and Contexts,” on page 6, a task is an independent thread of control.
The task’s context defines the state of the task. Should the task be interrupted, the processor uses
the context to re-enable the continued execution of the task.

The context is subdivided into the UPPER CONTEXT and the LOWER CONTEXT, as illustrated in Figure 3 on
page 7. The upper context consists of the upper address registers, A10 - A15, and the upper data
registers, D8 - D15. These registers are designated as non-volatile, for purposes of function calling.
The upper context also includes PCXI and PSW.

The lower context consists of the lower address registers, A2 through A7, and the lower data regis-
ters, DO through D7, plus the Program Counter (PC).

Both upper and lower contexts, when saved to memory, occupy 16-word blocks of storage referred
to as Context Save Areas (CSAs). CSAs were introduced in Section 1.6.2, “Context Save Areas,” on
page 8. The first word in a CSA is the Link WORD; the link word includes two fields that link the given
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CSA to the next one in a chain. The fields are a four-bit LINK SEGMENT and a 16-bit LINK INDEX. The link
segment and link index are used to generate the effective address of the linked CSA, as shown in
Figure 30.

31 20 19 16 15 0
Link Word .
Segment Link Word Offset
zero fill left shift by six zero fill
31 28 27 2 2 6 5 0
Segment {0 0 0 0 0 O Offset 0 0 0 0 00

Figure 30: Generation of the Effective Address of a Context Save Area (CSA)

If the CSA is in use (for example, it holds an upper or lower context image for a suspended task),
then the link word also contains other information about the linked context. The entire link word, in
fact, is simply a copy of the PCXI register for the associated task. Refer to Section 4.3, “CSAs and
Context Lists,” for further information on how linked CSAs support context switching.

4.2 Task Switching Operation

The TriCore architecture switches tasks when one of the events or instructions listed in Table 6 oc-
curs. Upon occurrence of one of these events or instructions, the upper or lower context of the task
is saved or restored. Note that the upper context is saved automatically as a result of an external in-
terrupt, trap, or function call. The lower context is saved explicitly through instructions. In the table,
Save is a store through the FCX after the next value for the FCX is read from the link word. Store is a
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store through the effective address of the instruction with no change to the CSA list or the FCX reg-
ister. Restore is the converse of Save. Load is the converse of Store.

Table 6: Context-Related Events and Instructions

Evem_/ Description Conte‘xt Complenyem Description Conte_x t

Instruction Operation Instruction Operation
Interrupt Interrupt Save Upper RFE Return From Exception Restore Upper
Trap Trap Save Upper RFE Return From Exception Restore Upper
CALL Function Call Save Upper RET Return from Call Restore Upper
BISR Begin ISR Save Lower RSLCX Restore Lower Context Restore Lower
SVLCX Save Lower Context Save Lower RSLCX Restore Lower Context Restore Lower
STLCX Store Lower Context Store Lower LDLCX Load Lower Context Load Lower
STUCX Store Upper Context Store Upper LDUCX Load Upper Context Load Upper

4.3 CSAs and Context Lists

As previously mentioned, the upper and lower contexts are saved in CSAs. Unused CSAs are linked
together in the FREE CONTEXT LIST. CSAs that contain saved upper or lower contexts are linked togeth-
er in the PREVIOUS CONTEXT LIST. Figure 31 shows a simple configuration of CSAs within both context
lists.

CSAs in Local Data Memory
Free Context List
Processor CcsA CSA CSA CsA
SFRs 3 " . e

FCX  |—t®|Linkto4 [/ Linkto 5 |—p{ Linkto 6 || Link |[¢—]  LCX

Previous Context List

csA CSA

2 1
PCX Linkto 1 | Link

TAMO10.1

Figure 31: CSAs in Context Lists

The contents of the FCX register always points to an available CSA in the free context list. That CSAs
link word points to the next available CSA in the free context list. Before an upper or lower context is
saved in the first available CSA, its link word is read, supplying a new value for the FCX. To the mem-
ory subsystem, context saving is therefore a read/modify/write operation. The new value of FCX,
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which points to the next available CSA, is available immediately for subsequent upper or lower con-
text saves.

The LCX register points to the last CSA in the free list and is used to recognize impending CSA list
underflow. If the value of FCX used on a context save matches the limit value, the context save op-
eration completes but the target address is forced to the CSA list depletion trap entry (FCD trap). The
action taken by the trap handler depends on the implementation; it might issue a system reset, if it
is determined that the CSA list depletion resulted from an unrecoverable software error. Normally,
however, it will extend the free list, either by allocating additional memory, or by terminating one or
more tasks and reclaiming their CSA call chains. In those cases, the trap handler will exit with a re-
turn from exception instruction (RFE).

The PCXI.PCX field points to CSA where the previous context was saved. The PCXI.UL bit identifies
whether the saved context is upper or lower (1 = upper; 0 = lower). If the type does not match the
type expected when a context restore operation is performed, an exception occurs and a context
management trap is taken.

After being saved with the upper context, the return address register (RA) is loaded with the inter-
rupting PC (if an exception or interrupt occurred) or the function return address (if a CALL instruction
was executed). RA also supplies the saved PC value when the lower context is saved; it is loaded
from the saved PC value when the lower context is restored.

The Call Depth Control field (PSW.CDC) consists of two subfields: a call depth counter, and a mask
that determines the width of the counter and when it overflows. The call depth counter is increment-
ed on calls, and is restored to its previous value on returns. An exception occurs when the counter
overflows. Its purpose is to prevent software errors from causing “runaway recursion” and depleting
the CSA free list. Refer to Section 7.1.1, “PSW Protection Fields,” on page 77 for a more detailed de-
scription of the use of the call depth counter.

4.4 Context Switching with Interrupts

When an interrupt occurs, the processor saves the context of the current task in memory and sus-
pends execution of the current task. The processor then starts execution of the interrupt handler. An
interrupt is asynchronous. All registers must be saved in order to ensure that the register(s) that the
interrupted task is using are saved.

When an interrupt is taken and the processor was not previously using the interrupt stack (PSW.IS
bit = 0), then after being saved with the upper context of the interrupted task, the stack pointer (SP)
is loaded with the current contents of the interrupt stack pointer (ISP). The PSW.IS bit is then set to
one to indicate execution from the interrupt stack.

The Interrupt Control Register (ICR) holds the current CPU priority number (ICR.CCPN) and the inter-
rupt enable bit (ICR.IE). These fields, along with the previous CPU priority number (PCXI.PCPN), and

pending interrupt priority number (ICR.PIPN) are all part of the interrupt management system. PIPN

is output from the Interrupt Control Unit, and is the priority number of the highest priority pending in-
terrupt. A non-zero value in this register indicates the presence of a pending interrupt. For the inter-
rupt to be serviced, PIPN must be greater than ICR.CCPN, and the interrupt enable bit (ICR.IE) must
be set.
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PCXI.PCPN is used just before loading the previous context on a call or interrupt return. The states of
PCXI.PCPN and the previous interrupt enable bit (PCXI.PIE) allow predetermination of whether a
pending interrupt that was previously blocked should be serviced now. If PIPN is greater than PCPN
and PCXI.PIE is set, then instead of restoring the previous context, the control logic takes the inter-
rupt by forcing a branch to the interrupt handler for the pending interrupt. This “interrupt folding”
avoids an unnecessary context load that restores the previous context, followed by an immediate
context save that services the pending interrupt. It is particularly helpful in the case where software
posted interrupts are used frequently, as a means for ISRs to safely lower their execution priority, or
as a means to access the RTOS task dispatcher after an interrupt has been serviced, and there are
no other pending interrupts. See Chapter 5, “Interrupt System,” for details on the interrupt system
and software-posted interrupts.

PCXI.PCPN and ICR.CCPN are logically part of the current processor state. However, they are not
part of the state that an RTOS needs to deal with for software-managed tasks, because they are zero
for all software-managed tasks (SMTs). ICR.CCPN is non-zero only within ISRs, where it is used to
order interrupt servicing. Accordingly, it is held in a register that is separate from the PSW, and is not
part of the context that the RTOS handles for switching among SMTs. On an interrupt, the CCPN val-
ue becomes the PCPN value, after saving the old PCPN value along with the old PCXI value in the
CSA for the upper context.

Once the interrupt is handled, the saved context is reloaded and execution of the interrupted task is
resumed.

On an interrupt, half of the current task context is saved by hardware as an implicit part of the inter-
rupt sequence. For small interrupt handlers that can execute entirely within the set of registers saved
on the interrupt, no further context saving is needed. The interrupt handler can execute immediately
and return, leaving the unsaved portions of the interrupted task’s context untouched. For interrupt
handlers that make calls, only one additional instruction is needed to save the registers that were not
saved as part of the interrupt sequence. That instruction must be issued before any of the associated
registers are modified, but it need not be the first instruction in the handler. Interrupt handlers with
critical response time requirements can perform their initial, time-critical processing immediately, us-
ing registers that were already saved when the interrupt was taken. After that, they can save the re-
maining registers of the interrupted task’s context, and continue with less time-critical processing.

Refer to Chapter 5, “Interrupt System,” for more information.

4.5 Context Switching with Function Calls

When a function call is made (the CALL instruction is executed), the context of the calling routine
must be saved and then restored, in order to resume the caller’s execution after return from the
function.

On a function call, the entire set of non-volatile registers (those registers whose contents are pre-
served across context switches) is saved by hardware. Furthermore, the saving of the non-volatile
registers is integrated with the CALL instruction, so it happens in parallel with the call jump. Like-
wise, the restoring of the registers is integrated with the RET instruction, and happens in parallel
with the return jump. The called function need not concern itself with saving and restoring the call-
er's context, and it is freed of any need to minimize the number of non-volatile registers that it uses.
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The calling function and called functions can cooperate to minimize the amount of context that must
be saved and restored. The general-purpose registers (GPRs) are partitioned into two subsets: those
whose contents are preserved across the call (non-volatile registers), and those whose contents are
not preserved (scratch registers). The caller is responsible for preserving any of its context that re-
sides in scratch registers before the call, while the called function is responsible for preserving the
caller’s values in any non-volatile registers that the called function uses. To preserve its scratch regis-
ter context, when necessary, the calling function either saves the registers in memory or copies
them to non-volatile registers. The compiler’s register allocator tries to minimize the need for either
action, by tracking what data items are live across a call—defined before the call and used after it—
and allocating those items to non-volatile registers. Likewise, the compiler tries to minimize the
amount of context saving and restoring in the called function by minimizing the number of non-vola-
tile registers that it uses.

4.6 Context Save/Restore Examples

This section provides an example of a context save operation and another example of a context re-
store operation.

4.6.1 Context Save

Figure 32 on page 52 shows the free and previous context lists for this example. The free context list
contains three free CSAs (3, 4, and 5), and the previous context list contains two CSAs (2 and 1). The
FCX points to CSAS3, the first available CSA. The link word of CSA3 points to CSA4; the link word of
CSA4 points to CSAB. The PCX points to the top CSA in the previous context list. The link word of
CSA2 points to CSA1. CSA1 contains the saved context prior to CSA2.

CSAs in Local Data Memory
Processor
SFRs Free Context List
FCX CSA CSA CSA
\ 3 4 5
Linkto4 |———p Linkto5 | ————— | Link to 6
Previous Context List
Pex CSA CsA
\ 2 1
Linkto 1 f——pp=| Link
TAMO111
Figure 32: CSAs and Processor State Prior to Context Save
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When the context save operation is performed, the first CSA in the free context list (CSA3) is pulled
off and is placed on the front of the previous context list. Figure 33 shows the steps taken during the
context save operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new FCX. The new FCX will now point
to CSA4. Note that the new FCX is an internal buffer and is not accessible by the user.

2. The contents of the PCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA2.

3. The contents of the old FCX are written into the PCX. The PCX now points to CSAS, which is at
the front of the Previous Context List.

4. The new FCX is loaded into the FCX.

®

Managing Tasks
and Functions

CLink )

Figure 33: CSA and Processor SFR Updates on a Context Save Process

TAMO12.1

The processor SFRs and CSAs now look as shown in Figure 34. The processor context to be saved
is now written into the rest of CSAS.
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Processor CSAs in Local Data Memory
SFRs

Free Context List

FCX CSA CSA
4

Link to 5 b—————p=| Link

CSA CSA CSA
3 2 1

Previous Context List

Link to 2 F——® | Link to 1 |— 1 Link

Figure 34: CSAs and Processor State After Context Save

4.6.2 Context Restore

Figure 35 shows an example where the previous context list contains three CSAs (3, 2, and 1) and

the free context list contains two CSAs (4 and 5). The FCX points to CSA4, the first available CSA in
the free context list. PCX points to CSA3, the most recently saved CSA in the previous context list.
The link word of CSA3 points to CSA2; the link word of CSA2 points to CSAT1; the link word of CSA4
points to CSA5.

CSAs in Local Data Memory

Processor
SFRs Free Context List
FCX CSA CsA
\ 4 5
Linkto 5 |——P [ Link
Previous Context List
PCX CSA CsA CSA
\ 3 2 1
Link to 2 |—— | Linkto 1 | ——| Link
Figure 35: CSAs and Processor State Prior to Context Restore
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When the context restore operation is performed, the first CSA in the previous context list (CSA3) is
pulled off and is placed on the front of the free context list. Figure 36 shows the steps taken during
the context restore operation. The numbers in the figure correspond to the steps below:

1. The contents of the link word in CSA3 are loaded into the new PCX. The new PCX will now point
to CSA2. Note that the new PCX is an internal buffer and is not accessible by the user.

2. The contents of the FCX are written into the link word of CSA3. The link word of CSA3 now
points to CSA4.

3. The contents of the old PCX are written into the FCX. The FCX now points to CSA3, which is at
the front of the free context list.

4. The new PCX is loaded into the PCX.

Managing Tasks
and Functions

CSA
3

( Link )

TAMO15.1
Figure 36: CSA and Processor SFR Updates on a Context Restore Process

The processor SFRs and CSAs now look as shown in Figure 37. The restored context now is written
into the upper or lower context registers.
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Processor CSAs in Local Data Memory
SFRs
Free Context List

FCX CSA CSA

CSA

\ 3 4
Linkto 4 | ———® | Linkto 5 —»

Link to 6

Previous Context List

PCX CSA CSA
1

\ 2
Link to 1 ——LE_L

Figure 37: CSAs and Processor State After Context Restore
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This chapter describes the interrupt system, including arbitration, the priority level scheme, and the
access of the vector table.

51 System Overview

Multiple sources can interrupt the TriCore device including internal peripherals, external inputs, and
software (see Figure 38).

g
External YZ
) ) . ) Service £
Peripheral Peripheral Peripheral Peripheral Request 2
SRN SRN SRN SRN SRN SRN SRN
XxSRC xSRC XXSRC [xxsRC | [xxsRC | [xxsRC [xxSRC
4
Interrupt
<« A4 A4 A 4 \ 4 \ 4 \ 4 \4 P Request
Control Unit
(ICU)
A
Int. Ack.
CPU
Core Int. Req.

Figure 38: Block Diagram of Interrupt System

Every service request line from a peripheral or an external input is connected to a service request

node (SRN). Each SRN contains a Service Request Control Register (xxSRC), where xx refers to the
requesting source. The xxSRC register contains control bits and a priority number (SRPN) that the In-
terrupt Request Control Unit (ICU) uses when handling the interrupt. Up to 255 priority numbers can
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be assigned. The CPU core also is assigned a priority number (ICR.CCPN). When an interrupt occurs,
the ICU determines which source will win arbitration, including the CPU.

The TriCore architecture requires that the xxSRC Register looks as shown in Figure 39.

15 n 10 9 8 7 0
L Res [ xR | xSRE | TS | SRPN ]

Figure 39: Service Request Control Register (xxSRC)

xxSR — Service Request (Bit 10)
This bit indicates whether a service request has occurred.

0 A service request is not pending

1 A service request is pending

xxSRE — Service Request Enable (Bit 9)
This bit enables service requests.

0 Service requests are disabled

1 Service requests are enabled

xxTS — Type of Service (Bit 8)
This bit specifies the type of interrupt service.

0 Interrupt service is requested

1 The type of service is implementation-specific (for exam-
ple, it can be used to request DMA service).

SRPN — Service Request Priority Number (Bits 7:0)
This eight-bit field determines the priority of the request and the entry point into the interrupt
vector table. This number must be unique among all SRNs requesting the same type of service.

5.2 The Service Request Priority Number (SRPN)

The SRPN of a service request indicates its priority with respect to other sources requesting CPU
service and to the priority of the CPU itself. Each SRPN used in a system must be unigue; no sources
are allowed to use the same SRPN (except for the default SRPN of 0x00, which excludes an SRN
from taking part in the arbitration). The range for the SRPN depends on the number of interrupt
sources used in a system. The interrupt arbitration scheme allows up to 255 sources to be active at
one time. This value does not limit the number of sources that can be implemented in a Trillium de-
rivative. More than 255 service request nodes can be implemented in future derivatives, however,
only a subset of 255 can be used at a time to request an interrupt service; all others must be dis-
abled.
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The SRPN also identifies the entry into the interrupt vector table. Unlike other interrupt systems, the
Trillium vector table provides an entry for each priority number, not for a specific interrupt source. In
this way, the vector table is decoupled from the specific peripherals implemented in the various fu-
ture derivatives, and a single peripheral can have multiple entry points for different purposes.

5.3 The Interrupt Control Unit (ICU)

The ICU manages the interrupt system and performs all the actions necessary to arbitrate incoming
interrupt requests, to find the one with the highest priority, and to determine whether to interrupt
the CPU or not.

The ICU contains an Interrupt Control Register (ICR), which holds the current CPU priority number
(CCPN), the global interrupt enable/disable bit (IE), the pending interrupt priority number PIPN, as
well as two bits to control the required number of interrupt arbitration cycles. Figure 40 shows the
ICR. Refer to Section 3.6.1, “Interrupt Control Register (ICR),” on page 36 for detailed descriptions
of the ICR bits.

3 2% 25 24 23 16 15 9 8 7
| Res JARBcvcj PIPN r Res LIE | CCPN T
Figure 40: ICR Register

0

5.4 Interrupt Arbitration

When an interrupt service is requested by one or more sources, these requests are serviced de-
pending on their priority ranking. Thus the TriCore architecture must determine which request has
the highest priority each time. The TriCore architecture implements a scheme that performs the arbi-
tration in parallel with normal CPU operation. The Interrupt Control Unit controls this scheme, which
takes place in several arbitration cycles over the arbitration bus. The arbitration bus connects the ICU
with all service request nodes. The number of arbitration cycles is implementation-specific.

Interrupt System

The ICU automatically starts an arbitration round when a new interrupt request is detected. At the
end of the arbitration, the ICU has detected the service request with the highest priority number. It
stores this number in the Pending Interrupt Priority Number field (PIPN) of register ICR.

The ICU checks the CPU’s current priority number CCPN in register ICR against the PIPN. The CPU
can be interrupted only if PIPN is greater than CCPN. If this is the case, the ICU generates an inter-
rupt request to the CPU. If the CPU can enter the service routine, it acknowledges the ICU, which in
turn activates an acknowledge cycle over the arbitration bus to inform the ‘winner’ node that it will

be serviced. This node then resets its service request flag.

Several conditions could block the CPU from immediately responding to the interrupt request, even
if the priority of the request is higher than the CCPN:

B The interrupt system is globally disabled (ICR.IE = 0)
m The CPU operates on the highest possible priority level (CCPN = OxFF)
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The CPU is in the process of entering an interrupt service or trap routine

The CPU is in the process of returning from an interrupt service or trap routine
The CPU is operating on non-interruptible trap services
The CPU is in the process of changing state in the power management

The CPU executes a multi-cycle instruction

the CPU is executing an instruction which modifies the conditions of the interrupt system, such
as modifying the ICR

The CPU will respond to the interrupt request when these conditions are not true anymore.

If the priority of the CPU is greater than or equal to the detected PIPN, no immediate further actions
are performed. The ICU goes into an idle state until one of the following conditions is true:

B A new arbitration round will be started only when a new service request is detected. In this case,
the PIPN is first set to 0 to indicate it is invalid. (The new request might have a higher priority,
then this will be the new PIPN. If the new request has a lower priority then the previous PIPN, the
previous priority number will be detected again).

m [f the current CPU priority number is changed due to explicit software modification or through the
return from an interrupt, the pending interrupt will be serviced if the new CCPN is lower than the
PIPN. Otherwise, no actions are performed and the service request is left pending.

Note that an arbitration is performed when a new service request is detected, regardless of whether
the interrupt system is globally enabled or not, or whether there are other conditions preventing the
CPU from servicing interrupts. In this way, the PIPN field always reflects the pending service request
with the highest priority. This scheme also has the advantage of reducing the power consumption
because arbitrations are not performed continuously but only when required.

Having the PIPN as an indication on a pending interrupt request also allows an immediate reaction on
the return from an interrupt or trap routine if the priority of the pending request is greater than the
one of the task which is returned to. The Trillium architecture immediately checks whether PIPN is
greater than the CCPN of the interrupted task and directly performs a branch to the new interrupt
service routine if this is the case. This “interrupt folding” saves time and reduces power consump-
tion through avoiding the unnecessary context restore and save operations.

5.5 Entry into an Interrupt Service Routine (ISR)

When all conditions are clear for the CPU to service an interrupt request, the following actions are
performed:

1. The upper context of the current task is saved.

2. The interrupt system is disabled (ICR.IE = 0).

3. The current CPU priority number (CCPN) is set to PIPN.

4. The PSW is set to a default value.
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5. The interrupt vector table is accessed to fetch the first instruction of the interrupt service routine
(ISR).

5.5.1 Default State of the PSW upon an Interrupt

The default state of the PSW upon occurrence of an interrupt is defined as follows:

—_

All permissions are enabled.

2. Memory protection using the interrupt memory protection map (PSW.PRS) is enabled.
3. The stack pointer bit is set for using the interrupt stack.
4

. The call depth counter is cleared, and the call depth limit selector is set for 64.

5.5.2 The Interrupt Vector Table

The interrupt vector table is organized according to the priority number of the interrupts. The priority
of the arbitration winner, determined automatically at the end of an arbitration round, identifies the

entry into the vector code. Interrupt latency is reduced because the extra cycle for the transfer of an
identifier can be omitted.

The interrupt handler vectors are stored in code memory. The BIV register specifies the base ad-
dress of the interrupt vector code. The vectors are made up of a number of short code segments,
evenly spaced by eight words.

If an interrupt handler is very short, it may fit entirely within the eight words available in the vector
code segment. Otherwise, it should contain some initial instructions, followed by a jump to the rest
of the handler.

The size of the vector code depends only on the number of interrupts actually used in a system. Up
to 256 vector entries, for 256 distinct interrupt handlers, are supported, but systems requiring fewer
interrupt sources need not dedicate the full 256 entry’s worth of memory required by the largest
configurations.

When the CPU takes an interrupt, the interrupt priority number associated with the interrupt is used
to index into the interrupt vector code. This number, detected by the ICU as PIPN and then taken as
the new CCPN, is left-shifted by five bits and OR-ed with the address in the BIV register to generate
the entry address of the interrupt handler.

The BIV address must be aligned on a power of two boundary, sufficient to generate correct interrupt
vector addresses without using addition. Alignment to an 8-KByte boundary is sufficient for the full
range of 256 interrupt sources. If fewer sources are used, the alignment requirements can be re-
laxed.

The BIV register accommodates partitioning of internal memory between RAM and one or more
types of ROM. Its default on powerup is a fixed value, which is normally the base address for inter-
nal code ROM. However, the BIV register can be written to using the MTCR instruction during the
power-on/reset phase of execution, before interrupts are enabled.
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5.6 Interrupt Priority Levels

The interrupt system of the TriCore architecture is a flexible, programmabile priority-leveling scheme.
All service requests are assigned priority numbers (SRPNs), including the CPU.

Different service requests must be assigned different priority numbers. The maximum number of in-
terrupting sources is 255. Programmable options range from one priority level with 255 sources up
to 255 priority levels with one source each.

Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is feasible, be-
cause interrupt numbers are not hardwired to individual sources. They are assigned by software ex-
ecuted during the poweron boot sequence.

Disabling the interrupt system and setting the new CCPN to PIPN (the priority of the interrupt re-
quest which is now serviced) on entry into an ISR will block interrupts of equal or lower priority than
the currently serviced interrupt when the interrupt system is enabled again. However, the interrupt
service routine can set the CCPN to any value (usually a higher value) before enabling interrupts,
thereby blocking an entire group of interrupts (including a reoccurrence of the current interrupt). This
capability results in a set of effective priority levels on top of the individual priority numbers in the
SRNs.

To group multiple interrupt sources into the same priority level, set the CCPN in each ISR to the pri-
ority number of the service request with the highest SRPN in that priority group. Each time the CPU
services an interrupt that is part of a priority group, its CCPN is set to the highest priority number of
that group. This service cannot be interrupted by another source within that same group because
none has a higher priority.

Interrupt service routines are easily divided into parts with different priorities. For example, an inter-
rupt is placed on a very high priority because response time and reaction to an event is very critical.
The necessary actions are carried out immediately on that high-priority level. Then the priority level
of this interrupt is lowered, and the interrupt request bit is set again (indicating a pending interrupt)
while still in the service routine. Returning to the interrupted program terminates the service routine.
The pending interrupt is serviced when the CPU priority is lower than its own. After entering the ser-
vice routine, which now can be at a different address in the program memory, the outstanding but
low-priority actions of the interrupt can be performed.

The priority of a service request might be low because the response time to an event is not critical.
But, once it has been granted service, this service should not be interrupted. To prevent any interrup-
tion, the TriCore architecture allows the priority level of this service request to be raised within the
ISR, and also allows interrupts to be disabled.

5.7 Enabling/Disabling the Interrupt System

There are several ways to enable or disable the interrupt system:
1. The ENABLE and DISABLE instructions set or clear ICR.IE.

2. The BISR instruction automatically enables the interrupt system (ICR.IE = 1).
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3. The MTCR instruction can be used to set or clear the ICR.IE bit.

The first two options are recommended because their actions are synchronized with the pipeline op-
eration. Using the MTCR instruction to directly modify register ICR is only recommended together
with an ISYNC instruction (synchronize instruction stream) in order to avoid unexpected pipeline side
effects.

5.8 Special Handling of Interrupt Requests

Interrupts are normally generated in response to interrupt requests coming from an external hard-
ware source. However, it is also possible for software posted interrupts to be generated in response
to software actions.

5.81 Software-Posted Interrupts

A software-posted interrupt is a true hardware interrupt, carrying an interrupt priority that is pro-
cessed through the regular interrupt subsystem to determine when the interrupt is taken. The only
difference is that the interrupt request is generated by setting the service request bit in a service re-
quest node explicitly, through a software update of the node’s control register.

Once the interrupt request bit in a service request node has been set, there is no way to distinguish
between a software-posted interrupt request and a true hardware interrupt request. For that reason,
it is generally advisable to use service request nodes and interrupt priority numbers for software
posted interrupts that are not used for hardware interrupts.

Interrupt System

5.8.2 Interrupt One

Interrupt 1 is the first and lowest priority entry in the interrupt vector. It is best used for ISRs perform-
ing task management. ISRs whose actions affect the launching of software-managed tasks will post
a software interrupt request at priority level one to signal the change. (Normally, the posting is not
done from the ISR directly, but from RTOS code in a service function called from the ISR.) The ISR
then can execute a normal return from interrupt, rather than jumping to an ISR exit function in the
kernel. There is no need for an exit function to check whether the ISR is returning to the background
task level or to a lower priority ISR that it interrupted, in order to determine when to invoke the task
dispatch function.

When there is a pending interrupt at a priority higher than the return context for the current interrupt,
the return from interrupt effectively becomes a jump to the new ISR.
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Traps

A trap occurs as a result of an event such as a non-maskable interrupt, an instruction exception, or il-
legal access. Traps are always active; they cannot be disabled by software action.

This chapter describes the different traps that can occur and the TriCore architecture’s trap handling
mechanism.

6.1 Trap Types

The Trillium architecture contains eight trap classes. These traps are further classified as synchro-
nous or asynchronous, and hardware or software. Each trap is assigned a Trap Identification Number
(TIN), that identifies the cause of the trap within its class. The TIN is loaded into register D15 before
the first instruction of the trap handler is executed.

Traps
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Table 7 summarizes and classifies all TriCore-supported traps.

Table 7: Supported Traps
Tr#":z # Trap Name | Sync/Async 'g:vv::::/ Description
Class 0 — Reset
0 RESET Synchronous Hardware System reset; raised at end of hardware reset sequence, with
hardware in known state
Class 1 — Internal Protection Traps
1 PRIV Synchronous Hardware Privileged Instruction
2 MPR Synchronous Hardware Memory Protection: Read Access
3 MPW Synchronous Hardware Memory Protection: Write Access
4 MPX Synchronous Hardware Memory Protection: Execution Access
5 MPP Synchronous Hardware Memory Protection: Peripheral Access
6 MPN Synchronous Hardware Memory Protection: Null Address
7 GRWP Synchronous Hardware Global Register Write Protection
Class 2 — Instruction Errors
1 10PC Synchronous Hardware llegal Opcode
2 UQPC Synchronous Hardware Unimplemented Opcode
3 0PD Synchranous Hardware Invalid operand specification
4 ALN Synchronous Hardware Data address alignment error
5 MEM Synchronous Hardware Invalid local memory address
Class 3 — Context Management
1 FCD Synchronous Hardware Free context list depleted (FCX == LCX)
2 Cbo Synchranous Hardware Call depth overflow
3 Chu Synchronous Hardware Call depth underflow
4 FCU Synchronous Hardware Free context list underflow (FCX == 0)
5 CSu Synchronous Hardware Context list underflow (PCX == 0)
6 CTYP Synchronous Hardware Context type error (PCXL.UL wrong)
7 NEST Synchronous Hardware Nesting error: RFE with non-zero call depth

70

TriCore Architecture Manual

¢ PRELIMINARY EDITION o



SIEMENS Traps

Table 7: Supported Traps(Continued)

Tr:rp":‘[)’ # Trap Name Sync/Async Hsﬂ;:x:::l Description
Class 4 — System Bus and Peripheral Errors
1 PRVP Asynchronous Hardware Privilege violation on peripheral access
2 BUS Asynchronaus Hardware Bus error
3 PARI Asynchronous Hardware Parity / CRC error
4 BLTO Asynchronous Hardware Bus Lock Time-out
5 PKEY Asynchronous Hardware Key violation for protected peripheral (bad source value)
Class 5— Assertion Traps
1 OVF Synchronous Software Arithmetic overflow
2 SOVF Synchronous Software Sticky arithmetic overflow
Class 6 — System Call
See footnote' J SYS l Synchronous | Software | System call
Class 7— Non-Maskable Interrupt
1 0 I NMI | Asynchronous | Hardware [ Non-maskable interrupt

1. For the system call trap, the TIN is taken from the immediate constant specified in the SYSCALL
instruction. The range of values that may be specified is 0 to 255, inclusive.

6.1.1 Synchronous Traps

Synchronous traps are associated with the execution or attempted execution of specific instructions.
The instruction causing the trap is known precisely. The trap is taken immediately and serviced be-
fore execution can proceed beyond that instruction.

6.1.2 Asynchronous Traps

Asynchronous traps are similar to interrupts, in that they are associated with hardware conditions de-
tected externally and signaled back to the core. Some result indirectly from instructions that have
been previously executed, but the direct association with those instructions has been lost. Others,
such as the non-maskable interrupt, are external events. The difference between an asynchronous
trap and an interrupt is that asynchronous traps are routed via the trap vector instead of the interrupt
vector code and cannot be masked.

6.1.3 Hardware Traps

Hardware traps are generated as a result of certain TriCore instructions. Examples are the illegal in-
struction trap, memory protection traps, and data memory address misalignment traps. When a

hardware trap condition is detected, the control logic supplies a two-part number that identifies the
cause of the trap to the hardware’s trap entry logic. The first part is a three-bit trap class number; the
second part is an eight-bit Trap Identification Number (TIN). The trap class number is left-shifted by
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five and ORed with the BTV register value to generate the address of the handler for that trap class.
The TIN is loaded into the trap handler’s D15 register, to further identify the cause of the trap.

6.1.4 Software Traps

Software traps include system calls and the assertion traps. Through the SYSCALL instruction, an ap-
plication code can call a system function whose execution requires a permission that has not been
allocated to the calling code. There is a single trap vector entry for all system calls. The specific sys-
tem function desired is identified by an immediate constant specified in the SYSCALL instruction,
which becomes the TIN for the SYSCALL trap.

6.2 Trap Handling

This section describes the trap handling mechanisms supported by the TriCore architecture. The ac-
tions taken on traps are slightly different than those taken on external or software interrupts. Trap
handlers reside in a different vector from interrupt handlers. The return PC saved in the return ad-
dress register is the PC of the instruction that caused the trap. For an interrupt, the return PC is that
of the instruction that would have been executed next, if the interrupt had not been taken. A trap
does not change the CPU's interrupt priority, so the ICR.CCPN field is not updated.

6.2.1 Trap Vector Format

The trap handler vectors are stored in code memory in the trap vector table. The BTV register speci-
fies the base address of the trap vector table. The vectors are made up of a number of short code
segments, evenly spaced by eight words.

If a trap handler is very short, it may fit entirely within the eight words available in the vector code
segment. Otherwise, it should contain some initial instructions, followed by a jump to the rest of the
handler.

6.2.2 Accessing the Trap Vector Table

When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two compo-
nents: the trap class number, used to index into the trap vector table, and the trap identification num-
ber (TIN), which is loaded into D15. The trap class number is left shifted by five bits and ORed with
the address in the BTV register to generate the entry address of the trap handler.

6.2.3 Default State upon a Trap

The default state when a trap occurs is defined as follows:

1. All permissions are enabled.

2. Memory protection using the interrupt memory protection map (PSW.PRS = 00,) is enabled.
3. The stack pointer bit is set for using the interrupt stack.
4

. The call depth counter is cleared, and the call depth limit selector is set for 64.
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5. Interrupts are disabled; they remain disabled until explicitly enabled.
6. The ICR.CCPN remains unchanged.

Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with interrupts
disabled. They can therefore perform critical initial operations without interruptions, until they specif-
ically re-enable interrupts.

Traps
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Protection System

Protection is increasingly important as embedded applications increase in size and complexity. The
focus for embedded systems is different than it is for workstations and PCs, because embedded
systems normally are not faced with the problem of maintaining their integrity against unknown and
perhaps hostile user code. However, protection capabilities are useful for protecting core system
functionality from bugs that may have slipped through testing. They are also important aids to test-
ing and debugging.

The TriCore's protection system provides the essential features needed to isolate errors and facilitate
debugging. It protects critical system functions against both software and transient hardware errors.
The TriCore protection system is unobtrusive, imposing little overhead and avoiding non-determinis-
tic run-time behavior.

This chapter describes the hardware operation of the protection system. In addition, later sections in-
troduce the use of the protection features by software in real-time systems.

11 Protection System Registers

There are two major components to the protection system:
1. The control bit fields in the PSW.
2. The memory protection registers which control program execution and memaory access.

Chapter 3, “Core Registers,” describes these registers in detail.

711 PSW Protection Fields

The control fields in the PSW that deal with the protection system are shaded in the figure below.
Their functions are described after the figure. (The other PSW fields are described in Section 3.3,
"Program State Information (PC, PSW, and PCXI),” on page 30.)

TriCore Architecture Manual 77

+ PRELIMINARY EDITION o

Protection System




Protection System SIEMENS

3N 30 29 28 27 2% 4 13 122 1 10 9 8 7 6 0
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7111 PRS

The PRS field selects one of up to four sets of memory protection register values controlling load and
store operations and instruction fetches within the current process. This field indicates the current
protection register set. See Section 7.1.2, “Memory Protection Registers,” on page 79, for a descrip-
tion of memory protection registers.

111210

The 10 field determines the access level to special function registers (SFRs) and peripheral devices.
There are three 1/O privilege levels:

B 00 — User0; no peripheral access. Used for tasks that have no requirement to directly access pe-
ripheral devices. Tasks at this level do not have permission to enable or disable interrupts.

B 01 — User1; regular peripheral access. Enables access to common peripheral devices that are
not specially protected. Typically includes read/write access to SIO ports and read access to tim-
ers and most |/O status registers. Tasks at this level may disable interrupts.

B 10 — Supervisor. Enables read/write access to core registers and protected peripheral devices.

B 11 — Reserved. This encoding is reserved and not defined.

1113 1S

The IS bit determines whether the current execution thread is using the shared global (interrupt)
stack or a user stack. A “1” in this bit indicates use of the interrupt stack; a “0” indicates use of the
user stack. If an interrupt is taken when the IS bit is 0, then the stack pointer register is loaded from
the ISP register before execution starts at the first instruction of the interrupt service routine.

1114 GW

The GW bit controls whether the current execution thread has permission to modify the global ad-
dress registers. Most tasks and ISRs will use the global address registers as “read only” registers,
pointing to the global literal pool and key data structures. However, a task or ISR can be designated
as the “owner” of a particular global address register, and is allowed to modify it.

The system designer must determine which global address variables are used with sufficient fre-
quency and/or in sufficiently time-critical code to justify allocation to a global address register. By
compiler convention, global address register AQ is reserved as the base register for short form loads
and stores. Register A1 is also reserved for compiler use. Registers A8 and A9 are not used by the
compiler, and are available for holding critical system address variables.
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1115 CDE

The CDE bit enables call depth counting, provided that the CDC mask field is not all 1's. It is one by
default, but is cleared by the call trace trap handler to enable a trapped call to execute without re-
trapping after return from the trap handler. It is then set again on execution of the CALL instruction.

71.1.6 CDC

The CDC field consists of two variable-width fields. The first is a mask field, consisting of a string of
zero or more initial ‘1" bits, terminated by the first ‘0’ bit. The remaining bits of the field are the call
depth counter. The following table illustrates the division:

PSW.CDC Bits Definition
Occceee B-bit counter; trap on overflow
10cccce 5-bit counter; trap on overflow
110ccce 4-hit counter; trap on overflow
1110cce 3-bit counter; trap on overflow
11110cc 2-bit counter; trap on overflow
111110c¢ 1-bit counter; trap on overflow
1110 trap every call {call trace mode)
M1 disable call depth counting

When the call depth counter overflows, a trap is generated. Depending on the width of the mask
field, the call depth counter can be set to overflow at any power of two boundary from 1 (29 to 64
(28). Setting the mask field to 1111110, allows no bits for the counter, and causes every call to be
trapped. This is used for call tracing. Setting the field to mask field to 1111111, disables call depth
counting altogether.

71.2 Memory Protection Registers

The memory protection model for the TriCore architecture is based on address ranges, with specific
access permissions associated with each range. Ranges and their associated permissions are spec-
ified in two to four identical sets of tables residing in core SFR (CSFR) space. Each set is referred to
as a PROTECTION REGISTER SET. A protection register set consists of Data Segment Protection Regis-
ters, Data Protection Mode Registers, Code Segment Protection Registers, and Code Protection
Mode Registers (see Figures 41 through 44). Refer to Section 3.8, “Memory Protection Registers,”
for more details on these registers.

Protection System

63 2 3 0
| Upper Bound 1 Lower Bound

Figure 41: Data Segment Protection Register
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Figure 42: Code Segment Protection Register Pair ’
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Figure 43: Data Protection Mode Register
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Figure 44: Code Protection Mode Register

At any given time, one of the sets is the CURRENT PROTECTION REGISTER SET, which determines the le-
gality of memory accesses by the current task or ISR. The PRS field in the PSW indicates the current
protection register set number.

Each protection register set contains separate address range tables for checking data accesses and
code accesses. This reflects the fact that there are separate buses for data and program memory.
The RANGE TABLE ENTRY is a pair of words specifying a lower and an upper bound for the associated
range. The range defined by one range table entry is the address interval:

lower bound £ address < upper bound

Each range table entry has an associated mode table entry where access permissions and debug
signal conditions for that range are specified. On load and store operations, data address values are
checked against the entries in the data range table. On new instruction fetches, the PC value for the
fetch is checked against the entries in the code range table. When an address is found to fall within
arange defined in the appropriate range table, the associated mode table entry is checked for access
permissions and debug signal generation.

The number of protection register sets in a TriCore derivative is implementation dependent. The min-
imum number in a conforming implementation is two, and the maximum number is four.

In a two-set implementation, one of the sets corresponds to the current background task, and the
other is common to any interrupt service routine. (In this case “background” task means the control
thread executes at hardware priority level 0 when the interrupt stack is empty.) This configuration al-
lows taking an interrupt and then returning from the interrupt to the interrupted task without chang-
ing any protection register or address range table values. Only the selection of the active set of
protection registers changes.

71.21 Modes of Use for Range Table Entries

Individual range table entries can be used just for memory protection or for debugging. One entry
rarely is used for both purposes. If the upper and lower bound values have been set for debug break-
points, they probably are not meaningful for defining protection ranges, and vice versa. However, it
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is both possible and reasonable to have some entries used for memory protection and other used for
debugging.

To disable an entry for use in memory protection, clear both the RE and WE bits in a data range table
entry or clear the XE bit in a code range table entry. The entry can be disabled for use in debugging
by clearing any debug signal bits.

When a range entry is being used for debugging, the debug signal bits that are set determine wheth-
er it is used as a single range comparator (giving an in-range/not in-range signal) or as a pair of equal
comparators. The two uses are not mutually exclusive.

71.2.2 Using Protection Register Sets

If there were only one protection register set, then either the mappings used would have to be gen-
eral enough to apply to all tasks and ISRs—and hence not terribly useful for isolating software errors
in individual tasks —or there would have to be a substantial overhead paid on interrupts and task con-
text switches for updating the tables to match the currently executing task or ISR. By providing for
multiple sets of tables, with two bits in the PSW to select the currently active set, those drawbacks
are avoided.

Note that supervisor mode does not automatically disable memory protection. The protection regis-
ter set that is selected for supervisor tasks will normally be set up to allow write access to regions
of memory that are protected from user mode access. In addition, of course, supervisor tasks can
execute instructions to change the protection maps, or to disable the protection system entirely. But
supervisor mode does not implicitly override memory protection, and it is possible for a supervisor
task to take a memory protection trap.

1.2 Sample Protection Register Set

Figure 45 illustrates Data Protection Register Set n, where n is one of the four sets as selected by
the PSW.PRS field. Each register set in this example consists of four range table entries. The ranges
defined can potentially overlap, or be nested. Nesting of ranges can be used, for example, to allow
write access to a subrange of a larger range in which the current task is allowed read access.

The four Data Segment Protection Registers and four Data Protection Mode Registers are set up as
follows:

m Data Segment Protection Register 3 (DPRn_3) defines the upper and lower bound for Data
Range 4. Data Protection Mode Register 3 (DPMn_3) defines the permissions and debug condi-
tions for Data Range 4.

B Data Segment Protection Register 2 (DPRn_2) defines the upper and lower bound for Data
Range 3. Data Protection Mode Register 2 (DPMn_2) defines the permissions and debug condi-
tions for Data Range 3. Note that Data Range 3 is nested within Data Range 4.

B Data Segment Protection Register 1 (DPRn_1) defines the upper and lower bound for Data
Range 2. Data Protection Mode Register 1 (DPMn_1) defines the permissions and debug condi-
tions for Data Range 2.
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B Data Segment Protection Register 0 (DPRn_0) defines the upper and lower bound for Data
Range 1. Data Protection Mode Register 0 (DPMn_0) defines the permissions and debug condi-
tions for Data Range 1.

This same configuration can be used to illustrate Code Protection Register Set n.

| Upper Bound
i DPRn_3
| Lower Bound

Protection Mode DPMn_3
Upper Bound
DPRn_2
Lower Bound
Protection Mode DPMn_2
I Upper Bound
DPRn_1
Lower Bound

[ 1]
]
Protection Mode DPMn_1 [ |
]

‘ - zange
3

[ Upper Bound
DPRn_0 <
[ Lower Bound

Protection Mode DPMn_0

TAMO18.1
Figure 45: Example Configuration of a Data Protection Register Set

1.3 Memory Access Checking

When the protection system is enabled, every memory access (read, write, or execute) is checked
for legality before the access is performed. The legality is determined by all of the following:

B the protection enable bits in the Syscon Register,
W the current I/O privilege level (0 = User0; 1 = User1; 2 = Supervisor), and
B the ranges defined in the currently selected protection register set.

Data addresses (read and write accesses) are checked against the currently selected data address
range table, while instruction fetch addresses are checked against the code address range tables.
The mode entries for the data range table entries enable only read and write accesses, while the
mode entries for the code range table entries enable only execute access. In order for data to be
read from program space, there must be an entry in the data address range table that covers the ad-
dress being read. Conversely there must be an entry in the code address range table that covers the
instruction being read.

Access to the internal and external peripherals is through the two upper segments of the TriCore ad-
dress space (high-order address bits equal to 1110, and 1111,). Access checking for addresses in the
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peripheral segments is independent of access checking in the remainder of the address space. Ac-
cess to the peripheral segments is not allowed for tasks at /O privilege level 0 (User-0 tasks). Tasks
at I/O privilege 1 and higher have access rights to the peripheral segment space, however, the valid-
ity of any given access attempt depends on the presence of a peripheral at the accessed address,
and any restrictions it may impose on its own access. Protected peripherals, for example, require
that the I/O privilege be 2, as reflected by the supervisor line value on the system bus. Refer to Sec-
tion 2.3, "Memory Model,” on page 16 for the memory map showing the peripheral segments.

If the memory protection system is disabled, then any access to any memory address outside of the
peripheral segments is permitted, regardless of the I/O privilege level. There are no memory regions
reserved for supervisor access only, when the memory protection system is disabled.

When the memory protection system is enabled, for an access to be permitted, the address for the
access must fall within one or more of the ranges specified in the currently selected protection reg-
ister set. Furthermore, the mode entry for at least one of the matching ranges must enable the re-
quested type of access.

7.3.1 Permitted vs. Valid Accesses

A memory access can be permitted within the ranges specified in the data and code range tables
without necessarily being valid. A range specified in a range table entry could cover one or more ad-
dress regions where no physical memory was implemented. Although that would normally reflect an
error in the system code that set up the address range, the memory protection system only uses the
range table entries when determining whether an access is permitted. In addition, if the memory
protection system is disabled, all accesses must be taken as permitted, though individual accesses
may or may not be valid.

An access that is not permitted under the memory protection system results in a memory protection
trap. When permitted, an access to an unimplemented memory address results in a bus error trap,
provided that the memory address is in one of the segments reserved for local memory. If the ad-
dress is an external memory address, the result depends on the memory implementation, and is not
architecturally defined.

An access can also be permitted but invalid due to a misaligned address. Misaligned accesses result
in an alignment trap, rather than a protection trap.

1.3.2 Crossing Protection Boundaries

An access can straddle two regions. For example, Figure 46 illustrates the condition where Instruc-
tion A lies in an execute region of memory, Instruction C lies in a no-execute region of memory, and
Instruction B straddles the execute/no execute boundary.

Execute No Execute
LA | f | ¢ ]
TAM019.1
Figure 46: Protection Boundaries
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Because the PC is used in the comparison with the comparator registers, the program error excep-
tion is not signaled until Instruction C is fetched. The same is true for all comparisons—the address
of the first accessed byte is compared against the memory protection comparator registers. Hence,
an access assumes the memory protection properties of the first byte in the access regardless of
the number of bytes involved in the access.

For normal accesses, this assumption is not a problem, because the regions are set up according to
the natural access boundaries for the code or data that the region contains. For wild accesses due to
software or hardware errors, stores are the main concern. In the worst case, a doubleword store that
is aligned on a halfword boundary can extend three halfwords beyond the end of the region in which
its address lies.

One way to prevent boundary crossings is to leave at least three halfwords of buffer space between
regions. This configuration prevents wild stores from destroying data in adjacent read-only regions,
for example.
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Instruction Set Overview

This chapter provides an overview of the TriCore instruction set architecture. The basic properties
and usage of each instruction type are described, as well as the selection and usage of the 16-bit
(short) instructions. The instructions are described individually in Chapter 9.

8.1 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information about the re-
sult of the arithmetic operations is recorded in the five status flags in the Program Status Word
(PSW). The status flags are described in Table 8.

Table 8: PSW Status Flags

Status Flag Description

c Carry. This flag is set as the result of a carry out from an addition or subtraction instruction. Carry out
can result from either signed or unsigned operations. It is also set by automatic shift.

Overflow. This flag is updated by most arithmetic instructions. It is set when the result cannot be
v represented in the data size of the result; for example, when the result of a signed 32-bit operation
is greater than 23'-1.

sV Sticky Overflow. This flag is set when the overflow flag is set. It remains set until it is explicitly
cleared by an RSTV (Reset Overflow bits) instruction.

Instruction Set
Overview

AV Advanced Overflow. This flag is updated by all instructions that update the overflow flag and no ath-
ers. 