SIEMENS

Optoelectronic Data Book 1987/88

Siemens...innovators in opto technology

Company Overview

Siemens Components, Inc., Optoelectronics Division is headquartered in Cupertino, California-in the heart of Silicon Valley. A world leader in Light Emitting Diode (LED) technology, sophisticated CMOS IC design, optics, and packaging, our product line includes:

- Programmable Display ${ }^{\text {™ }}$ devices
- Intelligent Display ${ }^{\circledR}$ devices
- Numeric Displays
- Bar Graphs
- LED Lamps, Light Bars
- Optocouplers
- Infrared Emitting Diodes
\& Photodetectors
- Custom Products

Our materials technology includes; visible and IR LEDs (GaAsP, GaP or combinations of these GaAIAs, Silicon Carbide) and photodetectors. Assembly of final products is done offshore in Malaysia. These manufacturing facilities are show cases of automation and efficiency, featuring the latest automated assembly and test equipment, resulting in high yields and high quality products.

History

Siemens Optoelectronics Division was founded in 1969 as Litronix to manufacture LED lamps, numeric displays, and optocouplers for the OEM market, as well as calculators and watches for the consumer market. In 1977 Siemens acquired Litronix and refocused priorities toward the basic business of producing and marketing LED materials and components.

As a division of Siemens Components, Inc., the Optoelectronics Division is part of the Siemens U.S.A. organization which has sales of $\$ 1.9$ billion and over 18,000 employees. Siemens U.S.A. includes Siemens Capital Corp., Information Systems, Communication Systems, Medical Systems, Siemens Energy \& Automation, and Corporate Research \& Development. There are also a number of Siemens-owned companies that operate under their own names. Additionally, Siemens U.S.A. is a member of the worldwide Siemens organization which has sales of $\$ 24$ billion, 348,000 employees, and 190 production facilities in 35 countries.

Technology Strengths

Our strengths lie in the following areas:

- Continual process development/ improvement in LED material
- In-house design of complex CMOS integrated circuits using the latest CAD/CAM and CAE equipment
- Sophisticated optics and packaging capabilities
- State-of-the-art system knowhow for complex IC/LED hybrids
- Leading supplier of custom products
- A history of innovation: Siemens invented Intelligent Display devices in 1977 and Programmable Display devices in 1984. Both these lines of products feature built-in CMOS IC control circuits for easy interface with microprocessors. Because of the success of our Intelligent Display devices, they have been secondsourced by our competitors.

Quality and Reliability

Every aspect of day-to-day production is closely monitored and verified to ensure that all materials, processes, manufacturing, and testing meet precise engineering standards. Rigorous quality control checks are built into each stage of production. The finished product undergoes thorough electrical, optical, dimensional, and visual inspections resulting in products of superior quality. Our overall product quality is 100 PPM. Our worldwide quality system including, PPM and SQC programs, and our flexible manufacturing capabilities, allows us to produce the highest quality products with on time deliveries at competitive prices.

Product Applications

Siemens optoelectronic products are used in a broad range of electronic/commercial/industrial market segments, such as: test instrumentation, medical equipment, computers and computer peripherals, telecommunications, process/industrial controls, terminals and power supplies.

Conclusion

Siemens is strategically positioned to concentrate efforts on innovative products and systems offering value-added and cost-effective features to our customers. All our resources and capabilities in the production of LED materials (visible and infrared), R\&D engineering, IC design, optics/packaging, automated assembly, strong focus on reliability, etc., keep Siemens at the leading edge of opto technology.

SIEMENS

Optoelectronic
 $\frac{\text { Data Book }}{1987 \cdot 1988}$

TABLE OF CONTENTS

Alphanumeric Index
Page Number(s)
Quality and Reliability Information
Optoelectronics, Quality and Reliability 1
Reliability Report, Monolithic Intelligent Display ${ }^{*}$ Devices 5
Considerations of Optocoupler Manufacturing and Reliability 6
Reliability Report, Small Outline Surface Mount Couplers 0
Custom Products 1-1
LED Intelligent Display® Devices \& Programmable Display ${ }^{\text {™ }}$ Devices
Selector Guide 2-2
Intelligent Display Devices and Programmable Display Devices 2-5
Selector Guide:Intelligent Display Assemblies 2-103
Intelligent Display Assemblies 2-104
LED Bar Graphs and Light Bars
Selector Guide 3-2
Light Bars 3-3
Bar Graphs 3-9
LED Numeric Displays
Selector Guide 4-2
Numeric Displays 4-4
LED Lamps
Selector Guide 5-2
Packaging of LEDs on Continuous Tapes 5-5
Packaging of Surface Mount LEDs 5-6
Lamps 5-7
Accessories 5-71
Optocouplers (Optoisolators)
Selector Guide 6-2
Optocouplers 6-7
Reflective Sensor 6-85
Infrared Emitters
Selector Guide 7-2
Infrared Emitters 7-5
Photodiodes
Selector Guide 8-1
Photodiodes - 4
Phototransistors
Selector Guide 9-1
Phototransistors 9-33
Photovoltaic Cells
Selector Guide 10-1
Photovoltaic Cells 10-2
Application Notes
List of Application Notes 11-1
Application Notes 11-2
Siemens Components/Semiconductor Group Sales Offices Inside Back Cover

PART NUMBER	DESCRIPTION	PAGE
4N25	Optocoupler, 6 Pin Sngl, 20\% CTR, 7500 V	6-8
4N26	Optocoupler, 6 Pin Sngl, 20\% CTR, 7500 V	6-8
4N27	Optocoupler, 6 Pin Sngl, 10\% CTR, 7500 V	6-8
4N28	Optocoupler, 6 Pin Sngl, 10\% CTR, 7500 V	6-8
4N32	Optocoupler, 6 Pin Sngl, 500\% CTR, 7500 V	6-
4N33	Optocoupler, 6 Pin Sngl, 500\% CTR, 7500 V	6-10
4N35	Optocoupler, 6 Pin Sngl, 100\% CTR, 7500 V	6-11
4N36	Optocoupler, 6 Pin Sngl, 100\% CTR, 7500 V	6-11
4N37	Optocoupler, 6 Pin Sngl, 100\% CTR, 7500 V	6-11
6N138	Optocoupler, 8 Pin Sngl, 300\% CTR, 6000V, Low Input Current	6-13
6N139	Optocoupler, 8 Pin Sngl, 400\% CTR, 6000V, Low Input Current	6-13
2004-9002	Clip \& Collar, T13/4, Black	5-71
2004-9003	Clip \& Collar, T13/4, Clear	5.71
2004-9015	Clip \& Collar T1, Clear	5.71
2004-9016	Clip \& Collar T1, Black	5-71
2004-9019	Mount, Right Angle, T13/4, Black	5-71
2004-9020	Reflector, T13/4, Polished	5-71
BP103-2	Photoxtr, TO-18, Plastic, $55 \mathrm{Deg}, 250 \mu \mathrm{~A}$	-3
BP103-3	Photoxtr, TO-18, Plastic, 55 Deg, $400 \mu \mathrm{~A}$	9-3
BP103-4	Photoxtr, TO-18, Plastic, 55 Deg, $630 \mu \mathrm{~A}$	9-3
BP103B-2	Photoxtr, T13/4, Plastic, 25 Deg, 2.5 mA	9-5
BP103B-3	Photoxtr, T13/4, Plastic, 25 Deg, 4.0 mA	9-5
BP103B-4	Photoxtr, $113 / 4$, Plastic, 25 Deg, 6.3mA	9-5
BP104	Photodiode, Plastic w/Filter, PIN, 60 Deg	8-4
BP104BS	Photodiode, Plastic w/Filter, SMD	8-6
BPW21	Photodiode, TO-5, Hermetic, 60 Deg	8-8
BPW32	Photodiode, Clear Plastic, 60 Deg	8-10
BPW33	Photodiode, Clear Plastic, 60 Deg	8-12
BPW34	Photodiode, PIN, Clear Plastic, 60 Deg	$8-14$
BPW34B	Photodiode, Plastic, 60 Deg.	8-16
BPW34F	Photodiode, PIN, Plastic, Filter	8-18
BPX38-2	Photoxtr, TO-18, 40 Deg, . 63 mA	9-7
BPX38-3	Photoxtr, TO-18, 40 Deg, 1.0mA	9.7
BPX38-4	Photoxtr, TO-18, 40 Deg, 1.6mA	9-7
BPX43-2	Photoxtr, TO-18, 20 Deg, 2.5mA	9-9
BPX43-3	Photoxtr, TO-18, 20 Deg, 4.0 mA	9-9
BPX43-4	Photoxtr, TO-18, 20 Deg, 6.3mA	9-9
BPX48	Photodiode, Plastic, Differential, 60 Deg	8-20
BPX60	Photodiode, TO-5, 50 Deg	8-22
BPX61	Photodiode, PIN, TO-5, 50 Deg	8-24
BPX63	Photodiode, TO-18, 75 Deg	8-26
BPX65	Photodiode, PIN, TO-18, 30 Deg	8-28
BPX66	Photodiode, PIN, TO-18, 30 Deg	8-30
BPX79	Photovoltaic, $.18^{\prime \prime} \times .18^{\prime \prime}, 135 \mathrm{nA} / \mathrm{LX}$	10-2
BPX80	Photoxtr, 10 Element Array, Plastic	9-11
BPX81-2	Photoxtr, Mini, 18 Deg, 1.0mA	9-11
BPX81-3	Photoxtr, Mini, 18 Deg, 1.6mA	9-11
BPX81-4	Photoxtr, Mini, 18 Deg, 2.5mA	9.11
BPX82	Photoxtr Plastic, 2 Element Array	9.11
BPX83	Photoxtr Plastic, 3 Element Array	9-11
BPX84	Photoxtr Plastic, 4 Element Array	9-11
BPX85	Photoxtr Plastic, 5 Element Array	9-11
BPX86	Photoxtr Plastic, 6 Element Array	9-11
BPX87	Photoxtr Plastic, 7 Element Array	9-11
BPX88	Photoxtr Plastic, 8 Element Array	9-11
BPX89	Photoxtr Plastic, 9 Element Array	9-11

PART

4N25 Optocoupler, 6 Pin Sngl, 20\% CTR, 7500V ... 6-8
4N26 Optocoupler, 6 Pin Sngl, 20\% CTR, 7500 V
6-8
4N27 Optocoupler, 6 Pin Sngl, 10% CTR, 7500 V
6-8
4N32 Optocoupler, 6 Pin Sngl, 500\% CTR, 7500V . . 6-10
4N33 Optocoupler, 6 Pin Sngl, 500\% CTR, 7500V .. 6-10
4 N35 Optocoupler, 6 Pin Sngl, 100\% CTR, 7500 V
$6-1$
4N36
4N37
Optocoupler, 8 Pin Sngl, 300\% CTR,
Optocoupler, 8 Pin Sngl, 400% CTR, 6000 V , Low Input Current

6-13
2004-9002 Clip \& Collar, T13/4, Black 5-71
2004-9003 Clip \& Collar, T13/4, Clear 5. 5
2004001 Cip \& Collar T1, Black 57
2004-9019 Mount, Right Angle, T13/4, Black. 5-71
2004-9020 Reflector, T13/4, Polished 5-71
BP103-2 Photoxtr, TO-18, Plastic, 55 Deg, $250 \mu \mathrm{~A}$. 9-3
BP103-3 Photoxtr, TO-18, Plastic, 55 Deg, $400 \mu \mathrm{~A}$. $9-3$
Poxtr,10-18, Plastic, 55 Deg, 630μ A
Potox, TIM, Pastic, 25 Deg, 2.5 mA
BP103B-4 Photoxtr, T13/4, Plastic, 25 Deg, 6.3 mA 9-5
BP104 Photodiode, Plastic w/Filter, PIN, 60 Deg 8-4
BP104BS Photodiode, Plastic w/Filter, SMD . 8-6
BPW21 Photodiode, TO-5, Hermetic, 60 Deg 8-8
BPW32 Photodiode, Clear Plastic, 60 Deg 8-10
Photodiode, Clear Plastic, 60 Deg 8-12
BPW34 Photodiode, PIN, Clear Plastic, 60 Deg 8-14
BPW34B Photodiode, Plastic, 60 Deg 8-16
Photodiode, PIN, Mastic,
Photoxtr, TO-18, 40 Deg, 63 mA
BPX384 Photoxtr T0.18, 10 Deg, 10 mA 9
BPX43-2 Photoxtr, TO-18, 20 Deg, 2.5 mA 9-9
BPX43-3 Photoxtr, TO-18, 20 Deg, 4.0mA 9-9
Photoxtr, 10-18, 20 Deg, 6.3mA

BPX60 Photodiode, TO-5, 50 Deg 8-22
Photodiode, PIN, TO-5, 50 Deg 8-24
BPX63 Photodiode, TO-18, 75 Deg 8-26
BPX65 Photodiode, PIN, TO-18, 30 Deg 8-28
Photodiode, PIN, TO-18, 30 Deg .

BPX80 Photoxtr, 10 Element Array, Plastic 9-11
BPX81-2 Photoxtr, Mini, 18 Deg, 1.0mA 9-11
Photoxtr, Mini, 18 Deg, 1.6mA
BPX81-4 Photoxtr, Mini, 18 Deg, 2.5mA 9.11
Photoxtr Plastic, 2 Element Array 9.11
Photoxtr Plastic, 3 Element Array 9-11
Photoxtr Plastic, 4 Element Array 9-11
Poloxtr Plastic, 5 Element Array .
BPX87 Photoxtr Plastic, 7 Element Array 9-11
Photoxtr Plastic, 8 Element Array . .11
BPX89 Photoxtr Plastic, 9 Element Array 9-11

PART

 NUMBERBPX90
BPX90K
BPX91B
BPX92
BPY11P-4
BPY11P-5
BPY62-2
BPY62-3
BPY62-4
BPY63P
BPY64P
CNY17-1
CNY17-2
CNY17-3
CNY17-4
CNY17F-1
CNY17F-2
CNY17F-3
DL330M
DL340M
DL430M
DL440M
DL1414T
DL1416B
DL1416T
DL1814
DL2416T
DL3416
DL7650-O
DL7651-O
DL7653-O
DL7656-O
DL7660-Y
DL7661-Y
DL7663-Y
DL7666-Y
DL7670-G
DL7671-G
DL7673-G
DL7676-G
DL7750-R
DL7751-R
DL7756-R
DL.7760-R

DLG4137
DLG5735
DLG5736
DLG7137
DLO4135
DLO7135
DLR5735
DLR5736

DESCRIPTION	PAGE
Photodiode, Plastic, 60 Deg	8-32
Photodiode, Plastic, 60 Deg	8-32
Photodiode, Plastic, 60 Deg	8-34
Photodiode, Plastic, 60 Deg	8-36
Photovoltaic, $.08^{\prime \prime} \times .15^{\prime \prime}, 47 \mathrm{nA} / \mathrm{LX}$	
Photovoltaic, $.08^{\prime \prime} \times 15^{\prime \prime}, 56 \mathrm{nA} / \mathrm{LX}$	
Photoxtr, TO-18, 8 Deg, 2.0 mA	9.13
Photoxtr, TO-18, 8 Deg, 3.2mA	9-13
Photoxtr, TO-18, 8 Deg, 5.0mA	9-13
Photovoltaic, 650nA/LX	10-6
Photovoltaic, 250nA/LX	$10-8$
Optocoupler, 6 Pin Sngl, 40\% CTR, 4400V	6-15
Optocoupler, 6 Pin Sngl, 63\% CTR, 4400V	6-15
Optocoupler, 6 Pin Sngl, 100\% CTR, 4400 V	6-15
Optocoupler, 6 Pin Sngl, 160\% CTR, 4400 V	6-15
Optocoupler, 6 Pin Sngl, 40\% CTR, 5300V	6-19
Optocoupler, 6 Pin Sngi, 63\% CTR, 5300V	6.19
Optocoupler, 6 Pin Sngl, 100\% CTR, 5300V	6-19
Display, $11^{\prime \prime}$, Red CC MPX, 3 Digit	
Display, .11", Red CC MPX, 4 Digit	
Display, .15", Red CC MPX, 3 Digit	
Display, $15^{\prime \prime}$, Red CC MPX, 2 Digit	
Int. Display, 4 Char, .112", Red	
Int. Display, 4 Char, 160 ", Red	$2 \cdot 10$
Int. Display, 4 Char, 160", Red	2-15
Int. Display, 8 Char, $112^{\prime \prime}$, Red	2-20
Int. Display, 4 Char, $160^{\prime \prime}$, Red, 300 nS	2-25
Int. Display, 4 Char, .225", Red, 500nS	2-31
Display, .43', HER, CA, DP Left	
Display, .43", HER, CA, DP Right .	
Display, .43", HER, CC, DP Right	
Display, $43^{\prime \prime}$, HER, Univ. ± 1 Overflow	
Display, .43", Yellow, CA, DP Left	
Display, $43^{\prime \prime}$, Yellow, CA, DP Right	
Display, .43", Yellow, CC, DP Right	
Display, .43", Yellow, Univ. ± 1 Overflow	
Display, .43", Green, CA, DP Left	
Display, $43^{\prime \prime}$, Green, CA, DP Right	
Display, .43", Green, CC, DP Right	4-5
Display, $43^{\prime \prime}$, Green, Univ. ± 1 Overflow	
Display, .43", Red, CA, DP Left	
Display, 43", Red, CA, DP Right	
Display, .43", Red, Univ. ± 1 Overflow	
Display, .43", Red, CC, DP Right	
Int. Display, Sngl, .43", Grn, 5×7 Dot Matrix	2-36
Display, .69', Green, 5×7 Dot Matrix	2.44
Display, . 69 ", Green, 5×7 Dot Matrix	2-44
Int. Display, Sngl, .68', Grn, 5×7 Dot Matrix	$2-40$
Int. Display, Sngl, .43", HER,	
5×7 Dot Matrix	2-36
Int. Display, Sngl, .68", HER,	
5×7 Dot Matrix	2-40
Display, .69', Red 5×7 Dot Matrix	
Com. Row Cath	2-44
Display, .69", Red 5×7 Dot Matrix	
Com. Row Anode.	2-44

Photodiode, Plastic, 60 Deg 8-32
Photodiode, Plastic, 60 Deg 8-32
Photodiode, Plastic, 60 Deg 8-34
Photodiode, Plastic, 60 Deg 8-36
Photovoltaic, $.08^{\prime \prime} \times .15^{\prime \prime}, 47 \mathrm{nA} / L X$

Photoxtr, TO-18, 8 Deg, 2.0mA 9-13
Photoxtr, TO-18, 8 Deg, 3.2mA 9-13
Photoxtr, TO-18, 8 Deg, 5.0mA 9-13
Photovoltaic, 650nA/LX 10-6
$10-8$
6-15
6-15
6-15

Display, 11 ", Red CC MPX, 3 Digit
Display, $15^{\prime \prime}$, Red CC MPX, 3 Digit 4-3
Display, . $15^{\prime \prime}$, Red CC MPX, 2 Digit 4-3
Int. Display, 4 Char, . $112^{\prime \prime}$, Red 2-5

Int. Display, 8 Char, $112^{\prime \prime}$, Red 2-20
Int. Display, 4 Char, .160", Red, 300 ns 2-25

Display, .43", HER, CA, DP Left 4-5
Display, .43", HER, CA, DP Right 4-5
Display, . 43 ", HER, CC, DP Right $4-5$

Display, .43", Yellow, CA, DP Left 4-5
Display, . $43^{\prime \prime}$, Yellow, CA, DP Right 4-5
Display, .43", Yellow, CC, DP Right 4-5

Display, $43^{\prime \prime}$, Green, CA, DP Left 4-5
Display, .43", Green, CA, DP Right 4-5
Display, . $43^{\prime \prime}$, Green, CC, DP Right 4-5

Display, . 43", Red, CA, DP Left 4-5
Display, .43", Red, CA, DP Right 4-5
Display, .43", Red, Univ. ± 1 Overflow 4-5
Int. Display, Sngl, . $43^{\prime \prime}$, Grn, 5×7 Dot Matrix . . 2-36
Display, $69^{\prime \prime}$, Green, 5×7 Dot Matrix 2.44
Display, .69", Green, 5×7 Dot Matrix 2-44
Int. Display, Sngl, .68", Grn, 5×7 Dot Matrix . . 2-40
Int. Display, Sngl, .43", HER,
Int. Display, Sngl, .68", HER,
5×7 Dot Matrix 2-40

Display, $69^{\prime \prime}$, Red 5×7 Dot Matrix
Display, 69", Red 5×7 Dot Matrix
Com. Row Anode
2-44

ALPHANUMERIC INDEX (Con't)

PART NUMBER	DESCRIPTION	PAGE	PART NUMB
GBG1000	Bar Graph, Green, 10 Element	3-11	IL1
GBG4850	Bar Graph, Green, 10 Element	3-13	IL2
GL56	Lamp. Axial, Green, 1.0 mcd @ 10mA	5-62	
GLB-2500	Light Bar, Green, $.15^{\prime \prime} \times .35^{\prime \prime}$ Emitting Area .	3-3	IL8
GLB-2550	Light Bar, Green, . $15^{\prime \prime} \times .75^{\prime \prime}$ Emitting Area	3-4	IL8
GLB-2800	Light Bar, Green, . $35^{\prime \prime} \times .15^{\prime \prime}$ Emitting Areas	3-5	119
GLB-2820	Light Bar, Green, . $35^{\prime \prime} \times .15^{\prime \prime}$ Emitting Areas	3.6	L9
GLB-2855	Light Bar, Green, $.35^{\prime \prime} \times 135^{\prime \prime}$ Emitting Area	3-7	IL10
GLB-2885	Light Bar, Green, . $35^{\prime \prime} \times .75^{\prime \prime}$ Emitting Area	3-8	IL10
H11AA1	Optocoupler, 6 Pin Sngl, 20\% CTR, 7500 V	6.23	IL11
H11C4	Optocoupler, 6 Pin Sngl, Photo SCR, 7500V	6-25	
H11C5	Optocoupler, 6 Pin Sngl, Photo SC, 7500 V	6-25	L30
H11C6	Optocoupler, 6 Pin Sngl, Photo SCR, 7500 V	6-25	
HD1075G	Display, .28', Green, CA, DP Right	4-9	IL3
HD10750	Display, $28^{\prime \prime}$, HER, CA, DP Right	4-9	IL5
HD1075R	Display, .28", Red, CA, DP Right	4.9	Ls
HD1075Y	Display, 28", Yellow, CA, DP Right	$4-9$	IL74
HD1077G	Display, .28", Green, CC, DP Right	4-9	
HD10770	-Display, $28^{\prime \prime}$, HER, CC, DP Right	4-9	
HD1077R	Display, .28", Red, CC, DP Right	4-9	IL101
HD1077Y	Display, .28', Yellow, CC, DP Right	4-9	$\begin{aligned} & \text { IL201 } \\ & \text { IL202 } \end{aligned}$
HD1105G	Display, .39", Green, CA, DP Right	4-12	
HD11050	Display, 39", HER, CA, DP Right	4-12	IL203
HD1105R	Display, .39", Red, CA, DP Right	4-12	
HD1105Y	Display, .39", Yellow, CA, DP Right	$4-12$	\|L205
HD1107G	Display, .39", Green, CC, DP Right	4-12	
HD1107O	Display, $39^{\prime \prime}$, HER, CC, DP Right	4-12	IL206
HD1107R	Display, $39^{\prime \prime}$, Red, CC, DP Right	4-12	
HD1107Y	Display, 39", Yellow, CC, DP Right	4-12	IL207
HD1131G	Display, .53", Green, CA, DP Right	4-15	1211
HD11310	Display, .53", HER, CA, DP Right	4-15	IL211
HD1131R	Display, $.53^{\prime \prime}$, Red, CA, DP Right	4-15	1212
HD1131Y	Display, .53", Yellow, CA, DP Right	4-15	L212
HD1132G	Display, $53^{\prime \prime}$, Green, CA, ± 1 Overflow	4-15	IL213
HD1132O	Display, $53{ }^{\prime \prime}$, HER, CA, ± 1 Overflow	4-15	
HD1132R	Display, $.53^{\prime \prime}$, Red, CA, ± 1 Overflow	4-15	1215
HD1132Y	Display, .53", Yellow, CA, ± 1 Overflow	4-15	L215
HD1133G	Display, .53", Green, CC, DP Right	4-15	IL216
HD11330	Display, $53^{\prime \prime}$, HER, CC, DP Right	4-15	
HD1133R	Display, .53", Red, CC, DP Right	4-15	LL217
HD1133Y	Display, $53^{\prime \prime}$, Yellow, CC, DP Right	4-15	
HD1134G	Display, .53', Green, CC, ± 1 Overflow	4-15	L221
HD1134O	Display, .53", HER, CC, ± 1 Overflow	4-15	222
HD1134R	Display, $53^{\prime \prime}$, Red, CC, ± 1 Overflow	4-15	L222
HD1134Y	Display, .53", Yellow, CC, ± 1 Overflow	4-15	IL223
IDA1414-16-1 Int. Display Asmbly, 16 Char. Buffer		2-104	
IDA1414-16-2 Int. Display Asmbly, 16 Char. w/o Buffer		2-104	1250
IDA1416-32	Int. Display Asmbly, 32 Char	2-108	L250
IDA2416-16	Int. Display Asmbly, 16 Char	2-112	IL251
IDA2416-32	Int. Display Asmbly, 32 Char	2-112	
IDA3416-16	Int. Display Asmbly, 16 Char	2-116	\|L252
IDA3416-20	Int. Display Asmbly, 20 Char	2-116	
IDA3416-32	Int. Display Asmbly, 32 Char	2-116	
IDA7135-16	Int. Display Asmbly, 16 Char	2-120	
IDA7135-20	Int. Display Asmbly, 20 Char	2-120	400
IDA7137-16	Int. Display Asmbly, 16 Char	2-120	IL4 40
IDA7137-20	Int. Display Asmbly, 20 Char	2-120	IL420

PART NUMBER	DESCRIPTION	PAGE
ILCT6	Optocoupler, 8 Pin Dual, 20\% CTR, 7500 V	6-61
ILD1	Optocoupler, 8 Pin Dual, 20% CTR, 7500 V	6-27
ILD2	Optocoupler, 8 Pin Dual, 100\% CTR,	
	7500 V	6-30
ILD5	Optocoupler, 8 Pin Dual, 50\% CTR, 7500 V	6-33
ILD30	Optocoupler, 8 Pin Dual, 100% CTR, 7500 V	6-38
ILD31	Optocoupler, 8 Pin Dual, 200\% CTR, 7500 V	6-38
ILD32	Optocoupler, 8 Pin Dual, 500\% CTR, 7500 V	6-64
ILD55	Optocoupler, 16 Pin Dual, 100% CTR, 7500 V	6-38
ILD74	Optocoupler, 8 Pin Dual, 12.5\% CTR, 7500 V	6-40
ILD610-1	Optocoupler, 8 Pin Dual, 40\% CTR, 7500 V	6-66
ILD610-2	Optocoupler, 8 Pin Dual, 63\% CTR, 7500 V	6.66
ILD610-3	Optocoupler, 8 Pin Dual, 100\% CTR, 7500 V	6-66
ILD610-4	Optocoupler, 8 Pin Dual, 160% CTR, 7500 V	6-66
ILQ1	Optocoupler, 16 Pin Quad, 20% CTR, 7500 V	6-27
ILQ2	Optocoupler, 16 Pin Quad, 100\% CTR, 7500 V	6-30
ILQ5	Optocoupler, 16 Pin Quad, 50\% CTR, 7500 V	6-33
ILQ30	Optocoupler, 16 Pin Quad, 100\% CTR, 7500 V	6-38
ILQ31	Optocoupler, 16 Pin Quad, 200\% CTR, 7500 V	6-38
ILQ32	Optocoupler, 8 Pin Dual, 500\% CTR, 7500 V	6-64
ILQ55	Optocoupler, 16 Pin Quad, 100\% CTR, 7500 V	6-38
ILQ74	Optocoupler, 16 Pin Quad, 12.5\% CTR, 7500 V	6-40
IRL60	Emitter, IR, Axial, . 4 mW	7.5
IRL80A	Emitter, IR, Side Facing, GaAs	7-7
IRL81A	Emitter, IR, Side Facing, GaAIAs	7.9
IRL400-1	Replaced By SFH400-2	7-23
IRL400-2	Replaced By SFH400-3	7-23
IRL401-1	Replaced By SFH401-2	7-25
\|RL401-2	Replaced By SFH402-3	7.25
IRL402-1	Replaced By SFH402-2	7-27
IRL402-2	Replaced By SFH402-3	7-27
IRL500	Emitter, IR, Plastic, Narrow Beam, 2.5 Deg	7-11
LD242-2	Emitter, IR, TO-18, 40 Deg, $4.0 \mathrm{~mW} / \mathrm{SR}$	7-13
LD242-3	Emitter, IR, TO-18, 40 Deg, 6.3mW/SR	7-13
LD260	Emitter, IR, 10 Element Array	7-15
LD261-4	Emitter, IR, Mini, 30 Deg, 2.0 mW	7-15
LD261-5	Emitter, IR, Mini, 30 Deg, 3.2mW	7-15
LD262	Emitter, IR, 2 Element Array	7-15
LD263	Emitter, IR, 3 Element Array	$7 \cdot 15$
LD264	Emitter, IR, 4 Element Array	$7 \cdot 15$
LD265	Emitter, IR, 5 Element Array	7-15
LD266	Emitter, IR, 6 Element Array	7-15
LD267	Emitter, IR, 7 Element Array	7-15
LD268	Emitter, IR, 8 Element Array	7-15
LD269	Emitter, IR, 9 Element Array	7-15
LD271	Emitter, IR, T13/4, 25 Deg, 10mW/SR	7-17
LD271H	Emitter, IR, T13/4, 25 Deg, $16 \mathrm{~mW} / \mathrm{SR}$	7-17

PART
NUMBER
LD271L LD271LH LD273 LD274

LD-1005 LD-1006 LD-1007

LD-1103
LD-1104

LD-1105

LD-1133
LD-1134
LD-1135
LDB5410
LDG-471
LDG-472
LDG-473
LDG-474
LDG-1151
LDG-1152
LDG-1153
LDG-1251
LDG-2330
LDG-3901
LDG-3902
LDG-3903
LDG-5071
LDG-5072
LDG-5171
LDG-5172
LDG-5591
LDG-5592
LDG-5901
LDG-5902
LDG-5903
LDH-1111
LDH-1112
LDH-1113
LDH-2310
LDH-3601
LDH-3602
LDH-3603
LDH-5021
LDH-5022
LDH-5023
LDH-5121
LDH-5122
LDH-5123
LDH-5191
LDH-5192
LDH-5193
LDH-5601
LDH-5602

DESCRIPTION

PAGE

Emitter, IR, T13/4, 25 Deg, 10 mW , $1^{\prime \prime}$. 7-17
Emitter, IR, T13/4, 25 Deg, $16 \mathrm{~mW} / \mathrm{SR}$. 7-17
Emitter, IR, Oval T13/4, 25 Deg, 25mW/SR 7-19
Emitter, IR, Oval T13/4, 10 Deg, 30mW/SR 7-21
Lamp, Red/Grn, T13/4, 2.5mcd @ 10mA 5-7
Lamp, Red/Grn, T13/4, 4.Omcd @ 10mA 5-7
Lamp, Red/Grn, T13/4, 6.3mcd @ 10mA 5-7
Lamp, Red/Grn, Cylin, 1.0mcd @ 20mA 5-9
Lamp, Red/Grn, Cylin, 1.6mcd @ 20mA 5-9
Lamp, Red/Grn, Cylin, 2.5 mcd @ 20mA 5-9
Lamp, Red/Grn, Cylin, 1.0mcd @ 20mA 5-11
Lamp, Red/Grn, Cylin, 1.6 mcd @ $20 \mathrm{~mA} . .$. . . 5-11
Lamp, Red/Grn, Cylin, 2.5mcd @ 20mA 5-11
Lamp, Blue, T13/4, 2.5mcd @ 20mA 5-13
Lamp, Green, Single, Mini 5-15
Lamp, Green, 2 Element Array 5-15
Lamp, Green, 3 Element Array 5-15
Lamp, Green, 4 Element Array 5-15
Lamp, Green, T1, 2.5mcd @ 20mA 5-23
Lamp, Green, T1, 6.0 mcd @ $20 \mathrm{~mA}$. . $5-23$
Lamp, Green, T1, 10 mcd @ 20mA 5-23
Lamp, Green, T13/4, 2.5mcd @ 20mA 5-27
Lamp, Green, SOT 23 Surface Mount 5-17
Lamp, Green, Rect, 1.0 mcd @ $20 \mathrm{~mA}$. . 5-31
Lamp, Green, Rect, 1.6mcd @ 20mA 5-31
Lamp, Green, Rect, 2.5mcd @ 20mA 5-31
Lamp, Green, $\mathrm{T} 13 / 4,2.5 \mathrm{mcd}$ @ $20 \mathrm{~mA}$. . 5-37
Lamp, Green, T13/4, 6.0mcd @ 20mA 5-37
Lamp, Green, T13/4, 2.5mcd @ 20mA 5-45
Lamp, Green, $\mathrm{T} 13 / 4,6.0 \mathrm{mcd} @ 20 \mathrm{~mA}$. $5-45$
Lamp, Green, T13/4, 4.0mcd @ 20mA 5-41
Lamp, Green, $T 13 / 4,8.0 \mathrm{mcd}$ @ 20 mA 5-41
Lamp, Green, Cylin, 1.0 mcd @ $20 \mathrm{~mA}$. . 5-49
Lamp, Green, Cylin, 1.6mcd @ 20mA 5-49
Lamp, Green, Cylin, 2.5 mcd @ 20 mA 5-49
Lamp, HER, T1, 2.5mcd @ 10mA 5-23
Lamp, HER, T1, 4.0mcd @ 10mA 5-23
Lamp, HER, T1, 6.0mcd @ 10mA 5-23
Lamp, HER, SOT 23 Surface Mount 5-17
Lamp, HER, Rect, 1.6mcd @ 20mA 5-31
Lamp, HER, Rect, 2.5 mcd @ 20 mA 5-31
Lamp, HER, Rect, 4.0mcd @ 20mA 5-31
Lamp, HER, T13/4, 2.0mcd @ 10mA 5-37
Lamp, HER, T13/4, 4.0mcd @ 10mA 5-37
Lamp, HER, T13/4, 6.0mcd @ 10mA 5-37
Lamp, HER, T13/4, 2.0 mcd @ 10 mA 5-45
Lamp, HER, T133/4, 4.0mcd @ 10mA 5-45
Lamp, HER, T13/4, 6.0mcd @ 10mA 5-45
Lamp, HER, T13/4, 10mcd @ 10mA 5-41
Lamp, HER, T13/4, 20 mcd @ 10mA 5-41
Lamp, HER, T13/4, 30mcd @ 10mA $5 \cdot 41$
Lamp, HER, Cylin, 1.6 mcd @ 20mA 5-49
Lamp, HER, Cylin, 2.5 mcd @ 20 mA 5-49

ALPHANUMERIC INDEX (Con't)

PART NUMBER	DESCRIPTION	PAGE
LDR-461	Lamp, Red, Single, Mini	$5 \cdot 21$
LDR-462	Lamp, Red, 2 Element Array	5-21
LDR-463	Lamp, Red, 3 Element Array	5-21
LDR-464	Lamp, Red, 4 Element Array	5-21
LDR-1101	Lamp, Red, T1, 1.0mcd @ 20mA	5-23
LDR-1102	Lamp, Red, T1, 2.0mcd @ 20mA	5-23
LDR-1103	Lamp, Red, T1, 4.0mcd @ 20mA	5-23
LDR-1201	Lamp, Red, T13/4, 1.0mcd @ 20mA	5-27
LDR-370 \dagger	Lamp, Red, Rect, 0.4mcd @ 20mA	31
LDR-3702	Lamp, Red, Rect, 0.63mcd @ 20mA	5-31
LDR-4555	Lamp, Red, Miniature, 5 Element Array	5-35
LDR-5001	Lamp, Red, T13/4, 1.0mcd @ 20mA	37
LDR-5002	Lamp, Red, T13/4, 2.5 mcd @ 20mA	5-37
LDR-5003	Lamp, Red, $\mathrm{T} 13 / 4,4.0 \mathrm{mcd}$ @ 20 mA	5-37
LDR-5091	Lamp, Red, T13/4, 2.5 mcd @ 20mA	5-41
LDR-5092	Lamp, Red, T13/4, 4.0mcd @ 20mA	5-41
LDR-5093	Lamp, Red, $\mathrm{T} 13 / 4,10 \mathrm{mcd}$ @ 20mA	5-41
LDR-5101	Lamp, Red, T $13 / 4,1.0 \mathrm{mcd} @ 20 \mathrm{~mA}$	5-45
LDR-5102	Lamp, Red, T13/4, 2.5mcd@ 20mA	5-45
LDR-5103	Lamp, Red, T13/4, 4.0mcd @ 20mA	5-45
LDR-5701	Lamp, Red, Cylin, 0.4mcd @ 20mA	49
LDR-5702	Lamp, Red, Cylin, 0.63mcd @ 20mA	5-49
LDRG-2340	Lamp, Red/Grn, SOT 23 Surface Mount	5-17
LDY481	Lamp, Yellow, Miniature, Radial	53
LDY-1131	Lamp, Yellow, T1, 1.0mcd @ 10mA	5-23
LDY-1132	Lamp, Yellow, T1, 2.0mcd @ 10mA	5-23
LDY-1133	Lamp, Yellow, T1, 4.0mcd @ 10mA	5-23
LDY-1231	Lamp, Yellow, T13/4, 1.0mcd @ 10mA	5-27
LDY-2320	Lamp, Yellow, SOT 23 Surface Mount	$5-17$
LDY-3801	Lamp, Yellow, Rect, 1.0mcd @ 20mA	5-31
LDY-3802	Lamp, Yellow, Rect, 1.6mcd @ 20mA	5-31
LDY-3803	Lamp, Yellow, Rect, 2.5 mcd @ 20 mA	5-31
LDY-5061	Lamp, Yellow, T13/4, 1.0mcd @ 10mA	5-37
LDY-5062	Lamp, Yellow, T13/4, 2.5mcd @ 10mA	5-37
LDY-5161	Lamp, Yellow, T13/4, 1.0mcd @ 10mA	5-45
LDY-5162	Lamp, Yellow, T13/4, 2.5mcd @ 10mA	5-45
LDY-5163	Lamp, Yellow, $\mathrm{T} 13 / 4,4.0 \mathrm{mcd}$ @ 10mA	5-45
LDY-5391	Lamp, Yellow, T13/4, 10 mcd @ 10mA	5-41
LDY-5392	Lamp, Yellow, T13/4, 20mcd @ 10mA	5-41
LDY-5393	Lamp, Yellow, T13/4, 30mcd @ 10mA	5-41
LDY-5801	Lamp, Yellow, Cylin, 1.0mcd @ 20mA	5-49
LDY-5802	Lamp, Yellow, Cylin, 1.6mcd @ 20mA	5-49
LDY-5803	Lamp, Yellow, Cylin, 2.5mcd @ 20mA	5-49
LG3369-EO	Lamp, Green, T1, Low Current	5-55
LG3369-FO	Lamp, Green, T1, Low Current	5-55
LG5411-LO	Lamp, Green, T13/4, Superbright	5-57
LG5411-NO	Lamp, Green, T13/4, Superbright	5-57
LG5411-PO	Lamp, Green, T13/4, Superbright	5-57
LG5469-EO	Lamp, Green, T13/4, Low Current	5-58
LG5469-FO	Lamp, Green, $\mathrm{T} 13 / 4$, Low Current	5-58
LPD80A	Photodarlington, Plastic, Side Facing	9-15
LPT80A	Photoxtr, Plastic, Side Facing, 40 Deg	9-16

PART

 NUMBERLPT100 LPT100A LPT100B LPT110 LPT110A LPT110B LPT500
LS3369-EO
LS3369-FO
LS5421-MO
LS5421-PO
LS5421-QO
LS5469-EO
LS5469-FO
LY3369-EO
LY3369-FO
LY5421-MO
LY5421-PO
LY5421-QO
LY5469-EO
LY5469-FO
MDL2416
MDL2416C
MPD2545
MPD2547

OBG1000

OBG4830
OLB-2300
OLB-2350
OLB-2600
OLB-2620
OLB-2655
OLB-2685
PD116
PD1167
PD2435
PD2437
PD2816
PD3435
PD3437
PD3535
PD3537
RBG-112
RBG1000
RBG4820
RBG-8820
RGL5621
RL50
RL54
RL55
RRL1100
RRL3105
RRL3112
RRL5601

RRL5641 Lamp, Resistor, Axial, Red, 1.0mcd @ 5V 5-69
RYL5621 Lamp, Resistor, Axial, Yellow, .2mcd @ 5V . . . 5-69

PAGE

DESCRIPTION

Photoxtr, Ceramic, TO-18, $25 \mathrm{Deg}, .2 \mathrm{~mA} \ldots$.
Photoxtr, Ceramic, TO-18, 25 Deg, $1.0 \mathrm{~mA} \ldots$
9-18

Photoxtr, Ceramic, TO-18, 25 Deg, 1.3mA 9-18
Photoxtr, Ceramic, TO-18, 45 Deg, . 2 mA 9 -18
Photoxtr, Ceramic, TO-18, 45 Deg, .6mA 9-18
Photoxtr, Ceramic, TO-18, 45 Deg, 8 mA 9-18
Photoxtr, Plastic, Wide Gap, 2.5 Deg 9-21
Lamp, HER, T1, Low Current 5-55
Lamp, HER, T1, Low Current 5-55
Lamp, HER, T13/4, Superbright 5-57
Lamp, HER, T13/4, Superbright 5-57
Lamp, HER, T13/4, Superbright 5-57
Lamp, HER, T13/4, Low Current 5-58
Lamp, HER, T1314, Low Current 5-58
Lamp, Yellow, T1, Low Current 5-55
Lamp, Yellow, T1, Low Current 5-55
Lamp, Yellow, T133/4, Superbright 5-57
Lamp, Yellow, T13/4, Superbright 5-57
Lamp, Yellow, T13/4, Superbright 5-57
Lamp, Yellow, T13/4, Low Current. 5-58
Lamp, Yellow, T13/4, Low Current 5-58
Int. Display, 4 Char, $15^{\prime \prime}$, Red Hi-Rel $2-46$
Int. Display, 4 Char, $15^{\prime \prime}$, Hi-Rel Lev. C 2-46
Prog. Display, 4 Char, . $25^{\prime \prime}$, HER, Hi-Rel 2.51
Prog. Display, 4 Char, .25", Grn, Hi-Rel 2-51
Bar Graph, HER, 10 Element 3-11
Bar Graph, HER, 10 Element 3-13
Light Bar, HER, $.15^{\prime \prime} \times .35^{\prime \prime}$ Emitting Area . . . 3-3
Light Bar, HER, $.15^{\prime \prime} \times .75^{\prime \prime}$ Emitting Area . . 3-4
Light Bar, HER, $.35^{\prime \prime} \times .15^{\prime \prime}$ Emitting Areas . . 3-5
Light Bar, HER, $.35^{\prime \prime} \times .15^{\prime \prime}$ Emitting Areas . . 3-6
Light Bar, HER, $.35^{\prime \prime} \times .3^{\prime \prime}$ Emitting Area . . 3-7
Light Bar, HER, $.35^{\prime \prime} \times .75^{\prime \prime}$ Emitting Area ... 3-8
Prog. Display, HER, $1.16^{\prime \prime}$ Sq, 8×8.......... . . 2-59
Prog. Display, Grn, $1.16^{\prime \prime}$ Sq, $8 \times 8 \ldots . .$. 2-59
Prog. Display, HER, 4 Char, 200 ", 5×7. 2-67
Prog. Display, Grn, 4 Char, $200^{\prime \prime}, 5 \times 7$. 2-67
Prog. Display, Red, 8 Char, 160" $^{\prime \prime}$, Seg 2-76
Prog. Display, HER, 4 Char, $.270^{\prime \prime}, 5 \times 7$. 2.85
Prog. Display, Grn, 4 Char, $270^{\prime \prime}, 5 \times 7 \ldots$..... 2-85
Prog. Display, HER, 4 Char, $270^{\prime \prime}, 5 \times 7 \ldots$. . . 2-94
Prog. Display, Grn, 4 Char, . $270^{\prime \prime}, 5 \times 7$. 2-94
Bar Graph, 112 Element 3-9
Bar Graph, Red, 10 Element 3-11
Bar Graph, Red, 10 Element 3-13
Bar Graph, Red, 101 Element 3-15
Lamp, Resistor, Axial, Green, .2mcd @ 5V 5-69
Lamp, Axial, Red, .5mcd @ 10mA 5-60
Lamp, Axial, Red, 0.5mcd @ 10mA 5-60
Lamp, Axial, Red, 2.0 mcd @ 10mA 5-62
Lamp, Resistor, T1, Red, 5 V 5-65
Lamp, Resistor, T13/4, Red, 5V 5-67
Lamp, Resistor, $\mathrm{T} 13 / 4$, Red, 12 V 5-67
Lamp, Resistor, Axial, Red, 3mcd @ 5V 5-69

PART NUMBER	DESCRIPTION	PAGE
SFH100	Ph	
SFH200	Photodiode, Plastic, 60 D	8-40
SFH2O2	Photodiode, PIN, TO-18, 60 Deg	$8-42$
SFH202a	Photodiode, PIN, TO-18, 60 Deg	8-42
SFH204	Photodiode, Plastic, 4 Quadrant, 70 Deg	8-44
SFH205	Photodiode, Black TO-92, PIN, 70 Deg	8.46
SFH205-Q2	Photodiode, Black TO-92, PIN, 70 Deg	8.48
SFH206	Photodiode, Black TO-92, PIN, 60 Deg	$8-50$
SFH206K	Photodiode, PIN, Clear, 60 Deg	8-52
SFH217	Photodiode, T13/4, PIN	8.54
SFH217F	Photodiode, T13/4, Plastic, PIN, with filter	8-54
SFH250	Photodiode Detector, Plastic Fiber Optic	8-56
SFH303	Photoxtr, T13/4, Plastic, 20 Deg	
SFH303F	Photoxtr, T13/4, Plastic, 20 Deg, with filter	9-23
SFH305-2	Photoxtr, Mini, 16 Deg, 2.0 mA , with filter	9-25
SFH305-3	Photoxtr, Mini, 16 Deg, 1.6mA	9-25
SFH309	Photoxtr, T1, Plastic, $20 \mathrm{Deg}, 5.0 \mathrm{~mA}$	9-27
SFH309F	Photoxtr, T1, Plastic, 20 Deg, with filter	9.27
SFH317	Photoxtr, $\mathrm{T} 13 / 4$, Plastic, 60 Deg, 1.8 mA	9-29
SFH317F	Photoxtr, T13/4, Plastic, 60 Deg, $0,2 \mathrm{~mA}$	9-29
SFH350	Photoxtr Detector, Plastic Fiber Optic	31
SFH400-2	Emitter, IR, TO-18, 6 Deg, $20 \mathrm{~mW} / \mathrm{SR}$	
SFH400-3	Emitter, IR, TO-18, 6 Deg, 32mW/SR	
SFH401-2	Emitter, IR, TO-18, $15 \mathrm{Deg}, 10 \mathrm{~mW} / \mathrm{SR}$	7-25
SFH401-3	Emitter, IR, TO-18, 15 Deg, $16 \mathrm{~mW} / \mathrm{SR}$	7-25
SFH402-2	Emitter, IR, TO-18, $40 \mathrm{Deg}, 2.5 \mathrm{~mW} / \mathrm{SR}$	7-27
SFH402-3	Emitter, IR, TO-18, 40 Deg, $4.0 \mathrm{~mW} / \mathrm{SR}$	7-27
SFH405-2	Emitter, IR, Mini, 16 Deg, 1.6mW	
SFH405-3	Emitter, IR, Mini, 16 Deg, 2.5 mW	-29
SF	Emitter, IR, TO-46, . $63 \mathrm{~mW} / \mathrm{SR}, 50 \mathrm{nS}$	
SFH407	Emitter, IR, TO-46, $1.0 \mathrm{~mW} / \mathrm{SR}, 50 \mathrm{nS}$	7.31
SFH409	Emitter, IR, T1, Plastic, 30 Deg, 6mW/SR	7-33
SFH450	Emitter, IR, Plastic Fiber Optic, GaAs	-35
SFH480-1	Emitter, IR, TO-18, Sel. Radiant Intensity	7-37
SFH480-2	Emitter, IR, TO-18, Sel. Radiant Intensity	7.37
SFH480-3	Emitter, IR, TO-18, Sel. Radiant Intensity	7-37
SFH481-1	Emitter, IR, TO-18, Sel. Radiant Intensity	7-39
SFH481-2	Emitter, IR, TO-18, Sel. Radiant Intensity	7.39
SFH481-3	Emitter, IR, TO-18, Sel. Radiant Intensity	7.39
SFH482-1	Emitter, IR, TO-18, Sel. Radiant Intensity	7-41
SFH482-2	Emitter, IR, TO-18, Sel. Radiant Intensity	7-41
SFH482-3	Emitter, IR, TO-18, Sel. Radiant Intensity	7-41
SFH-484	Emitter, IR, T13/4, 8 Deg, 100 mW GaAlAs	7.43
SFH-485	Emitter, IR, $T 13 / 4,20 \mathrm{Deg}, 40 \mathrm{~mW}$ GaAIAs	7-45
SFH-485P	Emitter, IR, $113 / 4,40 \mathrm{Deg}, 3 \mathrm{~mW}, \mathrm{GaAIAs}$	7-47
SFH-487	Emitter, IR, T1, 20 Deg, 12 mW GaAlAs	7-49
SFH.487P	Emitter, IR, T1, 65 Deg, 2mW, GaAlAs	7-51
SFH500	Photoxtr, TO-18, 60 Deg, 700 μ A @ 1000LX	-3
SFH600-0	Optocoupler, 6 Pin Sngl, 40\% CTR, 2800 V	6-69
SFH600-1	Optocoupler, 6 Pin Sngl, 63\% CTR, 2800 V	6-69
SFH600-2	Optocoupler, 6 Pin Sngl, 100\% CTR, 2800 V	6-69
SFH600-3	Optocoupler, 6 Pin Sngl, 160\% CTR, 2800 V	6-69
SFH601-1	Optocoupler, 6 Pin Sngl, 40\% CTR, 5300V	6-73
SFH601-2	Optocoupler, 6 Pin Sngl, 63\% CTR, 5300V	6.73
SFH601-3	Optocoupler, 6 Pin Sngl, 100\% CTR, 5300 V	6.73
SFH601-4	Optocoupler, 6 Pin Sngl, 160\% CTR, 5300 V	6.73
SFH601G-1	Optocoupler, 6 Pin, 40\% CTR, 5300V	
SFH601G-2	Optocoupler, 6 Pin, 63\% CTR, 5300 V	
SFH601G-3	Optocoupler, 6 Pin, 100\% CTP, 5300 V	
SFH601G-4	Optocoupler, 6 Pin, 160\% CTR, 5300V	

PART

 NUMBERSFH609-1
SFH609-2
SFH609-3
SFH750
SFH751
SFH900-1
SFH900-2
SFK610-1
SFK610-2
SFK610-3
SFK610-4
SFK611-1
SFK611-2
SFK611-3
SFK611-4
TP60P
TP61P
YBG1000 YBG4840

YL56
YLB-2400
YLB-2450
YLB-2700
YLB-2720
YLB-2755
YLB-2785
DESCRIPTION PAGE
Optocoupler, 6 Pin Sngl, 40\% CTR, 5300V 6.81
Optocoupler, 6 Pin Sngl, 63\% CTR, 5300V 6.81
Optocoupler, 6 Pin Sngl, 100\% CTR, 5300 V 6.81
Emitter, Vis, Red, Plas. Fiber Optic, GaAsP 7.35
Emitter, Vis, Grn, Plas. Fiber Optic, GaP 7-35
Reflector Sensor, Mini, 0.3 mA 6-85
Reflector Sensor, Mini, 0.5 mA 6-85
Optocoupler, 4 Pin Sngl, 40\% CTR, 2800V 6.89
Optocoupler, 4 Pin Sngl, 63\% CTR, 2800 V 6-89
Optocoupler, 4 Pin Sngl, 100% CTR, 2800 V 6-89
Optocoupler, 4 Pin Sngl, 160% CTR, 2800 V 6-89
Optocoupler, 4 Pin Sngl, 40\% CTR, 2800 V 6.89
Optocoupler, 4 Pin Sngl, 63\% CTR, 2800 V 6-89
Optocoupler, 4 Pin Sngl, 100% CTR, 2800 V 6-89
Optocoupler, 4 Pin Sngl, 160\% CTR, 2800 V 6-89
Photovoltaic, Rnd, $.55^{\prime \prime}$ Dia. $1 \mu \mathrm{~A} / \mathrm{LX}$ 10-10
Photovoltaic, Rnd, .55" Dia. $1 \mu \mathrm{~A} / \mathrm{LX}$ 10-10
Bar Graph, Yellow, 10 Element 3-11
Bar Graph, Yellow, 10 Element 3-13
Lamp, Yellow, Axial, 20mcd @ 10mA 5-62
Light Bar, Yellow, . $15^{\prime \prime} \times .35^{\prime \prime}$, Emitting Area $3 \cdot 3$
Light Bar, Yellow, $.1^{\prime \prime} \times .75^{\prime \prime}$, Emitting Area 3-4
Light Bar, Yellow, $.3^{\prime \prime} \times .15^{\prime \prime}$, Emitting Areas 3-5
Light Bar, Yellow, $.35^{\prime \prime} \times .15^{\prime \prime}$, Emitting Areas 3-6
Light Bar, Yellow, $35^{\prime \prime} \times .35^{\prime \prime}$, Emitting Area 3-7
Light Bar, Yellow, . $35^{\prime \prime} \times .75^{\prime \prime}$, Emitting Area 3.8

Optoelectronics Quality and Reliability

Introduction

In the technological community as a whole, the terms "quality" and "reliability" are frequently reduced to little more than advertising platitudes-heavily promised, but seldom delivered in the form of highly reliable, precision-made products. At Siemens Optoelectronics Division, however, we strive for continually increasing product excellence through increased quality and reliability reflecting a company-wide commitment of the highest priority.
Our ability to produce quality optoelectronic products offering longterm reliability is directly related to intensive research and development, advanced manufacturing, a quality-oriented work force, and a company wide philosophy attuned to the changing needs of a technologically sophisticated customer base.
Another important facet of our total commitment to manufacturing excellence is a program of quality control and reliability testing, under the Reliability and Quality Assurance (R\&QA) Department. R\&QA's responsibility is to interface directly with the customers, not only to determine their present satisfaction level, but to assess their future needs as well. In this way, R\&QA makes certain that we will successfully meet all current and future quality/reliability requirements of our customers.
Similarly, it is also R\&QA's responsibility to maintain open communication with customers, keeping them informed of our latest capabilities and achievements in the areas of product quality and reliability through detailed reports.
Although the concepts of quality and reliability are closely related, they are somewhat divergent, specialized activities. Simply put, Quality Assurance makes certain that products are "made right", ranging from rigid inspection and monitoring of all materials used in production processes, to monitoring the actual production processes themselves. Reliability, on the other hand, ensures that products "work right" after assembly. At Siemens, component reliability results from an extensive program of routine monitoring and special testing activities which will be detailed later.

Parts Per Million (PPM) Program

The intensive, quality-oriented efforts of every group have enabled us to achieve one of the lowest defect percentages in the industry. Our Parts Per Million (PPM) program meets all industry expectations and is at a level sufficient to supply high-caliber OEM customers including IBM, DELCO, DEC, and SPERRY (UNISYS).
The annual improvement of the PPM level is vital to our ability to remain a cost-effective, on-time supplier of highquality components to the industry. Our PPM program is at the heart of the quality/reliability "revolution" which has occured in the semiconductor industry during the last few years.
Designed to control and monitor every step of the manufacturing process, as well as to assist in predictability studies, our PPM program represents the key to our long-term success in a highly competitive industry. To this end, we are heavily committed to:

- Maximum automation of processes to obtain consistent, reproducible results.
- A system of stringent process controls to ensure the achievement of expected results.
- Effective quality systems to continuously audit the PPM level actually being achieved.
Customer benefits of the PPM system are numerous:
- A low PPM defect rate enabling you to eliminate incoming QA testing.
- Dependabie on-time delivery for a "JUST IN TIME" inventory system, significantly reducing inventory costs.
- Efficient, highly automated manufacturing to keep long term price increases as low as possible.
- Fewer production line failures; lower assembly costs; increased profit margin.
- Fewer field failures on end products; lower warranty and service costs.
PPM levels achieved by Siemens Optoelectronic Division as of the first quarter of 1987, according to product type are as follows:

	PPM	Percent Defective
Displays	150	0.015%
Lamps	40	0.004%
Intelligent Displays	190	0.019%
Optocouplers	90	0.009%
Overall Goal '86-87	50	0.005%

Customer Material Return Jan. 1985-Aug. 1986

Statistical Quality Control (SQC)

To achieve our PPM goals efficiently, we have implemented a sophisticated program of Statistical Quality Control (SQC). In effect, SQC ensures highly-reproducible, controlled manufacturing processes and "just-in-time" delivery. It enables us to meet our PPM goals without resorting to a "brute force" approach. SQC is consistent with William E. Deming's principal theory that productivity improves as a product's variability rate decreases.

We recognize the necessity of meeting our customers' ever increasing quality requirements through a carefully developed, well-implemented program of Statistical Quality Control. After considerable research and careful planning, our SQC program was developed using the following 6 -point plan for Statistical Process Control:

- Establishment of goals and objectives for company-wide implementation of Quality program
- Assessment of SQC technical capability and quantification of training aids
- Provision for training managers, engineers, supervisors, and analysts in methods and practices of SQC, as needed
- Managerial involvement in gaining statistical evidence pertaining to specific processes
- Identification of examples of successful SQC implementation...to be used as models for emulation
- Monitoring progress toward established goals through a program of periodic self-audits

Quality Assurance

At Siemens the Quality Assurance Group serves the vital function of maintaining constant product quality standards. Quality Assurance activities begin with the careful assessment of raw materials, continues through in-process monitoring, and concludes with outgoing audits as outlined below:

- Raw Material
- Vendor surveys
- Vendor qualifications
- Incoming inspections
- Vendor rating systems
- In-process Monitors
- Die attach monitors
- Lead bond monitors
- Encapsulation monitors
- Finishing operations monitors
- Outgoing Audits
- Outgoing audits (all lots)
- Finished goods monitor (random)

The flowchart on the right shows the basic quality control procedures employed by Siemens Opto in the production of LEDs.

LED Quality Assurance Flowchart

Reliability

The fundamental objective of our reliability program is to ensure that all our products meet or exceed, quantitatively and qualitatively, the performance requirements of our customers and our Engineering Group. To achieve this goal, the Reliability Group constantly monitors products by generic groups. This monitoring provides continuous updated measurement of product reliability in specific operating environments.
The following are typical Reliability Tests performed for the monitoring program:

- Temperature Cycle: 100 Cycles from $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ *
- Thermal Shock: 30 Cycles from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ *
- Ambient Life Test: Max rated power for 1000 hours
- Elevated Life Test: Max rated power at $70^{\circ} \mathrm{C}$ for 1000 hours
- High Temperature Storage: Max storage temperature, 1000 hours
- Low Temperature Storage: Minimum storage temperature, 1000 hours
- Temperature Humidity: $85^{\circ} \mathrm{C}-85 \%$ RH, 500 hours
- Solder Heat Test: $260^{\circ} \mathrm{C}, 5$ seconds
*Typical temp cycle and thermal shock condition. Exact conditions vary with product family.

Reliability Test Data (1982-1986 Monitoring
Data) Data)

Type of Test	Lamps	Standard Displays	Intolligent Display Devlces	Opto- couplers
Temperature Cycle				
(100 CY)	1845	2048	6735	6056
Sample Size	184 K	204 K	673 K	605 K
Total Cycles	0	0	2	0
Total Reject	0.0%	0.0%	0.03%	0.0%
Percent Reject				
Thermal Shock (30 CY)	1715	1200	4506	4596
Sample Size	51 K	36 K	135 K	137 K
Total Cycles	2	1	0	1
Total Reject	0.1%	0.08%	0.0%	0.02%
Percent Reject				
Room Temperature	1950	674	2758	1442
Burn-In (1000 Hrs)	1950 K	674 K	2758 K	1442 K
Sample Size	0	0	1	0
Total Hours	0.0%	0.0%	0.04%	0.0%
Total Reject				
FR* (\%)				
High Temperature	765	658	419	1442
Burn-In (1000 Hrs)	765 K	658 K	419 K	1441 K
Sample Size	0	0	0	1
Total Hours	0.0%	0.0%	0.0%	0.07%
Total Reject				
FR*				
Solder Heat Test	1458	736	1238	3392
(260C, 5 sec.)	0	0	0	0
Sample Size	0.0%	0.0%	0.0%	0.0%
Total Reject				
Percent Reject				

*FR = Failure Rate, \% per 1000 hours.

Description of Tests - Reliability Monitor Program

Type of Test	Military Standard	Pre Test Readings	Test	Post Test Readings
Temp Cycle (T/C)	MIL STD 883B, Method 1010.2	GO/NO GO	10 cycles per sub group, 15 min. dwell, 5 sec. transfer time, max. storage temp. ranges vary by product	GO/NO GO
Thermal Shock (T/S)	MIL STD 883B, Method 1011.1	GO/NO GO	30 cycles: boiling water; then ice water with 5 min. dwell time at each extreme	GO/NO GO
Life Test (LTT)	MIL STD 833B, Method 1005.2	Read/Record	Room temperature burn-in at max. rated conditions, 1000 hours duration	Read/Record at 168,500 and 1000 hours
High Temp Burn in (HI BI)	MIL STD 883B, Method 1005.2	Read/Record	Maximum rated operating temp. determined from product spec. and derated current as compensation for thermal dissipation, 1000 hours duration	Read/Record at 168,500 and 1000 hours
Solder Heat Test	-	GO/NO GO	Temp $=260^{\circ} \mathrm{C}$, dwell time $=5$ seconds	GO/NO GO

Reliability test equipment ranges from multiple burn-in racks and table testers to a scanning electron-beam microscope. We've even designed and produced our own automatic microprocessor-based read/record tester.

Special testing covers a broad spectrum of environmental and life-stress tests. How well a sample performs under these highly-accelerated conditions indicates its reliability potential under service-life conditions.
Special testing affords us vital information in many important areas:

- New product performance
- New processes
- New manufacturing technique
- New material quality
- Special customer specifications
- Long-term reliability prediction

Reliability is also concerned with failure analysis. To determine the cause of failures, we selectively test and section products to localize and identify their failure mechanism. Selective isolation enables us to gauge the precise effects of stresses induced during reliability testing.

Conclusion

Siemens is firmly cornmitted to the design, development and production of innovative optoelectronic components and assemblies of the highest quality and reliability. Working to achieve this goal, every group within the DivisionManagement, Engineering, Reliability and Quality Assurance, Manufacturing, and Marketing-provides a vital service, enabling us to achieve and maintain the consistent product quality and the high levels of reliability required by our customers in the electronics industry.
Due in large part to the efforts of the Reliability and Quality Assurance Department and to our successful PPM and SQC efforts, we will continue to maintain our leadership position in a highly competitive future-oriented industry.

The following summary documents the capability of the above Intelligent Display devices to meet or exceed the reliability standards for the highest level of commercial types of these devices.

I. LIFE TESTS

$\left.$| Test | Test Condition | \# of Tests | Total Units
 Tested | Total Device
 Hours | Total Fail |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | | Calculated |
| :---: |
| Failure Rate |
| (per 1000 hours) | \right\rvert\,

Note: Assumed one failure on all calculations.
II. ENVIRONMENTAL TESTS

Test	MIL-STD-883 Reference	Test Condition	\# of Tests	Total Units Tested	Total Failed
Solder Coverage	2003	$260^{\circ} \mathrm{C}, 5 \mathrm{sec}$.	4	130	0
Solder Heat Resistance		$260^{\circ} \mathrm{C}, 5 \mathrm{sec}$.	4	140	0
Temperature Cycling	1010	-40 to $+85^{\circ} \mathrm{C}, 15 \mathrm{~min}$. dwell, 5 min . transfer, 200 cycles.	8	240	0
Temperature Cycling	1010	-40 to $+100^{\circ} \mathrm{C}, 15 \mathrm{~min}$. dwell, 5 min . transfer, 100 cycles.	8	493	0
Thermal Shock	1011	0 to $+100^{\circ} \mathrm{C}, 5 \mathrm{~min}$. dwell, 3 sec . transfer, liquid to liquid, 50 cycles.	9	75	0
Moisture Resistance	1004	10 days, $90-96 \% \mathrm{RH},-10$ to $+65^{\circ} \mathrm{C}$, non-operating	1	38	0
Shock	2002	5 blows each X_{1}, Y_{1}, Z_{1} axis, $1500 \mathrm{G}, 0.5 \mathrm{~ms}$	1	22	0
Vibration Fatigue	2005	$32 \pm 8 \mathrm{hrs}$. each $\mathrm{X}_{1}, Y_{1}, Y_{2}, 96 \mathrm{hrs}$. total, $60 \mathrm{~Hz}, 20 \mathrm{G}$	1	38	0
Constant Acceleration	2001	1 min . each axis, $X, Y, Z, 5 \mathrm{~kg}$	1	38	0
Terminal Strength	2004	1 lb . for 30 sec ., then 8 oz ., 3 bends 15°	1	38	0
Salt Atmosphere	1009	$35^{\circ} \mathrm{C}$ fog, 24 hours	1	39	0
Electrostatic Discharge	3015.2	$1.5 \mathrm{k} \Omega, 100 \mathrm{pF}, 5$ positive and 5 negative voltage discharges, V_{Z}, $\mathrm{V}_{\mathrm{Z}}=1.5 \mathrm{kV}$ applied to all pins vs. GND $\mathrm{V}_{\mathrm{Z}}=3.0 \mathrm{kV}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
Solvent Resistance	Immersed at $25^{\circ} \mathrm{C}$ in solvent for 10 minutes, 5 unit samples, or boiling solvents for 3 minutes, 2 unit samples. Passed: Freon TF, Acetone, TA, 111 Trichloroethane Failed: Isopropanol, Methanol, Methylene Chloride, TE-35, TP-35, TCM, TMC, TMS + Ethanol, and Carboxylic Acid, TE, and TES.				

Note: Failures are defined as either mechanical or functional failures.

Single, Dual, and Quad Channel Optocouplers

THE CONCERN FOR OPTOCOUPLER RELIABILITY

Because of the widespread use of optocouplers as an interface device, optocoupler reliability has been a major concern to circuit designers and components engineers. Published studies of comparative tests have indicated a lack of manufacturing consistency with individual manufacturers as well as from manufacturer to manufacturer. This has resulted in user uncertainty about designing in optocouplers despite the fact that these devices often offer the better solution in the circuit.
This report is intended to demonstrate Siemens' concern, efforts, and results in addressing these manufacturing issues to assure users of the quality (out-going) and reliability (long term) of our opto-isolated products. First, aspects of optocoupler characteristics are discussed along with the measures Siemens has taken to assure their quality and reliability. Secondly, the reliability tests used to approximate worst case conditions and the latest results of these tests are described.

OPTOCOUPLER OUTPUT

There are a variety of outputs available in optocouplers. A standard bipolar phototransistor is the most common. They are available with different ratings to fit most applications, including versions without access to the base of the transistor to reduce noise transmission. Darlington transistor outputs offer high gain with reduced input current requirements, but typically trade-off speed. Logic optocouplers provide speed but trade-off working voltage range. Logic couplers are normally only used in data transmission applications. Silicon Controlled Rectifier (SCR) devices allow control of much higher voltages and typically are applied to control AC loads. They are also offered in inverse-parallel (anti-parallel) SCR (triac) configurations that both cycles of an AC sinusoid can be switched. In the Siemens manufacturing flow, all these devices are 100\% monitored at a high temperature hot rail (see Figure 4) to eliminate potential failures due to marginal die attaches and lead bends, resulting in a more reliable product. Siemens offers all the above types of products.

In optocouplers, especially the transistor, the slow change over several days in the electrical parameters when voltage is applied, is termed the field effect. This process is extreme particularly at high temperatures $\left(100^{\circ} \mathrm{C}\right)$ and with a high DC voltage (1 kV). Changes in the electrical parameters of the silicon phototransistor can occur due to the release of charge carriers. In this way, a similar effect as takes place in a MOS transistor (inversion at the surface) is caused by the strong electrical field. This may result in changes in the gain, the reverse current, and the reverse voltage. In this case, the direction of the electrical field is a decisive factor.

In Siemens' optocouplers, the pn junctions of the silicon

 phototransistor are protected by a TRIOS (transparent ion screen) from influences of the electrical field. In this way, changes of electrical parameters by the electrical field are limited to an extremely low value or do not occur at all.
OPTOCOUPLER INPUT

The area of greatest concern in optocoupler reliability has been the IR LED. The decrease in LED light output power over current flow time has been the object of considerable attention in order to reduce its effects. (Circuit designs which have not included allowances for parametric changes with temperature, input current, phototransistor bias, etc. have been attributed to LED degradation. To insure reliable system operation over time, the variation of circuit from data sheet conditions must be considered.)
Siemens has focused on the infrared LED to improve CTR degradation, and consequently achieved a significant improvement in coupler reliability. The improvements have included die geometry to improve coupling efficiency, metalization techniques to increase die shear strength and to increase yields while reducing user cost, and junction coating techniques to protect against mechanical stresses, thus stabilizing long term output.

CURRENT TRANSFER RATIO

The Current Transfer Ratio (CRT) is the amount of output current derived from the amount of input current. CTR is normally expressed as a percent. For example, if 10 mA of input current is applied to the input (LED) and 10 mA of collector current is obtained, then the CTR is 100 or 100%. CTR is affected by a variety of influences: LED output power, Hfe of the transistor, temperature, diode current, and device geometry. If all these factors remain constant, the principle cause of CTR degradation is the degradation of the input LED. As mentioned earlier, Siemens has made tremendous progress in manufacturing techniques to reduce CTR degradation. Figure 1 graphs the CTR degradation of Siemens' optocouplers. The data is presented under two conditions. Both conditions apply a constant stress over the 4000 -hour period. This is unlikely to occur in actual application, and therefore can be considered as a worst case condition. The first condition $\left(I_{F}=10 \mathrm{~mA}\right)$ is a typical operating point for actual application. The second condition $\left(I_{F}=60 \mathrm{~mA}\right)$ stresses the LED at an extremely high, forward current to demonstrate worst case conditions, and magnifies CTR degradation..Siemens' manufacturing techniques maximize coupling efficiency which realize high transfer ratios and low input current requirements. Additionally this allows a large variety of standard CTR values, and the capability of special selection in production volumes.

ISOLATION BREAKDOWN VOLTAGE

Isolation voltage is the maximum voltage which may be applied across the input and output of the device without breaking down. This breakdown will not normally occur inside the package between the LED and the transistor, but rather on the boundary surfaces across which partial discharges can occur. Siemens uses a double mold manufacturing technique where the LED and transistor are encapsulated in an infrared transparent inner mold. The next step in the process is an epoxy over mold. The double mold technique lengthens the leakage path for high voltage
discharges appreciably, allowing the device to achieve very high isolation voltages. All of Siemens optocouplers are built using U.L. approved process. A standard line of V.D.E. approved optocouplers is also available.

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE

Collector to emitter breakdown voltage ($\mathrm{BV}_{\mathrm{CEO}}$) can be thought of as a transistor's working voltage. When considering the application, the selection should be made to include a safety margin to insure the device is off when it is supposed to be off. Siemens transistor technology in wafer processing offers a variety of $\mathrm{BV}_{\text {CEO }}$ devices. Each is parametrically (see Figure 4) tested to insure proper operation.

BLOCKING VOLTAGE

Blocking voltage ($V_{\text {DRM }}$, expressed in peak value) is used when describing the working voltage for SCR or triac type devices. Siemens offers products through 600 volts of blocking capability.

DV/DT RATING

DV/DT, an important safety specification, describes a triac type device's capability to withstand a rapidly rising voltage without turning on or false firing. Siemens triac type devices have the highest available DV/DT rating offered on the market. Siemens manufacturing process yields a 10,000 $\mathrm{V} / \mu \mathrm{s}$ DV/DT rating. This rating eliminates the need for snubber (RC) networks which negatively affect loads sensitive to leakage currents, while reducing component count for circuit implementation and cost. An example of such a load would be neon indicator lamps. Siemens' triac type devices also carry a load current rating three times the industry standard. This 300 mA current capability allows the device to drive most $A C$ loads without the need for a followon triac or interposing an electromechanical relay. Siemens manufactures this device with or without zero crossing detector logic.

Figure 1. CTR Degradation vs. Time

Relative degradation in current-transfer ratio (CTR) over a period of time with the coupler diode forward-biased.
__Life Test Condition: Coupler diode forward-biased at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$
---- Life Test Condition: Coupler diode forward-biased at $I_{F}=60 \mathrm{~mA}, T_{\text {amb }}=25^{\circ} \mathrm{C}$

Figure 2: Reliability Requirements for Optocouplers
MECHANICAL/ENVIRONMENTAL TESTS

Test	MIL-STD-883	Test Condition
Temperature Cycle	1010	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}, \\ & 100 \text { Cycles } \end{aligned}$
Thermal Shock	1011	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 50$ Cycles
Solder Heat		$260^{\circ} \mathrm{C}, 10$ Seconds
Solderability	2003	$260^{\circ} \mathrm{C}, 5$ Seconds
Pressure Pot	-	$\begin{aligned} & 15 \text { PSIG } \pm 1,121^{\circ} \mathrm{C} \text {, Steam } \\ & 96 \text { Hours } \end{aligned}$
Solvent Resistance	2015	-
Moisture Resistance*	1004	10 Days, $90-98 \%$ RH, $-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$, Non-Operating
Shock*	$\begin{aligned} & 2002 \\ & \text { Condition B } \end{aligned}$	$5 \text { Blows each } X_{1}, Y_{1}, Z_{1} \text {, }$ $\text { Axis } 1500 \mathrm{G}, 0.5 \mathrm{~ms}$
Vibration Fatigue*	$\begin{gathered} 2005 \\ \text { Condition A } \end{gathered}$	32 ± 8 Hrs., each X_{1}, Y_{1}, Z_{1}, 96 Hours, $60 \mathrm{~Hz}, 20 \mathrm{G}$
Constant Acceleration*	$\begin{gathered} 2001 \\ \text { Condition A } \end{gathered}$	$\begin{aligned} & 1 \text { Min. each Axis } X, Y, Z, \\ & 5 K G \end{aligned}$
Terminal Strength*	2004	1 lb . for 30 Seconds, then 8 oz., 3 Bends 15°

*Monitored periodically.
LIFE TESTS

Tests	Test Conditions			
	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { RH } \\ (\%) \end{gathered}$	Bias	Hours
Ambient Life Test	25	$\leq 60 \%$	Max Rating	1000
Elevated Life Test	70	$\leq 60 \%$	Derated Max Rating	1000
High Temp Life Test Low Temp Life Test Temp/Humidity Life Intermittent Operating Life	$\begin{aligned} & \hline 150 \\ & -55 \\ & 85 \\ & 25 \end{aligned}$	$\begin{aligned} & \leq 60 \% \\ & \leq 60 \% \\ & 85 \% \\ & \leq 60 \% \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ \text { Max } \\ \text { Rating } \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$
High Temperature Reverse Bias	125	$\leq 60 \%$	80\% of Max Voltage Rating	1000

QUALITY AND RELIABILITY TESTS

The tests in Figure 2 were performed on Siemens optocouplers. The tests allow early detection of weak points, and provide information regarding the reliability characteristics of the component.

From the Life Test information assumptions of useful life expectancy can be obtained. All quality and reliability tests are performed in conditions that either exceed or are equivalent to the limits defined in our data sheets. International standards are also considered. Assuming that no new additional failure mechanisms are created by the stress conditions, the results of the stress test will correlate to conditions in the field and can be used to estimate useful lifetime. The environmental stress tests ensure Siemens manufacturing capabilities will provide package integrity in the most rigorous conditions. The Life Test results highlight our ability in packaging and electrical performance to achieve MTBF hours which meet and exceed the highest expectations for the semiconductor industry.

Figure 3. Environmental and Life Test Results

Single Channel Optocouplers

ENVIRONMENTAL TESTS						
Test	Test Condition	Sample Size	Good	Reject	\%Reject	
Temperature Cycle	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100 \mathrm{Cycles}$	6056	6056	0	0.00%	
Thermal Shock	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 30 \mathrm{Cycles}$	4596	4595	1	0.02%	
Solder Heat Test	$260^{\circ} \mathrm{C}, 10$ Seconds	3392	3392	0	0.00%	
High Temp Storage	$150^{\circ} \mathrm{C}, 1000$ Hours	1442	1441	1	0.07%	
Low Temp Storage	$-55^{\circ} \mathrm{C}, 1000$ Hours	1442	1442	0	0.00%	
Temp Humidity	$+85^{\circ} \mathrm{C} / 85 \%$ RH, 1000 Hours	454	454	0	0.00%	

LIFE TESTS						
Test	Test Condition	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	$\begin{aligned} & \text { Unit } \\ & \text { Hours (k) } \end{aligned}$	Good	Reject	MTBF* (Unit Hours)
Ambient Life Test	$60 \mathrm{~mA}, 25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}=255 \mathrm{~mW}$ Max.	1442	1442	1442	0	2,030,000
Elevated Life Test	$40 \mathrm{~mA}, 70^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}=104 \mathrm{~mW}$	1442	1442	1442	0	2,030,000
Intermittent Op Test	$\mathrm{On}=3$ Minutes, $\mathrm{Off}=2$ Minutes $60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$, $P_{D}=235 \mathrm{~mW}$ Max.	1442	1442	1442	0	2,030,000
	Total	4326	4326	4326	0	6,200,000

*Based on the life test results presented, an overall MTBF of 6,200,000 unit hours can be demonstrated on a "Best Estimate' basis.

Dual Channel Optocouplers

ENVIRONMENTAL TESTS					
Test	Test Condition	Sample Size	Good	Reject	$\%$ Reject
Temperature Cycle	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100 \mathrm{Cycles}$	6160	6159	1	0.02%
Thermal Shock	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 30 \mathrm{Cycles}$	3969	3968	1	0.03%
Solder Heat Test	$260^{\circ} \mathrm{C}, 5$ Seconds	2840	2838	2	0.07%
High Temp Storage	$150^{\circ} \mathrm{C}, 1000$ Hours	1442	1442	0	0.00%
Low Temp Storage	$-55^{\circ} \mathrm{C}, 1000$ Hours	1442	1442	0	0.00%
Temp Humidity	$+85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}, 1000$ Hours	402	402	0	0.00%

LIFE TESTS						
Test	Test Condition	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Unit } \\ \text { Hours (k) } \end{gathered}$	Good	Reject	MTBF* (Unit Hours)
Ambient Life Test	$37.5 \mathrm{~mA} /$ Channel, $\mathrm{P}_{\mathrm{D}}=388 \mathrm{~mW}$ Max., $25^{\circ} \mathrm{C}$	1442	1442	1442	0	2,030,000
Elevated Life Test	$19.6 \mathrm{~mA} /$ Channel, $\mathrm{P}_{\mathrm{D}}=138 \mathrm{~mW}$ Max., $70^{\circ} \mathrm{C}$	1442	1442	1442	0	2,030,000
Intermittent Op Life	On = 3 Minutes, $\mathrm{Off}=2$ Minutes $37.5 \mathrm{~mA} /$ Channel, $\mathrm{P}_{\mathrm{D}}=388 \mathrm{~mW}$ Max., $25^{\circ} \mathrm{C}$	1338	1338	1338	0	1,940,000
	Total	4222	4222	4222	0	6,000,000

*Based on the life test results presented, an overall MTBF of 6,000,000 unit hours can be demonstrated on a "Best Estimate" basis.

Quad Channel Optocoupler

ENVIRONMENTAL TESTS						
Test	Test Condition	Sample Size	Good	Reject	\%Reject	
Temperature Cycle	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 100 \mathrm{Cycles}$	6056	6055	1	0.02%	
Thermal Shock	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 30 \mathrm{Cycles}$	4296	4296	0	0.00%	
Solder Heat Test	$260^{\circ} \mathrm{C}, 10 \mathrm{Seconds}$	3406	3405	1	0.03%	
High Temp Storage	$150^{\circ} \mathrm{C}, 1000$ Hours	1442	1442	0	0.00%	
Low Temp Storage	$-55^{\circ} \mathrm{C}, 1000$ Hours	1442	1442	0	0.00%	
Temp Humidity	$+85^{\circ} \mathrm{C} / 85 \%$ RH, 1000 Hours	402	402	0	0.00%	

LIFE TESTS						
Test	Test Condition	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$	$\begin{array}{\|c} \text { Unit } \\ \text { Hours (k) } \end{array}$	Good	Reject	MTBF* (Unit Hours)
Ambient Life Test	$37.5 \mathrm{~mA} /$ Channel, $\mathrm{P}_{\mathrm{D}}=388 \mathrm{~mW}$ Max., $25^{\circ} \mathrm{C}$	1442	1442	1442	0	2,030,000
Elevated Life Test	19.6 mA/Channel, $\mathrm{P}_{\mathrm{D}}=138 \mathrm{~mW} \mathrm{Max}$. , $70^{\circ} \mathrm{C}$	1442	1441	1440	2	530,000
Intermittent Life Test	On = 3 Minutes, $\mathrm{Off}=2$ Minutes $37.5 \mathrm{~mA} /$ Channel, $P_{D}=138 \mathrm{~mW}$ Max., $25^{\circ} \mathrm{C}$	1442	1442	1442	0	2,030,000
	Total	4326	4325	4324	2	1,600,000

[^0]
PACKAGE INTEGRITY

Although packaged in standard IC configurations, optocouplers have some unique package considerations. The use of two chip and internal light transfer medium require careful selection of materials to insure compatibility under a variety of operating conditions. In addition to the high isolation voltages achieved by Siemens optocouplers, our devices are tested to assure high levels of mechanical integrity and moisture resistance. For example, a ninety-six hour pressure pot test has been recently implemented to more stringently verify moisture resistance. As meaningful test results are accumulated, they will be included in future reports.

PACKAGE DENSITY

Board space has become increasingly more important in the electronic industry. Siemens uses a plate molding technique to achieve reduction in cost, allowing us to offer a wide selection of packages. These consist of single channel optocouplers in $4,6,8$, and 16 pin DIP packages, dual channel devices in 8 pin DIP packages, and quad channel devices in 16 pin DIP packages. All of the above devices are available in three surface mount lead configurations, as well as the standard through-the-hole lead. Siemens has also introduced a standard single channel optocoupler in a SOIC-8 footprint package. All of these packages have been designed and tested to meet the highest quality and reliability expectation of the semiconductor industry.

ASSEMBLY QA INSPECTIONS

1. Die Attach and Lead Bond Inspection - Random sampling of die bonding integrity by a shear strength test and wire attach integrity by a wire pull test.
2. Visual QC Monitor - Microscopic inspection of die placement, die and wire bonds, wire loops, damaged die and wire and emitter junction coat coverage.
3. Encapsulation Inspection - Sample lot inspection for molding defects.
4. Temperature Cycle Test - Sample lot temperature cycling from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for 10 cycles subjecting the parts to thermal stresses in order to eliminate marginal die attach, wire bonds and misalignments.
5. Hot Rail Test - 100% electrical continuity testing at $100^{\circ} \mathrm{C}$ to insure removal of thermal intermittent parts.
6. HiPot Test -100% testing of isolation voltage parameter per UL/VDE requirements.
7. Parametric Tests - 100\% electrical tests to data book or customer-selection parameters.
8. QA Final Tests - Lot audits to assure conformance to all product requirements.

Figure 4. Coupler Process Flow \& Inspections

IL205-207, IL211-213
 IL215-217, IL221-223 Small Outline Surface Mount Optocoupler

The following summary documents the capability of the small outline surface mount optocoupler series to meet and exceed reliability standards for the highest level semiconductor products.

ENVIRONMENTAL

Test	Conditions	Duration	Total Devices Tested	Failures
Temperature Cycling	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	200 Cycles	152	0
Thermal Shock	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	100 Cycles	76	0
Solder Heat Test	$260^{\circ} \mathrm{C}$	10 Seconds, 3 Times	76	0
Lead Integrity Test	$80 z$. Tension	30 Seconds	76	0
Vapor Phase Zone Test	$215^{\circ} \mathrm{C}$	60 Seconds	76	0

ENVIRONMENTAL LIFE

Test	Conditions	Duration	Total Device Hours	Failures
Pressure Pot Test	$121^{\circ} \mathrm{C} / 15 \mathrm{PSIG} \mathrm{Steam}$	288 Hours	10,944	0
Temperature $/$ Humidity	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$	1000 Hours	38,000	0
High Temperature Storage	$150^{\circ} \mathrm{C}$	1000 Hours	76,000	0

OPERATING LIFE

Test	Conditions	Duration	Total Device Hours	Failures
Ambient Life	$25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	1000 Hours	57,000	0
Ambient Life	$25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	1000 Hours	57,000	0
High Temperature Life	$70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	1000 Hours	38,000	0

general

Isolation Breakdown 3 KVAC RMs for 1 sec: No Failures
Average Change in CTR Over Pressure Pot Test: 3.6%

CUSTOM PRODUCTS

A representative example of our broad custom capabilities described below.

INTRODUCTION

Siemens Custom Products are designed typically for unique applications or specific performance requirements using optical devices. Because of our over 15 years experience as an optoelectronics supplier, you benefit from this long time experience and tested performance. Our custom engineering resources include an engineering expertise in solid state optical devices and plastic optics, full custom packaging capability, complex hybrid system capability, IC design, and an optical design and measurements lab. Our custom product approach gives you reduced system cost, improved performance, design ownership, improved reliability, high product quality, and many more benefits and features.

OUR CAPABILITIES

- Optical Design Expertise

- Solid State Optical Device Solutions
- Plastic Lens Capabilities
- Multi-Element Lens Capability
- Multi-Channel Fiber Optic Design Techniques
- Full Range of Custom Packaging Options
- Modular Assemblies Designed and Built Using:
- Custom Leadframes
- Molded Plastic Optics
- Hybrid Chip-on-Substrate Assemblies
- Polymer Thick-Film Multilayer Substrates
- Transfer Molded Packages
- Hermetic Packages
- Specialize in Hybrid Functional Modules
- Extensive Chip-On-Board Experience
- Precise Die Positioning in Single Units or Arrays
- Board Component Design
- Surface Mount Technology
- Optical Measurements Facility
- Absolute Characterization of Optical Performance
- Fast and Accurate Responses to Customer Requirements
- Measurements Traceable to National Bureau of Standards
- Computer Aided Design Facility
- In-House IC Design Capability
- High Speed Silicon Gate CMOS and Bipolar Technology
- Complete IC Test, Process and Product Engineering
- Quality and Reliability Control
- Established QC System
- Typical Quality Level, under 100 PPM
- Extensive Product Characterization
- State-of-the-Art Materials
- Full Spectrum of Visible LEDs, Infrared Emitters, and Detectors
- Wafer Fabrication Facility
- Complete Control of Device Fabrication
- State-of-the-Art Process and Materials
- Custom Die Designs
- Modern, Offshore Assembly Facility
- 42,000 Square Feet Facility in Penang, Malaysia
- Latest Automated Assembly Equipment
- Test and Burn-in Capability
- "Just-in-Time" Philosophy
- Over 14 Years Experience in Optical Hybrid Assemblies

CUSTOMER BENEFITS

- Reduced System and Program Costs

- Higher Level of Integration
- Reduction in Components Required
- Optimum Product Performance
- Use of Latest Technology
- Improved Optical Design Techniques
- Uniquely Competitive Designs
- Special Functions and Features
- Proprietary Customer Design
- Reduced Product Development Time
- Allows Quicker Entry to Market
- Improved Reliability and Quality

CUSTOM ENGINEERING RESOURCES

Siemens is an expert in evaluating customer requirements and proposing systems solutions. For example, our engineers are specialists at integrating LED displays with microprocessors to form display subsystems.

Also, our expertise in optical engineering allows us to optimize emitter/detector system designs. This includes: unique plastic lens design, multi-element lens designs, multichannel fiber optics design techniques as well as the use of other optical elements such as apertures, reflectors, mirrors, etc.

CUSTOM PACKAGING AND HYBRID CAPABILITIES

Custom packaging is another option available to you offering a significant size reduction and resulting cost savings over most existing designs. Our modular assemblies are designed and built using custom leadframes, custom molded plastic lenses, hybrid chip-on-substrate assemblies or polymer thick-film multilayer substrates. We have extensive chip-on-board experience for airgap, concoat, and epoxy encapsulated modules. We support air gap assemblies with metal or plastic housings. We also have the technology to transfer mold epoxy packages. For harsh environmental conditions we offer hermetic processing using glass, ceramic or metal assemblies.
Another area of expertise is in precise die positioning in single units or arrays. Our surface mount technology supports both ceramic and PCB substrates. Our component design capability includes visible LEDs, IR LEDs, Op Amps, Photodiodes, Phototransistors, LSI CMOS Chips, Bipolar ICs, Optocouplers, and Discretes. In summary, we are the optoelectronic specialists in the design of hybrid modules.

OPTICAL DESIGN AND MEASUREMENTS LABORATORY

The Siemens Optics Lab, a versatile and precise optical measurement facility, provides fast and accurate absolute characterization of optical radiation performance. This insures fast and accurate responses to customer requirements and on-site field support available on complex issues. The lab is coordinated with standards organizations worldwide insuring the latest conventions for optical measurement procedures. All measurements are traceable to the National Bureau of Standards.

Listed below are a few of our optical laboratory's capabilities:

- LED spectral irradiance from 280 to 1070 nm .
- LED spectral luminosity from 380 to 780 nm .
- Radiometric and photometric intensity.
- Detector response versus wavelength from 280 to 1070 nm .
- Precise computer based measurement system.
- Other optical capabilities available to support customer needs.

WAFER FABRICATION FACILITIES

For your custom requirements, Siemens wafer fabrication facilities use state-of-the-art materials such as Silicon Carbide (SiC) for pure blue light, Gallium Arsenide (GaAs), Gallium Aluminum Arsenide (GaAlAs), Gallium Phosphide (GaP), and Gallium Arsenide Phosphide (GaAsP). We control device fabrication through in-house bulk crystal and epitaxal growth. We can control wavelength in a range from 560 nm to 900 nm . Our in-house bulk crystal growth yields material with defects per square centimeter among the lowest in the industry. This quality material gives you higher reliability and more brightness with lower power.

CAD/CAM: DESIGN AND ASSEMBLY

We design custom assemblies and subassemblies by computer and assemble by computer-controlled automated assembly equipment. This vastly improves the reliability and quality control while offering more features at the lowest possible cost.

AUTOMATED OFFSHORE ASSEMBLY FACILITY

The Siemens assembly plant, in Penang, Malaysia, uses the latest in automated assembly and test equipment allowing effective and flexible approaches to varying technologies and products yielding competitive costs and prices. Our automated computer tracking system supports a "just-intime" delivery philosophy. A total quality concept includes a statistical process control program, a continuous calibration program a preventive maintenance program, and an employee job awareness enhancement program is an ongoing commitment. A complete test and burn-in facility is supported by a failure analysis group and reliability monitors. Production lots are traceable guaranteeing predictability of quality and yield. A dedicated product development group supports a variety of customer needs. We have accumulated a total of over 14 years experience in the assembly and test of high density optoelectronic hybrid assemblies.

CUSTOMER BENEFITS

Your program benefits in many ways, through a combination of the engineering resources and available technology. We can reduce your system and overall program costs through higher levels of integration, reduced component inventory/ lower component costs, elimination of in-house assembly labor costs, lower inventory costs, reduction of warranty expenses, and lower administrative costs. We can offer optimum product performance with improved optical design techniques using leading edge technology. Our state-of-theart packaging techniques offer significant size reductions as well as improved operating conditions. All this leads to
improved product quality and reliability characteristics since the final product is 100% tested and guaranteed operational.

Your design will be uniquely competitive since it will use features and technologies not available to your competitors. The design will be your proprietary product. Our ability to dedicate engineering resources to your custom project frees up your resources for other programs enabling your products quicker introduction to the market. You receive only fully tested and quality assured product (100% yield) for improved reliability and quality.

CUSTOM APPLICATIONS AND MARKETS SERVED

Siemens Custom Products have applications in virtually every OEM market. We currently serve the industrial,

Examples of Products in Production:

Industrial Display

Coin Sensor
medical, EDP and computer peripherals, telecommunications, office equipment, and transportation markets. Some high volume applications now in production include: medical fluid flow sensor, medical oximetry probes, electronic coin sensing, industrial controller displays, currency validation, computer touch screen sensing, instrumentation panels, sign boards, information of data terminal displays, and custom lamps and bar graphs.

INQUIRIES

Your inquiries should include mechanical, electrical, and environmental requirements. Also include anticipated product volumes, price objectives, and leadtimes since these considerations affect the design and tooling approach.

Fluid Flow Sensor

Telephone Switch Indicator Lamp

Intelligent Display ${ }^{\circledR}$ Devices

For non-standard requirements, see Custom Products on page 1-1.
\star Not for new design.

Programmable Displays ${ }^{T M}$

Package Type	Package Outline	Part Number /Color	Character Height	Description	Page
8 Char. Module Encapsulated		$\begin{aligned} & \text { PD } 2816 \\ & \text { Red } \end{aligned}$.160"	18 segment (including decimal and character underline), 8 character display with built-in CMOS ASCII decoder, multiplexer, memory and driver. Software driven-true microprocessor peripheral, some additional features over Intelligent Displays include: control and display memory read/write, dimming (3 levels) and blanking, blinking cursor/character, lamp test and digit underline.	2-76
4 Char Module		$\begin{gathered} \text { PD } 2435 \\ \text { Hi. Eff. } \\ \text { Red } \\ \hline \text { PD } 2437 \\ \text { Green } \end{gathered}$.200"	5×7 dot matrix, 4 character display with built-in CMOS ASCl decoder, multiplexer, memory and driver. Software driven-true microprocessor peripheral, some additional features over Intelligent Displays include control and display memory read/write, dimming (3 levels) and blanking, blinking cursor/character and lamp test. 96 ASCII character format.	2-67
4 Char. Module		PD $3435 \star$ Hi. Eff. RedPD $3437 \star$ Green	.270"	5×7 dot matrix, 4 character display with built-in CMOS ASCII decoder, multiplexer, memory and driver. Software driven-true microprocessor peripheral, some additional features over Intelligent Displays include control and display memory read/write, dimming (3 levels) and blanking, blinking cursor/character and lamp test. 96 ASCII character format.	2-85
4 Char. Module	\qquad	PD 3535 Hi. Eff. Red PD 3537 Green	.270"	5×7 dot matrix, 4 character display with built-in CMOS ASCII decoder, multiplexer, memory and driver. Software driven-true microprocessor peripheral, some additional features over Intelligent Displays include control and display memory read/write, dimming (3 levels) and blanking, blinking cursor/character and lamp test. 96 ASCII character format.	2-94
8×8 X-Y Stackable Programm- able Display Module	$\begin{gathered} 06 \\ \hline 00000000 \\ 0000000 \\ 00000000 \\ 00000000 \\ 00000009 \\ 00000000 \\ 00000000 \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PD } 1165 \\ \text { Hi. Eff. } \\ \text { Red } \\ \hline \text { PD } 1167 \\ \text { Green } \end{gathered}$	1.16" Square Area	8×8 dot matrix display module with alternate language and graphics capability. With on-board drivers, built-in RAM. Software controllable features: 9 levels of intensity settings, memory clear, blanking or blinking, built-in lamp test, interlocking $X-Y$ stackable for larger displays.	2-59

Hi-Rel/Military Displays

Package Type	Package Outline	Part Number /Color	Character Height	Description	Page
4 Char. Module Hermetic Seal		MDL 2416 Red MDL 2416 C Red	.15"	Intelligent Display Device 17 segment, 4 character display with built-in CMOS ASCII decoder, multiplexer, memory and driver. Hi-Rel Military Type.	2-46
4 Char. Module Hermetic Seal		MPD 2545 Hi. Eff. Red MPD 2547 Green	.25"	Programmable Display 5×7 dot matrix, 4 character Hi -Rel/ Military display with built-in CMOS ASCII decoder, multiplexer, memory and driver. Software driven microprocessor peripheral. Rugged ceramic package. Wide temperature operating range for high reliability industrial and military use.	2-51

Alphanumeric Display

Package Type	Package Outline (Shown Actual Size)	Part Number	Light Emitting Area	Description	Polarity	Color	Luminous Per Seg Typ	ntensity nent (ω (mA)	Page
Single Char. Encapsulated (Filled Reflector)	$\left(\begin{array}{c} 5+5 \\ 5+7 \\ 50+6 \\ 50 \end{array}\right)$	DLR 5735	$\begin{gathered} 17.5 \mathrm{~mm} \\ .69^{\prime \prime} \end{gathered}$	No built-in CMOS drive circuitry 5×7 dot matrix	Common cathode row				2-44
		DLR 5736			Common anode row	Red	200 $\mu \mathrm{cd}$	20	
		DLG 5735			Common cathode row	Green	$650 \mu \mathrm{~cd}$	10	
		DLG 5736			Common anode row				

For non-standard requirements, see Custom Products on page 1-1.

.112" Red, 4-Digit 17-Segment ALPHANUMERIC Intelligent Display ${ }^{\circledR}$ With Memory/Decoder/Driver

FEATURES

- 112" High, Magnified Monolithic Character
- Wide Viewing Angle, X Axis $\pm 40^{\circ}$, Y Axis $\pm 55^{\circ}$
- Close Vertical Row Spacing, $.800^{\prime \prime}$
- Rugged Solid Plastic Encapsulated Package
- Fast Access Time, 280 ns
- Compact Size for Hand Held Equipment
- Built-in Memory
- Built-in Character Generator
- Built-in Multiplex and LED Drive Circuitry
- Direct Access to Each Digit Independently \& Asynchronously
- TTL Compatible, 5 Volt Power
- 17th Segment for Improved Punctuation Marks
- Low Power Consumption, Typically 10 mA per Character
- Intensity Coded for Display Uniformity
- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- End-Stackable, 4-Character Package
- 100\% Burned In and Tested

Package Dimensions in Inches (mm)

Tolerance $\begin{array}{r}x \times \cdot 01(754) \\ x \times x \cdot 005(\text { (ฟ) }\end{array}$

DESCRIPTION

The DL 1414 T is a four digit display module having 16 bar segments plus a decimal and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII character generator, and LED multiplexing and drive circuitry. Inputs are TTL compatible. A single 5 -volt power supply is required. Data entry is asynchronous and random access. A display system can be built using any number of DL 1414Ts since each character in any DL 1414 T can be addressed independently and will continue to display the character last written until it is replaced by another.
Loading data into the DL 1414T is straightforward. The desired data code $\left(D_{0}-D_{6}\right)$ and digit address (A_{0}, A_{1}) is presented in parallel and held stable during a write cycle. Data entry may be asynchronous and in random order. (Digit 0 is defined as right hand digit with $A_{1}=A_{0}=0=10 w$).
System interconnection is also straightforward. The least significant two address bits $\left(A_{0}, A_{1}\right)$ are normally connected to the like named inputs of all DL 1414Ts in the system. Data lines are connected to all DL 1414Ts directly and in parallel. Multiple DL 1414 T systems usually use an external one-of- N decoder chip. The "write" pulse is connected to the CE of the decoder. A 3 -to-8 line decoder multiplexer (74138) or a 4-to-16 line decoder/multiplexer (74154) are possible choices. All higherorder address bits (above A_{1}) become inputs to the decoder.
Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

Specifications are subject to change without notice.

Maximum Ratings

ESD (MIL-STD-883, method 3015) VZ $=3 \mathrm{KV}$

Optical Characteristics @ $25^{\circ} \mathrm{C}$

TIMING CHARACTERISTICS

DC CHARACTERISTICS

Parameter	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
ICC 4 Digits on 10 segments/digit		60	75		50	65		40	55	mA	$\mathrm{V}_{C C}=5 \mathrm{~V}$
Icc Blank		1.5	3.5		1.0	2.7		0.5	2.0	mA	$\begin{aligned} & V_{C C}=\overline{W R}=5 \mathrm{~V}, \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$
ILL (all inputs)		80	180		60	160		45	90	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IH }}$	2.0			2.0			2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$			0.8			0.8			0.8	V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ (1)

Parameter	Symbol	$\mathbf{- 4 0}{ }^{\circ} \mathbf{C}(\mathbf{n s})$	$\mathbf{+ 2 5}{ }^{\circ} \mathbf{C}(\mathbf{n s})$	$\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}(\mathbf{n s})$
Address Set Up Time	$\mathrm{T}_{\text {AS }}$	175	250	325
Address Hold Time	$\mathrm{T}_{\text {AH }}$	30	30	30
Write Delay Time	T_{WD}	30	30	30
Write Time	T_{W}	150	225	300
Data Set Up Time	T_{DS}	125	175	250
Data Hold Time	T_{DH}	30	30	30
Access Time ${ }^{(2)}$	$\mathrm{T}_{\mathrm{ACC}}$	205	280	355

Notes: 1. Access time $T_{A C C}=T_{A S}+T_{D H}$
2. Digit multiplex frequency may vary from 200 Hz to 1.3 KHz .

L	H	L	L			\| I	II	II	117	$\underset{\square}{8}$	/
L	H	L	H	1	1	-	1	1	-	-	1
L	H	H	L	11	1	$\underset{I}{I}$	-1	1	$\underline{1}$	E	7
L	H	H	H	II	1			!	--	1	I
H	L	L	L	EII	1	-I	1_{-}^{-}	-11	$E_{-\infty}^{\infty}$	E	1]
H	L	L	H	11	$\begin{aligned} & -1 \\ & 1 \end{aligned}$	1-1	í	1-2	$i \hat{i}$	Ni	17
H	L	H	L	I-	17	ET	[-]	1	11	$1 /$	VV
H	L	H	H	M	\mathbf{Y}	1	$\frac{1}{1}$	i	-1	1	--

All Other Input Codes Display "Blank"

LOADING DATA STATE TABLE

WR	A1	A0	D6	D5	D4	D3	D2	D1	D0	DIGIT			
										3	2	1	0
H		PREVIOUSLY LOADED DISPLAY								G	R	E	Y
L	L	L	H	L	L	L	H	L	H	G	R	E	E
L	L	H	H	L	H	L	H	L	H	G	R	U	E
L	H	L	H	L	L	H	H	L	L	G	L	u	E
L	H	H	H	L	L	L	L	H	L	B	L	U	E
L	L	H	H	L	L	L	H	L	H	B	L	E	E
L	L	L	H	L	H	L	H	H	H	B	L	E	w
L	X	x	SEE CHARACTER CODE							SEE CHARACTER SET			

X = DON'T CARE

DESIGN CONSIDERATIONS

For details on design and applications of the DL $1414 T$ utilizing standard bus configurations in multiple display systems, or parallel I/O devices, such as the 8255 with an 8080 or memory mapped addressing on processors such as the $8080, \mathrm{Z80}, 6502$, or 6800 refer to Appnote 15 in the current Siemens Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients in the power supply line while they change display states. The common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across $V_{C C}$ and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display.

ESD PROTECTION

The metal Gate CMOS IC of the DL 1414T is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3 KV . However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with unshielded parts. If these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 1414 T can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the $P C$ board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec. to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone. ${ }^{11)}$
Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, Ml; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 12 pin DIP sockets $600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The .112" high characters of the DL 1414T allow readability up to 6 feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 1414T is a standard red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P, Genesolve D, Genesolve DA, Blaco-Tron TF, Blaco-Tron TA and, Freon TA.

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX $910-338-0022$

.160" Red, 4-Digit 16-Segment Plus Decimal ALPHANUMERIC Intelligent Display ${ }^{\circledR}$ With Memory/Decoder/Driver

FEATURES

- $0.16^{\prime \prime} \times 0.125^{\prime \prime}$, Magnified Monolithic Character
- Viewing Angle, X Axis $\pm 30^{\circ}, Y$ Axis $\pm 50^{\circ}$
- Rugged, Solid Plastic Encapsulated Package
- Top Lens Rail for Display Protection
- Fast Access Time, 350 ns
- Full Size Display for Stationary Equipment
- Built-in Memory
- Built-in Character Generator
- Built-in Multiplex and LED Drive Circuitry
- Direct Access to Each Digit Independently \& Asynchronously
- TTL Compatible, 5 Volt Power
- 17th Segment (Decimal Point) for Improved Punctuation Marks
- Independent Cursor Function
- End Stackable, 4 Character Package
- Intensity Coded for Display Uniformity
- 100\% Burned In and Tested
- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION

The DL 1416B is a four digit display module having 16 segments plus decimal and a built in CMOS integrated circuit.

The integrated circuit contains memory, ASCII ROM decoder, multiplexing circuitry, and drivers. Data entry is asynchronous and can be random. A display system can be built using any number of DL 1416Bs since each digit of each DL 1416B can be addressed independently. Each digit will continue to display the character last "written" until replaced by another.
System interconnection is very straightforward. The least significant two address bits $\left(\mathrm{A}_{0}, \mathrm{~A}_{1}\right)$ are connected to the like inputs of all DL 1416Bs in a system. In small systems having 16 digits (four DL 1416Bs), the enable ($\overline{\mathrm{CE}}$) inputs of the four devices could simply be used directly to select each DL 1416B. In larger display systems, the $\overline{C E}$ inputs would come from a 1 of N decoder integrated circuit. In this case, address lines $A_{2} \ldots A_{n}$ would go to the decoder inputs. Data lines $\left(D_{0}-D_{6}\right)$ would be connected to all $D L$ 1416Bs directly and in parailel. The cursor ($\overline{\mathrm{CU}}$) and write ($\overline{\mathrm{WR} \text {) lines would }}$ also be connected directly and in parallel. The display will then behave as a "write only memory".
The cursor function causes all segments of a digit position to illuminate. The cursor is NOT a character, however, and upon removal, the previously displayed character will reappear.
Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

Specifications are subject to change without notice.

Maximum Ratings

Supply Voltage V_{CC}. -0.5 V to +6.0 Vdc
Voltage, Any Pin Respect to GND . -0.5 to ($\mathrm{V}_{\mathrm{CC}}+0.5$) Vdc
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature, 1.59 mm ($0.063^{\prime \prime}$)
below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$.
$260^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @85 ${ }^{\circ} \mathrm{C}$. 85\%
ESD (MIL-STD-883, method 3015) VZ $=3 \mathrm{KV}$

TIMING CHARACTERISTICS

Optical Characteristics

Time Averaged Luminous Intensity
per digit (8 segments) . 0.25 mcd min. 0.75 mcd typ.
$@ 25^{\circ} \mathrm{C}$.

Off Axis Viewing Angle:
Horizontal $\pm 30^{\circ}$
Vertical
Digit size
$0.160^{\prime \prime} \times 0.125^{\prime \prime}$
Spectral Peak Wavelength
660 nm
LED to LED Intensity Matching 1.8:1.0 max

Average Display Intensity Matching (one bin) . . 1.5:1.0 max.
Bin to Bin Intensity Matching (adjacent bins) . . 1.9:1.0 max.

DC CHARACTERISTICS

Parameter	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$I_{C C} 4$ Digits on 10 segments/digit		115	140		80	125		65	100	mA	$V_{C C}=5 \mathrm{~V}$
ICC Blank		2.5	4.0		2.0	3.5		1.5	2.5	mA	$\begin{aligned} & V_{C C}=\overline{W R}=5 \mathrm{~V}, \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$
ILL		100	120		75	90		60	75	$\mu \mathrm{A}$	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	2.0			2.0			2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$			0.8			0.8			0.8	V	$V_{C C}=5 V_{ \pm} 0.5 \mathrm{~V}$

AC CHARACTERISTICS Minimum at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ in nanoseconds

Parameter	Symbol	$\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$	$\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$	$\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$
Address Set Up Time	$T_{\text {AS }}$	225	300	400
Cursor Set Up Time	$T_{\text {CUS }}$	225	300	400
Chip Enable Set Up Time	$T_{\text {CES }}$	225	300	400
Data Set Up Time	$T_{\text {DS }}$	100	175	300
Write Time	$T_{\text {W }}$	150	250	350
Address Hold Time	$T_{\text {AH }}$	30	50	80
Data Hold Time	$T_{\text {DH }}$	30	50	80
Write Delay Time	$T_{\text {WD }}$	30	50	80
Chip Enable Hold	$T_{\text {CEH }}$	30	50	80
Cursor Hold Time	$T_{\text {CUH }}$	30	50	80
Access Time	$T_{\text {ACC }}$	255	350	480

LOADING DATA

The chip enable（ $\overline{C E}$ ）held low and cursor（ $\overline{C U}$ ）held high will enable data loading．The desired data code （ $D_{0}-D_{6}$ ）and selected digit address（ $A_{0}-A_{1}$ ）should be held stable while write (\bar{W}) is low for storing new data． The timing parameters in the AC characteristics table are minimum and should be observed．There are no maximum timing requirements．Data entry may be asynchronous and in random order．All undefined data codes（see character set）loaded as data will dis－ play a blank．

Digit 0 is defined as the right hand digit with $A_{1}=A_{0}$ $=0=($ low $)$ ．

LOADING CURSOR

The chip enable（ $\overline{\mathrm{CE}}$ ）and Cursor（ $\overline{\mathrm{CU}}$ ）are held low． A write (\bar{W}) signal will now load a cursor into any digit position addressed by（ $A_{0}-A_{1}$ ）；as defined in data entry．A cursor will be stored if $D O=H$ and removed if $D O=L$ ．The（ $\overline{\mathrm{CU}})$ pulse width should not be less than write（ $\overline{W R}$ ）pulse or erroneous data may appear in the display．

TYPICAL LOADING DATA STATE TABLE

TYPICAL LOADING CURSOR STATE TABLE

CONTROL			ADDAEsS			data						DISPLAY			
	CU			AO		DE	D4	D3	D2	01	D0	3	2	1	
	x	H				SLY	OAD	ED D	ISPLA			B	E	A	
	\times			Pla	R	10	LY	Tor	EDCu	URSO		B	E	A	
	L		\llcorner	L		\times	\times	\times	x	x	H	B	E	A	
L	L		L	H		x	x	x	x	X	H	B	E	类	
t	1		H	L		\times	\times	\times	\times	\times	H	B	圈	类	2
L	L		H	H		\times	\times	\times	\times	\times	H	\％	橉	＊	
L	1		H	L		\times	x	x	\times	\times	L	园	E	＊	

NOTE：All undefined data codes that are loaded or occur on power tup will cause a blank display state．

DL 1416B

DESIGN CONSIDERATIONS

For details on design and applications of the DL 1416B utilizing standard bus configurations in multiple display systems, or Parallel I/O devices, such as the 8255 with an 8080 or memory mapped addressing on processors such as the $8080, \mathrm{Z80}$, or 6800 , or non-microprocessor based systems, please refer to Appnote 9A and 13 in our current Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients on the power supply line while they change display states. Common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across V_{CC} and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display.

ESD PROTECTION

The metal gate CMOS IC of the DL 1416B is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3KV. However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with un-shielded parts. Where these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 1416B can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.

Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone.
Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;

Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

Further information is available in Siemens Appnotes 18 and 19 in our current Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $1.10^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
Further information is available in Siemens Appnote 22 in our current Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $.16^{\prime \prime}$ high characters of the DL 1416B allow readability up to 8 feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 1416B is a red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters, but mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Please refer to Siemens Appnote 23 for further information.

.160" RED, 4-DIGIT 16-SEGMENT ALPHANUMERIC Intelligent Display ${ }^{\circledR}$ WITH MEMORYIDECODER/DRIVER

Package Dimensions in Inches (mm)

Tolerance: $x \mathrm{xx} \pm .01$ (.254), $\mathrm{xxx} \pm .005(.127)$

NOT FOR NEW DESIGNS

(Refer to the Improved Extended Performance of DL 1416B for Similar Applications.)

FEATURES

- End-stackable, 4-Character Package
- High Contrast, 160 mil High, Magnified Monolithic Characters
- Viewing Angle $\pm 20^{\circ}$
- 64-Character ASCII Format
- Built-in Memory, Decoder, Multiplexer and Drivers
- Direct Access to Each Digit Independently and Asynchronously
- 5 Volt Logic, TTL Compatible
- 5 Volt Power Supply Only
- Independent Cursor Function
- Intensity Coded For Display Uniformity

DESCRIPTION

The DL 1416 T Intelligent Display is a four-digit LED display module having a 16 -segment font and an on-board CMOS integrated circuit driver.

The CMOS chip includes memory for four digits and cursor, 64 ASCII character generator ROM, and segment/digit drivers with associated multiplexing circuitry. Inputs are TTL compatible as is the power supply requirement. Data entry is asynchronous and
random access. A display system can be built using any number of DL 1416Ts since each digit of each DL 1416 T can be addressed independently. Each digit will continue to display the character last "written" until replaced by another.

A cursor is defined as all segments of a digit position to be lit. The cursor is not a character, however, and upon removal leaves the previously displayed character unchanged. Normally, the cursor would be loaded and unloaded (flash) under software control. This can be used as a pointer in a line of DL 1416T displays or a "lamp test" function is realized by simply storing a cursor in all four digit positions of a display.

System interconnection is very straight forward. The least significant two address bits (A_{0}, A_{1}) are connected to the like inputs of all DL1416Ts in a system. In small systems having 16 digits (4-DL 1416Ts), the enable ($\overline{\mathrm{CE}}$) inputs of the four devices could simply be used directly to select each DL 1416T. In larger displays, the $\overline{\mathrm{CE}}$ inputs would come from A 1-of-N decoder integrated circuit. In this case, address lines $A_{2} \ldots A_{n}$ would go to the decoder inputs. Data lines ($D_{0}-D_{6}$) would be connected to all DL 1416Ts directly and in parallel. The cursor $(\overline{\mathrm{CU}})$ and write $(\overline{\mathrm{W}})$ lines would also be connected directly directly and in parallel. The display will then behave as a "write-only memory." Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

Specifications are subject to change without notice.

LOADING DATA

The chip enable（ $\overline{\mathrm{CE}}$ ）held low and cursor（ $\overline{\mathrm{CU}}$ ）held high will enable data loading．The desired data code （ $D_{0}-D_{6}$ ）and selected digit address（ $A_{0}-A_{1}$ ）should be held stable while write (W) is low for storing new data． The timing parameters in the AC characteristics table are minimum and should be observed．There are no maximum timing requirements．Data entry may be asynchronous and in random order．All undefined data codes（see character set）loaded as data will dis－ play a blank．

Digit 0 is defined as the right hand digit with $A_{1}=A_{0}$ $=0=$ low．
typical loading data state table

C	CU		$\begin{array}{cc} \hline A D D R E S S \\ A_{1} & A_{0} \end{array}$		DATA INPUT							$\begin{gathered} \text { DIGIT } \\ 3 \end{gathered}$	$\begin{gathered} \text { DIGIT } \\ 2 \end{gathered}$	$\begin{gathered} \text { DIGIT } \\ 1 \end{gathered}$	$\begin{gathered} \text { DIGIT } \\ 0 \end{gathered}$
		w			D6	D5	D4	D3	D2	D1	D0				
H	\times	\times	X	X	X	X	x	x	x	X	x	$\stackrel{\text { NO }}{\text { change }}$	CHANGE	CHANGE	NOO
L	H	L	L	L	H	1	L	L．	L	1	H	CHANGE	CHANGE	CHANGE	A
L	H	L	1	H	H	L	L	L	L	H	L	CHANGE	Change	B	A
L	H	L	H	L	H	L	L	L	t	H	H	change	c	B	A
L	H	L	H	H	H	L	L	L	H	L	L	D	c	B	A
L	H	L	L	L	H	L	L	L	H	L	H	D	C	B	E
1	H	L	H	L	H	L	L	H	L	H	H	D	k	B	E
L	H	L	－	－	－	－	－	－	－	－	－	SEE	CHARA	acter	

LOADING CURSOR

The chip enable（ $\overline{\mathrm{CE}}$ ）and Cursor（ $\overline{\mathrm{CU}}$ ）are held low． A write（ \bar{W} ）signal will now load a cursor into any digit position for which the respective first four data lines（ $\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ ）individually or together are held high．If previously stored，the cursors can only be removed if their respective data lines are held low while $\overline{\mathrm{CE}}, \overline{\mathrm{CU}}$ are low and write $(\overline{\mathrm{W}}$ ）occurs．
The cursor（ $\overline{\mathrm{CU}}$ ）should not be hardwired high（off）． During the power－up of DL 1416s the cursor memory will be in a random state．Therefore，it is recom－ mended for the processor－based system to initialize or write out possible cursors during．the system initiat－ izing portion of the software．

The cursor display will be over ridden by a blank from an undefined code in that digit position．

TYPICAL LOADING CURSOR STATE TABLE

$\overline{C E} \overline{C U} \bar{W}$			$\begin{gathered} \text { ADDRESS } \\ A_{1} \end{gathered} A_{0}$		DATA INPUT							$\begin{gathered} \text { DIGIT } \\ 3 \end{gathered}$	$\begin{gathered} \text { DIGIT } \\ 2 \end{gathered}$	$\begin{gathered} \text { DIGIT } \\ \mathbf{1} \end{gathered}$	$\begin{gathered} \text { OIGIT } \\ 0 \end{gathered}$		
			D6	D5	D4	D3	D2	D1	DO								
H	x	x			\times	x	x	x	x	x	\times	\times	x	D	k	B	E
L	L	L	\times	x	\times	\times	x	L	L	L	H	D	k	B	（1）		
\downarrow	L	L	\times	x	x	x	x	L	L	1	L	O	K	B	E		
L	L	L	x	x	x	x	x	L	L	H	1	0	K	产	E		
L	L	L	\times	x	x	\times	x	L	H	L	L	D	困	8	E		
L．	L	L	\times	X	x	x	x	H	L	L	L．	E	k	B	E		
L	L	L	\times	x	x	\times	x	H	H	H	H	\square	©	［	团		
L	L	L	\times	x	\times	\times	\times	1	\llcorner	L	\downarrow	D	κ	B	E		

NOTE：All undefined data codes that are loaded or occur on power－up will cause a blank display state

DESIGN CONSIDERATIONS

For details on design and applications of the DL 1416T utilizing standard bus configurations in multiple display systems, or parallel I/O devices, such as the 8255 with an 8080 or memory mapped addressing on processors such as the $8080, Z 80,6800$, or non-micro processor based systems, please refer to Appnote 9A and 13 in the current Siemens Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients on the power supply line while they change display states. The common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across $V_{C C}$ and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display.

ESD PROTECTION

The metal gate CMOS IC of the DL 1416T is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3 KV . However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with unshielded parts. Where these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 1416 T can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $70^{\circ} \mathrm{C}$. Water soluble organic acid flux or (except carboxylic acid) resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell. between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morris-
town, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $1.10^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $0.16^{\prime \prime}$ high characters of the DL 1416T allow readability up to six feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of suntight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 1416T is a red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.

Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.

.112" Red, 8-Digit 17-Segment ALPHANUMERIC Intelligent Display ${ }^{\circledR}$ With Memory/Decoder/Driver

FEATURES

- 0.112" $\times 0.088^{\prime \prime}$ Magnified Monolithic Character
- Rugged Solid Plastic Encapsulated Package
- Wide Viewing Angle $\pm 40^{\circ}$, Both Axis
- Compact Size for Hand Held Equipment
- Fast Access Time, 525 ns
- Full Integrated CMOS Drive Electronics
- Direct Access to each Digit Independently \& Asynchronously
- TTL Compatible, 5 Volt Power
- 17th Segment for Improved Punctuation Marks
- Low Power Consumption, Typically 10 mA per Character
- Display Blank Function
- End-Stackable, Eight Character Package
- Intensity Coded for Display Uniformity
- 100\% Burned In and Tested
- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION

The DL 1814 is an 8 -digit module. Each digit has 16 segments plus a decimal segment and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII character generator, and LED multiplexing and drive circuitry. Inputs are TTL compatible. A single 5 volt power supply is required. Data entry is asynchronous and random access. A display system can be built using any number of DL 1814's since each character in any DL 1814 can be addressed independently and will continue to display the character last written until it is replaced by another.

Package Dimensions in Inches (mm)

Maximum Ratings
Supply Voltage V_{CC}. -0.5 V to +6.0 Vdc Voltage, Any Pin Respect
to GND -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5\right) \mathrm{Vdc}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @ $85^{\circ} \mathrm{C}$. 85\%
Maximum Solder Temperature, $1.59 \mathrm{~mm}\left(0.063^{\prime \prime}\right)$ below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$ $260^{\circ} \mathrm{C}$
ESD (MIL-STD-883, method 3015) VZ $=3 \mathrm{KV}$

Optical Characteristics

Spectral Peak Wavelength 660 nm typ.
Magnified digit size $0.112^{\prime \prime} \times 0.088^{\prime \prime}$
Time Averaged Luminous Intensity $0.2 \mathrm{mcd} /$ digit min. (100% brightness,
8 segments/digit, $\mathrm{V}_{C C}=5 \mathrm{~V}$) $0.5 \mathrm{mcd} /$ digit typ.
LED to LED Intensity Matching 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal . $\pm 40^{\circ}$
Vertical . $\pm 40^{\circ}$

Specifications are subject to change without notice.

Pin		Function	Pin	Function	TOP VIEW
1	D0	Data input	14	$\overline{\text { BL }}$ (Blank)	26
2	D1	Data input	15	NO PIN	
3	D2	Data input	16	NO PIN	
4	D3	Data input	17	NO PIN	
5	D4	Data input	18	NO PIN	
6	D5	Data input	19	NO PIN	
7	D6	Data input	20	NO PIN	
8	GND		21	NO PIN	
9 10	A0	Address Address	22 23	NO PIN NO PIN	
11	A2	Address	24	NO PIN	
12	WR	Write	25	NO PIN	
13	VCC		26	$\overline{\mathrm{CE}}$ (Chip Enable)	$\begin{array}{lllllllllllll}4 & 5 & 6 & 7 & 8 & 9 & 1011\end{array}$

DC CHARACTERISTICS

Parameter	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{I}_{\mathrm{CC}}{ }^{(1)} 8$ Digits on 10 segments/digit		130	156		100	120		85	102	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
ICC Blank ${ }^{(1)}$		2.5	5.0		2.0	3.5		1.5	2.0	mA	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{BL}=0.8 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {L }}$ (all inputs)		75	110		55	80		40	55	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V}, \\ & V_{C C}=5 \mathrm{~V} \end{aligned}$
V_{IH}	2.7			2.7			2.7			V	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$			0.8			0.8			0.8	V	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Notes: 1. Measured at 5 sec .

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Parameter	Symbol	$\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ (ns)	$\mathbf{+ 2 5}{ }^{\circ} \mathbf{C}$ (ns)	$\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$ (ns)
Chip Enable Set Up Time	$T_{\text {CES }}$	300	450	550
Address Set Up Time	$T_{\text {AS }}$	300	450	575
Chip Enable Hold Time	$T_{\text {CEH }}$	50	75	100
Address Hold Time	$T_{\text {AH }}$	50	75	100
Write Delay Time	$T_{\text {WD }}$	100	150	200
Write Time	T_{W}	200	300	450
Data Set Up Time	$T_{\text {DS }}$	150	250	350
Data Hold Time	$T_{\text {DH }}$	50	75	100
Access Time	$T_{\text {ACC }}$	350	525	675

Notes: 1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the display surface at which any part of any segment in the display is not visible
2. This display contains a CMOS integrated circuit. Normal CMOS handling precautions should be taken to avoid damage due to high static voltages or electric fields. See Appnote 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either $V+$ or V-)

4 Warning: Do not use solvents containing alcohol.
5. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{VDC} \pm 10 \%$.
6. Access time is defined as $T_{A S}+T_{D H}$ (sum of address set up and data hold time).
7. $V_{C C}=4.5 \mathrm{~V}$, worst case for all timing parameters.

LOADING DATA

Loading data into the DL-1814 is straightforward. The desired data and chip enable should be present and stable during a write pulse. No synchronization is necessary, and each character will continue to be displayed until it is replaced with another. Multiple displays will require an external decoder IC connected to the chip enable input.
Setting the chip enables $\overline{\mathrm{CE}}$ to its true state will enable data loading. The desired data code (D0-D6) and digit address (A_{0}, A_{1}, A_{2}) must be held stable during the write cycle for storing new data. Data entry may be asynchronous and random. (Digit 0 is defined as right hand digit with ($\mathrm{A}_{2}=\mathrm{A}_{1}=\mathrm{A}_{0}=0$.)

DISPLAY BLANKING

Blanking the display may be accomplished by loading a blank or space into each digit of the display or by using the ($\overline{\mathrm{BL}}$) display blank input.
Setting the ($\overline{\mathrm{BL}}$) input low does not affect the contents of either data. A flashing display can be realized by pulsing (BL).
A flashing circuit can easily be constructed using a 555 astable multivibrator. Figure 1 illustrates a circuit in which varying R1 ($100 \mathrm{~K} \sim 10 \mathrm{~K}$) will have a flash rate of $1 \mathrm{~Hz} \sim 10 \mathrm{~Hz}$.

FIGURE 1. FLASHING CIRCUIT FOR DL 1814 USING A 555

TYPICAL LOADING DATA STATE TABLE

BL	$\overline{C E}$	WR	A2	A1	A0	D6	D5	D4	D3	D2	D1	D0	7		65	DIGIT		2	1	0
																4	3			
H	X	H	X	X	X		EVIO	USLY	LOAD	ED	SPLA		S	1	E	M	E	N	S	
H	H	X	X	X	X	\times	X	X	X	\times	X	X	S	1	E	M	E	N	S	
H	L	L	L	L	L	H	L	L	L	H	L	H	S	1	E	M	E	N	S	E
H	L	L	L	L	H	H	L	H	L	H	L	H	S	1	E	M	E	N	U	E
H	L	L	L	H	L	H	L	L	H	H	L	L	S	1	E	M	E	L	U	E
H	L	L	L	H	H	H	L	L	L	L	H	L	S	1	E	M	B	L.	U	E
H	L	L	H	L	L	H	L	L	L	H	L	H	S	1	E	E	B	L	U	E
H	L	L	H	L	H	H	L	H	L	H	L	H	S	1	U	E	B	L	U	E
H	L	L	H	H	L	H	L	L	H	H	L	L	S	L	U	E	B	L	U	E
H	L	L	H	H	H	H	L	L	L	L	H	L	B	\llcorner	U	E	B	L	\cup	E
L	X	H	X	\times	X			BLAN	DIS	PAY										
H H	L	$L_{\text {L }}$	L	H \times	H \times			CHA	L	${ }_{\text {H }}^{\text {H }}$		H	B	L	U	E		SET	U	E

Character set											
				L	H	1	H	L	H	L	H
				L	L	H	H	L	L	H	H
				L	L	1	L	H	H	H	H
06D5D4 D3											
1	H	1	L		V -	11	IJ	II	0	Ey	$/$
L	H	L	H	1	1	w	1	/	--	-	\%
IL	H	H	1	11	1	5	7	4	\underline{I}	E	7
L	H	H	H	0	\square			1	--	1	1
H	1	L	L	[-I	-1	3	-	II	E_{-}^{-}	F^{-}	5
H	L	L	H	1	7 1	11	1	I	\boldsymbol{N}	N'	$[7$
H	L	H	L	5	Ly	F	[-]	T	11	V^{\prime}	V1
H	1	H	H	M	\mathbf{Y}	7	1	$!$	7	\cdots	-

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients in the power supply line while they change display states. Common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across $V_{C C}$ and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display.

ESD PROTECTION

The metal gate CMOS IC of the DL 1814 is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3 KV . However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with un-shielded parts. Where these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 1814 can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec. to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 26 pin DIP sockets $.960^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handied by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $.112^{\prime \prime}$ high characters of the DL 1814 allow readability up to six feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 1814 is a standard red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens' displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.: Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.

FEATURES

- $0.16^{\prime \prime} \times 0.125^{\prime \prime}$ Magnified Character
- Wide Viewing Angle, X Axis $\pm 45^{\circ}$, Y Axis $\pm 55^{\circ}$
- Close Multi-line Spacing, $0.8^{\prime \prime}$ Centers
- Rugged Solid Plastic Encapsulated Package
- Fast Access Time, 300 ns @ $25^{\circ} \mathrm{C}$
- Full Size Display for Stationary Equipment
- Built-in Memory
- Built-in Character Generator
- Built-in Multiplex and LED Drive Circuitry
- Direct Access to Each Digit Independently \& Asynchronously
- Independent Cursor Function
- 17th Segment for Improved Punctuation Marks
- Memory Function that Clears Character and Cursor Memory Simultaneously
- True Blanking for Intensity Dimming Applications
- End-Stackable, 4-Character Package
- Intensity Coded for Display Uniformity
- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Superior ESD Immunity, 3 KV
- 100\% Burned In and Tested
- Wave Solderable
- TTL Compatlble over Operating Temperature Range

Package Dimensions in Inches (mm)

Tolerance: $\begin{aligned} . x X & =.01(.254) \\ & x X X=.005(.127)\end{aligned}$

DESCRIPTION

The DL 2416 T is a four digit display module having 16 segments plus decimal and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII ROM decoder, multiplexing circuitry, and drivers. Data entry is asynchronous and can be random. A display system can be built using any number of DL 2416 Ts since each digit of any DL 2416 T can be addressed independently and will continue to display the character last stored until replaced by another.
System interconnection is very straightforward. The least significant two address bits $\left(A_{0}, A_{1}\right)$ are normally connected to the like named inputs of all DL 2416Ts in the system. With two chip enables ($\overline{\mathrm{CE} 1}$, and $\overline{\mathrm{CE} 2}$) four DL 2416 Ts (16 characters) can easily be interconnected without a decoder.
Data lines are connected to all DL 2416Ts directly and in parallel, as is the write line ($\overline{\mathrm{WR}})$. The display will then behave as a write-only memory.
The cursor function causes all segments of a digit position to illuminate. The cursor is not a character, however, and upon removal the previously displayed character will reappear.
The DL $2416 T$ has several features superior to competitive devices. The superior ESD immunity afforded by the metal gate CMOS construction and 100\% pre-burned in processing assures users of the DL 2416 T that the devices will function in more stressful assembly and use environments. The full width character "J" affords better readability under adverse conditions and the "true blanking" allows the designer to dim the display for more flexibility of display presentation. Finally, the CLR clear function will clear the cursor RAM and the ASClI character RAM, simultaneously.

Specifications are subject to change without notice.

DESCRIPTION (Continued)

Siemens goes to great lengths to qualify the performance of its devices. This package construction, utilized in 5 different devices, has undergone over 800,000 device test hours without failure. These include 1000 hour life tests under ambient, elevated, and reduced temperatures and elevated temperature with humidity testing.

All products are 100% burned in and tested, then subjected to outgoing AQL's of 1.2% for dimensions and mechanical defects and 1.0% for each of the following: electrical, lens defect, solderability, package integrity, local die defects and brightness matching segment to segment, digit to digit and group to group.

TOP VIEW

	Function		Pin
Pin	Function		
1	CET Chip Enable	10	Gnd
2	CE2 Chip Enable	11	D \emptyset Data Input
3	CLR Clear	12	D1 Data Input
4	CUE Cursor Enable	13	D2 Data Input
5	CU Cursor Select	14	D3 Data Input
6	WR Write	15	D6 Data Input
7	A1 Digit Select	16	D5 Data Input
8	A \emptyset Digit Select	17	D4 Data Input
9	$V_{\text {CC }}$	18	BL Display Blank

Maximum Ratings

Supply Voltage $V_{C C} \ldots . .$. Voltage, Any Pin Respect
to GND -0.5 V to ($\mathrm{V}_{\mathrm{CC}}+0.5$) Vdc
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @85 ${ }^{\circ} \mathrm{C}$. 85\%
Maximum Solder Temperature, 1.59 mm ($0.063^{\prime \prime}$)
below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$ $260^{\circ} \mathrm{C}$
ESD (MIL-STD-883, method 3015) V $=3$ KV

Optical Characteristics

Spectral Peak Wavelength 660 nm typ.
Magnified digit size . $160^{\prime \prime} \times$. 125"
Time Averaged Luminous Intensity

LED to LED Intensity Matching 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal . $\pm 45^{\circ}$
Vertical . $\pm 55^{\circ}$

DC CHARACTERISTICS

Parameter	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{I}_{\mathrm{CC}}{ }^{(1)} 4$ Digits on 10 segments/digit		100	130		85	115		70	100	mA	$\mathrm{V}_{C C}=5 \mathrm{~V}$
$I_{\text {CC }}$ Cursor ${ }^{\text {(1, 2) }}$		140	185		120	165		100	145	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
I CC Blank ${ }^{(1)}$		2.0	5.0		1.5	4.0		1.0	2.7	mA	$V_{C C}=5 \mathrm{~V}, \overline{\mathrm{BL}}=0.8 \mathrm{~V}$
ILL (all inputs)		80	180		60	160		45	90	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}= \\ & 5.0 \mathrm{~V} \end{aligned}$
V_{IH}	2.0			2.0			2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$			0.8			0.8			0.8	\checkmark	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

1. Measured at 5 sec .
2. 60 sec max duration.

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ (1)

Parameter	Symbol	$-40^{\circ} \mathrm{C}$ (ns)	$+25^{\circ} \mathrm{C}$ (ns)	$+85^{\circ} \mathrm{C}$ (ns)
Chip Enable Set Up Time	$\mathrm{T}_{\text {CES }}$	175	275	375
Address Set Up Time	$\mathrm{T}_{\text {AS }}$	175	275	375
Cursor Set Up Time	TCUS	175	275	375
Chip Enable Hold Time	$\mathrm{T}_{\text {CEH }}$	25	25	75
Address Hold Time	$\mathrm{T}_{\text {AH }}$	25	25	75
Cursor Hold Time	$\mathrm{T}_{\text {CUH }}$	25	25	75
Write Delay Time	$T_{\text {WD }}$	50	50	75
Write Time	T_{W}	125	225	300
Data Set Up Time	$\mathrm{T}_{\text {DS }}$	100	150	225
Data Hold Time	$\mathrm{T}_{\text {DH }}$	25	25	75
Clear(3)	$\mathrm{T}_{\text {CLR }}$	15 ms	15 ms	15 ms
Access Time ${ }^{(2)}$	$\mathrm{T}_{\text {ACC }}$	200	300	450

Notes: $1 . V_{C C}=4.5 \mathrm{~V}$ is worst case, all timing parameters improve as $V_{C C}$ increases.
2. Access time $T_{A C C}=T_{A S}+T_{D H}$
3. Clear timing in miliseconds.
timing characteristics

WRITE CYCLE WAVEFORMS

LOADING DATA

Setting the chip enable ($\overline{\mathrm{CE}}, \overline{\mathrm{CE}}$) to their true state will enable data loading. The desired data code (DO-D6) and digit address $\left(A_{0}, A_{1}\right)$ must be held stable during the write cycle for storing new data.

Data entry may be asynchronous and random. (Digit 0 is defined as a right hand digit with $A_{1}=A_{2}=0$.)
Clearing of the entire internal four-digit memory can be accomplished by holding the clear (CLR) low for one complete display multiplex cycle, 15 mS minimum. The clear function will clear both the ASCII RAM and the cursor RAM. Loading an illegal data code will display a blank. Clear ($\overline{C L R}$) is inactive during BL .

TYPICAL LOADING DATA STATE TABLE

CONTROL BL CET CE2 CUE CU WR CLR							$\begin{aligned} & \text { ADDRESS } \\ & \text { A1 A0 } \end{aligned}$		DATA							DISPLAY DIGIT					
							D6	D5	D4	D3	D2	D1	DO	3	2	1	0				
H	X	x	L	x	H	H			PREVIOUSLY LOADED DISPLAY									G	R	E	Y
H	H	X	L	x	X	H	X	\mathbf{x}	X	X	x	x	x	X	x	G	R	E	\mathbf{Y}		
H	X	H	L	\mathbf{x}	X	H	x	X	X	x	X	X	x	x	X	G	R	E	Y		
H	L	L	L	H	L	H	L	L	H	L	L	L	H	L	H	G	R	E	E		
H	L	L	L	H	L	H	L	H	H	L	H	L	H	L	H	G	R	U	E		
H	L	L	L	H	L	H	H	L	H	L	L	H	H	L	L	G	L	U	E		
H	L	L	L	H	L	H	H	H	H	L	L	L	L	H	L	B	L	U	E		
L	X	X	\times	\times	H	H	\times	\times		ANK	DISP	LAY									
H	L	L		H	L	H	H	H	H	L	L	L.	H	H	H	G	L	U	E		
H	X	X	L	X	H	L	x	X	CLE	ARS	CHA	RACT	TER	DISPL	LAYS						
H	L	L	L	H	L	H		X		SEE	CHAR	ACT	ER	CODE				$\begin{aligned} & \text { ARAC } \\ & \text { SET } \end{aligned}$	TER		

[^1]
LOADING CURSOR

Setting the chip enables（ $\overline{\mathrm{CE} 1, ~ \overline{\mathrm{CE}} 2}$ ）and cursor select（ $\overline{\mathrm{CU}}$ ） to their true state will enable cursor loading．A write（WR） pulse will now store or remove a cursor into the digit loca－ tion addressed by A_{0}, A_{1} ；as defined in data entry．A cursor will be stored if $D O=1$ ；and will be removed if $D O=0$ ．The cursor（ $\overline{\mathrm{CU}}$ ）pulse width should not be less than the write （WR）pulse or erroneous data may appear in the display．
For those users not requiring the cursor，the cursor enable signal（CUE）may be tied low to disable the display of the cursor function．A flashing cursor can be realized by simply pulsing CUE．If the cursor has been loaded to any or all positions in the display，then CUE will control whether the cursor（s）or the characters appear．CUE does not affect the

LOADING CURSOR STATE TABLE

CONTROL							ADDRESS		DATA							$\begin{gathered} \text { DISPLAY } \\ \text { DIGIT } \\ \hline \end{gathered}$			
BL	CET	CE2	CUE		WR	CLR	A1	A0	D6	D5	D4	D3	D2		D0	3	2	1	0
H	x	X	L	X	H	H		PRE	IOU	SLY	LOAD	ED	DISP			B	E	A	R
H	X	X	H	X	H	H		PLAY	PRE	IOU	SLY	TOR	ED	UR	ORS	B	E	A	R
H	L	L	H	L	L．	H	L	L	x	X	X	X	X	X	H	B	E	A	柬
H	L	L	H	L	L	H	L	H	x	X	X	X	X	X	H	B	E	因	柬
H	L	L	H	L	L	H	H	L	X	x	X	X	x	X	H	B	类	柬	类
H	L．	1	H	L	L	H	H		X	X	x	X	X	X	H	类	图	柬	因
H	L	1	H	L	L	H	H		X	X	X	X	X	X	L	柬	E	柬	柬
	X	X	L	X	H	H			SABL	E CU	RSO	R DIS	PPLA			B	E	A	R
	L	L	L	L	L	H	H			X	\mathbf{X}	X	\mathbf{X}	X	L	B	E	A	R
H	X	X	H	X	H	H			SPLA	Y ST	ORE	CU	RSO			B	E	䀯	柬

$X=$ DON＇T CARE

DISPLAY BLANKING

Blanking the display may be accomplished by loading a blank or space into each digit of the display or by using the （ $\overline{\mathrm{BL}}$ ）display blank input．
Setting the（ $\overline{\mathrm{BL}}$ ）input low does not affect the contents of either data or cursor memory．A flashing display can be realized by pulsing（ $\overline{\mathrm{BL}}$ ）．
A flashing circuit can easily be constructed using a 555 astable multivibrator．Figure 1 illustrates a circuit in which varying R1（ $100 \mathrm{~K} \sim 10 \mathrm{~K}$ ）will have a flash rate of $1 \mathrm{~Hz} \sim 10 \mathrm{~Hz}$ ．

FIGURE 1．FLASHING CIRCUIT FOR DL $2416 T$ USING A 555

The display can be dimmed by pulse width modulating the $(\overline{B L})$ at a frequency sufficiently fast to not interfere with the internal clock．This clock frequency may vary from 200 Hz to 1.3 KHz ．The dimming signal frequency should be 2.5 KHz or higher．Dimming the display also reduces power consumption．

An example of a simple dimming circuit using a 556 is illustrated in Figure 2．Adjusting potentiometer R2 will dim the display through frequency modulation（ 2.5 KHz to 4.4 KHz ）．Adjusting potentiometer R3 will dim the display by increasing the negative pulse width（ 10% to 50% ）．

FIGURE 2．DIMMING CIRCUIT FOR DL 2416T USING A 556

All other input codes display "blank"

Internal Block Diagram

Typical Schematic for 16 Digit System

DESIGN CONSIDERATIONS

For details on design and applications of the DL 2416 T utilizing standard bus configurations in multiple display systems, or parallel I/O devices, such as the 8255 with an 8080 or memory mapped addressing on processors such as the 8080, Z80, 6502, 8748, or 6800 refer to Appnote 14, and 20, in the current Siemens Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than V_{CC}. Additionally, the LEDs may cause transients in the power supply line while they change display states. Common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across $V_{C C}$ and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display.

ESD PROTECTION

The metal gate CMOS IC of the DL 2416T is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3 KV . However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with un-shielded parts. Where these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 2416 T can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone. ${ }^{(1)}$
Unacceptable solvents contain aicohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;

Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 18 pin DIP sockets $.600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $.160^{\prime \prime}$ high characters of the DL 2416 T allow readability up to eight feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 2416T is a standard red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens' displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters. Recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.
${ }^{(1)}$ Some commercial names for acceptable compounds are: Basic TF, Arklone P, Genesolve D, Blaco-tron TF, Freon TA, Genesolve DA, and Blaco-tron TA.

FEATURES

- $0.225^{\prime \prime} \times 0.192^{\prime \prime}$ Magnified Monolithic Character
- Wide Viewing Angle, X Axis $\pm 45^{\circ}$, Y Axis $\pm 55^{\circ}$
- Close Vertical Row Spacing, $0.8^{\prime \prime}$ centers
- Rugged Solid Plastic Encapsulated Package
- Fast Access Time, 300 ns
- Full Size Display for Stationary Equipment
- Built-in Memory
- Built-in Character Generator
- Built-in Multiplex and LED Drive Circuitry
- Each Digit Independently Addressed
- TTL Compatible, 5-Volt Power, $\mathrm{V}_{\mathrm{IH}}=\mathbf{2 . 0} \mathrm{V}$, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
- Independent Cursor Function
- 17th Segment for Improved Punctuation Marks
- Memory Clear Function
- Display Blank Function, for Blinking and Dimming
- End-Stackable, 4-Character Package
- Intensity Coded for Display Uniformity
- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Wave Solderable
- 100\% Burned In and Tested

DESCRIPTION

The DL 3416 is a four digit display module having 16 segments plus decimal and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII ROM decoder, multiplexing circuitry, and drivers. Data entry is asynchronous and can be random. A display system can be built using any number of DL 3416s since each digit of any DL 3416 can be addressed independently and will continue to display the character last stored until replaced by another.

System interconnection is very straightforward. The least significant two address bits ($\mathrm{A}_{0}, \mathrm{~A}_{1}$) are normally connected to the like named inputs of all DL 3416 s in the system. With four chip enables four DL 3416s (16 characters) can easily be interconnected without a decoder.
Alternatively, one-of-n decoder IC's can be used to extend the address for large displays.
Data lines are connected to all DL 3416s directly and in parallel, as is the write line (WR). The display will then behave as a write-only memory.
The cursor function causes all segments of a digit position to illuminate. The cursor is not a character, however, and upon removal the previously displayed character will reappear.
The DL 3416 has several features superior to competitive devices. The superior ESD immunity afforded by the metal gate CMOS construction and 100\% pre-burned in processing assures users of the DL 3416 that the devices will function in more stressful assembly and use environments. The full width character "J" affords better readability under adverse conditions and the "true blanking" allows the designer to dim the display for more flexibility of display presentation. Finally, the CLR clear function will clear the cursor RAM and the ASCll character RAM, simultaneously.

Specifications are subject to change without notice.

DESCRIPTION (Continued)

Siemens goes to great lengths to qualify the performance of its devices. This package construction, utilized in 5 different devices, has undergone over 800,000 device test hours without failure. These include 1000 hour life tests under ambient, elevated, and reduced temperatures and elevated temperature with humidity testing.
All products are 100\% burned in and tested, then subjected to outgoing AQL's of 1.2% for dimensions and mechanical defects and 1.0% for each of the following: electrical, lens defect, solderability, package integrity, local die defects and brightness matching segment to segment, digit to digit and group to group.

Maximum Ratings

Supply Voltage $\mathrm{V}_{\mathrm{CC}} \ldots \ldots$. Voltage, Any Pin Respect
to GND -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5\right) \mathrm{Vdc}$
Operating Temperature. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @ $85^{\circ} \mathrm{C}$. 85\%
Maximum Solder Temperature, 1.59 mm ($0.063^{\prime \prime}$)
below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$. $260^{\circ} \mathrm{C}$ ESD (MIL-STD-883, method 3015) $V_{Z}=3$ KV

Optical Characteristics

TOP VIEW

Pin	Function	Pin.	Function
1	CE1 Chip Enable	12	GND
2	CE2 Chip Enable	13	N/C
3	CE3 Chip Enable	14	BL Blanking
4	CE4 Chip Enable	15	N/C
5	CLR Clear	16	D0 Data Input
6	VCC	17	D1 Data Input
7	AO Digit Select	18	D2 Data Input
8	A1 Digit Select	19	D3 Data Input
9	WR Write	20	D4 Data Input
10	CU Cursor Select	21	D5 Data Input
11	CUE Cursor Enables	22	D6 Data Input

TIMING CHARACTERISTICS

DC CHARACTERISTICS

Parameter	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{ICC}^{(1)} 4$ Digits on 10 segments/digit		100	130		85	115		70	100	mA	$V_{C C}=5 \mathrm{~V}$
$\mathrm{I}_{\text {cc }}$ Cursor (1, 2)		140	170		120	150		100	130	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
ICC Blank ${ }^{(1)}$		2.0	5.0		1.5	4.0		1.0	2.7	mA	$\mathrm{V}_{C C}=5 \mathrm{~V}, \overline{\mathrm{BL}}=0.8 \mathrm{~V}$
ILL (all inputs)		80	100		60	80		45	55	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V}, V_{C C}= \\ & 5.0 \mathrm{~V} \end{aligned}$
$V_{\text {IH }}$	2.0			2.0			2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
$V_{\text {IL }}$			0.8			0.8			0.8	V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Notes: 1. Measured at 5 sec .
2. 60 sec . max. duration.

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters＠ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\left({ }^{1}\right)$

Parameter	Symbol	$-40^{\circ} \mathrm{C}$（ ns ）	$+25^{\circ} \mathrm{C}$（ ns ）	$+85^{\circ} \mathrm{C}$（ns）
Chip Enable Set Up Time	$\mathrm{T}_{\text {CES }}$	175	275	375
Address Set Up Time	$\mathrm{T}_{\text {AS }}$	175	275	375
Cursor Set Up Time	TCus	175	275	375
Chip Enable Hold Time	$\mathrm{T}_{\text {CEH }}$	25	25	75
Address Hold Time	$\mathrm{T}_{\text {AH }}$	25	25	75
Cursor Hold Time	$\mathrm{T}_{\text {CUH }}$	25	25	75
Write Delay Time	$\mathrm{T}_{\text {WD }}$	50	50	75
Write Time	TW	125	225	300
Data Set Up Time	T_{DS}	100	150	225
Data Hold Time	$\mathrm{T}_{\text {DH }}$	25	25	75
Clear（3）	$\mathrm{T}_{\text {CLR }}$	15 ms	15 ms	16 ms
Access Time ${ }^{(2)}$	$\mathrm{T}_{\text {ACC }}$	200	300	450

Notes： $1 . V_{C C}=4.5 \mathrm{~V}$ is worst case，all timing parameters improve as $V_{C C}$ increases
2．Access time $T_{A C C}=T_{A S}{ }^{+} T_{D H}$
3．Clear timing in miliseconds．

LOADING DATA

Setting the chip enable（CE1，CE2，$\overline{\mathrm{CE}}, \overline{\mathrm{CE} 4)}$ to their true state will enable loading．The desired data code（D0－D6） and digit address $\left(A_{0}, A_{1}\right)$ should be held stable during the write cycle for storing new data．
Data entry may be asynchronous and random．（Digit 0 is defined as a right hand digit with $A_{1}=A_{0}=0$ ．）
Clearing of the entire internal four－digit memory can be ac－ complished by holding the clear（ $\overline{\mathrm{CLR}}$ ）low for one complete display multiplex cycle， 15 mS minimum．

TYPICAL LOADING DATA STATE TABLE

BT CE1 GE2CE3 CE4 CuE CU Wh CLR									A1	AO	D6	D5	D4	D3	D2 D		DO	DIGIT				
																			0			
H	X	x	x	x	L	x	H	H			Previously loaded display								G	R	E	Y
H	L	x	x	x	L	x	\times	H	x	x	x	x	\times	x	x	x		x	G	R	E	Y
H	x	L	x	x	L	x	\times	H	x	x	x	x	\times	x	x	x	x	G	R	E	r	
H	x	x	H	x	L	x	x	H	x	x	x	x	x	x	x	x	x	G	R	E	γ	
H	x	x	\times	H	L	x	\times	H	x	x	\times	x	x	x	x	\times	x	G	R	E	Y	
H	x	x	x	x	L	x	H	H	x	x	x	x	\times	x	\times	x	x	G	R	E	Y	
H	H	H	L	L	L	H	L	H	L	L	H	1	L	L	H	L	H	G	R	E	E	
H	H	H	L	L	L．	H	L	H	L	H	H	L	H	L	H	L	H	G	R	u	E	
H	H	H	L	L	L	H	L	H	H	L	H	L	L	H	H	L	L	G	L	u	E	
H	H	H	L	1	1	H	L	H	H	H	H	L	L	L	L	H	L	B	L	u	E	
4	x	K	x	x	x	x	H．	H	X	x	BL	Lank	K DISP	Play								
H	H	H	L	L	L	H	L．	H	H	H		L｜	L｜	L	H！	H｜	H			u	E	
H	\times	x	x	x	L	\times	\times	L			Ears	CHAR	RAct	TER D	DISPL							
H	H	H	L	L	L	H	1	H	\times	\times			CHAR	RAC	TER	CODE				$\begin{aligned} & \text { IARAC } \\ & \mathrm{SET} \end{aligned}$	CTER	

LOADING CURSOR

Setting the chip enables（CE1，CE2，$\overline{\mathrm{CE3}}, \overline{\mathrm{CE} 4}$ ）and cursor select（CU）to their true state will enable cursor loading．A write（WR）pulse will now store or remove a cursor into the digit location addressed by A_{0}, A_{1} ；as defined in data entry． A cursor will be stored if $D 0=1$ ；and will be removed if $D 0=0$ ．Cursor will not be cleared by the CLR signal．The cursor（ $\overline{\mathrm{CU}})$ pulse width should not be less than the write pulse（WR）width or erroneous data may appear in the display．

For those users not requiring the cursor，the cursor enable signal（CUE）may be tied low to disable display of the cursor function．A flashing cursor can be realized by simply pulsing CUE．If the cursor has been loaded to any or all positions in the display，then CUE will control whether the cursor（s）or the characters appear．CUE does not affect the contents of cursor memory．
LOADING CURSOR STATE TABLE

EL CE1CE2 $\overline{\text { CE3 }} \overline{\mathrm{CE4}}$ CUE CU WR CLR																				GIt	
									A1	A0	D6	D5	D4	D3	D2	D1	DO	3	2	1	0
H	x	x	x	\times	L	x	H	H	PREVIOUSL			Y LOADE		OD DISPL				B	E	A	R
H	X	\times	\times	\times	H	x	H	H	DISPLAY PREVIO			vious	SLY	ToR	bed c	URS	ORS	B	E	A	R
H	H	H	L	L	H	L	L	H	L	L	\times	x	x	x	x	\times	H	B	E	A	类
H	H	H	L	L	H	L	L	H	L	H	\times	x	x	x	\times	x	H	B	E	柬	类
H	H	H	L	1	H	L	L	H	H	L	x	x	\times	x	\times	x	H	B	柬	図	图
H	H	H	L	L	H	L	L	H	H	H	x	x	x	x	x	x	H	柬	㘢	㘢	柬
H	H	H	L	L	H	L	L．	H	H	L	x	x	x	x			L	柬	E	预	柬
H	x	x	\times	\times	L	x	H	H			Sable	ECU	Rso	DIS	SPLAY			B	E	A	8
H	H	H	L	L．	L	L	L	H	H	H	＇\times	$\times 1$	$\times 1$				L	B	E	A	R
H	X	x	\times	\times	H	\times	H	H			PLAY	Sto	Ored		RSORS			B	E	类	粵

$\mathrm{x}=$ DON＇T CARE

DISPLAY BLANKING

Blanking the display may be accomplished by loading a blank or space into each digit of the display or by using the （BL）display blank input．
Setting the（ $\overline{\mathrm{BL}})$ input low does not affect the contents of either data or cursor memory．A flashing display can be realized by pulsing（ $\overline{\mathrm{BL}})$ ．A flashing circuit can be con－ structed using a 555 astable multivibrator．
Figure 1 illustrates a circuit in which varying R1（100K～10K） will have a flash rate of $1 \mathrm{~Hz} \sim 10 \mathrm{~Hz}$ ．
The display can be dimmed by pulsing the（ $\overline{\mathrm{BL}}$ ）line at a frequency sufficiently fast to not interfere with the internal clock．This clock frequency may vary from 200 Hz to 1.3 Hz ． The dimming signal frequency should be 2.5 Hz or higher． Dimming the display also reduces power consumption．
An example of a simple dimming circuit using a 556 is illustrated in Figure 2．Adjusting potentiometer R2 will dim the display through frequency modulation $(2.5 \mathrm{KHz}$ to 4.4 KHz ）．Adjusting potentiometer R3 will dim the display by increasing the negative pulse width（ 10% to 50% ）．

FIGURE 1. FLASHING CIRCUIT FOR DL 3416 USING A 555

Internal Block Diagram

FIGURE 2. DIMMING CIRCUIT FOR DL 3416 USING A 556

Typical Schematic for 16 Digits

CHARACTER SET

ALL OTHER CODES DISPLAY BLANK

DESIGN CONSIDERATIONS

For ideas on design and applications of the DL 3416 utilizing standard bus configurations in multiple display systems, or parallel I/O devices, such as the 8255 with an 8080 or memory mapped addressing on processors such as the 8080, Z80, 6502, 8748, or 6800 refer to Appnote 14, and 20, in the current Siemens Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

VOLTAGE TRANSIENT SUPPRESSION

It is highly recommended that the display and the components that interface with the display be powered by the same supply to avoid logic inputs higher than $V_{C C}$. Additionally, the LEDs may cause transients in the power supply line while they change display states. Common practice is to place $.01 \mu \mathrm{~F}$ capacitors close to the displays across $V_{C C}$ and GND, one for each display, and one $10 \mu \mathrm{~F}$ capacitor for every second display

ESD PROTECTION

The metal gate CMOS IC of the DL 3416 is extremely immune to ESD damage. It is capable of withstanding discharges greater than 3 KV . However, users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with un-shielded parts. Where these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The DL 3416 can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.

Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.

Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES. Since many commercial mixtures exist, you should contact your solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;

Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 22-pin DIP sockets $600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package align. ment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The .225" high characters of the DL 3416 allow readability up to twelve feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.

Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The DL 3416 is a standard red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens' displays), neutral density grey filters offer the best compromise.

Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.

Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.

Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.

FEATURES

- .43" High, Hybrid Character
- Wide Viewing Angle, $\pm 75^{\circ}$
- 96 Character ASCII Format - Both Upper Case and Lower Case Characters
- Fully Encapsulated, Rugged Solid Plastic Package
- Built-In Memory
- Built-In Character Generator
- Built-In Multiplex and LED Drive Circuitry
- Built-In Lamp Test
- Intensity Control (4 levels)
- Microprocessor Bus Compatible
- Intensity Coded for Display Uniformity
- Single 5-volt Power Supply Required
- X/Y Stackable
- Available in High Efficiency Red and Green

Package Dimension in Inches (mm)

DESCRIPTION

The DLX 4135/4137 are single digit 5×7 dot matrix Intelligent Display devices with $0.43^{\prime \prime}$ character height. The built-in CMOS integrated circuit contains memory, ASCII character generator, LED multiplexing and drive circuitry; thereby eliminating the need for additional circuitry. They will display the 96 ASCl characters.
These devices are TTL and microprocessor compatible and offer the possibility of cascading the displays, allowing for multi-character messages. These displays were designed for viewing distances of up to 20 feet. They require a single 5 -volt power supply and parallel ASCII input.

Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

Maximum Ratings

$V_{\text {CC }}$ Range (max.)	5 to 6.0 V
Voltage, Any Pin	
Respect to GND	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{Vdc}$
Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Solder Temperature . $188^{\prime \prime}$ above Seating Plane, $\mathrm{t}<5 \mathrm{sec}$	

Relative Humidity @ $65^{\circ} \mathrm{C}$ (non-condensing) 85\%

Optical Characteristics (Typical) @ $25^{\circ} \mathrm{C}$

Luminous Intensity/Dot (Average) @5 V

DLO 4135	$500 \mu \mathrm{~cd}$
DLO 4137	$500 \mu \mathrm{~cd}$
Digit Size	0.43"
Viewing Angle (Note 1)	$\pm 75^{\circ}$
Spectral Peak Wavelength	
DLO 4135	640 nm
DLO 4137	565 nm

TIMING PARAMETERS @ $\mathbf{5 5}^{\circ} \mathbf{C} \mathbf{V}_{\mathbf{c c}}=\mathbf{4 . 5} \mathbf{~ V}$			
Symbol	Parameter		Min.
$\mathrm{T}_{\text {CES }}$	CHIP ENABLE SET-UP	200	nS
TDS	DATA SET-UP	200	nS
TW	WRITE PULSE	200	nS
T_{DH}	DATA HOLD	100	nS
TWD	WRITE DELAY	20	nS
TCEH	CHIP ENABLE HOLD	100	nS

timing characteristics

ELECTRICAL P.ARAMETERS (Note 4)					
Parameter	Conditions	Min.	Typ.	Max.	Units
ICC (Blank) ICC (20 dots lit) I_{CC} (20 dots lit) ICC (20 dots lit)	$\overline{\mathrm{TT}}=1, \overline{\mathrm{BLO}}=\overline{\mathrm{BL1}}=0, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=\overline{\mathrm{BLI}}=1, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=0, \overline{\mathrm{BL}}=1, \vee C C=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=1, \overline{\mathrm{BLT}}=0, V_{C C}=5 \mathrm{~V}$		$\begin{gathered} 4.5 \\ 160 \\ 80 \\ 40 \end{gathered}$	$\begin{array}{r} 8 \\ 200 \end{array}$	mA mA mA mA
$\begin{array}{\|l} \mathrm{I}_{1 / 2} \\ \text { (any input) } \end{array}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			160	$\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline V_{I L} \\ \text { (Any input) } \end{array}$	$V_{C C}=5 \mathrm{~V}$			1	V
V_{IH} (Any input)	$V_{C C}=5 \mathrm{~V}$	3.0			V

Note 1: "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the display surface at which any part of any dot in the display is not visible."
Note 2: This display contains a CMOS integrated circuit. Normal CMOS handling precautions should be taken to avoid damage due to high static voltages or electric fields. SEE APPNOTE 18.

Note 3: Unused inputs must be tied to an appropriate logic voltage level (either $V+$ or GND).
Note 4: $V_{C C}=5.0 \mathrm{VDC} \pm 10 \%$.
Note 5: Clean only in water, isopropyl aicohol, freon TF, or TE (or equivalent)

LOADING DATA

Loading data into the DLX4135/4137 is straightforward. Chip enable (CE) should be present and stable during a write pulse (WR). Parallel data information should be stable for the minimum time ($T W$) and held for TDH after write has gone high. No synchronization is necessary and each character will continue to be displayed until it is replaced with another. Multiple displays may be stacked together with only an additional decoder IC for chip enable decoding.

Note 6: Either $\overline{\mathrm{BLO}}$ or $\overline{\mathrm{BL1}}$ should be held high for display to light up.

LAMP TEST

The lamp test (LT) when activated causes all dots on the display to be illuminated at half brightness. The lamp test function is independent of write (WR) and the settings of the blanking inputs $(\overline{\mathrm{BLO}}, \overline{\mathrm{BL1}})$.
This convenient test gives a visual indication that all dots are functioning properly. Lamp test may also be used as a cursor function or pointer which does not destroy previously displayed characters.

DIMMING AND BLANKING THE DISPLAY

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BL0 }}$
Blank	0	0
$1 / 4$ Brightness	0	1
$1 / 2$ Brightness	1	0
Full Brightness	1	1

DATA LOADING EXAMPLE

$\overline{C E}$	WR	$\overline{\text { BLO }}$	$\overline{\text { BLI }}$	$\overline{L T}$	D6	D5	DATA INPUT					
							D4	D3	D2	D1	0	
H	X	H	X	H	X	X	X	X	X	X	X	NC
X	X	L	L	H	x	X	X	X	x	X	X	BLANK
X	X	X	X	L	X	X	X	X	x	X	X	LMP TEST
L	L	H	H	H	H	L	L	L	L	L	H	A
L	L	H	H	H	H	H	H	L	L	H	L	r
L	L	H	H	H	L	H	H	L	L	H	H	3
L	L	H	H	H	L	H	L	H	L	H	H	+

X = Don't Care
NC = No Change

PIN 1

PIN FUNCTIONS					
PIN	FUNCTION		PIN	FUNCTION	
1	$\overline{\mathrm{LT}}$	LAMP TEST	9	D0	DATA LSB
2	$\overline{\text { WR }}$	WRITE	10	D1	DATA
3	$\overline{\text { BL1 }}$	BRIGHTNESS	11	D2	DATA
4	$\overline{\text { BLO }}$	BRIGHTNESS	12	D3	DATA
5	NO	PIN	13	D4	DATA
6	NO	PIN	14	D5	DATA
7	$\overline{\text { CE }}$	CHIP ENABLE	15	D6	DATA MSB
8	GND	16	+ VCC		

CHARACTER SET

16 Digits Interconnection

.68" SINGLE CHARACTER 5×7 DOT MATRIX Intelligent Display ${ }^{\circledR}$ WITH MEMORYIDECODER/DRIVER

FEATURES

- .68" High, Hybrid Character
- Wide Viewing Angle, $\pm 75^{\circ}$
- 96 Character ASCII Format - Both Upper Case and Lower Case Characters
- Fully Encapsulated, Rugged Solid Plastic Package
- Built-In Memory
- Built-In Character Generator
- Built-In Multiplex and LED Drive Circuitry
- Built-In Lamp Test
- Intensity Control (4 levels)
- Microprocessor Bus Compatible
- Intensity Coded for Display Uniformity
- Single 5-volt Power Supply Required
- X/Y Stackable
- Available in High Efficiency Red and Green

DESCRIPTION

The DLX7135/7137 are single digit 5×7 dot matrix Intelligent Display devices with $0.68^{\prime \prime}$ character height. The built-in CMOS integrated circuit contains memory, ASCII character generator, LED multiplexing and drive circuitry; thereby eliminating the need for additional circuitry. They will display the 96 ASCII characters.
These devices are TTL and microprocessor compatible and offer the possibility of cascading the displays, allowing for multi-character messages. These displays were designed for viewing of up to 30 feet. They require a single 5 -volt power supply and parallel ASCII input.

[^2][^3]
Maximum Ratings

$V_{C C}$ Range (max.) . -0.5 to 6.0 V Voltage, Any Pin

Respect to GND -0.5 to $V_{C C}+0.5 \mathrm{Vdc}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature $.188^{\prime \prime}$

$$
\text { below Seating Plane, } \mathrm{t}<5 \mathrm{sec} \text {. } 260^{\circ} \mathrm{C}
$$

Relative Humidity @85 ${ }^{\circ} \mathrm{C}$ (non-condensing) 85\%

Optical Characteristics (Typical) @ $25^{\circ} \mathrm{C}$
Luminous Intensity/Dot (Average) @5 V

DLO 7135	$500 \mu \mathrm{~cd}$
DLO 7137	$500 \mu \mathrm{~cd}$
Digit Size	0.68"
Viewing Angle (Note 1)	$\pm 75^{\circ}$
Spectral Peak Wavelength	
DLO 7135	640 nm
DLO 7137	565 nm

TIMING PARAMETERS $@ 25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			
Symbol	Parameter	Min.	Units
TCES	CHIP ENABLE SET-UP	200	nS
TDS	DATA SET-UP	200	nS
TW	WRITE PULSE	200	nS
TDH	DATA HOLD	100	nS
TWD	WRITE DELAY	20	nS
TCEH	CHIP ENABLE HOLD	100	nS

TIMING CHARACTERISTICS

ELECTRICAL PARAMETERS (Note 4)

Parameter	Conditions	Min.	Typ.	Max.	Units
ICC(Blank) $I_{\text {cc }}$ (20 dots on) ${ }^{\text {lcC }}$ (20 dots on) ${ }^{1} \mathrm{cc}$ (20 dots on)	$\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=\overline{\mathrm{BLI}}=0, V_{C C}=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=\overline{\mathrm{BLT}}=1, \quad \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=0, \overline{\mathrm{BLI}}=1, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ $\overline{\mathrm{LT}}=1, \overline{\mathrm{BLO}}=1, \overline{\mathrm{BLI}}=0, V \mathrm{VC}=5 \mathrm{~V}$		$\begin{gathered} 4.5 \\ 160 \\ 80 \\ 40 \end{gathered}$	8 200	mA mA mA mA
$\begin{aligned} & \text { IIL } \\ & \text { (any input) } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			160	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline V_{I L} \\ \text { (Any input) } \end{array}$	$V_{C C}=5 \mathrm{~V}$			1	V
$\begin{array}{\|l\|} \hline V_{1 H} \\ \text { (Any input) } \end{array}$	$V_{C C}=5 \mathrm{~V}$	3.0			V

Note 1: "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the display surface at which any part of any dot in the display is not visible."
Note 2: This display contains a CMOS integrated circult. Normal CMOS handling precautions should be taken to avoid damage due to high static voltages or electric fields. SEE APPNOTE 18.

Note 3: Unused inputs must be tied to an appropriate logic voltage level (either V+ or GND)
Note 4: $V_{C C}=5.0 \mathrm{VDC} \pm 10 \%$.
Note 5: Clean only in water, isopropyl alcohol, freon TF, or TE (or equivalent)

LOADING DATA

Loading data into the DLX7135/7137 is straightforward. Chip enable ($\overline{\mathrm{CE}}$) should be present and stable during a write pulse ($\overline{W R}$). Parallel data information should be stable for the minimum time (TW) and held for TDH after write has gone high. No synchronization is necessary and each character will continue to be displayed until it is replaced with another. Multiple displays may be stacked together with only an additional decoder IC for chip enable decoding.

Note 6: Either $\overline{\mathrm{BLO}}$ or $\overline{\mathrm{BL} 1}$ should be held high for display to light up.

LAMP TEST

The lamp test (LT) when activated causes all dots on the display to be illuminated at half brightness. The lamp test function is independent of write (WR) and the settings of the blanking inputs ($\overline{\mathrm{BLO}}, \overline{\mathrm{BL1}}$).
This convenient test gives a visual indication that all dots are functioning properly. Lamp test may also be used as a cursor function or pointer which does not destroy previously displayed characters.

DIMMING AND BLANKING THE DISPLAY

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BLO }}$
Blank	0	0
$1 / 4$ Brightness	0	1
$1 / 2$ Brightness	1	0
Full Brightness	1	1

DATA LOADING EXAMPLE

$\overline{\text { CE }}$	WR	BLO	BL1	$\overline{L T}$	D6	D5	D4	D3	PUT	D1	DO	
H	X	H	X	H	X	X	X	X	X	X	X	NC
X	X	L	L	H	X	X	X	X	x	X	X	BLANK
X	X	X	X	L	X	X	X	X	X	X	X	LMP TEST
L	L	H	H	H	H	L	L	L	L	L	H	A
L	L	H	H	H	H	H	H	L	L	H	L	r
L	L	H	H	H	L	H	H	L	L	H	H	3
L	L	H	H	H	L	H	L	H	L	H	H	+

[^4]| TOP VIEW | Pin | Function | Pin | Function |
| :---: | :---: | :---: | :---: | :---: |
| (| 1 | VCC | 14 | D6 Data input MSB |
| $10.00000 \cdot 14$ | 2 | LT Lamp test | 13 | D5 Data input |
| $2000000 \cdot 13$ | 3 | $\overline{\mathrm{CE}}$ Chip enable | 12 | D4 Data input |
| 4 4 4 $000000: 12$ | 4 | WR Write | 11 | D3 Data input |
| 5 - $00000 \cdot 10$ | 5 | $\overline{\text { BL1 }}$ Brightness | 10 | D2 Data input |
| 6 - 70000009 | 6 | BLO Brightness | 9 | D1 Data input |
| 7 -00000* 8 | 7 | GND | 8 | D0 Data input LSB |

CHARACTER SET

			D0	L	H	L	H	L	H	L	H	L	H	L	H	L	H	L	H
			D1	L	L	H	H	L	L	H	H	L	L	H	H	L	L	H	H
			D2	L	L	L	L	H	H	H	H	L	L	L	L	H	H	H	H
			D3	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H
D6	D5	D4	HEX	\emptyset	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
L	L	L	\emptyset	THESE CODES DISPLAY BLANK															
L	L	H	1																
L	H	L	2			: :				$\left.\begin{array}{\|c\|} \hline \bullet \\ \because \because \\ \because \because \end{array}\right]$	\%	\dagger^{\bullet}	-		-0!	!:	-0.0*	:8	$\bullet^{\bullet-}{ }^{\circ}$
L	H	H	3					$\begin{array}{\|l} \hline \because \% \\ \hline \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \because \bullet \circ \\ \vdots \\ \hline \end{array}$			-..0*	::	$\because:$	$\because \bullet^{\circ}$	$\because 00 \cdot 0$	- ${ }^{\circ}$	$\stackrel{\bullet \bullet}{\bullet}$
H	L	L	4				\square				\cdots	!		- \because	\vdots				(ra*
H	L	H	5														- $\begin{array}{r}\text { •\% } \\ \vdots \\ \hline 0 . \\ \hline\end{array}$	\bullet°	
H	H	L	6				$: \because$		$\because \because \bullet$				-	-	:	\square \vdots \vdots \therefore.			$\square^{\bullet \bullet \bullet}$
H	H	H	7				$\left.\begin{array}{\|c\|} \bullet \cdots \cdots \\ \bullet \cdots \\ \hline \end{array} \right\rvert\,$											\because	(1)

16 Digits Interconnection

FEATURES

- DLR IDLG 5735 Common Row Cathode DLR IDLG 5736 Common Row Anode
- 5×7 Matrix Array with Row-Column Select
- End \& Side Stackable
- Rugged Encapsulation (Filled Reflector Construction)
- Compatible with ASCII and EBCDIC Format
- Standard 12 pin, 0.3" pin spacing, Dual-Inline Package
- Good "OFF" Segment Contrast Grey Face with Clear Segments

DESCRIPTION

The DLR 5735/5736 Series (gallium arsenide phosphide) and the DLG 5735/5736 Series (gallium phosphide) are 5×7 dot matrix light emitting diode alphanumeric displays.
Compatible with ASCII and EBCDIC formats, these displays are well suited for use in keyboard verfiers, computer peripheral equipment, and other applications requiring an alphanumeric display. They are stackable both horizontally and vertically to generate large alphanumeric or even graphic displays.

Maximum Ratings

Power Dissipation (Package) . 750 mW
Derate Linearly from $25^{\circ} \mathrm{C}$. $11.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature . $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Continuous Forward Current
Per Segment.
20 mA
Pulse Peak Current/Segment
20\% Duty Cycle . 100 mA
Reverse Voltage
\qquad
DLG 5735, 5736
Solder Temperature
$1 / 16^{\prime \prime}$ below seating plane for 5 seconds . $260^{\circ} \mathrm{C}$
Electrical/Optical Characteristics $\left(T_{a m b}=25^{\circ} \mathrm{C}\right)$

Parameter	Min	Typ	Max	Unit	Test Condition
Luminous Intensity					
Digit Average (Per Dot)					
DLR 5735/5736	100	200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
DLG 5735/5736	320	650		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Forward Voltage					
DLR 5735/5736		1.7	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
DLG 5735/5736		2.3	3.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Current					
DLR 5735/5736			100	$\mu \mathrm{A}$	$V_{R}=3 V$
DLG 5735/5736			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
Peak Emission Wavelength					
DLR 5735/5736		650		nm	
DLG 5735/5736		565		nm	
Spectral Line Half-Width					
DLR 5735/5736		40		nm	
DLG 5735/5736		30		nm	

Specifications are subject to change without notice.

.15" RED, 4-DIGIT, 16 SEGMENT PLUS DECIMAL HI-REL/MILITARY ALPHANUMERIC Intelligent Display ${ }^{\circledR}$ WITH MEMORY/DECODER/DRIVER

FEATURES

- Available in two versions MDL 2416, Extended Temperature Range, MDL 2416C Processed to Selected Portions of MIL-D-87157
- 150 Mil High, Non-Magnified Monolithic Character
- Rugged Ceramic Package, Hermetically Sealed Flat Glass Window
- Low Profile Package
- Dual in Line Configuration
- Close Vertical Row Spacing, 600 Inches
- 100 Mil Pin Spacing
- Wide Viewing Angle 50°
- Wide Temperature Operating Range for High-Rel Industrial and Military Use, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Fully Integrated CMOS Drive Electronics
- Direct Access to Each Digit Independently and Asynchronously
- TTL Compatible, 5 Volt Power Supply
- Independent Cursor Function
- 17th Segment for Improved Punctuation Marks
- Two Chip Enables
- Interdigit Blanking
- Display Blank Function
- Memory Clear Function
- End-Stackable, Four Character Package
- Intensity Coded for Display Uniformity

DESCRIPTION

The MDL 2416 is a Hi-Reliability four digit display having a 17 segment font and built-in CMOS drive circuitry that is TTL and microprocessor compatible. The integrated circuit contains memory, ASCII ROM decoder, multiplexing circuitry, and drivers. Data entry is asychronous and can be random. A display system can be built using any number of MDL 2416s since each digit of any MDL 2416 can be addressed independently and will continue to display the character last stored until replaced by another.

The MDL 2416C version is designed for use in extremely harsh environments where only the most reliable product is acceptable. This device is processed to selected portions of Mil-D-87157 and it will meet the requirement of HI-REL/military applications.

System interconnection is straight-forward. The least significant two address bits (A_{0}, A_{1}) are normally connected to the like named inputs of all MDL 2416s in the system.
With two chips enables, ($\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$), four MDL 2416 s (16 characters) can easily be interconnected without an external decoder.

Important: Since this is a CMOS device, normal precautions should be taken to avoid static damage.

ABSOLUTE MAXIMUM RATINGS	
DC Supply -0.5 to +6.0 VDC Input Vottage Relative to Gnd (all inputs) -0.5 to V CC +0.5 VDC Operating temperature Storage temperature -55 to $+125^{\circ} \mathrm{C}$ -55 to $+150^{\circ} \mathrm{C}$	

OPTICAL CHARACTERISTICS	
Spectral Peak Wavelength	660 nM typ.
Spectral Line Half-Width	40 nM typ.
Viewing Angle (Note 1)	$\pm 50^{\circ}$
Digit Size	.15 in.
Luminous Intensity (Typ.)	$0.1 \mathrm{mcd} / \mathrm{seg} @ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$
Intensity matching, Seg. to Seg.	$1.8: 1 @ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$

DC CHARACTERISTICS @ $25^{\circ} \mathrm{C}$

Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{C C}$	4.5	5.0	5.5	V	$25^{\circ} \mathrm{C}$
${ }_{\text {ICC }}$ (Blank) ${ }^{(1)}$	0.10	1.5	4.0	mA	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, W R=V_{C C}, \\ & V_{\text {IN }}=0 \mathrm{~V} \text { All other pins } \end{aligned}$
ICC (10 segments/char. 4 digits on)	65	85	115	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
ICC (all segments on cursor in 4 digits) ${ }^{(1,2)}$	85	120	165	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ Measured at $5 \mathrm{sec}, 60 \mathrm{sec}$ max.
$\mathrm{V}_{\text {IL }}$ (all inputs)			0.8	V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
V_{IH} (all inputs)	2.0			V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
IIL (all inputs)		60	160	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1} \mathrm{~N}=0.8 \mathrm{~V}$

1. Measured at 5 sec .
2. 60 sec . max. duration.

AC CHARACTERISTICS

Parameter	Symbol	$-55^{\circ} \mathrm{C}$ (ns)	$+25^{\circ} \mathrm{C}$ (ns)	$+125^{\circ} \mathrm{C}$ (ns)
Chip Enable Set Up Time	$\mathrm{T}_{\text {CES }}$	190	275	410
Address Set Up Time	$\mathrm{T}_{\text {AS }}$	190	275	410
Cursor Set Up Time	T ${ }_{\text {cus }}$	190	275	410
Chip Enable Hold Time	$\mathrm{T}_{\text {CEH }}$	25	25	25
Address Hold Time	$\mathrm{T}_{\text {AH }}$	25	25	25
Cursor Hold Time	$\mathrm{T}_{\text {CUH }}$	25	25	25
Write Delay Time	$T_{\text {WD }}$	40	50	60
Write Pulse	T_{W}	150	225	350
Data Set Up Time	$\mathrm{T}_{\text {DS }}$	100	150	300
Data Hold Time	$\mathrm{T}_{\text {DH }}$	25	25	25
Clear	TCLR	12 ms	15 ms	17.5 ms

Notes: 1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the display surface at which any part of any segment in the display is not visible."
2. This display contains a CMOS integrated circuit. Normal CMOS handling precautions should be taken to avoid damage due to high static voltages or electric fields. SEE APPNOTE 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either $V+$ or V-)

Pin	Function	Pin	Function	
1	CE1 Chip Enable	18	BL	Display Blank
2	CE2 Chip Enable	17	D4	Data input
3	CLR Clear	16	D5	Data input
4	CUE Cursor Enable	15	D6	Data input
5	CD	Cursor Select	14	D3
Data input				
6	WR	Write	13	D2
Data input				
7	A1	Digit Select	12	D1
Data input				
8	A0	Digit Select	11	D0
9	$V_{\text {CC }}$	10	Gata input	

PIN DEFINITIONS

V_{Cc}	Positive power supply．	A1	Next to least significant address bit．
Gnd	Negative power supply．	$\overline{C U}$	Cursor load control which must be held high to store
D0 thru D6	Data inputs，D0 is the least significant data input and D6 is the most significant data input．		data in the RAM and low to store data in the cursor memory．
WR	Write input which must be held low to write data into memory．	CUE	Cursor function control，displays the cursor in any posi－ tions having an＂on＂in cursor memory．
CE1，CE2	Two chip enable inputs which must be held low to enable the chip．	$\begin{aligned} & \overline{\mathrm{CLR}} \\ & \overline{\mathrm{BL}} \end{aligned}$	An input which clears the RAM when held low for 15 ms ． Blanking input．Turns off all segments when held low．
A0	Least significant address bit．		Does not affect RAM or cursor memory contents．

100\％Hi－Rel Screening Test			
Screen	Method	\％AQL	Comments
Pre Cap Visual	2072	When Specified	MIL－STD－750
High Temperature Storage	1032	100 Percent	24 Hrs＠ $150^{\circ} \mathrm{C}$ MIL－STD－750
Temperature Cycle	1051	100 Percent	10 Cycles，-65° to $150^{\circ} \mathrm{C}$ MIL－STD－750
Constant Acceleration	2006	100 Percent	Y1 and Y2＠ 5 KG MIL－STD－750
Fine Leak	1071	100 Percent	Helium tracer gas per MIL－STD－750
Gross Leak	1071	100 Percent	Fluorocarbon gross leak per MIL－STD－750
Interim Electrical／Optical Test	-	When Specified	
Burn－In	1015	100 Percent	168 Hours＠ $125^{\circ} \mathrm{C}$ MIL－STD－750
Final Electrical／Optical Test	-	100 Percent	
Delta Determination	-	When Specified	
Electrical Visual	2009	100 Percent	MIL－STD－883

CHARACTER SET

	！		$\stackrel{1}{2}$	3		5	－		．	$\stackrel{\square}{9}$		－		．		
		1	＂	H	9	\％	¢	，	！	；	米	＋	，	－－		，
	0	；	2	3	4	5	5	$?$	8	9		，	！	－：	\therefore	7
	a	月	8	［－	II	ε^{-}	F	5	－	\underline{r}	L	K	L－	M	N	［］
	P	亿	R	5	T	U	I＇	W	\times	Y	\cdots	［	，	I	へ	

All other input codes display＂blank＂

LOADING DATA

Setting the chip enable（ $\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$ ）to their true state will enable data loading．The desired data code（D0－D6）and digit address $\left(A_{0}, A_{1}\right)$ must be held stable during the write cycle for storing new data．
Data entry may be asynchronous and random．（Digit 0 is defined as a right hand digit with $A_{1}=A_{0}=0$ ．）
Clearing of the entire internal four－digit memory can be ac－ complished by holding the clear（ $\overline{\mathrm{CLR}}$ ）low for one complete display multiplex cycle， 15 mS minimum．The clear function will clear both the ASCII RAM and the cursor RAM．Loading an illegal data code will display a blank．

LOADING CURSOR

Setting the chip enables（ $\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$ ）and cursor select（ $\overline{\mathrm{CU}})$ to their true state will enable cursor loading．A write（ $\overline{W R}$ ） pulse will now store or remove a cursor into the digit loca－ tion addressed by A_{0}, A_{1} ；as defined in data entry．A cursor will be stored if $\mathrm{DO}=1$ ；and will be removed if $\mathrm{DO}=0$ ．The cursor（ $\overline{\mathrm{CU}})$ pulse width should not be less than the write （WR）pulse or erroneous data may appear in the display．

For those users not requiring the cursor，the cursor enable signal（CUE）may be tied low to disable the display of the cursor function．A flashing cursor can be realized by simply pulsing CUE．If the cursor has been loaded to any or all positions in the display，then CUE will control whether the cursor（s）or the characters appear．CUE does not affect the contents of cursor memory．

DISPLAY BLANKING

Blanking the display may be accomplished by loading a blank or space into each digit of the display or by using the （BL）display blank input．
Setting the（ $\overline{\mathrm{BL}}$ ）input low does not affect the contents of either data or cursor memory．A flashing display can be realized by pulsing（ $\overline{\mathrm{BL}}$ ）．
The display can be dimmed by pulse width modulating the （BL）at a frequency sufficiently fast to not interfere with the internal clock．Experimentation is encouraged，although 4.5 KHz square wave on the（BL）pin will have no affect on display brightness．As the low state duty factor is increased， the display will dim，not affecting other device functions．

TYPICAL LOADING DATA STATE TABLE

CONTROL BL CE1 CE2 CUE CU WR CLR							ADDRESS					DATA						$\begin{aligned} & \text { LAY } \\ & \text { GIT } \end{aligned}$			
							D6	D5	D4	D3	D2	D1	DO	3	2	1	0				
H	\mathbf{x}	x	L	x	H	H			PREVIOUSLY LOADED DISPLAY									G	R	E	Y
H	H	X	L	X	X	H	x	X	X	X	X	X	X	X	x	G	R	E	Y		
H	X	H	L	X	X	H	X	x	X	X	X	\times	X	X	X	G	R	E	Y		
H	L	L	L	H	L	H	L	L	H	L	L	L	H	L	H	G	R	E	E		
H	L	L	L	H	L	H	L	H	H	L	H	L	H	L	H	G	R	u	E		
H	L	L	L	H	L	H	H	L	H	L	L	H	H	L	L	G	L	U	E		
H	L	L	L	H	L	H	H	H		1	L	L	L	H	L	B	L	U	E		
L	X	K	X	X	H	H	X	X	BLANK DISPLAY H L L L H H H CLEARS CHARACTER DISPLAYS SEE CHARACTER CODE												
H	L	L	L	H	L	H	H	H								G	L	U	E		
H	X	K	L	X	H	L	x	x													
H			L	H		H		x										$\begin{aligned} & \text { ARAl } \\ & \text { SET } \end{aligned}$	TER		

$X=$ DON＇T CARE
LOADING CURSOR STATE TABLE

CONTROL							ADDRESS		DATA							DISPLAY DIGIT			
	CE1	CE2	CUE	CU	WR	CLR	A1	A0	D6	D5	D4	D3			Do	3	2	1	0
H	x	X	L	X	H	H		PRE	VIOUS	LY L	OAD	ED D	DISPL			B	E	A	R
H	X	X	H	X	H	H		PLAY	PREV	IOUS	LY S	TOR	ED C	UR	ORS	B	E	A	R
H	L	L	H	L	L	H	L．	L	X	x	X	X	X	X	H	B	E	A	柬
H	L	L	H	L	L	H	L	H	x	x	x	x	X	X	H	B	E	困	柬
H	L	1	H	L	L	H	H	L	x	x	X	X	X	X	H	B	柬	柬	柬
H	L	L	H	L	L	H	H	H	x	x	X	x	x	X	H	糅	柬	柬	柬
H	L	L	H	L	L	H	H	L	X	x	x	x	X	X	L	＊	E	柬	柬
H	X	X	L	X	H	H			SABL	ECUP	RSOR	DIS	PPLAY			B	E	A	R
	L	L	L	L	L	H	H	H	$1 / \mathrm{X}$	X	X	X	X	x	L	B	E	A	R
H	X	X	H	X	H	H			SPLA	STO	Red	cu	RSOR			B	E	柬	柬

$\mathrm{X}=$ DON＇T CARE

FUNCTIONAL DESCRIPTION

Referring to the block diagram:
Display Memory-consists of a 4 by 7 -bit RAM block. Each 7-bit location holds the 7-bit ASCII data for the four displays.

Cursor Memory-holds the cursor data for all the displays.
ROM-has a look-up table for the 64 characters.

Oscillator Logic-provides ail the necessary timing. Display Drivers-17 segment drivers and 4 digit drivers. LED Displays-each display is comprised of 16 segments and one decimal point which make up the alphanumeric characters.

BLOCK DIAGRAM

TYPICAL SCHEMATIC FOR 16 DIGIT SYSTEM

high efficiency red MPD 2545 green MPD 2547

FEATURES

- Four .25"Dot Matrix Characters in Hermetic Package
- Readable from 12 Feet (4 meters)
- Processed to Selected Portions of Mil-D-87157
- Built-in Memory, Decoders, Multiplexer and Drivers
- Viewing Angle $\pm 50^{\circ}$
- 96-Character ASCII Format (Both Upper and Lower Case Characters)
- Rugged Ceramic Package, Hermetic Sealed Flat Glass Window
- Wide Temperature Operating Range for High Reliability Industrial and Military Use, $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- 8-Bit Bidirectional Data BUS
- READ/WRITE Capability
- Built-In Character Generator ROM
- TTL Compatible
- Easily Cascaded for Multidisplay Operation
- Less CPU Time Required
- Software Controlled Features:

Programmable Highlight Attribute (Blinking, Non-Blinking)
Asynchronous Memory Clear Function Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity, Three
Brightness Levels
 > .25" 4-Character, 5×7 Dot Matrix X-Y Stackable, HI-REL/Military Alphanumeric Programmable Display ${ }^{\text {m }}$ With Built-In CMOS Control Functions
 \section*{.25" 4-Character, 5×7 Dot Matrix
 \section*{.25" 4-Character, 5×7 Dot Matrix X-Y Stackable, HI-REL/Military X-Y Stackable, HI-REL/Military Alphanumeric Programmable Display ${ }^{\text {m }}$ Alphanumeric Programmable Display ${ }^{\text {m }}$ With Built-In CMOS Control Functions} With Built-In CMOS Control Functions}

Preliminary Data Sheet

GENERAL DESCRIPTION

The MPD 2545 (high efficiency red/orange) and MPD 2547 (green) are four-digit High Reliability dot matrix Programmable Displays that are aimed at satisfying the most demanding Military display requirements. They are designed for use in extremely harsh environments where only the most reliable product is acceptable. These devices are processed to meet the requirements of HI-REL/Military applications. The devices are constructed in a hermetic package using four .25 -inch-high 5×7 dot matrix displays. The devices incorporate the latest in CMOS technology which is the heart of the device intelligence. The CMOS controller chip is controlled by a user-supplied eight-bit data word on the bidirectional BUS. The ASCII data and attribute data are word driven. This approach allows the MPD 2545 and MPD 2547 to interface using the same techniques as a microprocessor peripheral.

APPLICATIONS

- Military Control Panels
- Night Viewing Applications (Red Light)
- Cockpit Monitors
- Night Vision Goggle Viewable Displays (Green)
- Portable and Vehicle Technology
- Industrial Controllers

Important: Refer to Appnote 18, "Using and Handling Intelligent Displays." Since this is a CMOS device, normal precautions should be taken to avoid static damage.

[^5]
OPTOELECTRONIC CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

OPTICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$	
Spectral Peak Wavelength .	(2545) 635 nm Typ. (2547) 565nm Typ.
Viewing Angle	$\ldots \pm 50^{\circ}$ Typ.
Digit Height.	0.25 inch (6.4 mm) Nom.
Luminous Intensity $75 \mu \mathrm{~cd} / \mathrm{dot}$ (min.) ©
	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{Vdc}$
Dot-to-Dot Intensity Matching Max. 18:1.0

DC CHARACTERISTICS

Parameter	$-55^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+100^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
ICc Blank (All Inputs Low)		1.2	2.5		1.0	2.0		0.8	1.5	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Icc Lamp Test ($1 / 2$ Brightness)					62						
ICC 80 dots/unit (100% Brightness)		220	250		160	190		125	160	mA	$V_{C C}=5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$ (all inputs)			0.8			0.8			0.8	V	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
V_{IH} (all inputs)	2.0			2.0			2.0			V	$V_{C C}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
IIL (all inputs)		70	120		60	100		50	80	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V}, \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$

SWITCHING SPECIFICATIONS (@ $\mathrm{V}_{C C}=4.5 \mathrm{~V}$)

READ CYCLE TIMING				
Parameter	Description	Specification (ns)		
		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+100^{\circ} \mathrm{C}$
TAD	Address set up delay after CE (min.)	0	0	10
TACC	Access time for data valid atter address (max.)	100	175	200
TDD	Delay time for data valid after read pulse (max.)	100	150	175
TDH	Data valid after end of read pulse (min.)	0	0	0
TRD	Read pulse (min.)	150	175	200
TRC	Total read cycle time (min.)	150	200	235

WRITE CYCLE TIMING				
Parameter	Description	Specification (ns)		
		$\mathbf{- 5 5}{ }^{\circ} \mathbf{C}$	$\mathbf{+ 2 5}^{\circ} \mathbf{C}$	$\mathbf{+ 1 0 0 ^ { \circ }} \mathbf{C}$
TWD	Delay time for write pulse after control signals and data (min.)	25	50	75
TDH	Data hold after write pulse (min.)	25	50	75
TWR	Write pulse width	50	100	150
TWC	Total write cycle time (min.)	100	200	300

Notes: 1. TRD $=$ TRC - TAD $-($ TACC - TDD $)$
2. $T W R=T W C-(T W D+T D H)$

TIMING CHARACTERISTICS

$@ V_{C C}=4.5 \mathrm{~V}$

DATA 'WRITE" CYCLE

Note: $T_{\text {WA }}=T_{W C}-\left(T_{W D}+T_{D H}\right)$
$T_{R D}=T_{A C}-T_{A D}-\left(T_{A C C}-T_{D D}\right)$

TIMING MEASUREMENT LEVELS

TOP VIEW

PIN 1

PIN ASSIGNMENTS

DATA "READ" CYCLE

PIN DEFINITIONS
Pin

1. $\overline{R D} \quad$ Active low, will enable a processor to read all registers in the MPD 2545 (MPD 2547)
2. CLK I/O If CLK SEL (pin 3) is low, then expect an external clock source into this pin. If CLK SEL is high, then this pin will be the master or source for all other devices which have CLK SEL low.
3. CLK SEL CLock SELect, determines the action of pin 2. CLK I/O, see the section on Cascading for an example.
4. $\overline{\mathrm{RST}}$
5. CE1
6. CEO
7. A2
8. $A 1$
9. $A O$
10. GND
11. $\overline{W R}$
12. D7
13. D6
14. D5
15. D4
16. D3
17. D2
18. D1
19. DO
20. V_{CC} Reset. Must be held low until $V_{C C}>4.5$ volts. Reset is used only to synchronize blinking and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (LSB).
Ground.
Write. Active Low. If the device is selected, a low on the write input loads the data into memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5 .
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.

DATA INPUT COMMANDS															
$\overline{\text { CEO }}$	CE1	$\overline{\mathrm{RD}}$	$\overline{W R}$	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	OPERATION
1	0	X	\times	X	\times	\times	x	x	x	x	x	x	X	\times	No Change
0	1	0	1	1	0	0	X	\times	X	X	X	\times	X	X	Read Digit 0 Data To Bus
0	1	1	0	1	0	0	X	0	1	0	0	1	0	0	(\$) Written To Digit 0
0	1	1	0	1	0	1	X	1	0	1	0	1	1	1	(W) Written to Digit 1
0	1	1	0	1	1	0	X	1	1	0	0	1	1	0	(f) Written To Digit 2
0	1	1	0	1	1	1	X	0	1	1	0	0	1	1	(3) Written to Digit 3
0	1	1	0	1	0	0	1	X	X	X	x	X	X	X	Char. Written To Digit 0 And Cursor Enabled

MODE SELECTION				
$\overline{\mathrm{CEO}}$	CE1	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	OPERATION
0	1	0	0	Illegal
1	x	x	X	No Change
\times	0	x	X	No Change
X	X	1	1	No Change

NOTE: $0=$ Low Logic Level, $1=$ High Logic Level, $\mathrm{X}=$ Don't Care.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The MPD 2545 (MPD 2547) block diagram includes 5 major blocks and internal registers (indicated by dotted lines).
Display Memory consists of a 5×8 bit RAM block. Each of the four 8 -bit words holds the 7 -bit ASCII data (bits D0-D6). The fifth 8 -bit memory word is used as a control word register. A detailed description of the control register and its functions can be found under the heading Control Word. Each 8 -bit word is addressable and can be read from or written to.

The Control Logic dictates all of the features of the display device and is discussed in the Control Word section of this data sheet.
The Character Generator converts the 7-bit ASCII data into the proper dot pattern for the 96 characters shown in the character set chart.
The Clock Source can originate either from the internal oscillator clock or from an external source-usually from the output of another MPD 2545 (MPD 2547) in a multiple module display.
The Display Multiplexer controls all display output to the digit drivers so no additional logic is required for a display system.
The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEDs in a 5×7 dot array which makes up the alphanumeric characters.
The intensity of the display can be varied by the Control Word in steps of 0\% (Blank), 25\%,50\%, and full brightness.

MICROPROCESSOR INTERFACE

The interface to the microprocessor is through the address lines (A0-A2), the data bus (DO-D7), two chip select lines ($\overline{\mathrm{CEO}}, \mathrm{CE} 1$), and read ($\overline{\mathrm{RD}}$) and write $(\overline{\mathrm{WR}}$) lines.

To derive the appropriate enable signal, the $\overline{W R}$ and $\overline{R D}$ lines should be "NANDED" into the CE1 input. The CEO should be held low when executing a read, or write operation.
The read and write lines are both active low. During a valid read the data input lines (D0-D7) become outputs. A valid write will enable the data as input lines.

INPUT BUFFERING

If a cable length of 18 inches or more is used, all inputs to the display should be buffered with a tri-state non-inverting buffer mounted as close to the display as conviently possible. Recommended buffers are: 74 HCT 245 for the data lines and 74 HCT 244 or 74 HC 541 for the control lines.

PROGRAMMING THE MPD 2545

There are five registers within the MPD 2545/2547. Four of these registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display, or to change the presentation (attributes) of individual characters.

ADDRESSING

The addresses within the display device are shown below. Digit 0 is the rightmost digit of the display, while digit 3 is on the left. Although there is only one Control Word, it is duplicated at the four address locations 0-3. Data can be read from any of these locations. When one of these locations is written to, all of them will change together.

Address	Contents
0	Control Word
1	Control Word (Duplicate)
2	Control Word (Duplicate)
3	Control Word (Duplicate)
4	Digit 0 (rightmost)
5	Digit 1
6	Digit 2
7	Digit 3 (lettmost)

Bit D7 of any of the display digit locations is used to allow an attribute to be assigned to that digit. The attributes are discussed in the next section. If bit D7 is set to a one, that
character will be displayed using the attribute. If bit D7 is cleared, the character will display normally.

CONTROL WORD

When address bit A2 is taken low, the Control Word is accessed. The same Control Word appears in all four of the lower address spaces of the display. Through the Control Word, the display can be cleared, the lamps can be tested, display brightness can be selected, and attributes can be set for any characters which have been loaded with their most significant bit (D7) set high.
Brightness (D0, D1): The state of the lower two bits of the Control Word are used to set the brightness of the entire display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	x	x	x	x	0	0	Blank
0	0	x	x	x	x	0	1	25% brightness
0	0	x	x	x	x	1	0	50% brightness
0	0	x	x	x	x	1	1	Full brightness

$\mathrm{x}=$ don't care

Attributes (D2-D4): Bits D2, D3, and D4 control the visual attributes (i.e., blinking, alternate) of those display digits which have been written with bit D7 set high. In order to use any of the four attributes, the Cursor Enable bit (D4 in the Control Word) must be set. When the Cursor Enable bit is

CONTROL WORD FORMAT

set, and bit D7 in a character location is set, the character will take on one of the following display attributes.
$\left.\begin{array}{|cccccccc|c|}\hline \text { D7 } & \text { D6 } & \text { D5 } & \text { D4 } & \text { D3 } & \text { D2 } & \text { D1 } & \text { D0 } & \text { Operation } \\ \hline 0 & 0 & 0 & 0 & \text { X } & \text { X } & \text { B } & \text { B } & \begin{array}{c}\text { Disable highlight } \\ \text { attribute } \\ 0\end{array} \\ 0 & 0 & 1 & 0 & 0 & \text { B } & \text { B } & \begin{array}{c}\text { Display cursor* instead } \\ \text { of character }\end{array} \\ 0 & 0 & 0 & 1 & 0 & 1 & \text { B } & \text { B } & \begin{array}{l}\text { Blink single character } \\ 0\end{array} \\ 0 & 0 & 1 & 1 & 0 & \text { B } & \text { B } & \begin{array}{c}\text { Display blinking } \\ \text { cursor* instead of } \\ \text { character }\end{array} \\ \text { Alternate character } \\ \text { with cursor* }\end{array}\right]$
*"Cursor" refers to a condition when all dots in a single character space are lit to half brightness.
$X=$ don't care
$B=$ depends on the selected brightness
Attributes are non-destructive. If a character with bit D7 set is replaced by a cursor (Control Word bit D4 is set, and $\mathrm{D} 3=\mathrm{D} 2=0$) the character will remain in memory and can be revealed again by clearing D4 in the Control Word.
Blink (D5): The entire display can be caused to blink at a rate of approximately 2 Hz by setting bit D5 in the Control Word. This blinking is independent of the state of D7 in all character locations.
In order to synchronize the blink rate in a bank of these devices, it is necessary to tie all devices' clocks and resets together as described in a later section of this data sheet.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	X	X	X	B	B	Blinking display

Lamp Test (D6): When the Lamp Test bit is set, all dots in the entire display are lit at half brightness. When this bit is cleared, the display returns to the characters that were showing before the lamp test.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	1	0	X	X	X	X	X	Lamp test

Clear Data (D7): When D7 is set in the Control Word, all character and Control Word memory bits are reset to zero. This causes total erasure of the display, and returns all digits to a non-blink, full brightness, non-cursor status.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	0	x	x	X	X	x	x	Clear

CASCADING

Cascading the MPD 2545 (MPD 2547) is a simple operation. The requirements for cascading are: 1) decoding the correct address to determine the chip select for each additional device, 2) assuring that all devices are reset simultaneously, and 3) selecting one display as the clock source and setting all others to accept clock input (the reason for cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving six other MPD 2545s (MPD 2547s). If more displays are required, a buffer will be necessary. The source display must have pin 3 tied high to output clock signals. All other displays must have pin 3 tied low.

VOLTAGE TRANSIENTS

It has become common practice to provide $0.01 \mu \mathrm{f}$ bypass capacitors liberally in digital systems. Like other CMOS circuitry, the Intelligent Display controller chip has very low power consumption and the usual 0.01μ would be adequate were it not for the LEDs. The module itself can, in some conditions, use up to 100 mA (multiplexed). In order to prevent power supply transients, capacitors with low inductance and high capacitance at high frequencies are required. This suggests a solid tantalum or ceramic disc for high frequency bypass. For larger displays, distribute the bypass capacitors evenly, keeping capacitors as close to the power pins as possible. We recommend a $10 \mu \mathrm{f}$ and $0.01 \mu \mathrm{f}$ for every Intelligent Display to decouple the displays themselves, at the display.

CASCADING THE MPD 2545 (MPD 2547)

HOW TO LOAD INFORMATION INTO THE MPD 2545 (MPD 2547)

Information loaded into the MPD 2545 can be either ASCII data or Control Word data. The following procedure (see also typical loading sequence) will demonstrate a typical loading sequence and the resulting visual display. The word STOP is used in all of the following examples.

SET BRIGHTNESS

Step 1 Set the brightness level of the entire display to your preference (example: 100\%)

LOAD FOUR CHARACTERS

Step 2 Load an " S " in the left-hand digit.
Step 3 Load a " T " in the next digit.
Step 4 Load an "O" in the next digit.
Step 5 Load a " P " in the right-hand digit.
If you loaded the information correctly, the MPD 2545 should now show the word "STOP."

BLINK A SINGLE CHARACTER

Step 6 Into the digit, second from the right, load the hex code "CF," which is the code for an " O " with the 07 bit added as a control bit.
NOTE: the "O" is the only digit which has the control bit (D7) added to normal ASCI data.
Step 7 Load enable blinking character into the control word register.
The MPD 2545 should now display "STOP" with a flashing "O."

ADD ANOTHER BLINKING CHARACTER

Step 8 Into the left hand digit, load the hex code "D3" which is for an "S" with the D7 bit added as a control bit.
The MPD 2545 should display "STOP" with a flashing "O" and a flashing "S."

ALTERNATE CHARACTER/CURSOR ENABLE

Step 9 Load enable alternate character/cursor into the control word register.
The MPD 2545 should now display "STOP" with the " O " and the " S " alternating between the letter and a cursor (all dots lit).

INITIATE FOUR-CHARACTER BLINKING

(Regardless of Control Bit setting)
Step 10 Load enable display blinking.
The MPD 2545 should now display the entire word "STOP" blinking.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

The CMOS IC of the MPD 2545 and MPD 2547 is designed to provide resistance to both Electrostatic and Discharge Damage and Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid overstressing these built-in safeguards.

ESD PROTECTION

Users of the MPD 2545 and MPD 2547 should be careful to handle the devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or feet ground straps and avoid clothing that collects static charges. Work surfaces, tools and transport carriers that come into contract with unshielded devices or assemblies should also be appropriately grounded.

LATCH UP PROTECTION

Latch up is a condition that occurs in CMOS ICs after the input protection diodes have been broken down. These diodes can be reversed through several means:
$V_{I N}<G N D, V_{I N}>V_{C C}+0.5 \mathrm{~V}$, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin conducting as much as one amp through the $V_{C C}$ pin. This destructive condition will persist (latched) until device failure or the device is turned off.

The Voltage Transient Suppression Techniques and buffer interfaces for longer cable runs help considerably to prevent latch conditions from occuring. Additionally, the following Power Up and Power Down sequence should be observed.

POWER UP SEQUENCE

1. Float all active signals by tri-stating the inputs to the displays.
2. Apply $V_{C C}$ and $G N D$ to the display.
3. Apply active signals to the displays by enabling all input signals per application.

POWER DOWN SEQUENCE

1. Float all active signals by tri-stating the inputs to the display.
2. Turn off the power to the display.

TYPICAL LOADING SEQUENCE

								4		N	8	10	\%	8	ก	$\overline{0}$	8		DISPLAY
1.		H	H	H	L	L	X	X		0	0	0	0	0	0	1			
2.	L	H	H	H	L	H	H	H		0	1	0	1	0	0	1			S
3.	L	H	H	H	L	H	H	L		0	1	0	1	0	1	0	0		ST
4.	L	H	H	H	L	H	L	H		0	1	0	0	1	1	1	1		STO
5.	L	H	H	H	L	H	L	L		0	1	0	1	0	0	0	0		STOP
6.	L	H	H	H	L	H	L	H		1	1	0	0	1	1	1	1		STOP
7.	L	H	H	H	L	L	X	X		0	0	0	1	0	1	1	1		STO*P
8.	L	H	H	H	L	H	H	H		1	1	0	1	0	0	1	1		S*TO*P
9.		H	H	H	L	L	X	x		0	0	0	1	1	1	1	1		$\mathrm{ST}^{+} \mathrm{TO}^{+} \mathrm{P}$
10.		H	H	H	L	L	x	X		0	0	\dagger	0	0	0	1	1		$\mathrm{S}^{*} \mathrm{~T}^{*} \mathrm{O}^{*} \mathrm{P}^{*}$

[^6]

100\% Hi-Rel Screening Test			
Screen	Method	\%AQL	Comments
Pre Cap Visual	2072	When Specified	MIL-STD-750
High Temperature Storage	1032	100 Percent	24 Hrs @ $150{ }^{\circ} \mathrm{C}$ MIL-STD-750
Temperature Cycle	1051	100 Percent	10 Cycles, -65° to $150^{\circ} \mathrm{C} \mathrm{M1L-STD-750}$
Constant Acceleration	2006	100 Percent	Y1 ABD Y2 @ 5KG MIL-STD-750
Fine Leak	1071	100 Percent	2 Atmosphere Absolute for 2 Hours MIL-STD-750
Gross Leak	1071	100 Percent	60 PSIG (for 10 Hours) MIL-STD-750
Interim Electrical/Optical Test	-	When Specified	
Burn-In	1015	100 Percent	168 Hours @ 125
Sinal Electrical/Optical Test	-	100 Percent	
Delta Determination	2009	When Specified	
Electrical Visual	100 Percent	MIL-STD-883	

1.16" Square 8×8 Dot Matrix Programmable Display ${ }^{\text {™ }}$ Module With On Board Drivers, Built-In RAM and Software Controllable Features

FEATURES

- Active Display Size 1.16" Square
- 0.11" Diam. Dots on 0.15" Centers
- Very Bright Green or High Efficiency Red
- Intensity Matched and Binned
- Readable from 35 Feet
- Viewing Angle $\pm 75^{\circ}$
- Interlocking X-Y Stackable Packages for Larger Displays
- On board CMOS Circuits with Complete Drive Circuits and Logic Interfaces
- Each Dot Addressable Over TTL Compatible, 8 Bit BUS
- Alternate Language \& Graphics Programming Capability
- Cascadable-Synchronizable Logic for Expanded Display Systems
- Software Controlled Attributes: 9 Levels of Intensity Settings Memory Clear Blanking or Blinking Built-In Lamp Test
- 100\% Burned in Prior to Final Test
- 20 Pin DIP Package: 0.6" Wide Rows, 0.1" Pin Spacing
- Wave Solderable
- $\mathbf{- 2 0 ^ { \circ }} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating Range

DESCRIPTION

The high efficiency red PD 1165 and very bright green PD 1167 are modular 8×8 dot matrix Programmable Displays. They are constructed with highly efficient III/V material LEDs, packaged in a reflector package for maximum dot illumination. Further optimizing light output are built-in CMOS drive circuits. These circuits strobe the LEDs at peak currents that give the best time averaged luminous intensity for the power required. The user has complete control of the display through further built-in CMOS circuitry. The display appearance can be set by programming an 8 bit RAM.
Features such as blinking, synchronizing, blanking, one of nine intensity levels or lamp tests are easily programmed through a control word. Additional external connections are available for clock inputs, clock outputs and total intensity control through an external resistor.
All products are 100\% burned in and 100\% tested. Outging quality standards are maintained through AQL sampling procedures of . 25% for electrical characteristics and 1.0% for dimensional and mechanical parameters, solderability, package integrity, and LED brightness matching dot to dot and display to display.
The display is constructed of epoxy filled polycarbonate with two interconnected pcbs. A heat sink is attached to cool the device with its 20 pin dip lead construction. The package is wave solderable and has been fully qualified for operation and storage over a temperature range from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

[^7]
Maximum Ratings

$V_{C C}$, DC Supply Voltage -0.5 to +6.0 Vdc
V_{IN}, Input Voltage Levels Relative
to GND (all inputs) -0.5 to ($V_{C C}+0.5$) Vdc
Operating Temperature $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @ $65^{\circ} \mathrm{C}$. 90%
Power Dissipation @V $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$, $T_{A}=-20^{\circ} \mathrm{C}$ 1.6 W

Junction Temperature $@ 70^{\circ} \mathrm{C}\left(\Theta_{\mathrm{JA}}=25^{\circ} \mathrm{C} / \mathrm{W}\right)$ $95^{\circ} \mathrm{C}$
Maximum Solder Temperature $.063^{\prime \prime}$ (1.59 mm)

Recommended Operating Conditions $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Parameter	Min.	Nom.	Max.	Units
V_{CC}, Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$, Input Voltage High	2.7			V
$\mathrm{~V}_{\mathrm{IL}}$, Input Voltage Low			0.8	V
Clock Fan Out(1)		8	15	Disp.

Note: 1. The number of displays that can be synchronized by one "master" display clock depends on how "clean" the line is. The maximum can only be achieved in very "clean" electrical environments. A buffer is required for larger systems or noisy environments.

Optical Characteristics @ $25^{\circ} \mathrm{C}$
Spectral Peak Wavelength .
(1165) 635 nm typ.
. (1167) 565 nm typ.
Viewing Angle, both axis (off normal axis) $\pm 75^{\circ}$
Active Display Siz 1.16" square

Dot Size . 0.11" diam.
Pitch (center to center dot spacing) $0.15^{\prime \prime}$
Time Averaged Luminous Intensity
(100\% bright)
$0.5 \mathrm{mcd} / \mathrm{dot} \mathrm{min}$. $1.7 \mathrm{mcd} / \mathrm{dot}$ typ.
Dot to Dot Intensity Matching Ratio 1.8:1.0 max.
Display Average Intensity Matching Ratio (per bin) 1.5:1.0 max. Bin to Bin Matching Ratio (adjacent bin) 1.9:1.0 max.

DC CHARACTERISTICS

Parameter	$-20^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
ICC Blank		3.0	4.0		2.0	3.0		1.0	2.0	mA	$\begin{aligned} & \hline \overline{\mathrm{WR}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$
${ }_{\text {I CC L Lamp Test }}$		115	130		105	115		95	105	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$I_{\text {CC }} 64$ dots on at full intensity ${ }^{(1,2)}$		235	265		205	230		185	200	mA	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$		12	24		10	20		8	16	$\mu \mathrm{A}$	$V_{C C}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	2.7			2.7			2.7			V	$4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$
V_{IL}			0.8			0.8			0.8	V	$4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V}$

Notes: 1. Average LED drive current is 3 mA . Peak current at $1 / 8$ multiplex rate is typically 25 mA .
2. RDIM can be used to reduce $I_{C C}$ and subsequently tower the nominal display intensity level. See figure (2) for typical brightness reductions with the use of $\mathrm{R}_{\mathrm{EXT}}$.

WRITE CYCLE

DATA BUS TRANSITIONS AT CL $=150 \mathrm{pF}$

RESET TIMING

POWER ON TO FIRST WRITE TIMING

TIMING MEASUREMENT LEVELS

AC CHARACTERISTICS Over Operating Temperature Range at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Parameter	Symbol	$-20^{\circ} \mathrm{C}$ ($\mathrm{m}_{\text {MIN }}$)	$+25^{\circ} \mathrm{C}\left(\mathrm{t}_{\text {MIN }}\right)$	$+70^{\circ} \mathrm{C}\left(\mathrm{t}_{\text {MIN }}\right)$	Units
Chip Enable Set Up Time	$\mathrm{T}_{\text {CES }}$	0	5	5	ns
Address Set Up Time	$\mathrm{T}_{\text {AS }}$	10	10	10	ns
Write Pulse Width	TWW	20	30	30	$\mathrm{ns}{ }^{(2)}$
Data Set Up Time	T_{DS}	40	55	55	$\mathrm{ns}{ }^{(2)}$
Chip Enable Hold Time	$T_{\text {CEH }}$	0	0	0	ns
Address Hold Time	$\mathrm{T}_{\text {AH }}$	5	5	5	ns
Data Hold Time	$\mathrm{T}_{\text {DH }}$	20	20	20	ns
Reset Pulse Width	T REW	50	50	50	$\mu \mathrm{S}^{(1)}$
Minimum Time Between Power Up and the First Write Operation	TWFW	2	2	2	ms
Total Write Time $\left(T_{A S}+T_{W W}+T_{D H}\right)$	TWR	35	45	45	ns

Notes: 1. 50μ s or 2 clock cycles minimum. The internal clock frequency is between 50 and 80 kHz . If an external clock is supplied, it should be held between 50 and 60 kHz .
2. $T_{W W}$ must be less than $T_{D S}$.

TOP VIEW

PD 1165, PD $\mathbf{1 1 6 7}$ PINOUT			
1	$\overline{\text { RST }}$	20	GND
2	CLK OUT	19	D7
3	WR	18	D6
4	CE	17	D5
5	AO	16	D4
6	A1	15	D3
7	A2	14	D2
8	A3	13	D1
9	CLK IN	12	D0
10	R DIM	11	$V_{\text {CC }}$

PD 1165 (PD 1167) BLOCK DIAGRAM

PIN DEFINITIONS

Pin

1. $\overline{\mathrm{RST}}$	Resets the System. Active low.
2. CLKOUT	Clock output for daisy chaining
3. $\overline{W R}$	Writes data into the display. Active low.
4. $\overline{\mathrm{CE}}$	Chip Enable. Active low.
5. AO	Address Input (LSB)
6. A1	Address Input
7. A2	Address Input (MSB)
8. A3	Address input for control words.
9. $\mathrm{CLK}_{\mathrm{IN}}$	Clock Input for daisy chaining
10. $\mathrm{R}_{\mathrm{DIM}}$	Controls Brightness through R REXT
11. V_{CC}	Plus 5 volts power pin
12. DO	Data Bus Bit 0 (LSB)
13. D1	Data Bus Bit 1
14. D2	Data Bus Bit 2
15. D3	Data Bus Bit 3
16. D4	Data Bus Bit 4
17. D5	Data Bus Bit 5
18. D6	Data Bus Bit 6
19. D7	Data Bus Bit 7 (MSB)
20. GND	Ground

FUNCTIONAL DESCRIPTION

The PD 1165 (PD 1167) block diagram includes the major blocks and internal registers.

Display Memory consists of a 8×8 bit RAM block for the display columns and rows. Each one of the eight bit correspond to a LED and each eight bit cluster corresponds to a column. It also contains a 1×8 bit block to serve as Control Word Register.

The Input Logic consists of Data Buffers, Control Logic and Address Decode Logic.

The Oscillator (OSC) Logic generates clock for internal and external use. Reset function is a part of this block.

The Multiplex Logic generates multiplex scheme for column and row drivers, intensity control and blinking.

The Row Drivers drive 8 rows of eight LEDs each. The row drive currents could be trimmed using an external resistor ($\mathrm{R}_{\text {DIM }}$) to set the nominal display brightness.
The Column Drivers drive 8 columns of eight LEDs each.
The Display consists of 64 LEDs connected in clusters of 8 to form columns and rows.

USING THE PD 1165 (PD 1167) POWER ON AND RESET

Each PD 1165 (PD 1167) series part is equivalent to a miniaturized hybrid display system. Careful consideration of power supply capabilities and applications should always be exercised. It is important that $\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}}<\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$ always be maintained during use.

POWER SUPPLY REQUIREMENTS

A 5 volt power supply with no more than 10% tolerance should be used. Each display, depending on programming can switch very large loads. To keep transients on $V_{C C}$ above $\left(\mathrm{V}_{\mathrm{IN}}-0.5 \mathrm{~V}\right)$, a $0.01 \mu \mathrm{~F}$ mica capacitor and a $22 \mu \mathrm{~F}$ tantalum capacitor should be located as close as conveniently possible to the V_{CC} and GND pins. (1)
To avoid malfunction during Power Up and Power Down, follow the sequences listed below.

POWER UP SEQUENCE

1. Float (tri-state) all display inputs.
2. Apply $V_{C C}$ and GND to the display.
3. Activate inputs as required enabling the display. (Observe TWRW restrictions.)

POWER DOWN SEQUENCE

1. Float (tri-state) all active input signals to the display.
2. Turn off power to the display.

Once the display is powered up or following a hard reset using (RST), the display will initialize in a blinking lamp test control state. All LEDs will be on at 50% intensity blinking at about 2 Hz . Software control words can then be input initializing the displays configuring them for intensity and blinking attributes as well as clock control and timing synchronization.

SIGNAL CONDITIONING/INPUT BUFFERING

If cable lengths of 18 inches or more are used between the microprocessor and displays, the inputs should be buffered with tri-state non-inverting buffers. The buffers should be mounted as close to the displays as practical. Suggested buffers are the 74 HCT 244 or 74 HC 541 .

The PD 1165 (PD 1167) accepts programming on the falling edge of the write pulse ($\overline{W R}$). Interfacing the displays to microprocessors that write on the rising edge (such as the 8035) will require the pulse from the microprocessor to be delayed. A dual one-shot circuit such as the one illustrated in figure (1) below is recommended.

FIGURE 1. WRITE DELAY CIRCUIT FOR $\mu \mathbf{P}$'s THAT WRITE ON RISING EDGE OF $\overline{W R}$

PROGRAMMING THE PD 1165 (PD 1167)

As described earlier, each display has 1 byte of RAM for a control word and 8 bytes for the display state of each LED. (2)

ADDRESSING LEDs AND CONTROL WORDS

Addressing the LEDs is managed through the AO-A2 address lines and DO-D7 data lines. Each data line corresponds to an LED row location with the address lines identifying a binary representation for the LED columns. The control word RAM address is identified by A3. $\overline{W R}$ and $\overline{C E}$ must also be low to input valid data.

Address State				Location
A3	A2	A1	A0	
0	0	0	0	First Column
0	0	0	1	Second Column
0	0	1	0	Third Column
0	0	1	1	Fourth Column
0	1	0	0	Fifth Column
0	1	0	1	Sixth Column
0	1	1	0	Seventh Column
0	1	1	1	Eighth Column
1	0	0	0	Control Word

When the appropriate column is addressed, a specific LED can be "written" on or off by identifying the appropriate row. Some examples are:

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	0	0	0	0	0	1	1st Row On
0	0	1	0	0	0	0	0	6th Row On
0	0	0	1	0	0	0	1	1st \& 5th Rows On

High Signals turn on LEDs, low turn off LEDs. Patterns remain until re-written or cleared.

CONTROL WORD OPERATION

When address bit A3 is taken high, the control word RAM is accessed. The same control word appears at all eight LED address locations of the display. These words determine display functions such as clearing, blanking, blinking, brightness to nine levels, selecting internal or external clock sources, resetting timing for synchronizing blinking and implementing a lamp test. These instructions are implemented in the following manner.
Brightness (D0-D2, RDIM): Display intensity must be set at one of the following levels. Increments of 12.5% are possible.

D7	D6	D5	D4	D3	D2	D1	D0	Intensity Level
x	x	x	x	x	0	0	0	12.5%
x	x	x	x	x	0	0	1	25.0%
x	x	x	x	x	0	1	0	37.5%
x	x	x	x	x	0	1	1	50.0%
x	x	x	x	x	1	0	0	62.5%
x	x	x	x	x	1	0	1	75.0%
x	x	x	x	x	1	1	0	87.5%
x	x	x	x	x	1	1	1	100.0%

[^8]These intensity levels are proportional to the total display brightness. Each device is intensity categorized, however, this maximum brightness category can be lowered through an external resistor. See figure (2) for the characteristic relationship of intensity to $\mathrm{R}_{\mathrm{EXT}}$. A 4 K resistor would be equivalent to one intensity category shift.

FIGURE 2. THE TYPICAL EFFECT OF R DIM ON NOMINAL DISPLAY INTENSITY THROUGH VARIATIONS IN $\mathbf{R e x t}_{\text {ex }}$

${ }^{(1)}{ }_{c c} \%$ maximum is approximatly equal to $\%$ Relative Display Intensity (eg $50 \% \mathrm{I}_{\mathrm{cc}} \approx 50 \%$ Intensity @3.7K)

Display Blank (D3): The D3 bit will visually clear the display, blank it, without affecting the display RAM LED pattern. ${ }^{\text {(4) }}$

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	X	X	X	1	$\$$	$\$$	$\$$	Blank

Note: 1. Although it is not recommended, the display can be dimmed by strobing the blank instruction on and off. If this is done, frequencies of 1 KHz or more should be utilized to avoid flickering.

Clock Select (D4): The appropriate clock selection should be included in the control word. For multiple display systems, external synchronized clocks should be used when blinking is required for uniform display appearance. One display can act as a master clock for up to 15 other displays provided the D4 bit is properly set.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
\times	X	X	0	X	$\$$	$\$$	$\$$	Internal Clock
X	X	X	1	X	$\$$	$\$$	$\$$	External Clock

Blink Control D5

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	X	1	X	0	$\$$	$\$$	$\$$	Blink Display at 2 Hz

Lamp Test D6, D2, D1, D0
The lamp test is only functional with the intensity level set to 50%. This does not affect display RAM.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	1	X	X	0	0	1	1	Turn all LEDs on at 50% brightness

Memory Clear D7, D6

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	0	\times	\times	X	$\$$	$\$$	$\$$	Clear Display RAM, turn off LEDs

Reset Timing D7, D6

Timing reset is necessary for synchronizing display blinking for multiple display systems. It has no effect on display RAM.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	1	\times	\times	\times	$\$$	$\$$	$\$$	Internal Timing Reset

DESIGN CONSIDERATIONS MULTIPLE DISPLAY SYSTEMS

The PD 1165 (PD 1167) parts may be cascaded for flat panel displays of any size. If blinking is to be used, up to 15 displays can be synchronized to one "master" display clock as described earlier. Additional displays will require a buffer to drive the clock load.

The connection scheme is straight forward as illustrated in figure (3) below.

1. Buss together: Data lines, Address lines, Write Enable lines, Reset lines, $V_{C C}$ (with proper capacitors for power supply conditioning) and GND lines.
2. Terminate the Data, Address and Write lines of the "master" display to the microprocessor interface.
3. Terminate the CE lines of the "slave" displays to the appropriate microprocessor address decoders.
4. Connect the clock out (pin 2) of the "master" display to the buffer for/or clock in (pin 9), of the "slave" displays.
This flat panel sub assembly can then be interfaced easily with microprocessors, such as the 8035, as illustrated in figure (4) below.
For systems with synchronized blinking, an initializing control softword reset should precede the instructions for clearing, brightness, clock selection, etc.

INTENSITY MATCHING

For best matching, displays from one bin should be used. It is often acceptable, under normal viewing conditions, to use displays from two neighboring bins. The RDIM connection allows users to set intensity levels to match displays of all intensity levels.

ESD PROTECTION

The silicon gate CMOS IC of the PD 1165 (PD 1167) is sensitive to ESD damage. Users of these devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in contact with unshielded parts. Where these conditions are not or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging.

SOLDERING CONSIDERATIONS

The PD 1165 (PD 1167) can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.

Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $70^{\circ} \mathrm{C}$. Water soluble organic acid flux or resin-based RMA flux can be used.

Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the polycarbonate package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TP35, TMS+, TE, and Isopropyl Alcohol.
Unacceptable solvents contain TCM, TMC, TA, TES, Acetone, and III Trichloroethane. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; BaronBlakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.
For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $.600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

FIGURE 3. GENERAL INTERFACE CIRCUIT

FIGURE 4. MICROPROCESSOR INTERFACE CIRCUIT

OPTICAL CONSIDERATIONS

The $1.19^{\prime \prime}$ high character of the PD 1165 (PD 1167) allows readability up to 35 feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters enhance the contrast ratio between a lit LED and the character background. The only limitation is cost. The cost/benefit ratio for filters can be maximized by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The PD 1165 is a high efficiency red display and should be matched with a long wavelength pass filter in the 570 nm to 590 nm range. The PD 1167 should be matched with a yellow-green band-pass filter that peaks at 565 nm . For display systems of multiple colors (using other Siemens displays), neutral density grey filters offer the best compromise.

Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Also, plastic filters can be further improved with antireflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.

Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.

Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One final note on mounting filters. Recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.

REPLACEMENT

Should a display nested within a panel be damaged, replacement can be made by trimming the tabs off the neighboring displays adjacent to the damaged displays Row \# 0 and Column \# 0 (typically above and to the left). Once the interlocking tabs are trimmed (using a razor bladetype cut), the damaged device may be removed and replaced.

.200" 4-Character, 5×7 Dot Matrix Alphanumeric Programmable Display ${ }^{\text {TM }}$ With Built-In CMOS Control Functions

FEATURES

- Four .200" Dot Matrix Characters in Bright Green or High-Efficiency Red
- Readable from 8 Feet (2.5 meters)
- Built-in Memory, Decoders, Multiplexer and Drivers
- Wide Viewing Angle, X Axis $\pm 55^{\circ}$, Y Axis $\pm 65^{\circ}$
- Categorized for Luminous Intensity
- 96-Character ASCII Format (Both Upper and Lower Case Characters)
- 8-Bit Bidirectional Data BUS
- READ/WRITE Capability
- 100\% Burned In and Tested
- Dual In-Line Package Configuration, .600" Wide, .100" Pin Centers
- End-Stackable Package
- Internal or External Clock
- Built-In Character Generator ROM
- TTL Compatible
- Easily Cascaded for Multidisplay Operation
- Less CPU Time Required
- Software Controlled Features:

Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity, Three Brightness Levels

- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION

The PD 2435 and PD 2437 are four digit display system modules. The digits are $0.20^{\prime \prime}$ by $0.14^{\prime \prime} 5 \times 7$ dot matrix arrays constructed with the latest solid state technology in light emitting diodes. The diodes, having transparent substrates, are optimized for maximum light output in the visible red (630 nm) and Green (560 nm) spectrums. Driving and controlling the LED arrays are two silicon gate CMOS integrated circuits. These integrated circuits provide all necessary power transistors and complete multiplexing control logic to efficiently strobe the LEDs for maximum perceived brightness with minimum power utilization.

Additionally, the ICs have the necessary ROM to decode 96 ASCII alphanumeric characters and enough RAM to store the display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the user's discretion, include a lamp test, brightness control, displaying cursors, alternating cursors and characters, and flashing cursors or characters. The CMOS ICs also incorporate special interface control circuitry to allow the user to control the module as a fully supported microprocessor peripheral. The module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit parallel, TTL compatible, bi-directional data bus. Each X and Y stackable module is fully encapsulated within a package $1.0^{\prime \prime} \times 0.7^{\prime \prime} \times 0.2^{\prime \prime}$. The standard 20 pin DIP construction with two $0.6^{\prime \prime}$ rows on $0.1^{\prime \prime}$ centers is wave solderable and has been fully tested with over one million total device hours to operate over a temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. All of the devices are 100% burned in and tested prior to shipment. Final outgoing A.Q.L. inspection is maintained at 1.0% for mechanical and dimensional specifications, optical defects, lead solderability and package integrity. Local defects on die, brightness matching

[^9]
DESCRIPTION (Continued)

L.ED to LED, digit to digit, device to device; catostrophic electrical parameters are held to 0.25% A.Q.L. All the devices are intensity binned to allow users to construct a uniform display of any length.(1)

Note: 1 . Refer to the end of this data sheet or to Appnotes 18, 19, 22, and 23 for further details on handling and assembling Siemens Programmable Displays.

Maximum Ratings

DC Supply Voltage -0.5 to +6.0 Vdc Input Voltage Levels Relative
to GND (all inputs) -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{Vdc}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature $.063^{\prime \prime}$ (1.59 mm)
below Seating Plan, $\mathrm{t}<5 \mathrm{sec}$............ $260^{\circ} \mathrm{C}$
Relative Humidity @85º
Optical Characteristics @ $25^{\circ} \mathrm{C}$
Spectral Peak Wavelength (2435) 630 nm typ
(2437) 560 nm typ.

Display Multiplex Rate 200 to 300 Hz
Viewing Angle
horizontal . $\pm 55^{\circ}$
(off normal axis) vertical . $\pm 65^{\circ}$
Digit Height . 0.200 inch (5.08 mm)
Time Averaged Luminous Intensity ${ }^{(1)}$
(100% brightness, $5 \mathrm{Vdc}=\mathrm{V}_{\mathrm{CC}}$) $200 \mu \mathrm{~cd} / \mathrm{LED}$ typ.
HER . 75 7 μ cd/LED min.
Green . $100 \mu \mathrm{~cd} / \mathrm{LED}$ min.
LED to LED Intensity Matching 1.8:1.0 max.
Device to Device (one bin) 1.5:1.0 max.
Bin to Bin (adjacent bin) 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying these values by 7 .

SWITCHING SPECIFICATIONS

(@25 ${ }^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)(1)

READ CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TAD	Address set up delay after CE TACC	Access time for data valid after address
TDD	Delay time for data valid after read pulse	150 max.
TRC	Total read cycle time TDH Data valid after end of read TRD	200
Read pulse	0	

WRITE CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TWD	Delay time for write pulse after control signals and data	50
TDH	Data hold after write pulse	50
TWC	Total write cycle time	200
TWR	Write pulse width	100

Note: 1. Timing characteristics are guaranteed values at the worst case condition of $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{Vdc}$. Characterization data indicates these values also hold over temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ except for TAD and TDH. These two timing minimums may extend to 5 ns at $+70^{\circ} \mathrm{C}$ and above.

TIMING MEASUREMENT LEVELS

TIMING CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

$V_{C C}=4.5 \mathrm{~V}$

DATA 'READ" CYCLE

DATA "WRITE" CYCLE

Note: $T_{W R}=T_{W C}-\left(T_{W D}+T_{D H}\right)$
$T_{R D}=T_{R C}-T_{A D}-\left(T_{A C C}-T_{D D}\right)$

DC CHARACTERISTICS @ $25^{\circ} \mathrm{C}$

Parameters	Limits			Units	Conditions
	Min.	Typ.	Max.		
$V_{C C}$	4.5	5.0	5.5	Volts	Nominal
$\mathrm{I}_{\text {CC }}$ Blank (All Inputs Low)		2.5	5	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{WR}=5 \mathrm{~V}$
ICC Lamp Test (1⁄2 Brightness)		42		mA	
$\mathrm{I}_{\text {CC }} 80$ LEDs/unit (100% Bright)	125	140(1)	155(2)	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$ (All Inputs)	-0.5		0.8	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{V}_{\text {IH }}$ (All Inputs)	2.0			Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
IIL (All Inputs)			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$

Notes: 1. Typical average LED drive current is 1.7 mA . Peak current at $1 / 7$ multiplex rate is 12 mA .
2. Characterization data indicates max I_{CC} will vary from 190 mA at $-20^{\circ} \mathrm{C}$ to 130 mA at $70^{\circ} \mathrm{C}$.

PIN ASSIGNMENTS

PD 2435, PD 2437 PINOUT					
Pin		Function	Pin		Function
1	$\overline{\mathrm{RD}}$	READ			WRITE
2	CLK I/O	CLOCK I/O			DATA MSB
3	CLKSE	CLOCK SELECT			DATA
4	RST	RESET			DATA
5	CE1	CHIP ENABLE			DATA
6	CEO	CHIP ENABLE			DATA
	A2	ADDRESS MSB		D2	DATA
8		ADDRESS			DATA
		ADDRESS LSB			DATA LSB
	GND			$V_{C C}$	

PIN DEFINITIONS

Pin

1. $\overline{\mathrm{RD}}$
2. CLK I/O

CLK SEL
4. $\overline{\mathrm{RST}}$
5. CE1
6. CEO
7. A2
8. $A 1$
9. $A O$
10. GND
11. $\overline{W R}$
12. D7
13. D6
14. D5
15. D4
16. D3
17. D2
18. D1
19. DO
20. $V_{C C}$

Active low, will enable a processor to read all registers in the PD 2435 (PD 2437).
If CLK SEL (pin 3) is low, then expect an external clock source into this pin. If CLK SEL is high, then this pin will be the master or source for all other devices which have CLK SEL low.
CLock SELect, determines the action of pin 2. CLK I/O, see the section on Cascading for an example.
Reset. Must be held low until $\mathrm{V}_{\mathrm{CC}}>4.5$
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (LSB).
Ground.
Write. Active Low. If the device is selected, a low on the write input loads the data into the PD 2435s (PD 2437s) memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.

DATA INPUT COMMANDS															
$\overline{\mathrm{CEO}}$	CE1	$\overline{\mathrm{RD}}$	$\overline{W R}$	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0	OPERATION
1	0	X	x	X	\times	\times	x	X	x	x	X	x	X	X	No Change
0	1	0	1	1	0	0	X	X	X	X	X	X	X	X	Read Digit 0 Data To Bus
0	1	1	0	1	0	0	X	0	1	0	0	1	0	0	(\$) Written To Digit 0
0	1	1	0	1	0	1	X	1	0	1	0	1	1	1	(W) Written to Digit 1
0	1	1	0	1	1	0	X	1	1	0	0	1	1	0	(f) Written To Digit 2
0	1	1	0	1	1	1	X	0	1	1	0	0	1	1	(3) Written to Digit 3
0	1	1	0	1	0	0	1	X	X	X	X	X	X	X	Char. Written To Digit 0 And Cursor Enabled

MODE SELECTION				
$\overline{\mathrm{CEO}}$	CE 1	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	OPERATION
0	1	0	0	Illegal
1	X	X	X	No Change
X	0	X	X	No Change
X	X	1	1	No Change

NOTE: $0=$ Low Logic Level. $1=$ High Logic Level, $X=$ Don't Care.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The PD 2435 (PD 2437) block diagram includes the major blocks and internal registers.
Display Memory consists of a 5×8 bit RAM block. Each of the four 8 -bit words holds the 7 -bit ASCII data (bits DO-D6). The fifth 8 -bit memory word is used as a control word register. A detailed description of the control register and its functions can be found under the heading Control Word. Each 8-bit word is addressable and can be read from or written to.

The Control Logic dictates all of the features of the display device and is discussed in the Control Word section of this data sheet.
The Character Generator converts the 7-bit ASCII data into the proper dot pattern for the 96 characters shown in the character set chart.
The Clock Source can originate either from the internal oscillator clock or from an external source-usually from the output of another PD 2435 (PD 2437) in a multiple module display.
The Display Multiplexer controls all display output to the digit drivers so no additional logic is required for a display system.
The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEDs in a 5×7 dot array which makes up the alphanumeric characters.
The intensity of the display can be varied by the Control Word in steps of 0% (Blank), 25\%,50\%, and full brightness.

MICROPROCESSOR INTERFACE

The interface to the microprocessor is through the address lines (A0-A2), the data bus (D0-D7), two chip select lines ($\overline{\mathrm{CE}}, \mathrm{CE} 1$), and read ($\overline{\mathrm{RD}}$) and write $(\overline{\mathrm{WR}}$) lines.
To derive the appropriate enable signal, the $\overline{W R}$ and $\overline{R D}$ lines should be "NANDED" into the CE1 input. The $\overline{\text { CEO }}$ should be held low when executing a read, or write operation.
The read and write lines are both active low. During a valid read the data input lines (D0-D7) become outputs. A valid write will enable the data as input lines.

INPUT BUFFERING

If a cable length of 18 inches or more is used, all inputs to the display should be buffered with a tri-state non-inverting buffer mounted as close to the display as conviently possible. Recommended buffers are: 74 HCT 245 for the data lines and 74 HCT 244 or 74 HC 541 for the control lines.

PROGRAMMING THE PD 2435

There are five registers within the PD 2435/2437. Four of these registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display, or to change the presentation (attributes) of individual characters.

ADDRESSING

The addresses within the display device are shown below. Digit 0 is the rightmost digit of the display, while digit 3 is on the left. Although there is only one Control Word, it is duplicated at the four address locations 0-3. Data can be read from any of these locations. When one of these locations is written to, all of them will change together.

Address	Contents
0	Control Word
1	Control Word (Duplicate)
2	Control Word (Duplicate)
3	Control Word (Duplicate)
4	Digit 0 (rightmost)
5	Digit 1
6	Digit 2
7	Digit 3 (leftmost)

Bit D7 of any of the display digit locations is used to allow an attribute to be assigned to that digit. The attributes are discussed in the next section. If bit D7 is set to a one, that character will be displayed using the attribute. If bit D7 is cleared, the character will display normally.

CONTROL WORD

When address bit A2 is taken low, the Control Word is accessed. The same Control Word appears in all four of the lower address spaces of the display. Through the Control Word, the display can be cleared, the lamps can be tested, display brightness can be selected, and attributes can be set for any characters which have been loaded with their most significant bit (D7) set high.
Brightness (D0, D1): The state of the lower two bits of the Control Word are used to set the brightness of the entire display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	X	X	X	X	0	0	Blank
0	0	X	X	X	X	0	1	25% brightness
0	0	X	X	X	X	1	0	50% brightness
0	0	X	X	X	X	1	1	Full brightness

$x=$ don't care

CONTROL WORD FORMAT

Attributes (D2-D4): Bits D2, D3, and D4 control the visual attributes (i.e., blinking) of those display digits which have been written with bit D7 set high. In order to use any of the four attributes, the Cursor Enable bit (D4 in the Control Word) must be set. When the Cursor Enable bit is set, and bit D7 in a character location is set, the character will take on one of the following display attributes.
$\left.\begin{array}{|cccccccc|c|}\hline \text { D7 } & \text { D6 } & \text { D5 } & \text { D4 } & \text { D3 } & \text { D2 } & \text { D1 } & \text { D0 } & \text { Operation } \\ \hline 0 & 0 & 0 & 0 & \text { X } & \text { X } & \text { B } & \text { B } & \begin{array}{l}\text { Disable highlight } \\ \text { attribute }\end{array} \\ 0 & 0 & 0 & 1 & 0 & 0 & \text { B } & \text { B } & \begin{array}{l}\text { Display cursor* instead } \\ \text { of character } \\ 0\end{array} \\ 0 & 0 & 1 & 0 & 1 & \text { B } & \text { B } & \begin{array}{l}\text { Blink single character } \\ \text { Display blinking } \\ \text { cursor* instead of } \\ \text { Character }\end{array} \\ 0 & 0 & 0 & 1 & 1 & 0 & \text { B } & \text { B } & 1 \\ \text { Altenate character } \\ \text { with cursor }{ }^{*}\end{array}\right]$
""Cursor" refers to a condition when all dots in a single character space are lit to half brightness.
$X=$ don't care
$B=$ depends on the selected brightness
Attributes are non-destructive. If a character with bit D7 set is replaced by a cursor (Control Word bit D4 is set, and $\mathrm{D} 3=\mathrm{D} 2=0$) the character will remain in memory and can be revealed again by clearing D4 in the Control Word.

Blink (D5): The entire display can be caused to blink at a rate of approximately 2 Hz by setting bit D5 in the Control Word. This blinking is independent of the state of D7 in all character locations.
In order to synchronize the blink rate in a bank of these devices, it is necessary to tie all devices' clocks and resets together as described in a later section of this data sheet.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	X	X	X	B	B	Blinking display

Lamp Test (D6): When the Lamp Test bit is set, all dots in the entire display are lit at half brightness. When this bit is cleared, the display returns to the characters that were
showing before the lamp test. The lamp test will remain if implemented simultaneously with a clear instruction.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	1	0	X	X	X	X	X	Lamp test

Clear Data (D7): When D7 is set in the Control Word, all character and Control Word memory bits are reset to zero. This causes total erasure of the display, and returns all digits to a non-blink, full brightness, non-cursor status.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	0	x	X	X	x	x	X	Clear

DATA PROTOCOL

The display module continuously executes all control words programmed in the registers. Randomly, before new control works are completely defined, valid unitentional transient control words may be executed. This may present a problem if the memory clear instruction is one of the transients. To avoid the inadvertant clearing of display memory, it is suggested that display data be loaded after changes in control word programming. Alternatively, D7 must be stable in the low state throughout the complete write cycle.

CASCADING

Cascading the PD 2435 (PD 2437) is a simple operation. The requirements for cascading are: 1) decoding the correct address to determine the chip select for each additional device, 2) assuring that all devices are reset simultaneously, and 3) selecting one display as the clock source and setting all others to accept clock input (the reason for cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving six other PD 2435s (PD 2437s). If more displays are required, a buffer will be necessary. The source display must have pin 3 tied high to output clock signals. All other displays must have pin 3 tied low. External clock frequencies should not exceed 100 KHz , normally it should be 30 KHz .

CASCADING THE PD 2435 (PD 2437)

VOLTAGE TRANSIENT SUPPRESSION

It has become common practice to provide $0.01 \mu \mathrm{f}$ bypass capacitors liberally in digital systems. Like other CMOS circuitry, the Intelligent Display controller chip has very low power consumption and the usual $0.01 \mu \mathrm{f}$ would be adequate were it not for the LEDs. The module itself can, in some conditions, use up to 100 mA . In order to prevent power supply transients, capacitors with low inductance and high capacitance at high frequencies are required. This suggests a solid tantalum or ceramic disc for high frequency bypass. For multiple display module systems, distribute the bypass capacitors evenly, keeping capacitors as close to the power pins as possible. Use a $0.01 \mu \mathrm{~F}$ capacitor for each display module and a $22 \mu \mathrm{~F}$ for every third display module.

HOW TO LOAD INFORMATION INTO THE PD 2435 (PD 2437)

Information loaded into the PD 2435 can be either ASCII data or Control Word data. The following procedure (see also typical loading sequence) will demonstrate a typical loading sequence and the resulting visual display. The word STOP is used in all of the following examples.

SET BRIGHTNESS

Step 1 Set the brightness level of the entire display to your preference (example: 100\%)

LOAD FOUR CHARACTERS

Step 2 Load an " S " in the left-hand digit.
Step 3 Load a " T " in the next digit.
Step 4 Load an " O " in the next digit.

Step 5 Load a "P" in the right-hand digit.
If you loaded the information correctly, the PD-2435 should now show the word "STOP."

BLINK A SINGLE CHARACTER

Step 6 Into the digit, second from the right, load the hex code "CF," which is the code for an " O " with the D7 bit added as a control bit. NOTE: the " O " is the only digit which has the control bit (D7) added to normal ASCII data.
Step 7 Load enable blinking character into the control word register.
The PD 2435 should now display "STOP" with a flashing "O."
ADD ANOTHER BLINKING CHARACTER
Step 8 Into the left hand digit, load the hex code "D3" which is for an "S" with the D7 bit added as a control bit.
The PD 2435 should display "STOP" with a flashing "O" and a flashing "S."

ALTERNATE CHARACTER/

 CURSOR ENABLEStep 9 Load enable alternate character/cursor into the control word register.
The PD 2435 should now display "STOP" with the " O " and the " S " alternating between the letter and a cursor (which is all dots lit).
INITIATE FOUR-CHARACTER BLINKING
(Regardless of Control Bit setting)
Step 10 Load enable display blinking.
The PD 2435 should now display the entire word "STOP" blinking.

TYPICAL LOADING SEQUENCE

									$\stackrel{\square}{0}$	$\stackrel{1}{8}$	\pm		$\%$	\%	$\bar{\square}$	8	DISPLAY
1.		H	H	L	L	X	X	0	0	0	0	0	0	0	1		
2.		H	H	L	H	H	H	0	1	0		1	0	0	1	1	S
3.	L	H	H	L	H	H	L	0	1	0		1	0	1	0	0	ST
4.	L	H	H	L	H	L	H	0	1	0	0	0	1	1	1	1	STO
5.	L	H	H	L	H	L	L	0	1	0		1	0	0	0	0	STOP
6.	L	H	H	L	H	L	H	1	1	0		0	1	1	1		STOP
7.	L	H	H	L	L	\times	X	0	0	0		1	0	1	1		STO*P
8.		H	H	L	H	H	H	1	1	0		,	0	0	1		S*TO*P
9.	L	H	H	L	L	X	x	0	0	0		1	1	1	1		S^{\dagger} TO ${ }^{+} \mathrm{P}$
10.	L	H	H	L	L	X	X	0	0	1	,	0	0	0	1		$S^{*} \mathrm{~T}^{*} \mathrm{O}^{*} \mathrm{P}^{*}$

[^10]CHARACTER SET

Notes: 1. A2 must be held high for ASCII data.
2. Bit $\mathrm{D} 7=1$ enables attributes for the assigned digit.
3. A cursor is defined as all dots/digit lit. When an ASCII character is in memory, an enabled cursor will "highlight" that character with slightly brighter LEDs.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

The CMOS IC of the PD 2435 and PD 2437 is designed to provide resistance to both Electrostatic Discharge Damage and Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid overstressing these built-in safeguards.

ESD PROTECTION

Users of the PD 2435 and PD 2437 should be careful to handle the devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or feet ground straps and avoid clothing that collects static charges. Work surfaces, tools and transport carriers that come into contract with unshielded devices or assemblies should also be appropriately grounded.

LATCH UP PROTECTION

Latch up is a condition that occurs in CMOS ICs after the input protection diodes have been broken down. These diodes can be reversed through several means:
$\mathrm{V}_{\mathrm{IN}}<G N D, \mathrm{~V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin conducting as much as one amp through the $V_{C C}$ pin. This destructive condition will persist (latched) until device failure or the device is turned off.
The Voltage Transient Suppression Techniques and buffer interfaces for longer cable runs heip considerably to prevent latch conditions from occuring. Additionally, the following Power Up and Power Down sequence should be observed.

POWER UP SEQUENCE

1. Float all active signals by tri-stating the inputs to the displays.
2. Apply $V_{C C}$ and GND to the display.
3. Apply active signals to the displays by enabling all input signals per application.

POWER DOWN SEQUENCE

1. Float all active signals by tri-stating the inputs to the display.
2. Turn off the power to the display.

SOLDERING CONSIDERATIONS

PD 2435s and PD 2437s can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the $P C$ board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except Carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec. to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone. ${ }^{(1)}$

Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P, Genesolv D, Genesolv DA, Blaco-Tron TF, Blaco-Tron TA and, Freon TA.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, or TES. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The . $200^{\prime \prime}$ high character of the PD 2435 and PD 2437 allow readability up to eight feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The PD 2435 is a high efficiency red display and should be matched with a long wavelength pass filter in the 570 nm to 590 nm range. The PD 2437 should be matched with a yellow-green band-pass filter that peaks at 565 nm . For displays of multiple colors, neutral density grey filters offer the best compromise.

Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%. Proper intensity selection of the displays will allow 10,000 foot candle sunlight viewability.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.

.160" Red, 8-Digit, 18 Segment Including Decimal Alphanumeric Programmable Display ${ }^{\text {™ }}$ With Built-In CMOS Control Functions

FEATURES

- Visible from 7 feet
- Microprocessor Compatible
- End Stackable, 8-Character Package 160 Mil High, Magnified Monolithic Char.
- Viewing Angle $\pm 32^{\circ}$
- 64 Character ASCII Format
- 18-Segment Including Underline and Decimal
- Control \& Display Memory Read/Write
- Total Read/Write Time: 200 ns min.
- Built-in Character Generator
- Built-in Multiplex and LED Drive Circuitry
- Software Controlled Features: Programmable Highlight Attribute (Blinking, Non-blinking, Underline) Asynchronous Memory Clear Function Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Character Underline Function
Programmable Intensity, 3 Brightness Levels
- Intensity Coded For Display Uniformity
- TTL Compatible, Single 5 Volt Power
- Asynchronous Access to Each Digit
- Easily Cascaded
- Internal Or External Clock Source
- Lower CPU Overhead
- Rugged Encapsulated Package

GENERAL DESCRIPTION

The PD 2816 is an 8 -character, alphanumeric Programmable Display. The device is software controlled: display control functions such as blinking, underlining, dimming and blanking are controlled by entering control words through the bi-directional data bus. The display design also gives it the ability to read information from the display RAM and control word register.

The heart of the display device is a built-in CMOS integrated circuit. This integrated circuit contains memory, ASCII ROM character generator, multiplexing circuitry, display drivers, and bus control circuitry. Each display digit is directly addressable and includes a Highlight Attribute control bit. A display system can be built using any number of PD 2816's cascaded together.

The display itself consists of eight 18 -segment, $0.160^{\prime \prime}$ high characters. Each character contains a decimal point and an underline segment. All displays are intensity coded for ease of brightness matching in multiple module designs.

Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

[^11]
OPTOELECTRONIC CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

OPTICAL CHARACTERISTICS

Spectral Peak Wavelength	655 nM Typ
Spectral Line Half-Width	. $40 n M$ Typ
Viewing Angle	+1-32 ${ }^{\circ}$
Digit Height	160 mils.
Luminous Intensity@ VCC = 5V (@ 100% Intensity)	$0.15 \mathrm{mcd} /$ Seg
Intensity matching.	
Seg to Seg @ VCC= $=5 \mathrm{~V}$	1.8:1

D.C. CHARACTERISTICS					
Parameters	Conditions	Min.	Typ.	Max.	Units
$V_{C C}$		45		5.5	Volts
${ }^{\text {I }} \mathrm{CC}$ (Display Blank)	$\begin{aligned} & \mathrm{VCC}=5 \mathrm{~V} \\ & W R=V C C \\ & V I N=0 V \end{aligned}$	20	5.0	10	mA
$\begin{aligned} & \text { Icc }(10 \text { segs. } / \text { char } \\ & 8 \text { digits on }) \end{aligned}$	@ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	80	125	150	inA
VIL (All inputs)	(e) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			08	Volts
VIH (All inputs) 1)	@ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.0			Volts
IIL (All inputs)	$\begin{aligned} & @ \mathrm{VCC}=5 \mathrm{~V} \\ & \mathrm{VIN}=0 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
CLK Drive CLK I/O Output ${ }^{21}$	@ C_{IN} 15pF / input			6	Devices (PD-2816)

1) VIH Min $=60 \%$ VCC \quad 2) See "CASCADING" for explanation.

READ CYCLE TIMING		
Parameter	Description	Specification (ns)
$T_{A D}$	Address set up delay after $\overline{\mathrm{CE}}, \mathrm{CE} 2$, or RD, whichever occurs last	0 min
$\mathrm{T}_{\text {ACC }}$	Delay time for data valid after address	175 max
$T_{\text {DD }}$	Delay time for data valid after $\overline{\mathrm{RD}}$ pulse	150 max
T_{RC}	Total read cycle time per address	210 min
T_{DH}	Data hold from ADDR, $\overline{\mathrm{CE}}, \mathrm{CE} 2$, or $\overline{\mathrm{RD}}$, whichever occurs first after the read pulse	0 min
$\mathrm{T}_{\text {RD }}$	Read pulse width	175 min

NOTES: 1. $T_{R D}=T_{R C}-T_{A D}-\left(T_{A C C}-T_{D D}\right)$
2. All timing in nano-seconds
3. Rise/Fall time is dependent upon external system except data out

DATA READ CYCLE
$V_{C C}=4.5 \mathrm{~V}, 25^{\circ} \mathrm{C}$

WRITE CYCLE TIMING		
Parameter	Description	Specification (ns)
$\mathrm{T}_{\text {WD }}$	Write pulse delay from $\overline{\mathrm{CE1}}, \mathrm{CE2}$, DATA,	50 min
$\mathrm{~T}_{\text {DH }}$	RD, or ADDR, whichever occurs last Data hold after $\overline{\text { CE1 }}, \mathrm{CE2}, \overline{\text { WR }}$, or	50 min
$\mathrm{~T}_{\text {WR }}$	ADDR, whichever occurs first Write pulse width	110 min
$T_{\text {WC }}$	Total write cycle time	210 min

[^12]

TIMING MEASUREMENT LEVELS

DATA BUS OUTPUT TRANSITIONS
AT $25^{\circ} \mathrm{C} \mathrm{CL}=100 \mathrm{pF}$

NOTES

Note 1: Off Axis Viewing Angle is here defined as the minimum angle in any direction from the normal to the display surface at which any part of any segment in the display is not visible
Note 2: The display contains a CMOS integrated circuit Normal CMOS handling precautions should be taken to avoid damage due to high static voltages or electric fields
Note 3: Unused inputs must be tied to an appropriate logic voltage level (either V_{CC} or GND)
Note 4 Warning - Do not use solvents containing alcohol.

PD 2816 BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The PD 2816 block diagram includes the major logic blocks and internal registers.
Display Memory consists of a 9×8 bit RAM block. Each of the eight 8 -bit words holds the 7 -bit ASCII data (bits D0-D6) and 1-bit (bit D7) for underlining each character. The ninth 8 -bit memory word is used as control register. A detailed description of the control register and its functions can be found under the heading Control Word Register. Each 8 -bit word is addressable and can be read from or written to.
The Control Word Decoder and control logic dictates all of the special features of the display device. These are discussed under various headings in the Control Word Register section.
The Character Generator ROM converts the 7-bit ASCII data into the proper segment configuration for the 64 characters as shown in the character set chart.

In the Display Multiplexer and Timing Logic, the clock source can be either from the internal clock or from an external source (usually from the output of another PD-2816 in a multiple module display). The multiplexer controls all display output to the digit drivers so no additional logic is required for a display system.
The segment and digit drivers are located on the CMOS IC and connected directly to the LEDs.
Each of the eight digits is comprised of 16 segments which make up the alphanumeric characters, one decimal point, and an underline segment. The intensity of the display can be varied by the Control Word to Blank, $25 \%, 50 \%$, and full brightness.

OPERATION

Data entry in the "Programmable Display" is asynchronous and may be done in any random order. Loading data is similar to writing into a RAM or reading back from one. Each digit has its own memory location and will display until replaced by another code.

The switching specifications demonstrate the relationships of the signals required to generate a write or a read cycle.

DATA INPUT

The eight words of memory corresponding to the eight display digits are addressed through the address lines (AO-A3) and the chip enable lines ($\overline{\mathrm{CE} 1}$ and CE2). Address bits A0-A2 address the digits 0 (right most digit) to digit 7 (left most digit). Address bit A 3 is held high to address display memory, a low on A3 accesses the Control Word. Display data is in the 7-bit ASCII format (bits D0-D6). The character set chart shows the resulting font. With the Highlight Attributes (bits D2, D3, \& D4 of the control word) a combination of nonblinking, blinking and underline can be controlled independent of the digit position.
The underline (cursor) is written into the display memory by adding bit D7 to the seven-bit ASCII code of the character. To display the underline, one of the Highlight Attribute control words has to be used, see Control Word Truth Table.

TYPICAL DATA LOADING												
A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	DISPLAY
1	1	1	1	0	1	0	1	0	0	1	1	S
1	1	1	0	0	1	0	0	1	0	0	1	SI
1	1	0	1	0	1	0	0	0	1	0	1	SIE
1	1	0	0	0	1	0	0	1	1	0	1	SIEM
1	0	1	1	0	1	0	0	0	1	0	1	SIEME
1	0	1	0	0	1	0	0	1	1	1	0	SIEMEN
1	0	0	1	0	1	0	1	0	0	1	1	SIEMENS
1	0	0	0	0	0	1	0	0	0	0	1	SIEMENS!
0	X	X	X	0	1	0	X	X	X	X	\times	
0	X	X	X	0	0	X	X	X	X	1	1	SIEMENS!

$X=$ don't care

READ/WRITE CONTROL ADDRESS TABLE

SIGNALS								OPERATION
$\overline{\mathrm{CE}} 1$	CE2	$\overline{\text { RD }}$	WR	A3	A2	A1	A0	
L	H	H	H	X	X	X	X	NO OPERATION
L	H	L	L	x	\times	X	\times	ILLEGAL
L	H	L	H	H	L	L	L	DIGIT O(RIGHT)
L.	H	L	H	H	-	-	-	- READ DISPLAY
L	H	L	H	H	-	-	-	- DATA RAM
L	H	L	H	H	H	H	H	DIGIT 7 (LEFT)
L	H	L	H	L	X	X	X	READ CONTROL REGISTER
L	H	H	L	H	L	L	L	DIGIT O (RIGHT)
L	H	H	L	H	-	-	-	W WRITE DISPLAY
L	H	H	L	H	-	-	-	
L	H	H	L	H	1	11	H	DIGIT 7 \{LEFT\}
L	H	${ }_{1}$	L	L	\times	X	X	WRITE CONTROL REGISTER

ADDRESS MAP					
ADDRESS	A3	A2	A1	A0	CONTENTS
$0-7$	0	\times	\times	\times	CONTROL WORD REGISTER
8	1	0	0	0	DIGIT 0 (Rightmost)
9	1	0	0	1	DIGIT 1
A	1	0	1	0	DIGIT 2
B	1	0	1	1	DIGIT 3
C	1	1	0	0	DIGIT 4
D	1	1	0	1	DIGIT 5
E	1	1	1	0	DIGIT 6
F	1	1	1	1	DIGIT 7 (Leftmost)

CONTROL WORD REGISTER

The Control Word is addressed by holding line A3 low. The states of the other 3 address lines (AO-A2) do not matter. The Control Word can be read from or written to. The truth table defines each of the bits and their functions.

Bits D0 and D1 control the display brightness. Bits D2, D3 and D4 control the Highlight Attribute function. Bit D5 controls blinking. Bit D6 is a lamp test bit. Bit D7 clears the memory display.

Display Brightness: The display can be programmed to vary between blank, 25\%,50\%, and full brightness. Bits D0 and D1 control the brightness.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
L	L	X	X	X	X	L	L	Blank
L	L	X	X	X	X	L	H	25% brightness
L	L	X	X	X	X	H	L	50% brightness
L	L	X	X	X	X	H	H	Full brightness

Highlight Attribute Function: In the Control Word bits D2, D3, and D4 control, the Highlight Attribute (Blinking, NonBlinking, Underline).

To control this function, a high must be present on D4.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
L	L	L	L	X	X	B	B	Disable highlight attribute L L
L	H	L	L	B	B	Solid character solid underline Llinking chacacter Lolid underline		
L	L	L	H	L	H	B	H	L
B	B	Solid character blinking underline Blinking character blinking underline						

$B=$ depends on the selected brightness
Display Blinking: The designer has the option of displaying several message priorities by blinking either the character or the underline or both. The entire display can be blinked by writing a high into bit D5 of the Control Word. This function is independent of the bits D2, D3, \& D4. Any character can be blinked by loading the underline and using the proper Highlight Attribute code. Display blinking is approximately at 2 Hz .

D7	D6	D5	D4	D3	D2	D1	D0	Operation
L	L	H	X	X	X	B	B	Blinking display

Lamp Test: In the Control Word, bit D6 is the Lamp Test bit. In order to limit peak power this sets all segments to a 50% brightness level regardless of what is in the display memory. Setting this bit has no effect on the display memory and clearing it will restore the display to its original condition.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
L	H	L	X	X	X	X	X	Lamp test

CONTROL WORD FORMAT

Display Clear: To clear all display memory locations, write a high to bit D7 of the Control Word. This will "clean the slate" and prepare for new data to be displayed. The data in the RAM is cleared. The bit is automatically cleared after the display is cleared.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
H	L	L	L	L	L	L	L	Clear

MICROPROCESSOR INTERFACE

The interface to the microprocessor is through the address lines (A0-A3), the data bus (D0-D7), two chip select lines ($\overline{\mathrm{CE}}, \mathrm{CE} 2$), and the read ($\overline{\mathrm{RD}})$ and write ($\overline{\mathrm{WR}}$) lines.
Two chip enable lines are provided to simplify address decoding. $\overline{\text { CE1 }}$ must be low, while CE2 must be high for any read or write operation to take place.
The read and write lines are both active low. During a valid read (i.e: chip enable and read low) the data input lines (D0-D7) become output. A valid write will enable the data as input lines.

The address lines determine which RAM or register position will be read or written. If A3 is high then A0-A2 determine the display RAM position. If A3 is low then the operation will be to the control register regardless of the AO-A2

general interface circuit

 address lines.TOP VIEW

PIN DEFINITIONS

Pin	Function	Description
1	$\overline{\text { RST }}$	Active low reset input. Initializes multiplex counter. Used to synchronize blinking between two displays.
2-5	A0-A3	Address inputs for display memory RAM.
6	$\overline{\mathrm{CE} 1}$	Active low chip enable input.
7	CE2	Active high chip enable input.
8	CLK I/O	If CLK SEL is low, then this pin inputs external clock source. If CLK SEL is high, then this pin outputs internal clock pulses.
9	CLK SEL	Clock select input. When low, selects external clock source. When high, selects internal clock source.
10	$\overline{\mathrm{RD}}$	Active low read enable input. If the display is selected, a low will enable the output drivers of the data bus.
11	OA	OSC. ADJ. The clock frequency can be reduced or increased by connecting a larger or smaller resistor value than $250 \mathrm{~K} \Omega$ respectively from this pin to $V_{C C}$. A $250 \mathrm{~K} \Omega$ resistor does not change the clock frequency.
12	GND	Ground.

PIN ASSIGNMENTS

Pin	Function		Pln	Function		
1	$\overline{\mathrm{RST}}$	RESET	13	DIM	DIMMER	
2	AO	ADDRESS LSB	14	WR	WRITE	
3	A1	ADDRESS	15		datal/O	
4	A2	ADDRESS	16	D1	DATA I/O	
5	A3	ADDRESS MSB	17	D2	data I/O	
			18	D3	data I/O	
6	CE1	CHIP SELECT	19	D4	data I/O	
7	CE2	CHIP SELECT	20	D5	data I/O	
8	CLK	CLOCK I/O	21		DATA I/O	
9	CKS	CLOCK SELECT	22	D7	data I/O	MSB
10	RD	READ	23	VCC		
11	OA	OSC ADJUST	24	vCC		

Pin	Function	Description
13	DIM	Hardware display brightness control. The brightness of the PD 2816 can also be controlled by an external resistor. By connecting a resistor from the DIM pin to $V_{C C}$, this sets the new 100% brightness value for the Control Word brightness function. A 12.5 k resistor and greater value will not change the brightness level, a 7.5 k resistor will decrease the brightness level to approximately a 50% level, a 3.5 k resistor will decrease the brightness to approximately a 25% level. The DIM pin may be left open without affecting the internal present 100% brightness level.
14	$\overline{W R}$	Active low write enable input. If the display is selected, a low will write the data on the data bus into the selected register or memory.
15-22	D0-D7	Data Bus. The data bus lines are bidirectional tri-state signals connected to the system bus. The outputs are enabled during a read operation of the display memory or the control register. The outputs are disabled and the inputs read during a write cycle to the display memory or the control register.
23-24	$V_{C C}$	+5 volt supply-both must be

CHARACTER SET

				DO	L	H	1	H	1	H	L	H	L	H	L	H	L	H	1	H
				D1	1	L	H	H	L	L	H	H	1	L	H	H	L	1	H	H
				D2	1	L	L	L	H	H	H	H	L	L	L	L	H	H	H	H
				D3	L	L	L	L	L	L	L	1	H	H	H	H	H	H	H	H
07	06		D4	HEx	0	1	2	3	4	5	6	7	8	9	A	8	C	0	E	F
t	L	H	L	2	-	1	11	IJ	5	$\underline{16}$	8	1	1	1	w	1	/	"-	-	1
L	L	H	H	3	11	1	5	7	11	E	E	7	E	$!$	-	1	1	--	1	1
4	H	L	L	4	[1]	1	$\begin{array}{r} 7 \\ 0 \end{array}$	F-	II	E^{-}	$5^{-\infty}$	13	$1-1$	${ }^{-1}$	LI	11	1	M	NV	17
L	H	1	H	5	5	17	5	C]	7	11	$1 /$	VV	N	Y	${ }_{4}^{7}$	1	I	1	1	-

NOTES 1) A3 Must be held high to get into character set.
2) All other inputs display Blank
3) When D7 is high. underline is enabled

CASCADING TWO PD 2816 s

CASCADING

Cascading PD 2816s is a simple operation. The requirements for cascading are: 1) decoding the correct address to determine the chip select for each additional device, 2) selecting one display as the clock source and setting all others to accept clock input (the reason for cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving six other PD 2816s (with each input having 15pf input capacitance). If more displays are required, a buffer will be necessary.

GENERAL DESIGN CONSIDERATIONS

- The display is designed with the lowest address ($A 0=A 1$ $=A 2=0$) as the right most digit. For systems with only a 6 -bit ASClI code format, Data Line D6 cannot be left open and must be the complement of Data Line D5.
- When the device is in the "BLANK" mode (with no segments displayed) it draws an average current of 5 mA . In comparison, when all eight digits (10 segments each) are displayed at 100% brightness, the DC current drawn is 125 mA typically when the device is connected to 5 V . In case all segments are turned "ON" at 50\% brightness, e.g., in the "LAMP TEST" mode the current drawn will increase to 200 mA typically.
- At power up, a flashing underline is displayed. This can be cleared by writing the "CLEAR" code to the device.
- When using multiple devices a $10 \mathrm{uf} / 10 \mathrm{~V}$ tantalum bypass capacitor and a .luf ceramic bypass capacitor should be used for every two devices. This is good engineering practice to try to reduce the noise and line regulation on the power supply lines.
- When using PD 2816 s on a separate display board having more than 6 inches $/ 15 \mathrm{~cm}$ of cable length all signal lines should be buffered. This can be easily achieved by using CMOS or TTL type non-inverting buffers. The buffers should be located on the display board and near the PD 2816s. If it desirable to use a common power supply for PD 2816 and all support circuitry. If this is not possible, it is essential to provide local buffers using hex noninverting gates on all PD 2816 s inputs, powered from display power supply. This precaution avoids logic inputs
higher than display $V_{C C}$ during power up or line transients.
- The PD 2816 design provides a high viewing contrast between the display and its background. However, for increased contrast enhancement a long wavelength pass filter having a sharp cutoff in the 600/620nm range is recommended. Due to their low cost, design flexibility, and resistance to breakage, plastic contrast filters are recommended for the majority of applications. In extremely bright ambient conditions, additional filtering techniques may be required. These include: louvered filters, polarized filters and device shading.

PACKAGING

Packaging consists of an injection-molded plastic lens, and a PCB. A high grade back-fill epoxy is used to seal the device from water and-moisture. Although not "hermetic", the device easily withstands total immersion in water/detergent solutions.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

The CMOS IC of the PD 2816 is designed to provide resistance to both Electrostatic and Discharge Damage and Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid overstressing these built-in safeguards.

ESD PROTECTION

Users of the PD 2816 should be careful to handle the devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or feet ground straps and avoid clothing that collects static charges. Work surfaces, tools and transport carriers that come into contract with unshielded devices or assemblies should also be appropriately grounded.

LATCH UP PROTECTION

Latch up is a condition that occurs in CMOS ICs after the input protection diodes have been broken down. These diodes can be reversed through several means:
$V_{\mathbb{I N}}<G N D, V_{I N}>V_{C C}+0.5 \mathrm{~V}$, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin conducting as much as one amp through the $V_{c c}$ pin. This destructive condition will persist (latched) until device failure or the device is turned off.
The Voltage Transient Suppression Techniques and buffer interfaces for longer cable runs help considerably to prevent latch conditions from occuring. Additionally, the following Power Up and Power Down sequence should be observed.

POWER UP SEQUENCE

1. Float all active signals by tri-stating the inputs to the displays.
2. Apply $V_{C C}$ and GND to the display.
3. Apply active signals to the displays by enabling all input signals per application.

POWER DOWN SEQUENCE

1. Float all active signals by tri-stating the inputs to the display.
2. Turn off the power to the display.

SOLDERING CONSIDERATIONS

The PD 2816 can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.

Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.

Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for 5 seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone. ${ }^{11}$
Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS +, TE, and TES. Since many commercial mixtures exist, you should contact your solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 18 pin DIP sockets $600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $.160^{\prime \prime}$ high characters of the PD 2816 allow readability up to eight feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.

Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The PD 2816 is a standard red display and should be matched with a long wavelength pass filter in the 600 nm to 620 nm range. For display systems of multiple colors (using other Siemens' displays), neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters. Recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufac̣turers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Refer to Siemens Appnote 23 for further information.
${ }^{(1)}$ Some commercial names for acceptable compounds are: Basic TF, Arklone P, Genesolve D, Blaco-tron TF, Freon TA, Genesolve DA, and Blaco-tron TA.

0.270" 4-Character, 5×7 Dot Matrix Alphanumeric Programmable Display ${ }^{\text {TM }}$ With Built-In CMOS Control Functions

NOT FOR NEW DESIGNS

(Refer to the Improved Extended Performance of PD 3535/7 for Similar Applications)

FEATURES

- Four 0.27" Character Subassemblies, SurfaceMounted on Ceramic Substrate in Bright Green or High-Efficiency Red
- Readable from 12 Feet (4 meters)
- Built-in Memory, Decoders, Multiplexer and Drivers
- Wide Viewing Angle, X Axis $\pm 55^{\circ}$, Y Axis $\pm 70^{\circ}$
- 96-Character ASCII Format (Both Upper and Lower Case Characters)
- 8-Bit Bidirectional Data BUS
- READ/WRITE Capability
- Resistant to Most Common Solvents
- Categorized for Luminous Intensity
- 100\% Burned In and Tested
- Dual In-Line Package Configuration, 0.600" Wide, $0.100^{\prime \prime}$ Pin Centers
- End-Stackable Package
- Internal or External Clock
- Built-In Character Generator ROM
- TTL Compatible
- Easily Cascaded for Multidisplay Operation
- Less CPU Time Required
- Software Controlled Features:

Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity, Three Brightness Levels

NOTE: PART MARKING IS AT THE BOTTOM SURFACE
PD-343X Z---7
SIEMENS YYWW
$. x X X=.020(.508)$

DESCRIPTION

The PD 3435 and PD 3437 are four digit display system modules. The display portion consists of four surfacemounted 7×5 dot matrix arrays. The arrays consist of the latest technology in solid state light emitting diodes fully encapsulated in double molded packages. The $0.27^{\prime \prime} \times 0.19^{\prime \prime}$ characters, readable from 12 feet, come in either High Efficiency Red or Bright Green.

Completing the display system are two CMOS IC's mounted and encapsulated within a ceramic substrate. The CMOS intelligence provides timing and control logic to efficiently strobe and drive the display matrixes for maximum viewability, with minimum power consumption. The intelligent CMOS also provides memory to hold four ASCII characters and one control word. The on-board IC has an ASCII character ROM and generator that translates 96 alphanumeric ASCII symbols into the appropriate drive signals for the four displays. The control word commands display attributes to allow the user to software program any of the following features: clear memory, test all LED's, blink the entire display, blink individual characters, display cursors, alternately flash cursors and characters, or set the intensity to one of four pre-programmed levels. Finally, all interface buffering is also controlled by the integrated silicon circuits. Data and control words are exchanged (either read or write) asynchronously over an 8 bit bidirectional, TTL compatible data bus. Clock selection and generator/slave options allow for complete synchronization of any number of displays, each individually addressable via the 3 bit address code and the chip enable inputs. A separate reset pin allows for immediate reset of all cascaded displays.
The complete module $1.4^{\prime \prime} \times 0.6^{\prime \prime} \times 0.3^{\prime \prime}$ package has standard 20 pin DIP construction with $0.6^{\prime \prime}$ rows on $0.1^{\prime \prime}$ centers. It is wave solderable and fully qualified to operate

DESCRIPTION (Continued)
from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. All products are 100% burned in and 100% tested. Outgoing A.Q.L.'s are set at 0.25% for catastrophic electrical parameters and 1.0\% for: mechanical and dimensional specifications, optical defects, lead solderability and package integrity, local defects on die, brightness matching LED to LED, digit to digit, and device to device. All devices are intensity binned to allow users to construct uniform displays of any length.(1)

Note: 1. Refer to the end of this data sheet or to Appnotes 18, 19, 22, and 23 for further details on handling and assembling Siemens Programmable Displays.

Maximum Ratings

DC Supply Voltage -0.5 to +6.0 Vdc Input Voltage Levels Relative
to GND (all inputs) -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{Vdc}$
Operating Temperature $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Solder Temperature $.063^{\prime \prime}$ (1.59 mm) below Seating Plane, t<5 sec $260^{\circ} \mathrm{C}$
Relative Humidity @60${ }^{\circ} \mathrm{C}$. 90%

Optical Characteristics @ $25^{\circ} \mathrm{C}$
Spectral Peak Wavelength
(3435) 635 nm typ.
(3437) 565 nm typ.

Viewing Angle, horizontal . $\pm 55^{\circ}$
(off normal axis) vertical . $\pm 70^{\circ}$
Digit Size . 0.270" $\times 0.190^{\prime \prime}$
Time Averaged Luminous Intensity (1)
$\left(100 \%\right.$ brightness, $\left.5 \mathrm{Vdc}=\mathrm{V}_{\mathrm{CC}}\right) \ldots \ldots .250 \mu \mathrm{~cd} / \mathrm{LED}$ typ
HER . $100 \mu \mathrm{~cd} / \mathrm{cd} / \mathrm{LED}$ min min
Green
LED to LED Intensity Matching 1.8:1.0 max.
Device to Device (one bin) 1.5:1.0 max.
Bin to Bin (adjacent bins) 1.9:1.0 max.

SWITCHING SPECIFICATIONS

$\left(@ 25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$)(1)

READ CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TAD	Address set up delay after CE Access time for data valid after address	175
TDD	Delay time for data valid after read pulse	150 max.
TRC	Total read cycle time	200
TDH	Data valid after end of read pulse Read pulse	0
TRD	175	

WRITE CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TWD	Delay time for write pulse after control signals and data	50
TDH	Data hold after write pulse	50
TWC	Total write cycle time	200
TWR	Write pulse width	100

Note: 1. Timing characteristics are guaranteed values at the worst case condition of $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{Vdc}$. Characterization data indicates these values also hold over temperature from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ except for TAD and TDH. These two read cycle timing minimums may extend to 5 ns at $+70^{\circ} \mathrm{C}$.

Note: 1. Peak luminous intensity values can be calculated by multiplying these values by 7 .

TIMING CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

$V_{C C}=4.5 \mathrm{~V}$

DATA "WRITE" CYCLE

Note: $T_{W R}=T_{W C}-\left(T_{W D}+T_{D H}\right)$
$T_{R D}=T_{R C}-T_{A D}-\left(T_{A C C}-T_{D D}\right)$

DATA "READ" CYCLE

DC CHARACTERISTICS (@25ㅇ

Parameters	Limits			Units	Conditions
	Min.	Typ.	Max.		
$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	Volts	Nominal
ICC Blank (All Inputs Low)		2.5	5.0	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=.8 \mathrm{~V}, \mathrm{WR}=5 \mathrm{~V}$
ICC Lamp Test (1⁄2 Brightness)		62		mA	$V_{C C}=5 \mathrm{~V}$
ICC 80 LEDs/unit (100\% Bright)	100	150(1)	200(2)	mA	$V_{C C}=5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$ (All Inputs)	-0.5		0.8	Volts	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V
V_{IH} (All Inputs)	2.0		5.5	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{I}_{1 / 2}$ (All Inputs)			200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$

Notes: 1. Typical average LED drive current is 1.9 mA . Peak current at $1 / 7$ multiplex rate is 13 mA .
2. Characterization data indicates max ${ }^{\mathrm{I} C \mathrm{C}}$ will vary from 230 mA at $-20^{\circ} \mathrm{C}$ to 170 mA at $70^{\circ} \mathrm{C}$.

TOP VIEW

Pin 1 indicator, painted beveled corner.

PIN ASSIGNMENTS

PIN DEFINITIONS

$\left.\begin{array}{ll}\text { Pin } & \\ \text { 1. } \overline{\text { RD }} & \begin{array}{l}\text { Active low, will enable a processor to read } \\ \text { all registers in the PD 3435 (PD 3437). } \\ \text { If CLK SEL (pin 3) is low, then expect an } \\ \text { external clock source into this pin. If CLK }\end{array} \\ \text { 2. CLK I/O } & \\ \text { SEL is high, then this pin will be the } \\ \text { master or source for all other devices } \\ \text { which have CLK SEL low. } \\ \text { CLock SELect, determines the action of } \\ \text { pin 2. CLK I/O, see the section on } \\ \text { Cascading for an example. }\end{array}\right\}$

Active low, will enable a processor to read registers in the PD 3435 (PD 3437) SEL is high, then this pin will be the master or source for all other devices which have CLK SEL low. pin 2. CLK I/O, see the section on Cascading for an example.
Reset. Must be held low until $\mathrm{V}_{\mathrm{CC}}>4.5$ volts. Reset is used only to synchronize memory.

Chip enable (active high).
Aip enable (acive
Address input (MSB).
Address input (LSB).
round selected, a low on the write input loads the data into the PD 3435s (PD 3437s) memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 4
Dat Busbit
Data Busbit
Data Bus bit 1.

Plus 5 volts power pin.

DATA INPUT COMMANDS															
CE0	CE1	$\overline{\mathrm{RD}}$	$\overline{\text { WR }}$	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	DO	OPERATION
1	0	x	x	X	X	\times	X	x	X	x	X	X	X	x	No Change
0	1	0	1	1	0	0	X	X	X	X	X	X	X	X	Read Digit 0 Data To Bus
0	1	1	0	1	0	0	0	0	1	0	0	1	0	0	(\$) Written To Digit 0
0	1	1	0	1	0	1	0	1	0	1	0	1	1	1	(W) Written to Digit 1
0	1	1	0	1	1	0	0	1	1	0	0	1	1	0	(f) Written To Digit 2
0	1	1	0	1	1	1	0	0	1	1	0	0	1	1	(3) Written to Digit 3
0	1	1	0	1	0	0	1	X	X	X	X	X	X	X	Char. Written To Digit 0 And Cursor Enabled

MODE SELECTION					
$\overline{\text { CEO }}$	CE1	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	OPERATION	
0	1	0	0	Illegal	
1	X	X	X	No Change	
X	0	X	X	No Change	
X	X	1	1	No Change	

NOTE: $0=$ Low Logic Level, $1=$ High Logic Level, $X=$ Don't Care.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The PD 3435 (PD 3437) block diagram includes the major blocks and internal registers.
Display Memory consists of a 5×8 bit RAM block. Each of the four 8 -bit words holds the 7 -bit ASCII data (bits D0-D6). The fifth 8-bit memory word is used as a control word register. A detailed description of the control register and its functions can be found under the heading Control Word. Each 8 -bit word is addressable and can be read from or written to.

The Control Logic dictates all of the features of the display device and is discussed in the Control Word section of this data sheet.

The Character Generator converts the 7 -bit ASCII data into the proper dot pattern for the 96 characters shown in the character set chart.
The Clock Source can originate either from the internal oscillator clock or from an external source-usually from the output of another PD 3435 (PD 3437) in a multiple module display.
The Display Multiplexer controls all display output to the digit drivers so no additional logic is required for a display system.

The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEDs in a 5×7 dot array which makes up the alphanumeric characters.
The intensity of the display can be varied by the Control Word in steps of 0% (Blank), 25\%,50\%, and full brightness.

MICROPROCESSOR INTERFACE

The interface to the microprocessor is through the address lines (A0-A2), the data bus (D0-D7), two chip select lines ($\overline{\mathrm{CEO}}, \mathrm{CE} 1$), and read ($\overline{\mathrm{RD}}$) and write ($\overline{\mathrm{WR}) \text { lines. }}$
To derive the appropriate enable signal, the $\overline{W R}$ and $\overline{R D}$ lines should be "NANDED" into the CE1 input. The CE0 should be held low when executing a read, or write operation.
The read and write lines are both active low. During a valid read the data input lines (D0-D7) become outputs. A valid write will enable the data as input lines.

INPUT BUFFERING

If a cable length of 18 inches or more is used, all inputs to the display should be buffered with a tri-state non-inverting buffer mounted as close to the display as conveniently possible. Recommended buffers are: 74HCT245 for the data lines and 74 HCT 244 or 74 HC 541 for the control lines.

PROGRAMMING THE PD 3435

There are five registers within the PD 3435/3437. Four of these registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display, or to change the presentation (attributes) of individual characters.

ADDRESSING

The addresses within the display device are shown below. Digit 0 is the rightmost digit of the display, while digit 3 is on the left. Although there is only one Control Word, it is duplicated at the four address locations 0-3. Data can be read from any of these locations. When one of these locations is written to, all of them will change together.

Address	Contents
0	Control Word
1	Control Word (Duplicate)
2	Control Word (Duplicate)
3	Control Word (Duplicate)
4	Digit 0 (rightmost)
5	Digit 1
6	Digit 2
7	Digit 3 (leftmost)

Bit D 7 of any of the display digit locations is used to allow an attribute to be assigned to that digit. The attributes are discussed in the next section. If bit D7 is set to a one, that character will be displayed using the attribute. If bit D7 is cleared, the character will display normally.

CONTROL WORD

When address bit A2 is taken low, the Control Word is accessed. The same Control Word appears in all four of the lower address spaces of the display. Through the Control Word, the display can be cleared, the lamps can be tested, display brightness can be selected, and attributes can be set for any characters which have been loaded with their most significant bit (D7) set high.

CONTROL WORD FORMAT

Brightness (D0, D1): The state of the lower two bits of the Control Word are used to set the brightness of the entire display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	X	\times	X	\times	0	0	Blank
0	0	X	X	X	X	0	1	25% brightness
0	0	X	X	X	X	1	0	50% brightness
0	0	X	X	X	X	1	1	Full brightness

$X=$ don't care

Attributes (D2-D4): Bits D2, D3, and D4 control the visual attributes (i.e., blinking) of those display digits which have been written with bit D7 set high. In order to use any of the four attributes, the Cursor Enable bit (D4 in the Control Word) must be set. When the Cursor Enable bit is set, and bit D7 in a character location is set, the character will take on one of the following display attributes.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	0	0	X	X	B	B	Disable highlight attribute
0	0	0	1	0	0	B	B	Display cursor* instead of character
0	0	0	1	0	1	B	B	Blink single character Display blinking cursor instead of character
0	0	0	1	1	0	B	B	0
Alternate character								
with cursor**								

*"Cursor" refers to a condition when all dots in a single character space are lit to half brightness, character RAM contents are highlighted.
$X=$ don't care
$\mathrm{B}=$ depends on the selected brightness
Attributes are non-destructive. If a character with bit D7 set is replaced by a cursor (Control Word bit D4 is set, and $\mathrm{D} 3=\mathrm{D} 2=0$) the character will remain in memory and can be revealed again by clearing D4 in the Control Word.
Blink (D5): The entire display can be caused to blink at a rate of approximately 2 Hz by setting bit D5 in the Control Word. This blinking is independent of the state of D7 in all character locations.
In order to synchronize the blink rate in a bank of these devices, it is necessary to tie all devices' clocks and resets together as described in a later section of this data sheet.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	X	X	X	B	B	Blinking display

Lamp Test (D6): When the Lamp Test bit is set, all dots in the entire display are lit at half brightness. When this bit is cleared, the display returns to the characters that were showing before the lamp test. A lamp test will override the clear data (D7) instruction.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	1	0	\times	\times	\times	\times	\times	Lamp test

Clear Data (D7): When D7 is set in the Control Word, all character and Control Word memory bits are reset to zero.

This causes total erasure of the display, and returns all digits to a non-blink, full brightness, non-cursor status. Clear data does not override an active lamp test.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	0	\times	\times	\times	\times	\times	\times	Clear

DATA PROTOCOL

The display module continuously executes all control words programmed in the registers. Randomly, before new control words are completely defined, valid unintentional trarisient control words may be executed. This may present a problem if the memory clear instruction is one of the transients. To avoid the inadvertant clearing of display memory, it is suggested that display data be loaded after changes in control word programming. Alternatively, D7 must be stable in the low state throughout the complete write cycle.

CASCADING

Cascading the PD 3435 (PD 3437) is a simple operation. The requirements for cascading are: 1) decoding the correct address to determine the chip select for each additional device, 2) assuring that all devices are reset simultaneously, and 3) selecting one display as the clock source and setting all others to accept clock input (the reason for cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving six other PD 3435s (PD 3437s). If more displays are required, a buffer will be necessary. The source display must have pin 3 tied high to output clock signals. All other displays must have pin 3 tied low.

VOLTAGE TRANSIENT SUPPRESSION

It has become common practice to provide $0.01 \mu \mathrm{f}$ bypass capacitors liberally in digital systems. Like other CMOS circuitry, the Intelligent Display controller chip has very low power consumption and the usual $0.01 \mu \mathrm{f}$ would be adequate were it not for the LEDs. The module itself can, in some conditions, use up to 100 mA . In order to prevent power supply transients, capacitors with low inductance and high capacitance at high frequencies are required. This suggests a solid tantalum or ceramic disc for high frequency bypass. For multiple display module systems, distribute the bypass capacitors evenly, keeping capacitors as close to the power pins as possible. Use a $0.01 \mu \mathrm{f}$ capacitor for each display module and a $22 \mu f$ for every third display module.

HOW TO LOAD INFORMATION INTO THE PD 3435 (PD 3437)

Information loaded into the PD 3435 can be either ASCII data or Control Word data. The following procedure (see also typical loading sequence) will demonstrate a typical loading sequence and the resulting visual display. The word STOP is used in all of the following examples.

SET BRIGHTNESS

Step 1 Set the brightness level of the entire display to your preference (example: 100\%)

LOAD FOUR CHARACTERS

Step 2 Load an " S " in the left-hand digit.
Step 3 Load a "T" in the next digit.
Step 4 Load an " O " in the next digit.
Step 5 Load a "P" in the right-hand digit.
If you loaded the information correctly, the PD 3435 should now show the word "STOP."

BLINK A SINGLE CHARACTER

Step 6 Into the digit, second from the right, load the hex code "CF," which is the code for an " O " with the D 7 bit added as a control bit. NOTE: the " O " is the only digit which has the control bit (D7) added to normal ASCII data.
Step 7 Load enable blinking character into the control word register.
The PD 3435 should now display "STOP" with a flashing "O."

ADD ANOTHER BLINKING CHARACTER
Step 8 Into the left hand digit, load the hex code "D3" which is for an " S " with the D7 bit added as a control bit.
The PD 3435 should display "STOP" with a flashing "O" and a flashing "S."

ALTERNATE CHARACTER/
 CURSOR ENABLE

Step 9 Load enable alternate character/cursor into the control word register.
The PD 3435 should now display "STOP" with the " O " and the " S " alternating between the letter and a cursor (which is all dots lit).

INITIATE FOUR-CHARACTER BLINKING

(Regardless of Control Bit setting)
Step 10 Load enable display blinking.
The PD 3435 should now display the entire word "STOP" blinking.

CASCADING THE PD 3435 (PD 3437)

TYPICAL LOADING SEQUENCE

																	DISPLAY
1.		H	H	L	L	\times	X		0	0	0	0	0	0	1	1	
2.		H	H	L	H	H			1	0	0	1	0	0	1	1	S
3.		H	H	L	H	H			1	0	0	1	0	1	0	0	ST
4.		H	H	L	H	L			1	0	0	0	1	1	1	1	STO
5.		H	H	L	H	L	L		1	0	0	1	0	0	0	0	STOP
6.		H	H	L	H	L		1	1	10	0	0	1	1	1	1	STOP
7.		H	H	L	L	\times			0	0	0	1	0	1	1	1	STO*P
8.		H	H	L	H	H	H		1	10	0	1	0	0	1	1	S*TO*P
9.		H	H	L	L	X			0	0	0	1	1	1	1	1	$\mathrm{S}^{+1} \mathrm{O}^{+1} \mathrm{P}$
10.		H	H	L	L	x		0	0	- 1	1	0	0	0	1		$S^{*} T^{*} O^{*}{ }^{*}$

[^13]

Notes: 1. A2 must be held high for ASCII data.
2. Bit $\mathrm{D} 7=1$ enables attributes for the assigned digit.
3. A cursor is defined as all dots/digit lit. When an ASCII character is in memory, an enabled cursor will "highlight" that character with slightly brighter LEDs.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

The CMOS IC of the PD 3435 and PD 3437 is designed to provide resistance to both Electrostatic Discharge Damage and Latch Up due to voltage or current surges. Several precautions are strongly recommended to avoid overstressing these built-in safeguards.

ESD PROTECTION

Users of the PD 3435 and PD 3437 should be careful to handle the devices consistent with standard ESD protection procedures. Operators should wear appropriate wrist, ankle or feet ground straps and avoid clothing that collects static charges. Work surfaces, tools and transport carriers that come into contract with unshielded devices or assemblies should also be appropriately grounded.

LATCH UP PROTECTION

Latch up is a condition that occurs in CMOS IC's after the input protection diodes have been broken down. These diodes can be reversed through several means:
$V_{I N}<G N D, V_{I N}>V_{C C}+0.5 \mathrm{~V}$, or through excessive currents beign forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin conducting as much as 1 amp through the $V_{C C}$ pin. This destructive condition will persist (latched) until device failure or the device is turned off.
The Voitage Transient Suppression Techniques and buffer interfaces for longer cable runs help considerably to prevent latch conditions from occuring. Additionally, the following Power Up and Power Down sequence should be observed.

POWER UP SEQUENCE

1. Float all active signals by tri-stating the inputs to the displays.
2. Apply $V_{C C}$ and $G n d$ to the display.
3. Apply active signals to the displays by enabling all input signals per application.

POWER DOWN SEQUENCE

1. Float all active signals by tri-stating the inputs to the display.
2. Turn off the power to the display.

SOLDERING CONSIDERATIONS

PD 3435's and PD 3437's can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $70^{\circ} \mathrm{C}$. Water soluble organic acid flux or rosin-based RMA flux are preferred; however, virtually any system that does not contain methalenechloride or cyclopentane (such as TCM) can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Wave temperature should not exceed $260^{\circ} \mathrm{C}$, at $0.063^{\prime \prime}$ below the seating plane. If temperature is this high, exposure should not exceed 5 seconds. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

Solvents, for faster cleaning, may be used. Care should be exercised in choosing these as some may chemically attack the MG-18, or ceramic package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone, alcohol, methanol, ethanol, TP35, TMC, TMS +, TE, or TES.
Unacceptable solvents contain methalenechioride or cyclopentane such as TCM. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.

Further information is available in Siemens Appnotes 18 and 19 (see current Optoelectronic Data Book).

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $.600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

Further information is available in Siemens Appnote 22.

OPTICAL CONSIDERATIONS

The . 270 "high character of the PD 3435 and PD 3437 allow readability up to 12 feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized by first considering the ambient lighting enviroment.

Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The PD 3435 is a high efficiency red display and should be matched with a long wavelength pass filter in the 570 nm to 590 nm range. The PD 3437 should be matched with a yellow-green band-pass filter that peaks at 565 nm . For displays of multiple colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Finally, plastic filters can be further improved with antireflective coatings to reduce giare. The trade-off is "fuzzy" characters, but mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.

Finally, optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1\%. Proper intensity selection of the displays will allow 10,000 foot candle sunlight viewability.

Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilminington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One final note on mounting filters. Recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Please refer to Siemens Appnote 23 for further information.

.270" 4-Character, 5×7 Dot Matrix Alphanumeric Programmable Display ${ }^{\text {™ }}$ With Built-In CMOS Control Functions

FEATURES

- Four .270" Dot Matrix Characters in Bright Green or High-Efficiency Red
- Readable from 12 Feet (4 meters)
- Built-in Memory, Decoders, Multiplexer and Drivers
- Wide Viewing Angle, X Axis $\pm 55^{\circ}$, Y Axis $\pm 65^{\circ}$
- Categorized for Luminous Intensity
- 96-Character ASCII Format (Both Upper and Lower Case Characters)
- 8-Bit Bidirectional Data BUS
- READ/WRITE Capability
- 100\% Burned In and Tested
- Dual In-Line Package Configuration, .600" Wide, .100" Pin Centers
- End-Stackable Package
- Internal or External Clock
- Built-In Character Generator ROM
- TTL Compatible
- Easily Cascaded for Multidisplay Operation
- Less CPU Time Required
- Software Controlied Features:

Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity, Three Brightness Levels

- Extended Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Preliminary

DESCRIPTION

The PD 3535 and PD 3537 are four digit display system modules. The digits are $0.27^{\prime \prime}$ by $0.20^{\prime \prime} 5 \times 7$ dot matrix arrays constructed with the latest solid state technology in light emitting diodes. The diodes, having transparent substrates, are optimized for maximum light output in the visible red $(630 \mathrm{~nm}$) and Green (560 nm) spectrums. Driving and controlling the LED arrays are two silicon gate CMOS integrated circuits. These integrated circuits provide all necessary power transistors and complete multiplexing control logic to efficiently strobe the LEDs for maximum perceived brightness with minimum power utilization.
Additionally, the ICs have the necessary ROM to decode 96 ASCII alphanumeric characters and enough RAM to store the display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the user's discretion, include a lamp test, brightness control, displaying cursors, alternating cursors and characters, and flashing cursors or characters. The CMOS ICs also incorporate special interface control circuitry to allow the user to control the module as a fully supported microprocessor peripheral. The module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit parallel, TTL compatible, bi-directional data bus. Each X and Y stackable module is fully encapsulated within a package $1.4^{\prime \prime} \times 0.72^{\prime \prime} \times 0.295^{\prime \prime}$. The standard 20 pin DIP construction with two $0.6^{\prime \prime}$ rows on $0.1^{\prime \prime}$ centers is wave solderable and has been fully tested with over one million total device hours to operate over a temperature range from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. All of the devices are 100% burned in and tested prior to shipment. Final outgoing A.Q.L. inspection is maintained at 1.0% for mechanical and dimensional specifications, optical defects, lead solderability

[^14]DESCRIPTION (Continued)
and package integrity. Local defects on die, brightness matching LED to LED, digit to digit, device to device; catostrophic electrical parameters are held to 0.25\% A.Q.L All the devices are intensity binned to allow users to construct a uniform display of any length.(1)

Note: 1. Refer to the end of this data sheet or to Appnotes 18, 19, 22, and 23 for further details on handling and assembling Siemens Programmable Displays.

Maximum Ratings

DC Supply Voltage - 0.5 to +6.0 Vdc Input Voltage Levels Relative
to GND (all inputs) -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{Vdc}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature $.063^{\prime \prime}$ (1.59 mm)
below Seating Plan, $\mathrm{t}<5 \mathrm{sec}$. $260^{\circ} \mathrm{C}$
Relative Humidity @ $85^{\circ} \mathrm{C}$. 85\%

Optical Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Spectral Peak Wavelength (3535) 630 nm typ.
(3537) 560 nm typ.

Display Multiplex Rate 200 to 300 Hz
Viewing Angle
horizontal . $\pm 55^{\circ}$
(off normal axis) vertical . $\pm 65^{\circ}$
Digit Height . 0.270 inch (6.86 mm)
Time Averaged Luminous Intensity(${ }^{(1)}$
$\left(100 \%\right.$ brightness, $\left.5 \mathrm{Vdc}=\mathrm{V}_{\mathrm{CC}}\right) \ldots250 \mu \mathrm{~cd} / \mathrm{LED}$ typ.
HER . $75 \mu \mathrm{~cd} / \mathrm{LED}$ min.
Green . $100 \mu \mathrm{~cd} /$ LED min.
LED to LED intensity Matching 1.8:1.0 max.
Device to Device (one bin) 1.5:1.0 max.
Bin to Bin (adjacent bin) 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying these values by 7 .

SWITCHING SPECIFICATIONS

$\left(@ 25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$) ${ }^{(1)}$

READ CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TAD	Address set up delay after CE TACC address time for data valid after	0 TDD
Delay time for data valid after read pulse	150 max.	
TRC	Total read cycle time TDH Data valid after end of read pulse	200
TRD	0	

WRITE CYCLE TIMING		
Parameter	Description	Spec. (ns) Minimum
TWD	Delay time for write pulse after control signals and data	50
TDH	Data hold after write pulse	50
TWC	Total write cycle time	200
TWR	Write pulse width	100

Note: 1. Timing characteristics are guaranteed values at the worst case condition of $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{Vdc}$. Characterization data indicates these values also hold over temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ except for TAD and TDH. These two timing minimums may extend to 5 ns at $+70^{\circ} \mathrm{C}$ and above.

TIMING MEASUREMENT LEVELS

TIMING CHARACTERISTICS AT $25^{\circ} \mathrm{C}$

$V_{C C}=4.5 \mathrm{~V}$

DATA "READ" CYCLE

DATA "WRITE" CYCLE

$$
\begin{array}{ll}
\text { Note: } & T_{W R}=T_{W C}-\left(T_{W D}+T_{D H}\right) \\
& T_{R D}=T_{R C}-T_{A D}-\left(T_{A C C}-T_{D D}\right)
\end{array}
$$

DC CHARACTERISTICS @ $25^{\circ} \mathrm{C}$

Parameters	Limits			Units	Conditions
	Min.	Typ.	Max.		
$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	Volts	Nominal
ICC Blank (All Inputs Low)		2.5	5	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{WR}=5 \mathrm{~V}$
Icc Lamp Test (1⁄2 Brightness)		62		mA	
$I_{\text {CC }} 80$ LEDs/unit (100\% Bright)	125	145(1)	165(2)	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
V_{IL} (All Inputs)	-0.5		0.8	Volts	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
V_{IH} (All Inputs)	2.0			Volts	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V
IIL (All Inputs)			200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$

Notes: 1. Typical average LED drive current is 1.5 mA . Peak current at $1 / 7$ multiplex rate is 10.5 mA .
2. Characterization data indicates max $I_{C C}$ will vary from 190 mA at $-40^{\circ} \mathrm{C}$ to 120 mA at $85^{\circ} \mathrm{C}$.

TOP VIEW

PIN ASSIGNMENTS

PD 3535, PD 3537 PINOUT					
Pin		Function	Pin		Function
1	$\overline{\mathrm{RD}}$	READ			WRITE
2	CLK I/O	CLOCK IO			DATA MSB
3	CLKSEL	CLOCK SELECT			DATA
4	$\overline{\mathrm{RST}}$	RESET			DATA
5	CE1	CHIP ENABLE			DATA
	CEO	CHIP ENABLE			DATA
	A2	ADDRESS MSB			DATA
	At	ADDRESS		D1	DATA
	AO	ADDRESS LSB			DATA LSB
	GND			V_{cc}	

PIN DEFINITIONS

Pin

1. $\overline{\mathrm{RD}}$
2. CLK I/O
3. CLK SEL
4. $\overline{\mathrm{RST}}$
5. CE1
6. CEO
7. A2
8. A1
9. $A O$
10. GND
11. $\overline{W R}$
12. D7
13. D6
14. D5
15. D4
16. D3
17. D2
18. D1
19. DO
20. $V_{C C}$

Active low, will enable a processor to read all registers in the PD 3535 (PD 3537). If CLK SEL (pin 3) is low, then expect an external clock source into this pin. If CLK SEL is high, then this pin will be the master or source for all other devices which have CLK SEL low.
CLock SELect, determines the action of pin 2. CLK I/O, see the section on Cascading for an example. Reset. Must be held low until $V_{C C}>4.5$ volts. Reset is used only to synchronize blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (LSB). Ground.
Write. Active Low. If the device is selected, a low on the write input loads the data into the PD 3535s (PD 3537s) memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.

DATA INPUT COMMANDS															
$\overline{\text { CEO }}$	CE1	$\overline{\mathrm{RD}}$	$\overline{W R}$	A2	A1	AO	D7	D6	D5	D4	D3	D2	D1	D0	OPERATION
1	0	x	x	X	X	x	x	x	X	X	X	X	X	x	No Change
0	1	0	1	1	0	0	X	X	X	X	X	X	X	X	Read Digit 0 Data To Bus
0	1	1	0	1	0	0	X	0	1	0	0	1	0	0	(\$) Written To Digit 0
0	1	1	0	1	0	1	X	1	0	1	0	1	1	1	(W) Written to Digit 1
0	1	1	0	1	1	0	x	1	1	0	0	1	1	0	(f) Written To Digit 2
0	1	1	0	1	1	1	X	0	1	1	0	0	1	1	(3) Written to Digit 3
0	1	1	0	1	0	0	1	X	X	x	X	X	X	x	Char. Written To Digit 0 And Cursor Enabled

MODE SELECTION				
$\overline{\text { CE0 }}$	CE1	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	OPERATION
0	1	0	0	Illegal
1	X	\times	\times	No Change
\times	0	\times	\times	No Change
X	X	1	1	No Change

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The PD 3535 (PD 3537) block diagram includes the major blocks and internal registers.
Display Memory consists of a 5×8 bit RAM block. Each of the four 8 -bit words holds the 7 -bit ASCII data (bits D0-D6). The fifth 8-bit memory word is used as a control word register. A detailed description of the control register and its functions can be found under the heading Control Word. Each 8 -bit word is addressable and can be read from or written to.

The Control Logic dictates all of the features of the display device and is discussed in the Control Word section of this data sheet.
The Character Generator converts the 7-bit ASCII data into the proper dot pattern for the 96 characters shown in the character set chart.

The Clock Source can originate either from the internal oscillator clock or from an external source-usually from the output of another PD 3535 (PD 3537) in a multiple module display.
The Display Multiplexer controls all display output to the digit drivers so no additional logic is required for a display system.
The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEDs in a 5×7 dot array which makes up the alphanumeric characters.
The intensity of the display can be varied by the Control Word in steps of 0% (Blank), $25 \%, 50 \%$, and full brightness.

MICROPROCESSOR INTERFACE

The interface to the microprocessor is through the address lines (A0-A2), the data bus (D0-D7), two chip select lines ($\overline{\mathrm{CEO}}, \mathrm{CE} 1$), and read ($\overline{\mathrm{RD}}$) and write $(\overline{W R})$ lines.
To derive the appropriate enable signal, the $\overline{W R}$ and $\overline{\mathrm{RD}}$ lines should be "NANDED" into the CE1 input. The CEO should be held low when executing a read, or write operation.
The read and write lines are both active low. During a valid read the data input lines (D0-D7) become outputs. A valid write will enable the data as input lines.

INPUT BUFFERING

If a cable length of 18 inches or more is used, all inputs to the display should be buffered with a tri-state non-inverting buffer mounted as close to the display as conviently possible. Recommended buffers are: 74 HCT 245 for the data lines and 74 HCT 244 or 74 HC 541 for the control lines.

PROGRAMMING THE PD 3535

There are five registers within the PD 3535/3537. Four of these registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display, or to change the presentation (attributes) of individual characters.

ADDRESSING

The addresses within the display device are shown below. Digit 0 is the rightmost digit of the display, while digit 3 is on the left. Although there is only one Control Word, it is duplicated at the four address locations 0-3. Data can be read from any of these locations. When one of these locations is written to, all of them will change together.

Address	Contents
0	Control Word
1	Control Word (Duplicate)
2	Control Word (Duplicate)
3	Control Word (Duplicate)
4	Digit 0 (rightmost)
5	Digit 1
6	Digit 2
7	Digit 3 (leftmost)

Bit D7 of any of the display digit locations is used to allow an attribute to be assigned to that digit. The attributes are discussed in the next section. If bit D7 is set to a one, that character will be displayed using the attribute. If bit D7 is cleared, the character will display normally.

CONTROL WORD

When address bit A2 is taken low, the Control Word is accessed. The same Control Word appears in all four of the lower address spaces of the display. Through the Control Word, the display can be cleared, the lamps can be tested, display brightness can be selected, and attributes can be set for any characters which have been loaded with their most significant bit (D7) set high.
Brightness (D0, D1): The state of the lower two bits of the Control Word are used to set the brightness of the entire display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	X	X	X	X	0	0	Blank
0	0	X	X	X	X	0	1	25% brightness
0	0	X	X	X	X	1	0	50% brightness
0	0	X	X	X	X	1	1	Full brightness

$X=$ don't care

Attributes (D2-D4): Bits D2, D3, and D4 control the visual attributes (i.e., blinking) of those display digits which have been written with bit D7 set high. In order to use any of the four attributes, the Cursor Enable bit (D4 in the Control Word) must be set. When the Cursor Enable bit is set, and bit D7 in a character location is set, the character will take on one of the following display attributes.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	0	0	X	X	B	B	Disable highlight atribute 0
0	0	1	0	0	B	B	Display cursor* instead of character	
0	0	0	1	0	1	B	B	Blink single character 0
0	0	1	1	0	B	B	Display blinking cursor* instead of character	
0	0	0	1	1	1	B	B	Alternate character with cursor*

*"Cursor" refers to a condition when all dots in a single character space are
lit to half brightness.
$X=$ don't care
$B=$ depends on the selected brightness
Attributes are non-destructive. If a character with bit D7 set is replaced by a cursor (Control Word bit D4 is set, and $\mathrm{D} 3=\mathrm{D} 2=0$) the character will remain in memory and can be revealed again by clearing D4 in the Control Word.
Blink (D5): The entire display can be caused to blink at a rate of approximately 2 Hz by setting bit D5 in the Control Word. This blinking is independent of the state of D7 in all character locations.
In order to synchronize the blink rate in a bank of these devices, it is necessary to tie all devices' clocks and resets together as described in a later section of this data sheet.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	1	X	X	X	B	B	Blinking display

Lamp Test (D6): When the Lamp Test bit is set, all dots in the entire display are lit at half brightness. When this bit is cleared, the display returns to the characters that were
showing before the lamp test. The lamp test will remain if implemented silmutaneously with a clear instruction.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	1	0	\times	\times	\times	\times	\times	Lamp test

Clear Data (D7): When D7 is set in the Control Word, all character and Control Word memory bits are reset to zero. This causes total erasure of the display, and returns all digits to a non-blink, full brightness, non-cursor status.

D7	D6	D5	D4	D3	D2	D1	D0	Operation
1	0	\times	\times	\times	\times	\times	\times	Clear

DATA PROTOCOL

The display module continuously executes ail control words programmed in the registers. Randomly, before new control works are completely defined, valid unitentional transient control words may be executed. This may present a problem if the memory clear instruction is one of the transients. To avoid the inadvertant clearing of display memory, it is suggested that display data be loaded after changes in control word programming. Alternatively, D7 must be stable in the low state throughout the complete write cycle.

CASCADING

Cascading the PD 3535 (PD 3537) is a simple operation. The requirements for cascading are: 1) decoding the correct address to determine the chip select for each additional device, 2) assuring that all devices are reset simultaneously, and 3) selecting one display as the clock source and setting all others to accept clock input (the reason for cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving six other PD 3535s (PD 3537s). If more displays are required, a buffer will be necessary. The source display must have pin 3 tied high to output clock signals. All other displays must have pin 3 tied low. External clock frequencies should not exceed 100 KHz , norminally it should be 30 KHz .

CASCADING THE PD 3535 (PD 3537)

VOLTAGE TRANSIENT SUPPRESSION

It has become common practice to provide $0.01 \mu \mathrm{f}$ bypass capacitors liberally in digital systems. Like other CMOS circuitry, the Intelligent Display controller chip has very low power consumption and the usual $0.01 \mu \mathrm{f}$ would be adequate were it not for the LEDs. The module itself can, in some conditions, use up to 100 mA . In order to prevent power supply transients, capacitors with low inductance and high capacitance at high frequencies are required. This suggests a solid tantalum or ceramic disc for high frequency bypass. For multiple display module systems, distribute the bypass capacitors evenly, keeping capacitors as close to the power pins as possible. Use a $0.01 \mu \mathrm{~F}$ capacitor for each display module and a $22 \mu \mathrm{~F}$ capacitor for every third display module.

HOW TO LOAD INFORMATION INTO THE PD 3535 (PD 3537)

Information loaded into the PD 3535 can be either ASClI data or Control Word data. The following procedure (see also typical loading sequence) will demonstrate a typical loading sequence and the resulting visual display. The word STOP is used in all of the following examples.

SET BRIGHTNESS

Step 1 Set the brightness level of the entire display to your preference (example: 100\%)

LOAD FOUR CHARACTERS

Step 2 Load an " S " in the left-hand digit.
Step 3 Load a "T" in the next digit.
Step 4 Load an "O" in the next digit.

Step 5 Load a "P" in the right-hand digit.
If you loaded the information correctly, the PD 3535 should now show the word "STOP."
BLINK A SINGLE CHARACTER
Step 6 Into the digit, second from the right, load the hex code "CF," which is the code for an " O " with the D7 bit added as a control bit. NOTE: the " O " is the only digit which has the control bit (D7) added to normal ASCII data.
Step 7 Load enable blinking character into the control word register.
The PD 3535 should now display "STOP" with a flashing " O ."
ADD ANOTHER BLINKING CHARACTER
Step 8 Into the left hand digit, load the hex code "D3" which is for an " S " with the D7 bit added as a control bit.
The PD 3535 should display "STOP" with a flashing " O " and a flashing " S . "

alternate character/

 CURSOR ENABLEStep 9 Load enable alternate character/cursor into the control word register.
The PD 3535 should now display "STOP" with the " O " and the " S " alternating between the letter and a cursor (which is all dots lit).

INITIATE FOUR-CHARACTER BLINKING

(Regardless of Control Bit setting)
Step 10 Load enable display blinking.
The PD 3535 should now display the entire word "STOP" blinking.

TYPICAL LOADING SEQUENCE

			U						N	8	18	8	8	\%	ก	$\stackrel{\square}{\square}$	8		DISPLAY
1.		H	H	H	L	L	X	X	0	0	0	0	0	0	0	1			
2.		H	H	H	L	H	H	H	0	1	0	1	0	0	0	1	1		S
3.		H	H	H	L	H	H	L	0	1	0	1	0	1	1	0			ST
4.	L	H	H	H	L	H	L	H	0	1	0	0	1	11	1	1	1		STO*
5.	L	H	H	H	L	H	L	L	0	1	0	1	0	0	0	0	0		STOP
6.	L	H	H	H	L	H	L	H	1	1	0	0	1	1	1	1	1		STOP
7.		H	H	H	L	L	X	X	0	0	0	1	0	0	1	1	1		STO*P
8.	L	H	H	H	L	H	H	H	1	1	0	1	0	0	0	1	1		S*TO*P
9.	L	H	H	H	L	L	X	x	0	0	0	1	1	1	1	1	1		$S^{\dagger} \mathrm{TO}^{\dagger} \mathrm{P}$
10.	L		H	H	L	L	X	x	0	0	1	0	0	0	0	1	1		$\mathrm{S}^{*} \mathrm{~T}^{*} \mathrm{O}^{*} \mathrm{P}^{*}$

[^15]
CHARACTER SET

Notes: 1. A2 must be held high for ASCII data.
2. Bit $\mathrm{D} 7=1$ enables attributes for the assigned digit
3. A cursor is defined as all dots/digit lit. W ien an ASCII character is in memory, an enabled cursor will "highlight" that charicter with slightly brighter LEDs.

ELECTRICAL AND MECHANICAL CONSIDERATIONS

The CMOS IC of the PD 3535 and PD 3537 is designed to provide resistance to both Electrostatic Discharge Damage and Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid overstressing these built-in safeguards.

ESD PROTECTION

Users of the PD 3535 and PD 3537 should be careful to handle the devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or feet ground straps and avoid clothing that collects static charges. Work surfaces, tools and transport carriers that come into contract with unshielded devices or assemblies should also be appropriately grounded.

LATCH UP PROTECTION

Latch up is a condition that occurs in CMOS ICs after the input protection diodes have been broken down. These diodes can be reversed through several means:
$V_{I N}<G N D, V_{I N}>V_{C C}+0.5 \mathrm{~V}$, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin conducting as much as one amp through the $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$. This destructive condition will persist (latched) until device failure or the device is turned off.

The Voltage Transient Suppression Techniques and buffer interfaces for longer cable runs help considerably to prevent latch conditions from occuring. Additionally, the following Power Up and Power Down sequence should be observed.

POWER UP SEQUENCE

1. Float all active signals by tri-stating the inputs to the displays.
2. Apply $V_{C C}$ and $G N D$ to the display.
3. Apply active signals to the displays by enabling all input signals per application.

POWER DOWN SEQUENCE

1. Float all active signals by tri-stating the inputs to the display.
2. Turn off the power to the display.

SOLDERING CONSIDERATIONS

PD 3535s and PD 3537s can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except Carboxylic acid) or resin-based RMA flux without alcohol can be used.

Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 sec . to 3.0 sec . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$, for five seconds at $0.063^{\prime \prime}$ below the seating plane. The packages should not be immersed in the wave.

POST SOLDER CLEANING PROCEDURES

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be exercised in choosing these as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at elevated temperatures. Acceptable solvents are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated acetone.(1)

Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P, Genesolv D, Genesolv DA, Blaco-Tron TF, Blaco-Tron TA and, Freon TA.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, or TES. Since many commercial mixtures exist, you should contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI; E.I. DuPont de Nemours \& Co., Wilmington, DE.
For further information refer to Appnotes 18 and 19 in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules is to use sockets. Naturally, 20 pin DIP sockets $600^{\prime \prime}$ wide with $.100^{\prime \prime}$ centers work well for single displays. Multiple display assemblies are best handled by longer SIP sockets or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec Electronic Hardware, New Albany, IN.

For further information refer to Appnote 22 in the current Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS

The $.270^{\prime \prime}$ high character of the PD 3535 and PD 3537 allow readability up to twelve feet. Proper filter selection will allow the user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the display user. The only limitation is cost. The cost/benefit ratio for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are inexpensive and effective in optimizing contrast ratios. The PD 3535 is a high efficiency red display and should be matched with a long wavelength pass filter in the 570 nm to 590 nm range. The PD 3537 should be matched with a yellow-green band-pass filter that peaks at 565 nm . For displays of multiple colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through shading the displays. Plastic band-pass filters with built-in louvers offer the "next step up" in contrast improvement. Plastic filters can be further improved with anti-reflective coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this effect. Care should be taken not to overheat the plastic filters by allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%. Proper intensity selection of the displays will allow 10,000 foot candle sunlight viewability.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homelite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

One last note on mounting filters: recessing display and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

Refer to Siemens Appnote 23 for further information.

Intelligent Display Assemblies

Package Outline	Part Number	Char- acter Height	Description	Page
	IDA 1414-16	.112"	16 character assembly containing four DL 1414 displays	2-104
	IDA 1416-32	.160"	32 character assembly containing eight DL 1416 displays	2-108
	IDA 2416-16	.160"	16 character assembly containing four DL 2416 displays	2-112
	IDA 2416-32		32 character assembly containing eight DL 2416 displays	
	IDA 3416-16	.225"	16 character assembly containing four DL 3416 displays	2-116
	IDA 3416-20		20 character assembly containing five DL 3416 displays	
	IDA 3416-32		32 character assembly containing eight DL 3416 displays	
	IDA 7135-16	.68"	16 character, 5×7 dot matrix assembly containing 16 DL 713X displays. High efficiency red.	2-120
	IDA 7137-16		16 character, 5×7 dot matrix assembly containing 16 DL 713X displays. Green.	
	IDA 7135-20		20 character, 5×7 dot matrix assembly containing 20 DL 713X displays. High efficiency red.	
	IDA 7137-20		20 character, 5×7 dot matrix assembly containing 20 DL 713X displays. Green.	

For non-standard requirements, see Custom Products on page 1-1.
$.112^{\prime \prime}$ Red, 17 Segment, 16 Character
DL 1414 Intelligent Display ${ }^{\text {AASSEMBLY }}$
IDA 1414-16-1 Buffered Input Data Lines
IDA 1416-16-2 Non-buffered Input Data Lines

FEATURES

- 112 Mil High, Magnified Monolithic Character
- Wide Viewing Angle, $\pm \mathbf{4 0 ^ { \circ }}$
- Complete Alphanumeric Display Assembly Utilizing the DL 1414
- Built-in Multiplex and LED Drive Circuitry
- Built-in Memory
- Built-in Character Generator
- Displays 64 Character ASCII Set
- Direct Access to Each Digit Independently
- Single 5.0 Volt Power Supply
- TTL Compatible
- Easily Interfaced to a Microprocessor
- IDA 1414-16-1 Input Data Lines Are Buffered
- IDA 1414-16-2 Input Lines Are Not Buffered

DESCRIPTION

The IDA 1414-16 Assembly is an extension of the very easy-to-use DL 1414 Intelligent Display. This product provides the designer with circuitry for display maintenance. It also minimizes interaction and interface normally required between the user's system and a multiplexed alphanumeric display.
The assembly consists of four DL 1414's in a single row, together with decoder and interface buffer on a single printed circuit board. Each DL 1414 provides its own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 17- segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controliers, instruments, and other products which require an easy to use alpha-numeric display.

IDA 1414-16

Maximum Ratings						
Operating Temperature . 0 to $+65^{\circ} \mathrm{C}$						
Storage Temperature . 20.20 to $+70^{\circ} \mathrm{C}$						
Relative Humidity (non-condensing) @ $65^{\circ} \mathrm{C}$. 85\%						
Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$						
Parameter	Symbol	Min	Typ	Max	Units	Test Conditions
Supply Voltage	V_{CC}	4.75		5.25	V	
Supply Current (Total)	l_{CC}					$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (10 Segments/Digit)
Supply Current -1				400	mA	
Supply Current -2				380	mA	
Supply Current (Display Blank) Supply Current -1	$\mathrm{l}_{\text {CC BLANK }}$			75	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=0$
Supply Current -2				25	mA	
Input Voltage - High	V_{IH}					
-1 ($\left.\mathrm{D}_{0}-\mathrm{D}_{6}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \overline{W R}\right)$		2.0			v	
-1 (A_{0}, A_{1})		2.7			v	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		3.5			v	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
$-2\left(D_{0}-D_{6}, A_{0}, A_{1}\right)$	V_{IH}	2.7			v	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
		3.5			v	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
-2 ($\left.A_{2}, A_{3}, \overline{W R}\right)$		2.0			V	
Input Voltage - Low	V_{IL}					
All inputs				0.8	V	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$
Input Current - High	I_{iH}					
Any input				20	${ }_{\mu} \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$
Input Current - Low	IL					
Any input				400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$
Luminous Intensity						
Average Per Digit	I_{V}		0.5		mod	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$ (8 Segments/Digit)
Peak Emission Wavelength	$\boldsymbol{\lambda} \mathrm{pk}$		660		nm	
Viewing Angle			± 40		Deg	

Switching Characteristics @ 5 V Parameter	Symbol	$\begin{aligned} & \text { (Typ) } \\ & \text { @ } \mathbf{0}^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} (\mathrm{Min}) \\ @ \mathbf{2 5} \end{gathered}$	$\begin{aligned} & (\mathrm{Typ}) \\ & @ 65^{\circ} \mathrm{C} \end{aligned}$	Units
Write Pulse	T_{W}	300	325	350	ns
Address/DE Setup Time	$T_{\text {AS }}$	350	400	450	nS
Data Setup Time	$T_{\text {DS }}$	350	400	450	nS
Write Setup	$\mathrm{T}_{\text {w }}$	50	75	100	nS
Data Hold Time	T_{DH}	50	75	100	nS
Address/DE Hold Time	$\mathrm{T}_{\text {AH }}$	50	75	100	nS

Timing Characteristics

System Overview

The Intelligent Display Assembly offers the designer 16 alphanumeric characters and operates from just a 5 V supply. Based on the DL 1414 four character Intelligent Display, the IDA 1414-16 adds all the support logic required for direct connection to most microprocessor buses. The system interface takes place through a 14 hole dual in line pattern. The user may solder wires directly into these holes or use a ribbon cable and connectors.

System Power Requirements

Operating from a single +5 V power supply, the IDA 1414-16 requires a maximum operating current of 400 mA with ten of the segments lit on each character. With the display blanked, the board circuitry draws 75 mA maximum.

Display Interface

The display interface available on the 14 pin dual in line hole pattern consists of seven data lines ($D O$ to $D 6$), four address lines ($A O$ to $A 3$), write pulse, $V_{C C}$, and GND.
$\overline{\mathrm{WR}}$ (Write, active low): To store a character in the display memory, this line must be pulsed low for a minimum of 325 ns . See timing diagram for timing and relationships to other signals.
Address lines AO to A3 are set up so that the rightmost character is the lowest address. The left-most character is the highest address. Data lines are set up so that DO is the least significant bit and D6 is the most significant bit.

Using the Display Interface

Through the use of memory-mapped I/O techniques, the IDA can be treated almost like a memory loca-
tion-supply the data, address and proper control signals and the characters appear, with each character location independently addressable. The basic signal flow sequence to load a character would start with the address lines going to the desired address. After the address has stabilized, the data can change to the desired values. After the data have stabilized, the $\overline{W R}$ pulse is started, and must remain low for at least 325 ns. Signals must be held stable for 75 ns, minimum, after the rising edge of the $\overline{W R}$ pulse to ensure correct loading, while the addresses must be stable for 400 ns preceding the same rising edge of the $\overline{W R}$ pulse. See the timing diagram for a pictorial explanation.

System Design Considerations

It is often necessary, because of the nature of displays, to use ribbon cable from the CPU board. We have provided a 14 pin dual-in-line hole pattern for this purpose. In those circumstances for cables over 12 inches, use IDA 1414-16-1 (buffered version) instead of IDA 1414-16-2 (non-buffered version). Voltage transients from noisy systems may couple through the cables into the Intelligent Display and can cause serious damage.
Avoid handling the assembly other than by the edges of the PCB. Static damage can still be a problem, so take the necessary precautions. Keep in conductive material, grounded work areas, etc.

The IDA 1414 assemblies should need minimal cleaning. A gentle wiping with a soft damp cloth should be its only requirement. The solvent that cannot be used on any Intelligent Display product is alcohol. Therefore, if a solvent is used, first check chemical composition before application.

CHARACTER SET

			DO	L	H	L	H	L	H	1	H	L	H	1	H	1	H	L	H
			D1	1	L	H	H	L	L	H	H	L	1	H	H	1	L	H	H
			D2	L	L	1	L	H	H	H	H	L	1	L	L	H	H	H	H
			D3	L	L	1	L	1	L	L	L	H	H	H	H	H	H	H	H
D6	D5	504	HEx	0	1	2	3	4	5	6	7	8	9	A	B	C	0	E	F
L	H	H	2		1	II	-15	I	K	ry	1	1	1	栄	$+$	1	-		, 1
1	H	H	3	11	1	5	7 -1	11	$\underline{1}$	E	7	\square	71 -1		/	!	--	-1	-1
H	L	L	4	E-I	--1	-71	[-	-11	E^{-}	5^{-}	[J	1	$\begin{aligned} & T \\ & i \end{aligned}$	1-1	I'	1-1	N1	AV	[7
H	L	H	5	E-	17	ET	$[$	7	111	$v^{\prime \prime}$	$\dot{V} \mathbf{v}$	/	Y	$\begin{aligned} & -7 \\ & 6 \end{aligned}$	1	1	1	八	--

ALL OTHER INPUT CODES DISPLAY BLANKS

Physical Dimensions (in inches)

Wires may be soldered direct to 14 hole dual in line position or contact can be made with ribbon cable and connector such as Berg 65493-006 or Amp 86838-1/86838-2.

PIN	FUNCTION
1	AO DIGIT SELECT
2	A1 DIGIT SELECT
3	D4 DATA INPUT
4	DO DATA INPUT (LSB)
5	D3 DATA INPUT
6	D2 DATA INPUT
7	GND
8	A3 DIGIT SELECT
9	WR WRITE
10	A2 DIGIT SELECT
11	D6 DATA INPUT (MSB)
12	D1 DATA INPUT
13	D5 DATA INPUT
14	+ VCC

. 160 ", Red, 16 Segment, 32 Character DL 1416 Intelligent Display ${ }^{\text {® }}$ ASSEMBLY with Memory/Decoder/Driver

FEATURES

- 160 MIL High Magnified Monolithic Character
- Complete Alphanumeric Display Assembly Utilizing the DL 1416
- Built-in Multiplex and LED Drive Circuitry
- Built-in Memory
- Built-in Character Generator
- Displays 64 Character ASCII Set
- Direct Access to Each Digit Independently
- All Inputs are Buffered
- Cursor Function
- Single 5.0 Volt Power Supply
- TTL Compatible
- Easily Interfaced to a Microprocessor

DESCRIPTION

The IDA 1416-32 Assembly is an extension of the very easy-to-use DL 1416 Intelligent Display. This product provides the designer with circuitry for display maintenance. It also minimizes interaction and interface normally required between the user's system and a multiplexed alphanumeric display.
The assembly consists of eight DL 1416's in a single row together with decoder and interface buffers on a single printed circuit board. Each DL 1416 provides its own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 16-segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments, and other products which require an easy to use alphanumeric display.

System Overview

The IDA 1416-32 Intelligent Display Assembly offers the designer 32 alphanumeric characters and operates from just a +5 volt supply. Based on the previously introduced DL 1416 four character Intelligent Display. The IDA 1416-32 adds all the support logic required for direct connection to a host system.

System Power Requirements

Operating from a single +5 volt power supply, the IDA 1416-32 requires a typical operating current of 390 mA with ten segments lit for each digit. The maximum operating current with all segments lit for all digits will be 900 mA maximum.

Display Interface Signals

The system interface takes place through a 16 hole dual-in-line pattern. The user may solder wires directly into these holes or use a ribbon cable connector. The interface signals available at the 16 holes consist of seven data lines ($D \emptyset$ to $D 6$), five address ($A \emptyset-A 4$), write and cursor input.
$\bar{W} \bar{R} \quad$ (Write, active low): To store a character in the display memory must meet minimum write cycle waveform.
$\overline{\mathrm{CU}}$ (Cursor select, active low): This input must be held high during a write cycle to load ASCII data into memory; and held low during a write cycle to load cursor data into memory. The cursor ($\overline{\mathrm{CU}}$) should not be hardwired high (off). During the power-up of the DL 1416's the cursor memory will be in a random state. Therefore, it is recommended for the host system to initialize or write out all possible cursors during system initialization. Also, the cursor display will be overridden by a blank from an undefined code in that digit position.

Address lines $\mathrm{A} \emptyset$ to A 4 are set up so that the right-most character is the lowest address location. The left-most character is the highest address. Data lines are set up so that $D \emptyset$ is the least significant bit and D6 is the most significant bit.

Using the Display Assembly

Through the use of memory-mapped I/O techniques, the IDA can be treated almost like a memory location-supply the data, address, proper control signals and the characters appear, with each character location independently addressable. The basic signal flow sequence to load a character would start with the address lines going to the desired address. Data can change to the desired values (including cursor). After the data has stabilized, the write ($\overline{\mathrm{WR}})$ pulse is started. See specifications and timing diagram for times and pictorial explanation.

System Design Considerations

It is often necessary, because of the nature of displays, to use cables. Avoid excessively long cables; try to keep them short. Because of current steps due to internal multiplexing, wire length and size will affect load regulation which may cause an incorrect display.
Avoid handling the assembly other than by the edges of the PCB. Static damage can still be a problem, so take the necessary precautions. Keep in conductive material, grounded work areas, etc.

The IDA 1416-32 requires minimal cleaning. A gentle wiping with a soft damp cloth should be its only requirement. The solvent that cannot be used on any Intelligent Display product is alcohol, therefore, if a solvent is used, first check chemical composition before application.

Charagter set											
			DO	L	H	L	H	1	H	1	H
			D1	L	L	H	H	L	L	H	H
			D2	L	L	L	1	H	H	H	H
D6D5 D4 D3											
L	H	L	L		∇	11	IJ	II	$\frac{12}{2}$	$\stackrel{\nabla}{8}$	1
L.	H	L	H	1	1	尓	1	$/$	-	-	1
L	H	H	L	If	1	5	7 -1	4	$\underline{1}$	E	7
L	H	H	H	\square	\square		"	1_{-}^{\prime}	--	-1	-I
H	L	L	L	Eİ	5	-71	i^{-}	$\begin{aligned} & 71 \\ & 11 \end{aligned}$	E	F^{-}	[]
H	1.	L	H	$1-1$	-	1.1	11	1	M/1	N1	17
H	L	H	L	F^{-7}	17	\cdots	-	T	11	$V^{\prime \prime}$	IV
H	L	H	H	1	\mathbf{Y}	7	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	7	A	-

NOTE: All undelined data codes that are loeded or occur on power-up will cause a blank display state.

IDA 1416-32

Maximum Ratings

$V_{\text {cc }}$	V
Voltage applied to any input	-0.5 V to $\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$
Operating Temperature	0° to $+65^{\circ} \mathrm{C}$
Storage Temperature	-20° to $+70^{\circ} \mathrm{C}$

Optoelectronic Characteristic @ $25^{\circ} \mathrm{C}$

Parameter S	Symbol	Min	Typ	Max	Units	Test Conditions
Supply Voltage	V_{cc}	4.75		5.25	V	
Supply Current Cursor Blank (Total) Typical/Digit	${ }_{\text {cc }}$		390	$\begin{array}{r} 1250 \\ 100 \end{array}$	mA mA mA	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \text {-All segments on. } \\ & V_{C C}=5 \mathrm{~V} \text { Inputs low. } \\ & V_{c c}=5 \mathrm{~V} \text { (} 10 \text { segments/digit) } \end{aligned}$
Input Voltage High	$V_{1 H}$	2			V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
Input Voltage Low	$\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{V}_{C C}=5 \mathrm{~V}$
Input Current High	${ }_{\text {IH }}$			40	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}_{1}=2.4 \mathrm{~V}$
Input Current Low	ILL			-1.6	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}_{1}=0.4 \mathrm{~V}$
Luminous Intensity Average per digit	Iv		0.5		mcd	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ (8 segment digit)
Peak Emission Wavelength			660		mm	
Viewing Angle			± 20		Deg	

Switching Characteristics

Parameters	Symbol	$0^{\circ} \mathrm{C}$ (Typ)	$25^{\circ} \mathrm{C}$ (Min)	$65^{\circ} \mathrm{C}$ (Typ)	Units
Write Pulse	T_{w}	475	560	675	nS
Data Setup time	TDS	950	1100	1300	nS
Data hold time	$\mathrm{T}_{\text {DH }}$	400	500	600	nS
Address setup time	$\mathrm{T}_{\text {AS }}$	950	1100	1300	nS
Address hold time	$\mathrm{T}_{\text {AH }}$	400	500	600	nS
Write delay time	Two	475	540	625	nS

TIMING CHARACTERISTICS

Physical Dimensions (in inches)

FEATURES

- $\mathbf{1 6 0}$ Mil High Magnified Monolithic Character Wide Viewing Angle $\pm 40^{\circ}$
- Complete Alphanumeric Display Assembly Utilizing the DL 2416
- Built-in Multiplex and LED Drive Circuitry
- Built-in Memory
- Built-in Character Generator
- Displays 64 Character ASCII Set
- Direct Access to Each Digit Independently
- Display Blank Function
- Memory Clear Function
- Cursor Function
- Choice of $\mathbf{1 6}$ or $\mathbf{3 2}$ Character Display Length (Other lengths optional)
- Single 5.0 Volt Power Supply
- TTL Compatible
- Easily Interfaced to a Microprocessor
- Tri-State or Open-Collector Input Circuitry
- Schmitt Trigger Inputs on Control Lines

The IDA 2416 Series Assembly is an extension of the very easy-to-use DL 2416 Intelligent Display. This product provides the designer with circuitry for display maintenance. It also minimizes interaction and interface normally required between the user's system and a multiplexed alphanumeric display.
The assembly consists of DL 2416's in a single row together with decoder and interface buffers on a single printed circuit board. Each DL 2416 provides its own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 17 -segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments, and other products which require an easy to use alphanumeric display.

Part Number	Description		
IDA 2416-16	Single Line 16 Character Alphanumeric Display Utilizing the DL 2416		
IDA 2416-32	Single Line 32 Character Alphanumeric Display Utilizing the DL 2416		
For custom lengths in increments of four characters, consult factory			

System Overview

The Intelligent Display Assembly offers the designer a choice of either 16 or 32 alphanumeric characters (the IDA 2416-16 and IDA 2416-32, respectively), and operates from just a +5 V supply. Based on the DL 2416 four-character Intelligent Display, the IDA 2416 adds all the support logic required for direct connection to most microprocessor buses. The system interface takes place through a 26-pin connector, which has available on it the data and address lines as well as the control signals needed. Two additional connectors are included on the IDA 2416-one of them is used for the power and ground connections, and the other is used to implement display enable selection.

System Power Requirements

Operating from a single $+5-\mathrm{V}$ power supply, the IDA 2416-16 requires a typical operating current of 450 mA with eight of the segments lit on each character. For the 32 character display, the current increases to 850 mA , typical. For the worst-case condition with all segments lit, the 16 character display draws 650 mA and the 32 character display requires 1250 mA . With the display blanked, the board circuitry draws about 70 mA .

Display Interface

The display interface available on the 26 -pin connector consists of seven data lines (DØ to D6), five address lines ($A \emptyset$ to $A 4$), four display-enable lines ($\overline{\mathrm{DE} 1}$ to $\overline{\mathrm{DE}} 4$), several unused pins, and various control signals. All address, data, and control lines have either pull-up or pull-down 1 K ohm resistors.
$\overline{B L}$ (Blanking, active low): When this line is pulled low, it causes the entire IDA display to go blank without affecting the contents of the display memory on the DL 2416s. $\overline{B L}$ is active regardless of address or display enable lines. A flashing display can be realized by pulsing this line.
$\overline{W R}$ (Write, active low): To store a character in the display memory, this line must be pulsed low for a minimum of 350 ns . See timing diagram for timing \& relationships to other signals. The $\overline{W R}$ input drives a schmitt-trigger.
CUE (Cursor Enable, active high): When high, this line permits the cursor to be displayed, and when brought low, it disables the cursor function without affecting the stored value. CUE is active regardless of address or display enable lines. A flashing cursor can be created by pulsing the CUE line low.
$\overline{\mathrm{CU}}$ (Cursor Select, active low): The cursor function (character with all segments lit) is loaded by selecting the digit address and holding $\overline{\mathrm{CU}}$ true. A " 1 " on $\mathrm{D} \emptyset$
writes the cursor. A " \emptyset " on $D \emptyset$ removes the cursor. The change occurs during the next write pulse per the timing diagram.
$\overline{C L R}$ (Clear, active low): When held low for one display multiplex cycle (see DL 2416 data sheet for more information) of 15 ms , this line will cause all stored characters in the display, except for the cursor, to be cleared. $\overline{C L R}$ is active regardless of address or display enable lines. The $\overline{C L R}$ input drives a schmitttrigger.
$\overline{\mathrm{DE}}$ to $\overline{\mathrm{DE4}}$ (Display Enable, active low): There are four jumper selectable lines, any one of which can be selected to provide one of four board addresses that can be used when multiple IDAs are built into a system. When low, this line enables the selected display to permit data loading. The display enable input drives a schmitt-trigger.
Address lines A \emptyset to A4 are set up so that the rightmost character is the lowest address. The left-most character is the highest address. Data lines are set up so that $D \emptyset$ is the least significant bit and D6 is the most significant bit.

Using the Display Interface

Through the use of memory-mapped I/O techniques, the IDA can be treated almost like a memory location - supply the data, address and proper control signals and the characters appear, with each character location independently addressable. The basic signal flow sequence to load a character would start with the address lines going to the desired address while the $\overline{C L R}$ and $\overline{B L}$ lines are high to permit the data to be loaded in and displayed. After the address has stabilized, the data can change to the desired values (including the cursor). After the data has stabilized, the $\overline{W R}$ pulse is started, and must remain low for at least 350 ns . Signals must be held stable for 75 ns , minimum, after the rising edge of the $\overline{W R}$ pulse to ensure correct loading, while the addresses must be stable for 650 ns preceding the same rising edge of the $\overline{W R}$ pulse. See the timing diagram for a pictorial explanation.

Enable Selection

For board enable (the $\overline{\mathrm{DE1}}$ through $\overline{\mathrm{DE4}}$ lines) the user can choose any one of the four enable signals he has provided on the cable. This signal will be used to provide a master enable to each IDA. All that need be done is to insert the shorting plug in the appropriate position on the pins provided. This allows the user to make the system display the same information on two or more different IDAs or display different information on each of up to four groups of IDA's.

IDA 2416 Series

Maximum Ratings	
$V_{\text {cc }}$	6.0 V
Voltage applied to any input	-0.5 to $\mathrm{V}_{\text {cc }}+0.5 \mathrm{VDC}$
Operating Temperature	(to $+65^{\circ} \mathrm{C}$
Storage Temperature	\triangle to $+70^{\circ} \mathrm{C}$
Relative Humidity (non condensing) @ $65^{\circ} \mathrm{C}$	85\%

Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$						
Parameter	Symbol	Min	Typ	Max	Units	Test Conditions
Supply Current/Digit	Icc		25		ma	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ (8 Segments/Digit)
Total (IDA-2416-16)	Icc			650	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (All Segments/Digit)
Total (IDA-2416-32)	${ }^{\text {coc }}$			1250	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ (All Segments/Digit)
Supply Voltage	v_{cc}	4.75	5.00	5.25	v	
Input Voltage - High (All inputs)	$v_{1 H}$	3.3			v	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
Input Voltage - Low (All inputs)	$v_{\text {IL }}$			0.8	v	$\mathrm{v}_{\mathrm{cc}}=5$
Input Current - High (All inputs)	$I_{\text {IH }}$			40	$\mu \mathrm{A}$	$\mathrm{v}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{v}_{1}=2.4 \mathrm{~V}$
Input Current - Low (All inputs)	IL			2.2	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$
Luminous Intensity Average Per Digit	Iv		0.5		mod	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ (8 Segments/Digit)
Peak Wavelength	$\lambda_{\text {peak }}$		660		nm	
Viewing Angle			± 45		Deg	Vertical \& Horizontal From Normal To Display Plane

Switching Characteristics @ 5 V

Parameter © $25^{\circ} \mathrm{C}$	Symbol	Min	Units
Write Pulse	T_{W}	350	nS
Address/DE Setup Time	$T_{\text {AS }}$	550	nS
Data Setup Time	$T_{\text {DS }}$	550	nS
Write Setup	$T_{W D}$	200	nS
Data Hold Time	$T_{\text {DH }}$	75	nS
Address/DE Hold Time	$T_{\text {AH }}$	75	nS
Clear Time	$T_{\text {CLR }}$	15	mS

TIMING CHARACTERISTICS

Physical Dimension

$$
4.80 \text { (IDA 2416-16) }
$$

TOLERANCE: $\pm .02$

PIN	FUNCTION	PIN	FUNCTION
J2-1	A2 ADDRESS LINE	J2-14	NO CONNECTION
J2-2	DE4 DISPLAY ENABLE	J2-15	D6 DATA LINE
J2-3	A3 ADDRESS LINE	J2-16	NO CONNECTION
J2-4	DE3 DISPLAY ENABLE	J2-17	D4 DATA LINE
J2-5	A4 ADDRESS LINE	J2-18	CUE CURSOR ENABLE
J2-6	DE1 DISPLAY ENABLE	J2-19	D5 DATA LINE
J2-7	NO CONNECTION	J2-20	CU CURSOR SELECT
J2-8	DE2 DISPLAY ENABLE	J2-21	A 0 ADDRESS LINE
J2-9	DØ DATA LINE	J2-22	CLR CLEAR
J2-10	NO CONNECTION	J2-23	A1 ADDRESS LINE
J2-11	D1 DATA LINE	J2-24	WR WRITE
J2-12	NO CONNECTION	J2-25	D3 DATA LINE
J2.13	D2 DATA LINE	J2-26	BL BLANKING
J3-1	GND	J3-3	VCC
J3-2	VCC	J3-4	GND

FEATURES

- 225 Mil High Magnified Monolithic Character
- Wide Viewing Angle $\pm 40^{\circ}$
- Complete Alphanumeric Display Assembly Utilizing the DL 3416
- Built-in Multiplex and LED Drive Circuitry
- Built-in Memory
- Built-in Character Generator
- Displays 64 Character ASCII Set
- Direct Access to Each Digit Independently
- Display Blank Function
- Memory Clear Function
- Cursor Function
- Choice of 16, 20 or 32 Character Display Length (Other lengths optional)
- Single 5.0 Volt Power Supply
- TTL Compatible
- Easily Interfaced to a Microprocessor
- Schmitt Trigger Inputs on Data and Write Lines

The IDA 3416 Series Assembly is an extension of the very easy-to-use DL 3416 Intelligent Display. This product provides the designer with circuitry for display maintenance. It also minimizes interaction and interface normally required between the user's system and a multiplexed alphanumeric display.
The assembly consists of DL 3416 's in a single row together with decoder and interface buffers on a single printed circuit board. Each DL 3416 provides its own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 17 -segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments, and other products which require an easy to use alphanumeric display.

Specifications are subject to change without notice.

Part Number	Description
IDA 3416-16	Single Line 16 Character Alphanumeric Display Utilizing the DL 3416
IDA 3416-20	Single Line 20 Character Alphanumeric Display Utilizing the DL 3416
IDA 3416-32	Single Line 32 Character Alphanumeric Display Utilizing the DL 3416

[^16]
IDA 3416 Series

Maximum Ratings	
$V_{\text {cc }}$	6.0 V
Voltage applied to any input	-0.5 to $\mathrm{V}_{\text {cc }}+0.5 \mathrm{VDC}$
Operating Temperature	0 to $+65^{\circ} \mathrm{C}$
Storage Temperature	-20 to $+70^{\circ} \mathrm{C}$

Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Units	Test Conditions
Supply Current/Digit Supply Current/Digit	$\begin{aligned} & \text { icc } \\ & \text { ic } \end{aligned}$		25	6	$\begin{aligned} & m A \\ & m A \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \vee(8 \text { Segments/Digit }) \\ & V_{C C}=5.0 \mathrm{~V}(D \text { isplay Bliank) } \\ & V I N=0 \mathrm{~V}, W \mathrm{WR}=5 \mathrm{~V} \end{aligned}$
Total (IDA-3416-16)	${ }^{\text {I cc }}$			850	mA	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { (All Segments/Digit) } \begin{gathered} \text { (See Note 2) } \end{gathered}$
Total (IDA-3416-20)	${ }^{\prime} \mathrm{cc}$			1050		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { (All Segments/Digit) }$
Total (IDA-3416-32)	${ }^{\prime} \mathrm{cc}$			1680	mA	$\begin{aligned} & V_{C C}=5.0 \vee \text { (All Segments/Digit) } \\ & \text { (Sve Note 2) } \end{aligned}$
Supply Voltage	$\mathrm{V}_{\text {cc }}$	4.75	5.00	5.25	v	
Input Voltage - High (All inputs)	$V_{\text {IH }}$	3.5			v	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm .25 \mathrm{~V}$
Input Voltage - Low (All inputs)	$V_{\text {IL }}$			0.8	v	$v_{C C}=5$
Input Current - High (All inputs)	$I_{1 H}$			40	$\mu \mathrm{A}$	$\mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$
Input Current - Low (All inputs)	$1 / 1$			6.4	mA	$v_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$
Luminous Intensity Average Per Digit	Iv		0.8		med	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ (8 Segments/Digit)
Peak Wavelength			660		nm	
Viewing Angle			± 40		Deg	Vertical \& Horizontal From Normal To Display Plane

Switching Characteristics @ 5 V

Parameter @ $25^{\circ} \mathrm{C}$	Symbol	Min	Units
Write Pulse	T_{W}	350	nS
Address/DE Setup Time	TAs	550	nS
Data Setup Time	TDS	550	$n \mathrm{~S}$
Write Setup	Two	200	nS
Data Hold Time	TDH	75	nS
Address/DE Hold Time	${ }^{T}$ AH	75	ns
Clear Time	TCLR	15	mS

TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS

System Overview

The Intelligent Display Assembly offers the designer a choice of either 16, 20 or 32 alphanumeric characters and operates from just a +5 V supply. Based on the DL 3416 four-character Intelligent Display, the IDA 3416 adds all the support logic required for direct connection to most microprocessor buses. The system interface takes place through a 20 or 26 -pin connector, which has available on it the data and address lines as well as the control signals needed. One additional connector is used for the power and ground connections.

System Power Requirements

Operating from a single $+5-\mathrm{V}$ power supply, the IDA 3416 Series Assembly requires a typical operating current of 30 mA per digit with eight of the segments lit on each character. For the worst case condition with all segments lit, the current is 52 mA per digit and with the display blank the current is 6 mA per digit.

Display Interface

The display interface available on the 20 or 26 -pin connector consists of seven data lines ($D \emptyset$ to $D 6$), five address lines ($A \emptyset$ to A4), and various control signals. All address, data, and control lines have either pull-up or pull-down 1 K ohm resistors. $\overline{\mathrm{BL}}$ (Blanking, active low): When this line is pulled low, it causes the entire IDA display to go blank without affecting the contents of the display memory on the DL 3416s. $\overline{B L}$ is active regardless of address or display enable lines. A flashing display can be realized by pulsing this line. WR (Write, active low): To store a character in the display memory, this line must be puised low for a minimum write time. See timing diagram for timing \& relationships to other signals.
CUE (Cursor Enable, active high): When high, this line permits the cursor to be displayed (see Note 2), and when brought low, it disables the cursor function without affecting the stored value. CUE is active regardless of address or display enable lines. A flashing cursor can be created by pulsing the CUE line low.

Notes: 1) CMOS Handling precaution - App Note 18
2) Cursor should not be on longer than 60 sec .
3) Cleaning solvents - use NO alcohol
$\overline{\mathrm{CU}}$ (Cursor Select, active low): The cursor function (character with all segments lit) is loaded by selecting the digit address and holding $\overline{C U}$ true. A " 1 " on D \emptyset inserts the cursor. A " \emptyset " on D \emptyset removes the cursor. The change occurs during a write pulse per the timing diagram.

CLR (Clear, active low): When hetd low for one display multiplex cycle (see DL 3416 data sheet for more information) of 15 ms , this line will cause all stored characters in the display, except for the cursor, to be cleared. $\overline{C L R}$ is active regardless of address or display enable lines.
$\overline{\mathrm{CE} 2}$ (Chip Enable, Active Low): To store a character in the display memory, this line must be held low at least 550 nanoseconds preceding the leading edge of the $\overline{W R}$ pulse.
Address lines $A \emptyset$ to $A 4$ are set up so that the rightmost character is the lowest address. The left-most character is the highest address. Data lines are set up so that $D \emptyset$ is the least significant bit and D6 is the most significant bit.

Using the Display Interface

Through the use of memory-mapped I/O techniques, the IDA can be treated almost like a memory location - supply the data, address and proper control signals and the characters appear, with each character location independently addressable. The basic signal flow sequence to load a character would start with the address lines going to the desired address while the $\overline{C L R}$ and $\overline{B L}$ lines are high to permit the data to be loaded in and displayed. After the address has stabilized, the data can change to the desired values (including the cursor). After the data have stabilized, the $\overline{W R}$ pulse is started, and must remain low for at least 350 ns . Signals must be held stable for 75 ns , minimum, after the rising edge of the $\overline{W R}$ pulse to ensure correct loading, while the addresses must be stable for 550 ns preceding the same rising edge of the $\overline{W R}$ pulse. See the timing diagram for a pictorial explanation.

PIN	FUNCTION	PIN	FUNCTION
J2-1	A2 ADDRESS LINE	J2-14	NO CONNECTION
J2-2	DE4 DISPLAY ENABLE	J2.15	D6 DATA LINE
J2-3	A3 ADDRESS LINE	J2-16	NO CONNECTION
J2-4	DE3 DISPLAY ENABLE	J2.17	D4 DATA LINE
J2-5	A4 ADDRESS LINE	J2-18	CUE CURSOR ENABLE
J2.6	DE1 DISPLAY ENABLE	J2.19	DS DATA LINE
J2-7	NO CONNECTION	J2.20	Cu Cursor select
J2.8	DE2 DISPLAY ENABLE	J2-21	Aø ADDRESS LINE
J2.9	DU DATA LINE	J2.22	CLP CLEAR
J2-10	NO CONNECTION	J2-23	A1 ADDRESS LINE
J2-11	D1 DATA LINE	J2-24	WR WRITE
J2-12	NO CONNECTION	J2-25	D3 DATA LINE
J2-13	D2 DATA LINE	J2. 26	BL BLANKING
J3-1	GND	J3-3	$V C C$
J3-2	VCC	J3-4	GND

RECOMMENDED MATING CONNECTOR			
Connector	Function	Type	Suggested Mtg.
$\hat{1} \mathrm{~J} 2$	Control/Data	20 Pin Ribbon	BERG P/N 65496-007
J 2		Control Data	26 Pin Ribbon
3 J 3	Power	AMP	PIN P/N 65484-011 $87026-2$ HOUSING P/N 1-87025-3

.68" HIGH, 5×7 DOT MATRIX Intelligent Display ${ }^{\circledR}$ ASSEMBLY

FEATURES

- A Complete Alphanumeric Display Assembly Utilizing the DLX713X Series 5×7 Dot Matrix Display
- Built-in Multiplex and LED Drive Circuitry
- Built-in Memory
- Built-In Character Generator
- Displays 96 Character ASCII Set, Including Both Upper and Lower Case Characters
- Direct Access to Each Digit Independently
- Three Brightness Levels
- Display Blank Function
- Lamp Test Function
- Wide Viewing Angle, $\pm 50^{\circ}$
- Readable in High Ambient Lighting
- Available in High Efficiency Red and Green
- Choice of 16 or $\mathbf{2 0}$ Character Display Lengths
- Single 5.0 Volt Power Supply Requirement
- Easily Interfaced to a Microprocessor
- TTL Compatible
- Fully Buffered Inputs

DESCRIPTION

The IDA 713X Series Assembly is an extension of the single character DLX $713 \times, 5 \times 7$ fully intelligent dot matrix display. This display assembly provides the designer with circuitry for display maintenance, while minimizing the interaction and interface normally required between the user's system and a multiplexed alphanumeric display.

The assembly consists of DLX 713X's in a single row, together with the necessary address decoders and interface buffers, on a single printed circuit board. Each DLX 713X provides its own memory, ASCII ROM character generator, multiplexing circuitry, and drivers for the 35 LED dots.

Intelligent Display Assemblies can be used for applications such as P.O.S. terminals, message systems, industrial equipment, instrumentation, and any other products requiring a large, easily readable, "user friendly', alphanumeric display.

For additional information refer to Appnote 25.
For cleaning we recommend De-ionized water, Isopropyl Alcohol, Freon TE or Freon TF.

Important: Refer to Appnote 18, "Using and Handling Intelligent Displays." Since this is a CMOS device, normal precautions should be taken to avoid static damage.
Specifications are subject to change without notice.

Part Number	COLOR	Description
IDA 7135-16	Hi. Effi. Red	Single Line, 16 Character Alphanumeric Display Utilizing the DLO 7135
IDA 7137-16	Green	Single Line, 16 Character Alphanumeric Display Utilizing the DLG 7137
IDA 7135-20	Hi. Effi. Red	Single Line, 20 Character Alphanumeric Display Utilizing the DLO7135
IDA 7137-20	Green	Single Line, 20 Character Alphanumeric Display Utilizing the DLG7137

MAXIMUM RATINGS	
$V_{C C}$6.0V
Voltage applied to any input	-0.5 to $\mathrm{VCC}+0.5 \mathrm{VDC}$
Operating Temperature	$\cdots .00^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Storage Temperature $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Relative Humidity (non condensing) © $65^{\circ} \mathrm{C}$	85%

SWITCHING CHARACTERISTICS @ 5V			
Parameter © $\mathbf{2 5}^{\circ} \mathrm{C}$	Symbol	Minimum	Units
Write Pulse	Tw	200	ns
Data Setup Time	$\mathrm{T}_{\text {DS }}$	230	ns
Hold Time	$T_{\text {DH }}$	100	ns
Address Setup	$\mathrm{T}_{\text {AS }}$	30	ns

OPTOELECTRONIC CHARACTERISTICS AT $25^{\circ} \mathrm{C}$						
Parameter	Symbol	Min	Typ	Max	Units	Test Conditions
Supply Current/Digit Supply Current/Digit (Blank) Supply Current/Digit Supply Current/Digit Supply Voltage Input Voltage-High (All inputs) Input Voltage-Low (All inputs) Input Current Luminous Intensity/Dot Average Peak Wave Length IDA 7137 IDA 7135 Viewing Angle	$\begin{aligned} & \text { ICC } \\ & \text { VCC } \\ & \text { VIH } \\ & V_{\mathrm{VI}} \\ & \mathrm{IIL}^{2} \end{aligned}$	$\begin{aligned} & 4.75 \\ & 2.7 \end{aligned}$	170 5 85 42 250 565 640 (± 50	220 10 5.25 1.0 160 n) ffi. Red)	mA mA mA mA VDC VDC VDC uA $\mu \mathrm{CD}$ nm neg	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \overline{\mathrm{BLO}}=\overline{\mathrm{BLI}}=1 \\ & V_{C C}=5.0 \mathrm{~V}, \overline{\overline{B L O}}=\overline{\mathrm{BL1}}=0 \\ & V_{C C}=5.0 \mathrm{~V}, \overline{\mathrm{BLO}}=0, \overline{\mathrm{BL1}}=1 \\ & V_{C C}=5.0 \mathrm{~V}, \overline{\mathrm{BLO}}=1, \overline{\mathrm{BL1}}=0 \\ & V_{C C}=5.0 \mathrm{~V} \pm .25 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \end{aligned}$

TIMING CHARACTERISTICS

WRITE CYCLE WAVEFORMS

SYSTEM OVERVIEW

The Intelligent Display Assembly offers the designer a choice of either 16 (IDA $713 X-16$) or 20 (IDA $713 X-20$) alphanumeric characters. Based on the DLX $713 X$ intelligent dot matrix display, the IDA $713 X$ adds all the support logic required for direct connection to most microprocessor buses. The system interface takes place through a 26 pin connector, which has the data and address lines as well as the control signals available on it. One additional connector is used for the power and ground connections.

SYSTEM POWER REQUIREMENTS

Operating from a single +5 V power supply, the IDA $713 \mathrm{X}-16$ requires a typical operating current of 2720 mA at brightest level. For the 20 character assembly, typical operating current is 3400 mA . For worst case conditions, the 16 character assembly draws 3520 mA , while the 20 character assembly draws 4400 mA . With the display blanked, the board circuitry for the 16 character assembly draws 80 mA , and the 20 character assembly draws 100 mA .

DISPLAY INTERFACE

The display interface available on the 26 pin connector consists of seven data lines (D0 to D6), * five address lines (A0 to A4, see Note 3), two brightness inputs ($\overline{\mathrm{BLO}}$ to $\overline{\mathrm{BL1}}$), lamp test ($\overline{\mathrm{LT}}$), the Chip Enable ($\overline{\mathrm{CE}})$, and the Write line ($\overline{\mathrm{WR}})$. All address and data lines have 1 K ohm pull up resistors.
$\overline{\mathrm{BLO}}$ and $\overline{\mathrm{BL} 1}$ (Brightness, active low): When both of these are pulled low, it causes the entire IDA display to go blank without affecting the contents of the display memory on the DLX $713 \times$'s. $\overline{B L}$ is active regardless of address or display enable lines. These two lines are used to vary the intensity of the display to one of four levels.
$\overline{W R}$ (Write, active low): To store a character in the display memory, this line must be pulsed low for a minimum of 200 ns . See timing diagram for timing and relationships to other signals.
$\overline{\mathrm{LT}}$ (Lamp test, active low): This line can be activated to light all display dots.
*For IDA 713 X -16 only.
Four address bits are used.
DIMMING AND BLANKING THE DISPLAY

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BL0 }}$
Blank	0	0
$1 / 4$ Brightness	0	1
$1 / 2$ Brightness	1	0
Full Brightness	1	1

USING THE DISPLAY INTERFACE

Through the use of memory-mapped I/O techniques, the IDA can be treated almost like a memory location-supply the data, address and proper control signals and the characters appear, with each character location independently addressable. The basic signal flow sequence to load a character would start with the address lines going to the desired address. After the address has stabilized, the data can change to the desired values. After the data has stabilized, the WR pulse is started and must remain low for at least 200 ns to ensure correct loading. See the timing diagram for a pictorial explanation. Either BLO or BL1 should be held high for displays to light up.

LAMP TEST

The lamp test ($\overline{(\bar{T})}$ when activated causes all dots on the display to be illuminated at half brightness. The lamp test function is independent of write ($\overline{\mathrm{WR}}$) and the settings of the blanking inputs ($\overline{\mathrm{BLO}}$), BL1).
This convenient test gives a visual indication that all dots are functioning properly. Lamp test may also be used as a cursor function or pointer which does not destroy previously displayed characters.

IDA 713X XX* DIGIT ADDRESSING TRUTH TABLE

Address Bit					Device Addressed
A4	A3	A2	A1	A0	
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	8
0	1	0	0	1	9
0	1	0	1	0	10
0	1	0	1	1	11
0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15
1	0	0	0	0	16
1	0	0	0	1	17
1	0	0	1	0	18
1	0	0	1	1	19

*Entire area is for 20 characters, smaller portion is for 16 characters. Rightmost character is digit 0 .

Bar Graphs
Light Bars

Bar Graphs

Light Bars

Package Type	Package Outline	Part Number	Light Emitting Area(s)	Description	Color	Luminous Intensity		Page
						Typ	$@ \mathrm{~mA}$	
Small rectangular Rugged Encapsulated		OLB-2300	. $15 \times .35$ "	Small rectangular two die light bar. For back lighting legends or indicators.	Hi. Eff. Red	10 mcd	per each die 20	3-3
		YLB-2400			Yellow	6 mcd		
		GLB-2500			Green	10 mcd		
Large rectangular Rugged Encapsulated		OLB-2350	. $15 \times .75^{\prime \prime}$	Large rectangular four die light bar. (1×4) For back lighting legends or indicators.	Hi. Eff. Red	20 mcd	per each die 20	3-4
		YLB-2450			Yellow	12 mcd		
		GLB-2550			Green	20 mcd		
Square Rugged encapsulated		OLB-2655	$.35 \times .35$ "	Square four die light bar. For back lighting legends or indicators.	Hi. Eff. Red	20 mcd	20	3-7
		YLB-2755			Yellow	12 mcd	20	
		GLB-2855			Green	20 mcd	20	
Square 2 section Rugged encapsulated		OLB-2600	. $35 \times .15^{\prime \prime}$	Square four die light bar with a mechanical barrier creating two isolated rectangular light emitting areas. (2×2)	Hi. Eff. Red	10 mcd	per each die 20	3-5
		YLB-2700			Yellow	6 mcd		
		GLB-2800			Green	10 mcd		
Large rectangular Rugged encapsulated		OLB-2685	. $35 \times .75^{\prime \prime}$	Large rectangular eight die light bar. For back lighting legends or indicators.	Hi. Eff. Red	40 mcd	20	3-8
		YLB-2785			Yellow	24 mcd	20	
		GLB-2885			Green	40 mcd	20	
Large rectangular 4 section Rugged encapsulated		OLB-2620	. $35 \times .15^{\prime \prime}$	Large rectangular eight die light bar with mechanical barrier creating four isolated rectangular light emitting areas. (2×4) For back lighting legends or indicators.	Hi. Eff. Red	10 mcd	per each die 20	3-6
		YLB-2720			Yellow	6 mcd		
		GLB-2820			Green	10 mcd		

Maximum Ratings

FEATURES

- Small Rectangular Package
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or SIPIDFP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for:

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2300/YLB 2400/GLB 2500 series light bars are rectangular displays designed for applications requiring a large light emitting area. They are configured in a single in-line package and contain a single light emitting area. The OLB 2300 and YLB 2400 devices utilize two LED chips which are made from GaAsP on a transparent GaP substrate. The GLB 2500 device utilizes two chips made from GaP on a transparent GaP substrate.

	OLB 2300 \& GLB 2500	YLB 2400
Average Power Dissipation per LED chip 135 mW 85 mW Peak Forward Current per LED chip	90 mA	60 mA
Ta $=50^{\circ} \mathrm{C}$ (max pulse width $=2 \mathrm{~ms}$)	25 mA	20 mA
Average Forward Current per LED Pulsed conditions (Ta $=50^{\circ} \mathrm{C}$)		
DC Forward Current Per LED	30 mA	25 mA
(Ta $=50^{\circ} \mathrm{C}$) Reverse Voltage per LED chip 6 V Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead Soldering Temperature, $260^{\circ} \mathrm{C}$ for 3 sec. 1/16 inch below seating plane Junction Temperature $100^{\circ} \mathrm{C}$		

Electrical/Optical Characteristics (@25 ${ }^{\circ} \mathrm{C}$)

Parameters	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity					
OLB2300	4.5	10		mod	20 mA DC
YLB2400	4	6		med	20 mA DC
GLB2500	3.7	10		mod	20 mA DC
Peak Wavelength					
OLB2300		635		$n m$	
YLB2400		583		nm	
GLB2500		565		nm	
Dominant Wavelength					
OLB2300		626		nm	
YLB2400		585		nm	
GLB2500		572		nm	
Forward Voltage					
OLB2300		1.9	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
YLB2400		2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
GLB2500		2.1	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage					
OLB2300	6	15		V	$I_{R}=100 \mu \mathrm{~A}$
YLB2400	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
GLB2500	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

[^17]

FEATURES

- Small Rectangular Package
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or SIP/DFP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for:

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2350/YLB 2450/GLB 2550
light bars are rectangular displays designed for applications requiring a large light emitting area. They are configured in a single in-line package and contain a single light emitting area. The OLB 2350 and YLB 2450 devices utilize four LED chips which are made from GaAsP on a transparent GaP substrate. The GLB 2550 device utilizes four chips made from GaP on a transparent GaP substrate.

FEATURES

- Square Package
- Mechanical barrier creating two isolated rectangular light emitting areas
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or DIP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for:

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2600/YLB 2700/GLB 2800 series light bars are square displays. They are configured in a dual in-line package with a mechanical barrier creating two isolated rectangular light emitting areas. The OLB 2600 and YLB 2700 devices utilize four LED chips which are made from GaAsP on a transparent

Maximum Ratings

	OLB 2600 \& GLB 2800	YLB 2700
Average Power Dissipation per LED chip	135 mW	85 mW
Peak Forward Current per LED chip	90 mA	60 mA
$\mathrm{Ta}=50^{\circ} \mathrm{C}$ (max pulse width $=2 \mathrm{~ms}$)		
Average Forward Current per LED	25 mA	20 mA
Pulsed conditions ($\mathrm{Ta}=50^{\circ} \mathrm{C}$)		
DC Forward Current Per LED	30 mA	25 mA
($\mathrm{Ta}=50^{\circ} \mathrm{C}$)		
Reverse Voltage per LED chip		
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature,	$260^{\circ} \mathrm{C}$ for 3 sec .	
1/16 inch below seating plane		
Junction Temperature	$100^{\circ} \mathrm{C}$	

Electrical/Optical Characteristics (@25 ${ }^{\circ} \mathrm{C}$)

Parameters	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity (per light emitting area)					
OLB2600	4.5	10		mcd	20 mA DC
YLB2700	4	6		mod	20 mA DC
GLB2800	3.7	10		mod	20 mA DC
Peak Wavelength					
OLB2600		635		nm	
YLB2700		583		nm	
GL.B2800		565		nm	
Dominant Wavelength					
OLB2600		626		nm	
YLB2700		585		nm	
GLB2800		572		nm	
Forward Voltage					
OLB2600		2.1	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
YLB2700		2.2	2.6	V	$I_{F}=20 \mathrm{~mA}$
GLB2800		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage					
OLB2600	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
YLB2700	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
GLB2800	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

FEATURES

- Large Rectangular Package
- Mechanical barrier creating four isolated rectangular light emitting areas
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or DIP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for:

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2620/YLB 2720/GLB 2820 series light bars are rectangular displays. They are configured in a dual in-line package with a mechanical barrier creating four isolated rectangular light emitting areas. The OLB 2620 and YLB 2720 devices utilize eight LED chips which are made from GaAsP on a transparent GaP substrate. The GLB 2820 device utilizes eight chips made from GaP on a transparent GaP substrate.

Maximum Ratings

	OLB 2620 \& GLB 2820 Y	YLB 2720
Average Power Dissipation per LED chip	135 mW	85mW
Peak Forward Current per LED chip $\mathrm{Ta}=50^{\circ} \mathrm{C}$ (max pulse width $=2 \mathrm{~ms}$)	90 mA	60 mA
Average Forward Current per LED	25 mA	20 mA
Pulsed conditions ($\mathrm{Ta}=50^{\circ} \mathrm{C}$)		
DC Forward Current Per LED $\left(\mathrm{Ta}=50^{\circ} \mathrm{C}\right)$	30 mA	25 mA
Reverse Voltage per LED chip	6 V	6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Soldering Temperature,	$260^{\circ} \mathrm{C}$ for 3 sec .	
1/16 inch below seating plane		
Junction Temperature	$100^{\circ} \mathrm{C}$	

Electrical/Optical Characteristics (@ $25^{\circ} \mathrm{C}$)

Parameters	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity (per light emitting area)					
OLB2620	4.5	10		mcd	20 mA DC
YLB2720	4	6		mod	20 mA DC
GLB2820	3.7	10		mod	20 mA DC
Peak Wavelength					
OLB2620		635		nm	
YLB2720		583		nm	
GL.B2820		565		nm	
Dominant Wavelength					
OLB2620		626		nm	
YLB2720		585		nm	
GLB2820		572		nm	
Forward Voltage					
OLB2620		2.1	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
YLB2720		2.2	2.6	V	$\mathrm{I}_{F}=20 \mathrm{~mA}$
GLB2820		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage					
OLB2620	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
YLB2720	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
GLB2820	6	15		V	$\mathrm{t}_{\mathrm{R}}=100 \mu \mathrm{~A}$

[^18]

FEATURES

- Square Package
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or DIP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for:

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2655/YLB 2755/GLB 2855 series light bars are square displays designed for application requiring a large light emitting area. They are configured in a dual in-line package and contain a single light emitting area. The OLB 2655 and YLB 2755 devices utilize four LED chips which are made from GaAsP on a transparent GaP substrate. The GLB 2855 device utilizes four chips made from GaP on a transparent GaP substrate.

Maximum Ratings

	OLB 2655 \& GLB 2855	YLB 2755
Average Power Dissipation per LED chip	135 mW	85 mW
Peak Forward Current per LED chip	90 mA	60 mA
Ta $=50^{\circ} \mathrm{C}$ (max pulse width $=2 \mathrm{~ms}$)	25 mA	20 mA
Average Forward Current per LED Pulsed conditions (Ta $=50^{\circ} \mathrm{C}$)		
DC Forward Current Per LED (Ta $=50^{\circ} \mathrm{C}$)	30 mA	25 mA
Reverse Voltage per LED chip Operating Temperature Storage Temperature	6 V	
Lead Soldering Temperature, 1/16 inch below seating plane	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Electrical/Optical Characteristics (@25 ${ }^{\circ} \mathrm{C}$)

Parameters	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity					
OLB2655	9	20		mod	20 mA DC
YLB2755	8	12		mcd	20 mA DC
GLB2855	7.5	20		mod	20 mA DC
Peak Wavelength					
OLB2655		635		nm	
YLB2755		583		nm	
GLB2855		565		nm	
Dominant Wavelength					
OLB2655		626		nm	
YLB2755		585		nm	
GLB2855		572		nm	
Forward Voltage					
OLB2655		2.1	2.6	V	$I_{F}=20 \mathrm{~mA}$
YLB2755		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
GLB2855		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage					
OLB2655	6	15		V	$I_{R}=100 \mu \mathrm{~A}$
YLB2755	6	15		V	$I_{R}=100 \mu \mathrm{~A}$
GLB2855	6	15		V	$I_{R}=100 \mu \mathrm{~A}$

[^19]

FEATURES

- Large Rectangular Package
- Uniform Light Emitting Area
- Excellent ON/OFF Contrast
- Choice of Three Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Panel or Legend Mountable
- Can be Mounted on P.C. Boards or DIP Sockets
- X-Y Stackable
- Suitable for Multiplexing
- IC Compatible

APPLICATIONS

These devices are ideally suited for.

- Message Annunciators
- Positions/Status Indicators
- Telecommunications Indicators
- Bar Graphs

DESCRIPTION

The OLB 2685/YLB 2785/GLB 2885 series light bars are rectangular displays designed for applications requiring a large light emitting area. They are configured in a dual in-line package and contain a single light emitting area. The OLB 2685 and YLB 2785 devices utilize eight LED chips which are made from GaAsP on a transparent GaP substrate. The GLB 2885 device utilizes eight chips made from GaP on a transparent GaP substrate.

FEATURES

- Instrumentation resolution-1\%
- Clearly Visible Rectangular Red Elements $5 \mathrm{mil} \times 60 \mathrm{mil}$ light emitting areas 1 mm center to center spacing
- Yellow LED scale marks spaced every 10 red LEDs
- All LEDs of the same color matched for brightness
- Excellent Alignment
- Sturdy Construction, epoxy backfilled cover
- Single-in-line Package 25 mil square pins 100 mil Industry Standard centers
- Specifically designed for multiplexed operation
- Clear polycarbonate cover standard

DESCRIPTION:

The RBG-112 is an instrumentation quality 101 element rectangular red LED bar graph accompanied by an 11 element yellow bar graph which can be used as a programmable scale. It provides a simple high resolution display of digital data when used as an expanding bar or as a position indicator when used as a moving dot.

The RBG-112 is provided with a clear polycarbonate cover which performs two functions; first the cover is backfilled with an epoxy seal resulting in a rugged, environmentally sound package; and second, the clear cover allows the use of a neutral filter of the customer's choice since LEDs of different colors (yellow and red) are used in the assembly.

The LEDs are arranged in a multiplexed arrangement. Red LEDs are in a common cathode array of 8 elements to a group, 13 groups. Yellow LEDs are in a common cathode configuration of 11 elements. Both groups of arrays are addressed through the 38 single-in-line pins extending from the back of the printed circuit board.

MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$

Parameter			Max.	Units
Average Power per Segment			15	mW
Average DC Forward Current per Segment (Red)			7	mA
Average DC Forward Current per Segment (Yellow)			7	mA
Derating Factor From $70^{\circ} \mathrm{C}$			0.16	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
Peak Forward Current per Seg. Pulse Width-300 $\mu \mathrm{s}$			200	mA
Reverse Voltage/Seg.			5.0	\checkmark
Storage Temperature	-40	to	+85	Deg C
Operating Temperature	-40	to	+85	Deg C
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 3 sec .			

OPTOELECTRONIC CHARACTERISTICS (@25 DEG. C):

Parameter	Min.	Typ.	Max.	Units	Test Condition
Forward Voltage					
(Red)		1.7	2.1	V	$\mathrm{IF}=20 \mathrm{~mA}$
(Yellow)		1.9	2.4	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse Voltage					
(Red)	3.0			V	$\mathrm{IR}=100 \mu \mathrm{~A}$
(Yellow)	3.0			V	$I R=100 \mu \mathrm{~A}$
Luminous Intensity					
(Red)	240			$\mu \mathrm{cd}$	$\mathrm{IF}=10 \mathrm{mADC}$
(Yellow)	240			$\mu \mathrm{cd}$	$\mathrm{IF}=10 \mathrm{mADC}$
Peak Wavelength					
(Red)		655		nm	$\mathrm{IF}=20 \mathrm{~mA}$
(Yellow)		575		nm	$\mathrm{IF}=20 \mathrm{~mA}$
Luminous Intensity					
Segment Matching					
Adjacent Segments			1.6:1		$\mathrm{IF}=10 \mathrm{~mA}$
All Other Segments			1.8:1		$\mathrm{IF}=10 \mathrm{~mA}$

[^20]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

red RBG-1000 high efficiency red OBG-1000 yellow YBG-1000 green GBG-1000

10 ELEMENT BAR GRAPH

FEATURES

- 10 Element Display
- End Stackable Module
- Individual Addressable Anode and Cathode
- Intensity Coded for Display Uniformity
- Rugged Encapsulation
- Choice of Colors

DESCRIPTION

The Red RBG-1000, Hi-efficiency Red OBG-1000, Yellow YBG-1000, and Green GBG-1000 are 10 individual element bar graphs. They are contained in a 1 inch long, 20 pin dual-in-line package that can be end stacked as bar-graph displays of various lengths. Applications include: bar graph, solid-state meter movement, position indicator, etc.

Maximum Ratings

Storage Temperature	-20° to $+85^{\circ} \mathrm{C}$
Operating Temperature	-20° to $+85^{\circ} \mathrm{C}$
Power Dissipation @ $25^{\circ} \mathrm{C}$	450 mW
Derating Factor from $25^{\circ} \mathrm{C}$	$7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continous Forward Current	
RBG-1000 per display per element	$\begin{aligned} & \ldots . .200 \mathrm{~mA} \\ & \ldots . .20 \mathrm{~mA} \end{aligned}$
OBG-1000	
YBG-1000 per display	156 mA
GBG-1000 per element	20 mA

Peak Inverse Voltage per Element . 3 V
Opto-Electronic Characteristics (@ $25^{\circ} \mathrm{C}$)

Parameter Typ Max Unit Condition

Luminous Intensity/ Element
(Display Average)

RBG-1000	.5	mad$I_{F}=20 \mathrm{~mA} /$ Segment
OBG-1000	2.5	mad $I_{F}=20 \mathrm{~mA} /$ Segment
YBG-1000	2.0	mcd$I_{F}=20 \mathrm{~mA} /$ Segment
GBG-1000	2.0	mcd$I_{F}=20 \mathrm{~mA} /$ Segment

Forward Voltage
RBG-1000
$1.72 .0 \quad \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
OBG-1000
$2.2 \quad 2.8 \quad \vee \quad I_{F}=20 \mathrm{~mA}$
YBG-1000
$2.4 \quad 3.0 \quad \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
GBG-1000
Reverse Leakage
$2.43 .0 \quad \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Emission Peak Wavelength

RBG-1000	660	nm
OBG-1000	630	nm
YBG-1000	585	nm
GBG-1000	565	nm

[^21]RBG-1000, OBG-1000, YBG-1000 AND GBG-1000

PIN	FUNCTION	PIN	FUNCTION
1	ANODE 1	11	CATHODE 10
2	ANODE 2	12	CATHODE 9
3	ANODE 3	13	CATHODE 8
4	ANODE 4	14	CATHODE 7
5	ANODE 5	15	CATHODE 6
6	ANODE 6	16	CATHODE 5
7	ANODE 7	17	CATHODE 4
8	ANODE 8	18	CATHODE 3
9	ANODE 9	19	CATHODE 2
10	ANODE 10	20	CATHODE 1

TYPICAL APPLICATIONS

LINEAR DISPLAY
DRIVERS
Siemens UAA170
Siemens UAA180 National LM3914 National LM3915 Sharp IR2406

No endorsement or warranty of other manufacturer's products is intended

FEATURES

- 10 Element Array
- End Stackable With Package Interlock to Assure Alignment
- Matched LED's for Uniform Dispiay
- Individually Addressable Anode and Cathode
- Intensity Coded for Display Uniformity
- Wide Viewing Angle
- Rugged Encapsulated Construction
- Standard Dual-In-Line Package
- High On-Off Contrast, Segment to Segment Hue Coded For Uniformity
- Choice of Colors

DESCRIPTION

The Red RBG-4820, Hi-efficiency Red, OBG4830, Yellow YBG-4840 and Green GBG-4850 are 10 individual element linear bar dispiays and are designed to display information in easily recognizable bar graph form. They are end stackable for expanded display lengths. The package interlock ensures that each bargraph will align accurately and correctly with the next one. Applications include solid state meters, position indicators, and instrumentation.

Package Dimensions in Inches (mm)

Maximum Ratings

Storage Temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation @ $25^{\circ} \mathrm{C}$	450 mW
Derating Factor from $25^{\circ} \mathrm{C}$	$7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 3 sec.
(1/16 below seating plane)	
Peak Reverse Voltage Per Led	3 V
Continuous Forward Current	
RBG-4820	30 mA
OBG-4830	30 mA
YBG-4840	20 mA
GBG-4850	30 mA

Optoelectronic Characteristics (@ $25^{\circ} \mathrm{C}$)

Parameters	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity					
Per Element					
RBG-4820		500		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
OBG-4830		2500		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
YBG-4840		2000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
GBG-4850		2000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Peak Wavelength					
RBG-4820		655		nm	
OBG-4830		635		nm	
YBG-4840		583		nm	
GBG-4850		566		nm	
Dominant Wavelength					
RBG-4820		645		nm	
OBG-4830		626		nm	
YBG-4840		585		nm	
GBG-4850		571		nm	
Forward Voltage					
Per LED					
RBG-4820		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
OBG-4830		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
YBG-4840		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
GBG-4850		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Reverse Voltage					
Per LED					
RBG-4820	3	12		V	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{uA}$
OBG-4830	3	30		v	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{uA}$
YBG-4840	3	50		V	$\mathrm{I}_{\mathrm{R}}=100 \mathrm{uA}$
GBG-4850	3	50		V	$I_{R}=100 \mathrm{uA}$

[^22]

PIN	FUNCTION	PIN	FUNCTION
1	ANODE 1	11	CATHODE 10
2	ANODE 2	12	CATHODE 9
3	ANODE 3	13	CATHODE 8
4	ANODE 4	14	CATHODE 7
5	ANODE 5	15	CATHODE 6
6	ANODE 6	16	CATHODE 5
7.	ANODE 7	17	CATHODE 4
8	ANODE 8	18	CATHODE 3
9	ANODE 9	19	CATHODE 2
10	ANODE 10	20	CATHODE 1

TYPICAL APPLICATIONS

FEATURES

- Instrumentation Resolution - 1\%
- Clearly Visible Rectangular Red Elements $5 \mathrm{mil} \times 60 \mathrm{mil}$ light emitting area 1 mm center to center spacing
- All LEDs matched for brightness
- Excellent Alignment
- Sturdy Construction, epoxy backfilled cover
- Single-in-line Package 25 mil square pins 100 mil industry Standard centers
- Specifically designed for multiplexed operation
- Red polycarbonate cover standard

DESCRIPTION

The RBG-8820 is an instrumentation quality 101 element red LED bar graph. It provides a simple, high resolution analog representation of digital data when used as an expanding bar or as a position indicator when used as a moving dot. The RBG-8820 can be provided either with a red or a clear polycarbonate cover. The clear cover is advantageous when the array is used inconjunction with other LED devices and a front panel filter is placed over all displays. The cover is backfilled with an epoxy seal resulting in a rugged, environmentally sound package. The LEDs are connected in a common cathode configuration with 10 LEDs to a group, and 10 groups total. One additional element is brought out separately.

The RBG-8820 is designed for multiplexed operation, the desired group being selected by the cathode, the individual bar by the anode. The array is addressed by 22 single-in-line pins extending from the back of the circuit board.

MAXIMUM RATINGS (at $25^{\circ} \mathrm{C}$)

Average power per segment 15 mw
Peak forward current per 200 ma , element
Average forward current per element
Operating temperature range
Storage temperature range
Reverse voltage per element
Lead solder temperature
pulse width $300 \mu \mathrm{sec}$

7 ma
-40° to $+85^{\circ} \mathrm{C}$
-40° to $+85^{\circ} \mathrm{C}$
5.0 volts
260° for 3 sec
$1 / 16^{\prime \prime}$ from body

OPTO-ELECTRONIC CHARACTERISTICS (at $25^{\circ} \mathrm{C}$)

Parameter	Min Typ	Max Unit	Test Condition
Peak wavelength	665	nM	
Forward voltage	1.7	2.1 V	If $=20 \mathrm{ma}$
Reverse voltage	3.0	V	$\mathrm{I}_{\mathrm{R}}=100$ ua
Average luminous intensity per element	820	$\mu \mathrm{cd}$	100 ma pk,

[^23]
Package Dimensions in Inches(mm)

$\underset{\text { Pocation }}{\text { Loctin }}$	Designation
1	co
$\frac{2}{3}$	${ }^{\text {A4 }}$
5	${ }_{C 1}$
${ }_{7}^{6}$	A A
9	${ }_{\text {C2 }}$
11	A^{\prime}
13	C30
15 17	${ }_{\text {A }}{ }_{\text {c }} 40$
19	A2
21	C50
23 25 25	${ }_{\text {A }}{ }_{\text {C60 }}$
27	A10
29	C70
${ }_{33}^{31}$	${ }_{\text {A }}^{\text {C8O }}$
34 34 35	${ }^{\text {A }}$ ¢
${ }_{37}^{35}$	${ }^{\text {A6 }} \mathrm{C} 90$

LED Numeric Displays

RED SEVEN SEGMENT MAGNIFIED MONOLITHIC NUMERIC DISPLAY

FEATURES

- Rugged Encapsulated Package
- Integrated Magnifier Lens
- Monolithic Construction for Maximum Brightness at Minimum Power
- Common Cathode for Simplicity of Multiplexing
- Standard Dual-In-Line Package
- Categorized for Brightness Uniformity

DESCRIPTION

The DL-330M/340M and DL-430M/440M are red numeric LED displays. Low cost is achieved through minimum use of monolithic GaAsP material and magnification to full height using a simple integrated lens construction. A red plexiglass or circularly polarized filter is recommended to enhance visibility and to eliminate glare from the surface of the package.
These displays are designed for multiplex operation, the desired digit being displayed by selecting the appropriate cathode. A right hand decimal point is provided.
All devices are optimized for low power portable battery operated equipment using MOS and CMOS integrated logic circuits such as DMM's and digital thermometers.

Maximum Ratings: (at $25^{\circ} \mathrm{C}$)

Power Dissipation	320 mW
Derating Factor from $25^{\circ} \mathrm{C} /$ Digit	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage and Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Continuous Forward Current Per Segment and Decimal	7 mA
Peak Inverse Voltage per Segment and Decimal	3 V
Peak Pulse Current ($10 \mu \mathrm{~S}$)	50 mA

Optoelectronic Characteristics (at $25^{\circ} \mathrm{C}$)

Parameter Luminous Intensity (Total Digit)	Min	Typ	Max	Unit	Test Condition
Emission Peak Wavelength	1.0	2.5		mcd	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} / \mathrm{seg}$.
Line Half-Width	40		660	nm	
Forward Voltage		1.7	2.0	nm	
			100	$\mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} / \mathrm{digit}$
Reverse Current				$V_{R}=3.0 \mathrm{~V}$	

[^24]

FEATURES

- Rugged Encapsulated (Filled Reflector Construction)
- Choice of Colors (Including High Intensity Red) as well as Common Anode (D. P. Left \& Right), Common Cathode and Universal Polarity Overflow
- Sharp, Clear . 43 Inch Character for Viewing up to 20 Feet
- Intensity Coded for Matching Uniformity
- Standard 14 Pin, . 3 Inch Pin Spacing, Dual-In-Line Package

DESCRIPTION

The DL-7750R, -76500, -7660Y, -7670G series are large 0.43 inch (10.92 mm) Red; Hi-efficiency Red, Yellow, and Green seven segment displays. These displays are designed for use in instruments, point-of-sale systems, clocks, and other general industrial \& consumer applications.

Part Number	Color	Description
DL-7750R	Standard Red	C.A. 7 Segment, D.P. Left
DL-7751R		C.A. 7 Segment, D.P. Right
DL-7756R		Univ. ± 1 Polarity Overflow
DL-7760R	"	C.C. 7 Segment, D.P. Right
DL-76500	High Efficiency Red	C.A. 7 Segment, D.P. Left
DL-76510		C.A. 7 Segment, D.P. Right
DL-76530	"	C.C. 7 Segment, D.P. Right
DL-76560	"	Univ. ± 1 Polarity Overflow
DL-7660Y	Yellow	C.A. 7 Segment, D.P. Left
DL-7661Y		C.A. 7 Segment D.P. Right
DL-7663Y		C.C. 7 Segment, D.P. Right
DL-7666Y	"	Univ. ± 1 Polarity Overflow
DL-7670G	Green	C.A. 7 Segment, D.P. Left
DL-7671G		C.A. 7 Segment, D.P. Right
DL-7673G	"	C.C. 7 Segment, D.P. Right
DL-7676G	"	Univ. ± 1 Polarity Overflow

[^25]
ELECTRICAL／OPTICAL CHARACTERISTICS AT TA $=25^{\circ} \mathrm{C}$ RED DL－7750R／7751R／7756R／7760R

Parameter	Symbol	Test Condition	Min．	Typ．	Max．	Units
Luminous Intensity／Segment	Iv	$\mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA}$	120	350		$\mu \mathrm{cd}$
	I_{v}	$\mathrm{I}_{\mathrm{f}}=25 \mathrm{~mA}$		1000		$\mu \mathrm{cd}$
Peak Wavelength	入peak			665		nm
Dominant Wavelength	λd			645		nm
Forward Voltage／Segment or D．P．	$\mathrm{V}_{\text {f }}$	$\mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA}$		1.6	2.0	V
Reverse Current／Segment or D．P．	I_{R}	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Rise and Fall Time	$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}$			5		ns

HIGH EFFICIENCY RED DL－76500／76510／76530／76560

Parameter	Symbol	Test Condition	Min．	Typ．	Max．	Units
Luminous Intensity／Segment	Iv	$\begin{aligned} & I_{f}=5 \mathrm{~mA} \\ & I_{f}=15 \mathrm{~mA} \end{aligned}$	90	$\begin{gathered} 260 \\ 1000 \end{gathered}$		$\begin{aligned} & \mu \mathrm{cd} \\ & \mu \mathrm{~cd} \end{aligned}$
Peak Wavelength	入peak			645		nm
Dominant Wavelength	λd			638		nm
Forward Voltage／Segment or D．P．	$\mathrm{V}_{\text {f }}$	$\mathrm{I}_{\mathrm{f}}=5 \mathrm{~mA}$		1.9	2.4	V
Reverse Current／Segment or D．P．	I_{R}	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Rise and Fail Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			100		ns

YELLOW DL－7660Y／7661Y／7663Y／7666Y

Parameter	Symbol	Test Condition	Min．	Typ．	Max．	Units
Luminous Intensity／Segment	IV	$\begin{aligned} & \mathrm{I}_{\mathrm{f}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{f}}=15 \mathrm{~mA} \end{aligned}$	90	$\begin{aligned} & 200 \\ & 900 \end{aligned}$		$\mu \mathrm{cd}$ $\mu \mathrm{cd}$
Peak Wavelength	入peak			590		nm
Dominant Wavelength	λd			592		nm
Forward Voltage／Segment or D．P．	V_{f}	$\mathrm{I}_{\mathrm{f}}=5 \mathrm{~mA}$		1.9	2.4	V
Reverse Current／Segment or D．P．	I_{R}	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			100		ns

GREEN DL－7670G／7671G／7673G／7676G

Parameter	Symbol	Test Condition	Min．	Typ．	Max．	Units
Luminious Intensity／Segment	IV	$\begin{aligned} & I_{f}=5 \mathrm{~mA} \text { D.C. } \\ & I_{f}=15 \mathrm{~mA} \text { D.C. } \end{aligned}$	120	$\begin{aligned} & 260 \\ & 1000 \end{aligned}$		$\begin{aligned} & \mu \mathrm{cd} \\ & \mu \mathrm{~cd} \end{aligned}$
Peak Wavelength	λ peak			560		nm
Dominant Wavelength	λd			561		nm
Forward Voltage／Segment or D．P．	$V_{\text {f }}$	$\mathrm{I}_{\mathrm{f}}=5 \mathrm{~mA}$		1.9	2.4	V
Reverse Current／Segment or D．P．	I_{R}	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			50		ns

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

$0.28^{\prime \prime}(7 \mathrm{~mm})$ SEVEN SEGMENT NUMERIC DISPLAY

FEATURES

- Rugged Encapsulated Package
- 0.28 Inch (7 mm) Digit Height
- Choice of Colors
- Common Anode or Common Cathode
- Wide Viewing
- Intensity Coded for Display Uniformity

Product

HD1075R
HD1077R
HD1075O
HD1077O
HD1075Y
HD1077Y
HD1075G
HD1077G

Color
Red
Red High Efficiency Red High Efficiency Red

Yellow
Yellow
Green
Green

Description

Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal

DESCRIPTION

The HD1075X/1077X are displays with $0.28^{\prime \prime}$ digits with either a common anode or common cathode and a right hand decimal point.
These displays have good viewing and can be used in electronic instruments, point-of-sale systems, clocks, and other general industrial and consumer applications. All displays have a light grey face.
Contrast enhancement filters are recommended for use with all displays.

[^26]| Maximum Ratings | |
| :---: | :---: |
| Power Dissipation (Per Segment) | 40 mW |
| Operating Temperature | -35° to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | -40° to $+85^{\circ} \mathrm{C}$ |
| DC Forward Current (Per Segment) | |
| HD1075/1077R | 20 mA |
| HD1075/1077O, HD1075/1077G, HD1075/1077Y | mA |
| Peak Forward Current ($\mathrm{t} \leq 10 \mu \mathrm{~s}$) | |
| HD1075/1077R | 400 mA |
| HD1075/1077O, HD1075/1077G, HD1075/1077Y | |
| Reverse Voltage . | 6 V |
| Thermal Resistance (Junction to Air) | 170 K/W |
| Soldering Temperature (Less than 5 sec @ min | $2 \mathrm{~mm}) \ldots 230^{\circ} \mathrm{C}$ |

Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$

Parameter Luminous Intensity (Per Segment)	Min	Typ	Max	Units	Conditions
HD1075/1077R	120	450		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
HD1075/1077O	90	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
HD1075/1077Y	90	200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		900		$\mu \mathrm{cd}$	$I_{F}=15 \mathrm{~mA}$
HD1075/1077G	120	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1000		$\mu \mathrm{cd}$	$\mathrm{I}_{F}=15 \mathrm{~mA}$
Forward Voltage					
HD1075/1077R		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
HD1075/1077O, HD1075/1077G		1.9	2.4		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
HD1075/1077Y		1.9	2.4	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
Reverse Current		0.01	10	$\mu \mathrm{A}$	$V_{R}=6 \mathrm{~V}$
Peak Emission Wavelength					
HD1075/1077R		665		nm	
HD1075/10770		645		nm	
HD1075/1077G		560		nm	
HD1075/1077Y		590		nm	
Rise Time/Fall Time					
HD1075/1077R		5		ns	
HD1075/1077O, HD1075/1077Y		100		ns	
HD1075/1077G		50		ns	
Capacitance					
HD1075/1077R		40		pf	$V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1075/1077O		12		pf	$V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1075/1077G		45		pf	$V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1075/1077Y		10		pf	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

HD1075X
FUNCTION

PIN	FUNCTION
1	CATHODE SEGMENT

2 CATHODE SEGMENT D COMMON ANODE CATHODE SEGMENT C 5 CATHODE DECIMAL POINT 6 CATHODE SEGMENT B 7 CATHODE SEGMENT A 8 COMMON ANODE CATHODE SEGMENT G 10 CATHODE SEGMENT F

HD1077X

FUNCTION

ANODE SEGMENTE
ANODE SEGMENT D COMMON CATHODE ANODE SEGMENT C ANODE DECIMAL POINT ANODE SEGMENT B ANODE SEGMENT A COMMON CATHODE ANODE SEGMENT G ANODE SEGMENT F

TOP VIEW

red HD1105R/1107R high efficiency red HD11050/11070 yellow HD1105Y/1107Y gaten HD1105G/1107G

0.39" (10 mm) SEVEN SEGMENT NUMERIC DISPLAY

FEATURES

- Rugged Encapsulated Package
- Large 0.39" (10 mm) Digit Height
- Choice of Colors
- Common Anode or Common Cathode
- Wide Viewing
- Intensity Coded for Display Uniformity

Package Dimensions in Inches (mm)

Product

HD1105R
HD1107R
HD1105O
HD1107O
HD1105Y
HD1107Y
HD1105G
HD1107G

Color
Red
Red
High Efficiency Red High Efficiency Red

Yellow
Yellow
Green
Green

Description

Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal Common Anode, Right Decimal Common Cathode, Right Decimal

DESCRIPTION

The HD1105X/1107X are displays with $0.39^{\prime \prime}$ digits with either a common anode or common cathode and a right hand decimal point.
These displays were designed for viewing distances of up to 10 feet and can be used in electronic instruments, point-of-sale systems, clocks, and other general industrial and consumer applications. All displays have a light grey face.
Contrast enhancement filters are recommended for use with all displays.

[^27]
Maximum Ratings

Power Dissipation Per Segment ($T_{\text {amb }}=45^{\circ} \mathrm{C}$)	50 mW
Operating Temperature	-35° to $+85^{\circ} \mathrm{C}$
Storage Temperature	-40° to $+85^{\circ} \mathrm{C}$
DC Forward Current Per Segment ($T_{\text {amb }}=45^{\circ} \mathrm{C}$) HD1105/HD1107R	25 mA
HD1105/HD1107O, HD1105/HD1107G,	
HD1105/HD1107Y	17.5 mA
Peak Forward Current ($\mathrm{t} \leq 10 \mu \mathrm{~S}, \mathrm{~T}_{\text {amb }}=45^{\circ} \mathrm{C}$)	
HD1105/HD1107R	400 mA
HD1105/HD1107O, HD1105/HD1107G,	
HD1105/HD1107Y	150 mA
Reverse Voltage	6 V
Thermal Resistance (Junction to Air).	$135 \mathrm{~K} / \mathrm{W}$
Soldering Temperature (Less than $5 \mathrm{sec} @$ min	$230^{\circ} \mathrm{C}$

Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Min	Typ	Max	Units	Test Conditions
Luminous Intensity (Per Segment)					
HD1105/1107R	120	350		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		1000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$
HD1105/11070	90	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$
HD1105/HD1107G	120	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1000		$\mu \mathrm{cd}$	$I_{F}=15 \mathrm{~mA}$
HD1105/1107Y	90	200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		900		$\mu \mathrm{cd}$	$I_{F}=15 \mathrm{~mA}$
Forward Voltage					
HD1105/1107R		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
HD1105/1107O, HD1105/1107G,					
HD1105/1107Y		1.9	2.4	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
Reverse Current		0.01	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
Peak Emission Wavelength					
HD1105/1107R		665		nm	
HD1105/1107O		645		nm	
HD1105/1107G		560		nm	
HD1105/1107Y		590		nm	
Rise Time/Fall Time					
HD1105/1107R		5		ns	
HD1105/1107O, HD1105/1107Y		100		ns	
HD1105/1107G		50		ns	
Capacitance					
HD1105/1107R		40		pf	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1105/1107O		12		pf	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1105/1107G		45		pf	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
HD1105/1107Y		10		pf	$V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

TOP VIEW

HD1105X

Cathode G
Cathode F
Common Anode
Cathode E
Cathode D
Cathode DP
Cathode C
Common Anode
Cathode B
Cathode A

HD1107X

```
Anode G
Anode F
Common Cathode
Anode E
Anode D
Anode DP
Anode C
Common Cathode
Anode B
Anode A
```


red HD1131R/1132R/1133R/1134R her HD11310/1132O/11330/1134O yellow HD1131Y/1132Y/1133Y/1134Y green HD1131G/1132G/1133G/1134G

0.53 " (13.5 mm) SEVEN SEGMENT NUMERIC DISPLAY

FEATURES

- Rugged Encapsulated Package
- Large 0.53 Inch (13.5 mm) Digit Height
- Choice of Colors
- Common Anode or Common Cathode
- Wide Viewing
- Intensity Coded for Display Uniformity
- ± 1 Polarity Overflow
- Pin for Pin Compatibility with DL500/DL507, FND500/FND507, MAN6680/MAN6660, TIL322/TIL321

Package Dimensions in Inches (mm)

DESCRIPTION

The 0.53 inch (13.5 mm) Digit Height Series of HD 1131/1133 Seven Segment Displays offer the choice of common anode or common cathode versions with right hand decimal point.
The HD 1132/1134 overflow displays also offer the choice of common anode or common cathode versions with right hand decimal point.
These displays were designed for viewing distances of up to 20 feet and can be used in electronic instruments, point-of-sale systems, clocks, and other general industrial and consumer applications. All displays have a light grey face.
Contrast enhancement filters are recommended for use with all displays.

```
MAXIMUM RATINGS
    Power Dissipation Per Segment (T Tamb = 45' C) . . . . . . . . . . . . . . . . . . . . . . . . . 60 mW 
    Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -35' to +85
    Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40
    D.C. Forward Current Per Segment ( }\mp@subsup{\textrm{T}}{\textrm{amb}}{=4\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ )}
        HD1131R, HD1132R, HD1133R, HD1134R . . . . . . . . . . . . . . . . . . . . . . . . . . . }35\mathrm{ mA
        HD1131O, HD1132O, HD11330, HD11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . }20\mathrm{ mA
        HD1131G, HD1132G, HD1133G, HD1134G . . . . . . . . . . . . . . . . . . . . . . . . . . . }20\mathrm{ mA
        HD1131Y, HD1132Y, HD1133Y, HD1134Y . . . . . . . . . . . . . . . . . . . . . . . . . . . }20\mathrm{ mA
    Peak Forward Current ( }t\leqslant10\mu\textrm{s},\mp@subsup{\textrm{T}}{\textrm{amb}}{= =45
        HD1131R, HD1132R, HD1133R, HD1134R . . . . . . . . . . . . . . . . . . . . . . . . . . }400\mathrm{ mA
        HD1131O, HD1132O, HD11330, HD11340 . . . . . . . . . . . . . . . . . . . . . . . . . . }150\mathrm{ mA
        HD1131G, HD1132G, HD1133G, HD1134G . . . . . . . . . . . . . . . . . . . . . . . . . . }150\mathrm{ mA
        HD1131Y, HD1132Y, HD1133Y, HD1134Y . . . . . . . . . . . . . . . . . . . . . . . . . . }150\mathrm{ mA
    Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }6\mathrm{ V
    Thermal Resistance (Junction to Air)
        HD1131/HD1133 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 K/W
        HD1132/HD1134 series
        155 K/W
    Soldering Temperature (Less than 5 sec @ min distance of 2 mm) ..... . . . . . . . 230
```

Optoelectronic Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Min	Typ	Max	Units	Conditions
Luminous Intensity (Per Segment)					
HD1131R, HD1132R, HD1 133R, HD1134R	120	300		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		1400		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA}$
HD11310, HD11320, HD1 1330, HD1 1340	90	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1400		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
HD1131G, HD1132G, HD1133G, HD1134G	120	260		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1400		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
HD1131Y, HD1132Y, HD1133Y, HD1134Y	90	200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
		1300		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage					
HD1131R, HD1132R, HD1133R, HD1134R		1.6	2.0	v	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
HD11310, HD1132O, HD11330, HD1134O		1.9	2.4	v	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
HD1131G, HD1132G, HD1133G, HD1134G		1.9	2.4	v	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
HD1131Y, HD1132Y, HD1133Y, HD1134Y		1.9	2.4	\checkmark	$\mathrm{I}_{F}=5 \mathrm{~mA}$
Reverse Current		0.01	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
Peak Emission Wavelength					
HD1131R, HD1132R, HD1 133R, HD1134R		665		nm	
HD11310, HD1132O, HD1 1330, HD1 1340		645		nm	
HD1131G, HD1132G, HD1133G, HD1134G		560		nm	
HD1131Y, HD1132Y, HD1133Y, HD1134Y		590		nm	
Rise Time/Fall Time					
HD1131R, HD1132R, HD1133R, HD1134R		5		ns	
HD1131O, HD1132O, HD1 1330, HD1134O		100		ns	
HD1131G, HD1132G, HD1133G, HD1134G		50		ns	
HD1131Y, HD1132Y, HD1133Y, HD1134Y		100		ns	
Capacitance					
HD1131R, HD1132R, HD1133R, HD1 134R		40			$V_{R}=0_{V} f=1 \mathrm{MHz}$
HD11310, HD1 1320, HD11330, HD11340		12		pf	$V_{R}=0 V^{f}=1 \mathrm{MHz}$
HD1131G, HD1132G, HD1133G, HD1134G		45		pf	$V_{R}=0 V^{\prime}=1 \mathrm{MHz}$
HD1131Y, HD1132Y, HD1133Y, HD1134Y		10		pf	$V_{R}=0_{V} f=1 \mathrm{MHz}$

Product	Color	Description
HD1131R	Red	Common Anode Right Decimal
HD1132R	Red	Common Anode ± 1 Right Decimal
HD1133R	Red	Common Cathode Right Decimal
HD1134R	Red	Common Cathode ± 1 Right Decimal
HD11310	High Efficiency Red	Common Anode Right Decimal
HD11320	High Efficiency Red	Common Anode ± 1 Right Decimal
HD11330	High Efficiency Red	Common Cathode Right Decimal
HD11340	High Efficiency Red	Common Cathode ± 1 Right Decimal
HD1131G	Green	Common Anode Right Decimal
HD1132G	Green	Common Anode ± 1 Right Decimal
HD1133G	Green	Common Cathode Right Decimal
HD1134G	Green	Common Cathode ± 1 Right Decimal
HD1131Y	Yellow	Common Anode Right Decimal
HD1132Y	Yellow	Common Anode ± 1 Right Decimal
HD1133Y	Yellow	Common Cathode Right Decimal
HD1134Y	Yellow	Common Cathode ± 1 Right Decimal

HD 1132/1134

TOP VIEW
Cathode G
No Connection
Common Anode
Cathode C
Cathode DP
Cathode B
No Connection
Common Anode
Cathode HJK
No Connection
HD1131 R
HD1131 0
HDil31 G
HD1131 Y

HD 1131/1133

TOP VIEW
1 Cathode E
2 Cathode D
3 Common Anode
4 Cathode C
Cathode DP
6 Cathode B
7 Cathode A
8 Common Anode
Cathode F Cathode G

[^28]Anode E
Anode D
Common Cathode
Anode C
Anode DP
Anode B
Anode A
Common Cathode
Anode F
Anode G

LED Lamps

LED Lamps

Package Type and Spacing	Package Outline	Color	Part Number	Lens	Viewing Angle	Luminous Intensity (min.)		Max Fwd. Current (mA)	Page
						med	mA		
$\begin{aligned} & \mathrm{T} 13 / 4 \\ & 5 \mathrm{~mm} \\ & 1^{\prime \prime} \text { Leads } \\ & \text { With standoffs } \end{aligned}$		High Efficiency Red	LS5469-EO	Diffused	50°	0.63	2	7.5	5-58
			LS5469-FO			1.0			
		Yellow	LY5469-EO	Diffused		0.63			
		Yollow	LY5469-FO			1.0			
		Green	LG5469-EO	Diffused		0.63			
			LG5469-FO			1.0			
$\begin{aligned} & \mathrm{T} 13 / 4 \\ & 5 \mathrm{~mm} \\ & 1^{\prime \prime} \text { Leads } \\ & \text { With standoffs } \end{aligned}$	$=\sqrt{0}$	High Efficiency Red	LS5421-MO	Orange Tinted	20°	16	10	45	5-57
			LS5421-PO			40			
			LS5421-QO			63			
		Yellow	LY5421-MO	Yellow Tinted		16			
			LY5421-PO			40			
			LY5421-QO			63			
		Green	LG5411-LO	Water Clear		10			
			LG5411-NO.			25			
			LG5411-PO			40			
T1 $3 / 4$ 5 mm 1" Leads 100 mil lead spacing No standoffs		Red	LDR5101	Red Diffused	70°	1.0	20	100	5-45
			LDR5102			2.5			
			LDR5103			4.0			
		High Efficiency Red	LDH5121			2.0	10	60	
			LDH5122			4.0			
			LDH5123			6.0			
		Yellow	LDY5161	Yellow Diffused		1.0			
			LDY5162			2.5			
			LDY5163			4.0			
		Green	LDG5171	Green Diffused		2.5	20		
			LDG5172			6.0			
T1 $3 / 4$ 5 mm $1^{\prime \prime}$ Leads 100 mil lead spacing No standoffs Low profile Flangeless		Red	LDR1201	Red Diffused	70°	1.0	20	100	5-27
		Yellow	LDY1231	Yellow Diffused		1.0	20	60	
		Green	LDG1251	Green Diffused		2.5	20		
T1 $3 / 4$ 5 mm $1^{\prime \prime}$ Leads 100 mil lead spacing With standoffs		Red	LDR5001	Red Diffused	70°	1.0	20	100	5-37
			LDR5002			2.5			
			LDR5003			4.0			
		High Efficiency Red	LDH5021			2.0	10	60	
			LDH5022			4.0			
			LDH5023			6.0			
		Yellow	LDY5061	Yellow		1.0			
		Yellow	LDY5062	Diffused		2.5			
		Green	LDG5071	Green		2.5	20		
		Green	LDG5072	Diffused		6.0			
T1 $3 / 4$ 5 mm $1^{\prime \prime}$ leads 100 mil lead spacing No standoffs		Red	LDR5091	Red Clear	24°	2.5	20	100	5-41
			LDR5092			4.0			
			LDR5093			10			
		High Efficiency Red	LDH5191	Orange Clear		10	10	60	
			LDH5192			20			
			LDH5193			30			
			LDY5391			10			
		Yellow	LDY5392	Clear		20			
			LDY5393			30			
		Green	LDG5591	Water		40	20		
		Green	LDG5592	Clear		80			
		Blue	LDB5410	Water Clear	16°	2.5	20	25	5-13
T1 3 mm $1^{\prime \prime}$ leads 100 mil lead spacing With standoffs		Red	LDR1101	Red Diffused	70°	1.0	20	100	5-23
			LDR1102			2.0			
			LDR1103			4.0			
		High Efficiency Red	LDH1111			2.5	10	60	
			LDH1112			4.0			
			LDH1113			6.0			
		Yellow	LDY1131	Yellow Diffused		1.0			
			LDY1132			2.0			
			LDY1133			4.0			
		Green	LDG1151	Green Diffused		2.5	20		
			LDG1152			6.0			
			LDG1153			10			

LEL Lailipo

Multicolor LED Lamps

Package Type and Spacing	Package Outline	Color	Part Number	Lens	Viewing Angle	Luminous Intensity (min.)		Max Fwd. Current (mA)	Page
						med	mA		
$\begin{aligned} & \text { T1 3/4 } \\ & 5 \mathrm{~mm} \\ & 1^{\prime \prime} \text { Leads } \end{aligned}$		Red and Green	LD1005	Clear Diffused	100°	2.5	20	60	5-7
			LD1006			4.0			
			LD1007			6.3			
5mm Rectanglar 1" Leads		Red and Green	LD1103	Colorless Diffused	100°	1.0			
			LD1104			1.6			5-9
			LD1105			2.5			
5 mm Cylindrical $1^{\prime \prime}$ Leads		Red and Green	LD1133	Colorless Diffused	100°	1.0			5-11
			LD1134			1.6			
			LD1135			2.5			

Resistor LED Lamps

Package Type and Spacing	Package Outline	Color	Part Number	Lens	Viewing Angle	Luminous Intensity (min.)		Max Fwd. Voltage	Page
						med	Volts		
```T13/4 5mm 1" Leads No standoff```	$\Longrightarrow \Longrightarrow$	Red	RRL-3105	Red Diffused	$70^{\circ}$	1.0	5	15	5-67
			RRL-3112			1.0	12		
$\begin{aligned} & \text { T1 } \\ & 3 \mathrm{~mm} \\ & 1^{\prime \prime} \text { Leads } \end{aligned}$	$=\sim==410$	Red	RRL-1100	Red Diffused	$70^{\circ}$	1.0	5	15	5-65
Miniature Axial Lead High Dome Lens		Red	RRL-5601	Red Diffused	$40^{\circ}$	0.3	5	6	5-69
			RRL-5621			0.6			
			RRL-5641			1.0			
		Yellow	RYL-5621	Yellow Diffused		0.3			
		Green	RGL-5621	Green Diffused		0.2			

## Lamp Accessories

Type	Package	Part   Number	Color	Description	Page
T1 $1 / 4$ Clip		$\begin{aligned} & 2004-9002 \\ & 2004-9003 \end{aligned}$	Black Clear	Mounting Clip and Collar for T13/4 LED's	
T1 Clip		$\begin{aligned} & 2004-9015 \\ & 2004-9016 \end{aligned}$	Clear Black	Mounting Clip and Collar for T1 LED's	
Right   Angle   Mounting   Part		2004-9019	Black	Allows right angle mounting of lamps to PC boards and other surfaces	
Reflector	$8$	2004-9020	Polished	Increases lighted area of T1 $3 / 4$ LED's	

## Packaging of LEDs on continuous tapes

Light emitting diodes are available now in taped form. Packaging of unidirectional LEDs on continuous tapes is based on the IEC publication 40 (secretariat) 451.
The component tapes are wound on reels and supplied in boxes containing two reels each. One reel comprises 1000 items of the 5 mm types or 2000 items of the 3 mm types.
The ordering codes for taped components with unidirectional leads packaged on reels are as follows:
For components with 2.54 mm lead spacing (version A, B, and D), "E7500" is added to the last position of the type number.
Example: LDR1101 E7500
For components with 5.08 mm spacing (version C and $E$ ) " $E 7501$ " is added to the last position of
 the type number.
Example: LDG5171 E7501

Dimensional table for radial tape

Description	Symbol	Dimensions in inches (mm)
Overall Tape Width	W	$.709+.039$ -.020 $\binom{$ + }{-0.5}
Hold Down Tape Width	Wo	. $236 \pm .012(6 \pm 0.3)$
Feed Hole Location	W ${ }_{1}$	${ }^{.354}+{ }_{-}^{+.030}\binom{+0.75}{-0.5}$
Hold Down Tape Position	$W_{2}$	§.118 (§3)
Overall Taped Package Thickness	t	. 035 max. (0.9)
Tape Feed Hole Diameter	$\mathrm{D}_{0}$	. $157 \pm .008(4 \pm 0.2)$
Feed Hole to Bottom of Component	H	. $709+.079(18+2)$
Height of Seating Plane	$\mathrm{H}_{0}$	$.630 \pm .020(16 \pm 0.5)$
Feed Hole to Overall Component Height	$\mathrm{H}_{1}$	1.268 max. (32.2)
Feed Hole Pitch	$\mathrm{P}_{0}$	. $500 \pm .012(12.7 \pm 0.3)$
Feed Hole-Component Center Distance	$\mathrm{P}_{2}$	. $250 \pm .028(6.35 \pm 0.7)$
Component Lead Pitch	F	$.100\}+.024\binom{2.54+0.6}{5.08-0.1}$
Component Lead Pitch	$F_{1}, F_{2}$	$\text { ea. } 100 \begin{gathered} +.016 \\ -.004 \end{gathered}\binom{+0.4}{-0.1}$
Deflection Left or Right	$\Delta p$	$\pm .040( \pm 1)$
Deflection Front or Rear	$\triangle \mathrm{h}$	$\pm .079( \pm 2)$

## Packaging of surface mount LEDs

LEDs in SOT 23 packages are available on continuous tapes. In this case, the IEC publication 40 (secretariat) 458 applies.
The 8 mm broad tape is wound on an 18 cm or 33 cm film reel and is equipped with 3000 or 10,000 components.


Top of


Blister Tape

Dimensional table for blister tape

Designation	Symbol	Dimensions in inches (mm) SOT 23	Notes
Tape width	W	. $315 \pm .012(8 \pm 0.3)$	
Carrier tape thickness	t	. 012 max. (0.3)	
Pitch of sprocket holes	$\mathrm{P}_{0}$	. $157 \pm .004(4 \pm 0.1)$	Cumulative pitch error $+0.2 \mathrm{~mm} / 10$ pitches
Diameter of sprocket holes	$\mathrm{D}_{0}$	. $039+.008(1+0.2)$	
Distance of sprocket holes	E	. $069 \pm .004(1.75 \pm 0.1)$	
Distance of components	F	. $138 \pm .002(3.5 \pm 0.05)$	Center hole to center compartment
	$\mathrm{P}_{2}$	$.079 \pm .002(2 \pm 0.05)$	
Distance compartment to compartment	$P_{3}$	. 157 (4)	
Compartment dimensions	K	. 098 max. (2.5)	Exact dimensions are given with the component dimensions
	a	$15^{\circ}$ max.	
	$\mathrm{R}_{1}, \mathrm{R}_{2}$	. 012 max. (0.3)	
	$\mathrm{H}_{0}$	. $012+.004(0.3+0.1$	Between inner side of the compartment bottom and the reference level for measuring $A_{0}, B_{0}$
Compartment	$\begin{aligned} & \mathrm{A}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	The tolerances are chosen such that the components can change their orientation only within permissible tolerances, but can easily be removed from the tape.	
Hole in compartment	$\mathrm{D}_{1}$	$\left.\begin{array}{r}.039 \\ -.008\end{array}{ }^{+} 1^{+0.2}-0.05\right) ~$	Tolerance to the center of the sprocket hole: 0.1 mm
Width of fixing tape	$\begin{aligned} & W_{1} \\ & d \end{aligned}$	$\begin{aligned} & .217 \text { typ. (5.5) } \\ & .004 \max .(0.1) \\ & \hline \end{aligned}$	The fixing tape shall not cover the sprocket holes, nor protrude beyond the carrier tape so that the max. tape width will not be exceeded.
Device tilt in the compartment	-	$15^{\circ}$ max.	
Minimum bending radius	-	1.181 min. (30)	

## TWO-COLOR, RED AND GREEN T13/4 LED LAMP



## FEATURES

- T13/4 Package Size
- Colorless Lens
- Two-Color Operation, Red and Green
- Three Leads, One of Which Is Common Cathode
- Minimum Lead Length $1^{\prime \prime}$
- .05" Lead Spacing


## DESCRIPTION

The LD 100X series has a colorless round, 5 mm case with diffuser layer. Two chips (GaP-green and TSN-red) allow use as optical indicator with two functions.

Because of its very low current consumption and hence low inherent heating as well as high vibration resistance and long service life, this LED is suitable for applications where signal lamps are not or only inadequately useful. Moreover, the LED can be driven by TTL ICs.


## Maximum Ratings

Reverse Voltage ( $V_{R}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Forward Current* $\left(I_{F}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 mA

Storage Temperature ( $\mathrm{T}_{\text {stg }}$ ) .......................... . -55 to $+100^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{i}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $100^{\circ} \mathrm{C}$
Power Dissipation ( $P_{\text {tot }}$ ) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$...................... . 200 mW
Thermal Resistance ( $R_{\text {tnJA }}$ ) Junction-to-Air. . . . . . . . . . . . . . . . 375 K/W
Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Parameter	Symbol	TSN-red	GaP-green	Unit
Wavelength of the Emitted Light	$\lambda_{\text {peak }}$	$645 \pm 15$	$560 \pm 15$	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	638	561	nm
Half Angle (Limits for 50\% of Luminous Intensity $I_{V}$ )	$\varphi$	50		degrees
Forward Voltage ( $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$	$2.4(\leq 3.0)$		V
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\mathrm{R}}$	$0.01(\leq 10)$		$\mu \mathrm{A}$
Rise Time	$t_{r}$	100	50	ns
Fall Time	$t_{\text {f }}$	100	50	ns
Capacitance				
$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{0}$	12	45	pF


Luminous Intensity   Part Number	Min	Unit	Test   Condition
LD 1005	2.5	mcd	10 mA
LD 1006	4.0	mcd	10 mA
LD 1007	6.3	mcd	10 mA

*The ratings indicated for the forward current $I_{F}$ or the surge current $i_{F S}$, respectively, are maximum ratings of the component. If both chips are operated simultaneously, the sum of the forward current ratings is not allowed to exceed the indicated maximum value.

[^29]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Rectangular Shape
- Colorless Lens
- Two-Color Operation, Red and Green
- Three Leads, One of Which Is Common Cathode
- Minimum Lead Length $\mathbf{1}^{\prime \prime}$
- . $05^{\prime \prime}$ Lead Spacing


## DESCRIPTION

The LD 1103 series has a colorless case with rectangular, luminous area and diffuser layer. Two chips (GaP-green and TSN-red) enable the use as optical indicator with two functions.

Because of its very low current consumption and hence low inherent heating as well as high vibration resistance and long service life, this LED is suitable for applications where signal lamps are not or only inadequately useful. Moreover, the LED can be driven by TTL ICs.


Maximum Ratings	
Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	5 V
Forward Current* ( $\mathrm{l}_{\mathrm{F}}$ )	60 mA
Surge Current (iFs), $\mathrm{t} \leq 10{ }_{\mu \mathrm{s}}{ }^{\text {d }}$	1 A
Storage Temperature ( $\mathrm{stg}_{\text {stg }}$ )	-55 to $+100^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{j}}$ )	$100^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{P}_{\text {tol }}$ ) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	200 mw
Thermal Resistance Junction-Air ( $\mathrm{R}_{\text {thJA }}$ )	375 kW


Characteristics ( $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ )				
Parameter	Symbol	TSN-red	GaP-green	Unit
Wavelength of the Emitted Light	$\lambda_{\text {peak }}$	$645 \pm 15$	$560 \pm 15$	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	638	561	nm
Aperture Cone (Half Angle)   (Limits for $50 \%$ of Luminous   Intensity $\mathrm{I}_{\mathrm{V}}$ )   Lateral Emission of   Light Screened		50		degrees
Forward Voltage ( $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$		$(<3.0)$	$\checkmark$
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\mathrm{R}}$		( $\leq 10$ )	$\cdots \mathrm{A}$
Rise Time	$t_{\text {r }}$	100	50	ns
Fall Time	$t_{1}$	100	50	ns
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$.	$\mathrm{C}_{0}$	12	45	pF

## Luminous Intensity

Type	Min	Unit	Test   Condition
LD 1103	1.0	med	20 mA
LD 1104	1.6	mad	20 mA
LD 1105	25	mad	20 mA

- The ratings indicated for the forward current $I_{F}$ or the surge current $i_{F s}$ respectively, are maximum ratings of the component. If both chips are operated simultaneously, the sum of the forward current ratings is not allowed to exceed the indicated maximum value

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

LD 1133/1134/1135
TWO COLOR RED AND GREEN CYLINDER LED LAMP


## FEATURES

- Cylinder Shape
- Colorless Lens
- Two Color Operation, Red and Green
- Three Leads, One of Which Is Common Cathode
- Minimum Lead Length $1^{\prime \prime}$
- . $05^{\prime \prime}$ Lead Spacing


## DESCRIPTION

The LD 113X series has a colorless case with square, luminous area and a diffuser layer. Two chips (GaP-green and TSN-red) allow use as optical indicator with two functions.

Because of its very low current consumption and hence low inherent heating as well as high vibration resistance and long service life, this LED is suitable for applications where signal lamps are not or only inadequately usefut. Moreover, the LED can be driven by TTL ICs.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	5 V
Forward Current ${ }^{( }\left(\mathrm{I}_{\mathrm{F}}\right)$	60 mA
Surge Current ( $\mathrm{i}_{\text {FS }}$ ), $\mathrm{t} \leq 10 \mu \mathrm{~S}$ *	A
Storage Temperature ( $\mathrm{T}_{\text {stg }}$ )	-55 to $+100^{\circ} \mathrm{C}$
Junction Temperature ( $T_{i}$ )	$100^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{P}_{\text {tol }}$ ), $\mathrm{T}_{\text {amo }}=25^{\circ} \mathrm{C}$	200 mW
Thermal Resistance Junction-Air ( $\mathrm{R}_{\text {thJA }}$ )	375 K/W


Characteristics ( $\mathrm{Tamb}^{\text {a }}=25^{\circ} \mathrm{C}$ )				
Parameter	Symbol	TSN-red	GaP.green	Unit
Wavelength of the Emitted Light	$\lambda_{\text {peak }}$	$645 \pm 15$	$560 \pm 15$	nm
Dominant Wavelength	$\lambda_{\text {dom }}$	638	561	nm
Aperture Cone (Half Angle) (Limits for $50 \%$ of Luminous Intensity $\mathrm{I}_{\mathrm{v}}$ ) Lateral Emission of Light Screened	$\stackrel{\square}{6}$	50		degrees
Forward Voltage ( $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$		( $\leq 3.0$ )	v
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$		$(\leq 10)$	${ }_{\mu} \mathrm{A}$
Rise Time	$t_{r}$	100	50	ns
Fall Time	$t_{4}$	100	50	ns
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$.   $f=1 \mathrm{MHz}$ )	$\mathrm{Co}_{0}$	12	45	pF

## Luminous Intensity

Type	Min	Unit	Test   Condition
LD 1133	1.0	mad	20 mA
LD 1134	1.6	mad	20 mA
LD 1135	2.5	mod	20 mA

[^30]Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

Preliminary Data Sheet


## FEATURES

- Pure Blue Light ( 480 nm )
- Clear T-13/4 Plastic Package
- $1^{\prime \prime}$ Min. Lead Length
- High Brightness
- TTL Compatible


## DESCRIPTION

The LDB5410 is a Silicon Carbide (SiC) LED, emitting a pure blue light from a clear $T-13 / 4$ plastic package. The LDB5410 is ideal for such applications as: spectroscopy, calibration, and light sources in medical equipment.


## Maximum Ratings

Reverse voltage
Forward current
Storage temperature range
Junction temperature
Total power dissipation
( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal resistance
Junction to Air
$V_{R}$
$I_{F}$
$T_{\text {stor }}$
$T_{1}$
1

V
mA
${ }^{\circ} \mathrm{C}$
mW
Junction to Air
$P_{\text {tot }}$
$R_{\text {th }} J_{\text {amb }} \quad 500$
K/W

Characteristics ( $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission	Min.   入peak	Typ.   480	Unit nm
Dominant wavelength	dom	480	nm
Viewing angle		16	degrees.
Forward voltage $\left(I_{F}=20 \mathrm{~mA}\right)$	$V_{F}$	$4(\leqq 8)$	V
Reverse current $\left(V_{R}=I V\right)$	$\mathrm{I}_{\mathrm{R}} 0.0$	\$10)	$\mu \mathrm{A}$
Capacitance $\left(V_{\mathrm{R}}=0 \mathrm{~V}_{i} \mathrm{f}=1 \mathrm{MHz}\right)$	$C_{0}$	160	pF
Luminous intensity $\left(I_{F}=20 \mathrm{~mA}\right)$	2.5	6.0	med

CAUTION: Because of low reverse voltage, the
polarity of the LDB5410 should be checked
before inserting into a circuit.
Specifications are subject to change without notice.


Forward current versus ambient temperature


Radiation characteristic
Relative spectral emission versus half angle


## 2 DIODE ARRAY LDG 472 3 DIODE ARRAY LDG 473 4 diode arrar LDG 474 GREEN MINIATURE LED



## FEATURES

- Green Clear Lens
- Miniature Size
- . $100^{\prime \prime}$ Lead Spacing
- End Stackable to Arrays of Any Length
- I/C Compatible


## DESCRIPTION

The LDG 47 X series are green gallium phosphide LED solid state lamps, single and arrays. They have a green plastic encapsulation formed as a lens where the light is emitted. The single lamps or arrays may be used individually or stacked together to form lines of any lengths. Typical applications are position indicators such as meters and scales.


Maximum Ratings (Individual Diode)

Reverse voltage	$V_{\text {R }}$	5	$\checkmark$
Forward current	$I_{F}$	25	mA
Surge current ( $t \leqq 10 \mu \mathrm{~s}$ )	$i_{\text {F }} \mathrm{S}$	0.5	A
Storage temperature	$T_{\text {ster }}$	-30 to +80	C
Junction temperature	$T_{\mathrm{j}}$	80	C
Soldering temperature in a 2 mm distance from the case bottom ( $t=3 \mathrm{~s}$ )	$T_{\text {s }}$	230	C
Power dissipation ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )	$P_{\text {tot }}$	85	mW
Thermal resistance			
Junction to air	$R_{\text {thJarnb }}$	750	K/W
Junction to solder pin	$R_{\text {thJl }}$	650	K/W

Characteristics ( $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission	$\lambda_{\text {peak }}$	$560 \pm 15$	nm
Dominant wavelength	$\lambda_{\text {dom }}$	561	nm
Viewing Angle (limits for $50 \%$ of luminous intensity $I_{V}$ )	$\varphi$	100	degree
Forward voltage ( $I_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$	2.4(3.0)	V
Reverse current ( $V_{\mathrm{R}}=3 \mathrm{~V}$ )	$I_{\text {R }}$	0.1-10)	$\mu \mathrm{A}$
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )	$\mathrm{C}_{0}$	45	pF
Rise time	$t_{\text {r }}$	50	ns
Fall time	$t_{f}$	50	ns

## Luminous Intensity

New P/N	Replaces   P/N	Number   of LEDs	mcd   (Min.)	Test Condition
LDG 471	LD 471	1	6	20 mA
LDG 472	LD 472	2	6	20 mA
LDG 473	LD 473	3	6	20 mA
LDG 474	LD 474	4	6	20 mA

[^31]

## SURFACE MOUNT LED LAMP



## FEATURES

- Available in...

High Efficiency Red, LDH 2310
Yellow, LDY 2320
Green, LDG 2330
Red \& Green (two chip), LDRG 2340

- Rectangular Package, 1.3 mm by 3 mm by 1 mm thick
- Wide Viewing Angle, $140^{\circ}$
- Ideal for use as failure indicators mounted on printed circuit boards
- IC compatible


## DESCRIPTION

The SOT 23 LED is available in high efficiency red, green, yellow and a two-color red/green package. Supplied on 8 mm -wide reels with 3000 components per reel, the packaging conforms to IEC standards and can be used on all commercial automatic surface mount insertion equipment. Standard reels are 18 cm in diameter, however, special 38 cm reels with 10,000 components per reel are available. Bulk packaging is also available. The factory should be contacted for both of these options.

Package Dimensions in Inches (mm)


Pinouts (top view)
Pinouts (top view)

Pin	LDH2310, LDY2320, LDG2330	LDRG2340
$\mathbf{1}$	NC	Red
$\mathbf{2}$	Anode	Green
$\mathbf{3}$	Cathode	Common anode

## Maximum Ratings (All Devices)

NOTE: For the LDRG 2340 the following operating conditions apply when one diode is on while the other diode is off.

Reverse voltage
Forward current
ceramic substrate ${ }^{1}$
Surge current ( $\tau=10 \mu \mathrm{~s}$ )
ceramic substrate ${ }^{1}(\tau=10 \mu \mathrm{~s})$
Junction temperature
Storage temperature
Power dissipation
ceramic substrate'
Thermal resistance junction to air
to ceramic ${ }^{1}$

$\mathrm{V}_{R}$	5	V
$\mathrm{I}_{\mathrm{F}}$	12.5	mA
$\mathrm{I}_{\mathrm{F}}$	30	mA
$\mathrm{i}_{\mathrm{FS}}$	1	A
$\mathrm{i}_{\mathrm{FS}}$	1	A
$\mathrm{~T}_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{S}}$	$-55 \ldots+100$	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	70	mW
$\mathrm{P}_{\text {tot }}$	200	mW
$\mathrm{R}_{\text {thJ }}$	1050	KWW
$\mathrm{R}_{\text {thJSR }}$	375	$\mathrm{~K} / \mathrm{W}$

Electrical/Optical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

		LDH2310	LDY2320	LDG2330	
Wavelength of emitted light	$\lambda^{\text {peak }}$	$645 \pm 15$	$590 \pm 10$	$560 \pm 15$	nm
Dominant wavelength	$\lambda_{\text {dom }}$	638	592	561	
Aperture cone ( $1 / 2<$ )					degrees
(Limits for 50\% of luminous					
intensity (IV) shielded against					
lateral emission of ught)					
Forward voltage ( $I_{\text {F }}=20 \mathrm{~mA}$ )	$V_{F}$		$2.4(\leqslant 3.0)$		V
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	${ }^{\prime} \mathrm{R}$		0.1 ( $\leqslant 10$ )		$\mu \mathrm{A}$
Luminous intensity ( $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ )	IV		typ. $1.8 \geqslant 1$		mcd

${ }^{1}$ Ceramic substrate $2.5 \mathrm{~cm}^{2}$ surface area, 0.7 mm thick
Specifications are subject to change without notice.




Radiation characteristic
$\mathrm{I}_{\mathrm{rel}}=\mathrm{f}(\varphi)$






Permanent pulse handling capability $I_{F}=f(\tau)$ Tastgrad $D=$ Parameter; $T_{\text {amb }}=25^{\circ} \mathrm{C}$


Forward voltage $\frac{V_{F}}{V_{F 25}}=i\left(T_{a m b}\right)$

## SOLDERING CONSIDERATIONS

Semiconductor components in plastic packages (SOT-23) are designated as active components for thin and thick film integrated circuits. These soldering directions refer to the use of resistors and LED lamps on PCB substrates with interconnecting conductors which are tin-lead plated through dip soldering.
To achieve reliable bonding, the following criteria should be considered:

1. The right soldering temperature and appropriate soldering flux are important. The soldering flux is not to affect or attack the plastic package. The solvents should easily remove the flux residues and not affect or attack the plastic package.
2. Temperature ( 240 degree $C$ max for $5 \sec \max$ ) and rapid temperature changes during the soldering apply high mechanical stress to the substrate and should be avoided to prevent breaking or cracking of the substrate.
3. Placement of the semiconductor components onto the substrate is to be done with the highest precision. The soldering pads must be placed exactly on the conductor traces because there is a high risk of cracking if the hot soldering pads touch the package.

## SOLDERING METHODS

The soldering method selection should be made according to production volume, amount of semiconductor components per circuit board, required precision placement, and possibility of exchanging/replacing semiconductor components. Listed below are four mounting methods.

## METHOD 1 Wave or Dip Soldering

The components in the SOT-23 housing are first glued onto the thick film substrate (glass, ceramic) or the etched printed circuit board (glass fiber) with silicon glue. The glue can be applied by silk screen printing. Care should be taken that the glue does not cover the contact surfaces. The components are pressed onto the substrate. A film of 60-80 um glue results in excellent adhesion, and when the components are attached, the contact surfaces are not contaminated. Soldering can be done through wave or dip soldering. A good soldering material is $\mathrm{Sn}-\mathrm{Pb}$ mixture in eutectic proximity with a $3.5-4 \% \mathrm{Ag}$ additive agent, i.e. Solidanol ( $170 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}: 60 / 35 / 4$ ). The bath temperature is to be $225+/-10$ degrees $C$ and the maximum soldering time of 5 seconds. The recommended soldering flux is a non-activated colophonium resin $45 \%$, dissolved in the ethyl alcohol $55 \%$ plus glycerin additive agent. After soldering the components, the solder flux residues are to be removed; cleaning baths containing isopropyl alcohol as a washing agent are suitable.

## METHOD 2 Reflow Soldering

Here soldering flux is added to the powdered solder and then applied in paste form to the printed circuit board. This procedure is most effective using silk screenprinting. The thickness should be 80um. The substrate with the components is heated for 5 seconds to 240 degrees $C$ by means of a conveyer band or a heating plate. The paste is melted and the soldering process takes place. Further information can be obtained from the reflow soldering paste manufacturer's instructions.

## METHOD 3 Pin Soldering

The substrate is placed on a heating plate with a temperature of 100 degrees C. A magnified view of the semiconductor component is used to place it into the right position. It is placed on the substrate by means of a minimum pressure valve. Simultaneously three (still cold) micro soldering pins are placed under pressure on the leads of the component to improve thermal resistance. The soldering pins have to be structured in a way that the thermal conductance takes place only on its peak. The soldering pins will be briefly charged ( 8 seconds) with 20 W each. Within this time span the solder becomes liquid for about 3 seconds which achieves a complete covering. Because of the low thermal capacity the soldering pins cool off rapidly after turn-off. The flux can, while soldering pins are still attached, cool off below their melting temperature. The soldering pins should be made of steel ( $18 \% \mathrm{Cr}$, $8 \% N$ ) because this material will not be adhesive to solder and has a good resistance against corrosion. Flux colophonium is suitable, which residues have to be removed after soldering with isopropyl alcohol. Using this method the plastic package will not be heated more than the preheating plate. Provided the preheating plate temperature does not exceed 100 degrees $C$ and the soldering time is not longer than 5 seconds, the risk of substrate cracking beneath the conductor wiring is lowered. The junction temperature will increase to about 250 degrees $C$ with this method.

## METHOD 4 Iron Soldering

Manual soldering using a miniature soldering has the following disadvantages.
The placement of the component cannot be done very accurately in places where its leads directly touch the substrate as substrate cracks during soldering can occur. Because of the sequential soldering of the leads, mechanical stress can cause substrate damage and consequently disrupt interconnections inside a component. Furthermore, the plastic package can be damaged by the soldering iron. Therefore, this method is only suitable for inserting single semiconductor components.

> SINGLE LDR 461
> 2 DIODE ARRAY LDR 462 3 DIODE ARRAY LDR 463 4 DIODE ARRAY LDR 464 RED MINIATURE LED LAMP


## FEATURES

- Red Clear Lens, Emits Red Light
- Miniature Size
- Selection of 1 thru 4 Diode Arrays
- 1/10" Lead Spacing
- End Stackable to Arrays of Any Length
- IIC Compatible


## DESCRIPTION

The LDR 46X series are red gallium arsenide phosphide LED solid state lamps. The single lamps or arrays may be used individually or stacked together to form arrays of any length. Typical applications are position indicators such as meters and scales.


Maximum Ratings (Individual Diode)
Reverse voliage
Forward ourrent
Forward current (O.C.)
Surge current ( $1 \leq 10 \mu \mathrm{~s}$ )
Storage temperature
Junction temperature
Soldering temperature in a 2 mm distance from
the case bottom ( $t \leq 3 \mathrm{~s}$ )
Power dissipation ( $\mathrm{T}_{\text {ann }}=25^{\circ} \mathrm{C}$ )
Thermal resistance
Junction to air
Junction to solder pin

$V_{\text {R }}$	5	V
$I_{\text {F }}$	35	mA
${ }_{\text {Fs }}$	1.0	A
$\mathrm{T}_{\text {sior }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{1}$	100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {s }}$	230	${ }^{\circ} \mathrm{C}$
$P_{10}$	85	mW
$\mathrm{F}_{\text {truamis }}$	750	K/W
$\mathrm{R}_{\text {tri, }}$	650	K/W

Characteristics $\left(T_{a m b}=25^{\circ} \mathrm{C}\right)$

Wavelength at peak emission	$\lambda_{\text {Doak }}$	$660 \pm 15$	nm
Dominant wavelength	$\lambda_{\text {com }}$	645	nm
viewing angie (imits for $50 \%$ of luminous intensity $I_{V}$ )	$\varphi$	100	degree
Forward voltage ( $I_{t}=20 \mathrm{~mA}$ )	$V_{F}$	1.6 ( $\leq 2.0$ )	$\checkmark$
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$	0.01 ( $\leq 10)$	$\mu \mathrm{A}$
Rise time	$t$	5	ns
Fall time	$t_{1}$	5	ns
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )	$\mathrm{C}_{0}$	40	pF

## Luminous Intensity

P/N	Number   of LEDs	med   (Min.)	Test Condition
LOR 461	1	0.6	20 mA
LDR 462	2	0.6	20 mA
LDR 463	3	0.6	20 mA
LDR 464	4	0.6	20 mA



Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- High Light Output
- Diffused Lens
- Wide Viewing Angle $70^{\circ}$
- T 1 Size
- 1" Lead Length
- Front Panel Mounting Snap-in Mounting Clips Available
Clip/Collar \#2004-9016 Clear \#2004-9015 Black


## - I/C Compatible

## DESCRIPTION

The LDR $110 \times$ Series is a standard red gallium arsenide phosphide (GaAsP) LED lamp. The LDH111X high efficiency red and LDY $13 X$ yellow are premium high efficiency light emitting diode lamps fabricated with TSN (transparent substrate nitrogen) technology. The LDG 115 X green Series is a gallium phosphide (GaP) lamp. All have a diffused plastic lens which emits a full flooded intense light.


Luminous Intensity

P/N	mcd (MIN)	Test conditions
LDR 1101	1.0	20 mA
LDR 1102	2.0	20 mA
LDR 1103	4.0	20 mA
LDH 1111		
LDH 1112	2.5	10 mA
LDH 1113	6.0	10 mA
LDY 1131		10 mA
LDY 1132	1.0	10 mA
LDY 1133	4.0	10 mA
LDG 1151		10 mA
LDG 1152	2.5	
LDG 1153	6.0	20 mA

Specifications are subject to change without notice.

Red LDR 1101/1102/1103



Radiation characteristic
Relative spectral emission versus half angle




Relative spectral emission



High Efficiency Red LDH 1111/1112/1113


High Efficiency Red \& Yellow LDH 1111/1112/1113, LDY 1131/1132/1133


Yellow LDY 1131/1132/1133


Relative spectral emission
versus wavelength


Wavelength at peak emission versus ambient temperature


## Green LDG 1151/1152/1153











## FEATURES

- T-13/4 Flangeless Package
- 1-inch Leads
- Diffused Lens
- Wide Viewing Angle, $70^{\circ}$
- I/C Compatible


## DESCRIPTION

The LDR 1201 is a Gallium Arsenide Phosphide (GaASP) red light emitting diode.
The LDY 1231 is a TSN (Transparent Substrate Nitrogen) yeilow light emitting diode.
The LDG 1251 is a Gallium Phosphide ( GaP ) green light emitting diode.
This is a flangeless LED lamp for applications where a lower seating (clearance) is desirable.


## Maximum Ratings

		LDR1201	LDY1231   LDG1251	
Reverse voltage	$V_{R}$	5	5	V
Forward current	$\mathrm{I}_{\mathrm{F}}$	100	60	mA
Surge current $(\tau \leq 10 \mu \mathrm{~s})$	$\mathrm{i}_{\mathrm{FS}}$	2	1	A
Storage temperature range	$\mathrm{T}_{\mathrm{S}}$	-55 to +100	${ }^{\circ} \mathrm{C}$	
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	100	100	${ }^{\circ} \mathrm{C}$
Total power dissipation $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\text {tot }}$	200	200	mW
Thermal resistance, junction to air	$\mathrm{R}_{\mathrm{th} \mathrm{JA}}$	375	375	KW

Characteristics $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

		LDR1201	LDY1231	L.DG1251	
Wavelength at peak emission	$\lambda_{\text {peak }}$	$665 \pm 15$	$590 \pm 10$	$560 \pm 15$	nm
Dominant wavelength	$\lambda_{\text {dom }}$	645	592	561	nm
Viewing angle (Limits for $50 \%$ of luminous intensity $\mathrm{I}_{\mathrm{y}}$ )	$\varphi$	70	70	70	degrees
Forward voltage ( $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$	1.6( $\leq 2.0$ )	$2.4(\leq 3.0)$	$2.4(\leq 3.0)$	V
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$		$0.01(\leq 10)$	$0.01(\leq 10)$	$\mu \mathrm{A}$
Rise time	$t_{\text {r }}$	5	100	50	ns
Fall time	$\mathrm{t}_{\text {f }}$	5	100	50	ns
Capacitance $\left(V_{1}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}\right)$	Co	40	10	45	pF

## Luminous Intensity Grouping

P/N	Min   mcd	Test   Conditions
LDR 1201	1.0	20 mA
LDY 1231	1.0	20 mA
LDG 1251	2.5	20 mA

[^32]








## Green LDG 1251











## FEATURES

- Red Diffused Lens, LDR 370X Red Diffused Lens, LDH 360X Yellow Diffused Lens, LDY 380X Green Diffused Lens, LDG 390X
- T13/4 Size Rectangular Shape
- Minimum Lead Length $1^{\prime \prime}$
- 1/10" Lead Spacing
- I/C Compatible


## DESCRIPTION

The LDR 370X is a standard red GaAsP LED lamp. The LDH 360X high efficiency red and LDY 380X yellow are light emitting diode lamps fabricated with TSN (transparent substrate nitrogen) technology. The LDG 390X green is a gallium phosphide LED lamp. All these lamps have a diffused lens which forms an evenly dispersed rectangular head-on light. They can be used singly as indicators or stacked together to form arrays.


## Maximum Ratings

Reverse voltage
Forward current
Surge current ( $t \leqslant 10 \mathrm{~s}$ )

$V_{R}$	5	$V$
$I_{F}$	60	mA
$i_{\text {FS }}$	1	A
$T_{5}$	-55 to +100	${ }^{\circ} \mathrm{C}$
$T_{1}$	100	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	200	mW
$R_{\text {thJamb }}$	375	$\mathrm{~K} / \mathrm{W}$

Power dissipation $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$
Thermal resistance junction to air
-

LDR 370X
LDH 36
X LDY
Y $380 x$
Characteristics $\left.T_{\mathrm{dmb}}=25^{\circ} \mathrm{C}\right)$
Wave length of emitted light Dominant wave length $\lambda_{\text {peak }}$
$\lambda_{\text {dom }}$ $665 \pm 15$

Viewing Angle
(Limits for $50 \%$ of $\varphi$
Limes
intensity $I_{\mathrm{V}}$ ) shielded against
laterat emission of light
Forward voltage $\left(I_{F}=20 \mathrm{~mA}\right) V_{F}$
Reverse current ( $V_{R}=5 \mathrm{~V}$ )
Rise time
Fall time
Capacitance $\left(V_{R}=0 \mathrm{~V}\right) \quad \mathrm{C}_{0} \quad 40$

## Luminous Intensity

P/N	Min.	Unit	Test Condition
LDR 3701	4	mcd	20 mA
LDR 3702	63	mcd	20 mA
LDH 3601	1.6	mcd	20 mA
LDH 3602	2.5	mcd	20 mA
LDH 3603	4.0	mcd	20 mA
LDY 3801	1.0	mcd	20 mA
LDY 3802	1.6	mcd	20 mA
LDY 3803	2.5	mcd	20 mA
LDG 3901	1.0	mcd	20 mA
LDG 3902	1.6	mcd	20 mA
LDG 3903	2.5	mcd	20 mA
Specifications are subject to change without notice.			


nediotion chersecteriatic $1_{n \times \prime}=f(\varphi)$



Forwerd voltage $\frac{V_{t}}{V_{t}} \frac{V_{5}}{}=\left\{\left(T_{\text {mono }}\right)\right.$










## FEATURES

- Red Diffused Lens, Emits Red Light
- 5 Diode Array
- Miniature Size
- 2/10" Lead Spacing
- End Stackable to Arrays of Multiple Length
- I/C Compatible


## DESCRIPTION

The LDR 4555 is a red gallium arsenide phosphide LED solid state lamp. It has red plastic encapsulation formed as a lens where the light is emitted. This array may be used individually or stacked together to form lines of multiple lengths. Typical applications are position indicators such as meters and scales.


Maximum Ratings (Individual Diode)

Reverse voltage	$V_{R}$	3	$V$
Forward current/LED	$I_{\text {F }}$	35	mA
Surge current ( $\mathrm{t}<10 \mu \mathrm{~S}$ )	${ }^{\text {F }}$ S	250	mA
Storage temperature	$\mathrm{T}_{\text {stor }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Junction temperature	$T_{j}$	80	${ }^{\circ} \mathrm{C}$
Soldering temperature in a 2 mm distance from the			
case bottom ( $\mathrm{t}<5 \mathrm{~s}$ )	$\mathrm{T}_{\mathrm{s}}$	230	${ }^{\circ} \mathrm{C}$
Power dissipation ( $\mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ )	$\mathrm{P}_{\text {tot }}$	85	mW

## Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission
Dominant wavelength
Viewing angle
Forward voltage $\left(\mathrm{l}_{\mathrm{F}}=20 \mathrm{~mA}\right)$
Reverse current ( $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ )
Luminous Intensity (per diode)

$\lambda$ peak	$665 \pm 15$	nm
$\lambda$ dom	645	nm
$\varphi$	40	degree
$V_{F}$	$1.6(\leqq 2.0)$	V
$\mathrm{I}_{\mathrm{R}}$	$0.01(\leqq 10)$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{V}}$	$>.8$	mcd



Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


Luminous Intensity Grouping

P/N	mod (Min)	Test conditions
LDR 5001	1.0	20 mA
LDR 5002	2.5	20 mA
LDR 5003	4.0	20 mA
LDH 5021	2.0	10 mA
LDH 5022	4.0	10 mA
LDH 5023	6.0	10 mA
LDY 5061	1.0	10 mA
LDY 5062	2.5	10 mA
LDG 5071	2.5	20 mA
LDG 5072	6.0	20 mA

[^33]Red LDR 5001/5002/5003


Wavelength at peak emission



Radiation characteristic




High Efficiency Red LDH 5021/5022/5023





## FEATURES

- High Light Output
- Lightly Tinted Clear Lens
- Wide Viewing Angle, $24^{\circ}$
- T13/4 Package Size
- 1" Lead Length
- Front Panel Mounting Snap-in Mounting Clips Available Clip/Collar \#2004-9002 Black \#2004-9003 Clear
- I/C Compatible


## DESCRIPTION

The LDR 509X is a standard red GaAsP light emitting diode lamp. The LDH 519X high efficiency red and LDY 539X yellow lamps are fabricated with TSN (transparent substrate nitrogen) technology. The LDG 559X is a gallium phosphide LED lamp. All four have a lightly tinted clear lens with a narrow viewing angle for the concentration of intense brightness in a head-on position. This is particularly desirable for legend back lighting applications.



High Efficiency Red LDH 5191/5192/5193; \& Yellow LDY 5391/5392/5393


Yellow LDY 5391/5392/5393








## FEATURES

- High Light Output
- Diffused Lens
- Wide Viewing Angle $70^{\circ}$
- With Standoffs
- T1 3/4 Package Size
- 1" Lead Length
- Front Panel Mounting Snap-in Mounting Clips Available Clip/Collar \#2004-9002 Black \#2004-9003 Clear
- I/C Compatible


## DESCRIPTION

The LDR 510X Series is a standard red gallium arsenide phosphide (GaAsP) LED lamp. The LDH 512X high efficiency red and LDY 516X yellow are premium high efficiency light emitting diode lamps fabricated with TSN (transparent substrate nitrogen) technology. The LDG 517X green is a gallium phosphide (GaP) lamp. Ali have a diffused plastic lens which emits a full flooded intense light.


## Luminous Intensity Grouping

P/N	med (Min)	Test Conditions
LDR 5101	1.0	20 mA
LDR 5102	2.5	20 mA
LDR 5103	4.0	20 mA
LDH 5121	2.0	10 mA
LDH 5122	4.0	10 mA
LDH 5123	6.0	10 mA
LDY 5161	1.0	10 mA
LDY 5162	2.5	10 mA
LDY 5163	4.0	10 mA
LDG 5171	2.5	20 mA
LDG 5172	6.0	20 mA

Specifications are subject to change without notice.





Yellow LDY 5161/5162/5163






## RED LDR 5701/5702 high efficiency red LDH 5601/5602 yellow LDY 5801/5802/5803 green LDG 5901/5902/5903 <br> CYLINDRICAL LED LAMP



## FEATURES

- Red Diffused Lens, LDR 570X

Red Diffused Lens, LDH 560X
Yellow Diffused Lens, LDY 580X
Green Diffused Lens, LDG 590X

- Cylindrical Shape
- Minimum Lead Length $1^{\prime \prime}$
- 1/10 Lead Spacing
- I/C Compatible


## DESCRIPTION

The LDR 570X is a standard red GaAsP LED lamp. The LDH 560X \& LDY 580X are light emitting diode lamps fabricated with TSN (transparent substrate nitrogen) technology. The LDG 590X is a gallium phosphate LED lamp. All the series have a diffused lens which forms an evenly dispersed circular head on light.


## Maximum

Reverse voltage
Forward current
Surge current ( $t \leqslant 10 \mu \mathrm{~s}$ )
Storage temperature
Junction temperature
Power dissipation $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right.$ )
Thermal resistance junction to air

$V_{R}$	5	V
$I_{F}$	60	mA
$i_{\text {FS }}$	1	A
$T_{\mathrm{S}}$	-55 to $+100{ }^{\circ} \mathrm{C}$	
$T_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	200	mW
$R_{\text {thJamb }}$	375	$\mathrm{~K} / \mathrm{W}$

Characteristics ( $T_{\text {AMB }}=25^{\circ} \mathrm{C}$ )

Wave length of emitted light	peak	$665 \pm 15$	$645 \pm 15$	$590 \pm 10$	$560 \pm 15$	nm
Dominant wave length	dom	645	638	592	561	nm
Viewing Angle   (Limits for $50 \%$ of luminous intensity $I_{v}$ ) shielded against lateral emission of light		100	100	100	100	deg
Forward voltage ( $I_{\mathrm{F}}=20 \mathrm{~mA}$ )	$V_{F}$	1.6 ( $\leqslant 2.0$ )		2.4 ( $\leqslant 3.0$ )		$V$
Reverse current ( $V_{R}=5 \mathrm{~V}$ )	/R	0.01 ( $\leqslant 10$ )		0.01 ( $\leqslant 10$ )		$\mu \mathrm{A}$
Rise time	$t_{\text {r }}$	5	100	100	50	nS
Fall time	$t_{\text {f }}$	5	100	100	50	nS
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )	$\mathrm{C}_{0}$	40	12	10	45	pF

## Luminous Intensity

P/N	Min.	Unit	Test Condition
LDR 5701	0.4	mcd	20 mA
LDR 5702	.63	mcd	20 mA
LDH 5601	1.6	mcd	20 mA
LDH 5602	2.5	mcd	20 mA
LDY 5801	1.0	mcd	20 mA
LDY 5802	1.6	mcd	20 mA
LDY 5803	2.5	mcd	20 mA
LDG 5901	1.0	mcd	20 mA
LDG 5902	1.6	mcd	20 mA
LDG 5903	2.5	mcd	20 mA

Specifications are subject to change without notice.

## Red LDR 5701/5702






## Yellow LDY 5801/5802/5803



Green LDG 5901/5902/5903



## FEATURES

- Yellow Clear Lens
- Miniature Size
- 0.1" (2.54) Lead Spacing
- End Stackable to Arrays of Any Length
- I/C Compatible


## DESCRIPTION

The LDY481 is a yellow gallium phosphide LED solid state lamp. It has a yellow plastic encapsulation formed to a lens where the light is emitted.


## Maximum Ratings

Reverse voltage	$V_{\text {g }}$	5	V
Forward current	$\mathrm{I}_{\text {F }}$	40	mA
Surge Current ( $\mathrm{t} \leq 10 \mu \mathrm{~s}$ )	$\mathrm{i}_{\text {FS }}$	0.5	A
Storage temperature	$\mathrm{T}_{\text {stor }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$
Soldering temperature in a 2 mm distance from the case bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ )	$\mathrm{T}_{\text {s }}$	230	${ }^{\circ} \mathrm{C}$
Power dissipation ( $\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}$ )	$\mathrm{P}_{\text {tot }}$	125	mW
Thermal resistance			
Junction to air	$\mathrm{R}_{\text {thJamb }}$	500	KIW
Junction to solder pin	$\mathrm{R}_{\text {that }}$	400	K/W

Characteristics ( $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission	$\lambda_{\text {peak }}$	$590 \pm 10$	nm
Dominant wavelength	$\lambda_{\text {dom }}$	592	nm
Viewing angle			
$\quad$ (limits for $50 \%$ of luminous intensity $\left(\mathrm{I}_{\mathrm{V}}\right)$	$\varphi$	100	degree
Forward voitage $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{F}}$	$2.0(\leq 2.8)$	V
Reverse current $\left(V_{\mathrm{R}}=5 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{R}}$	$0.1(\leq 10)$	$\mu \mathrm{A}$
Capacitance $\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\circ}$	10	pF
Rise time	$\mathrm{t}_{\mathrm{F}}$	50	ns
Fall time	$\mathrm{t}_{\mathrm{F}}$	50	ns
Luminous intensity	$\mathrm{I}_{\mathrm{V}}$	$\geq .25$	mcd
			@ 10 mA

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

## LOW CURRENT T1 LED LAMP



## FEATURES

- Low Power Requirement
- $60^{\circ}$ Viewing Angle
- Diffused Lens
- 1" Lead Length
- I/C Compatible


## DESCRIPTION

The 3369 series are low current LED lamps that have been designed to optimize light output at very low currents. These parts are ideally suited for applications where power is at a premium, such as portable equipment.


Test Condition
$I_{F}=2 \mathrm{~mA}$
$I_{F}=2 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
$I_{F}=2 \mathrm{~mA}$
$\mathrm{F}_{\mathrm{F}}=2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$
Electrical/Optical Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )

	Min	Typ	Max	Unit	Test Condition
Luminous Intensity					
HER, Yellow, Grn (-EO)	0.63	2		mcd	$I_{F}=2 \mathrm{~mA}$
HER, Yellow, Grn (-FO)	1	2		mod	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Peak Wavelength					
HER		635		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		590		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		565		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Dominant Wavelength					
HER		625		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		592		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		564		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Half Angle		60		Deg.	
Forward Voltage $V_{F}$					
HER		1.8	2.5	V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow, Green		1.9	2.7	V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Reverse Current $\mathrm{I}_{\mathrm{R}}$		. 010	10	$\mu \mathrm{A}$	$V_{\mathrm{R}}=5 \mathrm{~V}$
Response Time   (Rise Time) $\mathrm{t}_{\mathrm{r}}$   IV from $10 \%$ to $90 \%$					
HER, Yellow		200		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \\ & \mathrm{~T}=1 \mu \mathrm{sec} \end{aligned}$
Green		450		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \\ & \mathrm{~T}=1 \mu \mathrm{sec} \end{aligned}$
Response Time (Fall Time) $t_{\mathrm{f}}$ IV from $90 \%$ to $10 \%$					
HER, Yellow		150		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \\ & \mathrm{~T}=1 \mu \mathrm{sec} \end{aligned}$
Green		200		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \\ & \mathrm{~T}=1 \mu \mathrm{sec} \end{aligned}$
Capacitance $\mathrm{C}_{0}$					
HER, Yellow		3		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
Green		12		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
Spectral Line Halfwidth					
HER		45		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		50		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		25		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$

Specifications are subject to change without notice.


## SIEMENS

## high efficiency red LS5421-MO/-PO/-QO <br> YeLLow LY5421-MO/-PO/-QO green LG5411-LO/-NO/-PO

SUPERBRIGHT T1314 LED LAMPS
Advance Data Sheet


## FEATURES

- High Light Output
- New Lens to Optimize Output
- $\mathbf{2 0}{ }^{\circ}$ Viewing Angle
- HER Lamp, Orange Tinted Lens Yellow Lamp, Yellow Tinted Lens Green Lamp, Water Clear Lens
- 1 " Lead Length


## DESCRIPTION

The 5421/5411 series are superbright T13/4 LED lamps. Improvements in materials and optimization of lens and reflectors have resulted in a dramatic increase in luminous intensity.


## Maximum Ratings

Power Dissipation ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )	150 mW
Storage and Operating Temperature	-55 to $+100^{\circ} \mathrm{C}$
Continuous Forward Current	45 mA
Reverse Voitage	5 V
Surge Current ( $\tau \leq 10 \mu \mathrm{~s}$ )	1 A


	Min	Typ	Max	Unit	Test Condition
Luminous Intensity					
HER, Yellow (-MO)	16	40		mod	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
HER, Yellow, Green (-PO)	40	60		mod	$I_{F}=10 \mathrm{~mA}$
HER, Yellow (-QO)	63	100		mod	$I_{F}=10 \mathrm{~mA}$
Green (-LO)	10	40		mod	$I_{F}=10 \mathrm{~mA}$
Green (-NO)	25	40		mod	$I_{F}=10 \mathrm{~mA}$
Peak Wavelength					
HER		635		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Yellow		590		nm	$I_{F}=10 \mathrm{~mA}$
Green		560		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Half Angle		20		Deg.	
Forward Voltage		2.2	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Reverse Current $\mathrm{I}_{\mathrm{R}}$		0.1	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{R}}=5 \mathrm{~V}$

[^34]

## FEATURES

- Low Power Requirement
- $50^{\circ}$ Viewing Angle
- Diffused Lens
- 1" Lead Length
- I/C Compatible


## DESCRIPTION

The 5469 series are low current LED lamps that have been designed to optimize light output at very low currents. These parts are ideally suited for applications where power is at a premium, such as portable equipment.
Both the HER and yellow lamps utilize GaAsP on GaP semiconductor materials while the green lamps utilize GaP on GaP.


## Maximum Ratings

Reverse Voltage ( $V_{R}$ )	5 V
Forward Current ( $\mathrm{I}_{\mathrm{F}}$ )	7.5 mA
Surge Current ( $\tau \leq 10 \mu \mathrm{~S} / \mathrm{D} \leq .005$ ) ( $\mathrm{l}_{\mathrm{FS}}$ )	100 mA
Storage Temperature Range ( $\mathrm{T}_{\text {stg }}$ )	-55 to $+100^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{j}}$ )	$100^{\circ} \mathrm{C}$
Total Power Dissipation ( $\left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right)\left(\mathrm{P}_{\text {tot }}\right)$	20 mW
Thermal Resistance Junction-air ( $\mathrm{R}_{\text {thJA }}$ )	$500 \mathrm{~K} / \mathrm{W}$


Electrical/Optical Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )					
	Min	Typ	Max	Unit	Test Condition
Luminous Intensity					
HER, Yellow, Grn (-EO)	0.63	2		mod	$I_{F}=2 \mathrm{~mA}$
HER, Yellow, Grn (-FO)	1	2		mod	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Peak Wavelength					
HER		635		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		590		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		565		nm	$I_{F}=2 \mathrm{~mA}$
Dominant Wavelength					
HER		625		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		592		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		564		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Half Angle		50		Deg.	
Forward Voltage $V_{F}$					
HER		1.8	2.5	$V$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yeilow, Green		1.9	2.7	V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Reverse Current $\mathrm{I}_{\mathrm{R}}$		. 010	10	$\mu \mathrm{A}$	$V_{R}=5 \mathrm{~V}$
Response Time					
(Rise Time) $\mathrm{t}_{\mathrm{t}}$					
HER, Yellow		200		ns	$\begin{aligned} I_{F} & =25 \mathrm{~mA} \\ \mathrm{~T} & =1 \mu \mathrm{sec} \end{aligned}$
Green		450		ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \\ & \mathrm{~T}=1 \mu \mathrm{sec} \end{aligned}$
Response Time					
(Fall Time) $t_{\text {f }}$					
HER, Yellow		150		ns	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$
					$T=1 \mu \mathrm{sec}$
Green		200		ns	$\begin{aligned} & I_{F}=25 \mathrm{~mA} \\ & T=1 \mu \mathrm{sec} \end{aligned}$
Capacitance $\mathrm{C}_{0}$					
HER, Yellow		3		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
Green		12		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
Spectral Line Halfwidth					
HER		45		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Yellow		50		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
Green		25		nm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$

[^35]








## FEATURES

- High Luminance-typically 1.0 mcd @ 10 mA
- Optimum Packaging Design for Maximum Strength at Minimum Linear Spacing
- Operates from 5 V IC Logic Supply
- Small Size
- High Reliability
- Lens

RL-50: Water Clear
RL-54: Red Diffused

## DESCRIPTION

The RL-50 and RL-54 are intended for high volume usage in array and indicator light applications. Major advantages of these devices are high luminance at low currents, long life and low cost.


## Maximum Ratings

Power Dissipation @ $25^{\circ}$ Ambient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mW				
Derate Linearly from $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.1 mW/ ${ }^{\circ} \mathrm{C}$				
Storage and Operating Temp. Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$				
Continuous Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA				
Lead Solder Time@260${ }^{\circ} \mathrm{C}$ (1/16" from lens) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 sec.				
Peak Inverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 V				
Electrical/Optical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )				
Parameter Min	Typ	Max	Unit	Condition
Luminous Intensity				
RL-50 0.5	1.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
RL-54 0.4	0.6		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Forward Voltage	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Viewing Angle	90		Deg.	
Reverse Current		100	$\mu \mathrm{A}$	3.0 V
Peak Emission Wavelength	660		nm	

Specifications are subject to change without notice.

Luminous Intensity vs. Forward Current
RL-50


Luminous Intensity vs. Forward Current RL-54


## Relative Spectral Emission

\%


Forward Current vs. Forward Voltage


> Red RL-55 YeLLow YL-56 GREEN GL-56


## FEATURES

- 2 Gate Load Bright Light: 0.4 mcd at 3 mA
- High on Axis Intensity
- Optimum Packaging Design for Maximum Strength at Minimum Linear Spacing
- Operates from 5 V IC Logic Supply
- Miniature Axial Lead
- High Reliability
- Low Cost Version (Red): RL-55-5


## DESCRIPTION

The RL-55 is a Gallium Arsenide Phosphide and GL-56/YL-56 are Gallium Phosphide LED lamps that have high on-axis intensity, long life and low cost. They are diffused lenses and provide a full $0.080^{\prime \prime}$ flooded light with good contrast. Applications include mounting on PC boards at low current as diagnostic and circuit status indicators.


## Maximum Ratings

Power Dissipation $\mathbb{Q}^{2} 5^{\circ} \mathrm{C}$ Ambient Derate Linearly From $25^{\circ} \mathrm{C}$	$\begin{aligned} & . .80 \mathrm{~mW} \\ & -1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Storage and Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Continuous Forward Current	
RL-55	.40 mA
YL-56, GL-56	25 mA
Lead Solder Time@260 ${ }^{\circ} \mathrm{C}$ (1/16" from case)	5 sec .
Peak Inverse Voltage	3 V
Peak Forward Current	
( $1 \mu \mathrm{~s}$ pulse, $0.1 \%$ duty cycle)	250 mA


Electrical/Optical Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )						
Marameter	Min	Typ	Max	Unit		Test
:---:						
Conditions						

Specifications are subject to change without notice.





[^36]

## FEATURES

- Integral Current Limiting Resistor
- No External Resistor Required with 5 Volt Supply
- Red Diffused Lens
- High Reliability
- T-1 Package Style
- 1-inch Leads
- Wide Viewing Angle, $70^{\circ}$


## DESCRIPTION

The RRL-1100 is a gallium arsenide phosphide LED red lamp containing an integral resistor chip in series with the LED. This allows operation from a 5 volt source without an external current limiting resistor. Applications include mounting on PC boards as diagnostic and circuit status indicators.


## Maximum Ratings

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mW
DC Forward Voltage 15 Volts
Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $55^{\circ}{ }^{\circ} \mathrm{C}$ to 9.0 Volts $100^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . 9.0 Volts
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Soldering Temperature.
$260^{\circ} \mathrm{C}$
( $1 / 166^{\prime \prime}$ from lens for 5 seconds)
Electrical/Optical Characteristics $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$ )

Parameter	Min.	Typ.	Max.	Units	Test   Conditions
Luminous Intensity	1.0	2.0	-	mcd	$V_{f}=5.0 \mathrm{~V}$
Forward Current		10	15	mA	$V_{f}=5.0 \mathrm{~V}$
Reverse Current	7.0			mA	$\mathrm{~V}_{R}=5 \mathrm{~V}$
Viewing Angle		70		degrees	
Peak Wavelength		650		nm	

[^37]


## RED T1 3¹4 RESISTOR LAMP



## FEATURES

- Integral Current Limiting Resistor
- No External Resistor Required with 5 Volt (RRL-3105) or 12 Volt Supply (RRL-3112)
- T1 3/4 Package
- Red Diffused Lens
- High Reliability

Package Dimensions in Inches (mm)

## Maximum Ratings

Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient	100 mW
DC Forward Voltage	15 Volts
Reverse Voltage	9.0 Volts
Storage Temperature	$55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soider Temperature	$260^{\circ}$
( $1 / 16^{\prime \prime}$ from lens for 5 seconds)	

## Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Test

## Parameters

Dominant Wavelength peak
Viewing Angle
Forward Current
RRL-3105
RRL-3112
Reverse Current
Luminous intensity
RRL-3105
RRL-3112
$\left.\begin{array}{ccccl}\text { Min. } & \begin{array}{c}\text { Typ. } \\ 655\end{array} & \text { Max. } & \begin{array}{c}\text { Units } \\ \text { nm }\end{array} & \begin{array}{c}\text { Test } \\ \text { Conditions }\end{array} \\ & 70 & & \\ \text { degrees }\end{array}\right]$.

[^38]

## DESCRIPTION

The RRL31XX is a Gallium Arsenide Phosphide LED red lamp containing an integral resistor chip in series with the LED. This allows operation from a 5 volt RRL-3105 or 12 volt RRL-3112 source without an external current limiting resistor. Applications include mounting on PC boards as diagnostic and circuit status indicators.


## red RRL-5601/5621/5641 <br> yellow RYL-5621 <br> green RGL-5621 <br> MINIATURE AXIAL LEAD LED RESISTOR LAMP



## FEATURES

- Integral Current Limiting Resistor Lamp (No Exterior Resistor Required)
- Miniature Axial Lead Package Ideal for Diagnostic Indicator
- Operates from 5 V IC Logic Supply
- RRL-5601, 5621, 5641 Red Diffused Lens RYL-5621 Yellow Diffused Lens RGL-5621 Green Diffused Lens
- High Reliability


## DESCRIPTION

The RRL-56X1 (red GaAsP), RYL-5621 (yellow GaP) and RGL-5621 (green GaP) are LED lamps that contain integral resistor chips in series with the LED. The built-in resistor allows operation from a 5 V source without an external resistor. An application is diagnostic and circuit status indicators on PC boards.

Package Dimensions in Inches (mm)


## Maximum Ratings

DC Forward Voltage	6 V
Reverse Voltage	6 V
Operating Temperatur	$55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Time@26	3 sec

Electrical/Optical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Parameter   Luminous Intensity	Min	Typ	Max	Unit	Conditions
$\quad$ RRL-5601, RYL-5621	0.3	0.6		mcd	5 V
RRL-5621	0.6	1.2		mcd	5 V
RRL-5641	1.0	2.0		mcd	5 V
$\quad$ RGL-5621	0.3	0.5		mcd	5 V
Forward Current					
RRL-5601	2.0	3.0	4.0	mA	5 V
RRL-5621	4.0	6.0	8.0	mA	5 V
RRL-5641	13.0	16.0	21.0	mA	5 V
$\quad$ RYL-5621, RGL-5621	2.8	5.0	6.7	mA	5 V
Reverse Current		0.1	10	$\mu \mathrm{~A}$	6 V
Half Angle (Limits for 50\% of					
$\quad$ Luminous Intensity		20		Deg.	5 V
Peak Emission Wavelength		650		nm	
RRL-56X1		583		nm	
RYL-5621	565	nm			
RGL-5621					

[^39]

## Lamp Accessories



Part Number	Description	Color
$2004-9002$	Mounting Clip \& Collar for T1 3/4 LED's	Black
$2004-9003$		
$2004-9015$	Mounting Clip \& Collar for T1 LED's	Clear
$2004-9016$		
$2004-9019$	Right Angle Mounting Part   Designed to allow right angle mounting   of lamps to PC Boards and other surfaces.	Black
$2004-9020$	Reflector   This highly polished reflector greatly   increases lighted area and enhances overall   brightness of low profile and T1 $3 / 4$ LED's	Polished




Optocouplers

## Optocouplers

Package and Type	Package Outline	Part Number	Features	Current Transfer Ratio （\％） $I F=10 \mathrm{~mA}$	（VDC）   （1）   Isolation   Breakdown   Voltage	BVCEO	Page
6 PIN   DIP   Single channel Photo－ transistor output	This view for SFH601G series only．   This diagram for CNY17F series only．	CNY17－1	Current transfer ratio groupings．VDE ap－ proved \＃0883． 100\％Burn－in．	40－80	$\begin{gathered} 4400 \\ (2) \end{gathered}$	70	6－15
		CNY17－2		63－125			
		CNY17．3		100－200			
		CNY17－4		160－320			
		SFH600－0		40－80			
		SFH600－1		63－125	2800		6－69
		SFH600－2		100－200	（2）		
		SFH600－3		160－320			
		SFH601－1		40－80			
		SFH601－2		63－125			－73
		SFH601－3		100－200			6－73
		SFH601－4		160－320			
		SFH601G－1	CTR groupings．	40－80	5300		
		SFH601G－2	VDE approved \＃0883，	63－125	（2）		
		SFH601G－3	$0805,0806 .$	100－200			－77
		SFH601G－4		160－320			
		SFH609－1	CTR groupings．	40－80			
		SFH609－2	High BVCEO VDE	63－125		90	6－81
		SFH609－3	100\％Burn－in	100－200			
		CNY17F－1	No base pin connec－	40－80			
		CNY17F－2	tion．CTR groupings．   VDE approved \＃0883	63－125	$5300$ (2)	70	6－19
		CNY17F－3	100\％Burn－in．	100－200			
		SFK610－1		40－80			
		SFK610－2		63－125			
4 Lead		SFK610－3	Miniature size．	100－200			
DIP		SFK610－4	transfer ratios	160－320			
Single		SFK611－1	VDE \＃0883	40－80	7500	70	6－89
channel		SFK611－2	applifed for．	63－125			
Photo－		SFK611－3		100－200			
output		SFK611－4		160－320			
	$\uparrow$	IL1		20 Min ．		30	6－27
	凸囚囚	IL2	IL1，IL2 \＆IL5 only：	100 Min ．		70	6－30
	© ANODE $\rightarrow$ CATHODE $\rightarrow$ BASE	IL5	VDE approved \＃0883，\＃0804	50 Min ．		70	6－33
6 PIN		IL74＊		12．5 Min．		20	6－40
DIP		4N25			7500		
Single	込 以 区	4N26		20 Min ．			6－8
Photo－	$\overline{\mathbf{0}}$	4N27		10 Min			
transistor		4N28	Industry standard	10 Min ．		30	
		4N35					
		4N36		100 Min ．			
		4N37					6－11

（1） 1 sec．unless otherwise specified $\quad$（2） $\mathrm{RMS} \mathrm{t}=1 \mathrm{~m}$ ．
$\star$ Not for new design
All optocouplers are UL approved，\＃E52744．

Optocouplers


(1) 1 sec . unless otherwise specified

All optocouplers are UL approved, \#E52744.

## Optocouplers

Package and Type	Package Outline	Part Number	Features	Current Transfer Ratio (\%) $I F=10 \mathrm{~mA}$	(VDC) ${ }^{\text {(1) }}$ Isolation Breakdown Voltage	BVCEO	Page
6 PIN DIP   Single channel SCR output		14.400	Optically   Coupled SCR	$\begin{aligned} & \text { LED trigger } \\ & \text { current } \\ & 10 \mathrm{~mA} \\ & (5 \mathrm{~mA} \text { Typ.) } \end{aligned}$	7500	Fwd. blocking voltage VDRM $=$ 400 V	6-56
6 PIN DIP Single channel SCR output		$\begin{array}{r}\mathrm{H} 11 \mathrm{C} 4 \\ \hline \mathrm{H} 11 \mathrm{C5} \\ \hline \mathrm{H} 11 \mathrm{C} 6\end{array}$	Optically   Coupled SCR	LED trigger   current   11 mA   11 mA   14 mA	7500	Fwd. blocking voltage $V_{\text {DRM }}=$ 400 V	6-25
6 PIN DIP Single channel Triac output		16410         IL420	Optically   Coupled Triac Driver   Zero crossing detector.   High dv/dt.   Very low input required.   Optically Coupled   Triac Driver   High dv/dt.   Very low input required.	$\begin{aligned} & \text { LED trigger } \\ & \text { current } \\ & 10 \mathrm{~mA} \\ & 2 \mathrm{~mA} \\ & (1 \mathrm{~mA} \text { Typ.) } \end{aligned}$	7500	Fwd. blocking voltage VDRM $=$ 600 V	6-57

(1) 1 sec. unless otherwise specified

All optocouplers are UL approved, \#E52744.

## Optocouplers

Package and Type	Package Outline	Part Number	Features	Current Transfer Ratio (\%) $I F=10 \mathrm{~mA}$	(VDC) ${ }^{(1)}$ Isolation Breakdown Voltage	BVCEO	Page
16 Pin DIP Package Single channel		$\begin{gathered} \text { IL8 } \\ 4 \mathrm{PIN} \end{gathered}$	Very high voltage   VDE approved \#0700, \#0883,   \#0804, \#0860   IEC\#601/   VDE\#07750,   IEC\#380/VDE\#0806,   IEC\#435/VDE\#0805		8 KVRMS   (1 Min.)	30	6-36
		$\begin{aligned} & \text { IL9 } \\ & 6 \text { PIN } \end{aligned}$		20 Min .			
		$\begin{aligned} & \text { IL10 } \\ & 4 \text { PIN } \end{aligned}$		50 Min .			6-37
		$\begin{aligned} & \text { IL11 } \\ & 6 \mathrm{PIN} \end{aligned}$					

(1) 1 sec. unless otherwise specified.

All optocouplers are UL approved, \#E52744.

## Surface Mount Optocouplers



## Reflective Sensor

Package Type	Package Outline	Part Number	Features	Photo Current ( $I_{F}=10 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$, $\mathrm{d}=1 \mathrm{~mm}$ )	Surge Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )   (A)	Power Dissipation	Page
Miniature side by side emitter detector pair plastic		SFH900-1	Reflective interrupter High sensitivity Designed for short distances up to 5 mm	0.25-0.5 mA	1.5	150 mV	6-85
		SFH900-2		$0.4-0.8 \mathrm{~mA}$			



The entire optocoupler line is available with a lead bend for surface mounting.

## FEATURES

- Surface Mountable
- Available for all 4, 6, 8 \& 16 Pin Plastic Packages with 0.1" Lead Spacing
- All Electrical Parameters Remain Unchanged from Standard Packages
- Two Stand-off Heights (.004' and .009')


## ORDERING INFORMATION

To order any standard optocoupler with a surface mount lead bend, add: -004 or -009 to the standard part number.

## Example:

Standard part number: ILD1
Surface Mount: ILD1-004 or
ILD1-009


Specifications are subject to change without notice.

4N25/4N26
4N27/4N28

## PHOTOTRANSISTOR

 OPTOCOUPLER

## FEATURES

- 7500 Volt Isolation Voltage
- I/O Compatible with Integrated Circuits
- 0.5 pF Coupling Capacitance
- Underwriters Lab Approval \#E52744


## DESCRIPTION

The 4N25, 4N26, 4N27, and 4N28 are optically coupled isolated pairs, each consisting of a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. They can be used to replace relays and transformers in many digital interface applications. They have excellent frequency response when used in analog applications.

## Absolute Maximum Ratings:

Gallium Arsenide LED:


Package Dimensions in Inches (mm)


Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )					
Parameter	Min	Typ	Max	Unit	Test Condition
Gallium Arsenide LED					
*Forward Voltage		1.3	1.5	$\checkmark$	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
*Reverse Current		0.1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$
Capacitance		100		pF	$V_{R}=0$
Phototransistor Detector					
$\mathrm{H}_{\text {fe }}$		150			$V_{C E}=5.0 \mathrm{~V}$
${ }^{*} \mathrm{BV}_{\text {CEO }}$	30			V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
*BVECO	7			$V$	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
* $\mathrm{BV}_{\text {CBO }}$	70			V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
${ }^{*} \mathrm{l}_{\text {CEO }}$ (dark)					
4N25,					
4N26, 4N27		5	50	nA	$V_{C E}=10 \mathrm{~V}$
4N28		10	100	nA	(base open)
${ }^{1} \mathrm{CBO}$ (dark)		2	20	nA	$\begin{aligned} & V_{C B}=10 \mathrm{~V} \\ & \text { (emitter open) } \end{aligned}$
Collector-Emitter Capacitance		2		pF	$\mathrm{V}_{\text {CE }}=0$
Coupled Characteristics					
*DC Current Transfer Ratio					
4N25, 4N26	0.2	0.5			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{C E}=10 \mathrm{~V} \end{aligned}$
4N27, 4N28	0.1	0.3			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$
Capacitance, Input to					
Output		0.5		pF	
Breakdown Voltage					
* 4N25	2500			V	Peak, 60 Hz
* 4N26, 4N27	1500			V	Peak, 60 Hz
* 4N28	500			V	Peak, 60 Hz
**All types	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.
*Resistance, Input to					
Output	100			G $\Omega$	
Rise and Fall Times		2		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$
*Collector-Emitter					
Saturation Voltage			0.5	V	$\begin{aligned} & I_{F}=50 \mathrm{~mA} \\ & I_{C}=2.0 \mathrm{~mA} \end{aligned}$

*Indicates JEDEC registered values
**Devices are UL approved to 7500 VDC for 1 sec .

Specifications subject to change without notice.



## FEATURES

- 7500 Volt Isolation Voltage
- Very High Current Transfer Ratio (500\% Min.)
- High Isolation Resistance (10 ${ }^{11} \Omega$ Typical)
- Low Coupling Capacitance
- Standard Plastic Dip Package
- Underwriters Lab Approval \#E52744


## DESCRIPTION

The 4N32 and 4N33 are optically coupled isolators employing a gallium arsenide infrared emitter and a silicon photo darlington sensor. Switching can be accomplished while maintaining a high degree of isolation between driving and load circuits. They can be used to replace reed and mercury relavs with advantages of long life, high speed switching and elimination of magnetic fields.

Package Dimensions in Inches (mm)


Maximum Ratings: (At $25^{\circ} \mathrm{C}$ )

Gallium Arsenide LED (Drive Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$.	150 mW
Derate Linearly From $55^{\circ} \mathrm{C}$.	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current.	80 mA
Peak Reverse Voltage	3 V
Photodarlington Sensor (Load Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$ Ambient	150 mW
Derate Linearly From $25^{\circ} \mathrm{C}$.	2.0 mW/ ${ }^{\circ} \mathrm{C}$
Collector (load) Current	125 mA
Collector-Emitter Breakdown	
Voltage ( $B V_{\text {CEO }}$ ).	30 V
Collector-Base Breakdown	
Voltage ( $B V_{C B O}$ ).	50 V
Emitter-Base Breakdown	
Voltage ( $B V_{E B O}$ ).	8 V
Emitter-Collector Breakdown	
Voltage ( $B V_{E C O}$ ).	5 V
Package	
Total Dissipation at $25^{\circ} \mathrm{C}$	250 mW
Derate Linearly From $25^{\circ} \mathrm{C}$ *	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature*	to $+150^{\circ} \mathrm{C}$
Operating Temperature	to $+100^{\circ} \mathrm{C}$
Lead Soldering Time at $260^{\circ} \mathrm{C}$	10 sec

Electrical Characteristics ( $\operatorname{Tamb}=25^{\circ} \mathrm{C}$ )

Parameter	Min	Typ	Max	Unit	Condition
Forward Voltage*		1.25	1.5	V	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Reverse Current*.		0.1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$
Capacitance		100		pF	$V_{\mathrm{R}}=0$
Sensor					
$\mathrm{HFE}_{\text {fe }}$		13K			$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
					$I_{\text {c }} \mathrm{C}=0.5 \mathrm{~mA}$
$\mathrm{BV}_{\text {ceo }}{ }^{\text {* }}$	30			$\checkmark$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$B^{\text {V }}$ CBO ${ }^{*}$	50			V	IF $I_{F}=0$ $I_{C}=100 \mu \mathrm{~A}$
					$\mathrm{I}_{\mathrm{F}} \mathrm{C}=0$
bV $\mathrm{EbB}^{*}$	8			$v$	$\mathrm{I}_{\mathrm{c}} \mathrm{C}=100 \mu \mathrm{~A}$
					$\mathrm{I}_{\mathrm{F}}=0$
BVECo*	5			V	$l_{E}=100 \mu \mathrm{~A}$
ICEO*.		1.0	100	nA	$\begin{aligned} & V_{C E}=10 \mathrm{~V} \\ & \mathrm{I}_{F}=0 \end{aligned}$
Coupled Characteristics					
Current Transfer Ratio*	500			\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
					$V_{C E}=10 \mathrm{~V}$
$V_{\text {ceisat }}$			1.0	$\checkmark$	$\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~mA}$
					$O_{\text {O }}=8 \mathrm{~mA}$
Isolation Resistance* Isolation Capacitance		$\begin{gathered} 10^{11} \\ 1.5 \end{gathered}$		$\underset{\text { pf }}{\text { ohm }}$	$\mathrm{V}_{10}=500 \mathrm{~V}$
Turn-on Time			5	$\mu \mathrm{s}$	$V_{C C}=10 \mathrm{~V}$
					$\mathrm{lc}=50 \mathrm{~mA}$
Turn-off Time			100	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$
					$\mathrm{R}_{\mathrm{L}}=180 \Omega$
Isolation Voitage					Puise Width $=8 \mathrm{~ms}$
4N32*	1500			$v$	Peak, 60 Hz
4N33**	6000			V	Peak, 60 Hz
4N32 \& 4N33	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.

Devices are UL approved to 7500 VDC for 1 sec .
*Indicates JEDEC Registered Data
Specifications subject to change without notice.


## FEATURES

- 7500 Volt Isolation Voltage
- High Current-Transfer-Ratio (100\% Min)
- Standard Dual-In-Line
- 0.5 pF Coupling Capacitance
- Underwriters Lab Approval \#E52744


## DESCRIPTION

4N35, 4N36, 4N37 are optically coupled pairs employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The 4N35, 4N36, 4N37 can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation.

Package Dimensions in Inches (mm)


Maximum Ratings:



Devices are UL approved to 7500 VDC for 1 sec .
*Indicates JEDEC Registered Data
Specifications subject to change without notice.


Typical forward voltage



Switching time test schematic and waveforms
Switching time test schematic 1


Switching time test schematic 2


Collector current versus diode forward current




Typical switching times versus load resistance




## FEATURES

- 6000 Volt Isolation Voltage
- High Current Transfer Ratio 800\%
- Low Input Current Requirement 0.5 mA
- TTL Compatible Output - 0.1V V OL
- High Common Mode Rejection $500 \mathrm{~V} / \mu \mathrm{sec}$.
- High Output Current - 60mA
- DC to 1 Megabit / Sec. Operation
- Adjustable Bandwidth - Access to Base
- Standard Molded Dip Plastic Package
- UL Approval \# E52744


## DESCRIPTION

High common mode transient immunity and very high current transfer ratio together with 6000 volts DC insulation are achieved by coupling an LED with an integrated high gain photon detector in an 8 pin dual inline package. Separate pins for the photodiode and output stage enable TTL compatible saturation voltages with high speed operation. Photo Darlington operation is achieved by tying the Vcc and Vo terminals together. Access to the base terminal aliows adjustment to the gain bandwidtin.

The 6N138 is ideal for TL applications since the 300\% minimum current transfer ratio with an LED current of 1.6 mA enables operation with 1 unit load in and 1 unit load out with a $2.2 \mathrm{~K} \Omega$ pull-up resistor.

The 6N139 is best suited for low power logic applications involving CMOS and low power TTL. A 400\% current transfer ratio with only 0.5 mA of LED current is guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.


## APPLICATIONS

- Logic ground isolation - TTLJTLL,

TTL/CMOS, CMOS/CMOS, CMOS/TTL

- EIA RS 232C Line Receiver
- Low Input Current Line Receiver - Long Lines, Party Lines
- Telephone Ring Detector
- 117 VAC Line Voltage Status Indica-tion-Low Input Power Dissipation
- Low Power Systems - Ground Isolation


## Maximum Ratings

Maximum Temperatures	
Storage Temperatures	$-55^{\circ}$ to $+125^{\circ} \mathrm{C}$
Operating Temperatures	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. )	$260^{\circ} \mathrm{C}$
Average Input Current ( $l_{F}$ )	20 mA
Peak Input Current ( $\left(_{F}\right.$ )   (50\% Duty Cycle - 1 ms pulse width)	40mA
Reverse Input Voitage ( $V_{R}$ )	5 v
Input Power Dissipation	35 mW
(Derate linearly above 50\% in free air temperature at	
Output Current - $I_{0}($ Pin 6$)$	60mA
(Derate linearly above $25^{\circ} \mathrm{C}$ in free air temperature at	
$0.7 \mathrm{~mA}{ }^{\circ}{ }^{\circ} \mathrm{C}$ )	
Emitter-Base Reverse Voltage (Pin 5-7)	0.5 V
Supply and Outage Voltage - $V_{C C}(\operatorname{Pin} 8-5), V_{0}($ Pin 6-5)   6N138 $\quad-0.5$ to 7 V	
6N139	-0.5 to 18 V
Output Power Dissipation 100 mW	
(Derate Linearly Above $25^{\circ} \mathrm{C}$ in Free Air Temperature at $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ )	
Caution:	
Due to the small geometries of this device it should be handled with	
Electrostatic Discharge (ESD) precautions. Proper grounding would further prevent damage and/or degradation which may be induced	

Electro-Optical Characteristics ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Parameter	Device	Min	Typ	Max	Units	Test Conditions	Note
Current Transfer Ratio (CTR)	6N139	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{array}{\|l\|} \hline 800 \\ 900 \\ \hline \end{array}$		\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{0}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{\mathrm{F}}=1.6 \mathrm{~mA}, V_{0}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	5,6
	6N138	300	600		\%	$I_{F}=1.6 \mathrm{~mA}, V_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$	
Logic Low Output Voltage (VOL)	6N139 6N139 6N139		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	V	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{0}=6.4 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{0}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}, I_{0}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	6
	6N138		0.1	0.4	V	$I_{F}=1.6 \mathrm{~mA}, I_{0}=4.8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V}$	6
Logic High   Output Current ( $I_{\mathrm{OH}}$ )	6N139		0.05	100	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{0}=V_{C C}=18 \mathrm{~V}$	6
	6N138		0.1	250	$\mu \mathrm{A}$	$I_{F}=0 \mathrm{~mA}, V_{0}=V_{C C}=7 \mathrm{~V}$	
Logic Low Supply Current (ICCL)				0.2	mA	$I_{F}=1.6 \mathrm{~mA}, V_{0}=$ OPEN, $V_{C C}=5 \mathrm{v}$	6
Logic High Supply Current ( $(\mathrm{CCCH}$ )				10	mA	$I_{F}=0 \mathrm{~mA}, V_{0}=O P E N, V_{C C}=5 \mathrm{~V}$	6
Input Forward Voltage (VF)			1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Input Reverse Breakdown Voltage (BVR)		5			V	$I_{R}=10 u A, T_{A}=25^{\circ} \mathrm{C}$	
Temperature Coefficient of Forward Voltage			- 1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{\text {F }}=1.6 \mathrm{~mA}$	
Input Capacitance ( $\mathrm{C}_{\text {IN }}$ )			60		pF	$\mathrm{f}=1 \mathrm{MH}_{\mathrm{z}}, \mathrm{V}_{\mathrm{F}}=0$	
Input-Output Insulation Leakage Current ( $I_{1.0}$ )				1.0	$\mu \mathrm{A}$	$45 \%$ Relative Humidity, $T_{A}=25^{\circ} \mathrm{C}$ $t=5_{s}, V_{1.0}=3000 \mathrm{VDC}$	7
Resistance Input-Output) $\left(R_{1.0}\right)$			$10^{12}$		$\Omega$	$V_{1.0}=500 V_{D C}$	7
Capacitance (Input-Output) $\left(\mathrm{C}_{1.0}\right)$			0.6		pF	$\mathrm{f}=1 \mathrm{MH}_{\mathrm{z}}$	7

Switching Specifications (TA $=25^{\circ} \mathrm{C}$ )

Parameter	Device	Min	Typ	Max	Units	Test Conditions	Note
Propagation Delay Time	6N139	-	$\begin{gathered} 5 \\ 0.2 \end{gathered}$	$\begin{gathered} 25 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{s}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{L}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{L}=270 \Omega \end{aligned}$	6,8
To Logic Low at Output tPHL	6N138		1	10	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega$	
Propagation Delay Time	6N139		$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 60 \\ 7 \end{gathered}$	$\mu \mathrm{S}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, R_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & I_{F}=12 \mathrm{~mA}, R_{\perp}=270 \mathrm{~mA} \Omega \end{aligned}$	6,8
To Logic High at Output P LH	6N138		4	35	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, R_{\mathrm{L}}=2.2 \mathrm{k} \Omega$	
Common Mode Transient Immunity at Logic High Level ( $C M_{H}$ ) Output			500		$v / \mu \mathrm{s}$	$\begin{aligned} & I_{\mathrm{F}}=0 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & R_{C C}=0, \mathrm{~V} \mathrm{~V}_{\mathrm{Cm}} /=10 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{P}} \end{aligned}$	9,10
Common Mode Transient Immunity at Logic Low Level (CM $)$ Output			-500		$\mathrm{v} / \mathrm{\mu s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & R_{C C}=0, / V_{C M}=10 V_{p . p} \end{aligned}$	9,10

## Notes

[^40]$$
0.15 I_{F}(\mathrm{~mA})
$$

## SINGLE CHANNEL PHOTOTRANSISTOR OPTOCOUPLER



## FEATURES

- 4400 Volt Breakdown Voltage
- High Current Transfer Ratio, 4 Groups

CNY 17-1, 40 to 80\%
CNY 17-2, 63 to 125\%
CNY 17-3, 100 to 200\% CNY 17-4, 160 to $320 \%$

- Long Term Stability
- Industry Standard Dual-in-Line
- Underwriters Lab Approval \#E52744
- VDE Approval \#0883


## DESCRIPTION

The CNY 17 is an optically coupled pair employing a gallium arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The CNY 17 can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation.


Maximum Ratings
Emitter (GaAs infrared emitting diode)
Reverse voltage
Forward current
Surge current (t $=10 \mu \mathrm{~s}$ )
Surge current (t
Power dissipation
Detector (Si phototransistor)
Collector-emitter reverse voitage
Emitter-base reverse voltage
Collector current
Collector current ( $\mathrm{t}<1 \mathrm{~ms}$ )
Power dissipation
Coupler
Storage temperature
Operating temperature
Junction temperature
Soldering temperature in a 2 mm distance
from the case bottom ( $t \leqslant 3 \mathrm{~s}$ )
Isolation voltage
(between emitter and detector referred to
standard climate 23/50 DIN 50014:
leakage path, DIN 57883, 6.80
air path, VDE 0883, 6.80
Tracking resistance: Group III (KC : 600 in accordance with VDE $110 \$ 6$, table 3 and DIN 53 480/NDE 0330, part 1.
Isolation voltage @ $V_{\text {is }}=500 \mathrm{~V}$

		V
$V_{\mathrm{R}}$	6	mA
$I_{\mathrm{F}}$	60	A
$i_{\text {FS }}$	2.5	mW
$P_{\text {tot }}$	100	
		V
$V_{\text {CEO }}$	70	V
$V_{\text {EBO }}$	7	mA
$I_{\mathrm{C}}$	50	mA
$I_{\mathrm{CSM}}$	100	mW
$P_{\text {tot }}$	150	

$R_{\text {is }} \quad 10^{\prime \prime} \quad \ell$

$25^{\circ} \mathrm{C}$
Emitter (GaAs infrared emitting diode)
Forward voltage ( $\left.\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}\right)$
Breakdown voltage ( $\left.I_{R}=10 \mu \mathrm{~A}\right)$
Reverse current ( $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$ )
Capacitance ( $V_{\mathrm{R}}=0 \mathrm{~V} ; t=1 \mathrm{MHz}$ )
Thermal Resistance
Detector (Si phototransistor)
Capacitance $\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}\right)$
$\left(V_{C B}=5 V ; f=1 \mu \mathrm{~Hz}\right)$
$\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} ; \mathrm{f}=1 \mu \mathrm{~Hz}\right)$
Thermal Resistance
Goupler
Collector-emitter saturation voltage
$\left(I_{\mathrm{F}}=10 \mathrm{~mA} ; I_{\mathrm{C}}=2.5 \mathrm{~mA}\right)$
Coupling capacitance

$T_{\text {stor }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
$T_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$
$T_{s}$	260	${ }^{\circ} \mathrm{C}$
$V_{\text {is }}$	4400	V
	8.2 MIN.	mm
	7.3 MIN.	mm

The couplers are grouped in accordance with their current ratio $\frac{C}{/ F}$ at $I_{E}=10 \mathrm{~mA}$ and ( $V_{\text {CE }}=5 \mathrm{~V}$ and marked by Arabic numerals.

Group		CNY 17.1	CNY 17.2	CNY 17.3	CNY 17.4	
$\frac{l_{C}}{l_{r}}$		40 to 80	63 to 125	100 to 200	160 to 320	\%
Collector-emitter leakage current $\left(V_{C E}=10 \mathrm{~V}\right)$	$I_{\text {CEO }}$	$2(\leqslant 50)$	$2(\cdot 50)$	$5(100)$	$5(\cdot 100)$	nA

Specifications are subject to change without notice.

## Linear operation (without saturation)



Load resistance	$R_{\mathrm{L}}$	75	$\Omega$
Delay time	$t_{\mathrm{d}}$	$3,0(\leqq 5,6)$	$\mu \mathrm{s}$
Rise time	$t_{\mathrm{r}}$	$2,0(\leqq 4,0)$	$\mu \mathrm{s}$
Storage time	$t_{\mathrm{s}}$	$2,3(\leqq 4,1)$	$\mu \mathrm{s}$
Fall time	$t_{\mathrm{f}}$	$2,0(\leqq 3,5)$	$\mu \mathrm{s}$
Cut-off frequency	$t_{\mathrm{g}}$	250	kHz

$$
\begin{aligned}
& I_{\mathrm{F}}=10 \mathrm{~mA} \\
& V_{\mathrm{B}}=5 \mathrm{~V} \\
& T_{\mathrm{amb}}=25^{\circ} \mathrm{C}
\end{aligned}
$$

## Switching operation (with saturation)



Group		1	2 and 3		
		$I_{F}=20 \mathrm{~mA}$	$I_{\mathrm{F}}=10 \mathrm{~mA}$	$I_{\mathrm{F}}=5 \mathrm{~mA}$	
Delay time	$t_{\mathrm{d}}$	$3,0(\leqq 5,5)$	$4,2(\leqq 8,0)$	$6,0(\leqq 10,5)$	$\mu \mathrm{s}$
Rise time	$t_{\mathrm{r}}$	$2,0(\leqq 4,0)$	$3,0(\leqq 6,0)$	$4,6(\leqq 8,0)$	$\mu \mathrm{s}$
Storage time	$t_{\mathrm{s}}$	$18(\leqq 34)$	$23(\leqq 39)$	$25(\leqq 43)$	$\mu \mathrm{s}$
Fall time	$t_{\mathrm{f}}$	$11(\leqq 20)$	$14(\leqq 24)$	$15(\leqq 26)$	$\mu \mathrm{s}$
	$V_{\mathrm{CE} \text { sat }}$	$0,25(\leqq 0,4)$			




## Saturation voltage as a

function of collector current
and modulation depth for CNY17-1 Handling same except for CNY17-2 CNY17-3




Permissible pulse load


Diode capacitance
$\left(T_{\text {mimb }}=25^{\circ} \mathrm{C}: f=1 \mathrm{MHz}\right)$
pF
50


## Permissible loss diode



## Transistor capacitances

( $\mathrm{T}_{\text {amo }}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz}$ )
$C=f\left(v_{0}\right)$



## FEATURES

- 5300 Volt Breakdown Voltage
- Base Terminal not connected for improved Common Mode Interface Immunity
- High Current Transfer Ratio, 3 Groups CNY17F-1, 40 to 80\%
CNY17F-2, 63 to 125\%
CNY17F-3, 100 to 200\%
- Low CTR Degradation
- $100 \%$ Burn-in at $I_{F}=50 \mathrm{~mA}$
- $T_{A}=60^{\circ} \mathrm{C}, \mathrm{t}=24 \mathrm{Hrs}$.
- High Collector-emitter Voltage $\mathrm{V}_{\text {CEO }}=70 \mathrm{~V}$
- VDE Approval \#0883


## DESCRIPTION

The CNY17F is an optocoupler that employs a GaAs infrared emitting diode optically coupled to a silicon planar phototransistor detector. The component is incorporated in a plastic plug-in DIP-6 package. The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible reference voltages.
In contrast to the CNY17 Series, the base terminal of the $F$ type is not connected. This results in a substantially improved common-mode interference immunity.

Package Dimensions in Inches (mm)


## Maximum Ratings:

Emitter (GaAs infrared emitter)
Reverse voltage
DC forward current
Surge forward current ( $t \leq 10 \mu \mathrm{~s}$ )
Total power dissipation
Detector (silicon phototransistor)
Collector-emitter reverse voitage
Collector current
Collector current ( $t \leq 1 \mathrm{~ms}$ )
Total power dissipation
Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature (max. 10s) ${ }^{1}$
Isolation test voltage ${ }^{2)}$
between emitter and detector referred to
standard climate $23 / 50$ DIN 50014
Leakage path
Air path
Tracking resistance
in acc. with VDE 0110 § 6, table 3 and DIN 53480/VDE 0303, part 1 .
Isolation resistance ( $V_{10}=500 \mathrm{~V}$ )

$V_{\mathrm{F}}$	6	V
$I_{\mathrm{F}}$	60	mA
$I_{\text {fSM }}$	2.5	A
$P_{\text {tot }}$	100	mW
$V_{\text {CEO }}$	70	V
$I_{\mathrm{C}}$	50	mA
$I_{\text {CSM }}$	100	mA
$P_{\text {tot }}$	150	mW
$T_{\text {stg }}$	$-40 \ldots+150$	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	$-40 \ldots+100$	${ }^{\circ} \mathrm{C}$
$T_{1}$	100	${ }^{\circ} \mathrm{C}$
$T_{\mathrm{s}}$	260	${ }^{\circ} \mathrm{C}$
$V_{\text {io }}$	5300	Vdc
	min 8.2	mm
	min 7.3	mm
KB	$\geq 100$	
	(group 3)	
$R_{10}$	$10^{\prime \prime}$	$\Omega$

Characteristics ( $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Emitter (GaAs infrared emitter)
Forward voltage ( $I_{\mathrm{F}}=60 \mathrm{~mA}$ )
Breakdown voltage ( $I_{\mathrm{R}}=10 \mu \mathrm{~A}$ )
Reverse current ( $V_{\mathrm{R}}=6 \mathrm{~V}$ )
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$ )
Thermal resistance ${ }^{1}$ )
Detector (silicon phototransistor)
Capacitance ( $V_{\mathrm{CE}}=5 \mathrm{~V} ; f=1 \mathrm{MHz}$ )
Thermal resistance ${ }^{\text {I }}$

$V_{\mathrm{F}}$	$1.25(\leq 1.65)$	V
$B V$	$30(\geq 6)$	V
$I_{\mathrm{A}}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
$C_{0}$	40	pF
$R_{\text {thJA }}$	750	$\mathrm{~K} / \mathrm{W}$
$C_{\text {CE }}$	6.8	pF
$R_{\text {thJA }}$	500	$\mathrm{~K} / \mathrm{W}$

Optocoupler
Collector-emitter saturation voltage
$\left(I_{\mathrm{F}}=10 \mathrm{~mA} ; I_{\mathrm{C}}=2.5 \mathrm{~mA}\right)$
Coupling capacitance

$V_{\text {cEsat }}$	$0.25(\leq 0.4)$	$V$
$C_{k}$	0.5	pF

The optocouplers are grouped according to their current transfer ratio $I_{\mathrm{C}} / I_{\mathrm{F}}$ at $V_{\mathrm{CE}}=5 \mathrm{~V}$, and marked by Arabic numerals.

Group	-1	-2	-3	
$I_{\mathrm{C}} / I_{\mathrm{F}}\left(I_{\mathrm{F}}=10 \mathrm{~mA}\right)$	$40 \ldots 80$	$63 \ldots 125$	$100 \ldots 200$	$\%$
$I_{\mathrm{C}} / I_{\mathrm{F}}\left(I_{\mathrm{F}}=1 \mathrm{~mA}\right)$	$30(>13)$	$45(>22)$	$70(>34)$	$\%$
Collector-emitter   leakage current   $\left(V_{\mathrm{CE}}=10 \mathrm{~V}\right)$$\quad I_{\mathrm{CEO}}$	$2(\leq 50)$	$2(\leq 50)$	$5(\leq 100)$	$n \mathrm{~A}$


Linear operation (without saturation)					
$\xrightarrow{\frac{14}{47 n}}$					
Load resistance	$R_{L}$	75	$\Omega$	$I_{\text {F }}$	$=10 \mathrm{~mA}$
Turn-on time	$t_{\text {on }}$	3.0 ( $\leq 5.61$	$\mu \mathrm{s}$		$\begin{aligned} & =5 \mathrm{~V} \\ & =25^{\circ} \mathrm{C} \end{aligned}$
Rise time	$t$	2.0 ( 54.0$)$	$\mu \mathrm{s}$		
Turn-off time	$t_{011}$	$2.31 \leq 4.1)$	$\mu \mathrm{s}$		
Fall time	4	2.0 ( 53.5 )	$\mu \mathrm{s}$		
Cut-off frequency	$f_{60}$	250	kHz		

Switching operation (with saturation)


Group		$\begin{aligned} & 1 \\ & I_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2 \text { and } 3 \\ & I_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	
Turn-on time	$t_{\text {on }}$	$3.0(\leq 5.5)$	$4.2(\leq 8.0)$	$\mu \mathrm{s}$
Rise time	$t$	2.0 ( 54.0 )	3.0 ( $\leq 6.0$ )	$\mu \mathrm{s}$
Turn-off time	$t_{01}$	$18(\leq 34)$	23 ( 539 )	$\mu \mathrm{s}$
Fall time	4	$11(\leq 20)$	$14(\leq 24)$	нs
	$v_{\text {cessa }}$	$0.25(\leq 0.4)$		$\checkmark$






## FEATURES

- AC or Polarity Insensitive Input
- 7500 Volt Isolation Voltage
- Current Transfer Ratio 20\% Min.
- Industry Standard Dual-In-Line
- Built-in Reverse Polarity Input Protection
- I/O compatible with integrated circuits
- Underwriters' Lab Approval \#E52744
- VDE Approvals 0883/6.80, 0884/1.83


## DESCRIPTION

The H11AA1 is a bidirectional input optically coupled isolator. It consists of two gallium arsenide infrared emitting diodes coupled to a silicon NPN phototransistor in a 6-pin dual in-line package. The H11AA1 has a minimum CTR of $20 \%$ and a CTR symmetry of $1: 3$. It is designed for applications requiring detection or monitoring of $A C$ signals.


## Maximum Ratings

Gallium Arsenide LED	
Power Dissipation @ $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	100 mA
Peak Reverse Voltage	3.0 V
Detector (Silicon Phototransistor)	
Power Dissipation@ $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{BV}_{\text {CEO }}$ ).	30 V
Emitter-Base Breakdown Voltage ( $\mathrm{BV}_{\mathrm{ECO}}$ ). .	
Collector-Base Breakdown Voitage ( $\mathrm{BV}_{\mathrm{CBO}}$ )	
Package	
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient	
(LED Plus Detector)	250 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$
Operating Temperature	55 to $+100^{\circ} \mathrm{C}$
Lead Soldering time @ $260^{\circ} \mathrm{C}$	

Test Condition

Parameter	Min	Typ	Max	Unit	Condition
Gallium Arsenide LED					
Forward Voltage $\mathrm{V}_{\mathrm{F}}$	-	1.2	1.5	$\checkmark$	$\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}$
Phototransistor Detector					
$\mathrm{BV}_{\text {ceo }}$	30	50	-	$\checkmark$	$l_{c}=1 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{ECO}}$	7	10	-	$v$	$I_{E}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\text {CBO }}$	70	90	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
${ }_{\text {ceo }}$	-	5	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$
Coupled Characteristics $V_{\text {CE(sat) }}$	-	-	0.4	V	$= \pm 10 \mathrm{~mA}$
DC Current Transler Ratio CTR	20	-	-	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$
Symmetry $\text { CTR @ + } 10 \mathrm{~mA}$	0.33	1.0	3.0	-	
CTR @ - 10 mA					
Input to Output					
Isolation Voltage $(\mathrm{t}=1 \mathrm{sec}$.)	$\begin{aligned} & 7500 \\ & 5300 \end{aligned}$	-	-	v	DC AC (RMS)

[^41]
## INPUT

## CHARACTERISTICS



## OUTPUT VS

INPUT CURRENT


DARK CURRENT
VS. TEMPERATURE


TRANSFER CHARACTERISTICS


OUTPUT CHARACTERISTICS



## FEATURES

## - 400 Volts Blocking Voltage

- Turn On Current ( $l_{\text {FT }}$ ) 5.0 mA Typical
- Gate Trigger Current ( $\mathbf{I G T}$ ) $\mathbf{- 2 0 \mu} \mathrm{A}$ Typical
- Gate Trigger Voltage ( $\mathrm{V}_{\mathrm{GT}}$ ) - 0.6 Volt Typical
- 7500 Volt Isolation Voltage
- Surge Anode Current - 5.0 Amp
- Solid State Reliability
- Standard Dip Package
- Underwriters Lab Approval \#E52744


## DESCRIPTION

The $\mathrm{H} 11 \mathrm{C} 4, \mathrm{H} 11 \mathrm{C} 5, \mathrm{H} 11 \mathrm{C} 6$ are optically coupled SCRs employing a GaAs infrared emitter and a silicon photo SCR sensor. Switching can be accomplished while maintaining a high degree of isolation between triggering and load circuits. It can be used in SCR triac and solid state relay applications where high blocking voltages and low input current sensitivity is required.
The H 11 C 4 and H 11 C 5 has a maximum turn-on-current of 11 mA . The H11C6 has a maximum of 14 mA .

Advance Data Sheet

## Maximum Ratings

Gallium Arsenide LED (Drive Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$	100 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	. 60 mA
Peak Reverse Voltage	6.0 V
Peak Forward Current ( $1 \mu \mathrm{~s}, 1 \%$ Duty Cycle)	3.0 A
SCR Detector (Load Circuit)	
Power Dissipation ( $25^{\circ} \mathrm{C}$ case) .	1000 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
RMS Forward Current	.300 mA
Surge Anode Current ( 10 ms duration)	5.0 A
Peak Forward Current ( $100 \mu \mathrm{~s}, 1 \%$ Duty Cycie)	10 A
Surge Gate Current ( 5 ms duration)	200 mA
Reverse Gate Voltage	6.0 V
Anode Voltage (DC or AC Peak)	400 V
Coupled	
Isolation Voltage ( $\mathrm{H} 11 \mathrm{C} 4 / \mathrm{H} 11 \mathrm{C} 5 / \mathrm{H} 11 \mathrm{C} 6$ ) $\mathrm{t}=1 \mathrm{sec}$.)	7500 VDC
	5300 VAC (RMS)
Total Package Power Dissipation	400 mW
Derate Linearly from $25^{\circ}$	$5.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Soldering Time at $260^{\circ} \mathrm{C}$	. 10 sec

[^42]| Electrical Characteristics ( $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Min | Typ | Max | Unit | Test Condition |
| Input Diode |  |  |  |  |  |
| Forward Voltage |  | 1.2 | 1.5 | $\checkmark$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
| Reverse Current |  |  | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ |
| Capacitance |  | 50 |  | pF | $\mathrm{V}=0, \mathrm{f}=1 \mu \mathrm{~Hz}$ |
| Photo - SCR |  |  |  |  |  |
| Forward Leakage Current ( $I_{D}$ ) |  |  | 150 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{GK}}=10 \mathrm{Kohm}, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{OM}}=400 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$ |
| Reverse Leakage Current ( $l_{R}$ ) |  |  | 150 | $\mu \mathrm{A}$ | $\begin{aligned} & R_{G K}=10 \mathrm{Kohm}, \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{RM}}=400 \mathrm{~V} \\ & \mathrm{TA}^{2}=100^{\circ} \mathrm{C} \end{aligned}$ |
| Forward Blocking Voltage ( $V_{D M}$ ) | 400 |  |  | v | $\begin{aligned} & R_{G K}=10 \mathrm{Kohm} \\ & T A=100^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{d}}=150 \mu \mathrm{~A} \end{aligned}$ |
| Reverse Blocking Voltage ( $V_{D M}$ ) | 400 |  |  | v | $\begin{aligned} & R_{G K}=10 \mathrm{Kohm} \\ & T A=100^{\circ} \mathrm{C} \\ & \mathrm{I}_{d}=150 \mu \mathrm{~A} \end{aligned}$ |
| On-state Voltage ( $\mathrm{V}_{\text {t }}$ ) | - | 1.1 | 1.3 | v | $\mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$ |
| Holding Current ( $\mathrm{I}_{\mathrm{H}}$ ) | - | - | 500 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{GK}}=27 \mathrm{Kohm}, \\ & \mathrm{~V}_{\mathrm{FX}}=50 \mathrm{~V} \end{aligned}$ |
| Gate Trigger Voltage ( $V_{G T}$ ) | - | 0.6 | 1.0 | $v$ | $\begin{aligned} & V_{\mathrm{FX}}=100 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GK}}=27 \mathrm{Kohm} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{Kohm} \end{aligned}$ |
| Gate Trigger Current (IGT) |  | 20 | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{Fx}}=100 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{Kohm} \\ & \mathrm{R}_{\mathrm{GK}}=27 \mathrm{Kohm} \end{aligned}$ |
| Capacitance |  |  |  |  |  |
| Anode to Gate Gate to Cathode |  | $\begin{gathered} 20 \\ 350 \end{gathered}$ |  | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ | $V=0, f=1 \mu \mathrm{~Hz}$ |
| Coupled |  |  |  |  |  |
| Turr-on Current ( $\mathrm{lf}_{\text {F }}$ ) |  |  |  |  |  |
| - H11C4/H11C5 |  |  | 20 | mA | $V_{\text {DM }}=50 \mathrm{~V}$ |
| - H11C6 |  |  | 30 | mA | $\mathrm{R}_{\mathrm{GK}}=10 \mathrm{Kohm}$ |
| - H11C4/H11C5 |  | 5 | 11 | mA | $V_{D M}=100 \mathrm{~V}$ |
| - H11C6 |  | 7 | 14 | mA | $\mathrm{R}_{\mathrm{GK}}=27 \mathrm{Kohm}$ |
| Isolation Voltage | 7500 |  |  | $V_{D C}$ | $\begin{aligned} & 1 \text { second } \\ & 5300 \text { VAC (RMS) } \end{aligned}$ |
| Isolation Resistance Isolation Capacitance | 100 |  | 2 | G-ohm pF | $\begin{aligned} & V_{\text {iso }}=500 \mathrm{~V} \\ & f=1 \mathrm{MHz}, \mathrm{~V}=0 \end{aligned}$ |

# IL1 SINGLE CHANNEL ILD1 DUAL CHANNEL ILQ1 QUAD CHANNEL 

## PHOTOTRANSISTOR OPTOCOUPLER



## FEATURES

- 7400 Series T²L Compatible
- 7500 Volt Isolation Voltage
- 0.5 pF Coupling Capacitance
- Minimum 20\% CTR
- Industry Standard Dual-In-Line Package
- Single Channel, Dual, and Quad Configurations
- Dual and Quad Packages Feature:
-Reduced Board Space Requirements
-Lower Pin and Parts Count
-Better Channel-To-Channel CTR Matching
- Underwriters Lab Approval \#E52744
- VDE Approvals (IL1 only) 0883/6.80, 0804/1.83


## DESCRIPTION

(see next page)


## DESCRIPTION

IL1/ILD1/ILQ1 are optically coupled isolator pairs employing Gallium Arsenide infrared LEDs and silicon NPN phototransistors. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL1/ILD1/ ILQ1 are especially designed for driving medium-speed logic, where they may be used to eliminate troublesome ground loop and noise problems. They can also be used to replace relays and transformers in many digital interface applications such as CRT modulation. The IL1 is a single channel device. The ILD1 offers two isolated channels in a single DIP package and the ILQ1 provides four isolated channels per package.

## Maximum Ratings

Gallium Arsenide LED (each channel)	
Power Dissipation @ $25^{\circ} \mathrm{C}$	
IL1	. 200 mW
ILD1	.150 mW
ILQ1	. 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	
IL1	2.6 mW/ ${ }^{\circ} \mathrm{C}$
ILD1	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ1	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	
IL1	. 100 mA
ILD1	. 100 mA
ILQ1	100 mA

Peak Reverse Voltage ..... 3 V
Detector Silicon Phototransistor (each channel)
Power Dissipation @ $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mWILD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mWILQ1 ................................................................... . . 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$
IL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ILD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ILQ1 ............................................ . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ..... 30 V
Emitter-Collector Breakdown Voltage
70 V
Collector-Base Breakdown Voltage
PackageTotal Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient (LED PlusDetector)

\|L1	250 mW
ILD1	400 mW
ILQ1	500 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	
IL1	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD1	$5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ1	$6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time @ $260^{\circ} \mathrm{O}$	. . . . . . . 10 sec

## Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Parameter
Gallium Arsenide LED Forward Voltage
Reverse Current
Capacitance
Phototransistor Detector
$B V_{\text {CEO }}$
$B V_{E C O}$
$I_{C E O}$
Collector-Emitter
Capacitance
Coupled Characteristics $V_{C E}$ (sat)

DC Current Transfer Ratio

Capacitance, Input to
Output
Breakdown Voltage
Resistance, Input to Output
Switching Times
$t_{\text {on }}$
$t_{\text {off }}$

Min Typ Max Unit Test Condition
$1.5 \quad \vee \quad I_{F}=60 \mathrm{~mA}$
$\mu \mathrm{A} \quad \mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$
$\mathrm{pF} \quad \mathrm{V}_{\mathrm{R}}=0$
$3050 \quad \vee \quad I_{C}=1 \mathrm{~mA}$
$710 \quad \mathrm{~V} \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
$50 \quad n A \quad V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$
$\mathrm{pF} \quad \mathrm{V}_{C E}=0$
$0.5 \vee \mathrm{I}_{\mathrm{C}}=1.6 \mathrm{~mA}$, $t_{F}=16 \mathrm{~mA}$
$\% \quad I_{F}=10 \mathrm{~mA}$, $V_{C E}=10 \mathrm{~V}$
pF
VDC $\mathrm{t}=1 \mathrm{sec}$.
G $\Omega$
$\mu \mathrm{S} R_{E}=100 \Omega$,
$V_{C E}=10 \mathrm{~V}$
$\mu \mathrm{S} \quad \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$


## Switching time test schematic and waveforms



Switching time test schematic 1

PHOTOTRANSISTOR OPTOCOUPLER


## FEATURES

- 100\% Minimum CTR
- 7500 Volt Isolation Voltage
- High Collector-Emitter Voltage $\mathrm{BV}_{\text {CEO }}=70 \mathrm{~V}$
- 0.5 pF Coupling Capacitance
- Industry Standard Dual-In-Line Package
- Single Channel, Dual, and Quad Configurations
- Dual and Quad Packages Feature: -Reduced Board Space Requirements
-Lower Pin and Parts Count
-Better Channel-To-Channel CTR Matching
- Underwriters Lab Approval \#E52744
- VDE Approvals (IL2 only) 0883/6.80, 0804/1.83


## DESCRIPTION

(see next page)


Specifications subject to change without notice.

## DESCRIPTION

IL2/ILD2/ILQ2 are optically coupled isolator pairs employing Gallium Arsenide infrared LEDs and silicon NPN phototransistors. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL2/ILD2/ ILQ2 are especially designed for driving medium-speed logic, where they may be used to eliminate troublesome ground loop and noise problems. They can also be used to replace relays and transformers in many digital interface applications such as CRT modulation. The IL2 is a single channel device. The ILD2 offers two isolated channels in a single DIP package and the ILQ2 provides four isolated channels per package.

Maximum Ratings	
Gallium Arsenide LED (each channel)	
Power Dissipation @ $25^{\circ} \mathrm{C}$	
IL2	200 mW
ILD2	150 mW
ILQ2	150 mW
Derate Linearly from@ $25^{\circ} \mathrm{C}$	
IL2	2.6 mW/ ${ }^{\circ} \mathrm{C}$
ILD2	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
LQ2	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	
IL2	. 100 mA
ILD2	. 100 mA
ILQ2	. 100 mA
Peak Reverse Voltage	3 V
Detector Silicon Phototransistor (each channel)	
Power Dissipation @ $25^{\circ} \mathrm{C}$	
IL2	. 200 mW
ILD2	. . . . . 150 mW
fLQ2	.150 mW
Derate Linearly from@ $25^{\circ} \mathrm{C}$	
IL2	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD2	. $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ2	. 2.0 mW/ ${ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voitage	. 70 V
Emitter-Collector Breakdown Voltage	. 7 V
Collector-Base Breakdown Voltage .	70 V
Package	
Total Package Dissipation at @ $25^{\circ} \mathrm{C}$ Ambient (LED Plus Detector)	
IL2	. 250 mW
ILD2	.400 mW
ILQ2	500 mW
Derate Linearly from @ $25^{\circ} \mathrm{C}$	
IL2	. $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD2	$5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ2	. $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	.$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time @ $260{ }^{\circ} \mathrm{C}$	. . . . . . . . 10 sec

## Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Parameter	Min	Typ	Max	Unit	Test Condition
Gallium Arsenide LED					
Forward Voltage		1.3	1.5	$V$	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$
Reverse Current		0.1	10	$\mu \mathrm{A}$	$V_{R}=30 \mathrm{~V}$
Capacitance		100		pF	$V_{R}=0$
Phototransistor Detector					
BV CEO	70			V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
$B V_{E C O}$	7	10		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$I_{\text {CEO }}$ Collector-Emitter		5	50	nA	$V_{C E}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{F}}=0$
Capacitance		20		pF	$V_{\text {CE }}=0$
Coupled Characteristics					
$\mathrm{V}_{\text {CE }}$ (sat)		0.25	0.5	V	$\begin{aligned} & { }^{I_{C}}=1.6 \mathrm{~mA}, \\ & I_{F}=16 \mathrm{~mA} \end{aligned}$
DC Current Transfer Ratio	100			\%	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & V_{C E}=10 \mathrm{~V} \end{aligned}$
Capacitance Input to Output		0.5		pF	
Breakdown Voltage	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.
	5300			$V_{\text {RMS }}$	$t=1 \mathrm{sec}$.
Resistance Input to Output		100		$\mathrm{G} \Omega$	
Switching Times					
$t_{\text {on }}$		3.0		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{E}}=100 \Omega \end{aligned}$
$t_{\text {off }}$		3.0		$\mu \mathrm{S}$	$V_{C E}=10 \mathrm{~V}$



# IL5 SINGLE CHANNEL ILD5 DUAL CHANNEL ILQ5 QUAD CHANNEL 

## PHOTOTRANSISTOR OPTOCOUPLER



## FEATURES

- 50\% Minimum CTR
- 7500 Volt Isolation Voltage
- High Collector-Emitter Voltage
- $\mathrm{BV}_{\text {CEO }}=70 \mathrm{~V}$
- 0.5 pF Coupling Capacitance
- Industry Standard Dual-In-Line Package
- Single, Dual, and Quad Channel Configurations
- Dual and Quad Packages Feature:
-Reduced Board Space Requirements
-Lower Pin and Parts Count
-Better Channel-To-Channel CTR Matching
- Underwriters Lab Approval \#E52744
- VDE Approvals (IL5 only) 0883/6.80, 0804/1.83


## DESCRIPTION

(see next page)


## DESCRIPTION

IL5/ILD5/ILQ5 are optically coupled isolator pairs employing Gallium Arsenide infrared LEDs and silicon NPN phototransistors. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL5/ILD5/ ILQ5 are especially designed for driving medium-speed logic, where they may be used to eliminate troublesome ground loop and noise problems. They can also be used to replace relays and transformers in many digital interface applications such as CRT modulation. The IL5 is a single channel device. The ILD5 offers two isolated channels in a single DIP package and the ILQ5 provides four isolated channels per package.

## Maximum Ratings

Gallium Arsenide LED (each channel)
Power Dissipation @ $25^{\circ} \mathrm{C}$
Power Dissipation @ $25^{\circ} \mathrm{C}$

IL5	200 mW
ILD5	150 mW
ILQ5	150 mW

Derate Linearly from $25^{\circ} \mathrm{C}$

IL5	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD5	$1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ5	. $33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Continuous Forward Current


Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V
Detector Silicon Phototransistor (each channel)
Power Dissipation @ $25^{\circ} \mathrm{C}$
$\qquad$ ILD5 ............................................................. . . . 150 mW ILQ5 ...................................................... . . 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$
IL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ILQ5 ................................................ $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage, $\mathrm{BV}_{\text {CEO }}$ IL5 30 V ILD5 ......................................................... 70 V ILQ5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 V
Emitter-Collector Breakdown Voltage, $\mathrm{BV}_{\mathrm{ECO}}$. . . . . . . . . . . . . . 7 V
Collector-Base Breakdown Voltage, $\mathrm{BV}_{\mathrm{CBO}}$. . . . . . . . . . . . . . . 70 V
Package
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient (LED Plus Detector)


	400 mW

ILQ5 ...................................................... . . . 500 mW

Derate Linearly from $25^{\circ} \mathrm{C}$
IL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ILD5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ILQ5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature . . . . . . . . . . . . . . . . . . . . $55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time @ $260^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . 10 sec

Electrical Characteristics Per Channel ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )

Parameter	Min	Typ	Max	Unit	Test Condition
Gallium Arsenide LED					
Forward Voltage		1.3	1.5	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$
Reverse Current		0.1	10	$\mu \mathrm{A}$	$V_{R}=3.0 \mathrm{~V}$
Capacitance		100			$V_{R}=0$
Phototransistor Detector					
$\mathrm{H}_{\text {FE }}$		450			$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \\ & I_{C}=100 \mu \mathrm{~A} \end{aligned}$
$\mathrm{BV}_{\text {CEO }}$	70			$V$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{ECO}}$	7	10		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
${ }^{\text {I Ceo }}$ Collector-Emitter		5	50	nA	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$
Capacitance		2		pF	$V_{C E}=0$
Coupled Characteristics					
$V_{C E}$ (sat)		0.25	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.6 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} \end{aligned}$
DC Current Transfer Ratio	50	70		\%	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & V_{C E}=10 \mathrm{~V} \end{aligned}$
Capacitance, Input to					
Output		0.5		pF	
Breakdown Voltage	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.
	5300			$V_{\text {RMS }}$	$t=1 \mathrm{sec}$.
Resistance, Input to Output		100		$\mathrm{G} \Omega$	
Switching Times					
$\mathrm{t}_{\text {on }}$		3.0		$\mu \mathrm{S}$	$\begin{aligned} & R_{E}=100 \Omega, \\ & V_{C E}=10 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {off }}$		3.0		$\mu \mathrm{S}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$



Switching time test schematic and waveforms


Switching time test schematic 1

Switching time test schematic 2


## FEATURES

- High Isolation Voltage of $10 \mathrm{~K} \mathrm{~V}_{\text {RMS }}$
- Minimum Internal Separation of 2.0 mm between Conductive Parts
- Minimum External Separation of Leads and Creepage Distance of 13 mm
- Standard DIP Profile on Leads and Package
- Machine Insertable on PCB
- IL8 is Four Lead Product
- IL9 is Six Lead with Base Contact
- Underwriters Lab Approval \#E52744
- VDE and IEC Approvals 0700, 0883/6.80, 0804/1.83, 0860/8.86, IEC601/VDE0750, IEC380/VDE806/8.81, IEC435/VDE0805


## DESCRIPTION

The IL8 and IL9 are optically coupled isolators employing a gallium arsenide infrared emitter and a silicon phototransistor.

Advance Data Sheet


## Absolute Maximum Ratings

Storage Temperature	-55 to $100^{\circ} \mathrm{C}$
Operating Temperature	-55 to $100^{\circ} \mathrm{C}$
Lead Solder Temperature ( 1.6 mm from cast for $\mathrm{t}=5 \mathrm{sec}$ )	$260^{\circ} \mathrm{C}$
Isolation Voltage ( $\mathrm{t}=1$ minute)	. 10 KV RMS
LED	
Forward DC Current	60 mA
Peak Forward Current ( $1 \mu \mathrm{sec}$ pulse, 300 pps )	.3.0 A
Reverse Voltage	.5.0 V
Power Dissipation	. 100 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Phototransistor	
Collector Emitter Voltage	30 V
Emitter Base Voltage	. 7 V
Collector Current	. 100 mA
Power Dissipation	.300 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
LED

Phototransistor



## Coupled

DC Current Transfer Ratio $\left(I_{F}=10 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}\right) \ldots . . . . . . . . . . . . . . . . .20 \% \mathrm{~min}$.
Saturation Voltage-Collector to Emitter ( $\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}$ ) $\ldots . . . . . . .0 .4 \mathrm{~V}$ max.
$\mathrm{T}_{\mathrm{ON}}=\left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{E}}=100 \Omega, 100 \mu \mathrm{~s}\right.$ Pulsewidth, $1 \%$ Duty Cycle) $\ldots \ldots . .14 \mu \mathrm{~s}$ typ.
$T_{\text {OFF }}=\left(I_{C}=2 \mathrm{~mA}, \mathrm{R}_{E}=100 \Omega, 100 \mu \mathrm{~s}\right.$ Pulsewidth, $1 \%$ Duty Cycle $) \ldots . . . .$.
Specifications are subject to change without notice.

IL10/IL11


## FEATURES

- High Isolation Voltage of $10 \mathrm{~K} \mathrm{~V}_{\mathrm{RMS}}$
- Minimum Internal Separation of 2.0 mm between Conductive Parts
- Minimum External Separation of Leads and Creepage Distance of 13 mm
- Standard DIP Profile on Leads and Package
- Machine Insertable on PCB
- IL10 is Four Lead Product
- IL11 is Six Lead with Base Contact
- Underwriters Lab Approval \#E52744
- VDE and IEC Approvals 0700, 0883/6.80, 0804/1.83, 0860/8.86, IEC601/VDE0750, IEC380/VDE806/8.81, IEC435/VDE0805


## DESCRIPTION

The IL10 and IL11 are optically coupled isolators employing a gallium arsenide infrared emitter and a silicon phototransistor.

Advance Data Sheet


## Absolute Maximum Ratings

Storage Temperature	-55 to $100^{\circ} \mathrm{C}$
Operating Temperature	-55 to $100^{\circ} \mathrm{C}$
Lead Solder Temperature ( 1.6 mm from cast for $\mathrm{t}=5 \mathrm{sec}$ )	. . $260^{\circ} \mathrm{C}$
Isolation Voltage ( $\mathrm{t}=1$ minute)	. $10 \mathrm{KV} \mathrm{V}_{\text {RMS }}$
LED	
Forward DC Current	60 mA
Peak Forward Current ( $1 \mu \mathrm{sec}$ pulse, 300 pps )	3.0 A
Reverse Voltage	. 5.0 V
Power Dissipation	100 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	. $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Phototransistor	
Collector Emitter Voltage.	. 30 V
Emitter Base Voltage	..... 7 V
Collector Current	. 100 mA
Power Dissipation	.300 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	4.0 mW/ ${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
LED

$I_{R}\left(V_{R}=5 \mathrm{~V}\right)$.

## Phototransistor

$B V_{C E O}\left(I_{C}=1.0 \mathrm{~mA}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V min.


Coupled

Saturation Voltage-Collector to Emitter $\left(I_{F}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}\right) \ldots \ldots . . .0 .4 \mathrm{~V}$ max.
$T_{O N}=\left(I_{C}=2 m A, R_{E}=100 \Omega, 100 \mu\right.$ S Pulsewidth, $1 \%$ Duty Cycle $) \ldots . . . . .14 \mu \mathrm{~s}$ typ.
$T_{\text {OFF }}=\left(\bigcap_{C}=2 m A, R_{E}=100 \Omega, 100 \mu \mathrm{~s}\right.$ Pulsewidth, $1 \%$ Duty Cycle $) \ldots . . . . . .11 \mu \mathrm{~s}$ typ.
Specifications are subject to change without notice.

## SIEMENS IL30/IL31/IL55 SINGLE CHANNEL ILD30/ILD31/ILD55 DUAL CHANNEL ILQ30/ILQ31/ILQ55 QUAD CHANNEL

## PHOTOTRANSISTOR OPTOCOUPLER



## FEATURES

- 7500 Volt Isolation Voltage
- 125 mA Load Current Rating
- Fast Rise Time-10 $\mu \mathrm{s}$
- Fast Fall Time-35 $\mu \mathrm{s}$
- Current Transfer Ratio 100\% Min.
200\% Min. (IL31, ILD31, ILQ31 only)
- Solid State Reliability
- Standard Dip Package
- Underwriter Lab Approval \#E52744


## DESCRIPTION

IL30/IL31/IL55, ILD30/ILD31/ILD55 and ILQ30/ILQ31/LLQ55 are optically coupled isolators employing a Gallium Arsenide infrared emitter and a silicon photodarlington sensor. Switching can be accomplished while maintaining a high degree of isolation between driving and load circuits, with no crosstalk between channels. They can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields.
The IL30/IL31/IL55 are equivalent to MCA2-30/MCA2-31/MCA2-55. ILD30/LLD31/LLD55 are designed to reduce board space requirements in high density applications.

Package Dimensions in Inches (mm) IL30/LL31/LL55 (Single Channel)


ILD30/ILD31/ILD55 (Dual Channel)


ILQ30/ILQ31/ILQ55 (Quad Channel)


Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022 <br> \section*{\title{
IL 74 SINGLE CHANNEL <br> \section*{\title{
IL 74 SINGLE CHANNEL ILD 74 DUAL CHANNEL ILD 74 DUAL CHANNEL ILQ 74 QUAD CHANNEL ILQ 74 QUAD CHANNEL PHOTOTRANSISTOR PHOTOTRANSISTOR OPTOCOUPLER
}} OPTOCOUPLER
}}


## NOT FOR NEW DESIGN

## FEATURES

- 7400 Series T²L 2 Compatible
- 7500 Volt Isolation Voltage
- $35 \%$ typical transfer ratio
- 0.5 pF coupling capacitance
- Industry standard dual-in-line package
- Single channel, dual, and quad configurations
- Underwriters Lab Approval \#E52744 DESCRIPTION
IL74 is an optically coupled pair employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL74 is especially designed for driving medium. speed logic, where it may be used to eliminate troublesome ground loop and noise problems. It can also be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation. The ILD74 offers two isolated channels in a single DIP package while the ILO74 provides four isolated channels per package.


Specifications are subject to change without notice.

## MAXIMUM RATINGS

Gallium Arsenide LED (each channel)
Power Dissipation @ $25^{\circ} \mathrm{C}$ ..... 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$ ..... $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current ..... 60 mA
Peak Reverse Voltage ..... 3.0 V
Detector-Silicon Phototransistor (each channel)
Power Dissipation @ $25^{\circ} \mathrm{C}$ ..... 150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$ ..... $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{B} \mathrm{V}_{\mathrm{CEO}}$ ) ..... 20 V
Package
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient (LED Plus Detector)
IL 74 ..... 200 mW
ILD 74 ..... 400 mW
ILQ 74 ..... 500 mW
Derate Linearly From $25^{\circ} \mathrm{C}$
IL 74 ..... $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILD 74 ..... $5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ILQ 74 ..... $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time @ $260^{\circ} \mathrm{C}$ ..... 10 sec

ELECTRICAL CHARACTERISTICS PER CHANNEL (at $25^{\circ} \mathrm{C}$ Ambient)

Parameter	Min	Typ	Max	Units	Test Conditions
Gallium Arsenide LED					
Forward Voltage		1.3	1.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Current		0.1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$
Capacitance		100		pF	$V_{R}=0$
Phototransistor Detector					
$B V_{\text {CEO }}$	20	50		V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
Iceo		5.0	500	nA	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$
Collector-Emitter Capacitance		2.0		pF	$V_{C E}=0$
Coupled Characteristics					
DC Current Transfer Ratio	12.5	35		\%	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$V_{\text {SAT }}$		0.3	0.5	V	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$
Capacitance, Input to Output		0.5		pF	
Breakdown Voltage	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.
Resistance, Input to Output		100		$\mathrm{G} \Omega$	
Switching Times					
$\mathrm{t}_{\mathrm{ON}}$		3.0		$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{E}}=100 \Omega, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$
torf		3.0		$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$

Specifications subject to change without notice.



## FEATURES

- High Speed
- Faraday Shielded Photodetector for Improved Common Mode Rejection
- DTL/TTL Compatible -5V supply
- Three State Output Logic for Multiplexing
- Built-in Schmitt Trigger to Avoid Oscillation
- Underwriters Lab Approval \#E52744


## DESCRIPTION

IL101 is an optically coupled pair employing a Gallium Arsenide Phosphide LED and a silicon monolithic integrated circuit including a photodetector. High speed digital information can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL101 can be used to replace pulse transformers in many digital interface applications. A built-in Schmitt Trigger provides hysteresis to reduce the possibility of oscillation.


Absolute Maximum Ratings	
Storage Temperature.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 Sec.
Input Diode	
Forward DC Current	10 mA
Reverse Voltage	
Output IC	
Supply Voltage - VCC	7 V
Enable Input Voltage $\cdot V_{E} \ldots \ldots$.....   (Not to	$\begin{aligned} & \ldots . . . . .5 \mathrm{~F} \\ & \ldots \\ & \text { nore than } 500 \mathrm{mV} \text { ) } \end{aligned}$
Output Collector Current - IC	100 mA
Output Collector Power Dissipation	100 mW
Output Collector Voltage - Vout	7 V
Isolation Voltage (Input-Output) - DC	6000 V

Electrical Characteristics
Over Recommended Temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ )

Parameter	Min. Typ.	Max.	Units	Conditions		Note
(1): Logic (1) Input						
Current to Ensure						
Logic (0) Output	5		mA		1	-
(0): Logic (0) Input						
Current to Ensure						
Logic (1) Output		250	$\mu \mathrm{A}$		1	-
G (1): Logic (1) Gate						
Voltage	2.0		$\checkmark$		-	-
G $(0)$ : Logic (0) Gate						
Voltage		. 8	V		-	-
out (0): Logic (0)						
Output Voltage	35	6	v	$V_{C C}=5.5$		
				$\mathrm{V}_{\mathrm{G}}=2.4$		
				$\mathrm{l}_{\text {in }}=5 \mathrm{~mA}$		
				$\mathrm{I}_{\text {out }}$ (Sinking		6 mA
c	18	22	mA	$\mathrm{V}_{\mathrm{Cc}} 5.5 \mathrm{~V}$		
				$\mathrm{V}_{\mathrm{G}}=0.5 \mathrm{~V}$		
				$\mathrm{l}_{\text {in }}=0,10 \mathrm{~mA}$		

[^43]

Electrical Characteristics-Input-Output at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Parameter Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Insulation Vol . tage (Input-							
Output) $\mathrm{BV}_{1-0}$	6000	7500		VDC	$t=1 \mathrm{Sec}$.	-	3
Resistance (In-put-Output)R $\mathrm{I}_{1-0}$	$10^{12}$			S2	$V_{1.0}=500 \mathrm{~V}$	-	3
Capacitance (Input-Out-							
put) $\mathrm{C}_{1-0}$		0.5	0.8	pF f	$f=1 \mathrm{MHz}$	-	3

## Electrical Characteristics-Input Diode at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter S	Symbol	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Forward								
Voltage	$V_{F}$		1.5	1.75	V	$\mathrm{I}_{\text {in }}=10 \mathrm{~mA}$	--	4
Reverse Breakdown Voltage	$V_{B R}$	5			$V$	$I_{R}=10 \mu \mathrm{~A}$	-	-
Capacitance	$\mathrm{C}_{\text {in }}$		10		pF	$V=0$,		

## Operating Procedures and Definitions

Logic Convention. The IL-101 is defined in terms of positive logic.
Bypassing. A ceramic capacitor ( $.01 \mu \mathrm{~F} \mathrm{~min}$.) should be connected from pin 8 to pin 5. Its purpose is to stabilize the operation of the switching amplifier. Failure to provide the bypassing may impair the switching properties.
Polarities. All voltages are referenced to network ground (pin 5). Current flowing toward a terminal is considered positive.
Gate Input. No external pull-up required for a logic (1).

## NOTES:

1. The tpd t $^{\prime}$ ) propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
2. The tpd $(0)$ propagation delay is measured from the 3.75 mA point on the input pulse to the 1.5 V point on the leading edge of the output pulse
3. Pins 2 and 3 shorted together, and pins 5, 6, 7, and 8 shorted together
4. At $10 \mathrm{~mA} V_{F}$ decreases with increasing temperature at the rate of $1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$


Test Circuit for $t_{p d}(0)$ and $t_{p d}(1)$.
Fig. 1

TRUTH TABLE (Positive Logic)

Input*	Enable	Output
1	1	0
0	1	1
1	0	off
0	0	off

*See definition of terms for
logic state.


## FEATURES

- 7500 Volt Isolation Voltage
- High Current Transfer-Ratio (75\%-450\%)
- High Collector-Emitter Voltage $\mathrm{BV}_{\text {CEO }}=70 \mathrm{~V}$
- Long Term Stability
- Industry Standard Dual-In-Line
- Min 10\% Current-Transfer-Ratio Guaranteed @lF = 1 mA
- Underwriters Lab Approval \#E52744
- VDE Approvals 0883/6.80, 0804/1.83


## DESCRIPTION

The IL201, IL202, IL203 are optically coupled pairs employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL201, IL202, IL203 can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation.

Package Dimensions in Inches (mm)


## Maximum Ratings

Gallium Arsenide LED	
Power Dissipation @ $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	100 mA
Peak Reverse Voltage	6.0 V
Detector (Silicon Phototransistor)	
Power Dissipation @ $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly From $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{BV} \mathrm{CEOO}^{\text {) }}$	.30 V
Emitter-Collector Breakdown Voltage ( $B V_{\text {ECO}}$ )	7 V
Collector-Base Breakdown Voitage ( $\mathrm{BV}_{\mathrm{CBO}}$ ) .	. .70 V

Package
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient (LED Plus Detector)
Derate Linearly From $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . 250 mW Storage Temperature . . . . . . . . . . . . . . . . . . . . -55 to $+150^{\circ} \mathrm{C}$ Operating Temperature. ................. -55 to $+100^{\circ} \mathrm{C}$ Lead Soldering Time @ $260^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . 10 sec

Electrical Characteristics ( $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Min	Typ	Max	Unit	Test Condition
Gallium Arsenide LED					
Forward Voltage $V_{F}$		1.2	1.5	V	$I_{F}=20 \mathrm{~mA}$
Forward Voltage $V_{F}$		1.0	1.2	$V$	$I_{F}=1 \mathrm{~mA}$
Reverse Current IR		0.1	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{R}=6 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
Breakdown Voltage $V_{R}$	6	20		v	$I_{R}=10 \mu \mathrm{~A}$
Phototransistor Detector					
$\mathrm{HfE}^{\text {fe }}$	100	200			$\begin{aligned} & V_{C E}=5 \mathrm{~V} \\ & I_{C}=100 \mu \mathrm{~A} \end{aligned}$
$B V_{\text {CEO }}$	70			V	${ }^{1} \mathrm{C}=1 \mathrm{~mA}$
BVECO	7	10		$V$	${ }^{1} E=100 \mu A$
BVCBO	70	90		$\checkmark$	$C_{C}=10 \mu \mathrm{~A}$
'ceo		5	50	nA	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
Coupled Characteristics					
Base Current					
Transfer Ratio (BTR)	0.15			\%	$I_{F}=10 \mathrm{~mA}$
			0.4	$v$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
CE (sat)					${ }^{I_{C}}=2 \mathrm{~mA}$
OC Current Transfer Ratio (CTR)					
IL201	75	100	150	\%	$I_{F}=10 \mathrm{~mA}$
IL202	125	200	250	\%	$V_{C E}=10 \mathrm{~V}$
IL203	225	300	450	\%	
DC Current Transfer Ratio (CTR)					
IL201	10			\%	$I_{F}=1 \mathrm{~mA}$
IL202	30			\%	$V_{C E}=10 \mathrm{~V}$
IL203	50			\%	
Input to Output Isolation Voltage	7500			VDC	$\mathrm{t}=1 . \mathrm{sec}$.

Specifications are subject to change without notice.




Switching time test schematic and waveforms


Switching time test schematic 1

 versus input current


Collector current versus
diode forward current




.
ypical leakage current versus ambient temperature


Switching time test schematic 2

## PHOTOTRANSISTOR <br> SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER



## FEATURES

- Industry Standard SOIC-8 Surface Mountable Package
- Standard Lead Spacing of .05"
- Available in Tape and Reel Option (Conforms to EIA Standard RS481A)
- 2500 VRMS, Isolation Voltage
- High Current Transfer Ratios, 3 Groups: IL205, 40 - 80\%
IL206, 63-125\%
IL207, 100 - 200\%
- High BV CEO 70 V
- Underwriters Lab Approval \#E52744 (Code Letter P)
- Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering


## DESCRIPTION

iL205/206/207 are optically coupled pairs employing a GaAs infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL205/206/207 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices.
A specified minimum and maximum CTR allows a narrow tolerance in the electrical design of the adjacent circuits. The high $\mathrm{BV}_{\mathrm{CEO}}$ of 70 V gives a higher safety margin compared to the industry standard 30 V .
See Appnote 39 for solderability information.

Package Dimensions in Inches (mm)


## Maximum Ratings

Gallium Arsenide LED
Power Dissipation @ $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 mW
Derate Linearly from $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current . ................................................... 60 mA
Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 V
Detector (Silicon Phototransistor)
Power Dissipation @ $25^{\circ} \mathrm{C}$
150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{BV}_{\mathrm{CEO}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 V
Emitter-Collector Breakdown Voltage ( $\mathrm{BV}_{\mathrm{ECO}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Collector-Base Breakdown Voltage ( $\mathrm{BV}_{\mathrm{CBO}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 V
Package
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(LED Plus Detector)
250 mW
Derate Linearly from $25^{\circ} \mathrm{C}$......................................................................... $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature
-55 to $+100^{\circ} \mathrm{C}$
Soldering Time @ $260^{\circ} \mathrm{C}$
(See Application Note 39 for a detailed report on solderability tests using dual wave, vapor phase and IR reflow soldering processes.)

Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )					
Parameter	Min	Typ	Max	Unit	Condition
Gallium Arsenide LED					
Forward Voltage		1.3	1.5	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$
Reverse Current		. 1	100	$\mu \mathrm{A}$	$V_{R}=6.0$
Capacitance		100		pF	$V_{R}=0$
Phototransistor Detector					
BV CEO	70			V	$\mathrm{I}_{C}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\mathrm{ECO}}$	7	10		V	$l_{E}=100 \mu \mathrm{~A}$
ICEO (dark)		5	50	nA	$\begin{aligned} & V_{C E}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
Collector-Emitter Capacitance		2		pF	$V_{C E}=0$
Coupled Characteristics					
DC Current Transfer					
IL205	40		80	\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$,
IL206	63		125		$V_{C E}=10 \mathrm{~V}$
1L207	100		200		
Collector-Emitter Saturation					
Voltage $\mathrm{V}_{\text {CE (sal) }}$			0.4	V	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & I_{C}=2.0 \mathrm{~mA} \end{aligned}$
Capacitance, Input to Output		5		pF	
Breakdown Voltage	2500			$V A C_{\text {RMS }}$	$\mathrm{t}=1 \mathrm{~min}$.
Equivalent DC Isolation Voltage	3535			VDC	
Resistance, İnput to Output		100		$\mathrm{G} \Omega$	
$\mathrm{t}_{\text {on }}$		3.0		$\mu \mathrm{S}$	$\begin{aligned} & I_{C}=2 \mathrm{~mA}, \\ & R_{E}=100 \Omega \end{aligned}$
$\mathrm{t}_{\text {off }}$		3.0		$\mu \mathrm{S}$	$V_{C E}^{E}=10 \mathrm{~V}$

[^44]

## PHOTOTRANSISTOR SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER



## FEATURES

- Industry Standard SOIC-8 Surface Mountable Package
- Standard Lead Spacing of .05"
- Available in Tape and Reel Option (Conforms to EIA Standard RS481A)
- 2500 VRMS, Isolation Voltage
- 20, 50, and $100 \%$ min. CTR @ $\mathrm{I}_{\mathbf{F}}=10 \mathrm{~mA}$
- Electrical Specifications Similar to Standard 6 Pin Coupler
- Underwriters Lab Approval \#E52744 (Code Letter P)
- Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering


## DESCRIPTION

IL211/212/213 are optically coupled pairs employing a GaAs infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL211/212/213 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices.
A choice of 20,50 , and $100 \%$ minimum CTR (IL211/IL212/IL213 respectively) at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ makes them suitable for a variety of different applications.

See Appnote 39 for solderability information.


## Maximum Ratings

Gallium Arsenide LED	
Power Dissipation @ $25^{\circ} \mathrm{C}$	90 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$0.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	60 mA
Peak Reverse Voltage	6.0 V
Detector (Silicon Phototransistor)	
Power Dissipation @ $25^{\circ} \mathrm{C}$	150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{BV}_{\text {CEO }}$ )	30 V
Emitter-Collector Breakdown Voltage ( $\mathrm{BV}_{\mathrm{ECO}}$ )	7 V
Collector-Base Breakdown Voltage ( $\mathrm{BV}_{\mathrm{CBO}}$ )	70 V
Package	
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient	
(LED Plus Detector)	250 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	$0+150^{\circ} \mathrm{C}$
Operating Temperature	$0+100^{\circ} \mathrm{C}$
Soldering Time @ $260^{\circ} \mathrm{C}$	10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,	

Test Condition

Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance
Phototransistor Detector
$B V_{\text {CEO }}$
$B V_{E C O}$
I CEO $_{\text {(dark) }}$
Collector-Emitter Capacitance
Coupled Characteristics
DC Current Transfer

## IL211 <br> L212

IL213
Collector-Emitter Saturation Voltage $V_{C E \text { (sat) }}$
Capacitance Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Resistance, Input to Output
$t_{\text {on }}$
$\mathrm{t}_{\mathrm{off}}$
Specifications are subject to change without notice.



## FEATURES

－Industry Standard SOIC－8 Surface Mountable Package
－Standard Lead Spacing of ．05＂
－Available in Tape and Reel Option （Conforms to ElA Standard RS481A）
－ 2500 VRMS，Isolation Voltage
－Low Input Current Required
－20，50，100\％CTR＠$I_{F}=1 \mathrm{~mA}$
－Electrical Specifications Similar to Standard 6 Pin Couplers
－Underwriters Lab Approval \＃E52744 （Code Letter P）
－Compatible with Dual Wave，Vapor Phase and IR Reflow Soldering

## DESCRIPTION

IL215／216／217 are optically coupled pairs employing a GaAs infrared LED and a silicon NPN phototransistor．Signal information， including a DC level，can be transmitted by the device while maintaining a high degree of electrical isolation between input and output． The IL215／216／217 come in a standard SOIC－8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space．In addi－ tion to eliminating through－holes requirements， this package conforms to standards for surface mounted devices．
The high CTR at low input current is designed for low power consumption requirements such as CMOS microprocessor interfaces．
See Appnote 39 for solderability information．


## Maximum Ratings

Gallium Arsenide LED	
Power Dissipation＠ $25^{\circ} \mathrm{C}$	90 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$0.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	60 mA
Peak Reverse Voltage	6.0 V
Detector（Silicon Phototransistor）	
Power Dissipation＠ $25^{\circ} \mathrm{C}$	150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	2.0 mW／${ }^{\circ} \mathrm{C}$
Collector－Emitter Breakdown Voltage（ $\mathrm{BV}_{\text {CEO }}$ ）	30 V
Emitter－Collector Breakdown Voltage（ $\mathrm{BV}_{\mathrm{ECO}}$ ）	7 V
Collector－Base Breakdown Voitage（ $\mathrm{BV}_{\mathrm{CBO}}$ ）．	70 V
Package	
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient	
（LED Plus Detector）	250 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature	0 $+100^{\circ} \mathrm{C}$
Soldering Time＠ $260^{\circ} \mathrm{C}$	10 sec
（See Application Note 39 for a detailed report vapor phase and IR reflow soldering proces	dual wave，

Test Condition

Gallium Arsenide LED					
Forward Voltage			1.3	$\checkmark$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
Reverse Current		1	100	$\mu \mathrm{A}$	$V_{R}=6.0$
Capacitance		100		pF	$V_{R}=0$
Phototransistor Detector					
BV CEO	30	90		V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
$B V_{E C O}$	7	10		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$
ICEO（dark）		5	50	nA	$\begin{aligned} & V_{C E}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \end{aligned}$
Collector－Emitter Capacitance		2		pF	$V_{C E}=0$
Coupled Characteristics					
DC Current Transfer					
IL215	20	50		\％	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ ，
IL216	50	80			$V_{C E}=5 \mathrm{~V}$
IL217	100	130			
Collector－Emitter Saturation					
Voltage $\mathrm{V}_{\text {CE（sat）}}$		35	4	V	$\begin{aligned} & I_{F}=1 \mathrm{~mA}, \\ & I_{C}=0.1 \mathrm{~mA} \end{aligned}$
Capacitance，Input to Output		． 5		pF	
Breakdown Voltage	2500			$V A C_{\text {RMS }}$	$\mathrm{t}=1 \mathrm{~min}$.
Equivalent DC Isolation Voltage	3535			VDC	
Resistance，Input to Output		100		G $\Omega$	
$\mathrm{t}_{0}$		3.0		$\mu \mathrm{S}$	$\begin{aligned} & I_{C}=2 \mathrm{~mA} \\ & R_{E}=100 \Omega \end{aligned}$
$t_{\text {off }}$		3.0		$\mu \mathrm{S}$	$V_{C E}=10 \mathrm{~V}$

[^45]Typical switching characteristics
versus base resistance
(Saturated operation)




## Switching time test schematic and waveforms



Switching time test schematic 1


Collector current versus






Switching time test schematic 2


## SIEMENS



## FEATURES

Device Types and Preliminary Specifications

- Industry Standard SOIC-8 Surface Mountable Package
- Standard Lead Spacing of .05"
- Available in Tape and Reel Option (Conforms to EIA Standard RS481A)
- Photodarlington:

IL221, IL222, IL223

- AC Input: IL256

For more details, please contact factory.


Specifications are subject to change without notice.

13:1 CTR symmetry.


## FEATURES

- AC or Polarity Insensitive Inputs
- 7500 Volt Breakdown Voltage
- Selected Current Transfer Ratios (20\%, 50\%, 100\% Min.)
- Industry Standard Dual-In-Line
- Built-In Reverse Polarity Input Protection
- Improved CTR Symmetry
- Underwriters Lab Approval \#E52744
- VDE Approvals 0883/6.80, 0804/1.83


## DESCRIPTION

The IL250/251/252 are bidirectional input optically coupled isolators. They consist of two gallium arsenide infrared emitting diodes coupled to a silicon NPN phototransistor in a 6 -pin dual-in-line plastic package.
The IL250 has a minimum CTR of $50 \%$, the IL251 has a minimum CTR of $20 \%$, and the IL252 has a minimum CTR of $100 \%$.

They are designed for applications requiring detection or monitoring of $A C$ signals.

Package Dimensions in Inches (mm)


Maximum Ratings	
Gallium Arsenide LED	
Power Dissipation at $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	100 mA
Peak Reverse Voltage	3.0 V
Detector (Silicon Phototransistor)	
Power Dissipation at $25^{\circ} \mathrm{C}$	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage ( $\mathrm{BV}_{\text {cEO }}$ )	30 V
Emitter-Base Breakdown Voitage ( $\mathrm{BV}_{\text {ECO }}$ )	5 V
Collector-Base Breakdown Voltage ( $\mathrm{BV}_{\mathrm{CBO}}$ )	70 V
Package	
Total Package Dissipation at $25^{\circ} \mathrm{C}$ Ambient	
(LED Plus Detector)	250 mW
Derate Linearly from $25^{\circ}$	$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature.	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time at $260^{\circ} \mathrm{C}$	. . . . . . . . 10 sec

Electrical Characteristics ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )

Parameter	Min	Typ	Max	Unit	Test Condition
Gallium Arsenide LED					
Forward Voltage $\mathrm{V}_{F}$		1.2	1.5	V	$I_{F}= \pm 10 \mathrm{~mA}$
Phototransistor Detector					
$B V_{\text {ceo }}$	30	50		V	$\mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA}$
$\mathrm{BV}_{\mathrm{ECO}}$	7	10		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\mathrm{CBO}}$	70	90		V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$
Iceo		5	50	nA	$V_{C E}=10 \mathrm{~V}$
Coupled Characteristics					
$V_{\text {CE }}$ (sat)			0.4	V	$I_{F}= \pm 16 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
DC Current Transfer Ratio (CTR)					
IL250	50			\%	$I_{F}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{C E}=10 \mathrm{~V}$
IL251	20				
IL252	100				
Symmetry					
CTR @ + 10 mA					
CTR © -10 mA	0.50	1.0	2.0		
Input to Output					
Isolation Voltage ( $\mathrm{t}=1 \mathrm{sec}$ )	7500				VDC
	5300				$V A C_{\text {RMS }}$

[^46]INPUT CHARACTERISTICS


OUTPUT VS. INPUT CURRENT


DARK CURRENT VS. TEMPERATURE


TRANSFER CHARACTERISTICS



SYMMETRY CHARACTERISTICS



## FEATURES

- 400 Volts Blocking Voltage
- Turn On Current ( $\left.\mathrm{l}_{\mathrm{f}} \mathrm{t}\right) \mathbf{5 . 0} \mathrm{mA}$ Typical
- Gate Trigger Current (IGT) - $20 \mu \mathrm{~A}$
- Gate Trigger Voltage ( $\mathrm{t}_{\mathrm{GT}}$ ) - 0.6 Volt
- 7500 Volt Isolation Voltage
- Surge Anode Current - 1.0 Amp
- Solid State Reliability
- Standard Dip Package
- Underwriters Lab Approval \#E52744


## DESCRIPTION

The IL400 is an optically coupled SCR employing a GaAs infrared emitter and a silicon photo SCR sensor. Switching can be accomplished while maintaining a high degree of isolation between triggering and load circuits. It can be used in SCR triac and solid state relay applications where high blocking voltages and low input current sensitivity is required.

Advance Data Sheet

Package Dimensions in Inches	m)
Maximum Ratings	
Gallium Arsenide LED (Drive Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$	100 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$1.05 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	. . 60 mA
Peak Reverse Voltage	6.0 V
Peak Forward Current ( $100 \mu \mathrm{~s}$, 1\% Duty	ycle) . . . . . . . . . . . . . . . . . . . . . . . 1.0 A
SCR Detector (Load Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$ ambient	200 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Anode Current.	. 100 mA
Surge Anode Current (5 ms duration)	1.0 A
Surge Gate Current (5 ms duration)	200 mA
Reverse Gate Voltage	6.0 V
Anode Voltage (DC or AC Peak)	400 V
Coupled	
Isolation Voltage	6000 VDC
Total Package Power Dissipation	250 mW
Derate Linearly from $25^{\circ}$	$2.63 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

$\left.\begin{array}{llllll}\begin{array}{l}\text { Parameter } \\ \text { Input Diode }\end{array} & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } & \text { Test Condition } \\ \begin{array}{l}\text { Forward Voltage }\end{array} & & 1.2 & 1.5 & \mathrm{~V} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ \begin{array}{l}\text { Reverse Voltage } \\ \text { Reverse Current }\end{array} & 5.0 & & & \mathrm{~V} & \mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\end{array}\right)$

Specifications subject to change without notice.
6-56

## ZERO CROSSING PHOTOTRIAC OPTOCOUPLER



## FEATURES

- High Output Interference Immunity: Static and Commutating dv/dt, $10,000 \mathrm{~V} / \mu \mathrm{s}$ (min)
- Very High Input Sensitivity $I_{F T}(\max )=2 \mathrm{~mA}$
- Zero Voltage Crossing Detector: $\mathrm{V}_{\mathrm{IH}}<20 \mathrm{~V}$
- Very Low Leakage Current: <10 $\mu \mathrm{A}$ (typ)
- High Isolation Voltage: $\mathrm{V}_{\text {ISO }}=\mathbf{7 5 0 0} \mathrm{V}_{\mathrm{DC}}$
- Uses MOSFET Technology
- Inverse Parallel SCRs Output
- Small 6-Pin Dip Package
- UL Approval \#E52744

Advance Data Sheet


## DESCRIPTION

The IL 410 consists of a GaAs IRLED optically coupled to an output chip integrating an NPN phototransistor driving a MOSFET transistor. The MOSFET, in turn, triggers the integrated SCR driver. The addition of the MOSFET interface reduces the light output of the IRLED required to trigger the triac, yielding a very high input sensitivity compared to bipolar devices. This low $I_{F}$ will permit off-line loads to be driven directly from a microprocessor. A zerocrossing circuit limits triac triggering to the zerocrossing point of the $A C$ line.
The IL410 offers a significant increase in both static and commutating dv/dt, improving interference immunity to false triggering. MOS technology yields static dv/dt ratings min. $10,000 \mathrm{~V} / \mu \mathrm{s}$ for improved protection from transient voltage spikes on the AC line. The very high commutating dv/dt due to the MOS technology and the inverse-parallel SCR arrangement will permit elimination of snubber networks required when controlling inductive loads.
The 600 V blocking voltage will permit control of offline voltages up to 240 VAC with a safety factor greater than two and is sufficient for even 380 VAC.
The IL410 isolates low-voltage logic from 120 and 220 VAC lines to control resistive, inductive or capacitive loads including motors, solenoids, high current thyristors or triacs and relays. Applications include solid-state relays, industrial controls, office equipment and consumer appliances.

## Maximum Ratings

Parameter
GaAs IRLED
Reverse Voltage (@. $100 \mu \mathrm{~A}$ )
Forward Current
Forward Surge Current
Total Power Dissipation
Derating Factor (above $25^{\circ} \mathrm{C}$ )
Output Driver (TRIAC)
Off-State Output Terminal Voltage
On-State RMS Current
Peak Non-Repetitive Surge Current
Total Power Dissipation
Derating Factor (above $25^{\circ} \mathrm{C}$ )
Total Package
Isolation Voltage (t = 1 sec)
Total Power Dissipation
Storage Temperature
Operating Temperature
Lead Soldering Temperature

Symbol	Max
$V_{R}$	6.0 V
$\mathrm{I}_{F}$	60 mA
$\mathrm{I}_{\text {FSM }}$	1.5 A
$\mathrm{P}_{\mathrm{D}}$	100 mW
	$1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$V_{\text {DRM }}$	600 V
$\mathrm{I}_{\mathrm{T} \text { (RMS) }}$	300 mA
$\mathrm{I}_{\text {TSM }}$	1.2 A
$\mathrm{P}_{\mathrm{D}}$	500 mW
	$6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$V_{\text {ISO }}$	7500 VDC
$\mathrm{P}_{\mathrm{D}}$	$5300 \mathrm{VAC}(\mathrm{RMS})$
$\mathrm{T}_{\text {stg }}$	525 mW
$\mathrm{~T}_{\mathrm{A}}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
	$260^{\circ} \mathrm{C}$ for 5 s.

Electrical Characteristics $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
LED Characteristics						
Forward Voltage	$V_{F}$		1.3	1.5	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$
Reverse Current	$\mathrm{I}_{\mathrm{R}}$		0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
Output Detector Characteristics						
Peak Blocking Current (Note 1)	$\mathrm{I}_{\text {DRMI }}$		10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DRM }}=600 \mathrm{~V}$
Peak On-State Voltage (Note 1)	$V_{T M}$		1.8	3.0	$\checkmark$	$\mathrm{I}_{\mathrm{TM}}=300 \mathrm{~mA}$
Critical Rate of Rise of Off-State Voltage (Note 2)	$d v / d t$ $d v / d t$	10000	2000		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$	$\begin{aligned} & V_{\text {DRM }}=400 \mathrm{~V} \\ & V_{\text {DRM }}=400 \mathrm{~V} \\ & 80^{\circ} \mathrm{C} \end{aligned}$
Critical Rate of Rise of Commutating Voltage (Note 2)	dv/dt dv/dt	10000	2000		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & V_{\text {DRM }}=400 \mathrm{~V} \\ & V_{\text {DRM }}=400 \mathrm{~V} \\ & 80^{\circ} \mathrm{C} \end{aligned}$
Coupled Characteristics LED Trigger Current Holding Current	$\begin{aligned} & I_{F T} \\ & I_{H} \end{aligned}$		$\begin{gathered} 1 \\ 65 \end{gathered}$	$\begin{gathered} 2 \\ 200 \end{gathered}$	${\underset{\mu \mathrm{A}}{\mathrm{~A}}}^{2}$	$\mathrm{V}_{\mathrm{AK}}=5 \mathrm{~V}$
Zero Crossing Characteristics						
Inhibit Voltage (Note 3) Leakage Current	$V_{I H}$   lorm2		12	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{gathered} V \\ \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=\text { Rated } \mathrm{I}_{\mathrm{FF}} \\ & \mathrm{~V}_{\mathrm{DRM}}=120 \mathrm{~V} \end{aligned}$
Notes:   1-Either direction.   2-Both directions.   3-Load voltage above	ich the	devic	will	urn		

[^47]

## FEATURES

- High Blocking Voltage: $\mathrm{V}_{\mathrm{DRM}}=\mathbf{6 0 0} \mathrm{V}$
- High Output Interference Immunity: Static and Commutating dv/dt, $10,000 \mathrm{~V} / \mu \mathrm{s}$ (min)
- High Input Sensitivity $I_{\text {FT }}(\max )=2 \mathrm{~mA}$
- Low Leakage Current: <10 $\mu \mathrm{A}$ (typ)
- High Isolation Voltage: $\mathrm{V}_{\text {ISO }}=7500 \mathrm{~V}_{\mathrm{DC}}$
- Uses MOSFET Technology
- Inverse Parallel SCRs Output
- Small 6.Pin Dip Package
- UL Approval \#E52744

Preliminary Data Sheet


## DESCRIPTION

The IL420 consists of a GaAs IRLED optically coupled to an output chip integrating an NPN phototransistor driving a MOSFET transistor. The MOSFET, in turn, triggers the integrated SCR driver. The addition of the MOSFET interface reduces the light output of the IRLED required to trigger the triac, yielding a very high input sensitivity compared to bipolar devices. This low $I_{F}$ will permit off-line loads to be driven directly from a microprocessor.
The IL420 offers a significant increase in both static and commutating $d v / d t$, improving interference immunity to false triggering. MOS technology yields static $d v / d t$ ratings min. $10,000 \mathrm{~V} / \mu \mathrm{s}$ for improved protection from transient voltage spikes on the $A C$ line. The very high commutating $\mathrm{dv} / \mathrm{dt}$ due to the MOS technology and the inverse-parallel SCR arrangement will permit elimination of snubber networks required when controlling inductive loads.
The 600 V blocking voltage will permit control of off-line voltages up to 240 VAC with a safety factor greater than two and is sufficient for even 380 VAC.
The IL420 isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive, inductive or capacitive loads including motors, solenoids, high current thyristors or triacs and relays.
Applications include solid-state relays, industrial controls, office equipment and consumer appliances.

## Maximum Ratings:

Parameter	Symbol	Max
GaAs IRLED		
Reverse Voltage ( $@ 10 \mu \mathrm{~A}$ )	$V_{\text {R }}$	6.0 V
Forward Current	$I_{\text {F }}$	60 mA
Forward Surge Current	${ }_{\text {FSM }}$	1.5 A
Total Power Dissipation	$P_{\text {D }}$	100 mW
Derating Factor (above $25^{\circ} \mathrm{C}$ )		$1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Output Driver (TRIAC)		
Off-State Output Terminal Voltage	$V_{\text {DRM }}$	600 V
On-State RMS Current	${ }_{\text {I }}^{\text {(RMS }}$ )	300 mA
Peak Non-Repetitive Surge Current	${ }_{\text {ISM }}$	3 A
Total Power Dissipation	$P_{D}$	500 mW
Derating Factor (above $25^{\circ} \mathrm{C}$ )		6.6 mW/ ${ }^{\circ} \mathrm{C}$
Total Package		
Isolation Voltage ( $\mathrm{t}=1 \mathrm{sec}$ )	$V_{\text {ISO }}$	$\begin{aligned} & 7500 \text { VDC } \\ & 5300 \text { VAC (RMS) } \end{aligned}$
Total Power Dissipation	$\mathrm{P}_{0}$	525 mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\text {A }}$	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature		$260^{\circ} \mathrm{C}$ for 5 s .

Electrical Characteristics $\left(T_{a m b}=25^{\circ} \mathrm{C}\right.$ )

| Parameter | Symbol | Min. | Typ. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | | Test |
| :---: |
| Conditions |



## FEATURES

- Two Isolated Channels Per Package
- 7500 Volt Isolation Voltage
- 50\% Typical Current Transfer Ratio
- 1 nA Typical Leakage Current
- Direct Replacement For MCT6
- Underwriter Lab Approval \#E52744



## DESCRIPTION

The ILCT6 is a two channel opto isolator for high density applications. Each channel consists of an optically coupled pair employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The ILCT6 is especially designed for driving medium-speed logic, where it may be used to eliminate troublesome ground loop and noise problems. It can also be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation.

[^48]
## MAXIMUM RATINGS

Maximum Temperatures	
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds).	. $260^{\circ} \mathrm{C}$
Input Diode (each channel)	
Rated Forward Current, DC	60 mA
Peak Forward Current ( $1 \mu \mathrm{~s}$ pulse, 300 pps )	3 A
Power Dissipation at $25^{\circ} \mathrm{C}$ Ambient	100 mW
Derate Linearly From $25^{\circ} \mathrm{C}$	$1.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Output Transistor (each channel)	
Power Dissipation@ $25^{\circ} \mathrm{C}$ Ambient	150 mW
Derate Linearly From $25^{\circ} \mathrm{C}$	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector Current	30 mA
Coupled	
Isolation Voltage (t $=1 \mathbf{s e c}$.)	. 7500 VDC
Total Package Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient	400 mW
Derate Linearly From $25^{\circ} \mathrm{C}$	$5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRO-OPTICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ Free Air Temperature Unless Otherwise Specified)

Parameter	Min	Typ	Max	Units	Test Conditions
Input Diode					
Rated Forward Voltage		1.25	1.50	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage	3.0	8.0		V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
Reverse Current		0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{~V}$
Junction Capacitance		100		pF	$V_{F}=0 \mathrm{~V}$
Output Transistor					
Breakdown Voltage,					
Collector to Emitter	30	65		V	$\mathrm{I}_{C}=1.0 \mathrm{~mA}$
Emitter to Collector	7.0	10		$V$	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
Leakage Current, Collector to Emitter		1.0	100	nA	$V_{C E}=10 \mathrm{~V}$
Capacitance Collector to Emitter		8.0		pF	$V_{C E}=0 \mathrm{~V}$
Coupled					
DC Current Transfer Ratio $\left(I_{C} / I_{F}\right)$	20	50		\%	$V_{C E}=10 \mathrm{~V}, I_{F}=10 \mathrm{~mA}$
Saturation Voltage -			0.40	V	$I_{C}=2.0 \mathrm{~mA}, I_{F}=16 \mathrm{~mA}$
Collector to Emitter Isolation Voltage	7500			VDC	$\mathrm{t}=1 \mathrm{sec}$.
Isolation Resistance		$10^{12}$		$\Omega$	$V_{1.0}=500 \mathrm{~V}$
Isolation Capacitance		0.5		pF	$f=1.0 \mathrm{MHz}$
Breakdown Voltage -Channel-to-Channel		1500		VDC	Relative Humidity $=40 \%$
Capacitance Between		0.4		pF	$f=1.0 \mathrm{MHz}$
Channels					
Bandwidth		150		KHz	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Cc}}=10 \mathrm{~V} \\ R_{\mathrm{L}}=100 \Omega \end{gathered}$
Switching Times, Output Transistor					
$\mathrm{t}_{\text {on }}$		3.0		$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{E}}=100 \Omega$
$\mathrm{t}_{\text {off }}$		3.0		$\mu \mathrm{s}$	$V_{C E}=10 \mathrm{~V}$



Collector current versus collector voltage


Typical forward voltage versus forward current


Collector current versus diode forward current


## Switching time test schematic and waveforms



## MULTI-CHANNEL PHOTODARLINGTON OPTOCOUPLER

Advance Data Sheet


## FEATURES

- 7500 Volt Isolation Voltage
- Very High Current Transfer Ratio (500\% Min.)
- High Isolation Resistance (1011 $\Omega$ Typical)
- Low Coupling Capacitance
- Standard Plastic Dip Package
- Underwriters Lab Approval \#E52744


## DESCRIPTION

The ILD32 and ILQ32 are optically coupled isolators employing a gallium arsenide infrared emitter and a silicon photodarlington sensor. Switching can be accomplished while maintaining a high degree of isolation between driving and load circuits. They can be used to replace reed and mercury relays with advantages of long life, high speed switching, and elimination of magnetic fields.
The ILD32 offers two isolated channels in a DIP package and the ILQ32 has 4 channels. These devices can be used to replace 4N32's or 4N33's in applications calling for several single-channel couplers on a board.


Maximum Ratings: (At $25^{\circ} \mathrm{C}$ )	
Gallium Arsenide LED (Drive Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$	150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Continuous Forward Current	. . 80 mA
Peak Reverse Voltage	3 V
Photodarlington Sensor (Load Circuit)	
Power Dissipation at $25^{\circ} \mathrm{C}$ Ambient	150 mW
Derate Linearly from $25^{\circ} \mathrm{C}$	. $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Collector (Load) Current	. 125 mA
Collector-Emitter Breakdown Voltage ( $\mathrm{BV}_{\mathrm{CEO}}$ )	30 V
Emitter-Coliector Breakdown Voltage ( $\mathrm{BV}_{\mathrm{ECO}}$ )	5 V
Package	
Total Dissipation ILD32	400 mW
ILQ32	500 mW
Derate Linearly from $25^{\circ} \mathrm{C}$ - ILD32	. $5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
- ILQ32	$6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Time at $260^{\circ} \mathrm{C}$	. . . . 10 sec

[^49]| Electrical Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Min | Typ | Max | Unit | Test Condition |
| GaAs Emitter |  |  |  |  |  |
| Forward Voltage |  | 1.25 | 1.5 | $V$ | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
| Reverse Current |  | 0.1 | 100 | $\mu \mathrm{A}$ | $V_{\text {R }}=3.0 \mathrm{~V}$ |
| Capacitance |  | 100 |  | pF | $V_{\text {R }}=0$ |
| Sensor |  |  |  |  |  |
| $\mathrm{BV}_{\text {CEO }}$ | 30 |  |  | V | $I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$ |
| $\mathrm{BV}_{\text {ECO }}$ | 5 |  |  | V | $\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$ |
| $\mathrm{I}_{\text {CEO }}$ |  | 1.0 | 100 | nA | $V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ |
| Coupled Characteristics |  |  |  |  |  |
| Current Transfer Ratio | 500 |  |  | \% | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$ |
| $V_{\text {CEISAT }}$ |  |  | 1.0 | $\checkmark$ | $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$ |
| Isolation Resistance |  | $10^{11}$ |  | ohm | $\mathrm{V}_{10}=500 \mathrm{~V}$ |
| Isolation Capacitance |  | 1.5 |  | pF |  |
| Turn-on Time |  |  | 5 | $\mu \mathrm{S}$ | $\left(\mathrm{V}_{C C}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}\right.$ |
| Turn-off Time |  |  | 100 | $\mu \mathrm{S}$ | $\mathrm{l}_{\mathrm{F}}=200 \mathrm{~mA}, \mathrm{R}_{L}=180 \Omega$ |
| Isolation Voltage | 7500 |  |  | VDC |  |
| $(t=1 \mathrm{sec})$ | 5300 |  |  | $V^{\text {VAC }}$ RMs |  |



## FEATURES

- Dual Version of SFK 610/611 Series
- High Current Transfer Ratios, 4 Groups

ILD 610-1 40 to 80\%
ILD 610-2 63 to $\mathbf{1 2 5 \%}$
ILD 610-3 100 to 200\%
ILD 610-4 160 to 320\%

- 7500 Volt Isolation
- $V_{\text {CE sat }} 0.25(\leq 0.4)$ Volt $I_{F}=10 \mathrm{~mA} ; \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$
- $V_{\text {CEO }} 70$ Volt
- $100 \%$ Burn-in at $I_{F}=50 \mathrm{~mA}$
$\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}, \mathrm{t}=24 \mathrm{~h}$
- UL Approval \#52744


## DESCRIPTION

The ILD 610 Series is a two-channel optocoupler series for high density applications. Each channel consists of an optically coupled pair employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The ILD 610 Series is the dual version of the SFK 610/611 Series and uses a repetitive pin-out configuration instead of more common alternating pin-out used in most dual couplers.


## Maximum Ratings

## Emitter (GaAs LED)

Reverse Voltage
DC forward current
Surge forward current ( $t \leq 10 \mu \mathrm{~s}$ )
Total power dissipation

Detector (silicon phototransistor)
Collector-emitter voltage
Collector current
Collector current ( $\mathrm{t} \leq 1 \mathrm{~ms}$ )
Total power dissipation


## Optocoupler

Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature
$(\text { max. } 10 \mathrm{sec})^{1}$
Isolation test voltage ( $\mathrm{t}=1 \mathrm{sec}$ )
Isolation resistance
${ }^{1}$ Dip soldering: Insertion depth $<3.6 \mathrm{~mm}$

CHARACTERISTICS @ $\mathrm{Tamb}^{25^{\circ} \mathrm{C}}$			
Emitter (GaAs infared emitter)   Forward voltage ( $I_{F}=60 \mathrm{~mA}$ )   Breakdown voltage ( $i_{R}=10 \mu \mathrm{~A}$ )   Reverse current $\left(V_{R}=6 \mathrm{~V}\right)$   Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ )	$\begin{aligned} & V_{F} \\ & V_{B R} \\ & I_{R} \\ & C_{O} \end{aligned}$	$\begin{aligned} & 1.25(\leq 1.65) \\ & 30(\geq 6) \\ & 0.01(\leq 10) \\ & 25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mathrm{pF} \end{gathered}$
Detector (silicon phototransistor) Collector-emitter dark current Collector-emitter breakdown voltage Emitter-collector breakdown voltage Capacitance ( $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mu \mathrm{~Hz}$ )	I ceo BV CEO $\mathrm{BV}_{\mathrm{ECO}}$ $\mathrm{C}_{\mathrm{CE}}$	$\begin{aligned} & 2 \\ & 70 \\ & 7.5 \\ & 7 \end{aligned}$	nA   V pF
Coupled   Collector-emitter saturation voltage ( $\mathrm{F}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$ )   Coupling capacitance	$\begin{aligned} & V_{C E(\text { sat) }} \\ & C_{C} \end{aligned}$	$\begin{aligned} & 0.25(<0.40) \\ & 0.35 \end{aligned}$	VF


Group	ILD 610-1	ILD 610-2	ILD 610-3	ILD 610-4	
Current transfer ratio   $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	$40-80$	$63-125$	$100-200$	$160-320$	$\%$
Current transfer ratio   $\mathrm{I}_{\mathrm{F}}=1 \mathrm{ma}, \mathrm{V}_{C E}=5 \mathrm{~V}$	13 min.	22 min.	34 min.	56 min.	$\%$
$\mathrm{I}_{\mathrm{CEO}}\left(\mathrm{V}_{\text {CE }}=10 \mathrm{~V}\right)$	$2(\leq 50)$	$2(\leq 50)$	$5(\leq 100)$	$5(\leq 100)$	nA

CTR will match within a ratio of 1.7:1

Switching Characteristics
Linear Operation (without saturation) $I_{\mathbf{F}} 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=75 \Omega$

Group		ILD 610-1	ILD 610-2	ILD 610-3	ILD 610-4	
Turn on time	$\mathrm{t}_{\text {on }}$	$3.0(<5.6)$	$3.2(<5.6)$	$3.6(<5.6)$	$4.1(<5.6)$	$\mu \mathrm{s}$
Rise time	$\mathrm{t}_{\mathrm{f}}$	$2.0(<4.0)$	$2.5(<4.0)$	$2.9(<4.0)$	$3.3(<4.0)$	$\mu \mathrm{s}$
Turn off time	$\mathrm{t}_{\mathrm{off}}$	$2.3(<4.1)$	$2.9(<4.1)$	$3.4(<4.1)$	$3.7(<4.1)$	$\mu \mathrm{S}$
Fall time	$\mathrm{t}_{\mathrm{f}}$	$2.0(<3.5)$	$2.6(<3.5)$	$3.1(<3.5)$	$3.5(<3.5)$	$\mu \mathrm{S}$

Switching operation (with saturation) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega$

Group		ILD 610-1   $\mathbf{I}_{\mathbf{F}}=\mathbf{2 0} \mathbf{~ m A}$	ILD 610-2   $\mathbf{I}_{\mathbf{F}}=\mathbf{1 0} \mathbf{~ m A}$	ILD 610-3   $\mathbf{I}_{\mathbf{F}}=\mathbf{1 0} \mathbf{~ m A}$	ILD 610-4   $\mathbf{I}_{\mathbf{F}}=\mathbf{5} \mathbf{~ m A}$	
Turn on time	$\mathrm{t}_{\mathrm{on}}$	$3.0(<5.5)$	$4.3(<8.0)$	$4.6(<8.0)$	$6.0(<10.5)$	$\mu \mathrm{s}$
Rise time	$\mathrm{t}_{\mathrm{F}}$	$2.0(<4.0)$	$2.8(<6.0)$	$3.3(<6.0)$	$4.6(<8.0)$	$\mu \mathrm{s}$
Turn off time	$\mathrm{t}_{\text {off }}$	$18(<34)$	$24(<39)$	$25(<39)$	$25(<43)$	$\mu \mathrm{S}$
Fall time	$\mathrm{t}_{\mathrm{f}}$	$11(<20)$	$11(<24)$	$15(<24)$	$15(<26)$	$\mu \mathrm{S}$




## Switching time test schematic and waveforms



Swing time senent and wators


Typical forward voltage versus forward current




## FEATURES

- High Quality Premium Device
- Long Term Stability
- High Current Transfer Ratio, 4 Groups
SFH 600-0, 40 to 80\%
SFH 600-1, 63 to 125\%
SFH 600-2, 100 to 200\%
SFH 600.3, 160 to $320 \%$
- 2800 Volt Isolation (1 Minute)
- Storage Temperature $\mathbf{- 5 5}$ to $+150^{\circ} \mathrm{C}$
- VCE SAT $0.25(<0.4)$ Volt
$I_{F}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$
- UL Approval \#E52744
- VDE Approval \#0883


## DESCRIPTION

The optoelectronic coupler SFH 600 comprises a GaAs LED as the emitter which is optically coupled with a silicon planar phototransistor as the detector. The component is located in a plastic plug-in case 20 AB DIN 41866.
The coupler allows to transfer signals between two electrically isolated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissable insulating voltage.



Maximum Ratings

[^50]
## Characteristics (Continued)

Collector-Emitter Saturation Voltage ( $V_{C E}$ sat ) $\left.\mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA} . \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}\right)$   Coupling Capacitance ( $C_{k}$ )					
The couplers are grouped in accordance with their current ratio $\frac{I_{F}}{T_{F}}$ at $I_{F}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and marked by Roman numerals.					
Group	0	1	2	3	
${ }^{1} \mathrm{C}$	40.80	63-125	100.200	$160 \cdot 320$	\%
Collector.Emitter Leakage Current $\left(\mathrm{V}_{C E}=10 \mathrm{~V}\right) \mathrm{ICEO}$	$2(\leq 35)$	$2(\leq 35)$	$2(\leq 35)$	$5(\$ 70)$	nA

## Linear operation (without saturation)



Load Resistance $\left(R_{L}\right)$	75	$\Omega$
Delay Time $\left(t_{d}\right)$	$3.2(<4.6)$	$\mu \mathrm{s}$
Rise Time $\left(t_{r}\right)$	$2(\leq 3)$	$\mu \mathrm{s}$
Storage Time $\left(t_{s}\right)$	$3.0(<4.0)$	$\mu \mathrm{s}$
Fall Time $\left(t_{\mathrm{f}}\right)$	$2.5(\leq 3.3)$	$\mu \mathrm{s}$
Cut-off Frequency $\left(f_{\mathrm{g}}\right)$	250	kHz

$$
\begin{aligned}
& I_{\mathrm{F}}=10 \mathrm{~mA} \\
& V_{\mathrm{CE}}=5 \mathrm{~V} \\
& T_{\mathrm{tmb}}=25^{\circ} \mathrm{C}
\end{aligned}
$$

## Switching operation (with saturation)



Group	0	1 and 2	3	
	$I_{F}=20 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	
Switch-On Time $\left(\mathrm{t}_{\text {ein }}\right)$	$3.7(\leq 5.8)$	$4.5(\leq 6.2)$	$5.8(\leq 8.0)$	$\mu \mathrm{s}$
RIse time $\left(\mathrm{t}_{\mathrm{f}}\right)$	$2.5(\leq 4.0)$	$3(\leq 4.2)$	$4(\leq 5.5)$	$\mu \mathrm{s}$
Switch-Off Time $\left(t_{\text {aus }}\right)$	$19(\leq 25)$	$21(\leq 27)$	$24(\leq 31)$	$\mu \mathrm{s}$
Fall Time $\left(f_{f}\right)$	$11(\leq 14)$	$12(\leq 15)$	$14(\leq 18)$	$\mu \mathrm{s}$
$V_{\text {CE sat }}$	$0.25(\leq 0.4)$			V




Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Highest Quality Premium Device
- Built to Conform to VDE Requirements
- Long Term Stability
- High Current Transfer Ratios, 4 Groups SFH 601-1, 40 to $80 \%$
SFH 601-2, 63 to 125\%
SFH 601-3, 100 to 200\%
SFH 601-4, 160 to $320 \%$
- 5300 Volt Isolation (1 Minute)
- Storage Temperature $-40^{\circ}$ to $+150^{\circ} \mathrm{C}$
- $V_{\text {CEsat }} 0.25(<0.4)$ Volt
$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$
- UL Approval \#E52744
- VDE Approval \#0883


## DESCRIPTION

The SFH601 is an optocoupler that is comprised of a GaAs LED emitter which is optically coupled with a silicon planar phototransistor detector. The component is packaged in a plastic plug-in case 20 AB DIN 41866. The coupler transmits signals between two electrically isolated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible insulating voltage.


## Characteristics (Continued)

Coupler
Collector-Emitter Saturation Voltage ( $V_{\text {CEsat }}$ )


The couplers are grouped in accordance with their current ratio $\frac{I_{C}}{I_{F}}$ at
$I_{F}=10 \mathrm{~mA}$ and $V_{C E}=5 \mathrm{~V}$ and marked by numbers.

Group	1	2	3	4	
$\frac{I_{C}}{I_{F}}$	$40-80$	$63-125$	$100-200$	$160-320$	$\%$
Collector-Emitter Leakage   Current $\left(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}\right), \mathrm{I}_{\mathrm{C}}$	$2(<50)$	$2(<50)$	$5(<100)$	$5(<100)$	$n \mathrm{n}$

Linear operation (without saturation)


Load Resistance ( $\mathrm{R}_{L}$ )	75	$\Omega$	$\begin{aligned} & I_{\mathrm{F}}=10 \mathrm{~mA} \\ & V_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$
Delay Time ( $\mathrm{t}_{\mathrm{d}}$ )	$3.0(\leq 5.6)$	$\mu \mathrm{S}$	$T_{\text {amb }}=25^{\circ} \mathrm{C}$
Rise Time ( $\mathrm{t}_{\mathrm{r}}$ )	$2.0(\leq 4.0)$	$\mu \mathrm{S}$	
Storage Time ( $\mathrm{t}_{\mathbf{s}}$ )	$2.3(\leq 4.1)$	$\mu \mathrm{S}$	
Fall Time ( $t_{p}$ )	$2.0(\leq 3.5)$	$\mu \mathrm{S}$	
Cut-off Frequency ( $\mathrm{f}_{\mathrm{g}}$ )	250	kHz	

## Switching operation (with saturation)

	or 2 TTL inputs with pull-up resistor of 2.7 k !2			$5 v$
Group	$\begin{aligned} & 1 \\ & I_{F}=20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2 \text { and } 3 \\ I_{F}=10 \mathrm{~mA} \end{gathered}$	$\begin{aligned} 4 \\ I_{F}=5 \mathrm{~mA} \end{aligned}$	
Switch-On Time ( $\mathrm{t}_{\text {ein }}$ )	$3.0(\leq 5.5)$	$4.2(\leq 8.0)$	6.0 ( $\leq 10.5$ )	$\mu \mathrm{S}$
Rise Time ( $\mathrm{t}_{\mathrm{r}}$ )	2.0 ( $\leq 4.0$ )	3.0 ( $\leq 6.0$ )	4.6 ( $\leq 8.0$ )	$\mu \mathrm{S}$
Switch-Off Time ( $\mathrm{t}_{\text {off }}$ )	$18(\leq 34)$	$23(\leq 39)$	$25(\leq 43)$	$\mu \mathrm{S}$
Fall Time ( $\mathrm{t}_{\mathrm{f}}$ )	$11(\leq 20)$	$14(\leq 24)$	15 ( $\leq 26$ )	$\mu \mathrm{S}$
$V_{\text {CE sat }}$		$0.25(\leq 0.4)$		V





## FEATURES

- Wide Lead Spacing
- Highest Quality Premium Device
- VDE Approval \#0883, \#0805, \#0806
- Long Term Stability
- High Current Transfer Ratios, 4 Groups

SFH 601G-1, 40 to $80 \%$
SFH 601G-2, 63 to 125\%
SFH 601G-3, 100 to 200\%
SFH 601G-4, 160 to 320\%

- 5300 Volt Isolation (1 Minute)
- Storage Temperature $-40^{\circ}$ to $+150^{\circ} \mathrm{C}$
- $V_{\text {CEsat }} 0.25(<0.4)$ Volt
$I_{F}=10 \mathrm{~mA}, I_{C}=2.5 \mathrm{~mA}$
- UL Approval \#E52744


## DESCRIPTION

The SFH 601G is an optocoupler that is comprised of a GaAs LED emitter which is optically coupled with a silicon planar phototransistor detector. The component is packaged in a plastic plug-in case 20 AB DIN 41866. The coupler transmits signals between two electrically isolated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible insulating voltage.


Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	6 V
Forward Current ( $\mathrm{I}_{\mathrm{F}}$ )	60 mA
Surge Current ( $\mathrm{F}_{\mathrm{FS}}$ ), $\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~S}$	2.5 A
Power Dissipation ( $\mathrm{P}_{\text {tot }}$ )	100 mW
Detector (Sillcon Phototransistor)	
Collector-Emitter Voltage ( $\mathrm{V}_{\text {CEO }}$ )	70 V
Emitter-Base Reverse Voltage ( $\mathrm{V}_{\text {EBO }}$ )	7 V
Collector Current (1C)	50 mA
Collector Current ( ${ }^{\text {CS }}$ ), $\mathrm{t}=1 \mathrm{~ms}$	100 mA
Power Dissipation ( $\mathrm{P}_{\text {tot }}$ )	150 mW
Coupler	
Storage Temperature ( ${ }_{\text {stor }}$ )	-40 to $+150^{\circ} \mathrm{C}$
Ambient Temperature ( $\mathrm{T}_{\mathrm{amb}}$ )	-40 to $+100^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{j}}$ )	$100^{\circ} \mathrm{C}$
Soldering Temperature ( ${ }_{\mathrm{L}}$ ), 10 s Max .	$260^{\circ} \mathrm{C}$
Isolation Test Voltage ( $\mathrm{V}_{\mathrm{is}}$ ), 1 Min . (between emitter and detector referred to standard climate $23 / 50$ DIN 50014)	5300 VDC
Tracking Resistance	Min. 8.2 mm
Air Path	Min. 7.3 mm
Tracking Resistance	
Group III ( $\mathrm{KC=}=\mathbf{8 0 0}$ ) in accordance with VDE $0110 ¢ 6$	
Table 3 and DIN 53480/VDE 0303, Part 1.	
As to nominal isolation voltage DIN 57883 or VDE 0883 applies.	
Isolation Resistance ( $\mathrm{R}_{\text {is }}$ ) , @ $\mathrm{V}_{\text {is }}=500 \mathrm{~V}$	$10^{11} \Omega$
Climatic Conditions	
DIN 40040, humidity Class F	
Flammablity	
DIN 57471 or VDE 0471, Part 2, of April 1975 or MIL202E, Method 11 A	
Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )	
Emitter (GaAs LED)	
Forward Voltage ( $\mathrm{V}_{\mathbf{F})}$ ), $\mathrm{I}_{\mathbf{F}}=60 \mathrm{~mA}$	1.25 ( $\leq 1.65$ ) V
Breakdown Voltage ( $\mathrm{V}_{\mathrm{BR}}$ ), $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	$30(\geq 6) \mathrm{V}$
Reverse Current ( $\mathrm{R}_{\mathrm{R}}$ ), $\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$.	0.01 ( $\leq 10) \mu \mathrm{A}$
Capacitance ( $\mathrm{C}_{\mathrm{O}}$ )	
$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}\right.$ )	40 pF
Thermal Resistance ( $\mathrm{R}_{\text {thJamb }}$ )	$750 \mathrm{~K} / \mathrm{W}$
Detector (Silicon Phototransistor)	
Capacitance ( $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ )	
${ }^{\text {C }}$ CE	6.8 pF
${ }^{\text {C }}$ CB	8.5 pF
CEb	. 11 pF
Thermal Resistance ( $\mathrm{R}_{\text {thJamb }}$ )	$500 \mathrm{~K} / \mathrm{W}$

Specifications are subject to change without notice.

## Characteristics (Continued)

## Coupler

Collector-Emitter Saturation Voltage ( $\mathrm{V}_{\text {CEsat }}$ )
( $I_{F}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.25(<0.4) \mathrm{V}$
Coupling Capacitance ( $\mathrm{C}_{\mathrm{K}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.30 pF
The couplers are grouped in accordance with their current ratio $\frac{I_{C}}{I_{F}}$ at $I_{F}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ and marked by numbers.

Group	-1	-2	-3	-4	
$\frac{\bar{I}_{C}}{I_{F}}$	$40-80$	$63-125$	$100-200$	$160-320$	$\%$
Collector-Emitter Leakage	$2(<50)$	$2(<50)$	$5(<100)$	$5(<100)$	$n A$
Current $\left(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}\right) . \mathrm{I}_{\mathrm{CEO}}$					

Linear operation (without saturation)


Load Resistance $\left(R_{L}\right)$	75	$\Omega$
Delay Time $\left(t_{d}\right)$	$3.0(\leq 5.6)$	$\mu \mathrm{s}$
Rise Time $\left(t_{\mathrm{r}}\right)$	$2.0(\leq 4.0)$	$\mu \mathrm{s}$
Storage Time $\left(t_{\mathrm{s}}\right)$	$\mathrm{I}_{\mathrm{F}}$   $V_{\mathrm{CE}}=5$   $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	
Fall Time $\left(\mathrm{t}_{\mathrm{f}}\right)$		
Cut-off Frequency $\left(\mathrm{f}_{\mathrm{g}}\right)$	$2.3(\leq 4.1)$	$\mu \mathrm{s}$

Switching operation (with saturation)


Group	-1   $I_{F}=20 \mathrm{~mA}$	-2   $I_{F}=10 \mathrm{~mA}$	-4   $I_{F}=5 \mathrm{~mA}$	
Switch-On Time $\left(\mathrm{t}_{\text {ein }}\right)$	$3.0(\leq 5.5)$	$4.2(\leq 8.0)$	$6.0(\leq 10.5)$	$\mu \mathrm{S}$
Rise Time $\left(\mathrm{t}_{\mathrm{r}}\right)$	$2.0(\leq 4.0)$	$3.0(\leq 6.0)$	$4.6(\leq 8.0)$	$\mu \mathrm{S}$
Switch-Off Time $\left(t_{\text {off }}\right)$	$18(\leq 34)$	$23(\leq 39)$	$25(\leq 43)$	$\mu \mathrm{S}$
Fall Time $\left(\mathrm{t}_{\mathrm{f}}\right)$	$11(\leq 20)$	$14(\leq 24)$	$15(\leq 26)$	$\mu \mathrm{S}$
$V_{\text {CE sat }}$	$0.25(\leq 0.4)$			$V$




SFH609

> HIGH RELIABILITY PHOTOTRANSISTOR OPTOCOUPLER


## FEATURES

- Highest Quality Premium Device
- Built to Conform to VDE Requirements
- Long Term Stability
- High Current Transfer Ratios, 3 Groups

SFH 609-1, 40 to $80 \%$
SFH 609-2, 63 to 125\%
SFH 609-3, 100 to 200\%

- 5300 Volt Isolation (1 Minute)
- Storage Temperature $-40^{\circ}$ to $+150^{\circ} \mathrm{C}$
- $V_{\text {CEsat }} 0.25(<0.4)$ Volt
$I_{F}=10 \mathrm{~mA}, I_{C}=2.5 \mathrm{~mA}$
- $\mathrm{V}_{\text {CEO }} 90 \mathrm{~V}$
- UL Approval \#E52744
- VDE Approval \#0883


## DESCRIPTION

The optically coupled isolator SFH 609 features a high current transfer ratio as well as high isolation voltage, and uses as emitter a GaAs infrared emitting diode which is optically coupled with a silicon planar phototransistor acting as detector. The component is incorporated in a plastic plug-in package 20 A 6 DIN 41866. The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible isolation voltage.


## Maximum Ratings

Emitter (GaAs infrared emitter)

Reverse voltage	$V_{\text {R }}$	6	$V$
DC forward current	$l_{\mathrm{F}}$	60	mA
Surge forward current $(t \leqq 10$	$\mu \mathrm{s}) l_{\text {FSM }}$	2.5	m
Total power dissipation	$P_{\text {tot }}$	100	mW

Detector (silicon phototransistor)
Collector-emitter voltage

$\left(I_{\mathrm{s}}=0\right)$	$V_{\text {CEO }}$	90	$V$
Emitter-base voltage $\left(I_{\mathrm{C}}=0\right)$	$V_{\text {EBO }}$	7	V
Collector current	$I_{\mathrm{C}}$	50	mA
Collector current $(t \leq 1 \mathrm{~ms})$	$I_{\text {CSM }}$	100	mA
Total power dissipation	$P_{\text {tot }}$	150	mW

## Optocoupler

Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature
$\left.(\text { max. } 10 \mathrm{sec})^{\prime}\right)$

$$
\begin{array}{ll}
T_{\text {stg }} & -40 \text { to }+150 \\
T_{\text {amb }} & -40 \text { to }+100 \\
T_{\mathrm{j}} & 100
\end{array}
$$

Isolation voltage ( 1 min$)^{2}$ )
between emitter and
detector referred to
standard climate $23 / 50$
DIN $50014 \quad V_{\text {is }} 5300 \quad$ Vdc

AC reference voltage
DC reference voitage
in acc. with
DIN 57883, 6.80 and/or VDE 0883, 6.80

Leakage path	$\min 8.2$	mm
Air path	$\min 7.3$	mm

${ }^{1}$ ) Dip soldering: Insertion depth 3.6 mm
${ }^{2}$ ) DC test voltage in accordance with DIN 57883, draft 4/78
V
mA
mW
v
mA
mA
mW
dc
m mm

CHARACTERISTICS @ $25^{\circ} \mathrm{C}$				
Emitter   Forward voltage ( $I_{\mathrm{F}}=60 \mathrm{~mA}$ )   Breakdown voltage ( $/ I_{\mathrm{R}}=10 \mu \mathrm{~A}$ )   Reverse current ( $V_{\mathrm{R}}=6 \mathrm{~V}$ )   Capacitance ( $V_{\mathrm{R}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$ )   Thermal resistance		$V_{F}$   $V_{(B R)}$   Is   $C_{0}$   $R_{\text {thJA }}$	$\begin{aligned} & 1.25(\leqslant 1.65) \\ & 30(\geqslant 6) \\ & 0.01(\leqslant 10) \\ & 40 \\ & 750 \end{aligned}$	
Detector (silicon phototransistor)   Capacitance ( $V_{\text {CE }}=5 \mathrm{~V} ; f=1 \mathrm{MHz}$ ) $\left(V_{C B}=5 \mathrm{~V}: f=1 \mathrm{MHz}\right)$ $\left(V_{E B}=5 \mathrm{~V} ; f=1 \mathrm{MHz}\right)$   Thermal resistance		$\begin{aligned} & C_{\mathrm{CE}} \\ & C_{\mathrm{CB}} \\ & C_{\mathrm{EB}} \\ & R_{\mathrm{tWNA}} \end{aligned}$	$\begin{array}{\|l\|} \hline 6.8 \\ 8.5 \\ 11 \\ 500 \end{array}$	pF   pF   pF   KIW
Optocoupler   Collector-emitter saturation voltage $\left(I_{F}=10 \mathrm{~mA}, I_{C}=2.5 \mathrm{~mA}\right)$ Coupling capacitance		$V_{\text {CEsat }}$ $C_{K}$	$\begin{aligned} & 0.25(\leqslant 0.4) \\ & 0.30 \end{aligned}$	V
The optocouplers are grouped according to their current transfer ratio $I_{C} / I_{F}$ at $/_{F}=10 \mathrm{~mA}$ and $V_{C E}=5 \mathrm{~V}$.				
Group	1	2	3	
$I_{C} I_{F}$ Collector-emitter reverse current ${ }_{\text {CEO }}$ $\left(V_{C E}=10 \mathrm{~V}\right)$	$\begin{aligned} & 40 \text { to } 80 \\ & 2(\leqslant 50) \end{aligned}$	$\begin{aligned} & 63 \text { to } 125 \\ & 2 \text { ( } \leqslant 50 \text { ) } \end{aligned}$	$\begin{aligned} & 100 \text { to } 200 \\ & 5(\leqslant 100) \end{aligned}$	\%

## Linear operation (without saturation)



Load resistance	$R_{\mathrm{L}}$	75	$\Omega$
Turn-on time	$t_{\mathrm{on}}$	$3.0(\leqq 5.6)$	$\mu \mathrm{s}$
Rise time	$t_{\mathrm{f}}$	$2.0(\leqq 4.0)$	$\mu \mathrm{s}$
Turn-off time	$t_{\text {off }}$	$2.3(\leqq 4.1)$	$\mu \mathrm{s}$
Fall time	$t_{\mathrm{f}}$	$2.0(\leqq 3.5)$	$\mu \mathrm{s}$
Cut-off frequency	$\boldsymbol{f}_{\mathrm{co}}$	250	kHz



Switching operation (with saturation)


Group		$\begin{aligned} & \begin{array}{l} 1 \\ I_{f}=20 \mathrm{~mA} \\ 3.0(\$ 5.5) \end{array} \end{aligned}$	$\begin{aligned} & 2 \text { and } 3 \\ & I_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	
Turn-on time	$t_{\text {on }}$		4.2 ( $\leq 8.0)$	$\mu \mathrm{s}$
Rise time	$t_{\mathrm{r}}$	2.0 (\$4.0)	3.0 ( $\leq 6.0)$	$\mu \mathrm{s}$
Turn-off time	$t_{\text {off }}$	$18(\leq 34)$	23 ( 539 )	$\mu \mathrm{s}$
Fall time	$t_{4}$	$11(\leqq 20)$	$14(\leq 24)$	$\mu \mathrm{s}$
	$V_{\text {CEsat }}$	$0.25(\leqq 0.4)$		V





## FEATURES

- IR Emitter and NPN Phototransistor Detector
- High Sensitivity
- Designed for Short Distances Up to 5 mm
- Two Current Transfer Ratio Groups SFH 900-1 - ICE 0.25 - 0.5 mA SFH 900-2 - ICE 0.4 - 0.8 mA


## DESCRIPTION

The SFH 900 is a reflex light barrier for short distances, operating in the infrared range, which includes a GaAs IRLED transmitter and an NPN phototransistor with a high photosensitivity receiver. Both components are manufactured in modern strip-line technique and are mounted side-by-side in a plastic package. A daylight filter screens against undesired light effects.
The miniature reflex light barrier is designed for applications in industrial and entertainment electronics, e.g., as position reporting device and end position switch, for speed monitoring or in general, as a sensor element in various types of motion transmitters.

For applications information see Appnote 26.


## Maximum Ratings

Emitter (GaAs Infrared Diode)
Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Forward Current ( $l_{F}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA


Detector (Silicon Phototransistor)



## Package

age	
Storage Temperature ( $\mathrm{T}_{\text {siot }}$ ).	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature ( $\mathrm{T}_{\text {amb }}$ )	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
junction Temperature ( $T_{i}$ ).	$100^{\circ} \mathrm{C}$
Soldering Temperature ( $T_{\mathrm{S}}$ )	
$\left(\mathrm{t}<3_{\text {sec }}\right.$ ) ${ }^{\text {(1) }}$	$235{ }^{\circ} \mathrm{C}$
	$260^{\circ} \mathrm{C}$ (2)
Power Dissipation.	150 mW

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Emitter (GaAs Infrared Dlode)
Forward Voltage $\left(V_{F}\right), I_{F}=50 \mathrm{~mA} \ldots . . . . . . . . . . . . . . . . .$.
Breakdown Voltage $\left(V_{B R}\right),\left(I_{R}=10 \mu A\right)$. . . . . . . . . . . . . . . . . . . . . $30(\geq 6) V$
Reverse Current $\left(I_{R}\right), V_{R}=6 \mathrm{~V}$. . . . . . . . . . . . . . . . . . . . . . . . . . 0.01 ( $\$ 10$ ) $\mu \mathrm{A}$

Thermal Resistance ( $\mathrm{R}_{\text {thul }}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $750 \mathrm{~K} / \mathrm{W}$
Detector (Silicon Phototransistor)
Capacitance ( $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ )

${ }^{1}$ ) Dip Soldering; 3 mm from Case Bottom.
${ }^{2}$ ) With Heat Sink between Case \& Soldering.

## Reflex light barrier

Coupling factor
Collector-emitter current
$\left(I_{F}=10 \mathrm{~mA} ; V_{C E}=5 \mathrm{~V} ; \mathrm{d}=1 \mathrm{~mm}\right)$
SFH900 ICE $\ldots \geqslant 0.5 \mathrm{~mA}$
SFH900-1 $\mathrm{I}_{\text {CE }} \ldots \geqslant 0.3 \mathrm{~mA}$
SFH900-2 ICE $\ldots \geqslant 0.5 \mathrm{~mA}$


Reflector
with $90 \%$ reflection
(Kodak neutral white test card)

Load resistance	$R_{\mathrm{L}}$	1	$\mathrm{k} \Omega$
Turn-on time $t_{\mathrm{on}}$ 65 (typ.)$\quad \mu \mathrm{s}$	$I_{\mathrm{F}}=10 \mathrm{~mA}$		
Rise time	$t_{\mathrm{f}}$	50 (typ.)	$\mu \mathrm{s}$
Turn-off time	$t_{\mathrm{off}}$	55 (typ.)	$\mu \mathrm{s}$
Fall time	$t_{\mathrm{f}}$	50 (typ.)	$\mu \mathrm{s}$

## Switching characteristics



According to the figure above the times are defined as follows:
Turn-on time $t_{\text {on }}$
The turn-on time $t_{\text {on }}$ is the time in which the output current (collector current) $I_{C}$ rises to $90 \%$ of its maximum value after activation of the drive current $t_{F}$.
The rise time $t_{r}$, is the time in which the collector current $I_{C}$ rises from $10 \%$ to $90 \%$ of its final value.

## Turn-off time $t_{\text {off }}$

The turn-off time $t_{\text {off }}$ is the time in which the output current (collector current) $I_{C}$ drops to 10\% of its maximum value after deactivation of the drive current $I_{F}$.
The fall time $t_{\mathrm{f}}$ is the time in which the collector current $I_{C}$ drops from $90 \%$ to $10 \%$ of its maximum value.






## FEATURES

## - High Current Transfer Ratios, 4 Groups

## SFK610/611-1 40 to 80\%

SFK610/611-2 63 to 125\%
SFK610/611-3 100 to 200\%
SFK610/611-4 160 to 320\%

- 7500 Volt DC Isolation
- Low Saturation Voltage
- $\mathrm{V}_{\text {CEO }}=70$ Volt
- 100\% Burn-In at $\mathbf{I}_{\mathbf{F}}=50 \mathrm{~mA}$ $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}, \mathrm{t}=\mathbf{2 4 h}$
- UL Approval \#52744
- Trios


## DESCRIPTION

The SFK610/611 series is a single-channel optocoupler series for high density applications. Each coupler consists of an optically coupled pair employing a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output.
The SFK610/611 series offers an additional level of reliability with $100 \%$ burn-in of the LED emitter at elevated temperature.

Package Dimensions in Inches (mm)


## Maximum Ratings

## Emitter (GaAs LED)

Reverse Voltage
DC forward current
Surge forward current ( $\mathrm{t} \leq 10 \mu \mathrm{~S}$ )
Total power dissipation

$V_{R}$	6	$V$
$I_{F}$	60	$m A$
$I_{F S M}$	2.5	A
$P_{\text {tot }}$	100	mW

Detector (silicon phototransistor)
Collector-emitter voltage
Collector current
Collector current ( $\mathrm{t} \leq 1 \mathrm{~ms}$ )
Total power dissipation

$V_{\text {CEO }}$	70	$V$
$I_{C}$	50	mA
$I_{C S M}$	100	mA
$P_{\text {tot }}$	150	mW

Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature
$(\text { max. } 10 \mathrm{sec})^{1}$
Isolation test voltage $(\mathrm{t}=1 \mathrm{sec})$
Isolation resistance
$T_{\text {stg }}$
$T_{\text {amb }}$
$T_{1}$
$T_{\text {sold }}$
$V_{\text {IS }}$
$R_{\text {ISO }}$

$-55 \ldots+150^{\circ} \mathrm{C}$
$-55 \ldots+100^{\circ} \mathrm{C}$
100
${ }^{\circ} \mathrm{C}$
260

Dip soldering: Insertion depth $<3.6 \mathrm{~mm}$

[^51]| CHARACTERISTICS @ $\mathrm{T}_{\text {amb }} 25^{\circ} \mathrm{C}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Emitter (GaAs infared emitter) <br> Forward voltage ( $l_{F}=60 \mathrm{~mA}$ ) <br> Breakdown voltage $\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$ <br> Reverse current $\left(V_{R}=6 \mathrm{~V}\right)$ <br> Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}: \mathbf{f}=1 \mathrm{MHz}$ ) | $\begin{aligned} & V_{F} \\ & V_{B R} \\ & I_{R} \\ & C_{O} \end{aligned}$ | $\begin{aligned} & 1.25(\leq 1.65) \\ & 30(\geq 6) \\ & 0.01(\leq 10) \\ & 25 \end{aligned}$ | $\begin{gathered} V \\ V \\ \mu \mathrm{~A} \\ \mathrm{DF} \end{gathered}$ |
| Detector (silicon phototransistor) Collector-emitter breakdown voltage Emitter-collector breakdown voltage Capacitance ( $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} ; \mathrm{f}=1 \mu \mathrm{~Hz}$ ) | $\mathrm{BV}_{\text {CEO }}$ <br> $B V_{E C O}$ <br> $\mathrm{C}_{\mathrm{CE}}$ | $\begin{aligned} & 70 \\ & 7.5 \\ & 6.8 \end{aligned}$ | $\begin{aligned} & V \\ & V \\ & \mathrm{VF} \end{aligned}$ |
| Coupled <br> Collector-emitter saturation voltage $\left(I_{F}=10 \mathrm{~mA}, I_{C}=2.5 \mathrm{~mA}\right.$ ) <br> Coupling capacitance | $\begin{aligned} & V_{C E(s a l)} \\ & C_{C} \end{aligned}$ | $\begin{aligned} & 0.25(<0.40) \\ & 0.35 \end{aligned}$ | $\begin{gathered} \mathrm{V} \\ \mathrm{pF} \end{gathered}$ |


Group	SFK610/611-1	SFK610/611-2	SFK610/611-3	SFK610/611-4	
Current transfer ratio' $I_{F}=10 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}$	40-80	63-125	100-200	160-320	\%
Current transfer ratio' $\mathrm{I}_{\mathrm{F}}=1 \mathrm{ma}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	13 min .	22 min .	34 min .	56 min .	\%
$\mathrm{I}_{\text {CEO }}\left(\mathrm{V}_{\text {CE }}=10 \mathrm{~V}\right)$	$2(\leq 50)$	$2(\leq 50)$	$5(\leq 100)$	$5(\leq 100)$	nA

CTR will match within a ratio of 1.7:1

Switching Characteristics
Linear Operation (without saturation) $I_{F} 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=75 \Omega$

Group		SFK610/611-1	SFK610/611-2	SFK610/611-3	SFK610/611-4	
Turn on time	$\mathrm{t}_{\text {on }}$	$3.0(<5.6)$	$3.2(<5.6)$	$3.6(<5.6)$	$4.1(<5.6)$	$\mu \mathrm{S}$
Rise time	$\mathrm{t}_{\mathrm{r}}$	$2.0(<4.0)$	$2.5(<4.0)$	$2.9(<4.0)$	$3.3(<4.0)$	$\mu \mathrm{s}$
Turn off time	$\mathrm{t}_{\text {off }}$	$2.3(<4.1)$	$2.9(<4.1)$	$3.4(<4.1)$	$3.7(<4.1)$	$\mu \mathrm{s}$
Fall time	$\mathrm{t}_{\mathrm{f}}$	$2.0(<3.5)$	$2.6(<3.5)$	$3.1(<3.5)$	$3.5(<3.5)$	$\mu \mathrm{s}$

Switching operation (with saturation) $V_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=1 \mathrm{~K} \Omega$

Group		$\begin{gathered} \text { SFK610/611-1 } \\ \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { SFK610/611-2 } \\ I_{F}=10 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \text { SFK610/611-3 } \\ I_{F}=10 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { SFK610/611-4 } \\ I_{F}=5 \mathrm{~mA} \end{gathered}$	
Turn on time	$\mathrm{t}_{\text {on }}$	3.0 (<5.5)	4.3 (<8.0)	4.6 (<8.0)	6.0 (<10.5)	$\mu \mathrm{S}$
Rise time	$\mathrm{t}_{\mathrm{t}}$	2.0 (<4.0)	2.8 (<6.0)	3.3 (<6.0)	4.6 (<8.0)	$\mu \mathrm{S}$
Turn off time	$\mathrm{t}_{\text {OHf }}$	$18(<34)$	24 (<39)	25 (<39)	25 (<43)	$\mu \mathrm{S}$
Fall time	$t_{\text {t }}$	11 (<20)	11 (<24)	15 (<24)	15 (<26)	$\mu \mathrm{s}$



## Infrared Emitters

Photodiodes
Phototransistors
Photovoltaic Cells


For non-standard requirements, see Custom Products on page 1-1.

Package Type	Package Outline	Part Number	Half   Angle	Radiant Intensity $\mathrm{l}_{\mathrm{e}(\mathrm{mW} / \mathrm{sr})}$	@ (mA)	Surge Current ( $\mathrm{t}<\mathbf{1 0 \mu} \mathrm{S}$ )   (A)	Features	Page
T1, 3 mm Clear Blue Tinted Plastic		SFH487	$\pm 20^{\circ}$	$\begin{gathered} 30 \\ (\geq 12.5) \end{gathered}$	100	2.5	IR remote control Ga Al As, 880 nm . High intensity medium angle.	7-49
T1, 3mm Clear Blue Tinted Plastic		SFH487P	$\pm 65^{\circ}$	$4(\geq 2)$	100	2.5	Ga Al As, 880 nm . Wide angle IR remote control. Shaft encoder IR sound transmission. Low cost replacement for metal can package.	7-51
Miniature Clear Plastic Side Facing		IRL-80A	$\pm 30^{\circ}$	$\geq 0.4$	20	3	Ga As, 950 nm , side facing device, wide beam. Matches with LPT80 phototransistor or LPD80.	7-7
		IRL-81A	$\pm 25^{\circ}$	$\geq 0.5$		2.5	Ga Al As, 880 nm , side facing device. Matches with LPT80 phototransistor or LPD80 photodarlington.	7-9
Miniature Axial Lead		IRL60	$\pm 25^{\circ}$	Total external radiated power $>400 \mu \mathrm{~W}$	50	1.5	Small package size Axial Lead Ga As, 900 nm	7-5
Miniature Radial Lead 1 mm Pkg. Width	Arrays	SFH405-2	$\pm 16^{\circ}$	$\leq 3.2$ $\geq 2.5$	40	1.6	Ideal for very short range light barriers. Extremely thin. . $039^{\prime \prime}$ (1 mm) package width. Radial Lead Ga As, 950 nm Matches with SFH305 phototransistor	7-29
Miniature Radial Lead 2 mm Pkg. Width	Miniature	LD261-4   LD261-5	$\pm 30^{\circ}$	$2.0-4.0$   $3.2-6.3$	50	1.6	Small package size Radial Lead Ga As, 950 nm Matches with BPX81 phototransistor	7-15
2 Diode Array		LD262	$\pm 30^{\circ}$	2.5-8	50	1.6	Ideal for card readers 2 Through 10 diode arrays Ga As, 950 nm Matches with BPX80 family of phototransistors	
3 Diode Array		LD263						
4 Diode Array		LD264						
5 Diode Array		LD265.						
6 Diode Array		LD266						
7 Diode Array		LD267						
8 Diode Array		LD268						
9 Diode Array		LD269						
10 Diode Array		LD260						
TO. 18 Round Glass Lens		SFH400-2	$\pm 6^{\circ}$	$\begin{aligned} & 20-40 \\ & \geq 32 \end{aligned}$	100	3	Hermetic seal for high rel use. Narrow angle Ga As, 950 nm Recommended for use with BPX43 phototransistor	7-23
TO-18 Dome Glass Lens		SFH401-2	$\pm 15^{\circ}$	$10-20$ $\geq 16$	100	3	Hermetic seal for high rel use. Very narrow angle. Ga As, 950 nm Recommended for use with BPY62 phototransistor	7-25

For non-standard requirements, see Custom Products on page 1-1.

Infrared Emitters


For non-standard requirements, see Custom Products on page 1-1.


## FEATURES

- Spectrally matched to Silicon Sensors
- Maximum package strength consistent with mounting on $.087^{\prime \prime}$ centers
- Optical Encoding source
- Positioning and counting source
- Solid State reliability


## DESCRIPTION

The IRL-60 is a gallium arsenide infrared emitting diode. On forward bias, it emits a spectrally narrow intense band of radiation peaking at 900 nm (the peak sensitivity point of silicon detectors). The packaging of this unit permits close-spacing in linear arrays. Its low cost and volume producibility opens new areas of use anywhere an infrared source is desirable.


## Maximum Ratings



## NOTE:

1) The leads were immersed in $260^{\circ}$ molten solder to a distance $1 / 16^{\prime \prime}$ from the body of the device per MIL-S-750.

[^52]


## FEATURES

- Low Cost Plastic Package
- Long Term Stability
- Wide Beam, $60^{\circ}$
- Matches Phototransistor LPT-80A


## DESCRIPTION

The IRL-80A is a high power GaAs emitter diode, emitting radiation in the near infrared range. It is mounted in a clear miniature plastic side-facing package and was designed for a variety of applications which require beam interruption.


## Maximum Ratings:

Reverse voltage
Forward current ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Operating/storage temperature
Power dissipation ( $T_{a m b}=25^{\circ} \mathrm{C}$ )
Derate above $25^{\circ} \mathrm{C}$
Lead soldering temp ( $1 / 16$ inch from plastic package) for 5 sec .

$V_{R}$	3	V
$\mathrm{I}_{\mathrm{F}}$	60	mA
T	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	100	mW
	1.33	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{s}}$	240	${ }^{\circ} \mathrm{C}$

Characteristics ( $T_{a m b}=25^{\circ} \mathrm{C}$ )
Wavelength of radiation at $I_{\text {max }}$
Spectral bandwidth at $50 \%$ of $I_{\max }$

	950	nm
	$\pm 20$	nm
$\mathrm{I}_{\mathrm{e}}$	$(\geq 0.4)$	$\mathrm{mW} / \mathrm{sr}$
$\varphi$	$\pm 30$	degree
$V_{F}$	1.5 max	V
$V_{B R}$	$(\geq 3)$	V

Radiant intensity (Note 1) $I_{F}=20 \mathrm{~mA}$
Half angle
(limits for $50 \%$ of radiant intensity $\left.\right|_{e}$ )
Forward voltage ( $l_{F}=20 \mathrm{~mA}$ )
Breakdown voltage $\left(I_{R}=10 \mu \mathrm{~A}\right)$
Note 1: A $1 \mathrm{~cm}^{2}$ silicon detector is aligned with the mechanical axis.
No aperture is used.

[^53]
## TYPICAL OPTOELECTRONIC CHARACTERISTICS

Relative Spectral Emission (Typ)




## FEATURES

- GaAIAS Infrared Emitting Dlode
- Low Cost
- Miniature Side Facing Package
- Clear Plastic
- Long Term Stability
- Wide Beam, $50^{\circ}$
- Matches Phototransistor LPT-80A or Photodarlington LPD-80A


## DESCRIPTION

The GaAIAs infrared emitting diode IRL-81A is designed to emit radiation at a wavelength in the near infrared range. The chip is positioned to emit radiation from the side of the clear plastic miniature package. It operates efficiently with the matching LPT-80A phototransistor, or LPD-80A photodarlington.

Preliminary


A $1 \mathrm{~cm}^{2}$ silicon detector with a radiometric filter is aligned with the mechanical axis of the DUT. No aperature is used.

Specifications are subject to change without notice.




## FEATURES

- Extremely accurate mechanical to optical alignment.
- Package referenced for users to maintain mechanical alignment.
- Spot size @ 20 inches is less than 1.5 inches diameter.
- Extremely narrow beam-typically $\mathbf{2 . 5}$ half angle.
- Clear lens.
- High intensity—greater than $30 \mathrm{~mW} / \mathrm{sr}$ @ 100 mA .
- Peak emission @ 890 nm-very closely matched to silicon detectors.
- Fast on, off. Bandwidth to 7 MHz .
- Matches with LPT-500 Phototransistor.


## DESCRIPTION

The IRL-500 is a GaAs infrared emitting diode designed to achieve superior optical coupling between emitter and detector. Because of the precision injection molded housing and manufacturing techniques the optical axis can be referred to any of 3 mechanical references to a tolerance within 2.5 degrees. The emitter's extremely narrow beam of 5 degrees ( $2.5^{\circ}$ half angle) contains about $65 \%$ of the emitted flux and is therefore suitable for applications that require more effective optical coupling with the detector and high resolution. It can àlso be effectively coupled with any detector. This device is also useful as a beam interrupter in security systems, industrial controls and other applications that advantage of the narrow beam and precision alignment. It matches with the LPT-500 phototransistor detector.

Advance Data Sheet


## MAXIMUM RATINGS

Reverse voltage
Forward current
Surge current ( $\tau \leqslant 100 \mu \mathrm{~s}$ )
Storage temperature range
Junction temperature


Characteristics ( $\mathbf{2 5}^{\circ} \mathrm{C}$ )

Wavelength of Peak Emission	$\lambda$ peak	893 nm
Spectral Bandwidth at $50 \%$ of Imax	$\Delta \lambda$	35 nm
Radiant intensity in axial direction @		
100 mA	$40 \mathrm{~mW} / \mathrm{sr}$	
HalfAngle	$t_{\mathrm{e}}$	
(50\% of Radiant intensity)	$\varphi$	$2.5^{\circ}$
RiseTime @ $/_{\mathrm{F}}=100 \mathrm{~mA}$	$t_{r}$	50 nS
Fall Time @ $t_{\mathrm{r}}=100 \mathrm{~mA}$	$t_{\mathrm{f}}$	40 nS
Bandwidth		7 MHz

## Coupling Characteristics

Typical coupling characteristics using an IRL-500 emitter \& LPT-500 phototransistor.


IRL-500 @ $/{ }_{F}$	(IF)$7$		
		$I=\mathrm{f}(\mathrm{~d}) @ V_{\mathrm{CE}}=5 \mathrm{~V}$	
	$\mathrm{d}=4$ inches	8 inches	20 inches
10 mA	4.35 mA	1.62 mA	. 201 mA
20 mA	10.52 mA	4.20 mA	. 570 mA
50 mA	20.13 mA	12.82 mA	1.870 mA





## FEATURES

- Modified TO-18 Size Metal Case
- Rounded Plastic Lens
- Long Term Stability
- Very Wide Beam, $80^{\circ}$
- Matches with Phototransistor BP103 and Photodiode BPX63


## DESCRIPTION

The GaAs infrared emitting diode LD 242 is designed to emit radiation at a wavelength in the near infrared range. The radiation emitted is excited by current flowing in forward direction and can be modulated. The plastic cover permits wide-angle radiation. The anode terminal is marked by the adjacent projection on the rim of the case bottom. The cathode is electrically connected to the case. The LD 242 is particularly suitable for use as emitter for IR sound transmission in radio and TV sets.


## Maximum Ratings

Storage Temperature
$T$
-40 to +80
${ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$, soldering time $\mathrm{t} \leq 3 \mathrm{~s}$ )
Junction Temperature
Reverse Voltage
Forward Current
Surge Current ( $\mathrm{t}=10 \mu \mathrm{~s}, \mathrm{D}=0$ )
Power Dissipation
Thermal Resistance

230
100
5
250
3
470
450
160
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
V
mA
A
mW
$\mathrm{K} / \mathrm{W}$
$\mathrm{K} / \mathrm{W}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Wavelength ( $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{P}}=20 \mathrm{~ms}$ )

$\lambda$	$950 \pm 20$	nm
$\Delta \lambda$	55	nm
$\varphi$	$\pm 40$	$\mathrm{Deg}$.
A	0.25	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.5 \times 0.5$	mm
H	0.3 to 0.7	mm

Spectral Bandwidth
$\left(I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$
Half Angle
Active Area
Active Die Area per Die
$\begin{array}{ll}\mathrm{H} & 0.3 \text { to } 0.7\end{array}$
mm
Distance Die Surface
to Package Surface
Switching Time ( $I_{e}$ from $10 \%$ to
$90 \%$ and from $90 \%$ to $10 \%$
at $\left.I_{F}=100 \mathrm{~mA}\right)$

$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1	$\mu \mathrm{~s}$
$\mathrm{C}_{0}$	40	pF
$V_{F}$	$1.3(\leq 1.5)$	V
$V_{F}$	$1.9(\leq 2.5)$	V
$\mathrm{V}_{\mathrm{BR}}$	$30(\geq 5)$	V
$\mathrm{I}_{\mathrm{R}}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
TC	-0.55	$\% / \mathrm{K}$
$\mathrm{TC}_{V}$	-1.5	$\mathrm{mV} / \mathrm{K}$
TC	0.3	$n \mathrm{~m} / \mathrm{K}$

Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )
Forward Voltage
$\left(I_{F}=100 \mathrm{~mA}\right)$
$\left(l_{F}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}\right)$
Breakdown Voltage ( $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ )
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )
Temperature Coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\boldsymbol{\Phi}_{\mathrm{e}}$
Temperature Coefficient of $\mathrm{V}_{F}$
Temperature Coefficient of $\lambda$ peak
噱

Group	LD242-2	LD242-3	
Radiant Intensity			
$\left(I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right) \mathrm{I}_{\mathrm{e}}$	4...8	$\geq 6.3$	$\mathrm{mW} / \mathrm{sr}$
$\left(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}\right) \mathrm{I}_{\mathrm{e}}$	45	60	$\mathrm{mW} / \mathrm{sr}$
Radiant Power $\left(I_{F}=100 \mathrm{~mA}\right.$ $\left.\mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right) \boldsymbol{\Phi}_{\mathrm{e}}$	13	16	mW

[^54]


FEATURES

- Low Cost
- Miniature Size
- Available As Single Unit, LD 261 and Arrays:
Two Diodes, LD 262
Three Diodes, LD 263
Four Diodes, LD 264
Five Diodes, LD 265
Six Diodes, LD 266
Seven Diodes, LD 267
Eight Diodes, LD 268
Nine Diodes, LD 269
Ten Diodes, LD 260
- Medium Wide Beam, $60^{\circ}$


## DESCRIPTION

The LD 261 series, GaAs infrared emitting diodes, emit radiation at a wavelength in the near infrared range. This miniature device comes in a grey plastic package and is available as a single emitter as well as two through ten element arrays. The terminals are solder pins with $.10^{\prime \prime}$ lead spacing. The LD 261 series is designed for use with the BPX 81 series phototransistor when the spacing between each is approximately 10 mm . These devices can easily be mounted on PC boards and in thick film circuits for simple or complex scanning systems.


[^55]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Low Cost
- T-13/4 Package
- Lightly Diffused Gray Plastic Lens
- LD 271L/LD 271LH 1-inch Leads
- Long Term Stability
- Medium Wide Beam, $5 \mathbf{5 0}^{\circ}$
- Very High Power
- High Intensity
- Matches with Photodiodes SFH 205 or BP104 or Phototransistors BP103B


## DESCRIPTION

LD 271/H/L/LH an infrared emitting diode, emits radiation in the near infrared range ( 950 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 5 mm plastic package. An application for the LD 271 family is remote control of color TV receivers.


## Maximum Ratings



Specifications are subject to change without notice.



## FEATURES

- Very High Radiant Intensity
- Two Chip Device
- Grey Oval Plastic Package
- Equivalent to T13/4 Size
- Matches with Photodiodes SFH 205 or BP104 or Phototransistors BP103B


## DESCRIPTION

The LD 273 is an infrared emitter consisting of two GaAs-IRLED chips connected in a series. This provides a very high radiant intensity of greater than $25 \mathrm{~mW} / \mathrm{sr}$ at 100 mA . Radiation is emitted in the axial $\left(0^{\circ}\right)$ direction from a smoke colored oval plastic package. This device serves particularly well as a powerful emitter of increased range in remote control applications.

## Mounting Instruction

In order not to damage the system when soldering in the emitting diodes, the soldering distance to the plastic package has to be dimensioned as large as possible. We recommend a minimum distance of 10 mm between package and soldering point for the usual soldering conditions ( $260^{\circ} \mathrm{C} / 3 \mathrm{sec}$ ).

## Maximum Ratings

Storage Temperature	T	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering Temperature			
(Distance from soldering joint			
to package $\geq 10 \mathrm{~mm}$, soldering time $\mathrm{t} \leq 3 \mathrm{~s}$ )	Ts	260	${ }^{\circ} \mathrm{C}$
Junction Temperature	T	100	${ }^{\circ} \mathrm{C}$
Reverse Voltage	$V_{\text {R }}$	10	$\checkmark$
Forward Current	$l_{\text {F }}$	100	mA
Surge Current ( $\mathrm{t}=10 \mu \mathrm{~S}, \mathrm{D}=0$ )	$\mathrm{I}_{\text {FS }}$	3.2	A
Power Dissipation	$P_{\text {tot }}$	260	mW
Thermal Resistance	$\mathrm{R}_{\text {thJamb }}$	280	K/W
Characteristics ( $\mathrm{Tamb}^{\text {a }} 25^{\circ} \mathrm{C}$ )			
Wavelength ( $i_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{P}}=20 \mathrm{~ms}$ )	$\lambda$	$950 \pm 20$	nm
Spectral Bandwidth			
Half Angle			
Half Angle   (Vertical to terminal plane)	$\varphi v$	$\pm 15$	Deg.
Active Area (2 die)	A	0.09	$\mathrm{mm}^{2}$
Active Die Area per Die	$L \times W$	$0.3 \times 0.3$	mm
Distance Die Surface			
Switching Time ( $I_{e}$ from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ at $\left.I_{F}=100 \mathrm{~mA}\right)$	$\mathrm{t}_{\mathrm{t}}, \mathrm{t}_{\text {t }}$	1	$\mu \mathrm{S}$
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )	$\mathrm{C}_{0}$	10	pF
Forward Voltage			
$\left(l_{F}=100 \mathrm{~mA}\right)$	$V_{F}$	2.6 ( $\leq 3.0$ )	V
$\left(l_{F}=1 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}\right)$	$V_{F}$	3.8 ( $\leq 5.2$ )	V
Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	$V_{B R}$	$50(\geq 10)$	V
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	${ }_{\text {IR }}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
Temperature Coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\Phi_{e}$	$T C_{1}$	-0.55	\%/K
Temperature Coefficient of $\mathrm{V}_{F}$	TCV	-3	mV/K
Temperature Coefficient of $\lambda$ peak	TC ${ }_{\lambda}$	+0.3	$n \mathrm{~m} / \mathrm{K}$
Radiant Intensity in Axial			
Direction Measured at a Solid			
Angle of $\Omega=0.01 \mathrm{sr}$			
$\left(I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	$\mathrm{I}_{\text {e }}$	$\geq 25$	$\mathrm{mW} / \mathrm{sr}$
$\left(I_{F}=1 A_{1} t_{0}=100 \mu \mathrm{~s}\right)$	Ie	220	$\mathrm{mW} / \mathrm{sr}$
$\begin{aligned} & \text { Radiant Power }\left(I_{F}=100 \mathrm{~mA}\right. \\ & \left.t_{p}=20 \mathrm{~ms}\right) \end{aligned}$	$\Phi_{\text {e }}$	26	mW

Specifications are subject to change without notice.



## FEATURES

- Extremely HIgh Radiant Intensity, $60 \mathrm{~mW} / \mathrm{sr}$ Typical
- Low Cost
- T13/4 Package
- Lightly Diffused Gray Plastic Lens
- Long Term Stability
- Narrow Beam, $20^{\circ}$
- Excellent Match to Silicon Photodetector BP 103B


## DESCRIPTION

The GaAs infrared emitting diode LD 274 emits radiation at a wavelength in the near infrared range. It is enclosed in a T $13 / 4$ plastic package of 5 mm diameter. This device is designed for remote control applications requiring extremely high power.


## Maximum Ratings

Storage temperature
T $\quad-55$ to $+100 \quad{ }^{\circ} \mathrm{C}$
Soldering temperature
Distance from casing-solder tab $\geqslant 2 \mathrm{~mm}$
Dip soldering time $\leqslant 5$ s

$\mathrm{T}_{\text {sold }}$	260	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{j}$	100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}$	5	V
$\mathrm{I}_{\mathrm{F}}$	100	mA
$\mathrm{i}_{\mathrm{FS}}$	3	A
$\mathrm{P}_{\text {tot }}$	165	mW
$\mathrm{R}_{\text {thA }}$	450	KIW

Iron soldering time $\leqslant 3$ s
Junction temperature
Reverse voltage
Forward current
Surge current ( $\tau=10 \mu \mathrm{~s}$ )
Power dissipation ( $\mathrm{T}=25^{\circ} \mathrm{C}$ )
Thermal Resistance
RthA
Characteristics (Tamb $=25^{\circ}$ )
Wavelength at peak emission at
$I_{F}=100 \mathrm{~mA}, \mathrm{tp}=20 \mathrm{~ms}$ גpeak $950 \pm 20 \mathrm{~nm}$
Spectral bandwidth at $50 \%$ of $I_{\max }$
at $I_{F}=100 \mathrm{~mA}, t_{p}=20 \mathrm{~ms}$

גpeak	$950 \pm 20$	nm
$\Delta \lambda$	55	nm

Half angle

$\varphi$	$\pm 10$	Degree
A	0.09	$\mathrm{~mm}^{2}$

Active chip area
Dimensions of active chip area $L \times W \quad 0.3 \times 0.3$
mm
Distance chip surface to case surface D 4.9 to 5.5 mm
Switching time:
(le from $10 \%$ to $90 \% ; I_{F}=100 \mathrm{~mA}$ )
$t_{t}, t_{f} \quad 1$
$\mu \mathrm{S}$
Capacity $\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}\right)$
Co 25
pF
Forward Voltage $\left(I_{F}=100 \mathrm{~mA}\right)$

$$
\left(I_{F}=1 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~S}\right)
$$

Breakdown voltage ( $I_{R}=100 \mu \mathrm{~A}$ )
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )
Temperature coeificient of $\mathrm{I}_{\mathrm{e}}$ or $\Phi_{\mathrm{e}}$
Temperature coefficient of $V_{F}$
Temperature coefficient of $\lambda$ peak
Radiant intensity $\mathrm{T}_{\mathrm{e}}$ in axial direction at a steradian $\Omega=0.01 \mathrm{sr}$, or $6,65^{\circ}$.
Radiant intensity at

$\left(I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	$\mathrm{I}_{\mathrm{e}}$	$(\geq 30)$ typ. 60	$\mathrm{~mW} / \mathrm{sr}$
$I_{F}=1 \mathrm{~A}_{;} \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$	$\mathrm{I}_{\mathrm{e}}$	typ. 400	$\mathrm{~mW} / \mathrm{sr}$
$\Phi_{\mathrm{e}}=($ Total $)$ typ.			
$\left(I_{F}=100 \mathrm{~mA}, t_{p}=20 \mathrm{~ms}\right)$	$\Phi_{e}$	typ. 13	mW

[^56]


## FEATURES

- TO-18 Hermetic Package
- Round Glass Lens
- Very Narrow Beam, $12^{\circ}$
- Two Very High Power Intensity Ranges

SFH 400-2, 20 to $40 \mathrm{~mW} / \mathrm{sr}$
SFH 400-3, $\geq 32 \mathrm{~mW} / \mathrm{sr}$

## DESCRIPTION

The SFH 400 GaAs is an infrared emitting diode which emits radiation in the near infrared range. The emitted radiation, which can be modulated, is caused by current in the forward direction. The case, which is similar to TO-18, has a glass lens to provide a very narrow ( $6^{\circ}$ ) emitting beam. The anode lead is the lead closest to the tab. The cathode is electrically connected to the case. Heat sinks are recommended for $I_{f}$ greater than 100 mA .


## Absolute Maximum Ratings:

Parameter	Symbol	Min.	Max.	Units
Power Dissipation			470	mW
DC Forward Current	$\mathrm{I}_{\mathrm{F}}$		300	mA
Surge Current $(\mathrm{t}<1 \mu \mathrm{~S})$			3	A
Reverse Voltage	$V_{\mathrm{R}}$		5.0	V
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	100	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-55	100	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{J}$		100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature   $\quad$ (1/8 inch from case)				$260^{\circ} \mathrm{C}$ for 3 sec.


Electrical Characteristics $\left(T_{a m b}=25^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Min.	Typ.	Max.	Units	Test   Conditions
Forward Voltage			1.35	1.5	$V$	$I_{F}=100 \mathrm{~mA}$
Forward Voltage	$V_{F}$		1.9	2.5	$V$	$I_{F}=1 \mathrm{~A}$
Reverse Current	$\mathrm{V}_{F}$		0.01	10	$\mu \mathrm{~A}$	$V_{R}=5 \mathrm{~V}$
Peak Wavelength	$\lambda p$	930	950	970	$n m$	$I_{F}=100 \mathrm{~mA}$
Half Angle	$\varphi$		$\pm 6$		Deg.	

The diodes are grouped according to their radiant intensity $I_{e}=$ at $I_{F}=100 \mathrm{~mA}$ in axial direction.

Group	$-\mathbf{2}$	$\mathbf{- 3}$	
Radiant Intensity $I_{e}$	20 to 40	$\geq 32$	$\mathrm{~mW} / \mathrm{sr}$
$\Phi_{\mathrm{e}}$ (Total) typ.	5.5	7	mW

[^57]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- TO-18 Hermetic Package
- Dome Glass Lens
- Narrow Beam, $30^{\circ}$
- Two High Power Intensity Ranges

SFH 401-2, 10 to $20 \mathrm{~mW} / \mathrm{sr}$
SFH 401-3, $\geq 16 \mathrm{~mW} / \mathrm{sr}$

## DESCRIPTION

The SFH 401 GaAs is an infrared emitting diode which emits radiation in the near infrared range. The emitted radiation, which can be modulated, is caused by current in the forward direction. The case, which is similar to TO-18, has a giass lens to provide a narrow $\left(15^{\circ}\right)$ emitting beam. The anode lead is the lead closest to the tab. The cathode is electrically connected to the case. Heat sinks are recommended for $I_{f}$ greater than 100 mA .

Package Dimensions in Inches (mm)


Absolute Maximum Ratings:

- Parameter	Symbol	Min.	Max.	Units
Power Dissipation			470	mW
DC Forward Current	$\mathrm{I}_{\mathrm{F}}$		300	mA
Surge Current $(\mathrm{t}<1 \mu \mathrm{~S})$			3.0	A
Reverse Voltage	$\mathrm{V}_{\mathrm{R}}$		5.0	V
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	100	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-55	100	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$		100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature   $\quad 1 / 8$ inch from case)				$2^{\circ} 60^{\circ} \mathrm{C}$ for 3 sec.

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test   Conditions
Forward Voltage	$V_{F}$		1.35	1.5	$V$	$I_{F}=100 \mathrm{~mA}$
Forward Voltage	$V_{F}$		1.9	2.5	$V$	$I_{F}=1 \mathrm{~A}$
Reverse Current	$I_{R}$		0.01	10	$\mu \mathrm{~A}$	$V_{R}=5 \mathrm{~V}$
Peak Wavelength	$\lambda p$	930	950	970	$n m$	$I_{F}=100 \mathrm{~mA}$
Half Angle	$\varphi$		$\pm 15$		Deg.	

The diodes are grouped according to their radiant intensity $\mathrm{I}_{\mathrm{e}}$ at $I_{F}=100 \mathrm{~mA}$ in axial direction.

Group	$\mathbf{- 2}$	$\mathbf{- 3}$	
Radiant Intensity $\mathrm{I}_{\mathrm{e}}$	10 to 20	$\geq 16$	$\mathrm{~mW} / \mathrm{sr}$
$\boldsymbol{\Phi}_{e}$ (Total) typ.	5.5	7	mW

[^58]


## FEATURES

- TO-18 Hermetic Package
- Flat Glass Lens
- Wide Beam, $80^{\circ}$
- Two Intensity Ranges

SFH 402-2, 2.5 to $5.0 \mathrm{~mW} / \mathrm{sr}$
SFH 402-3, $\geq 4 \mathrm{~mW} / \mathrm{sr}$

## DESCRIPTION

The SFH 402 GaAs is an infrared emitting diode which emits radiation in the near infrared range. The emitted radiation, which can be modulated, is caused by current in the forward direction. The case, which is similar to TO-18, has a glass lens to provide a wide $\left(40^{\circ}\right)$ emitting beam. The anode lead is the lead closest to the tab. The cathode is electrically connected to the case. Heat sinks are recommended for $I_{f}$ greater than 100 mA .

Package Dimensions in Inches (mm)


## Absolute Maximum Ratings:

Parameter	Symbol	Min.	Max.	Units
Power Dissipation			470	mW
DC Forward Current	$\mathrm{I}_{F}$		300	mA
Surge Current $(t<1 \mu \mathrm{~S})$			3.0	A
Reverse Voltage	$V_{R}$		5.0	V
Storage Temperature	$\mathrm{T}_{S}$	-55	100	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{A}$	-55	100	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{J}$		100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature				$2^{260^{\circ} \mathrm{C} \text { for } 3 \mathrm{sec} .}$
$\quad(1 / 8$ inch from case)				

Electrical Characteristics $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Sarameter	Symbol	Min.	Typ.	Max.	Units	Test   Conditions
Forward Voltage	$V_{F}$		1.35	1.5	$V$	$I_{F}=100 \mathrm{~mA}$
Forward Voltage	$V_{F}$		1.9	2.5	$V$	$I_{F}=1 \mathrm{~A}$
Reverse Current	$I_{R}$		0.01	10	$\mu \mathrm{~A}$	$V_{R}=5 \mathrm{~V}$
Peak Wavelength	$\lambda p$	930	950	970	$n m$	$I_{F}=100 \mathrm{~mA}$
Half Angle	$\varphi$		$\pm 40$		Deg.	

The diodes are grouped according to their radiant intensity $I_{e}$ at $\mathrm{I}_{\mathrm{f}}=100 \mathrm{~mA}$ in axial direction.

Group	$\mathbf{- 2}$	$\mathbf{- 3}$	
Radiant Intensity $\mathrm{I}_{\mathrm{e}}$	2.5 to 5	$\geq 4$	$\mathrm{~mW} / \mathrm{sr}$
$\boldsymbol{\Phi}_{\mathrm{e}}$ (Total) typ.	5.5	7	mW

Specifications are subject to change without notice.



## FEATURES

- Miniature Plastic Package
- 1/10" (2.54 mm) Lead Spacing
- Emitter for SFH-305

Phototransistor Detector

- Two Radiant Intensity Groups


## DESCRIPTION

The SFH 405 is a GaAs infrared diode which emits radiation at a wavelength in the near infrared. The radiation emitted is excited by current flowing in the forward direction.
The case is transparent plastic with a lens shaped light output. The plastic is slightly smoke colored in order to differentiate between phototransistors of the same type (SFH 305). The terminals are solder pins in $1 / 10^{\prime \prime}(2.54 \mathrm{~mm})$ lead spacing. The infrared emitting diodes are grouped according to radiation intensity. SFH 405 is suitable for use as emitter with the phototransistor SFH 305. The cathode is marked with a color dot.

They can be used effectively in miniature light barriers with close spacing between emitter and receiver.


Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )

Wavelength ( $I_{F}=40 \mathrm{~mA}, \mathrm{t}_{\mathrm{P}}=20 \mathrm{~ms}$ )	$\lambda$	$950 \pm 20$	nm
Spectral Bandwidth			
$\left(\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ms}\right)$	$\Delta \lambda$	55	nm
Half Angle	$\varphi$	$\pm 16$	Deg.
Active Area	A	0.25	$\mathrm{mm}^{2}$
Active Die Area per Die	$L \times W$	$0.5 \times 0.5$	mm
Distance Die Surface to Package Surface	H	1.3 to 1.9	mm
Switching Time ( $l_{e}$ from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$			
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ )	$\mathrm{C}_{0}$	40	pF
Forward Voltage			
Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	$V_{B R}$	$30(\geq 5)$	V
Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$	0.01 ( $\leq 10$ )	$\mu \mathrm{A}$
Temperature Coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\boldsymbol{\Phi}_{\mathrm{e}}$	TC,	-0.55	\%/K
Temperature Coefficient of $\mathrm{V}_{F}$	TCV	-. 15	mV/K
Temperature Coefficient of 入peak	TC ${ }_{\text {d }}$	+0.3	$\mathrm{nm} / \mathrm{K}$

Radiant Intensity $I_{e}$ in Axial Direction Measured at a Solid Angle of $\Omega=\mathbf{0 . 0 1} \mathbf{~ s r}$

Group	SFH 405-2	SFH 405-3	
Radiant Intensity   $\left(I_{F}=40 \mathrm{~mA}, \mathrm{t}_{\mathrm{P}}=20 \mathrm{~ms}\right) \mathrm{I}_{\mathrm{e}}$   Radiant Power $\left(\mathrm{F}_{\mathrm{F}}=40 \mathrm{~mA}\right.$   $\left.t_{\mathrm{p}}=20 \mathrm{~ms}\right) \Phi_{e}$	$\leq 3.2$	$\geq 2.5$	$\mathrm{~mW} / \mathrm{sr}$

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- TO-46 Package
- Flat Epoxy Coating
- $0.1^{\prime \prime}$ ( 2.54 mm ) Lead Spacing
- For Fiber Optic Communications Up to $5 \mathrm{MBit} / \mathrm{s}$
- Two Intensity Ranges SFH 407-2, . 63 to $1.25 \mathrm{~mW} / \mathrm{sr}$ SFH 407-3, 1.0 to $2.0 \mathrm{~mW} / \mathrm{sr}$


## DESCRIPTION

The SFH 407 GaAs diode emits radiation in the near infrared range. The radiation emitted is excited by current flowing in the forward direction and can be modulated. This diode is particularly noted for its high radiation ability. The SFH 407 is mounted in a TO- 46 metal case and is coated with epoxy resin. It is designed for applications in fiber optics communications up to $5 \mathrm{MBit} / \mathrm{s}$.


## Maximum Ratings



Group	-2	$-\mathbf{- 3}$	
Radiant Intensity, I   Radiant Flux (Radiant   Power) (Total) Typ., $\Phi_{e}$	0.63 to 1.25	1.0 to 2.0	$\mathrm{~mW} / \mathrm{sr}$
Radiant power coupled   into a stepped index fiber,   $\Phi=200 \mu \mathrm{~m}, \mathrm{~N} . \mathrm{A} .=0.40 \mathrm{~m}$	$60(\geq 40)$	9.7	mW
Radiant power coupled   into a gradient index fiber,   $\Phi=50 \mu \mathrm{~m}, \mathrm{~N} . \mathrm{A} .=0.2$	1.1	$90(\geq 63)$	$\mu \mathrm{W}$

[^59]


## FEATURES

－High Reliability
－ 3 mm （T1）Size Package
－1／10＂（ 2.54 mm ）Lead Spacing
－Low Cost
－High Pulse Power
－Long Term Stability
－Medium Wide Beam， $40^{\circ}$
－Excellent Match with SFH－309 Photodetector

## DESCRIPTION

The SFH－409 is a GaAs Infrared Emitting Diode in a standard T 1 size plastic package．It is designed for a variety of low cost，high volume applications such as IR remote control and other consumer and entertainment products．


## Maximum Ratings：

Storage temperature	$\mathrm{T}_{\text {stg }}$		${ }^{\circ} \mathrm{C}$	
Soldering temperature				
Distance from casing－solder tab $\geqslant 2 \mathrm{~mm}$				
Dip soldering time $\leqslant 5$ s	$\mathrm{T}_{\text {sold }}$	260	${ }^{\circ} \mathrm{C}$	
Iron soldering time $\leqslant 3$ s	Tsold	300	${ }^{\circ} \mathrm{C}$	
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$	
Reverse voltage	$V_{R}$	5	V	
Forward current	IF	100	mA	
Surge current（ $\tau=10 \mu \mathrm{~s}$ ）	ifs	3	A	
Power dissipation（ $\mathrm{T}=25^{\circ} \mathrm{C}$ ）	Ptot	165	mW	产家
Thermal Resistance	$\mathrm{R}_{\text {th JA }}$	450	K／W	它点

Characteristics（Tamb $=25^{\circ}$ ）
Wave length at peak emission at
$I_{F}=100 \mathrm{~mA} t p=20 \mathrm{~ms}$
Spectral bandwidth at $50 \%$ of $I_{\text {max }}$
at $I_{F}=100 \mathrm{~mA}, t_{p}=20 \mathrm{~ms}$

גpeak	$950 \pm 20$	nm
$\Delta \lambda$	55	nm

Half angle

$\varphi$	$\pm 20$	Degrees
A	0.09	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.3 \times 0.3$	mm
D	2.6	mm

Dimensions of active chip area D 2,6
Switching time：
（ $l_{\mathrm{e}}$ from $10 \%$ to $90 \% ; I_{F}=100 \mathrm{~mA}$ ）

$t_{r}, t_{f}$	1

Capacity（ $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$ ）

$\mathrm{t}_{\mathrm{r}} \mathrm{tf}_{\mathrm{f}}$	1	$\mu \mathrm{~S}$
$\mathrm{C}_{\mathrm{O}}$	25	pF
$\mathrm{V}_{\mathrm{F}}$	$1.30(\leq 1.5)$	V
$\mathrm{V}_{\mathrm{F}}$	$1.9(\leq 2.5)$	V
$\mathrm{V}_{\mathrm{BR}}$	$30(\geqslant 5)$	V
$\mathrm{I}_{\mathrm{R}}$	$0.01(\leqslant 10)$	$\mu \mathrm{A}$
TC	$-0,55$	$\% / \mathrm{K}$
TC	$-1,5$	$\mathrm{mV} / \mathrm{K}$
TC	$+0,3$	$n \mathrm{~m} / \mathrm{K}$

Breakdown voltage（ $(\mathrm{R}=100 \mu \mathrm{~A})$
Reverse current（ $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ ）
Temperature coefficient of $l_{e}$ or $\Phi_{e}$
$-1,5$
mV／K
Temperature coefficient of $\lambda$ peak
Radiant intensity $I_{e}$ in axia！direction at a steradian $\Omega=0.01 \mathrm{sr}$ ，or $6,65^{\circ}$ ．
Radiant intensity at

$\left(I_{F}=100 \mathrm{~mA}, t_{p}=20 \mathrm{~ms}\right)$	le	$(\geq 6)$ typ． 15	$\mathrm{~mW} / \mathrm{sr}$
$\left(I_{F}=1 A ; t_{p}=100 \mu \mathrm{~s}\right.$	le	typ． 100	$\mathrm{~mW} / \mathrm{sr}$
Radiant flux total			
$\left(I_{F}=100 \mathrm{~mA}, t_{p}=20 \mathrm{~ms}\right)$	$\Phi_{e}$	typ． 14	mW

Specifications subject to change without notice


Preliminary Data Sheet


## FEATURES

- 2.3 mm Aperture Holds 1000 Micron Plastic Fiber
- No Fiber Stripping Required
- SFH450 - Infrared, Light Grey Plastic Package
- SFH750 - Visible Red, Red Plastic Package
- SFH751 - Visible Green, Green Plastic Package
- High Reliability
- Long Life Time
- Fast Switching Times
- Molded Microlens for Efficient Coupling


## DESCRIPTION

The SFH450 is a gallium arsenide (GaAs) infrared emitter. The SFH750 is a gallium arsenide phosphide (GaAsP), visible red emitter; the SFH751 is a gallium phosphide (GaP) visible green emitter. These three devices form a new family of low cost fiber optic components designed for short distance data transmission using 1000 micron core plastic fiber. The devices come in a $5 \mathrm{~mm}(\mathrm{~T} 13 / 4)$ plastic package featuring a tubular aperture which is wide enough to accommodate fiber and cladding. A microlens on the bottom of the aperture improves the light coupling efficiency into an inserted plastic fiber.

Typical applications include: automotive wiring, isolation interconnects, medical equipment, robotics, electronic games, and copy machines.



[^60]


## FEATURES

- TO-18 Hermetic Package
- Round Glass Lens
- Very Narrow Beam, $12^{\circ}$
- Very High Power, 10 mW Typical at 100 mA
- Three Radiant Intensity Selections

SFH480-1, $\geq 25 \mathrm{~mW} / \mathrm{sr}$
SFH480-2, $\geq 40 \mathrm{~mW} / \mathrm{sr}$
SFH480-3, $\geq 63 \mathrm{~mW} / \mathrm{sr}$

## DESCRIPTION

The SFH 480 series are infrared emitting diodes which emit radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The case (18A 2 DIN 41876-similar to TO-18) is topped by a glass lens. The cathode lead is nearest the tab on the rim of the case. The anode is electrically connected to the case.


## Maximum Ratings

Reverse Voltage	$V_{\text {R }}$	5		V
Forward Current ( $T_{c} \leq 25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{F}}$	200		mA
Surge Current ( $r \leq 10 \mu \mathrm{~s}$ )	$\mathrm{F}_{\text {FS }}$	2.5		A
Junction Temperature	$\mathrm{T}_{\mathrm{j}}$	100		${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {S }}$	-55 to +100		${ }^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$ )	$\mathrm{P}_{\text {tot }}$	470		mW
Thermal Resistance: Junction to Air Junction to Case	$R_{\text {thJamb }}$   $R_{\text {thJG }}$	$\begin{aligned} & 450 \\ & 160 \end{aligned}$		$\begin{aligned} & \text { KNW } \\ & \text { KWW } \end{aligned}$
Soldering Temperature (Distance from casing-solder $\mathrm{tab} \geq 2 \mathrm{~mm}$ )				
Dip Soldering Time $\leq 5 \mathrm{sec}$ Iron Soldering Time $\leq 3 \mathrm{sec}$	$\mathrm{T}_{\text {SOLD }}$   $T_{\text {SOLD }}$	260		$\circ$
Characteristics ( $\mathrm{Tamb}=25^{\circ} \mathrm{C}$ )				
Wavelength at peak emission at $I_{F}=10 \mathrm{~mA}$;		$\lambda$ peak	880	nm
Wavelength at peak emission at $I_{F}=100 \mathrm{~mA}$; $\mathrm{t}_{\text {puise }}=20 \mathrm{~ms}$; Duty cycle $=1: 12$		$\lambda p e a k$	883	nm
Wavelength at peak emission at $I_{\mathrm{F}}=1 \mathrm{~A}$ $t_{\text {ele }}=100 \mu \mathrm{~s}$; Duty cycle $=1: 200$		$\lambda$ peak	886	nm
Speutral bandwidth at $50 \%$ of $I_{\text {max }}$ at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		$\Delta \lambda$	80	nm
Half angle		$\varphi$	$\pm 6$	degrees
Active chip area		A	0.16	$\mathrm{mm}^{2}$
Dimensions of active chip area		L XW	$0.4 \times 0.4$	mm
Distance chip surface to case surface		D	4.0..4.8	mm
Switching time: ( $I_{e}$ from $10 \%$ to $90 \%$; and from $90 \%$ to $10 \% I_{F}=100 \mathrm{~mA}$ )		$t_{\text {r }}, t_{\text {f }}$	0.6/0.5	$\mu \mathrm{s}$
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$ )		$\mathrm{C}_{0}$	25	pF
Forward voltage $\begin{aligned}\left(I_{F}\right. & \left.=100 \mathrm{~mA} ; \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}\right) \\ \left(I_{F}\right. & \left.=1 \mathrm{~A} ; \mathrm{t}_{\text {puse }}=100 \mu \mathrm{~s}\right)\end{aligned}$		$V_{F}$	$1.5(\leq 1.8)$	V
		$V_{F}$	$3.0(\leq 3.8)$	$v$
Breakdown voltage ( $I_{R}=10 \mu \mathrm{~A}$ )		$V_{B R}$	$30(\geq 5)$	V
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )		$\mathrm{I}_{\mathrm{R}}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
Temperature coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\boldsymbol{\Phi}_{\mathrm{e}}$		TC	-0.5	\%/K
Temperature coefficient of $\mathrm{V}_{F}$		TC	-0.2	\%/K
Temperature coefficient of $\lambda$ peak		TC	0.25	$\mathrm{nm} / \mathrm{K}$
$\Phi_{e}$ (Total) typ. ( $l_{F}=100 \mathrm{~mA}$ )		$\boldsymbol{\Phi}_{\text {e }}$	10	mW

Characteristics ( $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

## Grouped according to radiant intensity.

$I_{e}=a t I_{F}=100 \mathrm{~mA}$ in axial direction.

	$\mathbf{- 1}$	$\mathbf{- 2}$	$\mathbf{- 3}$	
Radiant Intensity $\mathrm{I}_{\mathrm{e}}$	25 to 50	40 to 80	$\geq 63$	$\mathrm{~mW} / \mathrm{sr}$

[^61]


Radiant characteristics
$I_{\text {rel }}=f(\varphi)$


Forward current
$I_{F}=f\left(V_{F}\right)$




## FEATURES

- TO-18 Hermetic Package
- Dome Glass Lens
- Narrow Beam, $30^{\circ}$
- Very High Power, 10 mW Typical at 100 mA
- Three Radiant Intensity Selections SFH481-1, $\geq 10 \mathrm{~mW} / \mathrm{sr}$ SFH481-2, $\geq 16 \mathrm{~mW} / \mathrm{sr}$ SFH481-3, $\geq 35 \mathrm{~mW} / \mathrm{sr}$


## DESCRIPTION

The SFH 481 series are emitting diodes which emit radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The case (18A 2 DIN 41876-similar to TO-18) has a domed glass lens top. The cathode lead is nearest the tab on the rim of the case bottom. The anode is electrically connected to the case.


## Maximum Ratings

Reverse Voltage
Forward Current ( $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$ )
Surge Current ( $\tau \leq 10 \mu \mathrm{~s}$ )
Junction Temperature
Storage Temperature Range
Power Dissipation $\left(T_{c} \leq 25^{\circ} \mathrm{C}\right)$
Thermal Resistance:
Junction to Air
Junction to Case
Soldering Temperature
(Distance from casing-solder
tab $\geq 2 \mathrm{~mm}$ )
$\begin{array}{llll} & & & \\ \text { Dip Soldering Time } \leq 5 \mathrm{sec} & T_{\text {SOLD }} & 260 & { }^{\circ} \mathrm{C} \\ \text { Iron Soldering Time } \leq 3 \mathrm{sec} & T_{\text {SOLD }} & 300 & { }^{\circ} \mathrm{C}\end{array}$

$V_{R}$	5
$I_{F}$	200
$T_{F S}$	2.5
$T_{j}$	100
$T_{S}$	-55 to +100
$P_{\text {tot }}$	470


$\mathrm{R}_{\text {thJamb }}$	450	KIW
$\mathrm{R}_{\text {thJG }}$	160	KIW

${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$

V
mA
A
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
mW

KIW
KIW

Characteristics ( $T_{a m b}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission at $\mathrm{I}_{F}=10 \mathrm{~mA}$	$\lambda p e a k$	880	$n \mathrm{~m}$
Wavelength at peak emission at $I_{F}=100 \mathrm{~mA}$, $\mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}$, Duty cycle $=1: 12$	$\lambda p e a k$	883	nm
Wavelength at peak emission at $I_{F}=1 \mathrm{~A}$, $t_{\text {oulse }}=100 \mu \mathrm{~s}, \text { Duty cycle }=1: 100$	入peak	886	nm
Spectral bandwidth at $50 \%$ of $I_{\text {max }}$ at $I_{F}=10 \mathrm{~mA}$	$\Delta \lambda$	80	nm
Half angle	$\varphi$	$\pm 15$	degrees
Active chip area	A	0.16	$\mathrm{mm}^{2}$
Dimensions of active chip area	$L \times W$	$0.4 \times 0.4$	mm
Distance chip surface to case surface	D	2.8...3.7	mm
Switching time:   (I from $10 \%$ to $90 \%$; and from $90 \%$ to $10 \%$ $\left.\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\right)$	$t_{r}, t_{\text {f }}$	0.6/0.5	$\mu \mathrm{s}$
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ )	$\mathrm{C}_{0}$	25	pF
Forward voltage ( $I_{\mathrm{F}}=100 \mathrm{~mA} ; \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}$ )	$V_{F}$	1.5 ( $\leq 1.8$ )	V
$\left(I_{F}=1 \mathrm{~A}_{;} \mathrm{t}_{\text {puise }}=100 \mu \mathrm{~s}\right)$	$V_{F}$	3.0 ( $\leq 3.8$ )	V
Breakdown voltage ( $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ )	$V_{B R}$	$30(\geq 5)$	$V$
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$	0.01 ( $\leq 10$ )	$\mu \mathrm{A}$
Temperature coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\boldsymbol{\Phi}_{e}$	TC	-0.5	\%/K
Temperature coefficient of $\mathrm{V}_{F}$	TC	-0.2	\%/K
Temperature coefficient of $\lambda$ peak	TC	0.25	$\mathrm{nm} / \mathrm{K}$
$\Phi_{e}$ (Total) typ. $\left(l_{F}=100 \mathrm{~mA}\right)$	$\Phi_{\text {e }}$	10	mW

Grouped according to radiant intensity.
$I_{e}=$ at $I_{F}=100 \mathrm{~mA}$ in axial direction.

	$\mathbf{- 1}$	$\mathbf{- 2}$	$\mathbf{- 3}$	
Radiant Intensity $\mathrm{I}_{\mathrm{e}}$	10 to 20	16 to 32	$\geq 35$	$\mathrm{~mW} / \mathrm{sr}$

[^62]


## FEATURES

- TO-18 Hermetic Package
- Flat Glass Lens
- Wide Beam, $60^{\circ}$
- Very High Power, 10 mW Typical at 100 mA
- Three Radiant Intensity Selections

SFH482-1, $\geq 3.1 \mathrm{~mW} / \mathrm{sr}$
SFH482-2, $\geq 5 \mathrm{~mW} / \mathrm{sr}$
SFH482-3, $\geq 8 \mathrm{~mW} / \mathrm{sr}$

## DESCRIPTION

The SFH 482 series are infrared emitting diodes which emit radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The case, which is similar to TO-18, is topped by a flat glass lens. The cathode lead is nearest the tab on the rim of the case bottom. The anode is electrically connected to the case.


## Maximum Ratings

Reverse Voltage
Forward Current ( $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$ )
Surge Current ( $\tau \leq 10 \mu \mathrm{~s}$ )
Junction Temperature
Storage Temperature
Power Dissipation ( $\mathrm{T}_{\mathrm{c}} \leq 25^{\circ} \mathrm{C}$ )
Thermal Resistance:
Junction to Air
Junction to Case

$V_{R}$	5	$V$
$I_{F}$	200	mA
$\mathrm{~F}_{\mathrm{F}_{S}}$	2.5	A
$\mathrm{~F}_{j}$	100	${ }^{\circ} \mathrm{C}$
$T_{s}$	-55 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	470	mW
$R_{\text {thJamb }}$	450	KW
$R_{\text {thJG }}$	160	KW

Soldering Temperature
(Distance from casing-solder
tab $\geq 2 \mathrm{~mm}$ )
Dip Soldering Time $\leq 5 \mathrm{sec}$
Iron Soldering Time $\leq 3 \mathrm{sec}$

$T_{\text {SOLD }}$	260

ค๐

Characteristics ( $T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Wavelength at peak emission at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Wavelength at peak emission at $I_{F}=100 \mathrm{~mA}$;
$t_{\text {puise }}=20 \mathrm{~ms}$; Duty cycle $=1: 12$

גpeak	880	nm
$\lambda$ peak	883	nm
$\lambda$ peak	886	nm
$\Delta \lambda$	80	nm
$\varphi$	$\pm 30$	degrees
A	0.16	$\mathrm{~mm}^{2}$
$\mathrm{~L}_{\mathrm{L}} \times \mathrm{W}$	$0.4 \times 0.4$	mm
D	$2.1 \ldots 2.7$	mm
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$0.6 / 0.5$	$\mu \mathrm{~s}$
$\mathrm{C}_{\mathrm{o}}$	25	pF
$\mathrm{V}_{\mathrm{F}}$	$1.5(\leq 1.8)$	V
$\mathrm{V}_{\mathrm{F}}$	$3.0(\leq 3.8)$	V
$\mathrm{V}_{\mathrm{BR}}$	$30(\geq 5)$	V
$\mathrm{I}_{\mathrm{R}}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
TC	-0.5	$\% / \mathrm{K}$
TC	-0.2	$\% / \mathrm{K}$
TC	0.25	$\mathrm{~nm} / \mathrm{K}$
$\Phi_{\mathrm{e}}$	10	mW

Wavelength at peak emission at $I_{F}=1 \mathrm{~A}$;
$t_{\text {pulse }}=100 \mu \mathrm{~s}$; Duty cycle $=1: 200$
Spectral bandwidth at $50 \%$ of $I_{\text {max }}$ at $I_{F}=10 \mathrm{~mA}$
Half angle
Active chip area
Dimensions of active chip area
Distance chip surface to case surface
Switching time: ( $\mathrm{I}_{\mathrm{e}}$ from $10 \%$ to $90 \%$;
and from $90 \%$ to $10 \% I_{F}=100 \mathrm{~mA}$ )
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$ )
Forward Voltage ( $l_{F}=100 \mathrm{~mA} ; \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}$ ) $\left(t_{F}=1 A ; t_{\text {pulse }}=100 \mu \mathrm{~s}\right)$
Breakdown voltage $\left(I_{R}=10 \mu \mathrm{~A}\right)$
Reverse current ( $V_{R}=5 \mathrm{~V}$ )
Temperature coefficient of $\mathrm{I}_{e}$ or $\boldsymbol{\Phi}_{e}$
Temperature coefficient of $\mathrm{V}_{F}$
Temperature coefficient of $\lambda$ peak
$\Phi_{e}$ (Total) typ. $\left(l_{F}=100 \mathrm{~mA}\right)$

Grouped according to radiant intensity.
$I_{e}=$ at $I_{F}=100 \mathrm{~mA}$ in axial direction.

	-1	-2	$\mathbf{- 3}$	
Radiant Intensity $\mathrm{I}_{\mathrm{e}}$	3.1 to 6.3	5 to 10	$\geq 8$	$\mathrm{~mW} / \mathrm{sr}$

Specifications are subject to change without notice.



## FEATURES

- Good Spectral Match with Silicon Photo Detector
- Gallium Aluminum Arsenide Material
- Low Cost
- T.13/4 Package
- Clear Plastic Lens
- Long Term Stability
- Narrow Beam, $16^{\circ}$
- Very High Power, 20 mW Typical at 100 mA
- High Intensity, $100 \mathrm{~mW} / \mathrm{sr}$ at 100 mA
- For Smoke Detection Application: Use SFH484-E7517


## DESCRIPTION

SFH 484, an infrared emitting diode, emits radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 5 mm plastic package. Uses for SFH 484 include: IR remote control of color TV receivers, smoke detectors, and other applications requiring very high power, such as IR touch screens.










Forward current (max):   dependent upon the lead length   from the package bottom to the						
PC board.						



## FEATURES

- Perfect Spectral Match with Silicon Photodetectors
- Gallium Aluminum Arsenide Material
- Low Cost
- T13/4 Package
- Clear Blue Tinted Plastic Lens
- Long Term Stability
- Medium Wide Beam, $40^{\circ}$
- Very High Power, 20 mW Typical at 100 mA
- High Intensity, $\mathbf{4 0} \mathbf{~ m W} / \mathrm{sr}$ at 100 mA


## DESCRIPTION

SFH 485, an infrared emitting diode, emits radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 5 mm plastic package. Uses for SFH 485 include: IR remote control of color TV receivers, smoke detectors, and other applications requiring very high power, such as IR touch screens.


## Maximum Ratings

Storage temperature   Soldering temperature at dip soldering: $(\geq 2 \mathrm{~mm}$   distance from the case bottom; soldering time   $\mathrm{t} \leq 5 \mathrm{sec})$	$\mathrm{T}_{\text {stig }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature at iron soldering: $(\geq 2 \mathrm{~mm}$   distance from the case bottom; soldering time	$\mathrm{T}_{\text {sold }}$	260	${ }^{\circ} \mathrm{C}$
$\mathrm{t} \leq 3 \mathrm{sec})$			

## Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission at $I_{F}=10 \mathrm{~mA}$
Wavelength at peak emission at $I_{F}=100 \mathrm{~mA}$,

$$
\mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}, \text { Duty cycle }=1: 12
$$

Wavelength at peak emission at $I_{F}=1 \mathrm{~A}$,
$t_{\text {pulse }}=100 \mu \mathrm{~s}$, Duty cycle $=1: 100$
Spectral bandwidth at $I_{F}=10 \mathrm{~mA}$
Half angle
Active chip area
Dimensions of active chip area
Distance chip surface to case surface

خpeak	880	nm
$\lambda$ peak	883	nm
$\lambda$ peak	886	nm
$\Delta \lambda$	80	nm
$\vartheta$	$\pm 20$	Degre
A	0.16	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.4 \times 0.4$	$\mathrm{~mm}^{2}$
D	0.4 to 4.6	mm

Switching time:
( $\mathrm{I}_{\mathrm{e}}$ from $10 \%$ to $90 \%$; and from $90 \%$ to $10 \%$

$$
\left.I_{F}=100 \mathrm{~mA}\right)
$$

Capacitance $\left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right.$ )
Forward voltage $\left(I_{\mathrm{F}}=100 \mathrm{~mA}\right.$; $\left.\mathrm{t}_{\text {puise }}=20 \mathrm{~ms}\right)$
$\left(I_{F}=1 A ; t_{\text {pulse }}=100 \mu \mathrm{~s}\right)$
Breakdown voltage ( $\mathrm{t}_{\mathrm{R}}=10 \mu \mathrm{~A}$ )
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )
Temperature coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\boldsymbol{\Phi}_{e}$
Temperature coefficient of $V_{F}$
Temperature coefficient of $\lambda$ peak

$\mathrm{t}_{r} \mathrm{t}_{\mathrm{H}}$	$0.6 / 0.5$	$\mu \mathrm{~s}$
$\mathrm{C}_{0}$	25	pF
$\mathrm{V}_{\mathrm{F}}$	$1.5(\leq 1.8)$	V
$\mathrm{V}_{\mathrm{F}}$	$3.0(\leq 3.8)$	V
$\mathrm{V}_{B R}$	$30(\geq 5)$	V
$\mathrm{I}_{\mathrm{R}}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
TC	-0.5	$\% / \mathrm{K}$
TC	-0.2	$\% / \mathrm{K}$
TC	0.25	$n m / \mathrm{K}$

Radiant intensity $\mathrm{I}_{\mathrm{e}}$ in axial direction at a steradian $\Omega=0.01 \mathrm{sr}$ or $6.5^{\circ}$
Radiant intensity

$\left(I_{F}=100 \mathrm{~mA}, \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}\right)$	$\mathrm{I}_{\mathrm{e}}$	$40(\geq 16)$	$\mathrm{mW} / \mathrm{sr}$
$\left(\mathrm{I}_{F}=1 \mathrm{~A} ; \mathrm{t}_{\text {puise }}=100 \mu \mathrm{~s}\right)$	$\mathrm{I}_{\mathrm{e}}$	360	$\mathrm{~mW} / \mathrm{sr}$
$\Phi_{e}($ Total $)$	typ.		
$\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\right)$	$\Phi_{e}$	20	mW

*At 10 mm max clearance between PC board and bottom of plastic body.
Specifications are subject to change without notice.



## FEATURES

- Good Spectral Matching to Silicon Photo Detector
- Gallium Aluminum Arsenide Material
- Low Cost
- T-13/4 Base Package
- Flat Lens
- Long Term Stability
- Wide Beam, $80^{\circ}$
- Very High Power, 20 mW Typical at 100 mA


## DESCRIPTION

SFH 485P, an infrared emitting diode, emits radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 5 mm diameter plastic package. Uses for the SFH 485P include: IR remotre control of color TV receivers, smoke detectors, and other applications requiring very high power, such IR touch screens.


[^63]


## FEATURES

- Good Spectral Match to Silicon Photo Detector
- Gallium Aluminum Arsenide Material
- Low Cost
- T-1 Package
- Clear Blue Tinted Plastic Lens
- Long-Term Stability
- Medium Wide Beam, $40^{\circ}$
- Very High Power, 20 mW Typical at 100 mA
- High Intensity, $\mathbf{3 0} \mathbf{~ m W} / \mathrm{sr}$ at 100 mA


## DESCRIPTION

SFH 487, an infrared emitting diode, emits radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 3 mm plastic package. Uses for SFH 487 include: IR remote control of color TV receivers, smoke detectors, and other applications requiring very high power, such as IR touch screens.


## Maximum Ratings

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature at dip soldering: ( $\geq 2 \mathrm{~mm}$ distance from the case bottom; soldering time $\mathrm{t} \leq 5 \mathrm{sec}$ )	$\mathrm{T}_{\text {sold }}$	260	${ }^{\circ} \mathrm{C}$
Soldering temperature at iron soldering: ( $\geq 2 \mathrm{~mm}$ distance from the case bottom; soldering time $\mathrm{t} \leq 3 \mathrm{sec}$ )	$\mathrm{T}_{\text {sold }}$	300	${ }^{\circ} \mathrm{C}$
Junction temperature	T	100	${ }^{\circ} \mathrm{C}$
Reverse voltage	$V_{\text {R }}$	5	V
Forward current	$\mathrm{I}_{\mathrm{F}}$	100	mA
Surge current ( $\tau=10 \mu \mathrm{~s}$ )	$\mathrm{i}_{\text {FS }}$	2.5	A
Power dissipation ( $\mathrm{T}=25^{\circ} \mathrm{C}$ )	$\mathrm{P}_{\text {tot }}$	200	mW
Thermal resistance	$\mathrm{R}_{\text {thA }}$	375	K/W

## Characteristics ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\lambda$ peak	880	nm
Wavelength at peak emission at $I_{F}=100 \mathrm{~mA}$, $\mathrm{t}_{\text {puise }}=20 \mathrm{~ms}$, Duty cycle $=1: 12$   Wavelength at peak emission at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$,			
Wavelength at peak emission at $I_{F}=1 \mathrm{~A}$, $t_{\text {pulse }}=100 \mu \mathrm{~s}, \text { Duty cycle }=1: 100$	$\lambda$ peak	886	nm
Spectral bandwidth at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\Delta \lambda$	80	nm
Half angle	$\varphi$	$\pm 20$	degrees
Active chip area	A	0.16	$\mathrm{mm}^{2}$
Dimensions of active chip area	L×W	$0.4 \times 0.4$	mm
Distance chip surface to stand off	$\bigcirc$	2.6	mm
Switching time: (I from $10 \%$ to $90 \%$; and from $90 \%$ to $10 \%$			
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ )	$\mathrm{C}_{0}$	25	pF
Forward voltage ( $l_{F}=100 \mathrm{~mA} ; \mathrm{t}_{\text {puise }}=20 \mathrm{~ms}$ )	$V_{F}$	$1.5(\leq 1.8)$	V
$\left(I_{F}=1 \mathrm{~A} ; \mathrm{t}_{\text {pulse }}=100 \mu \mathrm{~s}\right)$	$V_{F}$	$3.0(\leq 3.8)$	V
Breakdown voltage ( $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ )	$V_{B R}$	$30(\geq 5)$	$V$
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$\mathrm{I}_{\text {R }}$	$0.01(\leq 10)$	$\mu \mathrm{A}$
Temperature coefficient of $\mathrm{I}_{\mathrm{e}}$ or $\Phi_{e}$	TC	-0.5	\%/K
Temperature coefficient of $\mathrm{V}_{\mathrm{F}}$	TC	-0.2	\%/K
Temperature coefficient of $\lambda$ peak	TC	0.25	$n \mathrm{~m} / \mathrm{K}$
Radiant intensity $\mathrm{I}_{\mathrm{e}}$ in axial direction at a steradian $\boldsymbol{\Omega}=0.01 \mathrm{sr}$			
Radiant intensity ( $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}$ )	$t^{*}$	$30(\geq 12.5)$	$\mathrm{mW} / \mathrm{sr}$
$\left(I_{F}=1 \mathrm{~A} ; \mathrm{t}_{\text {pulse }}=100 \mu \mathrm{~s}\right)$	$1{ }_{\text {e }}$	270	$\mathrm{mW} / \mathrm{sr}$
$\Phi_{\theta}$ (Total) typ. ( $1_{F}=100 \mathrm{~mA}$ )	$\boldsymbol{\Phi}_{\text {e }}$	20	mW

[^64]


## FEATURES

- Perfect Spectral Match with Silicon Photo Detector
- Gallium Aluminum Arsenide Material
- Low Cost
- T1 Package
- Flat Plastic Lens
- Long-Term Stability
- Very Wide Beam, $130^{\circ}$
- Very High Power, 20 mW Typical at 100 mA


## DESCRIPTION

SFH 487P, an infrared emitting diode, emits radiation in the near infrared range ( 880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 3 mm diameter plastic package with a flat lens. Typical applications are in digital shaft encoders and light interruptors for DC and AC operation.


## Maximum Ratings

Storage temperature $\quad T_{\text {stg }} \quad-55$ to $+100 \quad{ }^{\circ} \mathrm{C}$
Soldering temperature at dip soldering: ( $\geq 2 \mathrm{~mm}$ distance from the case bottom; soldering time $\mathrm{t} \leq 5 \mathrm{sec}$ )

$T_{\text {sold }}$	260	${ }^{\circ} \mathrm{C}$
$T_{\text {sold }}$	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}$	5	V
$\mathrm{I}_{\mathrm{F}}$	100	mA
$\mathrm{I}_{\text {FS }}$	2.5	A
$\mathrm{P}_{\text {tot }}$	200	mW
$\mathrm{R}_{\text {tha }}$	375	KW

Characteristics ( $T_{a m b}=25^{\circ} \mathrm{C}$ )

Wavelength at peak emission at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\lambda$ peak	880	nm
Spectral bandwidth at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\Delta \lambda$	80	nm
Half angle	$\varphi$	$\pm 65$	degree
Active chip area	A	0.16	$\mathrm{mm}^{2}$
Dimensions of active chip area	L×W	$0.4 \times 0.4$	mm
Distance chip surface to case surface	D	0.4 to 0.7	mm
Switching time:   ( $l_{e}$ from $10 \%$ to $90 \%$; and from $90 \%$ to $10 \%$			
$\left.\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\right)$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0.6/0.5	$\mu \mathrm{s}$
Capacitance ( $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ )	Co	25	pF
Forward Voltage ( $t_{F}=100 \mathrm{~mA}$; $\mathrm{t}_{\text {puise }}=20 \mathrm{~ms}$ )	$V_{F}$	$1.5(\leq 1.8)$	V
$\left(I_{F}=1 \mathrm{~A} ; \mathrm{t}_{\text {puise }}=100 \mu \mathrm{~s}\right)$	$V_{F}$	3.0 ( $\leq 3.8$ )	V
Breakdown voltage ( $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ )	$V_{B R}$	$30(\geq 5)$	V
Reverse current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )	$I_{\text {R }}$	0.01 ( $\leq 10$ )	$\mu \mathrm{A}$
Temperature coefficient of $\mathrm{l}_{\mathrm{e}}$ or $\Phi_{\mathrm{e}}$	TC	-0.5	\%/K
Temperature coefficient of $\mathrm{V}_{\mathrm{F}}$	TC	-0.2	\%/K
Temperature coefficient of $\lambda$ peak	TC	0.25	nm/K
Radiant intensity $\mathrm{I}_{\mathrm{e}}$ in axial direction at a steradian $\Omega=0.01 \mathrm{sr}$			
Radiant intensity ( $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{t}_{\text {pulse }}=20 \mathrm{~ms}$ )	$l_{\text {e }}$	$4(\geq 2)$	mW/sr
$\left(l_{F}=1 \mathrm{~A} ; \mathrm{t}_{\text {pulse }}=100 \mu \mathrm{~s}\right)$	$\mathrm{l}_{\mathrm{e}}$	27	$\mathrm{mW} / \mathrm{sr}$
$\Phi_{e}$ (Total) typ. ( $l_{F}=100 \mathrm{~mA}$ )	$\Phi_{e}$	20	mW
*At 10 mm clearance between PC board and bottom of plastic body.			



## Photodiodes

Package Type	Package Outline	Part Number	Half Angle	$\begin{gathered} \text { Dark } \\ \text { Current } \\ \mathrm{l}_{\mathrm{R}}(\mathrm{nA}) \\ \mathrm{V}_{\mathrm{R}} \mathrm{l}, \mathrm{E}=0 \end{gathered}$	Photo Sensitivity nA/Ix	Radiant Sensitive Area mm²	Peak   Wave-   length	Features	Page
T13/4 Plastic		SFH250	N/A	$\begin{gathered} 1(\leq 10) \\ 20 \mathrm{~V} \end{gathered}$	N/A	N/A	850	Fiber optic short distance data transmission, 2.3 mm aperture holds 1000 micron plastic fiber.	8-56
Plastic Black		BP104	$\pm 60^{\circ}$	$\begin{gathered} 2(<30) \\ (10 \mathrm{~V}) \end{gathered}$	$17(\geq 12.5) \mu \mathrm{A}$	5	950	PIN type   IR remote control Built in filter	8-4
Plastic   Solder Tabs		BPW33	$\pm 60^{\circ}$	$20 \mathrm{pA}(<100)$   (1V)	$75(\geq 35)$	7.34	800	Transparent for exposure meters	8-12
		BPW34		$\begin{gathered} 2(<30) \\ (10 \mathrm{~V}) \end{gathered}$	$80(\geq 50)$		880	PIN Type Transparent	8-14
		BPW34B			75 (50)		850	PIN type transparent blue enhanced	8-16
		BPW34F			$25(\geq 15)$		950	PIN Type with IR Filter	8-18
		BPX91B		$\begin{gathered} 7(<300) \\ (10 \mathrm{~V}) \end{gathered}$	$65(\geq 35)$		850	Transparent high blue sensitivity Operates at low luminance	8-34
Plastic   Solder Tabs		BPX90K	$\pm 60^{\circ}$	$\begin{gathered} 5(<200) \\ (10 \mathrm{~V}) \end{gathered}$	$13(\geq 8)$	5.0	950	High sensitivity Superior signal to noise ratio at low luminance. $K$ version has IR filter.	8-32
		BPX90		$\begin{gathered} 5(\leq 200) \\ (10 \mathrm{~V}) \end{gathered}$	$45(\geq 25)$	5.0	850		
		BPW32		$\begin{gathered} 5 \mathrm{pA}(<20) \\ (1 \mathrm{~V}) \end{gathered}$	$10(\geq 7)$	1.0	800	Extremely low dark current 5pA	8-10
		SFH200		$\begin{gathered} 5(\leq 40) \mathrm{pA} \\ (1 \mathrm{~V}) \end{gathered}$	$20(\geq 14)$	2		High zero crossover	8-40
Plastic Colorless Solder Tabs		SFH100	$\pm 60^{\circ}$	$\begin{gathered} 0.4(<10) \\ (10 \mathrm{~V}) \end{gathered}$	$175(\geq 150)$	23.5	850	Extremely Sensitive including high blue sensitivity. Operates at low luminance.	8-38
Plastic, Colorless Solder Tabs		BPX92	$\pm 60^{\circ}$	$\begin{gathered} 1(<100) \\ (10 \mathrm{~V}) \end{gathered}$	$9.5(\geq 4)$	1	850	Superior signal to noise ratio at low luminance	8-36
Plastic SMD		BP104BS	$\pm 60^{\circ}$	$\begin{gathered} 2(\geq 30) \\ 10 \mathrm{~V} \end{gathered}$	$25(\geq 15) \mu \mathrm{A}$	7.34	920	PIN Type   IR Filter   Surface Mounted	8-6

For non-standard requirements, see Custom Products on page 1-1.

## Photodiodes

Package Type	Package Outline	Part Number	Half Angle	Dark Current $\mathrm{I}_{\mathrm{B}}(\mathrm{nA})$ $\left[V_{\mathrm{B}}\right], \mathrm{E}=0$	Photo Sensitivity nA/lx	Radiant Sensitive Area mm ${ }^{2}$	Peak Wavelength	Features	Page
Plastic, Black, Solder Tabs		SFH205	$\pm 70^{\circ}$	$\begin{gathered} 2(\leq 30) \\ (10 \mathrm{~V}) \end{gathered}$	$25(\geq 15) \mu \mathrm{A}$	7.34	950	PIN Type built in filter   Curved surface Superior $\mathrm{s} / \mathrm{n}$ ratio at low luminance	8-46
Plastic, Black, Solder Tabs		SFH205Q2	$\pm 70^{\circ}$	$\begin{gathered} 2(\leq 30) \\ (10 \mathrm{~V}) \end{gathered}$	$25(\geq 15) \mu \mathrm{A}$	7.34	950	PIN Type built in filter. Curved surface. Superior s/n ratio at low luminance	8-48
Plastic, Black Solder Tabs		SFH206			$25(\geq 16) \mu \mathrm{A}$		950	PIN Type built in filter. Flat surface. Superior s/n ratio at low luminance	8-50
Plastic, Clear   Solder Tabs		SFH206K	$\pm 70^{\circ}$	$\begin{gathered} 2(<30) \\ (10 \mathrm{~V}) \end{gathered}$	$80(\geq 50) \mu \mathrm{A}$	7.34	850	PIN Type   Transparent   flat surface.   Superior s/n ratio at low luminance	8-52
Plastic, Colorless Solder tabs.		BPX48	$\pm 60^{\circ}$	$\begin{gathered} 100(<200) \\ (10 \mathrm{~V}) \end{gathered}$	$24(\geq 15)$	2×1.5	850	Differential i pe.   Fast respon e   Photodiodes   separated by   50 micrometers.	8-20
Miniature 6 Lead		SFH204	N/A	$\begin{gathered} 0.01(<2) \\ (10 \mathrm{~V}) \end{gathered}$	.13( $\geq 0.08$ )	$4 \times 0.01$	850	Four quadrant Two axis precision position control.   Fast response.   Photodiodes separated by 12 micrometers	8-44
TO-18   Round   Plastic lens		BPX63	$\pm 75^{\circ}$	$\begin{gathered} 5 \mathrm{pA}(<20) \\ (1 \mathrm{~V}) \end{gathered}$	$10(\geq 8)$	1	800	Extremely low current, 5 pA   For exposure meters Matches with LD242 IR emitter.	8-26

For non-standard requirements, see Custom Products on page 1-1.

Package Type	Package Outline			Part Number	Half   Angle	Dark Current $I_{R}(n A)$ $\left[V_{R}\right], E=0$	Photo Sensitivity nA/lx	Radiant Sensitive Area $\mathrm{mm}^{2}$	Peak Wavelength	Features	Page
PIN TO-18 Flat Glass Lens				BPX65	$\pm 40^{\circ}$	$\begin{aligned} & 1(<5) \\ & (20 \mathrm{~V}) \end{aligned}$	$11(\geq 5.5)$	1	850	PIN type Very high speed, 5 nS . Low dark current, 1 mA	8-28
				BPX66		$0.15(<0.3)$ (iV)	$11(\geq 5.5)$			PIN type Very high speed, $5 n s$. Very low dark current, 15 mA	8-30
PIN TO-18 Flat Glass Lens				SFH202	$\pm 60^{\circ}$	$\begin{aligned} & 1(<5) \\ & (20 \mathrm{~V}) \end{aligned}$	0.45	1	850	PIN type   For fiber optic transmission over $560 \mathrm{~m} / \mathrm{bits}$	8-42
				SFH202a							
T13/4   Flat   Plastic   Package				SFH217	$\pm 60^{\circ}$	$\begin{aligned} & 1(\leq 10) \\ & (20 \mathrm{~V}) \end{aligned}$	$9.5(\geq 5)$	1	850	PIN type Low cost diode for fiber optics. Transmission over $560 \mathrm{~m} / \mathrm{bits}$.	8-54
				SFH217F			$\begin{gathered} 3.0(\geq 1.8) \\ \mu \mathrm{A} \end{gathered}$		900		
Similar to TO-5 Flat Glass Lens				BPW21	$\pm 60^{\circ}$	$2(<30)$	10(>5.5)	7.34	550	Hermetic seal glass lens for high reliability. Incorporates $\mathrm{V}_{2}$ filter, 550 nm .	8-8
				BPX60	$\pm 55^{\circ}$	$\begin{gathered} 7(<300) \\ (10 \mathrm{~V}) \end{gathered}$	$70(\geq 35)$		850	Superior signal to noise ratio at low luminance.	8-22
				BPX61		$\begin{gathered} 2(<30) \\ (10 \mathrm{~V}) \end{gathered}$	$70(\geq 50)$			PIN type   Superior s/n ratio at low luminance. Low dark current $2 n A$.	8-24

For non-standard requirements, see Custom Products on page 1-1.


## FEATURES

- Silicon Planar PIN Photodiode
- IR Transparent Filter Plastic Package
- 2/10" Lead Spacing
- High Speed
- Lead Bend Option (for SMD)


## DESCRIPTION

BP 104 is a silicon planar PIN photodiode, encapsulated in a plastic package, which simultaneously serves as filter and is transparent to IR radiation. Its terminals are soldering tabs spaced $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ apart. Due to its design the diode can easily be mounted, even on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. This universal photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances.
The PIN photodiode is outstanding for its low junction capacitance, high maximum frequency, and fast switching times. It is particularly suitable for IR sound transmission

Package Dimensions in Inches (mm)


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )			
Operating and Storage Temperature Range			to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance			$230{ }^{\circ} \mathrm{C}$
Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )			
Photosensitivity			
$\left.E_{\mathrm{e}}^{n}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$	5	(125)	
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	950	nm
Spectral Range of Photosensitivity			
Radiant Sensitive Area	A	4.84	$\mathrm{mm}^{2}$
Dimensions of the Radiant			
Sensitive Area	$L \times W$	$2.20 \times 2.20$	mm
Distance Between Chip Surface			
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	R	2 ( $\leq 30$ )	nA
Spectral Photosensitivity			
( $\lambda=950 \mathrm{~nm}$ )	$S_{\lambda}$	0.70	A/W   Electrons
Quantum Efficiency ( $\lambda=950 \mathrm{~nm}$ )	$\eta$	0.90	Photon
Open Circuit Voltage $\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$\mathrm{V}_{0}$	$327(\geq 250)$	mV
Short Circuit Current $\left(E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$I_{S C}$	$17(\geq 12.5)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~mm}\right.$			
$\left.\mathrm{I}_{\mathrm{p}}=17 \mu \mathrm{~A}\right)$	$t_{r}, t_{t}$	125	ns
Forward Voltage			
$\left(I_{F}=100 \mathrm{~mA}, \mathrm{E}_{\mathrm{e}}=0\right.$ )	$V_{F}$	1.3	V
Capacitance			
$\left(V_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{0}$	48	pF
Temperature Coefficient $\mathrm{V}_{0}$	$\mathrm{TC}_{\text {V }}$	-2.6	mV/K
Temperature Coefficient $\mathrm{I}_{\mathrm{S}}$	TC,	0.18	$\% / \mathrm{K}$
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	NEP	$3.6 \times 10^{-14}$	$\overline{\sqrt{\mathrm{Hz}}}$
			$\mathrm{cm} \sqrt{\mathrm{Hz}}$
Detection Limit	D	$6.1 \times 10^{12}$	W
Specifications are subject to change	whout n		










Open circuit voltage $\frac{V_{L}}{V_{L 25^{\circ}}}=f\left(T_{\text {amb }}\right)$



## FEATURES

- Silicon Planar Pin Photodiode
- Plastic Package
- 2/10" Lead Spacing
- Low Junction Capacitance
- Short Switching Time
- High Sensitivity
- IR Filter
- Lead Bend (for SMD)


## DESCRIPTION

The BP104BS is a silicon planar PIN photodiode in a plastic package. Because the terminals are soldering tabs bent for surface mounting the diode can easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. The cathode is marked by a blue dot.
These devices can be arrayed. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. An application is IR sound transmission.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V			
Operating and Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . 40 to $+80^{\circ} \mathrm{C}$			
Soldering Temperature in a 2 mm Distancefrom the Case Bottom (t 3 s ( $\left.\mathrm{T}_{\mathrm{S}}\right)$.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230{ }^{\circ}{ }^{\circ} \mathrm{C}$			
Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )			
Photosensitivity			
$\begin{aligned} & \left(V_{R}=5 \mathrm{~V}, \lambda=950 \mathrm{~nm}\right. \\ & \left.\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right) \end{aligned}$	S	$25(\geq 15)$	$\mu \mathrm{A}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	920	nm
Spectral Range of Photosensitivity			
Radiant Sensitive Area	A	7.34	$\mathrm{mm}^{2}$
Dimensions of the Radiant			
Distance Between Chip Surface			
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	$I_{\text {R }}$	$2(\leq 30)$	nA
Spectral Photosensitivity ( $\lambda=950 \mathrm{~nm}$ )	$S_{\lambda}$	0.68	A/W   Electrons
Quantum Yield ( $\lambda=950 \mathrm{~nm}$ )	$\eta$	0.90	Photon
Open Circuit Voltage			
Short Circuit Current $\left(E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$t_{s c}$	$25(\geq 15)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right.$ $I_{p}=25 \mu \mathrm{~A}$ )	$t_{r}, t_{\text {d }}$	400	ns
Forward Voltage $\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{E}_{e}=0, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$	$V_{F}$	1.3	V
Capacitance $\left(V_{R}=0 \mathrm{~V}, \mathrm{E}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{0}$	72	pF
Temperature Coefficient of $V_{0}$	TC ${ }^{\text {v }}$	-2.6	mV/K
Temperature Coefficient of $\mathrm{I}_{\mathrm{S}}$	TC,	0.18	$\begin{gathered} \text { \%/K } \\ W \end{gathered}$
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	NEP	$3.7 \times 10^{-14}$	$\frac{\frac{1}{\sqrt{\mathrm{~Hz}}}}{\mathrm{~cm}} \sqrt{\sqrt{\mathrm{~Hz}}}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)$	D	$7.3 \times 10^{12}$	W

[^65]

## Directional characteristic

$\mathrm{S}_{\text {rel }}=\mathrm{f}(\varphi)$


Capacitance versus reverse voltage $\mathrm{f}=1 \mathrm{MHz} \mathrm{E}=0$


Open circuit voltage $\frac{V_{0}}{V_{025}}=f\left(T_{\text {amb }}\right)$



## FEATURES

- Incorporates, V $\lambda$ Filter
- High Reliability
- Hermetically Sealed, Glass Lens Package, Similar to TO-5
- Low Noise
- High Open-circuit Voltage as Photovoltaic Cells
- Detector for Low Illuminance
- Short Switching Time
- High Photosensitivity
- Logarithmic Relation Between $\mathrm{V}_{\mathrm{O}}$ or $\mathrm{I}_{\mathrm{S}}$ and Illuminance of $10^{-2}$ to $10^{5} \mathrm{Ix}$
- Wide Temperature Range
- Suitable in the Range of Visible Light


## DESCRIPTION

BPW 21 is a Planar Silicon Photodiode. The N -Si material results in a positive front and negative back contact. These photodetectors can be operated as photodiodes with reverse voltage or as photovoltaic cells. Applications include exposure meters for daylight as well as artificial light of high color temperature in photographic fields and color analysis.


Specifications are subject to change without notice.



## FEATURES

- Silicon Planar Photodiode
- Transparent Plastic Package
- 2/10" Lead Spacing
- Very Low Dark Current
- Low Illuminances Usage, i.e., Light Sensor
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPW 32 is a silicon planar photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs, arranged in $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ lead spacing. Because of this design, the diodes can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible.
The BPW 32 has been developed as a detector for low illuminances and is intended for use as a sensor in exposure meters and automatic exposure timers. The component is outstanding for low dark currents and when used as a voltaic cell-for a high open circuit voltage at low illuminances. The cathode is marked by an orange dot.


## Maximum Ratings




Photosensitivity
( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity ( $S=10 \%$ of $S \max$ )

$S$	$10(\geq 7)$	$\mathrm{nA} / \mathrm{lx}$
$\lambda_{\text {Smax }}$	800	nm
$\lambda$	$350 \ldots 1100$	nm
A	0.97	$\mathrm{~mm}^{2}$

Radiant Sensitive Area
Dimensions of the Radiant Sensitive Area
Distance Between Chip Surface and Package Surface
Half Angle
Dark Current $\left(V_{R}=1 \mathrm{~V}\right)$
Zero Crossing ( $E_{e}=0, T_{\text {amb }}=50^{\circ} \mathrm{C}$ )
$\mathrm{L} \times \mathrm{W} \quad 0.985 \times 0.985 \mathrm{~mm}$

Spectral Photosensitivity

H	0.5	mm
$\varphi$	$\pm 60$	Deg.
$I_{R}$	5 ( $\leq 20$ )	pA
$\mathrm{S}_{\mathrm{O}}$	$\geq 0.5$	mV/pA
$S_{\lambda}$	0.5	A/W   Electrons
$\eta$	0.73	Photon
$V_{0}$	$450(\geq 380)$	$m \mathrm{~V}$
$\mathrm{I}_{\mathrm{SC}}$	$10(\geq 7)$	$\mu \mathrm{A}$

( $\lambda=800 \mathrm{~nm}$ )


$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	1.3	$\mu \mathrm{sec}$
$\mathrm{V}_{\mathrm{F}}$	1.3	V
$\mathrm{C}_{0}$	100	pF
TC $_{V}$	-2.6	$\mathrm{mV} / \mathrm{K}$
TC $_{\mathrm{I}}$	0.2	$\% / \mathrm{K}$
NEP	$2.5 \times 10^{-15}$	$\frac{\mathrm{~W}}{\sqrt{\mathrm{~Hz}}}$
D	$3.9 \times 10^{13}$	$\frac{\mathrm{~cm} \sqrt{\mathrm{~Hz}}}{\mathrm{~W}}$

[^66]


## FEATURES

- Silicon Planar Photodiode
- Transparent Plastic Package
- 2/10" Lead Spacing
- Very Low Dark Current, 20 pA
- High Sensitivity, 75 nA/lx
- Light Measuring Applications
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPW 33 is a large area silicon planar photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs, arranged in 5.08 mm ( $2 / 10^{\prime \prime}$ ) lead spacing. Because of its design the diodes can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible.

The BPW 33 has been developed as a detector for low illuminances and is intended for use as a sensor in exposure meters and automatic exposure timers. The component is outstanding for high open circuit voltage at low illuminances. The cathode is marked by an orange dot.


## Maximum Ratings



Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )			
Photosensitivity			
( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)	S	$75(\geq 35)$	nA/lx
Wavelength of Max. Photosensitivity	$\lambda_{\text {smax }}$	800	nm
Spectral Range of Photosensitivity	$\lambda$	350... 1100	mm
Radiant Sensitive Area	A	7.34	$\mathrm{mm}^{2}$
Dimensions of the Radiant			
Distance Between Chip Surface   and Package Surface $\quad \mathrm{H} \quad 0.5 \mathrm{~mm}$			
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ )	$I_{R}$	$20(\leq 100)$	pA
Zero Cross Over ( $\mathrm{E}_{\mathrm{V}}=0$ )			$m \mathrm{~V} / \mathrm{pA}$
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	S	0.59	A/W Electrons
Quantum Yield ( $\lambda=800 \mathrm{~nm}$ )	$\eta$	0.86	Photon
Open Circuit Voltage			mV
Short Circuit Current ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{I}_{\mathrm{SC}}$	$72(\geq 35)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value$\begin{aligned} & \left(R_{L}=1 \mathrm{~K} \Omega, V_{\mathrm{H}}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right. \\ & \left.\mathrm{I}_{\mathrm{P}}=70 \mu \mathrm{~A}\right) \end{aligned}$			
Forward Voltage $\begin{aligned} & \left(I_{F}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.T_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance $\left(V_{R}=0 \mathrm{~V}, \mathrm{E}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{0}$	630	pF
Temperature Coefficient of $\mathrm{V}_{0}$	TC.	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{\mathrm{K}}$	TC ${ }_{1}$	0.2	$\begin{aligned} & \% / \mathrm{K} \\ & \mathrm{~W} \\ & \hline \end{aligned}$
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ )	NEP	$4.3 \times 10^{-15}$	$\begin{aligned} & \frac{1}{\sqrt{\mathrm{~Hz}}} \\ & \mathrm{~cm} \sqrt{\mathrm{~Hz}} \end{aligned}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}\right)$	D	$6.3 \times 10^{13}$	W

${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5040 and IEC publ. 306-1).
${ }^{2} \mathrm{~S}_{\mathrm{O}}$ is a measure for the lower spectral sensitivity when the photodiode is used in exposure meters. The zero cross over $\mathrm{S}_{\mathrm{O}}$ is defined in the diagram.

Specifications are subject to change without notice.



## FEATURES

- Silicon Planar PIN Photodiode
- Transparent Plastic Package
- 2/10" Lead Spacing
- Low Junction Capacitance
- Short Switching Time
- High Sensitivity
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPW 34 is a silicon planar PIN photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs arranged in $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ lead spacing. Due to its design the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible.
Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. The photodiode is particularly suitable for IR sound transmission.


Specifications are subject to change without notice.



## FEATURES

- Transparent Plastic Package
- 2/10" ( 5.08 mm ) Lead Spacing
- High Blue Sensitivity, $400 \mathrm{~mm}=\mathbf{3 0 \%}$ Srel
- Very Low Dark Current, 30 nA


## DESCRIPTION

The BPW34B is a planar silicon photodiode in a transparent plastic package. Its terminals are soldering tabs arranged in $2 / 10^{\prime \prime}(5.08 \mathrm{~mm}$ ) lead spacing. Due to its design, the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. The increased blue sensitivity with short wavelength makes the BPW34B particularly suitable for application with high blue light source.

This versatile photodetector is suitable for diode as well as a voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The cathode is marked by a tab on the solder lead.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	32 V
Operating and Storage Temperature Range	-40 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) ( $\mathrm{T}_{\mathrm{s}}$ )	$230^{\circ} \mathrm{C}$
Power Dissipation ( $\left.T_{\text {amb }}=25^{\circ} \mathrm{C}\right)\left(\mathrm{P}_{\text {tot }}\right)$	150 mW

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Photosensitivity ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ )
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity ( $S=10 \%$ of Smax)

S	$75(\geq 50)$	$\mathrm{nA} / \mathrm{lx}$   $\lambda_{\text {Smax }}$
850	nm	
$\lambda$	$350 \ldots .1100$	nm
A	7.34	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$2.71 \times 2.71$	mm
H	0.5	mm
$\varphi$	$2(\leq 30)$	Deg.
$\mathrm{I}_{\mathrm{R}}$	0.62	nA
$\mathrm{S}_{\lambda}$	0.90	$\mathrm{A} / \mathrm{W}$   Electrons
$\eta$	$390(\geq 320)$	Photon
$V_{0}$	$75(\geq 50)$	$\mu \mathrm{mV}$
$\mathrm{I}_{\mathrm{SC}}$		

Radiant Senstive Area
Dimensions of the Radiant Sensitive Area
Distance Between Chip Surface and Package Surface
Half Angle
Dark Current $\left(V_{R}=10 \mathrm{~V}, \mathrm{E}=0\right)$
Spectral Photosensitivity
( $\lambda=850 \mathrm{~nm}$ )
Quantum Yield
Open Circuit Voltage
( $\mathrm{E}_{\mathrm{v}}=1000 \mathrm{~lx}$, Note 1)
Short Circuit Current
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{Ix}$, Note 1)
Rise and Fall Time of the
Photocurrent $\left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega\right.$
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{\lambda}=830 \mathrm{~nm}$
$\left.\mathrm{I}_{\mathrm{P}}=70 \mu \mathrm{~A}\right) \quad \mathrm{t}_{\mathrm{r}^{\prime},} \mathrm{t}_{\mathrm{f}} \quad 350$ ns
Forward Voltage
$\left(I_{F}=100 \mathrm{~mA}, \mathrm{E}_{\mathrm{e}}=0\right.$
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Capacitance
$\left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0\right.$ )
Temperature Coefficient $V_{0}$
Temperature Coefficient $I_{S C}$
Detection Limit $\left(V_{R}=10 \mathrm{~V}\right)$

[^67]

Power dissipation $P_{\text {tot }}=f\left(T_{\text {amb }}\right)$


Photocurrent $\frac{I_{P}}{I_{P 25}}=f\left(T_{\text {amb }}\right)$


Photocurrent $i_{p}=f\left(E_{V}\right)$ Open circuit voltage $V_{L}=f\left(E_{V}\right)$


## Directional characteristic

$\mathrm{S}_{\text {rel }}=\mathrm{f}(\varphi)$


Capacitance $C=f\left(V_{R}\right)$



## FEATURES

## - Silicon Planar Pin Photodiode

- Plastic Package
- 2M0" Lead Spacing
- Low Junction Capacitance
- Short Switching Time
- High Sensitivity
- IR Filter
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPW 34F is a silicon planar PIN photodiode, which is incorporated in a plastic package. Its terminals are soldering tabs arranged in $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ lead spacing. due to its design the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible.

Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. The photodiode is particularly suitable for IR sound transmission. The cathode is marked by a blue dot.


## Maximum Ratings



1 The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5030 and IEC publ. 306-1).

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Differential Photodiode
- Plastic Encapsulated, Strip Line Technique
- Tightly Spaced Diodes for Precise Positional Indication
- Lead Bend Option (for SMD)


## DESCRIPTION

The differential photodiode BPX 48 is designed for special industrial electronic applications, such as follow-up control, edge control, path and angle scanning, respectively. The individual diodes are spaced $90 \mu \mathrm{~m}$ apart, thus resulting in a highly precise positional indication. The rise and fall times of the photocurrent are so short that control systems with small down times can be built up. The silicon planar method ensures a low dark current level, low noise and thus very favorable signal relationships.


## Maximum Ratings



1 The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).


BPX 60


## FEATURES

- Silicon Planar Photodiode
- Premium Hi-Rel Device
- Modifled TO-5 Hermetic Case
- Flat Glass Lens
- Large Photosensitive Area
- Suitable for Visible as well as IR Range


## DESCRIPTION

The BPX 60 is a planar silicon photodiode. The large area photosensitive system is suitable for cell as well as diode operation at a very low reverse current level. The hermetically sealed case-a TO-5 modification with flat glass window-allows application at extreme operating conditions. The signal/noise ratio is particularly favorable even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells.


## Maximum Ratings



[^68]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Silicon Planar PIN Photodiode
- Premium Hi-Rel Device
- Modified TO-5 Hermetic Case
- Flat Glass Lens
- Large Photosensitive Area
- Low Dark Current
- Short Switching Time
- Suitable for Visible as well as IR Range


## DESCRIPTION

The BPX 61 is a planar silicon photodiode with low reverse current. Its low capacitance permits use up to 10 MHz . The large area photosensitive system is suitable for cell as well as diode operation at a very low reverse current level. The hermetically sealed case-a TO-5 modification with flat glass window-allows application at extreme operating conditions. The signal/ noise ratio is particularly favorable even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 l V	
Operating and Storage Temperature Range	-40 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $t \leq 3 \mathrm{~s}$ ) $\left(T_{\mathrm{s}}\right)$. . .	$230{ }^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{Tamb}_{\text {amb }}=25^{\circ} \mathrm{C}$ ) ( $\mathrm{P}_{\text {tot }}$ )	325 mW
Thermal Resistance ( $\mathrm{R}_{\text {thJamb }}$ )	300 K/W
( $\mathrm{R}_{\text {thucase }}$ )	80 KM

## Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Photosensitivity $\left(V_{\mathrm{R}}=5 \mathrm{~V},\right. \text { Note 1) }$	S	$70(\geq 50)$	$n A / l x$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity $(S=10 \% \text { of Smax) }$	$\lambda$	400...1100	nm
Radiant Sensitive Area	A	7.34	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	$L \times W$	$2.71 \times 2.71$	mm
Distance Between Chip Surface and Package Surface	H	1.9...2.3	mm
Half Angle	$\varphi$	$\pm 55$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	$I_{\text {R }}$	2 ( $\leq 30$ )	nA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.62	A/W   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.90	Photon
Open Circuit Voltage $\left(E_{v}=1000 \mid x \text {, Note } 1\right)$	$V_{0}$	375 ( $\geq 320$ )	mV
Short Circuit Current ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{I}_{\text {SC }}$	$70(\geq 50)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\left(R_{L}=1 \mathrm{KQ}, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right.$, $\left.I_{p}=70 \mu \mathrm{~A}\right)$	$t_{r}, t_{f}$	350	ns
Forward Voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{E}_{\mathrm{e}}=0\right. \\ & \left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance $\left.V_{R}=0 V, f=1 M H z, E_{V}=0 \mid x\right)$	$\mathrm{C}_{0}$	72	pF
Temperature Coefficient $\mathrm{V}_{0}$	TC ${ }_{\text {V }}$	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{\mathrm{s}}$	TC1	0.18	$\begin{aligned} & \% / K \\ & W \\ & \hline \end{aligned}$
Noise Equivalent Power ( $V_{R}=10 \mathrm{~V}$ )	NEP	$4.1 \times 10^{-14}$	$\begin{aligned} & \frac{1}{\sqrt{\mathrm{~Hz}}} \\ & \mathrm{~cm} \sqrt{\mathrm{~Hz}} \end{aligned}$
Detection Limit $\left(V_{R}=10 \mathrm{~V}\right)$	D	$6.6 \times 10^{12}$	W

[^69] temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).

Specifications are subject to change without notice.



## FEATURES

- Silicon Planar Photodiode
- Modified TO-18 Package
- Metal Case and Plastic Lens
- Very Low Dark Current


## DESCRIPTION

The BPX 63 is a planar silicon photodiode, mounted on a TO-18 base plate and covered with transparent plastic material. The BPX 63 has been developed as a detector for low illuminances and is intended for use as a sensor for exposure meters and automatic exposure meters. The component is outstanding for low dark currents and -when used as a voltaic cell-for a high open circuit voltage at low illuminances. The cathode of the BPX 63 is electrically connected to the case.

Package Dimensions in Inches (mm)


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . 7 V			
Operating and Storage Temperature Range . . . . . . . . . . . . . . . . . . 40 to $+80^{\circ} \mathrm{C}$			
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) ( $\mathrm{T}_{\mathrm{s}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$			
Power Dissipation ( $\left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right)\left(\mathrm{P}_{\text {tot }}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW			
Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )			
Photosensitivity			
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	800	nm
Spectral Range of Photosensitivity $\text { ( } \mathrm{S}=10 \% \text { of Smax) }$	$\lambda$	350... 1100	nm
Radiant Sensitive Area	A	0.97	$\mathrm{mm}^{2}$
Dimensions of the Radiant			
Distance Between Chip Surface			
Half Angle	$\varphi$	$\pm 75$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ )	$I_{\text {R }}$	5 ( $\leq 20$ )	pA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.50	A/W   Electrons
Quantum Efficiency ( $\lambda=800 \mathrm{~nm}$ )	$\eta$	0.73	Photon
Open Circuit Voltage $\left(E_{v}=1000 \mid x,\right. \text { Note 1) }$	$\mathrm{V}_{0}$	$450(\geq 380)$	mV
Short Circuit Current $\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{Ix}, \text { Note } 1\right)$	$\mathrm{I}_{\text {Sc }}$	$10(\geq 8)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value$\begin{aligned} & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm},\right. \\ & \left.\mathrm{I}_{\mathrm{P}}=10 \mu \mathrm{~A}\right) \end{aligned}$			
Forward Voltage $\begin{aligned} & \left(I_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{E}_{\mathrm{e}}=0\right. \\ & \left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	$V$
Capacitance $\left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{0}$	100	pF
Temperature Coefficient $\mathrm{V}_{\mathrm{O}}$	TC ${ }_{V}$	-2.6	mV/K
Temperature Coefficient $\mathrm{I}_{\mathrm{S}}$	TC,	0.16	\%/K W
Noise Equivalent Power ( $\left.\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}\right)$	NEP	$2.5 \times 10^{-15}$	$\begin{aligned} & \frac{0}{\sqrt{\mathrm{~Hz}}} \\ & \mathrm{~cm} \sqrt{\mathrm{~Hz}} \end{aligned}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}\right)$	D	$3.9 \times 10^{13}$	W

${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).



Directional characteristic $\mathrm{S}_{\text {re| }}=\mathrm{f}(\varphi)$

Photocurrent $\frac{I_{\mathrm{P}}}{I_{\mathrm{P} 25^{\circ}}}=f\left(T_{\mathrm{amb}}\right)$






Zero cross over $S_{0}=\frac{V_{F}}{l_{F}}$



## FEATURES

- Silicon Planar PIN Photodiode
- Premium Hi-Rel Device
- TO-18 Size Package
- Flat Glass Lens
- High Speed
- Low Dark Current
- Suitable for the Visible as well as IR Range


## DESCRIPTION

The BPX 65 is a planar silicon PIN photodiode in a case 18 A 2 DIN 41876 (sim. to TO-18) with a flat window. The cathode is electrically connected to the case. The flat window has no influence on the beam path of optical lens systems. Because of its high cut-off frequency this diode is particularly suitable for use as optical sensor of high modulation bandwidth.

The PIN photodiode is outstanding for low junction capacitance and short switching times.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	50 V
Operating and Storage Temperature Range	-40 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) ( $\mathrm{T}_{\mathrm{s}}$ )	$230{ }^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{P}_{\mathrm{tot}}$ )	230 mW


Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )			
Photosensitivity			
( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)	S	$11(\geq 5.5)$	nA/lx
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity ( $\mathrm{S}=10 \%$ of Smax)	$\lambda$	350... 1100	nm
Radiant Sensitive Area	A	0.97	mm²
Dimensions of the Radiant			
Distance Between Chip Surface   and Package Surface			
Half Angle	$\varphi$	$\pm 40$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ )	$\mathrm{I}_{\mathrm{R}}$	1 ( $\leq 5$ )	nA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.55	A/W   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.80	Photon
Open Circuit Voltage   ( $E_{v}=1000$ lx, Note 1)   $V_{0} \quad 320(\geq 270) \mathrm{mV}$	$\mathrm{V}_{\mathrm{O}}$	320 ( $\geq 270)$	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{I}_{\mathrm{SC}}$	$10(\geq 5.5)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value			
Forward Voltage $\begin{aligned} & \left(I_{F}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	$V$
Capacitance			
$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{0}$	11	pF
$\left(V_{R}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{l}\right.$ )	$\mathrm{C}_{1}$	6.4	pF
$\left(\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{20}$	2.4	pF
Temperature Coefficient $\mathrm{V}_{0}$	$\mathrm{TC}_{\text {V }}$	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{0}$	TC,	0.2	\%/K
			W
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ )	NEP	$3.3 \times 10^{-14}$	$\sqrt{\mathrm{Hz}}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right)$	D	$3.1 \times 10^{12}$	W

${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).

Specifications are subject to change without notice.


Photodiodes


## FEATURES

- Silicon Planar PIN Photodiode
- Premium Hi-Rel Device
- TO-18 Size Package
- Flat Glass Lens
- High Speed
- Very Low Dark Current
- Suitable for the Visible as well as IR Range


## DESCRIPTION

The BPX 66 is a planar silicon PIN photodiode in a case 18 A 2 DIN 41876 (sim. to TO-18) with a flat window and extremely low dark current. The cathode is electrically connected to the case. The flat window has no influence on the beam path of optical lens systems. Because of its high cut-off frequency, this diode is particularly suitable for use as optical sensor of high modulation bandwidth.
The PIN photodiode is outstanding for low junction capacitance and short switching times.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	50 V
Storage Temperature Range	-40 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $t \leq 3 \mathrm{~s}$ ) $\left(\mathrm{T}_{\mathrm{s}}\right) \ldots$.	$230^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{P}_{\text {to }}$ )	250 mW

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Photosensitivity
$\left(V_{R}=5 \mathrm{~V}\right.$, Note 1) $\quad \mathrm{S} \quad 11(\geq 5.5) \quad \mathrm{nA} / \mathrm{lx}$
Wavelength of Max. Photosensitivity $\quad \lambda_{\text {Smax }} \quad 850 \quad \mathrm{~nm}$
Spectral Range of Photosensitivity
( $S=10 \%$ of Smax)

$\lambda_{\text {Smax }}$	850	nm
$\begin{aligned} & \lambda \\ & \mathrm{A} \end{aligned}$	$\begin{gathered} 350 \ldots 1100 \\ 0.97 \end{gathered}$	$\begin{gathered} \mathrm{nm} \\ \mathrm{~mm}^{2} \end{gathered}$
$L \times W$	$0.985 \times 0.985$	mm
H	2.25...2.55	mm
$\varphi$	$\pm 40$	Deg.
$I_{\text {R }}$	0.15 ( $\leq 0.3$ )	nA
$S_{\lambda}$	0.55	AIW Electrons
$\eta$	0.80	Photon
$\mathrm{V}_{0}$	330 ( $\geq 280$ )	mV
${ }_{\text {sc }}$	$10(\geq 5.5)$	$\mu \mathrm{A}$

Rimiant Senstive Area
Dimensions of the Radiant
Sensitive Area
Distance Between Chip Surface and Package Surface
Half Angle
Dark Current $\left(V_{R}=1 \mathrm{~V}\right)$
Spectral Photosensitivity

$$
(\lambda=850 n m)
$$

Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )
Open Circuit Voltage
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)
Short Circuit Current
( $\mathrm{E}_{\mathrm{V}}=1000$ ( x , Note 1)
Rise and Fall Time of the Photo-
current from $10 \%$ to $90 \%$ and
from $90 \%$ to $10 \%$ of the Final Value
( $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}, \lambda=880 \mathrm{~nm}$,
$\left.I_{p}=10 \mu \mathrm{~A}\right)$

$t_{r}, t_{f}$	$30 / 80$	ns
$V_{F}$	1.3	V
$\mathrm{C}_{0}$		11
$\mathrm{C}_{1}$	6.4	pF
$\mathrm{C}_{20}$	2.4	pF
$\mathrm{TC}_{V}$	-2.6	pF
$\mathrm{TC}_{1}$	0.2	$\mathrm{mV/K}$
NEP	$3.3 \times 10^{-14}$	$\frac{\mathrm{~W}}{\sqrt{\mathrm{~Hz}}}$
D	$3.1 \times 10^{12}$	$\frac{\mathrm{~cm} \sqrt{\mathrm{~Hz}}}{\mathrm{~W}}$

${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).


## PLANAR SILICON PHOTODIODE

## BPX 90



## BPX 90K



## FEATURES

- Silicon Planar Photodiode
- Transparent Plastic Package or Filter Package
- 0.2" Lead Spacing
- High Sensitivity, BPX90: 45 nA/lx; BPX90K: 13 nA/lx
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPX90 and BPX90K are planar silicon photodiodes. The BPX90 is in a transparent plastic package. The BPX90K is in a black plastic package with IR filter. Its terminals are soldering tabs arranged in $0.2^{\prime \prime}(5.08 \mathrm{~mm})$ lead spacing. Due to its design, the diode can be easily assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements.
This versatile photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 V				
Operating and Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -40 to $+80^{\circ} \mathrm{C}$				
Soldering Temperature in a 2 mm Distancefrom the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ( $\left(\mathrm{S}_{\mathrm{S}}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230{ }^{\circ}{ }^{\circ} \mathrm{C}$				
Power Dissipation ( $\mathrm{P}_{\text {tot }}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mW				
Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )				
	Symbol	BPX90	BPX90K	Unit
Photosensitivity				
( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)	S	$45(\geq 25)$	-	nA/lx
$\begin{aligned} & \left(V_{R}=5 \mathrm{~V}, \lambda=950 \mathrm{~nm},\right. \\ & \left.\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right) \end{aligned}$			$13(\geq 8)$	$\mu \mathrm{A}$
Wavelength of Max.				
Photosensitivity	$\lambda_{\text {Smax }}$	850	950	nm
Spectral Range of				
( $\mathrm{S}=10 \%$ of Smax)	$\lambda$	400... 1100	800... 1150	nm
Radiant Sensitive Area	A	5	5	$\mathrm{mm}^{2}$
Dimensions of the				
Radiant Sensitive Area	$L \times W$	$1.65 \times 3.05$	$1.65 \times 3.05$	mm
Distance Between Chip Surface				
Half Angle	$\varphi$	$\pm 60$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	$\mathrm{I}_{\mathrm{B}}$	5 ( 5200 )	5 ( 5200 )	nA
Spectral Photosensitivity				
Quantum Efficiency				Electrons
( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.73	0.62	Photon
Open Circuit Voltage $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$				
$\lambda=950 \mathrm{~nm}$ )	$\mathrm{V}_{0}$	$450(\geq 380)$	$400(\geq 340)$	mV
Short Circuit Current ( $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$				
$\lambda=950 \mathrm{~nm}$ )	$\mathrm{I}_{\text {Sc }}$	$45(\geq 25)$	$13(\geq 8)$	$\mu \mathrm{A}$
the Photocurrent from				
$10 \%$ to $90 \%$ and from				
90\% to $10 \%$ of the Final Value				
$\left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, V_{\mathrm{R}}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm},\right.$				
$\left.\mathrm{I}_{\mathrm{P}}=30 \mu \mathrm{~A} / \mathrm{BPX} 90 \mathrm{~K}\right)$	$t_{\text {r }}, t_{\text {f }}$	1.3	1.3	$\mu \mathrm{sec}$
Forward Voltage				
$\begin{aligned} & \left(l_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{E}_{\mathrm{e}}=0\right. \\ & \left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	1.3	V
Capacitance				
$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right.$				
$\left.\mathrm{E}_{\mathrm{V}}=01 \mathrm{x}\right)$	$\mathrm{C}_{0}$	430	430	pF
$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$				
$\mathrm{E}_{\mathrm{V}}=0 \mathrm{l}$ )	$\mathrm{C}_{10}$	100	100	pF
Temperature Coefficient $\mathrm{V}_{\mathrm{O}}$	TC.	-2.6	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $I_{S}$	TC,	0.18	0.18	\%/K
${ }^{1}$ The illuminance indicated refers to unfitered radiation of a tungsten-filament lamp at a color temperature				
Specifications are subject to change without notice.				




## FEATURES

- Transparent Plastic Package
- 2/10" ( 5.08 mm ) Lead Spacing
- High Blue Sensitivity, $400 \mathrm{~mm}=30 \%$ Srel
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPX 91B is a planar silicon photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs arranged in $2 / 10^{\prime \prime}(5.08 \mathrm{~mm})$ lead spacing. Due to its design, the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. The increased blue sensitivity with short wavelength makes the BPX 91B particularly suitable for application with high blue light source.
This versatile photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The cathode is marked by a tab on the solder lead.

Package Dimensions in Inches ( mm )


## Maximum Ratings

Reverse Voltage $\left(V_{R}\right)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V
Operating and Storage Temperature Range ........................ 40 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance
from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) ( $\mathrm{T}_{\mathrm{s}}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $230^{\circ} \mathrm{C}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Photosensitivity
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
( $\mathrm{S}=10 \%$ of Smax)

$\stackrel{\mathrm{S}}{\lambda_{\mathrm{Smax}}}$	$\begin{gathered} 65(\geq 35) \\ 850 \end{gathered}$	nA/lx nm
$\lambda$	320... 1100	nm
A	7.34	$\mathrm{mm}^{2}$
$L \times W$	$2.71 \times 2.71$	mm
H	0.5	mm
$\varphi$	$\pm 60$	Deg.
$I_{R}$	$7(\leq 300)$	nA
$S_{\lambda}$	0.60	A/W   Electrons
$\eta$	0.86	Photon
$\mathrm{V}_{0}$	450 ( $\geq 380)$	mV
Isc	$65(\geq 35)$	$\mu \mathrm{A}$

Radiant Sensitive Area
Dimensions of the Radiant
Sensitive Area
Distance Between Chip Surface
and Package Surface
Half Angle
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{E}=0$ )
Spectral Photosensitivity
( $\lambda=850 \mathrm{~nm}$ )
Quantum Yield
Open Circuit Voltage
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)
Short Circuit Current
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)
Rise and Fall Time of the
Photocurrent ( $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$
$V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}$
$\left.\mathrm{I}_{\mathrm{P}}=65 \mu \mathrm{~A}\right)$
Forward Voltage
$\left(I_{F}=100 \mathrm{~mA}, E_{e}=0\right.$
$T_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Capacitance
$\left(V_{R}=0 \vee, f=1 M H z, E=0\right)$
$\left(V_{R}=10 \mathrm{~V}, f=1 \mathrm{MHz}, E=0\right)$
Temperature Coefficient $V_{O}$
Temperature Coefficient $I_{S}$
1 The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color
temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).



## FEATURES

- Silicon Planar Photodiode
- Transparent Plastic Package
- 2/10" Lead Spacing
- Low Dark Current, 1 nA
- Lead Bend Option (for SMD)


## DESCRIPTION

The BPX 92 is a planar silicon photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs arranged in $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ lead spacing. Due to its design the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements.
This versatile photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells.


Specifications are subject to change without notice.



## FEATURES

- Transparent Plastic Package
- 12.7 mm Lead Spacing
- Low Reverse Voltage
- Lead Bend Option (for SMD)


## DESCRIPTION

The SFH 100 silicon planar photodiode is supplied for universal applications. It is especially suitable for operation with small reverse voltage (approx. 0.1 V ) for the detection of very limited illumination. The increased blue sensitivity of the diode lightens application with luminous source, which has a short wave emission spectrum. The component is built in a transparent plastic package and contains solder tab leads spaced at 12.7 mm .

## Switching Applications



A type with small input current should be used as
operational amplitier.
$R=\frac{V_{\text {max }}}{\mathrm{I}_{\mathrm{K}} \text { max }}$
$I_{k}=E_{V_{\text {max }}} \times 175$
(EV max in Lux - IV max in nA)


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	7 V
Operating and Storage Temperature Range	to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) $\left(\mathrm{T}_{\mathrm{s}}\right) \ldots$	$230{ }^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{P}_{10}$ ) . . . . . . . . . .	100 mW

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Photosensitivity

( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)	S	175 ( $\geq 150$ )	$n \mathrm{~A} / \mathrm{lx}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity $(S=10 \% \text { of Smax })$	$\chi_{\text {Smax }}$	300... 1100	
Radiant Sensitive Area	A	23.5	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	L $\times$ W	$8.7 \times 2.7$	mm
Distance Between Chip Surface and Package Surface	H	0.5	mm
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	${ }_{\text {R }}$	0.4 ( 510 )	nA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.5	A/W   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.88	Photon
Open Circuit Voltage ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{V}_{\mathrm{O}}$	430 ( $\geq 350$ )	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{Ix}$, Note 1)	$I_{\text {SC }}$	175 ( $\geq 150$ )	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\begin{aligned} & \left(\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm},\right. \\ & \left.\mathrm{I}_{\mathrm{P}}=200 \mu \mathrm{~A}\right) \end{aligned}$	$t_{r}, t_{4}$	1.8	$\mu \mathrm{S}$
Forward Voltage $\begin{aligned} & \left(1_{\mathrm{F}}=100 \mathrm{~mA}_{\mathrm{t}} \mathrm{E}_{\mathrm{e}}=0\right. \\ & \left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance $\left(V_{R}=0 \mathrm{~V}, f=1 \mathrm{MHz}, E_{\mathrm{y}}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{0}$	1000	pF
Temperature Coefficient $\mathrm{V}_{0}$	TCV	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{0}$	TC ${ }_{1}$	0.2	\%/K

1 The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color
temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).

Specifications are subject to change without notice.







## FEATURES

- Transparent Plastic Case
- $5.08 \mathrm{~mm}\left(2 / 10^{\prime \prime}\right)$ Lead Spacing
- Very Large Zero Crossover, $1 \mathrm{mV} / \mathrm{pA}$
- Lead Bend Option (for SMD)


## DESCRIPTION

SFH 200 is a planar silicon photodiode incorporated in a transparent plastic package. Its terminals are solder tabs arranged in 5.08 mm ( $2 / 10$ inch) lead spacing. The diode can also very easily be mounted on PC boards. The SFH 200 is developed for low luminescence as receiver for such applications as exposure meters. The photo component distinguishes itself by large zero point divisions and by high open circuit voltage with low luminescence.
Type Characterization: notch with blue point. The cathode is marked by a tab on solder lead.

## Package Dimensions in Inches (mm)



## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	V
Operating and Storage Temperature Range	-55 to $+80^{\circ} \mathrm{C}$
Soldering Temperature in a 2 mm Distance from the Case Bottom ( $\mathrm{t} \leq 3 \mathrm{~s}$ ) ( $\mathrm{T}_{\mathrm{s}}$ )	$230^{\circ} \mathrm{C}$
Power Dissipation ( $\left.\mathrm{Tamb}^{\text {a }} 25^{\circ} \mathrm{C}\right)\left(\mathrm{P}_{\text {tot }}\right)$	100 mW

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Photosensitivity ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$, Note 1)	S	20 ( 214 )	nAllx
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	800	nm
Spectral Range of Photosensitivity (S = 10\% of Smax)	$\lambda$	350... 1100	nm
Radiant Sensitive Area	A	2	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	L $\times$ W	$1 \times 2$	mm
Distance Between Chip Surface and Package Surface	H	0.5	mm
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}$ )	$I_{R}$	5 ( $\leq 40$ )	pA
$\begin{aligned} & \text { Spectral Photosensitivity } \\ & \quad \lambda=850 \mathrm{~nm}) \\ & \text { Zero Crossing }\left(E_{e}=0, T_{\mathrm{amb}}=40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & S_{\lambda} \\ & S_{O} \end{aligned}$	$\begin{aligned} & 0.5 \\ & \leq 1 \end{aligned}$	ANW $\mathrm{mV} / \mathrm{pA}$ Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.73	Photon
Open Circuit Voltage $\left(E_{v}=1000 \mid x,\right. \text { Note 1) }$	$\mathrm{V}_{0}$	450 ( $\geq 380$ )	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{I}_{\mathrm{Sc}}$	$20(214)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\begin{aligned} & \left(R_{L}=1 \mathrm{k} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm},\right. \\ & \left.\mathrm{I}_{\mathrm{P}}=20 \mu \mathrm{~A}\right) \end{aligned}$	$t_{\text {r }}, t_{\text {f }}$	1.5	$\mu \mathrm{S}$
Forward Voltage $\begin{aligned} & \left(I_{F}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.T_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance			
$\begin{aligned} & \left.V_{R}=0 V, f=1 \mathrm{MHz}, E_{V}=0 \mid x\right) \\ & \left.V_{R}=3 V, f=1 \mathrm{MHz}, E_{V}=0 \mid x\right) \end{aligned}$	Co $\mathrm{C}_{3}$	180 70	pF pF
Temperature Coefficient $\mathrm{V}_{0}$	TC.	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{0}$	TC,	0.2	\%/K

${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1)





Photocurrent $\frac{I_{p}}{I_{P}{ }_{25}}=f\left(J_{\mathrm{smb}}\right)$


Directional characteristic $\mathrm{S}_{\text {re! }}=\mathrm{f}(\varphi)$



## FEATURES

- TO-18 Hermetic Package
- Flat Glass Lens
- For Fiber Optic Communications


## DESCRIPTION

SFH2O2 and SFH202a are planar silicon PIN-photo diodes. The case (18A2 DIN 41876 - similar to TO-18) has a flat glass lens top. The cathode is electrically connected to the case. The diode is a receiver with high operating frequency, very low reverse current, and fast switching time. Because of the flat lens, the diode is especially suitable for use with fiber optic cables, up to 560 Mbits.


## Maximum Ratings

Reverse Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	50 V
Storage Temperature Range( $T_{S}$	-40 to $+80^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{i}}$ )	$80^{\circ} \mathrm{C}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Radiant Sensitive Area	A	1	$\mathrm{mm}^{2}$
Dark Current ( $\left.\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V} ; \mathrm{E}=0\right)$	$\mathrm{I}_{\mathrm{s}}$	1 ( $\leq 5$ )	nA
Spectral Sensitivity ( $\lambda=850 \mathrm{~nm}$ )	$S_{\lambda}$	0.55	A/W
( $\lambda=950 \mathrm{~nm}$ )	$S_{\lambda}$	$0.45(\geq 0.35)$	A/W
Quantum Yield (Electrons per photon)			Electrons
( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.80	Photon
Rise Time of the Photocurrent			
SFH202 ( $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}$			
$\lambda=900 \mathrm{~nm})$	$t_{r}$	0.5 ( $\leq 1$ )	ns
$\begin{aligned} & S F H 202 \mathrm{a}\left(\mathrm{R}_{\mathrm{L}}=50 \Omega, V_{R}=50 \mathrm{~V}\right. \\ & \lambda=850 \mathrm{~nm}) \end{aligned}$	t,	3	ns
Cut-off Frequency			
$\left(\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=20\right)$			
SFH202 ( $\lambda=900 \mathrm{~nm}$ )	$f_{9}$	500	MHz
SFH202a ( $\lambda=850 \mathrm{~nm}$ )	$\mathrm{f}_{\text {a }}$	200	MHz
Capacitance			
$\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{0}$	13	pF
$\left(V_{R}=1 \mathrm{~V}\right)$	$\mathrm{C}_{1}$	7	pF
$\left(\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}\right)$	$\mathrm{C}_{12}$	3.3	pF
$\left(\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right)$	$\mathrm{C}_{20}$	3	pF
Temperature Coefficient for $I_{p}$	TK	0.2	\%/K
			W
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ )	NEP	$3.3 \times 10^{-14}$	$\sqrt{\sqrt{\mathrm{Hz}}}$
			$\frac{\mathrm{cm} \sqrt{\mathrm{Hz}}}{\mathrm{w}}$
Detection Limit	D*	$3.1 \times 10^{12}$	W

[^70]

## SILICON FOUR QUADRANT PHOTODIODE



## FEATURES

- Miniature Size
- Four Quadrant Active Sections
- Close Spacing of Contacts, $12 \mu \mathrm{~m}$
- Can Determine If and By How Much a Light Source Has Deviated
- SMD Package Optional


## DESCRIPTION

The SFH 204 silicon planar miniature four quadrant photodiode has application in edge drive, positioning, and path and corner scanning control devices. The active units are spaced at only $12 \mu \mathrm{~m}$ apart from individual contacts. It is therefore possible to get exact positioning with high definition.


## Maximum Ratings



Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Open Circuit Voltage

( $\mathrm{E}_{\mathrm{v}}=1000 \mathrm{~lx}$, Note 1)	$\mathrm{V}_{0}$	450 ( $\geq 380$ )	mV
Short Circuit Current ( $\mathrm{E}_{\mathrm{v}}=1000 \mathrm{~lx}$, Note 1)	$I_{K}$	$130(\geq 80)$	nA
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\begin{aligned} & \left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right. \\ & \left.I_{P}=45 \mu \mathrm{~A}\right) \end{aligned}$	$t_{r}, t_{\text {f }}$	3	$\mu \mathrm{S}$
Forward Voltage $\begin{aligned} & \left(I_{\mathrm{F}}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	$V$
$\begin{aligned} & \text { Capacitance } \\ & \left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0(\mathrm{x})\right. \\ & \left(V_{R}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right. \end{aligned}$	Co	2.0	pF
$\left.\mathrm{E}_{\mathrm{V}}=0 \mathrm{~lx}\right)$ Temperature Coefficient $\mathrm{V}_{0}$	$\mathrm{Cl}_{10}$	$\begin{gathered} 1.0 \\ -2.6 \end{gathered}$	$\underset{\mathrm{mV} / \mathrm{K}}{\mathrm{pF}}$
Temperature Coefficient $\mathrm{I}_{0}$	TC ${ }_{1}$	0.18	\%/K

1 The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).


Photocurrent $I_{p}=f\left(E_{V}\right)$
Open circuit voltage $V_{L}=f\left(E_{V}\right)$


Directional characteristic
$S_{\text {rel }}=f(\varphi)$



## FEATURES

- Black Plastic Encapsulated Package
- 0.1" (2.54 mm) Lead Spacing
- Built-in Daylight Filter
- Suitable for IR Sound Transmission


## DESCRIPTION

The SFH 205 is a silicon planar PIN photodiode, which is incorporated in a plastic package which simultaneously serves as filter and is also transparent for infrared emission. Its terminals are soldering tabs arranged in $0.1^{\prime \prime}$ (2.54 mm ) lead spacing. Due to its design, the diode can vertically be assembled on PC boards. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances.
The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. The photodiode is particularly suitable for IR sound transmission and remote control. The cathode is marked by stamping at the case edge.


Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Photosensitivity			
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \lambda=950 \mathrm{~nm}$			
$\mathrm{E}_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$ )	S	25 ( $\geq 15$ )	$\mu \mathrm{A}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	950	nm
Spectral Range of Photosensitivity (S = 10\% of Smax)	$\lambda$	800... 1100	nm
Radiant Sensitive Area	A	7.34	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	L $\times$ W	$2.71 \times 2.71$	mm
Distance Between Chip Surface			
Half Angle	$\varphi$	$\pm 70$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	$I_{\text {R }}$	2 ( $\leq 30$ )	nA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.68	A/W Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.90	Photon
Open Circuit Voltage $\left(E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \AA=950 \mathrm{~nm}\right)$	$V_{0}$	327 ( $\leq 250$ )	mV
Short Circuit Current $\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$\mathrm{I}_{\text {sc }}$	$25(\geq 15)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right.$ $\mathrm{I}_{\mathrm{p}}=25 \mu \mathrm{~A}$ )	$t_{\text {r }}, t_{\text {f }}$	350	ns
Forward Voltage $\begin{aligned} & \left(I_{F}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.T_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance $\left.V_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{Ix}\right)$	$\mathrm{C}_{0}$	72	pF
Temperature Coefficient $\mathrm{V}_{0}$	TCV	-2.6	mV/K
Temperature Coefficient $t_{0}$	TC	0.18	\%/K   W
Noise Equivalent Power ( $\left.\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)$	NEP	$3.7 \times 10^{-14}$	$\begin{aligned} & \frac{\sqrt{\mathrm{Hz}}}{\mathrm{~cm} \sqrt{\mathrm{~Hz}}} \end{aligned}$
Detection Limit $\left(V_{R}=10 \mathrm{~V}\right)$	D	$7.3 \times 10^{12}$	W

Specifications are subject to change without notice.



## FEATURES

- Black Plastic Encapsulated Package
- $5.08 \mathrm{~mm}\left(.20^{\prime \prime}\right)$ Lead Spacing
- Built-in Daylight Filter
- Suitable for IR Sound Transmission


## DESCRIPTION

The SFH 205Q2 is a silicon planar PIN photodiode, which is incorporated in a plastic package which simultaneously serves as filter and is also transparent for infrared emission. Its terminals are soldering tabs arranged in 5.08 mm $\left(.20^{\prime \prime}\right)$ lead spacing. Due to its design, the diode can vertically and automatically be assembled on PC boards. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances.
The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. The photodiode is particularly suitable for IR sound transmission and remote control. The cathode is marked by stamping at the case edge.


## Maximum Ratings


Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Photosensitivity $\begin{aligned} & \left(V_{R}=5 \mathrm{~V}, \lambda=950 \mathrm{~nm}\right. \\ & \left.E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right) \end{aligned}$	S	25 ( $\geq 15$ )	$\mu \mathrm{A}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	950	nm
Spectral Range of Photosensitivity $(S=10 \% \text { of Smax })$	$\lambda$	800... 1100	nm
Radiant Sensitive Area	A	7.34	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	$L \times W$	$2.71 \times 2.71$	mm
Distance Between Chip Surface and Package Surface	H	2.3..2.5	mm
Half Angle	$\varphi$	$\pm 70$	Deg.
Dark Current ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	$I_{R}$	$2(\leq 30)$	nA
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.68	AN   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.90	Photon
Open Circuit Voltage $\left(E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$V_{0}$	327 ( $\mathbf{3} 250$ )	mV
Short Circuit Current $\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right)$	$l_{\text {SC }}$	$25(\geq 15)$	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\begin{aligned} & \left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=5 \mathrm{~V}, \lambda=830 \mathrm{~nm}\right. \\ & \left.I_{P}=25 \mu \mathrm{~A}\right) \end{aligned}$	$t_{r}, t_{\text {f }}$	350	ns
Forward Voltage $\begin{aligned} & \left(l_{F}=100 \mathrm{~mA}, E_{e}=0\right. \\ & \left.\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{F}$	1.3	V
Capacitance $V_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0(\mathrm{x})$	$\mathrm{C}_{0}$	72	pF
Temperature Coefficient $\mathrm{V}_{\mathrm{O}}$	TC.	-2.6	mV/K
Temperature Coefficient $\mathrm{I}_{0}$	TC,	0.18	$\% / \mathrm{K}$ w
Noise Equivalent Power ( $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ )	NEP	$3.7 \times 10^{-14}$	$\begin{aligned} & \frac{\sqrt{\mathrm{Hz}}}{\mathrm{~cm} \sqrt{\mathrm{~Hz}}} \end{aligned}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)$	D	$7.3 \times 10^{12}$	W








## FEATURES

- Black Plastic Package
- 0.1" ( 2.54 mm ) Lead Spacing
- Built in IR Filter


## DESCRIPTION

The SFH 206 is a silicon planar PIN photodiode in a black plastic package that serves as a filter for infrared radiation. Its terminals are solder tabs with $0.1^{\prime \prime}(2.54 \mathrm{~mm})$ spacing. Due to its design the diode can vertically be assembled on PC boards. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, especially at low light levels.
The PIN photodiode is outstanding for low junction capacitance, high cut off frequency and short switching times. Applications include IR sound transmission and remote control. The anode is marked by stamping at the case edge.







## FEATURES

- Waterclear Plastic Package
- $0.1^{\prime \prime}$ ( 2.54 mm ) Lead Spacing
- Suitable for IR Sound Transmission


## DESCRIPTION

The SFH 206 K is a silicon planar PIN photodiode which is incorporated in a colorless plastic package. The terminals are solder tabs with $0.1^{\prime \prime}(2.54 \mathrm{~mm})$ spacing. Due to its design the diode can be assembled vertically on PC boards. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances.
The PIN photodiode is outstanding for low junction capacitance, high cut off frequency and short switching times. It is particularly suitable for IR sound transmission and remote control. The anode is marked by stamping at the case edge.


Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )


Specifications are subject to change without notice.





## FEATURES

- Silicon Planar Pin Photodiode
- Cost Effective Device
- T-13/4 Package
- Flat Top
- High Speed, 1 ns
- Low Dark Current, 1 nA
- IR Filter (SFH217F)


## DESCRIPTION

The SFH217 and SFH217F are planar PIN photodiodes in a plastic $T-13 / 4$ package with a flat lens. The flat window has no effect on the beam path of optical lens systems. It is characterized by its low junction capacitance and fast switching speeds.
Because of its high cut-off frequency, this diode is particularly suitable for use as an optical sensor of high modulation bandwidth.


Note: Temporarily these devices may be supplied with lead lengths of $\frac{65(16.6)}{62(15.8)}$

## Maximum Ratings



[^71]

Photocurrent $I_{P}=f\left(E_{e}\right)$


Relative Spectral Sensitivity $S_{\text {rel }}=f(\lambda)$


## Directional Characteristics

$S_{\text {rel }}=f(\varphi)$


Photocurrent $l_{p}=f\left(E_{V}\right)$


## Power Dissipation

$P_{\text {tot }}=f\left(T_{A}\right)$


Photocurrent $\frac{I_{P}}{I_{P 25}}=f\left(T_{A}\right)$


## PLASTIC FIBER OPTIC PHOTODIODE DETECTOR



## FEATURES

- 2.3 mm Aperture Holds Standard 1000 Micron Plastic Fiber
- No Fiber Stripping Required
- High Reliability
- Low Noise
- Fast Switching Times
- Low Capacitance
- Very Good Linearity
- Suitable for the Visible and Near IR Range
- Molded Microlens for Efficient Coupling


## DESCRIPTION

The SFH250 is a fast silicon PIN photodiode in a low cost plastic package for use in short distance data transmission using 1000 micron plastic fibers. It comes in a $5 \mathrm{~mm}(\mathrm{~T} 13 / 4)$ plastic package featuring a tubular aperture which is wide enough to accommodate fiber and cladding. A microlens on the bottom of the aperture improves the light coupling efficiency of the fiber output into the photodiode.
Typical applications include: automotive wiring, isolation interconnects, medical instruments, robotics, electronic games, and copy machines.

Preliminary Data Sheet
Package Dimensions in Inches (mm)


## Maximum Ratings

Operating and Storage Temperature	T	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering Temperature			
(Distance from solder to			
Dip Soldering Time, $\mathrm{t} \leq 5 \mathrm{sec}$	Ts	260	${ }^{\circ} \mathrm{C}$
Iron Soldering Time, $\mathrm{t} \leq 3 \mathrm{sec}$	Ts	300	${ }^{\circ} \mathrm{C}$
Reverse Voltage	$V_{\text {R }}$	30	V
Power Dissipation	$\mathrm{P}_{\text {tot }}$	100	mW
Thermal Resistance	$\mathrm{R}_{\text {thJA }}$	750	K/W

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength of Max. Photosensitivity	$\lambda_{\text {max }}$	850	nm
Spectral Range of Photosensitivity $\left(S=10 \% \text { of } S_{\max }\right)$	$\lambda$	400 to 1100	nm
Dark Current ( $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ )	$I_{R}$	$1(\leq 10)$	nA Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.89	Photon
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$, respectively, and from $90 \%$ to $10 \%$ of its Peak Value			
( $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V}, \lambda=880 \mathrm{~nm}$ )	$t_{r}, t_{\text {f }}$	10	ns
Capacitance $\left(V_{R}=0 V, f=1 M H z, E_{V}=0 \mid x\right)$	$\mathrm{C}_{0}$	11	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{w} \\ & \hline \end{aligned}$
Noise Equivalent Power	NEP	$2.9 \times 10^{-14}$	$\begin{aligned} & \frac{\sqrt{\mathrm{Hz}}}{\mathrm{~cm} \sqrt{\mathrm{~Hz}}} \end{aligned}$
Detection Limit ( $\left.\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right)$	$\mathrm{D}_{\mathrm{L}}$	$3.5 \times 10^{12}$	W
Photocurrent ( $\left.\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}\right)$ (Note 1)			
$\lambda=950 \mathrm{~nm}$	$\mathrm{I}_{\text {ph }}$	40	$\mu \mathrm{A}$
$\lambda=660 \mathrm{~nm}$	$l_{\text {ph }}$	35	$\mu \mathrm{A}$
$\lambda=560 \mathrm{~nm}$	$\mathrm{I}_{\text {ph }}$	25	$\mu \mathrm{A}$

1 Photocurrent generated at $100 \mu \mathrm{~W}$ light incidence through plastic 1000 micron fiber (distance lens-fiber $\leq 0.1 \mathrm{~mm}$, fiber type ESKA EH4001, fiber face polished).

Specifications are subject to change without notice.

Dark current $I_{R}=f\left(V_{R}\right)$



For non-standard requirements, see Custom Products on page 1-1.


For non-standard requirements, see Custom Products on page 1-1.


## FEATURES

## - Silicon NPN Epitaxial Phototransistor

- Modified TO-18 Package
- Clear Plastic Lens
- Wide Acceptance Angle, $110^{\circ}$
- Three Sensitivity Ranges
- Matches LD242 Emitter


## DESCRIPTIONS

The BP-103 is an epitaxial NPN silicon planar phototransistor, mounted on a base plate similar to 18 A 3 DIN 41876 (TO-18) with glass-clear plastic encapsulation. The plastic cover provides a wide angle for the incident light. This angle can also be reduced by mounting a diaphragm. The emitter terminal is marked by a small projection on the case bottom. The collector is electrically connected to the metallic case parts. The phototransistor is particularly suitable for use in automatic electronic flashes with base integrating circuit and selfexcited (high-frequency) breakdown voltage generators (see circuit diagram) and in high $Q$ electronic instructional toys used in filament lamp light and daylight, as well as in combination with GaAs infrared emitting diodes in small light barriers.

Package Dimensions in Inches (mm)


## Maximum Ratings

Operating and Storage Temperature Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $t \leq 3$ s)
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Emitter Base Voltage
Power Dissipation ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal Resistance

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
Radiant Sensitive Area
Die Area
Distance Die Surface to Package Surface
Half Angle
Photocurrent of the Collector
Base Diode ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ )
Capacitance
$\left(V_{C E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, E=0(\mathrm{x})\right.$
$\left(V_{C B}=0 V, f=1 \mathrm{MHz}, E=0(x)\right.$
$\left.V_{E B}=0 V_{i} f=1 \mathrm{MHz}, E=0 \mid x\right)$
Collector Emitter Leakage Current
$\left(V_{\text {CEO }}=35 \mathrm{~V}, \mathrm{E}=0 \mathrm{~lx}\right)$

$\lambda_{\text {Smax }}$	850	nm
$\lambda$	440 to 1100	nm
A	0.12	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.5 \times 0.5$	mm
H	0.2 to 0.8	mm
$\varphi$	$\pm 55$	Deg
$\mathrm{I}_{\mathrm{PCB}}$	1.5	$\mu \mathrm{~A}$
$\mathrm{C}_{\mathrm{CE}}$	9	pF
$\mathrm{C}_{\mathrm{CB}}$	13	pF
$\mathrm{C}_{\mathrm{EB}}$	21	pF
$\mathrm{I}_{\mathrm{CEO}}$	$5(\leq 100)$	nA


Group	BP103-2	BP103-3	BP103-4	
Photocurrent of the Transistor, Collector to Emitter (Note 1)				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right) \mathrm{I}_{\text {PCE }}$	250 to 500	400 to 800	$\geq 630$	$\mu \mathrm{A}$
$\left(E_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right.$ $\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{C E}=5 \mathrm{~V}\right) \quad \mathrm{I}$	63 to 125	100 to 200	160 to 320	$\mu \mathrm{A}$
$\begin{aligned} & \left(l_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}\right. \\ & \left.\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right) \end{aligned}$	5	7	9	$\mu \mathrm{S}$
Collector Emitter Saturation				
$\text { Voltage }\left(\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {PCEmin }} \bullet 0.3\right.$ $E=1000(x)$	130	140	150	mV
Current Gain				
$\left(E_{V}=1000 \mathrm{~lx}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \overline{\mathrm{l}_{\mathrm{PCB}}}$	250	400	630	

[^72]Specifications are subject to change without notice.



## FEATURES

- Silicon NPN Epitaxial Phototransistor
- Low Cost
- T $13 / 4$ Package
- Ciear Plastic Lens
- Acceptance Angle $50^{\circ}$
- Very High Gain
- Matches with Infrared Emitters LD271, LD 273, SFH484 or 485


## DESCRIPTION

BP103B is an epitaxial NPN silicon phototransistor of high sensitivity. It is enclosed in a tubular 5 mm all-plastic package.

The base terminal is not contacted, control is performed by the incident light. The collector is characterized by a flattening on the package base.
The phototransistor is mainly intended for standard applications and for use in automatic electronic flashes. Due to the tubular plastic shape, it can easily be mounted into holes and preformed plastic sleeves; e.g. LED mounting assemblies.


Maximum Ratings
Operating and Storage Temperature T $\quad-55$ to +100
${ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $t \leq 3 \mathrm{~s}$ )
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Emitter Base Voltage
Power Dissipation ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal Resistance
$T_{S}$
$T_{S}$
$V_{C E O}$
$I_{C}$
$I_{P K}$
$V_{E B}$
$P_{\text {tol }}$
$R_{\text {thJA }}$
260
300
35
50
100
7
200
375
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
V
mA
mA
V
mW
KIW
Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
Radiant Sensitive Area
Die Area
Distance Die Surface to Package Surface
Half Angle
Capacitance
$\left(V_{C E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right)$
Collector Emitter Leakage Current
$\left(V_{C E O}=35 \mathrm{~V}, \mathrm{E}=0 \mathrm{l}\right.$ )


Group	BP103B-2	BP103B-3	BP103B-4	
Photocurrent of the Transistor, Collector to Emitter (Note 1)				
$\left(E_{V}=1000 \mathrm{~lx}, V_{C E}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\text {PCE }}$	2.5 to 5.0	4.0 to 8.0	$\geq 6.3$	mA
$\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right.$				
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{C E}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\text {PCE }}$	0.63 to 1.25	1 to 2	$\geq 1.6$	mA
$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right. \\ & \left.\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right) \end{aligned}$	7.5	10	10	$\mu \mathrm{S}$
Collector Emitter Saturation   Voltage $\left(I_{C}=I_{\text {PCEmin }} \bullet 0.3\right.$				
Current Gain				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{lX}, \mathrm{V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \frac{\mathrm{I}_{\mathrm{PCE}}}{}$	350	550	650	

[^73]

Directional characteristic $S_{\text {rel }}=f(\varphi)$





## FEATURES

- Silicon NPN Epitaxial Planar Phototransistor
- Premium Hi-Rel Device
- TO-18 Size Hermetic Package
- Flat Glass Lens
- Wide Acceptance Angle, $80^{\circ}$
- Moderate Gain
- Three Sensitivity Ranges


## DESCRIPTION

The BPX 38 is a silicon NPN epitaxial planar phototransistor in an 18 A 3 DIN 41876 (TO 18) case with flat window and high radiant sensitivity for front irradiation. The flat window has no influence on the light paths. It is, therefore, particularly suitable for industrial applications, where lens systems are used. The collector terminal is electrically connected to the case.


## Maximum Ratings

Operating and Storage Temperature $T \quad-55$ to $+125 \quad{ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $t \leq 3 s$ )
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Emitter Base Voltage
Power Dissipation ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal Resistance

Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
Radiant Sensitive Area
Die Area
Distance Die Surface to Package Surface
Half Angle
Photocurrent of the Collector
Base Diode ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ )
$\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}\right.$
$V_{C B}=5 \mathrm{~V}$ )
Capacitance
$\left(V_{C E}=0 V, f=1 \mathrm{MHz}, E=0(x)\right.$
$\left(V_{C B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, E=0 \mathrm{~lx}\right)$
$\left.\mathrm{V}_{\mathrm{EB}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{tx}\right)$


260
300
50
50
200
7
330
$\leq 450$
$\leq 150$

Group	BPX38-2	BPX38-3	BPX38-4	
Photocurrent of the Transistor, Collector to Émitter (Note 1)				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right.$ ) $\mathrm{I}_{\text {PCE }}$	. 63 to 1.25	1.0 to 2.0	$\geq 1.6$	mA
( $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$				
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \mathrm{l}_{\text {PCE }}$	. 16 to . 32	. 25 to 5	2.4	mA
Rise/Fall Time				
$\begin{aligned} & \left(I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}\right. \\ & \left.R_{L}=1 \mathrm{k} \mathrm{\Omega}\right) \end{aligned}$	9	12	15	$\mu \mathrm{S}$
Collector Emitter Saturation ${ }_{\text {r }}{ }_{\text {r }}$				
$\begin{aligned} & \text { Voltage }\left(I_{C}=I_{\text {PCEmin }} \bullet 0.3\right. \\ & E=1000 \mid x) \end{aligned}$	175	195	215	mV
Current Gain				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$	150	240	350	
Leakage Current				
$\left(\mathrm{V}_{\text {CEO }}=25 \mathrm{~V}, \mathrm{E}=0\right) \quad \mathrm{I}_{\text {CEO }}$	$8(\leq 200)$	12 ( $\leq 500$ )	20 ( $\leq 500$ )	nA

The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and $\operatorname{IEC}$ publ. $306-1$ ). Irradiance $\mathrm{E}_{\mathrm{e}}$ measured with HP radiant flux meter 8334A with option 013.
${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm}$. $I_{\text {PCE }}=$ Photocurrent of transistors; $I_{P C B}=$ Photocurrent of Collector-Base-Diode.

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Silicon NPN Epitaxial Planar Phototransistor
- Premium Hi-Rel Device
- TO-18 Size Hermetic Package
- Rounded Glass Lens
- Narrow Acceptance Angle, $30^{\circ}$
- Very High Gain
- Three Sensitivity Ranges


## DESCRIPTION

The BPX 43 is a silicon NPN epitaxial planar phototransistor in an 18 A 3 DIN 41876 (TO 18) case with lens-shaped window for front irradiation. The special transistor system in connection with the lens shaped window provides the transistor with a particularly high spectral sensitivity. It is therefore suitable for industrial applications at low illuminances. The collector terminal is electrically connected to the case.


Group	BPX43-2	BPX43-3	BPX43-4	
Photocurrent of the Transistor,				
Collector to Emitter (Note 1)				
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{C E}=5 \mathrm{~V}$ ) $\quad \mathrm{I}_{\mathrm{P}}$	2.5 to 5.0	4.0 to 8.0	$\geq 6.3$	mA
$\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right.$				
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \mathrm{I} P$	. 63 to 1.25	1.0 to 2.0	$\geq 1.6$	mA
Rise/Fall Time				
$\begin{aligned} & l_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\ & \left.R_{L}=1 \mathrm{k} \Omega\right) \end{aligned}$	9	12	15	$\mu \mathrm{S}$
Collector Emitter Saturation				
$\begin{aligned} & \text { Voltage }\left(I_{C}=I_{\text {PCEmin }} \bullet 0.3\right. \\ & \left.E=1000 I_{x}\right) \end{aligned}$	190	230	280	mV
Current Gain				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \overline{I_{P C B}}$	125	200	300	
Leakage Current $\left(V_{C E O}=25 \mathrm{~V}, \mathrm{E}=0 \mid \mathrm{x}\right)$	$8(\leq 200)$	12 ( $\leq 500$ )	20 ( 5500 )	nA

The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC $306-1$ ). Irradiance $\mathrm{E}_{\mathrm{e}}$ measured with HP radiant flux meter 8334A with option 013.
${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm}$. $\mathrm{I}_{\text {PCE }}=$ Photocurrent of transistors: $\mathrm{I}_{\mathrm{PCB}}=$ Photocurrent of Collector-Base-Diode.

Specifications are subject to change without notice.


Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Silicon NPN Planar Phototransistor
- Low Cost
- Miniature Size
- Available as Single Unit, BPX 81 and Arrays:

Two Chip,	BPX 82
Three Chip,	BPX 83
Four Chip,	BPX 84
Five Chip,	BPX 85
Six Chip,	BPX 86
Seven Chip,	BPX 87
Eight Chip,	BPX 88
Nine Chip,	BPX 89
Ten Chip,	BPX 80

- Narrow Acceptance Angle, $36^{\circ}$
- High Gain, Up to 5 mA


## DESCRIPTION

The types BPX 80 to BPX 89 are plastic encapsulated phototransistor arrays consisting of an arrangement of max. 10 silicon NPN epitaxial planar phototransistors. The individual photoelectric detectors are spaced apart according to the standard lead spacing of $2.54 \mathrm{~mm}\left(1 / 10^{\prime \prime}\right)$. A small angle of the lensshaped light window avoids optical "cross modulation" from the adjacent system. The collector terminals are marked by small projections arranged at the sides of the solder pins. The phototransistor is suitable for versatile applications in conjunction with filament lamps and infrared light. The BPX 81 can be mounted on PC boards and is also provided for use as detector of the light emitting diode LD 261 (same type as BPX 81) in miniature light barriers.


## Maximum Ratings

Operating and Storage Temperature Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $t \leq 3 \mathrm{~s}$ )
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Power Dissipation ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal Resistance

$\mathrm{T}_{\mathrm{s}}$	230	${ }^{\circ} \mathrm{C}$
Ts	300	${ }^{\circ} \mathrm{C}$
$V_{\text {CEO }}$	32	$\checkmark$
$\mathrm{I}_{\mathrm{c}}$	50	mA
${ }_{\text {PK }}$	200	mA
$\mathrm{P}_{\text {tot }}$	100	mW
$\mathrm{R}_{\text {thJA }}$	750	K/W
$\mathrm{R}_{\text {thJG }}$	650	K/W

Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
Radiant Sensitive Area
Die Area
Distance Die Surface to Package Surface Hali Angle

$\lambda_{\text {Smax }}$	850	nm
$\lambda$	440 to 1070	nm
A	0.17	$\mathrm{~mm}{ }^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.6 \times 0.6$	mm
H	1.3 to 1.9	mm
$\varphi$	$\pm 18$	Deg.
$\mathrm{C}_{\mathrm{CE}}$	6	pF
$\mathrm{I}_{\text {CEO }}$	$25(\leq 200)$	nA


$\left(\mathrm{V}_{C E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right.$ )	$\mathrm{C}_{\text {CE }}$	6	pF
Collector Emitter Leakage Current			
$\left(V_{\text {CEO }}=25 \mathrm{~V}, \mathrm{E}=0 \mathrm{~lx}\right.$ )	$\mathrm{I}_{\text {CEO }}$	25 ( $\leq 200$ )	nA


Group	BPX81-2	BPX81-3	BPX81-4	$\begin{gathered} \text { BPX82-89 } \\ \text { BPX80 } \end{gathered}$	
Photocurrent of the					
Transistor, Collector to					
Emitter (Note 1)$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}\right.$					
$\left.V_{C E}=5 \mathrm{~V}\right)$	1.0 to 2.0	1.6 to 3.2	$\geq 2.5$	1.25 to 3.2	mA
$\left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right.$					
$\lambda=950 \mathrm{~nm}$					
$\left.V_{C E}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\mathrm{p}}$	. 25 to .50	. 40 to 80	$\geq .63$	. 32 to .80	mA
Rise/Fall Time					
$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right. \\ & \left.\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right) \end{aligned} \mathrm{t}_{\mathrm{t}}, \mathrm{t}_{\mathrm{f}}$	5.5	6	8	5.5 to 8	$\mu \mathrm{S}$
Collector Emitter					
Saturation Voltage $\left(I_{C}=I_{\text {PCEmin }} \bullet 0.3\right.$					
	150	150	150	150	mV
Current Gain					
( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}$					
$\left.V_{C E}=5 \mathrm{~V}\right) \quad \frac{\mathrm{PCE}}{\mathrm{P}_{\text {PCB }}}$	190	300	450	450	

The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC $306-1$ ). Irradiance $\mathrm{E}_{\mathrm{e}}$ measured with HP radiant flux meter 8334A with option 013.
${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm} . \mathrm{I}_{\text {PCE }}=$ Photocurrent of transistors; $I_{\text {PCB }}=$ Photocurrent of Collector-Base-Diode.
Specifications are subject to change without notice.



## FEATURES

- Silicon NPN Epitaxial Planar Phototransistor
- Premium Hi-Rel Device
- TO-18 Size Hermetic Package
- Rounded Glass Lens
- Very Narrow Acceptance Angle, $16^{\circ}$
- High Gain


## DESCRIPTION

The BPY 62 is a silicon NPN epitaxial phototransistor in an 18 A 3 DIN 41876 (TO 18) case with a light window for front irradiation. The base connection is brought out and the emitter is marked by a small projection on the case bottom. The collector is electrically connected to the case.
The phototransistor BPY 62 is suitable for versatile applications in connection with filament lamp light mainly where particularly sensitive photoelectric detectors are required.


## Maximum Ratings

Operating and Storage Temperature T $\quad-55$ to +125
${ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $\mathrm{t} \leq 3 \mathrm{~s}$ )
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Emitter Base Voltage
Power Dissipation ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Thermal Resistance

Characteristics ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )

Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity	$\lambda^{\text {amax }}$	400 to 1080	nm
Radiant Sensitive Area	A	0.12	$\mathrm{mm}^{2}$
Die Area	$L \times W$	$0.5 \times 0.5$	mm
Distance Die Surface to Package Surface	H	2.6 to 3.2	mm
Half Angie	$\varphi$	$\pm 8$	Deg.
Photocurrent of the Collector   Base Diode ( $\mathrm{E}_{\mathrm{V}}=1000 \mathrm{IX}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ )	1 PC	17	$\mu \mathrm{A}$
Capacitance			
$\left(V_{C E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{l}\right.$ )	$\mathrm{C}_{\text {CE }}$	6	pF
$\left(V_{C B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right.$ )	$\mathrm{C}_{\mathrm{CB}}$	10	pF
$\left(V_{E B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right.$ )	$\mathrm{C}_{\text {EB }}$	21	pF
Collector Emitter Leakage Current $\left(V_{C E O}=25 \mathrm{~V}, \mathrm{E}=0 \mid \mathrm{x}\right)$	$I_{\text {CEO }}$	$5(\leq 100)$	nA


Group	BPY62-2	BPY62-3	BPY62-4	
Photocurrent of the Transistor,				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\mathrm{p}}$	2.0 to 4.0	3.2 to 6.3	$\geq 5$	mA
( $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$				
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{C E}=5 \mathrm{~V}\right) \quad \mathrm{I}_{P}$	0.5 to 1	0.8 to 1.6	$\geq 1.25$	mA
$\begin{aligned} & \text { Rise/Fall Time } \\ & \left(I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}\right. \\ & \left.R_{L}=1 \mathrm{k} \Omega\right) \end{aligned}$				
	5	7	9	$\mu \mathrm{S}$
Collector Emitter Saturation				
Voltage ( $l_{C}=l_{\text {PCEmin }} \bullet 0.3$				
$E=1000(x) \quad V_{C E}$	140	140	140	mV
Current Gain				
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \frac{\mathrm{l}_{\mathrm{PCB}}}{}$	180	280	400	

[^74]

Advance Data Sheet


## FEATURES

## - Silicon NPN Photodarlington

- Miniature Side-Facing Package
- Low Cost
- High Sensitivity
- Matches IRL-80A Infrared Emitter


## DESCRIPTION

The LPD-80A is an epitaxial NPN silicon photodarlington. The chip is positioned to accept radiation from the side of the clear miniature package. It efficiently receives infrared radiation from the matching IRL-80A.

Package Dimensions in Inches (mm)


## Maximum Ratings

Coilector Emitter Voltage	$V_{C E}$	30	$V$
Emitter Collector Voltage	$V_{\text {EC }}$	5	$V$
Operating and Storage Temperature	T	-40 to +100	${ }^{\circ} \mathrm{C}$
Power Dissipation @ $25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	100	mW
Deviation Above $25^{\circ} \mathrm{C}$		1.33	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Photocurrent (Note 1)

$\left(V_{C E}=5 \mathrm{~V}, \mathrm{H}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$	$I_{\text {ce }}$	. 5	4	mA
Dark Current				
( $\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{H}=0$ )	$\mathrm{I}_{\text {CEO }}$		100	nA
Saturation Voltage ( $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}$				
$\mathrm{H}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$ )	$V_{\text {CEsat }}$		1.1	V

${ }^{1}$ The light source is a tungsten filament bulb used in conjunction with a $950 \pm 30 \mathrm{~nm}$ filter. The mechanical axis of the DUT is aligned with the light source.

Specifications are subject to change without notice.


## FEATURES

- Low Cost Plastic Package
- High Sensitivity
- Matches Infrared Emitter IRL-80A


## DESCRIPTION

The LPT-80A is a plastic, NPN phototransistor. It comes in a lensed, clear plastic, side-facing, miniature package. Its spheric lens was designed to accept light from very wide angles $\left( \pm 40^{\circ}\right)$. This sensitive detector is ideal for a wide variety of industrial processing and control applications which require a beam interruption.


## Maximum Ratings:

Collector-emitter voltage	$V_{\text {CEO }}$	30	V
Emitter-Collector voitage	$\mathrm{V}_{\text {ECO }}$	5	$\checkmark$
Collector current	$\mathrm{I}_{\mathrm{C}}$	50	mA
Collector peak current ( $\mathrm{t}=1 \mathrm{~ms}$ )	$\mathrm{I}_{\text {CM }}$	100	mA
Storage and operating temperature	T	-40 to +100	${ }^{\circ} \mathrm{C}$
Maximum permissible soldering temperature ( $\mathrm{t} \leq 5 \mathrm{sec}$ )	$\mathrm{T}_{\text {s }}$	240	${ }^{\circ} \mathrm{C}$
Power dissipation ( $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ )	$\mathrm{P}_{\text {tot }}$	100	mW*
*Derate above $25^{\circ} \mathrm{C}$ linearly		1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

## Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Collector-emitter leakage current

$\left(V_{C E}=5 \mathrm{~V} ; E=0\right)$	$\mathrm{I}_{\text {CEO }}$	$\leq 100$	nA
Wavelength of the max. sensitivity		870	nm
Acceptance half angle	$\varphi$	$\pm 40$	Deg.
Breakdown voltage	$B V_{\text {CEO }}$   $B V_{E C O}$	30 Vmin @ $\mathrm{l}_{\mathrm{C}}=1 \mathrm{~mA}$	
Photocurrent (Note 1)			
$\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{H}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$	$\mathrm{l}_{\mathrm{p}}$	$\geq 200$	$\mu \mathrm{A}$
Saturation voltage $\left(\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{H}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$	$V_{\text {CE (sat) }}$	0.15 V typ	0.4

Note 1: The light source is a tungsten filament bulb used in conjunction with a $950 \pm 30 \mathrm{~nm}$ filter. The mechanical axis of the DUT is aligned with the light source.

[^75]





## FEATURES

- Collector Dark Current 0.25 nA Typ
- Responsivity
$0.6 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2} \mathrm{Min}$ (Tungsten) $1.8 \mu \mathrm{~A} / \mathrm{mW} / \mathrm{cm}^{2} \operatorname{Min}(\mathrm{GaAs})$
- Photo Current
0.2 mA Min (Tungsten)
0.6 mA Min (GaAs)
- Rise and Fall Time $2.8 \mu$ s Typ


## APPLICATIONS

- Position Detector
- Intrusion Alarm Sensor
- Optical Tachometer


## BENEFITS

- Flexible Circuit Design Base Lead Availability Large Range of Sensitivities
- Greater Power Dissipation - Ceramic Case
- Reliable - Exceptionally Stable Characteristics


## Package Dimensions in Inches



NOTE: ALL LEADS ELECTRICALLY ISOLATED FROM CASE

## LPT110/LPT110A/LPT110B



NOTE 1: ALL LEADS ELECTRICALLY ISOLATED FROM CASE. NOTE 2: FLATNESS VARIATION OF TOP OF CUP IS $\pm .015$. NOTE 3: PHOTOSENSITIVE AREA IS WITHIN A . 030 DIAMETER CIRCLE WITH CENTER OF CIRCLE COINCIDENT WITH THE CENTER OF PACKAGE.

## MAXIMUM RATINGS

Maximum Temperatures/Humidity	
Storage Temperature	$55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Junction Temperature	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity at Temperature	98\% at $+65^{\circ} \mathrm{C}$
Maximum Power Dissipation (Notes 1 and 2)	
Total Dissipation at $+25^{\circ} \mathrm{C}$ Case Temperature	200 mW
Total Dissipation at $+25^{\circ} \mathrm{C}$ Ambient Temperature	100 mW
Maximum Voltages (Note 5)	
$\mathrm{BV}_{\mathrm{CBO}}$ Collector to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V	
LV $\mathrm{CEO}^{\text {Collector to Emitter Sustaining Voltage }}$	
Maximum Current	
$l_{c}$ Collector Current	100

## OPTO-ELECTRICAL CHARACTERISTICS $\left(25^{\circ}\right)$

Symbols	Parameter	LPT-100/A/B			LPT-110/A/B			Units	Test Conditions
		Min	Typ	Max	Min	Typ	Max		
$\mathrm{I}_{\text {cbo }}$	Collector Dark Current		0.25	25		0.25	25	nA	$V_{C B}=10 \mathrm{~V}$ (Note 5)
${ }^{\text {c }}$ CBO $\left(65^{\circ} \mathrm{C}\right)$	Collector Dark Current		0.025	0.5		0.025	0.5	$\mu \mathrm{A}$	$V_{C B}=10 \mathrm{~V}$ (Note 5)
$I_{\text {ceo }}$	Collector Dark Current		2.0	100		2.0	100	$n \mathrm{~A}$	$V_{C E}=5.0 \mathrm{~V}$ (Note 5)
$\mathrm{R}_{\mathrm{CB}}$	Responsivity (Tungsten)	0.6	1.6		0.6	1.0		$\mu \mathrm{A} / \mathrm{mW} / \mathrm{cm}^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \\ & \text { (Notes } 3 \text { and } 8 \text { ) } \end{aligned}$
$\mathrm{R}_{\text {cb }}$	Responsivity (GaAs)	1.8	4.8		1.8	3.0		$\mu \mathrm{A} / \mathrm{mW} / \mathrm{cm}^{2}$	$\begin{aligned} & V_{C B}=10 \mathrm{~V} \\ & \text { (Notes } 4 \text { and } 8 \text { ) } \end{aligned}$
$I_{\text {ce(L) }}$	Photo Current (Tungsten) LPT-100 and LPT-110	0.2	1.4		0.2	2.1		mA	( $V_{C E}=5.0 \mathrm{~V}$
	" $A$ " Only	1.0	2.0	3.0	0.6	1.2	1.8	$m A$	$\left\{\begin{array}{l} \mathrm{H}=5.0 \mathrm{~mW} / \mathrm{cm}^{2} \end{array}\right.$
	"B" Only	1.3	2.0	2.6	0.8	1.2	1.6	mA	
${ }^{\prime} \mathrm{CE}(\mathrm{L})$.	Photo Current (GaAs)	0.6	4.2		0.6	2.7		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{H}=5.0 \mathrm{~mW} / \mathrm{cm}^{2} \\ & (\text { Notes } 4 \text { and } 7) \end{aligned}$
$t_{r}, t_{f}$	Light Current Rise Time		2.8			2.8		$\mu_{\mathrm{s}}$	(Note 6)
$V_{\text {CE (SAT) }}$	Collector to Emitter Saturation Voltage		0.16	0.4		0.16	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A} \\ & \mathrm{H}=20 \mathrm{~mW} / \mathrm{cm}^{2} \\ & \text { (Note 3) } \end{aligned}$
$\mathrm{BV}_{\text {c8o }}$	Collector to Base Breakdown Voltage	50	120		50	120		V	$\begin{aligned} & I_{C}=100 \mu \mathrm{~A} \\ & \text { (Note } 5 \text { ) } \end{aligned}$
$L V_{\text {CEO }}$	Collector to Emitter Sustaining Voltage	30	50		30	50		v	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$
$B V_{\text {ECO }}$	Emitter to Collector Breakdown		7.0			7.0		V	$\begin{aligned} & I_{E C}=100 \mu \mathrm{~A} \\ & \text { (Note 5) } \end{aligned}$

Note 1: These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
Note 2: These ratings give a maximum junction temperature of $+85^{\circ} \mathrm{C}$ and junction to case thermal resistance of $+300^{\circ} \mathrm{C} / \mathrm{W}$
(derating factor of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ) and a junction to ambient thermal resistance of $+600^{\circ} \mathrm{C} / \mathrm{W}$ (derating factor of $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ).
Note 3: Measured at noted irradiance as emitted from a tungsten filament lamp at a color temperature of $2854^{\circ} \mathrm{K}$.
Note 4: Measured with a tungsten lamp $\left(2854^{\circ} \mathrm{K}\right)$ with a 950 nm filter.
Note 5: Measured with radiation flux intensity of less than $0.1 \mu \mathrm{~W} / \mathrm{cm}^{2}$ over the spectrum from 100 to 1500 nm
Note 6: Rise time is defined as the time required for ICE to rise from $10 \%$ to $90 \%$ of peak value. Fall time is defined as the time required for $I_{C E}$ to decrease from $90 \%$ to $10 \%$ of peak value. $T$ est conditions are: $I_{C E}=4.0 \mathrm{~mA}, V_{C E}=5.0 \mathrm{~V}$, $R_{L}=100$ Ohms, GaAs Source.
Note 7: No electrical connection to base lead.
Note 8: No electrical connection to ernitter lead.

## TYPICAL OPTOELECTRONIC CHARACTERISTICS



SPECTRAL
CHARACTERISTICS





ICE versus VCC (LPT110 A/B)


ICE versus IRRADIANCE




## FEATURES

- Extremely Accurate Mechanical to Optical Alignment
- Package Referenced for Users to Maintain Mechanical Alignment
- An Effective Active Area Aperture of . 240 Diameter
- Extremely Narrow Acceptance Angle, $5^{\circ}$
- Built-In Daylight Filter
- Peak Response at 880 nm
- Matches with IRL-500 Infrared Emitter

Characteristics $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

## DESCRIPTION

The LPT-500 is an epitaxial NPN silicon phototransistor. The chip is mounted in a precision injection molded housing that guarantees a very accurate alignment tolerance, typically 2.5 degrees. Its detection angle matches with the IRL-500 infrared emitter of 5 degrees ( $2.5^{\circ}$ half angle). The lens is opaque to visible and transparent to IR emission and thus receives efficiently IR light from the matching IRL-500.

Package Dimensions in Inches (mm)


## Maximum Ratings

Collector-Emitter Voltage
Emitter-Collector Voltage
Collector Current
Junction Temperature
Storage Temperature
Power Dissipation @ $25^{\circ} \mathrm{C}$ $\qquad$

$$
\begin{gathered}
V_{C E O} \\
V_{\text {ECO }} \\
T_{C} \\
T_{S} \\
T_{S} \\
P_{\text {TOT }}
\end{gathered}
$$

30
7
100
$-55^{\circ}$ to $+85^{\circ}$
$-20^{\circ}$ to $+70^{\circ}$
100

[^76]| Spectral Sensitivity | $\lambda$ | 880 | nm |
| :---: | :---: | :---: | :---: |
| Photocurrent* $\left(V_{C E}=5.0 \mathrm{~V}, E_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ | $\mathrm{I}_{\operatorname{CE}(\mathrm{L})}$ | 20 | mA |
| Risetime ( $\mathrm{l}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$ ) | $t r$ | 2.8 | $\mu \mathrm{S}$ |
| Falltime ( $\mathrm{I}_{C}=4 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$ ) | tf | 2.8 | $\mu \mathrm{S}$ |
| Collector-Emitter Saturation Voltage . . . $\left(l_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{H}=5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ | $V_{\text {CEISAT }}$ | . 26 | V |
| Collector Dark Current ( $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$ ) . | $\mathrm{I}_{\text {CEO }}$ | 2.0 | nA |
| Half Angle | $\varphi$ | $\pm 2.5$ | Deg |

*Measured with tungsten filament bulb at $2856^{\circ} \mathrm{K}$ color temperature per IEC 306-1, DIN 3055, CIE Illuminant A.

RELATIVE SPECTRAL SENSITIVITY VS WAVELENGTH




## FEATURES

- High Reliability
- Good Linearity
- Suitable for the Visual and Near IR Range
- IR Filter Package Optional
- 40 Degrees Detection Angle
- High Photosensitivity


## DESCRIPTION

SHF303/303F are silicon phototransistors with external base connection. SFH303 comes in a standard $5 \mathrm{~mm} \mathrm{T-13/4}$ water-clear package. SFH303F is furnished with a black IR filter package. The three leaded device has a tab to indicate the emitter. The collector lead is situated in the center.
The devices are most suitable for use in industrial Control applications, light barriers in DC and $A C$ operation and others.


Maximum Ratings

Operating and storage temperature	T	-55 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature at dip soldering ( $\geq 2 \mathrm{~mm}$ distance from the case bottom; soldering time $\mathrm{t} \leq 5 \mathrm{sec}$ )	$\mathrm{T}_{\text {SOLD }}$	260	${ }^{\circ} \mathrm{C}$
Soldering temperature at iron soldering ( $\geq 2 \mathrm{~mm}$ distance from the case bottom; soldering time $\mathrm{t} \leq 3 \mathrm{sec}$ )	$\mathrm{T}_{\text {SOLO }}$	300	${ }^{\circ} \mathrm{C}$
Collector emitter voltage	$V_{\text {CE }}$	50	V
Collector current	${ }^{1} \mathrm{C}$	50	mA
Collector peak current ( $\mathrm{t}<10 \mu \mathrm{sec}$ )	$\mathrm{I}_{\mathrm{CP}}$	100	mA
Emitter base voltage	V	7	V
Power dissipation ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\text {tot }}$	200	mW
Thermal resistance	$\mathrm{R}_{\text {thiA }}$	375	K/W

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )


[^77]Radiation Characteristics
$\mathrm{S}_{\text {rel }}=\mathrm{f}(\varphi)$


Dark Current $\mathrm{I}_{\mathrm{CEO}}=f\left(\mathrm{~N}_{\mathrm{CE}}\right)$
Relative Spectral Sensitivity $S_{\text {rel }}=f(\lambda)$


Photocurrent $l_{\text {PCE }}=f\left(V_{C E}\right.$ $\overbrace{10}^{\substack{\text { pece } \\ 10}}$


Output Characteristics $\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{CE}}\right)$ $I_{B}=$ Parameter




## FEATURES

- Miniature Plastic Package
- 2.54 mm (1/10") Lead Spacing
- Detector for SFH 405 Infrared Emitter
- Narrow Acceptance Angle, $32^{\circ}$
- Designed for Maximum Spacing of 10 mm Between Emitter \& Detector


## DESCRIPTION

The SFH 305 is a NPN silicon planar photo transistor in clear plastic encapsulation with solder PIN terminals. The connectors in the form of solder tabls are spaced 2.54 mm ( $1 / 10 \mathrm{inch}$ ). The photo transistors are grouped according to photo sensitivity. The SFH 305 is suitable for use as detector for the infrared diode SFH 405 to effect miniature light barriers with close spacing between sender and receiver up to 10 mm maximum. Also, the SFH 305 is suitable for application with glow-lamp light, i.e. daylight. The collector is marked with a colored dot.


## Maximum Ratings

Operating and Storage Temperature $\quad \mathrm{T} \quad-40$ to $+80 \quad{ }^{\circ} \mathrm{C}$ Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time t $\leq 3 \mathrm{~s}$ )
Collector Emitter Voltage

$T_{S}$	230	${ }^{\circ} \mathrm{C}$
$T_{S}$	300	${ }^{\circ} \mathrm{C}$
$V_{\text {CEO }}$	32	V
$\mathrm{I}_{\mathrm{C}}$	50	mA
$\mathrm{I}_{\text {PK }}$	200	mA
$\mathrm{P}_{\text {tot }}$	75	mW
$\mathrm{R}_{\text {thJA }}$	950	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {thJG }}$	850	$\mathrm{~K} / \mathrm{W}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
Radiant Sensitive Area
Die Area
Distance Die Surface to Package Surface
Half Angle

$\lambda_{\text {Smax }}$	850	nm
$\lambda$	460 to 1060	nm
A	0.17	$\mathrm{~mm}^{2}$
$\mathrm{~L} \times \mathrm{W}$	$0.6 \times 0.6$	mm
H	1.3 to 1.9	mm
$\varphi$	$\pm 16$	Deg
$\mathrm{I}_{\text {PCB }}$		$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{CE}}$	5.5	pF
$\mathrm{I}_{\text {CEO }}$	$3(\leq 20)$	nA


Group	SFH305-2	SFH305-3	
Photocurrent of the Transistor,			
Collector to Emitter (Note 1)			
$\left(E_{y}=1000 \mathrm{~lx}, \mathrm{~V}_{C E}=5 \mathrm{~V}\right) \quad \mathrm{t}_{\mathrm{P}}$	1 to 2	1.6 to 3.2	mA
( $\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$			
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\mathrm{P}}$	25 to 5	. 4 to 8	mA
Rise/Fall Time			
$\begin{aligned} & \left(I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}\right. \\ & \left.R_{\mathrm{L}}=1 \mathrm{k} \Omega\right) \end{aligned}$	5.5	6	$\mu \mathrm{S}$
Collector Emitter Saturation			
$\text { Voltage }\left(I_{C}=I_{P C E \min } \bullet 0.3\right.$ $E=1000 \mathrm{I}(x)$	150	150	mV
Current Gain	150	150	
$\left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right) \quad \frac{\mathrm{l}_{\text {PCE }}}{\mathrm{t}_{\mathrm{PCB}}}$	190	300	

The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC 306 -1). Irradiance $E_{e}$ measured with HP radiant flux meter 8334A with option 013.
${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm} . I_{\text {PCE }}=$ Photocurrent of transistors; $I_{P C B}=$ Photocurrent of Collector-Base-Diode.

Specifications are subject to change without notice.



## FEATURES

- High Reliability
- 3 mm (T1) Size Package
- 0.10 Inch ( 2.54 mm ) Lead Spacing
- Low Cost
- Good Linearity
- Matches with SFH-409 Infrared Emitter
- Narrow Acceptance Angle, 32


## DESCRIPTION

The SFH 309 and SFH 309F are silicon NPN phototransistors in a standard T1 size plastic package. The SFH 309F is furnished with a black IR filter package. It is designed for a variety of low cost, high volume applications such as IR remote control and other consumer and entertainment products.


## Maximum Ratings

Operating and Storage Temperature $\quad$ T $\quad-55$ to $+100 \quad{ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from soldering joint
to package $\geq 2 \mathrm{~mm}$
Dip Soldering Time $\mathrm{t} \leq 5 \mathrm{~s}$
Iron Soldering Time $\mathrm{t} \leq 3 \mathrm{~s}$ )
Collector Emitter Voltage
Collector Current
Collector Peak Current ( $\mathrm{t}<10 \mu \mathrm{~s}$ )
Power Dissipation ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )
Thermal Resistance


	SFH309	SHF309F	
Photocurrent of the Transistor,			
Collector to Emitter			
$\begin{aligned} & \left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{Ix}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right) \\ & \left(\mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right. \end{aligned}$	typ. $5(\geq 1.6)$	-	inA
$\left.\lambda=950 \mathrm{~nm}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\right) \quad \mathrm{I}_{\mathrm{P}}$	typ. $1.3(\geq 0.4)$	typ. $2(\geq 0.5)$	mA
Rise/Fall Time			
$\begin{aligned} & \left(l_{C}=2 \mathrm{~mA}, \lambda=830 \mathrm{~nm}\right. \\ & \left.V_{C E}=5 \mathrm{~V}, R_{L}=1 \mathrm{k}\right) \quad t_{r}, t_{t} \end{aligned}$	10	10	$\mu \mathrm{S}$
Coilector Emitter Saturation			
Voltage ( $\mathrm{l}_{\mathrm{C}}=2 \mathrm{~mA}$			
$\mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}, \mathrm{E}=0 \mathrm{l}$ ( ) $\quad V_{\text {CEsat }}$	200	-	mV
$\left(\mathrm{l}_{\mathrm{C}}=0.25 \mathrm{~mA}, \lambda=950 \mathrm{~nm}\right.$			
$\left.E_{e}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right) \quad V_{\text {CEsal }}$	-	130	mV
Leakage Current	60 ( 200 )	$60(\leq 200)$	nA

Specifications are subject to change without notice.


Preliminary Data Sheet


SFH 317

## FEATURES

## - IR Filter Package (SFH317F)

- High Reliability
- Fast Rise and Fall Times
- High Photosensitivity
- Good Linearity
- Wide Acceptance Angle, $12 \mathbf{0}^{\circ}$


## DESCRIPTION

The SFH317 and SFH317F are highly sensitive silicon planar phototransistors with base connection. The SFH317 comes in a 5 mm waterclear, no lens package. SFH317F is housed in a black epoxy package. A tab at the leadframe indicates the emitter. The collector lead is in the middle.


Specifications are subject to change without notice.


## PLASTIC FIBER OPTIC PHOTOTRANSISTOR DETECTOR

Preliminary Data Sheet


## Maximum Ratings

Operating and Storage Temperature
$\mathrm{T} \quad-55$ to +100 ${ }^{\circ} \mathrm{C}$
Soldering Temperature
(Distance from solder to
package $=2 \mathrm{~mm}$ )
Dip Soldering Time, $\mathrm{t} \leq 5 \mathrm{sec}$
Iron Soldering Time, $\mathrm{t} \leq 3 \mathrm{sec}$
Collector-Emitter Voltage
Collector Current
Collector Peak Current ( $t \leq 10 \mathrm{sec}$ )
Emitter Base Voltage
Power Dissipation ( $T_{\text {amb }}=25^{\circ} \mathrm{C}$ )
Thermal Resistance

$T_{S}$	260	${ }^{\circ} \mathrm{C}$
$T_{S}$	300	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}$	50	V
$\mathrm{I}_{\mathrm{C}}$	50	mA
$\mathrm{I}_{\mathrm{CP}}$	100	mA
$\mathrm{~V}_{\text {EB }}$	7	V
$\mathrm{P}_{\text {tot }}$	200	mW
$\mathrm{R}_{\text {thj } \mathrm{A}}$	375	$\mathrm{~K} / \mathrm{W}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Wavelength of Max. Photosensitivity	$\lambda_{\text {max }}$	850	nm
Spectral Range of Photosensitivity $\left(S=10 \% \text { of } S_{\max }\right)$	$\lambda$	400 to 1100	nm
Capacitance			
$\left(\mathrm{V}_{C E}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right.$ )	$\mathrm{C}_{C E}$	9	pF
$\left(V_{C B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{C B}$	22	pF
$\left(\mathrm{V}_{\mathrm{EB}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0 \mathrm{~lx}\right)$	$\mathrm{C}_{\mathrm{EB}}$	20	pF
Rise and Fall Time $\left(I_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)$	$t_{\text {r }}, \mathrm{t}_{\text {f }}$	15	$\mu \mathrm{S}$
Current Gain $\left(V_{C E}=5 \mathrm{~V}, I_{C E}=2 \mathrm{~mA}\right)$	$\beta$	500	Typ.
Photocurrent ( $\left.\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$ (Note 1)			
$\lambda=950 \mathrm{~nm}$	$\mathrm{I}_{\text {CE }}$	7	mA
$\lambda=660 \mathrm{~nm}$	$\mathrm{I}_{\text {CE }}$	5	mA
$\lambda=560 \mathrm{~nm}$	$\mathrm{I}_{\text {CE }}$	2	mA

${ }^{1}$ Photocurrent generated at $100 \mu \mathrm{~W}$ light incidence through plastic 1000 micron fiber (distance lens-fiber $\leq 0.1 \mathrm{~mm}$, fiber type ESKA EH4001, fiber face polished).

Specifications are subject to change without notice.



## FEATURES

- TO-18 Package
- Flat Glass Lens
- Fast Speed, 2 MHz


## DESCRIPTION

SFH 500 is a fast NPN silicon planar photodetector with a frequency to 2 MHz and a wide range of modulation from $10^{2}$ to $10^{4}$ LUX. The chip is mounted in a TO-18 package with flat glass lens window. The photodetector is especially suitable for light wave conductor application through the small cap body (up to $2 \mathrm{Mbits} / \mathrm{s}$ ). Also suitable for industrial electronics and in camera applications where a wider sensitivity range is necessary. The case is electrically connected to the collector.


[^78]

Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

## Photovoltaic Cells




## FEATURES

- Silicon Planar Photovoltaic Cell
- Medium Size Radiation Sensitive Surface


## DESCRIPTION

The BPX 79 is a silicon planar photovoltaic cell. The increased sensitivity with shorter wavelengths makes it particularly suitable for applications with light sources having a high share of blue. The planar method ensures a low reverse current level and low noise. The photovoltaic cell is nitridepassivated and has an anti-reflection coating for a wavelength of $\lambda=450 \mathrm{~nm}$.


## Maximum Ratings

$\begin{array}{llll}\text { Reverse voltage } & V_{R} & 1 & V \\ \text { Storage temperature and operating temperature } & T_{\text {amb }} & -55 \text { to }+100 & { }^{\circ} \mathrm{C}\end{array}$

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )

Photosensitivity (standard light A, T = 2856 K )	S	$170(\geq 100)$	$n \mathrm{~A} / \mathrm{lx}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	800	nm
Spectral Range of Photosensitivity $\text { (S = } 10 \% \text { of Smax) }$	$\lambda$	350 to 1100	nm
Radiant Sensitive Area	A	20	$\mathrm{mm}^{2}$
Dimensions of the Radiant Sensitive Area	$L \times W$	$4.47 \times 4.47$	mm
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current $\left(V_{R}=1 \vee, E=0\right)$	/R	0.3 ( $\leq 50$ )	$\mu \mathrm{A}$
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.55	A/W   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.80	Photon
$\begin{aligned} & \text { Open Circuit Voitage } \\ & \left(\mathrm{E}_{\mathrm{V}}=1000 \mathrm{~lx} \text {, standard light } \mathrm{A}\right. \\ & \mathrm{T}=2856 \mathrm{~K}) \end{aligned}$	$V_{L}$	$450(\geq 310)$	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{~lx}$, standard light A $T=2856 \mathrm{~K}$ )	$I_{\text {Sc }}$	170 ( $\geq 100$ )	$\mu \mathrm{A}$
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=1 \mathrm{~V}, \lambda=950 \mathrm{~nm}\right.$ $\left.I_{P}=150 \mu \mathrm{~A}\right)$	$t_{r r} t_{i}$	6	$\mu \mathrm{S}$
Capacitance			
$\left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{l} \times \mathrm{x}\right)$ $\left(\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mathrm{l}\right)$	Co $\mathrm{C}_{1}$	2500 1800	pF pF
Temperature Coefficient $V_{L}$	TC	-2.6	$\mathrm{mV} / \mathrm{K}$
Temperature Coefficient $\mathrm{I}_{\mathrm{K}}$	TC	0.2	\%/K

Specifications are subject to change without notice.



## FEATURES

- Small Package
- May Be Stacked Tightly Together
- Choice of 2 Sensitivity Groups
- Fast Response Time


## DESCRIPTION

BPY 11 P is a photovoltaic cell, fabricated with planar technology.
The silicon protovoltaic cell is suitable for use in control and drive circuits, for light pulse scanning, and for quantitative light measurements. Its rapid response, small dimensions, and high permissible operating temperature make universal application feasible.
Since this cell is not encased, the assembly of high efficient scanning systems can be realized. For this purpose the cells may be cemented closely together on suitable mounting assemblies.


Specifications are subject to change without notice.



## FEATURES

- High Sensitivity
- Cost Effective Package


## DESCRIPTION

BPY 63P is a silicon photovoltaic cell (photoelement) fabricated with planar technology. The silicon chip comes with two leads and is covered with a hydro protective layer. BPY 63 P is suitable for use in control and regulation circuits. Also, as a photoelement, it can be used as a detector of incandescent light and daylight.


## Maximum Ratings

Reverse Voltage (V $\mathrm{V}_{\mathrm{R}}$, Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 V


Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )			
Photosensitivity	S	$0.65(\geq 0.45)$	$\mu \mathrm{A} / \mathrm{lx}$
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity $(S=10 \% \text { of Smax })$	$\lambda$	400 to 1100	nm
Radiant Sensitive Area	A	0.96	$\mathrm{cm}^{2}$
Dimensions of the Radiant			
Sensitive Area	$L \times W$	$9.78 \times 9.78$	mm
Half Angle	$\varphi$	$\pm 60^{\circ}$	Deg.
Dark Current ( $V_{R}=1 \mathrm{~V}, \mathrm{E}=0$ )	R	10	$\mu \mathrm{A}$
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.5	A/W   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$S_{\lambda}$	0.72	Photon
Open Circuit Voltage $\left(\mathrm{E}_{V}=1000 \mathrm{x}, \text { Note } 1\right)$	$\mathrm{V}_{0}$	$430(\geq 280)$	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{~lx}$, Note 1)	$I_{S C}$	$0.65(\geq 0.45)$	mA
Switching Times $\left(R_{L}=1 \mathrm{~K} \Omega, V_{R}=1 \mathrm{~V}\right.$, $\left.\lambda=840 \mathrm{~nm}, I_{P}=500 \mu \mathrm{~A}\right)$	$t_{\text {r, }} t_{\text {f }}$	11	$\mu \mathrm{S}$
$\begin{aligned} & \text { Capacitance } \\ & \left(V_{R}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mid x\right) \end{aligned}$   Temperature Efficiency of $\mathrm{V}_{0}$	Co TK	8 -2.6	$\stackrel{n F}{n V / K}$
Temperature Efficiency of $\mathrm{I}_{\mathrm{S}}$	TK	0.2	\%/K
- The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K .			
${ }^{2}$ Plus port of the voltage source to be conne	white stra		

[^79]

Capacitance $C=f\left(V_{R}\right) ; E=0 \mid x$




Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022


## FEATURES

- Silicon Photovoltaic Cell
- Medium Size Radiation Sensitive Surface


## DESCRIPTION

The BPY 64P is suitable for versatile applications in control and drive circuits. It can be used, like all silicon photovoltaic cells, as detector for light of filament lamps or daylight.

Supercedes BPY 64


## Maximum Ratings

Reverse voltage Temperature range	$\begin{aligned} & V_{\mathrm{F}} \\ & T_{\mathrm{amb}} \end{aligned}$	$\frac{1}{-55} \text { to }+100$	$\begin{aligned} & { }^{\circ} \mathrm{C} \end{aligned}$
Characteristics ( $\mathrm{Tamb}^{\text {a }}=25^{\circ} \mathrm{C}$ )			
Photosensitivity (standard light $\mathrm{A}, \mathrm{T}=2856 \mathrm{~K}$ )	S	$0.25(\geq 0.18)$	nA/lx
Wavelength of Max. Photosensitivity	$\lambda_{\text {Smax }}$	850	nm
Spectral Range of Photosensitivity $(S=10 \% \text { of Smax })$	$\lambda$	420 to 1060	nm
Radiant Sensitive Area	A	0.36	$\mathrm{cm}^{2}$
Dimensions of the Radiant Sensitive Area	L $\times$ W	$5.98 \times 5.98$	mm
Half Angle	$\varphi$	$\pm 60$	Deg.
Dark Current $\begin{aligned} & \left(V_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{E}=0\right) \\ & \left(V_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{E}=0, T_{\mathrm{amb}}=50^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & I_{R} \\ & I_{R} \end{aligned}$	4 10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Spectral Photosensitivity $(\lambda=850 \mathrm{~nm})$	$S_{\lambda}$	0.50	AM   Electrons
Quantum Efficiency ( $\lambda=850 \mathrm{~nm}$ )	$\eta$	0.72	Photon
$\begin{aligned} & \text { Open Circuit Voltage } \\ & \left(E_{\mathrm{V}}=1000 \mathrm{x} \text {, standard light } \mathrm{A}\right. \\ & T=2856 \mathrm{~K}) \end{aligned}$	V	$450(\geq 280)$	mV
Short Circuit Current ( $E_{V}=1000 \mathrm{~lx}$, standard light $A$ $\mathrm{T}=2856 \mathrm{~K}$ )	Isc	$0.25(\geq 0.18)$	mA
Rise and Fall Time of the Photocurrent from $10 \%$ to $90 \%$ and from $90 \%$ to $10 \%$ of the Final Value $\begin{aligned} & \left(R_{L}=1 \mathrm{~K},, V_{R}=1 \mathrm{~V}, \lambda=840 \mathrm{~nm}\right. \\ & \left.\mathrm{I}_{\mathrm{P}}=250 \mu \mathrm{~A}\right) \end{aligned}$	$t_{r}, t_{4}$	5	$\mu \mathrm{S}$
Capacitance $\left(V_{\mathrm{R}}=0 \mathrm{~V}, f=1 \mathrm{MHz}, \mathrm{E}_{\mathrm{V}}=0 \mid \mathrm{x}\right)$   Temperature Coefficient $V_{L}$   Temperature Coefficient $I_{k}$	Co TC TC	3 -2.6 0.2	$\stackrel{\mathrm{nF}}{\mathrm{mV} / \mathrm{K}}$

[^80]

## SILICON PHOTOVOLTAIC CELLS



## FEATURES

- Silicon Photovoltaic Cell
- Stud Package, TP 60P
- Wide Temperature Range, $-55^{\circ}$ to $+100^{\circ}$, TP 61P
- Very High Sensitivity, 1000 nA/lx Typ.


## DESCRIPTION

The silicon photovoltaic cells TP 60 P and TP 61P are suitable for use in drive and control circuits. Featuring the same electrical characteristics, they differ only in design. The anode (positive pole of the cell) is marked by a red lead.

Package Dimensions in Inches (mm)
TP 60P


TP 61P


## Maximum Ratings

Operating and storage temperature range
Reverse voltage ${ }^{11}$

	TP 60P	TP 61P	
$T_{\text {amb }}$	-40 to +80	-55 to +100	${ }^{\circ} \mathrm{C}$
$V_{\mathrm{R}}$	1.0	1.0	V

Characteristics ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ )



Directional characteristic $S_{\text {rel }}=f(\varphi)$


Open clrcuit voltage $V_{L}=f\left(E_{V}\right)$
short circuit current $\mathrm{I}_{\mathrm{K}}=\mathrm{f}\left(\mathrm{E}_{\mathrm{V}}\right)$


Capacitance $\mathrm{C}=f\left(V_{R}\right)$
nF



## LIST OF APPLICATION NOTES

## APPNOTE \#

TITLE
PAGE
LEDs \& Photometry ..... 11-2
Applications of Optocouplers ..... 11-6
Multiplexing LED Displays ..... 11-10
Driving High-Level Loads with Optocouplers ..... 11-14
More Speed from Optocouplers ..... 11-18
Operating LEDs on AC Power ..... 11-20
Applying the DL 1416T or DL 1416B Intelligent Display ${ }^{\circledR}$ device ..... 11-21
Mounting Considerations for LED Lamps and Displays ..... 11-26
Displaying Message Systems Without a Microprocessor ..... 11-28
Applying the DL 2416 Intelligent Display ${ }^{8}$ device ..... 11-30
Applying the DL 1414 Intelligent Display ${ }^{\oplus}$ device ..... 11-34
Silicon Photovoltaic Cells, Silicon Photodiodes and Phototransistors ..... 11-38
Guidelines for Handling and Using Intelligent Display ${ }^{\circledR}$ devices ..... 11-42
Cleaning LED Opto Products ..... $11-44$
Moving Messages Using Intelligent Display ${ }^{\circledR}$ devices and 8748 Microprocessor ..... 11-46
Silver Plated Tarnished Leads ..... 11-48
Socket Selection Guide ..... 11-49
LED Filter Selection ..... 11-50
Drivers for Light Emitting Displays ..... 11-52
The DLX 713X, $5 \times 7$ Dot Matrix Intelligent Display ${ }^{\circledR 1}$ device ..... 11-56
SFH 900 - A Low-Cost Miniature Reflex Optical Sensor ..... 11-59
The DLO 4135/DLG 4137, $5 \times 7$ Dot Matrix Inteligent Display ${ }^{\oplus}$ device ..... 11-66
Serial Intelligent Display ..... 11-70
Blue-Light Emitting Silicon-Carbide Diodes - Materials, Technology, Characteristics ..... 11-75
Light Activated Switches ..... 11.78
Remote Control ..... $11-86$
Photographic Aperture, Exposure Controls, and Electronic Flash ..... 11-93
General Photoelectric Application Circuits ..... 11-95
General IR and Photodetector Information ..... 11-98
Surface Mounting ..... 11-112
Solderability of the Small Outline Coupler ..... 11-121

# LEDs \& Photometry Appnote 1 

by George Smith

The observed spectrum of electromagnetic radiations, extends from a few Hz , to beyond $10^{24} \mathrm{~Hz}$, covering some 80 octaves. The narrow channel from 430 THz to 750 THz would be entirely negligible, except for the fact that more information is communicated to human beings, in this channel, than is obtained from the rest of the spectrum. This radiation has a wavelength ranging from 400 nm to 700 nm , and is detectable by the sensory mechanisms of the human eye. Radiation observable by the human eye is commonly called light.

Measurements of the physical properties of light and light sources, can be described in the same terms as any other form of electromagnetic energy. Such measurements are commonly called Radiometric Measurements.

Measurements of the psychophysical attributes of the electromagnetic radiation we call tight, are made in terms of units, other than these radiometric units. Those attributes which relate to the luminosity (sometimes called visibility) of light and light sources, are called photometric quantities, and the measurement of these aspects is the subject of Photometry.

The electronics engineer who is starting to apply light emitting diodes and other opto-electronic devices to perform useful tasks, will find the subject of photometry to be a confused mass of strange units, confusing names for photometric quantities, and general disagreement as to what the important requirements are for his application.

The photometric quantities are related to the corresponding radiometric quantities by the C.I.E. Standard Luminosity Function (Fig. 1), which we may colloquially refer to as the standard eyeball. We can think of the luminosity function, as the transfer function of a filter which approximates the behavior of the average human eye under good lighting conditions.


Figure 1. Relationship between radiometric units and photometric units.

The eye responds to the rate at which radiant energy falls on the retina, i.e., on the radiant flux density expressed as Watts $/ \mathrm{m}^{2}$. The corresponding photometric quantity is Lumens $/ \mathrm{m}^{2}$. The standard luminosity function is then, a plot of Lumens/Watt as a function of wavelength.

The function has a maximum value of 680 Lumens/ Watt at 555 nm and the $1 / 2$ power points occur at 510 nm and 610 nm (Fig. 2).


Figure 2. CIE standard photopic luminosity function.
The LUMEN is the unit of LUMINOUS FLUX and corresponds to the watt as the unit of radiant flux.

Thus the total luminous flux emitted by a light source in all directions is measured in lumens, and can be traced back to the power consumed by the source to obtain an efficiency number.

Since it is generally not practical to collect all the flux from a light source, and direct it in some desired direction, it is desirable to know how the flux is distributed spatially about the source. If we treat the source as a point (far field measurement), we can divide the space around the source into elements of solid angle ( $\mathrm{d} \omega$ ), and inquire as to the luminous flux ( dF ) contained in each element of solid angle ( $\frac{d f}{d \omega}$ ). The resulting quantity is Lumens/Steradian and is called LUMINOUS INTENSITY (I), (Fig. 3). The unit of Luminous intensity is called the CANDELA, sometimes loosely called the candle, or candle power.


Figure 3. Solid angles and luminous intensity.
Since the space surrounding a point contains $4 \pi$ steradians, it is apparent that an isotropic radiator of one candela intensity, emits a total luminous flux of $4 \pi$ Lumens.

No real light source is isotropic, so it is quite common to show a plot of Luminous intensity versus angle off the axis (Fig. 4). If the source has no axis of symmetry, a more complex diagram is required.


Figure 4. Spatial distribution pattern.

For an extended radiating surface, (such as an LED chip), each element of area contributes to the luminous intensity of the source, in any given direction. The luminous intensity contribution in the given direction, divided by the projected area of the surface element in that direction, is called the LUMINANCE (B) of the source (in that direction), (Fig. 5). The quantity is sometimes called photometric brightness, or simply brightness. The use of the term brightness on its own, should be discouraged, as this involves various subjective properties such as texture, color, sparkle, apparent size, etc. that have psychological implications.


Figure 5. Definition of luminance.
The fundamental quantitative standard of the photometric system of units is the standard of luminance.

The luminance of a black body radiator at the temperature of freezing platinum $\left(2043.8^{\circ} \mathrm{K}\right)$ is 60 candela per square centimeter. [A blackbody radiator is a perfect absorber of all electromagnetic energy incident on it. In thermal equilibrium at a given temperature, it emits radiation, spectrally distributed according to Plancks Formula

$$
\left.\left(W_{\lambda}=\frac{c_{1} \lambda^{-5}}{\exp \left(\frac{c_{2}}{\lambda}\right)-1}\right)\right]
$$

The units of Luminance in present use are an engineering nightmare.
1 candela/ $\mathrm{cm}^{2}$ is called a Stilb
$1 / \pi$ candela/cm ${ }^{2}$ is called a Lambert
1 candela $/ \mathrm{m}^{2}$ is called a Nit
$1 / \pi$ candela $/ \mathrm{m}^{2}$ is called an Apostilb
$1 / \pi$ candela/ $\mathrm{ft}^{2}$ is called a foot-Lambert
The foot Lambert is the most commonly used unit in this country.

Of particular interest is a source whose angular distribution pattern is a circle (Fig. 6). For such a source we have $\mathrm{I}_{\theta}=\mathrm{I}_{0} \operatorname{Cos} \theta$, the luminance of such a source in a given direction $\theta$, is then given by

$$
\mathrm{B} \theta=\frac{\mathrm{d} I_{\theta}}{\mathrm{dA} \cos \theta}=\frac{\mathrm{d} \mathrm{I}_{\mathrm{o}} \operatorname{Cos} \theta}{\mathrm{dA} \operatorname{Cos} \theta}=\frac{\mathrm{d} I_{\mathrm{o}}}{\mathrm{dA}}
$$

The luminance is seen to be the same in all directions. Such a source is called a LAMBERTIAN SOURCE. It can be shown that a perfectly diffusing surface behaves in this fashion. The formula governing a diffusing surface $I_{\theta}=I_{0} \operatorname{Cos} \theta$ is called Lambert's Cosine Law.

It can be shown that a flat LED chip is a very good approximation to a Lambertian Source.


Figure 6. Lambertian radiation pattern.
If we now take a surface element ( dA ) and determine the intensity contribution in each direction we can determine the total flux ( dF ) emitted by the surface element. The resultant ratio ( $\frac{d F}{d A}$ ) Lumens $/ \mathrm{m}^{2}$ is called the LUMINOUS EMITTANCE (L). For a flat surface we may calculate $L$ from

$$
L=2 \pi \int_{0}^{\pi / 2} \mathrm{~B}(\theta) \mathrm{S}_{1 \mathrm{~N}} \theta \operatorname{Cos} \theta \mathrm{~d} \theta
$$

The corresponding radiant emittance in watts $/ \mathrm{m}^{2}$ is of considerable interest for GaAs infrared LED's where total output power is an important parameter.

The total luminous flux emitted by a light source can then be calculated from $F_{\text {total }}=\int L d A$.

These photometric quantities are sufficient to describe the properties of light sources such as light emitting diodes.

When light falls on a receiving surface, it is either partially reflected in the case of a purely passive surface, or partly converted into some other form of energy by what we may describe as an active surface (such as a phototransistor or photomultiplier cathode). In either case we are interested in how much flux falls on each element of the surface; Lumens $/ \mathrm{m}^{2}$ in the case of a passive surface which we wish to illuminate, or the eye; and Watts $/ \mathrm{m}^{2}$ in the case of other active surfaces. The quantity Lumens $/ \mathrm{m}^{2}$ in this case is called the ILLUMINANCE sometimes loosely referred to as the illumination. The unit of illuminance is the LUX also referred to as the metercandle. Another commonly used unit of illuminance, in this country is the FOOT CANDLE, equal to one lumen per square foot. One lumen per square cm is called a PHOT.

Many of these photometric quantities and units are in common use in the field of illumination engineering, with the English units being most common in this country. It should be apparent to the reader that a mixed system of units is involved in common usage.

## APPLICATION TO LIGHT EMITTING DIODES

The above description of photometric quantities should indicate to the reader that there are many ways in which the photometric properties of LED's can be stated. There is no general agreement among LED makers and users, as to the best way to specify LED performance, and this has lead to much confusion and misunderstanding.

Many factors must be taken into account when evaluating LED specifications for a particular application, and electronic engineers will need to develop a knowledge of these factors to put LED's to effective use in new designs.

Presently available light emitting diodes are made from the so-called III-V compound semiconductors, with Gallium Arsenide Phosphide and Gallium Phosphide being the major materials. Gallium Aluminum Arsenide is also used but is less common. Gallium Arsenide is commonly included in this group, but it should be remembered that GaAs emits only infra-red radiation around 900 nm , which is not visible to the eye, and is thus not properly called light. All specifications of GaA s emitters must be in radiametric units.

GaP emits green light between 520 and 570 nm peaking 550 nm very close to the peak eye sensitivity. It also can emit red light between 630 and 790 nm peaking at 690 nm .
$\operatorname{GaAs}_{(1-x)} P_{x}$ emits light over a broad orange red range depending on the percentage of phosphorus in the material ( x ). For x in the 0.4 region, red light between 640 and 700 nm peaking at 660 nm , is obtained. For $\mathrm{x}=0.5$, amber light peaking around 610 nm is obtained.
$\mathrm{Ga}_{(1-\mathrm{x})} \mathrm{Al}_{\mathrm{x}} \mathrm{A}_{\mathrm{s}}$ as presently available, emits red light between 650 and 700 nm peaking at 670 nm .

The efficiency of these materials is very dependent on the emitted wavelength, with drastic fall off in efficiency as the wavelength gets shorter. Fortunately the standard eyeball filter, favors the shorter wavelength (down to 555 nm ) and gives some measure of compensation. Some typical efficiencies reported by device makers, and the resulting overall luminous efficiency (Lumens/electrical watt) are as follows:

GaP.red $.72 \%$ @ 20Lum Watt $=$
. 14 Lum/Watt overall (Opcoa)
GaAs. ${ }^{6}$ P. 4 red $.3 \%$ @ 50Lum/Watt =
. 15 Lum/Watt overall (Litronix)
GaAlAs red $.06 \%$ @ 40Lum/Watt $=$ . 024 Lum/Watt overall (Mitsubishi)
GaP green $\quad .006 \%$ @ 675Lum/Watt $=$ . 04 Lum/Watt overali (Monsanto)
GaAs. ${ }^{5}$ P. 5 amber . 0044\% @ 340Lum/Watt . 015 Lum/Watt overall (Monsanto)

For simple status indicator applications, front panel lamps and similar applications, several factors must be taken into account:
(1) Color. Generally the designer has Henry Ford's color choice; various similar shades of red. Amber and green are available in small quantity, because of availability of suitable raw material.
(2) Apparent source size. Various combinations of chip size and optical systems are available so that apparent source sizes from about 5 mils to about 300 mils diameter are available as standard products. Other things being equal, a larger source size is more visible.
(3) Angular distribution. GaAsP diode chips are nearly Lambertian, but GaP are nearly isotropic. With suitable optical design, the angular distribution pattern can be changed from very broad to quite narrow. By placing the chip at the focus of the lens system a narrow high intensity beam is obtained. The off axis visibility is drastically reduced. By using diffusing lens materials, a large area source with good off axis visibility is obtained. In this case the luminance is reduced.
(4) Luminous intensity. This will govern the visibility under optimum background contrast conditions, when viewed at normal distances. 1 millicandela is typical for red lamps of either GaAsP or GaP at normal operating conditions.
(5) Luminance. When it is not possible to provide a dark contrasting background, or when the source is viewed at very close distances, the luminance becomes important. Values from $100 \mathrm{ft}-\mathrm{L}$ to 5000 $\mathrm{ft}-\mathrm{L}$ are typical.

These factors are all related to the design of the device and the user should understand the trade offs. High luminance values in excess of $10,000 \mathrm{ft}-\mathrm{L}$ are easily obtained by running very high current densities in the LED chip, but this can lead to shortened life if carried too far.

For a given drive current the luminous intensity of two different chips will be similar, while the luminance will be inversely proportional to the active area of the chip.

If the designer can use filter screens or circularly polarizing filters in front of the light source, excellent protection from background illumination can be
obtained. In this case a diffusive lens giving a large apparent source with lower luminance, is more visible than a high luminance point source.

When a LED is used with an optical system to activate a remote sensor such as a cadmium sulphide or cadmium selenide cell (red light), or a GaAs IR emitter is used with a silicon photo detector, the performance requirements are somewhat different. It can be shown that for a given optical arrangement the irradiance of the detector determines the detected signal and this is proportional to the radiance of the source, which is comparable to the luminance (brightness) of the source. The intensity of the source will not be a factor unless the detector active area is larger than the incident beam.

When average power consumption must be minimized but good visibility is required, or detection at a considerable distance is required, pulsed operation can be used. With GaAs and GaAsP emitters using low duty cycle short pulses, very high peak intensity levels can be reached permitting communication over considerable distances. This technique is not useful with GaP diodes since they do not exhibit a linear relationship between optical output and instantaneous forward current, becoming saturated at moderate current levels. GaP also has a $50 \%$ higher rate of fall off in light output with temperature increase, than GaAsP which further inhibits high power applications.

The use of LED's to give a "Heads Up" projected display, such as for an automobile speedometer readout, or aircraft cockpit application, places severe requirements on the display luminance. For easy visibility, the projected image must be sufficiently contrasted with the ambient illumination. This requires very high luminance values for the LED's together with the use of photochromic windshieids and probably polarizing screens.

The foregoing is a necessarily simplified, description of a very complex subject. The reader should avail himself of the standard textbook literature on these subjects.

## References:

R. Kingslake, Applied Optics \& Optical Engineering Committee on Colorimetry of the O.S.A., The Science of Color.
Warren J. Smith, Modern Optical Engineering.

# Applications of Optocouplers Appnote 2 

by George Smith

The IL1 is the first in a family of Opto-Isolators. These products are also called photon coupled isolators, photocouplers, photo-coupled pairs and optically coupled pairs. All of the characteristics of the IL1 are electrical: it has no external optical properties. Hence optoisolators are not OPTO-ELECTRONIC DEVICES; they are in fact one of the simplest of all ELECTRO-OPTICAL SYSTEMS.

The IL1 consists of a Gallium Arsenide infrared emitting diode, and a silicon phototransistor mounted together in a DIP package.

When forward current $\left(I_{F}\right)$ is passed through the Gallium Arsenide diode, it emits infrared radiation peaking at about 900 nm wavelength. This radiant energy is transmitted through an optical coupling medium and falls on the surface of the NPN phototransistor.

Photo-transistors are designed to have large base areas; and hence a large base-collector junction area; and a small emitter area. Some fraction of the photons that strike the base area cause the formation of elec-tron-hole pairs in the base region. This fraction is called the QUANTUM EFFICIENCY of the photodetector.

If we ground the base and emitter, and apply a positive voltage to the collector of the photo-transistor, the device operates as a photo diode.

The high field across the collector base junction quickly draws the electrons across into the collector region. The holes drift towards the base terminal attracting electrons from the terminal.


Thus a current flows from collector to base, causing a voltage drop across the load resistance ( $R_{L}$ ).

The high junction capacitance, $\mathrm{C}_{\mathrm{cb}}$, results in an output circuit time constant $\mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{cb}}$, with a corresponding output voltage rise time.

The output current in this configuration is quite small and hence this connection is not normally used.

The commonest circuit configuration is to leave the base connection open. With this connection, the holes generated in the base region cause the base potential to rise, forward biasing the base-emitter junction. Electrons are then injected into the base from the emitter, to try to neutralize the excess holes. Because of the close proximity of the collector junction, the probability of an electron recombining with a hole is small and most of the injected electrons are immediately swept into the collector region. As a result, the total collector current is much higher than the photogenerated current, and is in fact $\beta$ times as great.


The total collector current is then several hundred times. greater than for the previous connection.

This gain comes with a penalty of much slower operation. Any drop in collector voltage is coupled to the base via the collector-base capacitance tending to turn off the injected current. The only current available to charge this junction capacitance is the original photo-current. Thus, the rate of change of the output voltage is the same for both the diode and transistor connections. In the latter case, the voltage swing is $\beta$ times as great, so the total rise time is $\beta$ times as great as for the diode connection. Thus the effective output time constant is $\beta \mathrm{R}_{\mathrm{L}} \mathrm{C}_{\mathrm{cb}}$.

For the IL1 this results in a typical $2 \mu$ s rise time for 100 load.

The ratio of the output current from the photo-transistor ( $\mathrm{I}_{\mathrm{C}}$ or ${ }^{\mathrm{I}_{\mathrm{E}}}$ ), to the input current in the Gallium Arsenide diode, is called the Current Transfer Ratio (CTR). For the IL1, CTR is specified at $20 \%$ minimum with $35 \%$ being typical at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.* Thus for 10 mA input current the minimum output current is 2 mA . Other important parameters are $\mathrm{V}_{\mathrm{F}}$ typically 1.3 V at $100 \mathrm{~mA} \mathrm{I}_{\mathrm{F}}$.

## DIGITAL INTERFACES

## Output Sensing Circuits

The output of the photo-transistor can directly drive the input of standard logic circuits such as the 930 DTL and 7400 TTL families. The worst case input current for the 74 series gate is -1.6 mA for $\mathrm{V}_{1 \mathrm{~N}}=0.4$ Volts. This can be easily supplied by the IL1, with 10 mA input to the infrared diode.

TTL Active Level Low (7400)


It is more difficult to operate into TTL gates in the active level high configuration. Some possible methods are as follows;



Obviously, several optocoupler output transistors can be connected to perform logical functions.


## Input Driving Circuits

The input side of the IL1 has a diode characteristic as shown.


The forward current must be controlled to provide the desired operating condition.

The input can be conveniently driven by integrated circuit logic elements in a number of different ways.

TTL Active Level High (7400 Series)


TTL Active Level Low ( 7400 Series)


There are obviously many other ways to drive the device with logic signals, but the commonest needs can be met with the above circuits. All provide 10 mA into the LED giving 2 mA minimum out of the phototransistor. The 1 Volt diode knee and its high capacitance (typically 100 pF ), provides good noise immunity. The rise time and propagation delay can be reduced by biasing the diode on to perhaps 1 mA forward current, but the noise performance will be worse.

All previous configurations show medium speed digital interfaces. These circuits have various advantages over other ways of doing the task.
(1) They can replace relays and reed relays, giving much faster switching speeds, no contact bounce, better reliability, and usually better electrical isolation except for special configurations. However relays have high current capability, higher output voltage, lower on resistance and offset voltage and higher off resistance.
(2) They can replace pulse transformers in many floating applications. Opto-isolators can transmit $D C$ signal components and low frequency $A C$, whereas pulse transformers couple only the high frequency components, and a latch is required to restore the DC information. Pulse transformers have faster rise time than photo-transistor optocouplers.
(3) Integrated circuit line drivers and receivers are used to transmit digital information over long lines in the presence of common mode noise. The maximum common mode noise voltage permissible is usually in the 30 Volt range. There are many practical situations where common mode noise voltages of several hundred Volts can be induced in long lines. For these applications, optocouplers provide protection against several thousand Volts.

## LINEAR APPLICATIONS

The curve of input current versus output current for the IL1 is somewhat non-linear, because of the variation of $\beta$ with current for the photo-transistor, and the variation of infrared radiation out versus forward current in the GaAs diode. The useful range of input current is about 1 mA to 100 mA , but higher currents may be used for short duty cycles.

For linear applications the LED must be forward biased to some suitable current (usually 5 mA to 20 mA ). Modulating signals can then be impressed on this DC bias. A differential amplifier is a good way to accomplish this.


Sensing in linear applications can be done in several ways depending on the requirements. For high frequency performance, the photo-transistor should be operated into a low impedance input current amplifier. The simplest such scheme is a grounded base amplifier.


The circuit will work equally well either way, with a phase inversion between the two. Obviously a PNP transistor would work as well.

A feedback amplifier could also be used to get a low impedance input.


The current gain is $\left(1+\frac{R_{1}}{R_{2}}\right)$.

The input impedance is approximately

$$
\left(\frac{R_{1}}{1+\frac{V_{C C}-2 V_{B E}}{.026}}\right)
$$

For example if $R_{1}=900 \Omega, R_{2}=100 \Omega, V_{c c}=5 \mathrm{~V}$; we would have a current gain of 10 and an input
impedance of about $6.3 \Omega$. This would give a considerable speed improvement over a $100 \Omega$ load.

A high speed operational amplifier could be used to give excellent performance.


Note that in all cases the output can be taken from either the collector, or the emitter of the phototransistor depending on the polarity desired. The operating speed is the same in either case.

## CONCLUSION

This appnote covers the most commonly used ways of applying photo-transistor optocouplers. The design engineer will see many ways to expand on these circuits to achieve his end goals. The devices are extremely versatile, and can provide better solutions to many systems problems than other competing components. Special designs are possible to optimize certain parameters such as coupling capacitance, or transfer ratio, and the engineer can expect to see a variety of these products in the future.

## SUMMARY OF PROPERTIES OF <br> SIGNAL COUPLING DEVICES

Device	Advantages	Disadvantages
Optocoupler	Economical.   Solid state reliability.   Medium to high speed signal transmission.   DC \& low frequency transmission.   High voltage isolation.   High isolation impedance.   Small size DIP Package.   No contact bounce   Low power operation.	Finite ON Resistance   Finite OFF Resistance.   Limited ON state current.   Limited OFF state voltage.   Low transmission efficiency.   (Low CTR)
Relays	High power capability.   Low ON resistance.   DC transmission.   High voltage isolation.	High cost.   High power consumption.   Unreliable.   Very slow operation.   Physically large.
Pulse Transformers	High speed signal transmission. Moderate size.   Good transmission efficiency.	No DC or low frequency transmission. Expensive for high isolation impedance or voltage.
Differential line Drivers and Receivers	Solid state reliability. Small size DIP package. High speed transmission. DC transmission. Low cost.	Very low breakdown Voltage. Low isolation impedance.

## SIEMENS

# Multiplexing LED Displays Appnote 3 

by George Smith

In digital displays, such as would be used in a D.V.M. or counter of conventional design, all digits are operated in parallel, with a separate decoder-driver for each digit operated from data generally stored in a quad latch.
In many cases, a reduction in cost can be effected by operating the display in a time division multiplexed mode. The question of cost effectiveness depends on the particular application. As a general rule, the greater the number of digits in the display, the more advantageous the multiplex system becomes from the cost standpoint. Because of the great variety of situations possible, it is difficult to say at what number of digits the change should be made. In some circumstances, non-multiplexed operation of less than 8 digits is more economical. On the other hand, there are circumstances under which multiplexing is used for three and four digit displays at a cost saving. This application note attempts to show some of the many ways of multiplexing digits, and it is left to the designer to decide whether his own system application would be lower in cost if he used a multiplex scheme.
The properties of light emitting diodes (LED) make
them particularty suitable for multiplexed operation, and hence it is the preferred method to use, if a scheme can be designed which is cost competitive with non-multiplexed operation.
Throughout this paper, it will be generally assumed that we are talking of a system using TTL type logic families, with MSI functions being used where applicable. In most production situations this will be the most economical approach. There will be some cases where discrete gates and flip-flops may yield a lower cost. There are also cases where a single MOS chip contains all the necessary logic functions, and only interface driver circuits are required.
The seven segment numeric displays with a common anode connection made by Siemens provide compatibility with the most widely available decoder-drivers, which are active level low outputs. The commonest device is SN7447 or similar. Any of these is suitable for driving the DL-76XX Series type display. For common cathode displays such as the Siemens DL-340M, SN7448 decoder can be used, and anode drivers become cathode drivers.


Figure 1

In a multiplex system, the corresponding cathodes of each digit are bussed together, and driven from one seven segment decoder-driver, via the usual current limiting resistors. The display data is presented serially by digit, to the decoder-driver, together with an enable signal to the appropriate digit anode Figure 1.

Each digit anode is driven by a switch, capable of passing the full current of all segments. The simplest switch would be a PNP high current switch or amplifier transistor, such as a core driver type.

In operation, the anode switches are activated one at a time, in the desired sequence, while the appropriate digital data is presented at the input to the decoderdriver. The amount of circuitry required in Figure 1
most of the packages are lower cost than the seven segment decoder. The scheme shown is a $20 \%$ cost reduction over non-multiplexed operation, based on O.E.M. prices for the components. For less than eight digits, it would be difficult to compete with non-multiplexed operation using this scheme.

## CASE 2:

Multiplexing becomes more attractive, when the data is stored in a shift register, rather than in latches. In this case the data is circulated around the register, at some suitable rate, and is sequentially presented at the input of the seven-segment decoder-driver. The anode drive can be obtained from a counter and decoder as in Figure 2, or from a parallel output shift register - Figure 3.


Figure 2
is much less than that used in the non-multiplexed scheme. The question of overall economy is dependent on the amount of circuitry required to sequence the anodes and present the data at the decoder input. Let us consider some typical situations.

## CASE 1:

An 8-digit counter-timer display, with the data stored in multiple latch circuits. This is the most common situation present in a counter-timer of conventional design. A quad latch (SN7475) is used to store each digit, and this data is periodically updated. To scan this data, a 4 pole 8 position switch is required (SN74151). To select the appropriate digit, an octal counter (SN7493) and a BCD decoder (SN7442) are required. The complete circuit is as shown in Figure 2.

The total package count is about the same for this arrangement, as for non-multiplexed operation, but

This circuit, which can be expanded to any number of digits, circulates a single zero, and thus can directly drive the PNP anode switches. Systems using recirculating memories generally require this digit timing circuitry for other reasons, so it is generally available in the system already.


Figure 3


Figure 4


Figure 5

For displays of 8 digits; a very common number in counter-timer instruments, the 9328 dual 8 bit shift register makes a very good circulating shift register. Two packages are required to store and circulate 8 digits - Figure 4.
The scheme can be extended to more digits by adding a 4 bit shift register, such as the 7495A; the extra shift bits are inserted at the points marked $X$ in Figure 4. The same circuit can be used for less than 8 digits, if a $12-1 / 2 \%$ duty cycle is satisfactory. For less than 8 digits, where maximum available duty cycle must be maintained, the scheme shown in Figure 5 can be used.

The preceding schemes demonstrate that systems containing recirculating data are very effectively coupled to multiplexed LED displays. Many multi-digit systems such as calculating machines use L.S.I. MOS circuits to provide their logic, and these naturally lend themselves to recirculating data. It is now practical to use custom L.S.I. to provide the logic functions of a D.V.M. or a counter-timer type of instrument, employing multiplexed LED displays, at a significant cost savings over conventional instrument designs.

Apart from the strictly logical problems involved in a multiplexed display, the designer must choose suitable operating conditions for the LED's. Peak forward current, current pulse width, duty cycle and repetition rate, are all factors which the designer must determine.

The luminous intensity, or the luminance of GaAsP LED's, is essentially proportional to forward current over a wide range, but certain phenomena modify this condition. At low currents, the presence of nonradiative recombination processes, results in less light output than the linear relationship would predict. This effect is noticeable in the region below about 5 mA per segment (for $1 / 4$ inch characters). The result is that noticeable difference in luminance from segment to segment can occur at low currents. At high currents, the power dissipation in the chip causes substantial temperature rise, and this reduces the efficiency of the chip. As a result the light output versus forward current curve falls below the straight


Figure 6
line, at high currents (Figure 6). It should be emphasized that this latter effect is entirely due to self heating. If the power dissipation is limited, by running short pulses at low duty cycle, the output follows the straight line up to very high current densities. Whereas $100 \mathrm{~A} / \mathrm{cm}^{2}$ may be used in DC operation, as much as $10^{4} \mathrm{~A} / \mathrm{cm}^{2}$ can be used under pulsed conditions, with a proportionate increase in peak intensity. (If this did not occur, GaAsP lasers could not be built.) Gallium Phosphide, however, has an inherent saturation mechanism that causes a drastic reduction in efficiency at high current densities even if the junction temperature remains constant. This effect is due to competing non-radiative recombination mechanisms at high current density.

As a first approximation the brightness of a pulsed LED will be similar to that when operated at a DC forward current equal to the average pulsed current. For example, for 40 mA peak current at $25 \%$ duty cycle, the brightness will be similar to DC operation at 10 mA . The actual brightness comparison will depend on the actual pulsing conditions. Under most legitimate conditions the brightness will be greater for pulsed operation.
Figure 6 shows how the actual light output at 5 mA DC is substantially less than expected from the ideal curve, because of the "foot" on the curve at low currents. Operation at 50 mA peak current and 10\% duty cycle yields a high peak output as shown, and an integrated average output that is much closer to the ideal value. It should be obvious that variations in the "foot" from segment to segment cause a significant
variation in light output at a low DC current, but a much smaller variation in the average output when operated in a pulsed mode. As well as an increase in luminance, or luminous intensity due to pulsing, there is an increase in brightness because of the behavior of the eye. The eye does not behave as an integrating photometer, but as a partially integrating and partially peak reading photometer. As a result, the eye perceives a brightness that is somewhere between the peak and the average brightness.

The net result is that a low duty cycle high intensity pulse of light looks brighter than a DC signal equal to the average of the pulsed signal. The practical benefit of multiplexed operation then, is an improvement in display visibility for a given average power consumption besides the lower cost. The brightness variation from segment to segment and digit to digit is also reduced by time-sharing. The gain in brightness over DC operation can be as much as a factor of 5 at low duty cycles of 1 or 2 percent, and peak currents of 50 to 100 mA .

A number of factors must be taken into account when deciding on the design of a multiplexed display. Besides the optical output, thermal considerations are very important.

Most $1 / 4^{\prime \prime}$ size LED numerics are rated at 30 mA DC max per segment. Under pulsed operation, higher currents can be used provided several thermal considerations are taken into account.
(1) The average power dissipation must not exceed the maximum rated power.
(2) The power pulse width must be short enough to prevent the junction from overheating during the pulse. This implies that the pulse width must get shorter as the amplitude increases.

Present experience indicates that for pulses of $10 \mu \mathrm{~s}$, the amplitude should be limited to 100 mA max. Shorter pulses of higher amplitude may be used but the circuit problems become severe if the pulse width is very short. As more information on thermal parameters of the devices becomes available, more specific design rules can be given to assist the designer.

# Driving High-Level Loads <br> With Optocouplers <br> Appnote 4 

by David M. Barton

Frequently a load to be driven by an optocoupler requires more current, voltage, or both, than an optocoupler can provide at its output.

Available opto-isolator output current, of course, is found by multiplying input (LED section) current by the "CTR" or current - transfer-ratio. For worst-case design, the minimum specified value would be used. The minimum CTR of the IL1 is $20 \%$. Temperature derating is not usually necessary over the 0 to +60 degree Celcius range because the LED light output and transistor beta have approximately compensating coefficients.

Multiplying the minimum CTR by 0.9 would ensure a safe design over this temperature range. Over a wide range, more margin would be required.

The LED source current is limited by its rated power dissipation. Table I shows maximum allowable $I_{F}$ vs maximum ambient temperature.

Values for Table I are based on a $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ derate from the 100 mW at $25^{\circ} \mathrm{C}$ power rating.

Table I

MAXIMUM TEMPERATURE	IF MAXIMUM
$40^{\circ} \mathrm{C}$	65 mA
$60^{\circ} \mathrm{C}$	48 mA
$80^{\circ} \mathrm{C}$	25 mA

Obviously, one can increase the available output current then by either choosing a higher CTR-rated optocoupler, by providing more current, or both. Table II shows the

Table II

$\mathrm{P} / \mathrm{N}$	$\mathrm{I}_{\mathrm{CE}}(\mathrm{MIN}) \mathrm{mA}$
$\mathrm{IL1}$	8.6

minimum available output current of each device assuming $60^{\circ} \mathrm{C}$ derating (from Table I) and a 10 percent margin for temperature effects.

If the IL1 is being operated from logic with 5 volt driving transistor and 0.2 volt $\mathrm{V}_{\text {CE }}$ saturation is assumed for the driving transistor, a 75 ohm $R_{\text {IF }}$ resistor will provide the 48 mA . The forward voltage of the IR-emitting LED is about 1.2 volts. Figures $1 A$ and $1 B$ show two such drive circuits.


Figure 1A. NPN Driver


Figure 1B. PNP Driver

A "buffer-gate," such as the SN7440 or Signetics 8855, provides a very good alternative to discrete transistor drivers. Figure 2 shows how this is done. Note that the gate is used in the "current-sinking" rather than the "current-sourcing" mode. In other words, conventional current flows into the buffergate to turn on the LED. This makes use of the fact that a $T^{2} \mathrm{~L}$ gate will sink more current than it will source. The SN7440 is specified to drive thirty 1.6 mA loads or 48 mA . Changing $R_{I F}$ from 75 to 68 ohms adjusts for the higher saturation voltage of the monolithic device.


Figure 2. Buffer-Gate Drive

## MORE CURRENT

For load currents greater than 8.6 mA , a current amplifier is required. Figures $3 A$ and $3 B$ show two simple one-transistor current amplifier circuits.


Figure 3A. NPN Current Booster

Since the transistor in the opto-siolator is treated as a two-terminal device, no operational difference exists between the NPN and the PNP circuits. $\mathbf{R}_{\mathrm{b}}$ provides a return path for $I_{C B O}$ of the output transistor. Its value is: $R_{b}=400 \mathrm{mV} / I_{C B O}(T)$ where $I_{C B O}(T)$ is found for the highest junction temperature expected.

Assume that leakage currents double every ten degrees. Use the maximum dissipated power, the specified maximum junction-to-ambient thermal resistance,


Figure 3B. PNP Current Booster
and the maximum design ambient temperature in conjunction with the specified maximum 25 degree $I_{\mathrm{CBO}}$ to calculate $\mathrm{I}_{\mathrm{CBO}}(\mathrm{T})$.

As an example, suppose a 2 N 3568 is used to provide a 100 mA load current. Also assume a maximum steady-state transistor power dissipation of 100 mW and a $60^{\circ} \mathrm{C}$ maximum ambient. The transistor junc-tion-to-ambient thermal resistance is $333^{\circ} \mathrm{C} /$ watt, so a maximum junction temperature of $60+33$ or $93^{\circ} \mathrm{C}$ is expected. This is about 7 decades above $25^{\circ} \mathrm{C}$. Therefore, $I_{\text {CBO }}(T)=I_{\text {CBO }}(\max ) \times 27=50 n A \times 128=$ $6.5 \mu \mathrm{~A}$. A safe value for $R_{b}$ is $400 \mathrm{mV} / 6.5 \mu \mathrm{~A}=$ 62 kilohms.

Working backwards, maximum base current under load will be $\mathrm{I}_{0} / \mathrm{h}_{\text {FE }}(\mathrm{min})=100 \mathrm{~mA} / 100=1 \mathrm{~mA}$. Current in $\mathrm{R}_{\mathrm{b}}$ is $V_{B E} / R_{b}=600 \mathrm{mV} / 60 \mathrm{k}=10 \mu \mathrm{~A}$, which is negligible. An IL1 with 9 mA drive would operate effectively.

If the load requires more current than can be obtained with the highest beta transistor available, then more than one transistor must be used in cascade. For example, suppose 3 amperes load current and 10 watt dissipation are needed. A Motorola MJE3055 might be used for the output transistor, driven by a MJE205 as shown in Figure 4. Using a $5^{\circ} /$ watt heat sink and the rated MJE3055 junction-to-case thermal resistance of $1.4^{\circ} /$ watt, we find that junction temperature rise is $6.4 \times 10$, or $64^{\circ}$. Therefore maximum junction temperature is $124^{\circ} \mathrm{C}$. This is 10 decades above $25^{\circ} \mathrm{C}$ making $I_{C B O}(T)=2{ }^{10} I_{\text {CBO }}(\max )=10^{3} I_{\text {CBO }}(\max )$.
$\mathrm{I}_{\text {CBO }}$ (max) at 30 volts or less is not given, but $\mathrm{I}_{\text {CEO }}$ is. Using (for safety) a value of 20 for the minimum lowcurrent $h_{\text {FE }}$ of the device, $I_{\text {CBO }}$ could be as large as


Figure 4. Two-NPN Current Booster
$I_{\text {CEO }} / 20=35 \mu \mathrm{~A}$. Then $I_{\text {CBO }}(T)$ is 35 mA and $\mathrm{R}_{\mathrm{b} 2}=$ $400 \mathrm{mV} / 35 \mathrm{~mA}=11$ ohms. For $\mathrm{I}_{\mathrm{b}}$ use $\mathrm{I}_{\mathrm{o}} / \mathrm{h}_{\mathrm{FE}}$ (min @ $4 A)=3 A / 20=150 \mathrm{~mA} . \mathrm{I}_{\mathrm{Rb} 2}=600 \mathrm{mV} / 10$ ohms $=$ 60 mA , so $\mathrm{I}_{\mathrm{\theta}\left(\mathrm{O}_{1}\right)}=210 \mathrm{~mA}$.

Maximum Power in $Q_{1}$ will be about $1 / 14$ the power in $Q_{2}$ since its current is lower by that ratio and the two collector-to-emitter voltages are nearly the same. This means $\mathrm{Q}_{1}$ must dissipate 700 mW .

Assuming a small "flag" heat sink having $50^{\circ} /$ watt thermal resistance, we find the junction at about $95^{\circ} \mathrm{C}$. The $150^{\circ} \mathrm{C}$ case temperature $\mathrm{I}_{\mathrm{CB}}$ rating for this device is 2 mA , so one can work backwards and assume about $1 / 30$ of this value, or $70 \mu \mathrm{~A}$. On the other hand, the $25^{\circ}$ rated $\mathrm{I}_{\text {CBo }}$ is $100 \mu \mathrm{~A}$. Choosing the larger of these contradictory specifications, $\mathrm{R}_{\mathrm{b} 1}=$ $400 \mathrm{mV} / 0.1 \mathrm{~mA}=4 \mathrm{k} \approx 3.9 \mathrm{k} . \mathrm{Q}_{1}$ base current is $\mathrm{I}_{\mathrm{E}(\mathrm{Q} 1)} / \mathrm{h}_{\mathrm{FE}\left(\mathrm{O} \mathbf{1}^{-\mathrm{min})}\right.}=210 \mathrm{~mA} / 50^{*}=4.2 \mathrm{~mA}$. Total current is $\mathrm{I}_{\mathrm{b}(\mathrm{O} 1)}+\mathrm{I}_{\mathrm{Rb} 1}=4.2+0.24=4.5 \mathrm{~mA}$. Table II shows that an IL1 could be used here.

## MORE LOAD VOLTAGES

All of the current-gain circuits shown so far have one common feature: load voltage is limited by the 30 volt rating of the IL1 not by the voltage or power rating of the transistor(s). Figure 5A shows a method of overcoming this limitation. This circuit will stand off $B V_{C E O}$ of $Q_{1}$. The voltage rating of the phototransistor is irrelevant since its maximum collector-emitter voltage is the baseemitter voltage of $Q_{1}$ (about 0.7 volts).

Unlike the "Darlington" configurations shown previously, this circuit operates "normally-ON." When no current flows in the LED the phototransistor, being

[^81]OFF, allows $R_{2}$ current to flow into the base of $Q_{1}$, turning $Q_{1} O N$. When the optocoupler is energized, its phototransistor "shorts out" the $\mathrm{R}_{2}$ current turning $\mathrm{Q}_{1}$ OFF.


Figure 5A. NPN HV Booster


Figure 5B. PNP HV Booster

The value of $R_{1}$ depends only on the load-supply voltage $\mathrm{V}^{+}-\mathrm{V}^{-}$, and the maximum required $\mathrm{Q}_{1}$ base current. This is derived from the minimum beta of $Q_{1}$ at minimum temperature and the load current. The required current-drive capability is the same as $I_{R 1}$, since $I_{R 1}$ changes negligibly when the circuit goes between its "ON" and "OFF" states.

In some applications either more current gain will be required than one transistor can provide or the power dissipated in $\mathrm{R}_{1}$ will be objectionable. In these cases, simply use the Darlington high-voltage booster shown in Figure 6A.


Figure 6A. NPN Darlington HV Booster


Figure 6B. PNP Darlington HV Booster

If more than one load is being driven and their negative terminals must be in common, use the PNP circuit, Figure 6B. Otherwise, the NPN is better because
the transistors cost less. Of course performance characteristics of the NPN and PNP versions are identical if the device parameters are also the same.

## APPLICATIONS

Optocoupler isolated circuits are useful wherever ground loop problems exist in systems, or where dc voltage level translations are needed. In many systems so-called interpose relays are used between a logic circuit section (which may be a mini-computer) and the devices being controlled. Sometimes two levels of interpose relays are used in cascade either because of the load power level or because of extreme difficulties with EMI. Optocouplers aided by booster circuits such as those described, can replace many of the relays in these systems.

The reed relays, typically used as the first level of interpose and mounted on the interface logic cards in the electronic part of the system, are almost always replaceable by optocouplers since their load is just the coil of a larger relay. This relay may have a coil power of $1 / 2$ to 5 watts and operate on 12,24 or 48 volts dc.

Assuming worst-case design techniques are carefully followed, system reliability should improve in proportion to the number of relays replaced.

## SIEMENS

## More Speed from Optocouplers Appnote 5

by David M. Barton

Figure 1 shows a typical circuit employing an optocoupler to transmit logic signals between electrically isolated parts of a system. In the circuit shown, the optocoupler must "sink" the current from one $T^{2}$ Lload plus a pull-up resistor to $\mathrm{V}_{\mathrm{CC}}$. The resistor in series with the LED half of the optocoupler must supply the worstcase load current divided by the "current transfer ratio" or CTR of the optocoupler. If an IL1 is used, having a min CTR of 0.2 , and 30 percent variation in the load is allowed. 8.1 mA is required. This is supplied by the $430 \Omega$ resistor.

The maximum repetition rate at which this circuit will operate is only about 3 kHz . The severe speed limitation is due entirely to the characteristics of the phototransistor half of the optocoupler. This device has a large base-collector junction area and a very thick base region in order to make it sensitive to light. $\mathrm{C}_{\mathrm{ob}}$ is typically 25 pF . This capacitance is, in the circuit of Figure 1, effectively multiplied by a large factor due to the "Miller effect." Also, because the base region volume is large, so is base storage time.


Figure 1

A very simple method of reducing both of these effects is to add a resistor between the base and emitter as shown in Figure 2. This resistor helps by reducing the time constant due to $\mathrm{C}_{\mathrm{ob}}$ and by removing stored charge from the base region faster than recombination can. When a base-emitter resistor is used, of course, the required LED drive is increased since much of the photo-current generated in the base-collector junction is now deliberately "dumped."

Using this method does not usually result in a large power supply current drain since average repetition rate is low in most applications.


Figure 2

As drive is increased and $R_{B E}$ reduced, turn-on time and turn-off time both decrease. The total amount of charge stored can also be reduced by-decreasing the LED drive pulse duration. Also, as higher drive levels are used, the load resistance, $R_{L}$ can be reduced to further enhance the speed of the circuit. These parameters are related to each other such that all should be changed together for best results.

One important generalization can be made concerning their interdependence. The LED drive pulse duration, $T_{\text {in }}$, output fall time, $t_{f}$, output rise time, $t_{r}$ and propagation delay, $t_{p}$, should occur in a 1.5:1:1:1 ratio, approximately. If this relationship does not occur, the circuit will not operate at as high a repetition rate as it could at the same drive level. $\mathrm{T}_{\text {out }}$ equals $\mathrm{T}_{\text {in }}$ at low currents but stretches out at high currents.

Figure 3 is a graph relating the important parameters for a typical IL1 whose CTR is 0.25 . The optimum values of $T_{i n}, R_{B E}$, and $R_{L}$ are shown versus LED pulse current as are the resultant output pulse width and maximum full-swing frequency. Rise, fall and propagation time can be read as $2 / 3$ of Tin.

Figure 3 shows that increasing drive to 200 mA and using optimum $R_{B E}$ and $R_{L}$ will increase the maximum repetition rate from 3 kHz to 500 kHz , a $167: 1$ improvement.

Lower grade optocouplers will behave similarly if the LED drive level is scaled appropriately to allow for a lower CTR.


Figure 3. Parameters vs LED Pulse Current
Another method of increasing speed is to operate the photo-transistor as a photo-diode. In this method, bias voltage is supplied between the collector and base terminal, the emitter being unused. Operation to at least 10 MHz is possible this way, but the price is the need for external amplification. Figure 4 is a graph


Figure 4. Diode Mode Output Current vs Drive Pulse Duration
showing peak output current versus drive pulse duration for 200 mA peak drive current.

Since output current is small, some type of widebandwidth amplifier must be employed in order to drive $T^{2} L$ loads.

One simple solution for intermediate speed operation is the use of a low-power $\mathrm{T}^{2} \mathrm{~L}$ inverter ( $1 / 674 \mathrm{LO4}$ ). The collector of the photo-transistor is connected to its input along with a 100 K pullup resistor. The base is connected to system output-side common. This inverter will in turn drive one 7400 series device.

Another device which will provide a good interface is an integrated comparator amplifier. The photo-transistor collector goes to $\mathrm{V}_{\mathrm{cc}}$. Its base has a $200 \Omega$ load resistor to ground and goes to one input of the comparator. Also, a resistor coes from this node to the minus supply. This resistor is chosen to supply $50 \mu \mathrm{~A}$. The other comparator input is grounded. The voltage at the comparator input will switch from -10 mV to +10 mV or more when the diode turns on and the output will drive the $\mathrm{T}^{2} \mathrm{~L}$ loads.

Of course discrete-component amplifiers could be used and may be best in some applications.


Figure 5

## CONCLUSIONS

For operation to 500 kHz , the addition of a base-emitter resistor and a high-current driver is probably the best method of increasing optocoupler speed. Above 500 kHz one must revert to photodiode mode anduse an external amplifier to drive most loads, particularly $\mathrm{T}^{2} \mathrm{~L}$.

## Operating LEDs on AC Power Appnote 6

by David M. Barton

## Introduction

Frequently it is desirable to operate LEDs on AC power rather than DC. Typically, the power source is 120 VRMS 60 Hz . The most obvious method is to rectify this power with a series diode and use a resistor to limit LED current as shown in Figure 1.


FIGURE 1. The Power Resistor Method
This method, though sound, results in very high power dissipation in the resistor since the LED operates on only 1.6 volts.

## The Method

Figure 2 shows a better method. Here a capacitor is used to control LED current and a shunt silicon diode provides rectification.


FIGURE 2.

Since, for current in either direction, voltage drop across the LED or rectifier is a negligible part of the supply voltage, current in the capacitor is almost exactly equal to the AC supply voltage divided by the reactance of the capacitor. Average capacitor current is then

1. $I_{C}(A V)=.9 \times V R M S / X_{C}$ and average half-cycle LED or rectifier current is
2. $I_{\text {LED }(A V)}=1 / 2 I_{D}(A V)=.45 \vee R M S / X_{C}$ or, for 120 VRMS, 60 Hz operation,
3. $I_{\text {LED }}(A V)=20 \mathrm{~mA} \times \mathrm{C} \mu \mathrm{F}$
or $\mathrm{C} \mu \mathrm{F}=\frac{\mathrm{I}_{\mathrm{LED}(\mathrm{AV})}}{20 \mathrm{~mA}}$
Figure 3 shows the value of the series capacitor needed for a range of average LED currents assuming $60 \mathrm{~Hz}, 120$ volt power.


FIGURE 3. Series Capacitor Value vs Average LED Current for 120 VRMS 60 Hz .

A resistor is necessary in series with the capacitor to limit turn-on transient currents. A value of 100 ohms will be adequate in most cases.
The current in the LED, of course, flows almost exactly in quadrature with the line voltage. For this reason, power dissipation is low, being limited to the expected LED and rectifier power loss, the loss in series resistor and to losses in the capacitor. The latter term will be extremely low if high quality capacitors are used. Although power consumption of a circuit may not be of much significance in terms of the cost of the power, it certainly can be important to reduce heat generation within an enclosure.
If more than one LED is to be operated from the same source, simply put the LEDs in series in the same circuit, as shown in Figure 4. For small numbers of LEDs the current will be, for practical purposes, the same as for one.


FIGURE 4.

## Conclusion

Cost of the series capacitor (mylar) will be similar to the cost of a series power resistor. The shunt diode, a IN4148 or similar, will cost about two cents; much less than a series rectifier which must have a several hundred volt PIV rating.

So, the capacitor method is both lower in cost and lower in heat generation and power consumption than the resistor method.

## SIEMENS

## Applying the DL 1416T or DL 1416B Intelligent Display ${ }^{\circledR}$ device Appnote 9A

## by Dave Takagishi

This application note is intended to serve as design and application guide for users of the DL 1416 Intelligent Display. The information presented covers: device electrical description and operation, considerations for general circuit designs, multi-digit display systems and interfacing to the 6800, Z80, and 8080 microprocessors.
The DL 1416 was designed to provide an easy-to-use alphanumeric display for the 64 character ASCII systems. Only twelve interconnect pins plus power and ground are needed to drive a single four digit display. The overall package is designed to allow end stacking of the DL 1416 to form any desired character length display.

## ELECTRICAL DESCRIPTION

The on-board electronics of the DL 1416 eliminates all the traditional difficulties of using displays-seg-
ment decoding, driving, and multiplexing. The DL 1416 has gone further and provided internal memory for the four digits. This approach allows the user to address one of four digits, load the desired data asynchronously to the multiplex rate and continue.
Figure 1 is a block diagram of the circuitry in the DL 1416. The unit consists of a display and a single integrated circuit chip. The display is four 16 -segment alphanumeric monolithic LED die magnified to a height of 160 mils. The IC chip contains the 16 segment drivers, 4 digit drivers, 64 -character ROM, four-word 7-bit RAM, internal oscillator for multiplexing, multiplex counter/decoder, cursor RAM, write address decoder, and level shifters for the inputs.


The inputs to the DL 1416 are:
$\overline{C E} \quad$ CHIP ENABLE (active low)
This determines which device in an array will actually execute the loading of data. When the chip enable is in the high state, all inputs are inhibited.
$A_{0}, A_{1}$ DIGIT ADDRESS
The address to the DL 1416 determines the digit in which the data will be written. Address order is right-to-left for positivetrue address.
$D_{0}-D_{6}$ DATA LINES
The seven data input lines are designed to accept the 64 ASCH code set. See Table 1 for character set.
$\bar{W} \quad$ WRITE (active low)
Data to be written into the DL 1416 must be present before the leading edge of write. The data and address must be stable until after the trailing edge.
$\overline{C U} \quad$ CURSOR (active low)
When the $\overline{C U}$ is held low, the DL 1416 enables the user to write or remove a cursor in any digit position. The cursor function lights all 16 segments in the selected digits without erasing the data. After the cursor is removed, the digit will again display the previously written character.
V+ POSITIVE SUPPLY
TTL compatible +5 volts
V- NEGATIVE SUPPLY
Ground
TABLE 1
character set


Notes: 1. All undefined codes will display a blank.
2. The DL-1416B shows !
3. The DL-1416T shows

## OPERATION

Loading data into the DL 1416 is similar to writing into a RAM. The data and address must be present before the leading edge of the write signal $(\bar{W})$ and must be present until after the trailing edge. The waveforms of Figure 2 demonstrate the relationship of the signals required to generate a write cycle utilizing chip enable ( $\overline{\mathrm{CE}}$ ) and write ( $\overline{\mathrm{W}}$ ) (Check data sheet for minimum values).
As can be seen from the waveforms, $\overline{C E}$ and $\bar{W}$ are interchangeable. The true internal "write" function is formed by the "and-of-the-nots".


Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read and displayed to the location of new data to be stored, i.e. synchronize, before a write can be done. This can be slow if there are many memory locations. It can also be cumbersome.
Data entry of the DL 1416 is asynchronous and data may be stored in random order. Each digit will continue to display the character last "written" until replaced by another.

The cursor function causes all 16 segments of a digit to light. The cursor can indicate the position in the display of the next character to be entered. The cursor is not a character but overrides display of the stored character. Upon removal of the cursor, the display will again show the character stored in memory.
The cursor can be written into any digit position by enabling chip enable $(\overline{\mathrm{CE}})$, cursor $\overline{(\mathrm{CU})}$, the positional data, and a write (W) signal. The position of the cursor will be dependent on which of the first four data lines ( $D_{0}, D_{1}, D_{2}, D_{3}$ ) are held high. $A$ high on data line $D_{0}$ will place a cursor display in the right-most digit and respectively a high on data
line $D_{3}$ will place a cursor display in the left-most digit. The cursor can be loaded into, or erased from more than one position simultaneously by simply holding more than one data line high during the cursor write cycle. ${ }^{(1)}$


The cursor will remain displayed after the cursor $\overline{(C U)}$ and write $\overline{(W)}$ signals have been removed. The wave forms in Figure 3 show a cursor being placed in Digit 0 and erased from Digit 1, Digit 2, and Digit 3 simultaneously.
Hardwiring the cursor (CU) line high is not recommended. This internal cursor memory will be randomly loaded on power-up and all positions must be cleared before a cursor-free display is ensured.

## GENERAL CIRCUIT DESIGN CONSIDERATIONS

Using positive-true address logic, address order is from right to left. For left to right address order, use the "ones-complement" or simple inversion of the addresses.
For systems with only a 6 bit ASCII code format, data line $D_{6}$ cannot be left open. Data $D_{6}$ must be the complement of data line $D_{5}$. If an illegal code is loaded into the DL 1416, it will display a blank in the digit accessed.
A "display test" function can be realized by simply storing a cursor in all digits simultaneously. This is done by holding $D_{0}, D_{1}, D_{2}$ and $D_{3}$ high and $\overline{C U}$ low during a cursor write cycle. The same operation, with the data lines low will end "display test".
Because of the random state of the cursor RAM after power up, it is necessary to clear it initially to assure that all the cursors are off.
When using DL 1416's on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all DL 1416 inputs. This is most easily achieved with hex-non-inverting buffers such as 74365 IC's. The object is to prevent transient current in the DL 1416 protection diodes. The buffers should be located on the display board near
the DL 1416's. Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt tantalum type having $10 \mu \mathrm{~F}$ or greater capacitance. Low internal resistance is important to eliminate voltage transients due to the current steps which result from the internal multiplexing of the DL 1416.
If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop (at 25 mA per digit worst case) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply. limitations of the power supply.

## GENERAL INTERFACE

The most general and straight-forward interface approach would be to use the parallel I/O device of a microprocessor. This interface scheme can be completely software dependent. One eight bit output port can handle the seven input data bits and the cursor. Another eight bit output port can contain the address and chip enable information with one bit reserved for the write signal.
An 8080 system shown in Figure 4 illustrates a 16 character display using a 8255 programmable peripheral interface I/O device with a 7442 one-of-ten decoder added for ease of programming. The following program will display a simple 16 character message using the parallel I/O interface.

INIT:	MVI A, 80H;	control data mode 0
	OUT CONTROL:	load control register
CUSR:	MVI A, OOH:	clear cursor data
	OUT PORTA;	load data port
	MVI B, OFH:	set counter
CUSR1:	MOV A, B	
	CALL DSPWT;	write subroutine
	DCR B;	decrement counter
	JNZ CUSR1:	16 characters
DISP:	LXIH, TABLE;	set table
DISP1:	MOV A, M	
	OUT PORTA;	load data output
	MOV A, B	
	CALL DSPWT;	load address \& write
	INXH:	increment table address
	INR B:	increment counter
	MVI A, 10H;	set \# of digits
	CMP B	
	JNZ DISP1;	16 characters
	HLT;	end of program
DSPWT:	ORI 80 H ;	set write bit off
	OUT PORTB;	load address
	ANI 7FH:	set write bit on
	OUT PORTB;	load write
	ORI 80H:	set write bit off
	OUT PORTB;	load write
	RET	
TABLE:	DB	OC 3 H
	DB	$\mathrm{OC9H}$
	DB	OD4H
	DB	OD3H
	DB	OC1H
	DB	OD 4 H
	DB	OCEH
	DB	$\mathrm{OC1H}$
	D8	OC 6 H
	DB	OAOH
	DB	OD3H
	DB	OD 4 H
	DB	$\mathrm{OC8H}$
	DB	OC 7 H
	DB	$\mathrm{OC9H}$
	DB	OCCH



Figure 4

## I/O OR MEMORY MAPPED ADDRESSING

Some designers may wish to avoid the additional cost of a parallel I/O device in their system. Structuring the addressing architecture for the DL 1416 to look like a set of output devices (I/O mapped) or RAM's, ROM's (memory mapped) is ideal. However, the setup and hold times of the DL 1416 are too slow for some present $\mu \mathrm{P}$ 's running at maximum speed.

To operate at maximum clock rates, the processor must be made to pause for the required display write cycle interval.

## DL 1416/8080 INTERFACE

Microprocessors like the 8080 and $\mathbf{Z 8 0}$ have the ability to generate "wait states" for use with relatively slow memories. Figure 5 shows a circuit which utilizes "wait states" to interface the DL 1416 display to an 8080 system with a $T$ cycle $=500 \mathrm{nS}$.


FIGURE 5

The signal MEMW - DISPLAY SELECT defines a DL 1416 display write cycle and initiates the RDYIN signal. $\overline{M E M W}$ alone would generate wait states for all write cycles and would slow down total computation. The shift register, 74164, is useful for generating a DL 1416 write signal which meets the setup times for different processor clock rates. The timing diagram, Figure 6, illustrates the relationship between write, wait, and DL 1416 write.
*Note: System controller 8238 required for an early MEMW signal.


FIGURE 6

## DL 1416/Z80 INTERFACE

The organization of the $\mathbf{Z 8 0}$ is very similar to the 8080 processor. Both processors utilize wait states for slow memory and, as can be seen in Figure 7, the interface can be identical to the 8080 System. For T cycle $=500 \mathrm{nS}$, only signal names are different.


FIGURE 7

## DL 1416/6800 Interface

For processors such as the 6800 that do not have wait state capability, clock pulse stretching techniques can be used. Microprocessor clocks such as the Motorola MC6871B have the ability to hold either $\emptyset_{1}$ or $\emptyset 2$. Figure 8 uses the same interface techniques as for the 8080 and Z80. The signal $\overline{\mathrm{H} 2}$ extends the $\emptyset 2$ clock. All address and data lines will remain valid until $\overline{\mathrm{H} 2}$ is released. $\overline{\mathrm{H} 2}$ was taken from the output of the first stage of the shift register in this case to synchronize with $\emptyset 2$; otherwise a narrow $\emptyset 1$ may result.

## CONCLUSION

The interface schemes shown demonstrate the general simplicity of DL 1416 use with microprocessors. The differences among the examples are in providing proper write signals. Because of the setup and hold times of the DL 1416, many microprocessor systems will require some type of interface circuitry for compatibility. The techniques used in these examples were chosen for their versatility in accepting a wide range of clock rates. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

This application note is not intended to imply specific endorsement or warranty of other manufacturer's products by Siemens.


FIGURE 8

# Mounting Considerations for LED Lamps and Displays Appnote 11 

by Dave Takagishi

There are numerous ways to mount an LED lamp into a panel or a piece of equipment and this application note is written as an aid to designers and engineers when using LED lamps and displays.

## MOUNTING TECHNIQUES:

There are several ways to mount LED lamps such as the Siemens LDR5001 by soldering directly into PCB's, plugging into sockets, or panel mounting with or without clips. Bending of the leads is allowed bearing the following guidelines in mind. Leads must not be bent closer than . 065 inches from the base of case when leads are not in excess of .020 inch in diameter. Leads should be clamped next to the case during bending of leads to relieve stresses. Under no circumstances must any mechanical force be applied to case while bending the leads. Also, incorrectly spaced holes in the printed circuit board will place mechanical stress on the plastic case which can cause failure during soldering.


Displays of the DL76XX or DL77XX type can be soldered directly into a printed circuit board or be plugged into sockets. Many displays can be end-stacked (butted end-to-end) to obtain longer displays with more digits. This usually causes no break in digit spacing. In
applications using screw-down mounting, a flexible washer should be used to avoid strain from misalignment or board warpage.


Connector/Socket
Suppliers

## Aries

Augat
Berg
EMC
Robinson Nugent
Precision Concept, Inc.
(Partial List)
Frenchtown, NJ
Attleboro, MA
New Cumberland, PA
Woonsocket, RI
New Albany, IND
Bohemia, NY

## THERMAL CONSIDERATIONS:

Most LED failures can be traced to excess thermal stress. A typical LED chip is mounted on a substrate or lead frame with a wire bond from the top of the chip to a metallized trace on the substrate and is encapsulated in epoxy. Temperature changes cause these various materials to expand and contract at different rates. Extreme low temperatures are most likely to cause structural failure. High temperatures, usually cause reduced lifetime rather than immediate failures.

The internal LED junction temperature depends on ambient temperature, power applied to the LED, and the thermal resistance, LED chip-to-ambient.
Long-term degradation of the LED chips, causing reduced light output, will occur if junction temperature exceeds 125 deg. C. Also the epoxy material overcoating the LED chips may gradually become opaque if it is subjected to temperatures above 125 deg. C.
For these reasons, all Siemens LED products carry derating specifications designed to limit LED junction temperature to 100 deg . C.
Particular care is needed in designing multiplexed systems. Here, increased forward voltage and the effects of the thermal time constant, chip to ambient (about 10 mS typical) can cause "thermal ripple" peak excursions above 100 deg. $C$ while calculated average temperature is much lower.

A separate reason for keeping LED chip temperature down is the reduced light output, shown in Figure 1. One can reach a point of diminishing returns, particularly in multiplexed systems, in which an increase in current reduces reliability while actually resulting in little or no increase in display visibility. In such cases, one would be well advised to put his money in higher brightness-grade displays.
A well-designed display system, especially if high power levels or multiplexed operations are involved, should:

1. Allow for convection airflow around the display.
2. Place other heat-generating components* either away from or above, but never below the display (*Display current-control resistors, for example).
3. Take the increased forward voltage and "thermal ripple" peaks into account, in multiplexed systems, and not allow peak temperature to exceed 100 deg. C.

In common with many semiconductor products, LED displays offer the user the most reliable and longest lifetime product available. These good properties do depend, however, on proper usage. Semiconductor products are well-known to be rather unforgiving of abuse when compared to the older technologies. LED's are not different, they are, in fact, hybrid integrated circuits.

LUMINOUS INTENSITY VS AMBIENT TEMPERATURE


## SOLDERING CONSIDERATIONS:

Care should be taken not to overheat LED's when soldering. Effectiveness and safety in soldering are related to three basic parameters: temperature, time, and distance. In general, soldering time should not exceed 3 seconds at $1 / 16$ inch from case at $260^{\circ} \mathrm{C}$. Some packages allow greater latitude, as indicated on individual data sheets.

## OPTICAL CONSIDERATIONS:

Siemens recommends the use of a contrast enhancing filter in front of LED displays. This filter will increase the contrast ratio of digit to surrounding area and help remove reflected light and glare from the PCB and components around the display. Insetting the display to reduce direct ambient light on the display should also be considered.

ROHM \& HAAS red "Plexiglass" \#2423 makes a good general purpose filter for the 640-660 nm Peak Emission Wavelength of red LEDs. A $1 / 16$ inch thick sheet of this inexpensive material is quite effective. Additional information on this and other filter materials may be obtained by contacting the following suppliers:

ROHM \& HAAS	Philadelphia, PA
HOMALITE	Wilmington, DE
PANELGRAPHIC	West Caldwell, NJ
3M	St. Paul, MN
POLAROID	Cambridge, MA
FOR RED LEDS	
ROHM \& HAAS	Plexiglass 2423
HOMALITE	1670,1605
PANELGRAPHIC	Red 60, Red 63,
	Red 65, Purple 90
POLAROID	HRCP
FOR GREEN LEDS	
ROHM \& HAAS	Plexiglas 38168
PANELGRAPHIC	Green 48
HOMALITE	1425,1440
FOR YELLOW LEDS	
PANELGRAPHICS	Yellow 25, Amber 23
HOMALITE	1720,1726
NEUTRAL DENSITY FILTER	
HOMALITE	Neutral Gray 10

# Displaying Message Systems Without a Microprocessor Appnote 13 

by Dave Takagishi

The DL 1416, 4 digit 16 segment, alphanumeric Intelligent Display, and succeeding products in the family, have on board memory, decoder and drive circuitry. This makes it particularly well suited to marry directly to a microprocessor. However, small multimessage systems of $4,8,12,16$ character length need not have a microprocessor to drive the Intelligent Display. The DL 1416 with the aid of PROM can combine lighted indicators, status displays, annunciator messages or symbols, or a "canned message" into a single display.

## ANNUNCIATOR DISPLAYS

An automobile, for example, has several switches each lighting its own status or annunciator indicator. A single DL 1416 Intelligent Display could easily display messages alternately upon interrogation of the appropriate switches.
The circuit shown in Figure 1 will display four character messages sequentially for each open switch and continue to display until switches are returned to their normally closed positions. The Counters U4 and U5 address the PROM U6 and select switches on U1. The Data Selector, U1, sequentially selects one of eight switches (oil, temperature, catalytic, generator, brake, door, belt, and null). The eighth switch or null state can display a blank for a normal or off condition. The output of U1 enables the DL 1416, $\overline{\mathrm{CE}}$. When this signal goes high, the Monostable, U2, will fire and inhibit the Oscillator U3 for approximately a two second display time. The PROM, U6, generates the ASCII code data for each word. Expansion of the display can easily be achieved by adding a PROM for each additional DL 1416.

Another annunciator type display is shown in Figure 2. This display has a message of up to 16 characters and will continue to display the same line until the 6 bit input code changes state. With this scheme, it can be seen that the 16 character X64 line message PROM can easily be adapted for other message and character length combinations.

figure 1


FIGURE 2
TYPICAL CIRCUIT FOR 64 MESSAGES OF 16 CHARACTERS LONG

## CANNED MESSAGES

The canned message type display can be an ideal sales, marketing or instructional aid. The message can be altered by replacing the PROM.

The technique for this display would be to sequentially display a word or group of words, depending on the character length of the display, through the entire message. The system could either continue to repeat itself or could go through the complete sequence once each time a switch is operated.
Figure 3 is the schematic for a sales demo box for the DL 1416. A 256X8 PROM was used to display an 8 digit-32 word message. The oscillator, U1, incre-
ments the counters U2U3U4 providing the address for the DL1416's and PROM U9. After eight counts the monostable U10 is fired, inhibiting the oscillator for a two second display time. Devices U5 and U8 were added for cursor control. Decoder U8 will alternately enable or disable a data bit for a cursor to proceed writing new data into each digit. The multiplexer U5 will select the character data or the cursor data for the DO-D3 data lines. Inverters on the address lines cause data entry to occur from the left rather than from the right.


FIGURE 3

# Applying the DL 2416T Intelligent Display ${ }^{\circledR}$ device Appnote 14 

by Dave Takagishi

This application note is intended to serve as a design and application guide for users of the DL 2416 T alphanumeric Intelligent Display. The information presented covers device electrical description and operation, considerations for general circuit design, and interfacing the DL 2416T to microprocessors. Refer to the DL 2416T data sheet and other Siemens Appnotes for more details.

## ELECTRICAL \& MECHANICAL DESCRIPTION

The internal electronics in the DL 2416T Intelligent Display eliminates all the traditional difficulties of using multi-digit light emitting displays (segment decoding, drivers, and multiplexing). The Intelligent Display also provides internal memory for the four digits. This approach allows the user to asynchronously address one of four digits, and load new data without regard to the LED multiplex timing.

Figure 1 is a block diagram of the DL 2416 T. The unit consists of four 17 -segment monolithic LED dies and a single CMOS integrated circuit chip. The LED dies are magnified to a height of 160 mils by built-in lenses. The IC chip contains 17 segment drivers, four digit drivers, 64 character ROM, four word $\times 7$ bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, cursor memory, address decoder, and Miscellaneous Control logic.


Internal Block Diagram

## PACKAGING

Packaging consists of a transfer-molded nylon lens which also serves as an"encapsulation shell' since it covers five of the six "faces". The assembled and tested substrate ("PTF" multilayer), is placed within the shell and the entire assembly is then filled with a water-clear IC-grade epoxy.

This yields a very rugged part, which is quite impervious to moisture, shock and vibration, Although not "hermetic", the device will easily withstand total immersion in water/detergent solutions.

TOP VIEW
$\begin{array}{lllllllll}18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10\end{array}$


Pin	Pinction	Function	
1	CE1 Chip Enable	10	Gnd
2	CE2 Chip Enable	11	D $\varnothing$ Data Input
3	CLR Clear	12	D1 Data Input
4	CUE Cursor Enable	13	D2 Data Input
5	CU Cursor Select	14	D3 Data Input
6	WR Write	15	D6 Data Input
7	A1 Digit Select	16	D5 Data Input
8	AD Digit Select	17	D4 Data Input
9	$V_{\text {CC }}$	18	$\overline{B L}$ Display Blank

Figure 2

Figure 1

## ELECTRICAL INPUTS TO THE DL $2416 T$

$\begin{array}{ll}V_{C C} & \text { Positive supply }+5 \text { volts } \\ \text { Gnd } & \text { Ground }\end{array}$
Gnd Ground
D0-D6 Data Lines
The seven data input lines are designed to accept the first 64 ASCII characters. See Figure 3 for character set. (The DL $2416 T$ interprets all undefined codes as a blank).
$A_{0}, A_{1} \quad$ Address Lines
The address determines the digit position to which the data will be written. Address
$\overline{W R} \quad$ order is right to left for positive-true logic.
WR Write (Active Low)
Data and address to be loaded must be present and stable before and after the trailing edge of write. (See data sheet for timing information).
$\overline{\mathrm{CE} 1}, \overline{\mathrm{CE} 2}$ Chip Enable (Active Low)
This determines which device in an array will actually accept data. When either or both chip enable is in the high state, all inputs are inhibited.
$\overline{C L R} \quad$ Clear (Active Low)
When held low for 15 mS , the data RAM and cursor RAM will be cleared.
CUE Cursor Enable. Activates Cursor function. Cursor will not be displayed regardless of cursor memory contents when cue is Low. Cursor Select (Active Low)
This input must be held high to store data in data memory and low to store data into the cursor memory.
$\overline{B L} \quad$ Display Blank (Active Low)
Blanking the entire display may be accomplished by holding the $\overline{B L}$ input low. This is not a stored function, however. When $\overline{B L}$ is released, the stored characters are again displayed. $\overline{B L}$ can be used for flashing or dimming.


Figure 3

## CLEAR MEMORY

Clearing of the entire internal four-digit memory may be accomplished by holding the clear line ( $\overline{\mathrm{CLR}}$ ) low for one complete internal display multiplex cycle, 15 mS minimum; less time may leave some data uncleared. $\overline{C L R}$ also clears the cursor memory.

## DISPLAY BLANKING

Blanking the display may be accomplished by loading a blank, space or illegal code into each digit of the display or by using the ( $\overline{\mathrm{BL}}$ ) display blank input. Setting the ( $\overline{B L}$ ) input low does not affect the contents of either data or cursor memory. A flashing display can be realized by pulsing ( $\overline{\mathrm{BL}}$ ).

## OPERATION

Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read to the location or position of new data to be stored or displayed, i.e., synchronize before a Write can be done. This can be slow and cumbersome. Data entry in "intelligent displays" is asynchronous and may be done in any random order. Loading data is similar to writing into a RAM. Each digit has its own memory location and will display until replaced by another code.
The waveforms of Figure 4 demonstrate the relationships of the signals required to generate a write cycle.


Figure 4
(Check individual data sheet for minimum values). As can be seen from the waveforms, all signals are referenced from the rising or trailing edge of write.

## CURSOR

The cursor function causes all 16 line-segments of a digit to light. The cursor can be used to indicate the position in the display of the next character to be entered. The cursor is not a character but overrides the display of a stored character. Upon removal of the cursor, the display will again show the character stored in memory.
The cursor can be written into any digit position by setting the cursor enable (CUE) high, setting the digit address $\left(A_{1}, A_{0}\right)$, enabling Chip Enable, ( $\overline{\mathrm{CE}}, \overline{\mathrm{CE} 2}$ ), cursor select $(\overline{C U})$, Write $(\overline{W R})$ and Data (DO). A high


Figure 5
on data line $D 0$ will place a cursor into the position set by the address $A_{0} \& A_{1}$. Conversely, a low on DO will remove the cursor. The cursor will remain displayed after the cursor ( $\overline{\mathrm{CU}}$ ) and write ( $\overline{\mathrm{WR}}$ ) signals have been removed. During the cursor-write sequence, data lines D1 through D6 are ignored by the DL 2416 T .

If the user does not wish to utilize the cursor function, the cursor enable (CUE) can be tied low to disable the cursor function. A flashing cursor can be realized by simply pulsing the CUE line after cursor data has been stored.

## GENERAL DESIGN CONSIDERATIONS

Using Positive true logic, address order is from right to left. For left to right address order, use the "ones complement" or simple inversion of the addresses.
For systems with only a 6-bit (abbreviated ASCII) code format, Data Line D6 cannot be left open. Data D6 must be the complement of Data Line D5.
A "display test" or "lamp test" function can be realized by simply storing a cursor into all digits.

Because of the random state of the cursor RAM after power up, if the cursor function is to be used, it will be necessary to clear cursors initially to assure that all cursor memories contain its zero state. This is easily accomplished with the $\overline{\mathrm{CLR}}$ input.

When using DL 2416 T 's on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all DL 2416T inputs. This is most easily achieved with Hex non-inverting buffers such as the 74365. The object is to prevent transient current in the DL 2416 T protection diodes. The buffers should be located on the display board near the DL 2416T's.

Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having $10 \mu \mathrm{~F}$ or greater capacitance. Low internal resistance is important due to current steps which result from the internal multiplexing of the DL 2416 T.
If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop, (at 25 mA per digit worst cast) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply.

The 5-volt power supply for the DL 2416T's should be the same one supplying $V_{C C}$ to all logic devices which drive the display devices. If a separate supply must be used, then local buffers using hex noninverting gates should be used on all DL 2416 T inputs and these buffers should be powered from the display power supply. This precaution is to avoid logic inputs higher than display $\mathrm{V}_{\mathrm{CC}}$ during power up or line transients.

## INTERFACING THE DL 2416T

A general and straight-forward interface circuit is shown in Figure 6. This scheme can easily interface to $\mu \mathbf{P}$ systems or any other systems which can provide the seven data lines, appropriate address and control lines.

general interface circuit
Figure 6

## PARALLEL I/O

The parallel I/O device of a microprocessor can easily be connected to the circuit in Figure 6. One eight bit output port can provide the seven input data bits and the cursor ( $\overline{\mathrm{CU}}$ ). Another eight bit output port can contain the address and chip enable information and the other control signals.

Figure 7. illustrates a 16 -character display with an 8080 system using the 8255 programmable peripheral interface I/O device. The following program will display a simple 16 -character message using this interface.


Figure 7

INIT:	MVI A,80H	CONTROL DATA MODE $\phi$
	OUT CONTROL	LOAD CONTROL REGISTER
CUSR:	MVI A,OOH	CLEAR CURSOR DATA
	OUT PORT A	LOAD DATA PORT
	MVI B, $\mathrm{DFH}^{\text {F }}$	SET CHARACTER COUNTER
CUSRI:	MOV A, B	
	CALL DSPWT	WRITE SUBROUTINE
	DCR B	DECREMENT COUNTER
	JNZ CUSRI	DIGIT $\phi$ ?
	mov A, B	
	CALL DSPWT	
	MVI A, FFH	SET DATA FOR CONTROL
	OUT PORT B	LOAD CONTROL LINES
DISP:	LXIH, TABLE	SET TABLE ADDRESS
DISP1:	MOV A, M	MOVE TABLE DATA INTO ACCUMULATOR
	OUT PORT A	LOAD DATA PORT
	MOV A,B	
	CALL DSPWT	LOAD ADDRESS AND CONTROL
	INXH	INCREMENT TABLE ADDRESS
	INR B	INCREMENT COUNTER
	MVI A, 10H	SET \# OF DIGITS
	CMP B	
	JNZ DiSP1	16 CHARACTERS?
	HALT	END OF PROGRAM
DSPWT:	ORI FOH	SET CONTROL BITS OFF
	OUT PORT C	LOAD CONTROL
	ANI 7FH	SET WRITE BIT ON
	OUT PORT C	LOAD WRITE
	ORI FOH	SET WRITE BIT OFF
	OUT PORT C	LOAD CONTROL
	RET	
TABLE:	DB	OC3H
	DB	0 C 9 H
	DB	OD4H
	DB	0D3H
	DB	OCiH
	DB	OD4H
	DB	OCEH
	DB	OC1H
	DB	OC6H
	DB	OAOH
	DB	OD3H
	DB	0D4H
	DB	0C8H
	DB	OC7H
	DB	OC9H
	DB	OCCH

## I/O OR MEMORY MAPPED ADDRESSING

Some designers may wish to avoid the additional cost of a parallel I/O in their system. Structuring the addressing achitecture for the DL 2416T to look like a set of peripheral or output devices (I/O mapped) or RAM's and ROM's (memory mapped), is very easy. Figure 8 shows the simplicity of interfacing to microprocessors, such as $8080, \mathrm{Z80}$ and 6502 as examples.


MAPPED INTERFACE
Figure 8
The interface with the 6800 microprocessor in Figure 9 illustrates the need for designers to check the timing requirements of the DL 2416T and the $\mu \mathrm{P}$. The typical data output hold time is only 30 ns for DBE $=\phi 2$ timing; two inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 nS minimum spec of the DL 2416 T .


Figure 9

## CONCLUSION

Note that although other manufacturer's products are used in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens.

The interface schemes shown demonstrate the simplicity of using the DL 2416 T with microprocessors. The slight differences encountered with various microprocessors to interface with the DL 2416 T are similar to those encountered when using different RAM's. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

## Applying the DL 1414 Intelligent Display ${ }^{\circledR}$ device Appnote 15

by Dave Takagishi

This application note is intended to serve as a design and application guide for users of the DL 1414 alphanumeric Intelligent Display. The information presented covers device electrical description and operation, considerations for general circuit design, and interfacing the DL 1414 to microprocessors.

## ELECTRICAL \& MECHANICAL DESCRIPTION

## General

The internal electronics in the DL 1414 Intelligent Display eliminates all the traditional difficulties of using multi-digit light emitting displays (segment decoding, drivers and multiplexing). The Intelligent Display also provides internal memory for the four digits. This approach allows the user to asynchronously address one of four digits, and load new data without regard to the LED multiplex timing.

Figure 1 is a block diagram of the DL 1414. The unit consists of four 17 segment monolithic LED die and a single CMOS integrated circuit chip. The LED die are magnified to a height of 112 mils by the built-in lenses. The IC chip contains 17 segment drivers, four digit drivers, 64 character ROM, four word $\times 7$ bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, address decoder and miscellaneous control logic.


## PACKAGING

Packaging consists of an injection-molded plastic lens which also serves as an "encapsulation shell" since it covers five of the six "faces". The assembled and tested substrate (ceramic or "PTF" multilayer) is placed within the shell ano the entire assembly is then filled with a water-clear IC-grade epoxy.

This yields a very rugged part which is quite impervious to moisture, shock and vibration. Although not "hermetic", the device will easily withstand total immersion in water/detergent solutions.


TOP VIEW

Pin	Function
$\mathbf{1}$	D5 Data Input
$\mathbf{2}$	D4 Data Input
$\mathbf{3}$	$\overline{W R}$ Write
$\mathbf{4}$	A1 Digit Select
$\mathbf{5}$	A $\quad$ Digit Select
$\mathbf{6}$	$V_{C C}$


Pin	Function
7	Gnd
8	Dø Data Input (LSB)
9	D1 Data input
10	D2 Data Input
11	D3 Data Input
12	D6 Data Input (MSB)

FIGURE 2

## ELECTRICAL INPUTS TO THE DL 1414

$\begin{array}{ll}V_{C C} & \text { POSITIVE SUPPLY }+5 \text { volts } \\ \text { Gnd } & \text { GROUND } \\ \text { DO-D6 } & \text { DATA LINES }\end{array}$
The seven data input lines are designed to accept the first 64 ASCII characters. See Figure 3 for character set. (The DL-1414 interprets all undefined codes as a blank). ADDRESS LINES
The address determines the digit position to which the data will be written. Address order is right to left for positive-true logic.
$\overline{W R} \quad$ WRITE (Active Low).
Data and address to be loaded must be present and stable before and after the trailing edge of write. (See data sheet for timing info).


All Other Input Codes Display "Blank"

## CHARACTER SET

FIGURE 3

## OPERATION

Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read to the location or position of new data to be stored or displayed, i.e., synchronize before a Write can be done. This can be slow and cumbersome.

Data entry in Intelligent Displays is asynchronous and may be done in any random order. Loading data is similar to writing into a RAM. Each digit has its own memory location and will display until replaced by another code.

The waveforms of Figure 4 demonstrate the relationships of the signals required to generate a Write cycle. (Check individual data sheet for minimum values.) As can be seen from the waveforms, all signals are referenced from the rising or trailing edge of Write.


FIGURE 4

	ADDRESS		DATA INPUT										
WR	$A_{1}$	$A_{0}$	D6	D5	D4	D3	D2	D1	Do	3	2	1	0
H	$\times$	x	$\times$	X	x	X	X	X	X	$\stackrel{\text { NO }}{\text { CHANGE }}$	$\left\lvert\, \begin{gathered} \text { NO } \\ \text { CHANGE } \end{gathered}\right.$	CHANGE	$\stackrel{\text { NO }}{\text { CHANGE }}$
L	L	L	H	L	L	L	L	L	H	$\stackrel{\text { NO }}{\text { CHANGE }}$	$\begin{gathered} \text { NO } \\ \text { CHANGE } \end{gathered}$	$\begin{gathered} \text { NO } \\ \text { CHANGE } \end{gathered}$	A
L	L	H	H	L	L	L	L	H	L	$\stackrel{\text { NO }}{\text { CHANGE }}$	$\left\lvert\, \begin{gathered} \text { NO } \\ \text { CHANGE } \end{gathered}\right.$	B	A
L	H	L	H	L	L	L	L	H	H	$\begin{aligned} & \text { NO } \\ & \text { CHANGE } \end{aligned}$	c	B	A
L	H	H	H	L	$L$	L	H	L	L	D	c	B	A
L	L	L	H	$\llcorner$	1	L	H	L	H	D	c	B	E
L	H	L	H	L	L	H	L	H	H	D	$k$	B	E
$L$	-	-	-	-	-	-	-	-	-		EE CHAR	ACTER SET	

DATA LOADING TABLE
FIGURE 5

## GENERAL DESIGN CONSIDERATIONS

Using positive true logic, address order is from right to left. For left to right address order, use the "ones complement'" or simple inversion of the addresses.
For systems with only a 6-bit (abbreviated ASCII) code format, Data Line D6 cannot be left open. Data D6 must be the complement of Data Line D5.

When using DL 1414's on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all DL 1414 inputs. This is most easily achieved with Hex non-inverting buffers such as the 74365. The object is to prevent transient current in the DL 1414 protection diodes. The buffers should be located on the display board near the DL 1414's.
Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having $10 \mu \mathrm{~F}$ or greater capacitance. Low internal resistance is important due to current steps which result from the internal multiplexing of the DL 1414.
If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop, (at 25 mA per digit worst case) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply.

The 5-volt power supply for the DL 1414's should be the same one supplying $\mathrm{V}_{\mathrm{cc}}$ to all logic devices which drive the display devices. If a separate supply must be used, then local buffers using hex, non-inverting gates should be used on all DL 1414 inputs and these buffers should be powered from the display power supply. This precaution is to avoid logic inputs higher than display $\mathrm{V}_{\mathrm{Cc}}$ during power up or line transients.

## INTERFACING THE DL 1414

A general and straight-forward interface circuit is shown in Figure 6. This scheme can easily interface to $\mu \mathrm{P}$ systems or any other systems which can provide the seven data lines, appropriate address and control lines.


The DL 1414 does not have a chip enable input. Therefore, each DL 1414 in a system requires its Write pulse be gated with appropriate address signals. Figure 7A shows the use of a 74154 decoder (4 line to 16 line) for up to a 64 character display. Using the G1 input for display select (address select in a memory mapped system) and the G2 input to gate the Write signal. Another approach (Figure 7B \& 7C) which minimizes logic for a 16 or 32 digit display takes advantage of decoding scheme of the 7442 decoder.


FIGURE 7

## PARALLELI/O

The parallel I/O device of a microprocessor can easily be connected to the circuit in Figure 6. One eight bit output port can provide the seven input data bits. Another eight bit output port can contain the address and control signals.
Figure 8 illustrates a 16 -character display with an 8080 system using the 8255 programmable peripheral interface I/O device. The following program will display a simple 16 -character message using this interface.


FIGURE 8

SAMPLE I/O PROGRAM

INIT:	MVI A 80 H OUT CONTROL MVI B,OOH	CONTROL DATA MODE 0 LOAD CONTROL REGISTER SET COUNTER = 0
DISP: DISP1:	LXI H,TABLE	SET TABLE ADDRESS
	MOV A,M	MOVE TABLE DATA TO ACCUMULATOR
	OUT PORTA	LOAD DATA PORT
	MOV A,B	
	CALL DSPWT	LOAD ADDRESS AND CONTROL
	INX H	INCREMENT TABLE ADDRESS
	INR B	INCREMENT COUNTER
	MVI A, 10 H	SET \# OF DIGITS
	CMP B	
	JNZ DISP1	16 CHARACTERS ?
	HALT	END OF PROGRAM
DSPWT:	ORI FOH	SET CONTROL BITS OFF
	OUT PORTB	LOAD CONTROL
	ANI 7FH	SET WRITE BIT ON
	OUT PORTB	LOAD WRITE
	ORI FOH	SET WRITE BIT OFF
	OUT PORTB	LOAD CONTROL
	RET	
TABLE:	DL	OC3H
	DB	OC9H
	DB	0D4H
	DB	0D3H
	DB	OC1H
	DB	OD4H
	DB	OCEH
	DB	OC1H
	DB	OC6H
	DB	OAOH
	DB	OD3H
	DB	0D4H
	DB	OC8H
	DB	OC7H
	DB	OC9H
	DB	OCCH

## I/O OR MEMORY MAPPED ADDRESSING

Some designers may wish to avoid the additional cost of a parallel $1 / O$ in their system. Structuring the addressing architecutre for the DL 1414 to look like a set of peripheral or output devices (1/O mapped) or RAM's and ROM's (memory mapped), is very easy. Figure 9 shows the simplicity of interfacing to microprocessors, such as $8080, \mathrm{Z80}$ and 6502 as examples.


FIGURE 9


FIGURE 10

The interface with the 6800 microprocessor in Figure 10 illustrates the need for designers to check the timing requirements of the DL 1414 and the $\mu \mathrm{P}$. The typical data output hold time is only 30 ns for DBE $=\phi 2$ timing; two inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 ns minimum spec of the DL 1414.

## CONCLUSION

Note that although other manufacturer's products are used in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens.

The interface schemes shown demonstrate the simplicity of using the DL 1414 with microprocessors. The slight differences encountered with different microprocessors to interface with the DL 1414 are similar to those encountered when using different RAM's. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

## Silicon Photovoltaic Cells, Silicon Photodiodes and Phototransistors Appnote 16

Optoelectronic components are increasingly used in modern electronics. Main fields of application are light barriers for production control and safety devices, light control and regulating equipment like twilight switches, fire detectors and facilities for optical heat supervision, scanning of punched cards and perforated tapes, positioning of machine tools (for measuring length, angle and position), of optical apparatus and ignition processes, for signal transmission at electrically separated input and output, as well as conversion of light into electrical energy.
Lately, new fields of application opened up for optoelectronic components in the photo industry in form of exposure and aperture control and for automatic electronic flashes. IR sound transmission and IR remote control are new modes in the radio industry. Computer diagnosis and LED displays in instrument panels are possible applications in the automotive industry.

Depending upon the application either photovoltaic cells or photodiodes are used. Wherever amplifiers with high input impedance are required, photodiodes are to be preferred.

Phototransistors are predominantly used in connection with transistor circuits or to drive integrated circuits, whereas photovoltaic cells are preferred to scan large surfaces, if a strictly linear relation between light and signal level or optimum reliability is required.

## Photovoltaic cells

Photovoltaic cells are active two-poles with a comparably low resistance that has its cause in the voltage of the voltaic cell, which may only be some tenth of a volt. For practical application, this characteristic requires special attention.

The open circuit voltage $V_{L}$ rises almost logarithmically as a function of the illuminance and, particularly in case of planar photovoltaic cells, reaches high values already at very low illuminances. It is independent of the size of the photovoltaic cell.

The short circuit current $/_{k}$ increases linearly with the illuminance. It is proportional to the size of the exposed photosensitive area at uniform illuminance.

The maximum energy of the photovoltaic cell is yielded in a load resistance $R_{L}$ of approx $\frac{V_{L}}{l_{K}}$.
Practical short circuit operation and thus proportionality between optical and electrical signal is given at load resistance up to $\frac{V_{L}}{2 I_{K}}$. This relation can be applied to an open circuit voltage of $\geqq 100 \mathrm{mV}$.
In any type of application the highest value of $I_{K}$ has to be used. A simple procedure to gain information on the load resistance required is to measure $V_{\mathrm{L}}$ and $I_{\mathrm{K}}$ at given illumination conditions, irrespective of the radiation source.
In case the voltage yielded by the photovoltaic cell is insufficient it can also be used in diode operation at reverse voltages up to 1 V . In such case the flowing dark current has to be taken into consideration.

The rise time of a signal voltage delivered to a load resistor by the voltaic cell primarily depends on the operating conditions. There are two distinctive borderline cases:

1. Load resistor smaller than the matching resistor (tendency toward short circuit operation).
2. Load resistor larger than the matching resistor (tendency to open circuit operation).
In case 1) the photovoltage rise is analogous to the charging of a capacitor via a resistor from a constant voltage source. In photovoltaic cells the junction capacitance $C_{\mathrm{j}}$ must be charged. The rise occurs by the time constant $r=R_{\mathrm{L}} \cdot C_{\mathrm{j}}, R_{\mathrm{L}}$ being the load resistor
(the low ohmic resistance of the photovoltaic cell is considered negligible).

In case 2) the photovoltage rise is similar to the charging of a capacitor by a constant current mode. The rise time $t_{r}$ of the photovoltage follows the equation:

$$
t_{\mathrm{r}}=\frac{V_{\mathrm{P}} \cdot C_{\mathrm{i}}}{t_{\mathrm{K}}}
$$

$I_{k}$ is the short-circuit current under given illumination conditions. This relation only holds true for values of $V_{p}$ less than $80 \%$ of the final value of the open circuit voltage.

The principal characteristic of the rise time of photovoltaic cells is shown in the following diagram:


Case 1) Rise time according to the equation
$V_{\mathrm{P}}=I_{\mathrm{K}} \cdot R_{\mathrm{L}} \cdot\left(1-\mathrm{e}^{-} \frac{t}{R_{\mathrm{L}} \cdot C_{\mathrm{j}}}\right)$
Time constant $\boldsymbol{T}=R_{\mathrm{L}} \cdot C_{\mathrm{j}}$.
Case 2) Rise time $t_{r}=\frac{V_{P} \cdot C_{j}}{I_{K}}$
fall time in both cases $\tau=R_{\mathrm{L}} \cdot C_{\mathrm{j}}$
Modulation transients can, under certain conditions, lead to a modification of the above diagram.
E.g. At very low time constants (particularly in short circuit operation) the actual pulse shape of the short circuit current that deviates from an ideal square pulse has to be noted. See diagram.


Relative spectral sensitivity $S_{\text {rel }}=f(\lambda)$


## SILICON PHOTODIODES

These photodiodes have a PN junction poled by a reversed bias. The capacitance which decreases with a growing reverse voltage reduces the switching times. The PN junction is of easy access to the light. Without illumination a very small reverse current flows, the socalled dark current. Light falling onto the surrounding of the PN junction generates charge carrier pairs there that lead to an increase of the reverse current. This photocurrent is proportional to the illuminance. Therefore, photodiodes are particularly well suited for quantitative light measurements. The planar technique has 2 essential advantages: The dark currents are considerably smaller than for comparable photo electric components in non-planar technique. This leads to a reduction of the current noise and thus to a decisive improvement of the signal/noise ratio.


Figure 1 shows the basic design of a photodiode. The limit of the space charge region is indicated by a dashed line.

Without illumination only a small dark current $I_{D}$ flows through the PN junction as a result of thermally generated carriers.

With light, additional charge carrier pairs (hole electron pairs) are generated in the $P$ and $N$ region by the radiation quantum (internal photo effect). Carriers originating in the space charge region are immediately extracted because of the electrical field present there, i.e. the holes in the $P$ and the electrons in the $N$ direction. Carriers from the remaining field must first diffuse into the space charge region in order to be separated there. If holes and electrons recombine before, they do not contribute to the photocurrent. Thus, the photocurrent $/ \mathrm{p}$ is a combination of the drift current of the space charge region and the diffusion current of the P and N area.
$/ \mathrm{p}$ is proportional to the incident radiation intensity. Since $I_{D}$ is very small for diodes, it can be neglected in the equation $I_{P}=I_{p}+I_{D}$. Subsequently one gets a linear correlation between $l_{p}$ and the incident radiation intensity over a very wide range.

Diodes with a small space charge width are termed PN diodes, diodes with a large space charge width PIN diodes.

PN diodes have the diffusion current as dominating part of the photocurrent whereas it is the drift current in the case of PIN diodes.

As the capacitance of the space charge width $W$ is inversely proportional, the PIN diode is characterized by a smaller capacitance than a PN diode of identical surface. The capacitance of (most of) the diodes reads:

$$
c_{D} \sim \sqrt{\frac{N}{V}}
$$

The less the doping $N$ of the basic material and the higher the applied voltage $V$, the lower the capacitance.

Fig. 2 shows the capacitance as function of the voltage for a PIN diode, e.g. BPY 12.


## SILICON PHOTOTRANSISTORS

The introduction of the planar technique allows to produce phototransistors of small dimensions. They are used as photoelectric detectors in control and regulating devices. The photoelectric transistors are excellently suited as receivers for incandescent lamp light, as their maximal photosensitivity lies near the infrared limit of the light wave spectrum.

In its mode of operation a photoelectric transistor corresponds to that of a photodiode with built-in amplifier. It has a 100 to 500 times higher photosensitivity than a comparable photoelectric diode.

The photoelectric transistor is preferably operated in an emitter circuit and acts similar to an AF transistor.

Unilluminated only a small collector-emitter leakage current flows. It amounts to approximately $I_{\mathrm{d}}=B \cdot I_{\mathrm{CBO}}, B$ standing for the current amplification and $I_{\mathrm{CBO}}$ for the reverse current of the base diode.

At illumination the reverse current of the base diode $I_{\text {CBO }}$ increases by the photocurrent $/ I_{p}^{\prime}$. Thus, one receives for the photocurrent $/ /_{\mathrm{P}} \sim B\left(/_{\mathrm{CBO}}+/_{\mathrm{p}}\right)$.

Consequently, the photocurrent of a transistor is a function of the photocurrent $/ P^{\prime}$ of the base diode and the current amplification $B$. As $B$ cannot be increased indefinitely, an as high as possible photosensitivity of the base diode is aimed at.


Figure 3
Figure 3 shows the design of a phototransistor. The emitter and base leads are affixed laterally to make the base diode most easily accessible to light. The large collector zone ensures that the most possible radiation quanta are abosrbed there and will contribute to the photocurrent.
Contrary to a photodiode, a linear interconnection between the incident radiation intensity and the photocurrent $/ p$ exists only in a small region, since the current gain $B$ depends on the current. Figure 4 shows typical current voltage characteristics of a phototransistor.
Since the reverse current $I_{\text {CBo }}$ of the base diode is amplified in the same way as the photocurrent $/ p$, the signal/noise ratio of the phototransistor is the same as that of the photodiode.


For the versatile applications, special type phototransistors are available. BPY 62, BPX 43, BP 101 and BP 102 requiring no lens on the receiver side are suitable for general applications.
BPY 62 is outstanding for a higher cut off frequency, BPX 43 for a higher photo-sensitivity.

In case the application demands a lens on the detector side, this requirement is met by BPX 38 . The flat window of this phototransistor makes a precise reproduction of the focal spot on the photosensitive
surface of the transmitter system possible. On account of the larger system surface, the adjustment and alignment of the transistor case to the light emitter causes less difficulties.

At the types mentioned, the user may preset the operating point of the phototransistor by wiring the base leads. The rapidity of response may thus be increased and the photosensitivity reduced. A fixed bias can reverse the phototransistor. Coincidence circuits can be realized by scanning this bias.
The phototransistor BPY 61 meets the requirement for high packing density. It is enclosed in a miniature glass case of $13 \mathrm{~mm} \times 2.1 \mathrm{~mm} \emptyset$ and its photosensitivity is by the factor 500 to 1000 higher than smallsurface silicon photovoltaic cells. Also the BPX 62 in micro ceramic case is provided for use on PC boards at minimum space requirements. The tolerance range of the light sensitivity is subdivided into four sensitivity groups. There is no base contact. Light is the controlling element which produces a correspondingly high collector current via the emitter-base path of the transmitter system, multiplied by the factor of the current gain. The rise and fall times depend on the illuminance and decrease with rising intensity.

Main applications are scanning of binary coded discs, films and punched cards.

Under limited mounting conditions the following amplifier must often be connected by relatively long leads. There is only little danger of interference pickup since a sufficiently large signal to noise ratio is ensured by high photoelectric currents.


## Mounting Instructions For Silicon Voltaic Cells and

 Photodiodes, open design without casingAs silicon is an inherently brittle material, the photoelectronic component should be shielded from pressure or tension. Contact points are particularly endangered. Should tension come to bear on the solid wire leads which, for technological reasons, are alloyed to a very thin $P$ layer it should only be parallel to the surface and must not exceed 200 p (pond). Leads may only be bent 3 mm off the outer edge of the photoelectric
component. Photoelectric components can be cemented onto metallic or plastic supports but the expansion coefficient of the material has to be taken into consideration to prevent mechanical strain between support and photoelectric component at change of temperature. An epoxy resin is to be used to cement or encapsulate the photoelectric component. It has to be colourless and should not grow darker with time. After curing, the epoxy resin must not have any gas occlusions (filter effect). The epoxy resin EPICOTE $162^{1)}$ together with the hardener LAROMIN-C $260^{2)}$ are particularly suited for the encapsulation of photoelectric components. 100 weight parts EPICOTE 162, 38 weight parts LAROMIN-C 260 are to be mixed well and remain workable for about 30 minutes. After that period of time the epoxy becomes viscid. All material to be encapsulated has to be dry, dust- and grease-free. Should bubbles form after the encapsulation it is advisable to raise the curing process temperature to $100^{\circ} \mathrm{C}$ for a short time. It makes the bubbles come to the surface and burst. The normal curing temperature lies between 60 and $80^{\circ} \mathrm{C}$. The curing time is 1 hour, it lessens with higher temperature. When working with epoxy great care should be taken that neither the resin nor the hardener touches the skin. The quickly binding glue SICOMET $85^{3)}$ proves adequate to cement open-design Si diodes or photovoltaic cells. The light sensitive surface of the photovoltaic cell is coated with a protective lacquer and should not be contaminated while cementing.

[^82]Guidelines for Handling and Using
Intelligent Displays ${ }^{\circledR}$ Appnote 18

by Malcolm Howard Dave Takagishi


#### Abstract

IMPORTANT! This Appnote contains vital information for optimum design and performance of Intelligent Displays.


Siemens Opto Intelligent Displays and Programmable Displays are one, four, or eight-digit LED display modules, having 16, 17 segment or $5 \times 7$ dot matrix fonts and on-board CMOS integrated circuits. The CMOS chip provides segment decoding, drivers, multiplexing and memory for easy interfacing to most microprocessors.
Since Siemens first began manufacturing Intelligent Displays, questions concerning their use have arisen. This application note is a guide for the design and handling considerations of these products.

## SYSTEM DESIGN CONSIDERATION

In the practical circuit (i.e., design of PCB, etc.) the voltage to any input must never exceed the power inputs (i.e., Gnd $<\mathrm{Vin}_{\mathrm{in}}<\mathrm{V}_{\mathrm{cc}}$ ). If these conditions are not met, then malfunction, or at worst, device destruction can occur. The most common cause of these conditions is circuit noise due to noise on the inputs and transient power supply changes.
Good Circuit Layout. The principles of good circuit layout are identical to any logic circuitry, but the deviation tolerance of MOS devices is much less than that of bipolar logic. To reduce the coupling effect between signals, it is important to keep the signal path lengths as short as possible.
Buffering. Although the use of parallel tracking is usually considered good design practice, avoid PCB designs which allow an interconnection track to run parallel to another. This is particularly true if one of the tracks is a high power bus when the fluctuations of power supply current can cause inductive or capacitive coupled charge onto an adjacent input signal.
Possibly the worst example of parallel tracking is the ribbon cable. While physically neat and convenient, ribbon cables can be electrically destructive for the MOS circuits. It is often necessary, because of the very nature of the Inteliigent Display, to use ribbon cable from the CPU board to the display assembly board. In those circumstances for PCB trace lengths plus cable lengths over 15.5 cm ( 6 inches), use a buffer for each used input. This is especially true for noisy systems which have motors, relays, etc. The buffers should be physically as close as possible to the displays;
thus maintaining a minimum distance between their outputs and the display inputs. Long cables can be poor transmission lines for speed pulses. Line drivers, line receivers, or Schmidt trigger gates may be required to shape pulses. Voltage Transients. It has become common practice to provide $0.01 \mu \mathrm{f}$ bypass capacitors liberally in digital systems. For Intelligent Displays, the emphasis is on adequate decoupling. Like other CMOS circuitry, the Intelligent Display controller chip has a very low power consumption and the usual $0.01 \mu \mathrm{f}$ capacitor would be adequate were it not for the LEDs. The module can, in some conditions (depending on the displayed characters), use up to 100 mA (average, multiplexed). To prevent power supply transients, use capacitors with low inductance and high capacitance at high frequencies, i.e., a solid tantalum or ceramic disc for high frequency bypass. For longer display lengths, distribute the bypass capacitors evenly, keeping capacitors as close to display power pins as possible. Do not rely on into-the-board decoupling, use a $10 \mu \mathrm{f}$ and a $0.01 \mu \mathrm{f}$ capacitor for every three or four Intelligent Displays to decouple the displays themselves, at the displays.

See Figure 1.
Functional Limitations. Several parameters in an Intelligent Display data sheet which may affect your design are shown below. While some parameters may not be destructive, some may affect reliability and/or functional operation. (Check latest data sheets.)

1. The length of time that all cursors may be lit (on the DL1416B, DL2416, DL3416) should be 1 minute max.
2. The timing parameters at $25^{\circ} \mathrm{C}$ will increase (slower) with increased temperature.
3. The timing parameters will decrease (faster) with increased $V_{C C}$.

## MANUFACTURING CONSIDERATIONS

Handling. The static voltages generated by friction with synthetic materials (i.e., carpets, clothing, device carriers, etc.) are often measured in thousands of volts. Although these static charges usually have little energy, it is sufficient to cause destruction to CMOS circuitry if applied to circuit


Figure 1
An actual PCB layout for a line of DL 2416 Intelligent Displays. Capacitors are spaced evenly and close to the displays with room for additional capacitors should the system require them.
inputs. Our CMOS circuits have input protection diodes which can minimize their vulnerability to these static voltages, but there is a limit to their protection capabilities. Under certain conditions, static charges can exceed that limit. The most effective protection is to avoid the generation of static charges. When static charges are unavoidable, prevent that charge from coming into contact with the device pins.

1. Avoid touching the pins, handle the body only.
2. Keep the devices in anti-static tubes or conductive material when transporting.
3. Use conductive and grounded working area (conductive flooring, conductive workbench tops, conductive individual wrist straps, etc.).
Intensity Brightness Codes. Display uniformity is a concern when two or more displays are in a system. SIEMENS has adopted a letter code (indicating a brightness range) to maintain a uniform display. It is recommended a single letter code be used per system. Because this may be difficult to always achieve due to yield and delivery, adjacent codes (i.e., D with $E$ or $E$ with $F$ ) can be used with minimal problems. Jumping over a code (i.e., D with F) may be noticeable.

Soldering. Because of the plastic housing of the Intelligent Displays, it is necessary to control the solder temperature, soldering time, and soldering distance. A maximum of $260^{\circ} \mathrm{C}$ for three seconds at a distance greater than $1 / 16$ inch is recommended. An additional requirement during wave soldering: the temperature of the plastic package should not exceed $70^{\circ} \mathrm{C}$.
Cleaning. For the DL1414, DL1416, DL1814, DL2416, DL3416, and PD2816: To maintain the optical performance of the plastic housing, the cleaning process for the Intelligent Displays is crucial. Because of the clear plastic magnifying bubbles, any solvent containing some form of alcohol cannot be used. Alcohol will attack the lens material causing cracking, crazing, and destruction of the clear optical properties of the lens.
Solvents in the suggested category are the chlorinated hydrocarbons (Acetone, 1.1.1 Trichloroethane, etc.), Freon TF, Freon TA or warm DI water. One note of caution: do not use a Freon solvent without first determining the chemical composition. Some manufacturers use some form of alcohol as an additive to enhance cleaning, so beware.
For the MD2416, DLO4135, DLG4137, DLO7135, DLG7137, PD3435, and PD3437: Solvents in the suggested category are TF, TP-35, TMS + , and TS or warm water.

# Cleaning LED Opto Products Appnote 19 

by Dave Takagishi<br>Rick Rachford

Now that you have selected the right optoelectronic device for your application and designed the circuitry, the next step is to install the devices. This application note is a cleaning solvent selection guide for Siemens products.

## PURPOSE OF CLEANING

In the manufacturing of your product, the components will be handled and soldered. It is important to clean the board and remove both flux rosin and ionic residues after soldering to insure a reliable product operation.
Opto products have to be treated differently than other semiconductor devices with respect to cleaning. LED devices for visual applications require special materials for their optical properties. Exposure to a cleaning solvent must not degrade these properties in any way. For this reason, only certain cleaning solvents and their applications may be used for LED components.
Optoelectronic products are built using differing manufacturing packaging techniques depending upon the device and cost. (See Table 1). For this reason, different types of solvents and cleaning techniques may be required. (See Table 3 for solvent summary).

TABLE 1

## OPTOELECTRONIC PACKAGING

1. Without housing (photovoltaic, etc.)
2. Cast or molded
3. Lensed (filled or non-filled)
4. Light pipe
5. Reflector (filled or non-filled)

## CLEANING TECHNIQUES

The most common cleaning techniques used in the electronic industry are:

1. Brush/wipe
2. Immerse/spray
3. Vapor degreaser

Dipping a short hard bristle brush into a solvent and applying to the area desired is used mostly
for touch-up or rework areas where localized cleaning is required. This technique can be used on all optoelectronic products if care is taken to maintain their optical properties.

Immersing the printed circuit board into a pan of solvent with slight agitation is another method of cleaning. Spraying the cleaner, in a dishwasher type machine, is a method for removing water soluble type flux.

The most common technique is the vapor degreaser. This method elevates the solvent to its vapor state. The object is placed into this vapor area allowing condensation into a liquid solvent and dissolving the soil.

Regardless of the solvent, the non-filled lensed and the non-filled reflector type products can allow moisture to become entrapped within the display and degrade its optical properties.

## SOLVENTS

There are many different solvents today. Some may be used only at room temperature; some are more effective with a vapor degreaser. Table 2 is a list of major solvent manufacturers.

TABLE 2

MAJOR SOLVENT MANUFACTURERS<br>Allied Chemical Corporation<br>Specialty Chemical Division<br>PO Box 1087<br>Morristown, N.J. 07960<br>Baron-Blakeslee<br>1620 S. Laramie Avenue<br>Chicago, III 60650<br>Dow Chemical<br>2020 Dow Center<br>Midland, MI 48640<br>El DuPont de Nemours \& Co.<br>1007 Market Street<br>Wilmington, DE 19898

Cost snouid not de me only criteria ior criousing a specific cleaning solvent. Any assembly that has a variety of components makes it mandatory to analyze the effects of any given solvent on all components. The component likely to be affected the most by any solvent should control your choice of solvent.

## CONCLUSION

The list of suitable/not suitable solvents in Table 3 represents a small part of available solvents. Some others may be compatible, but more likely, most will not be compatible. Another area of con-
ceill is thal sumerit malmanturers mane culliparable products, not exact products. Additives and concentrations are slightly different from manufacturer to manufacturer which may affect a solvent's acceptability.
Siemens does not assume any responsibility for damage caused to product/s by use of solvents mentioned above. This application note is only a guide to solvents that have been found satisfactory when tested under our own controlled conditions. We recommend that components be evaluated under your solvent conditions before committing to use on a production basis.

TABLE 3

SUITABLE/NOT SUITABLE SOLVENTS FOR SIEMENS OPTOELECTRONIC PRODUCTS											
Product	TF	TP-35	TCM	TMC	TMS +	TE	TA	TES	Acetone	Isopropyl Alcohol	III Trichlo ethane
Visible Lamp All Types	S	S	N	N	S	S	N	N	$N$	S	$N$
IR Emitter/Detector   All Types	S	S	$N$	$N$	S	S	N	N	$N$	S	$N$
Isolator All Types	S	S	N	N	S	S	N	$N$	$N$	S	$N$
$\begin{aligned} & \text { Displays-Group } 1 \\ & \text { HD XXXX } \end{aligned}$	S	S	N	N	S	S	N	N	N	S	N
DLX 34XX	S	S	$N$	N	S	S	N	N	$N$	S	N
DLX 413X	S	S	N	N	S	S	N	N	N	S	N
DLX 477X	S	S	N	N	S	S	N	N	N	S	N
DLX 573X	S	S	N	N	S	S	N	N	N	S	N
DLX 713 X	S	S	N	N	S	S	N	N	N	S	$N$
DL 76XX	S	S	N	N	S	S	N	N	N	S	N
DL 77XX	S	S	N	N	S	S	N	N	N	S	N
DLO 39XX	S	S	N	N	S	S	N	N	N	S	N
XBG 1000	S	S	N	N	S	S	N	N	N	S	N
XLB 2XXX	S	S	N	N	S	S	N	N	$N$	S	N
XBG 48X0	S	S	N	N	S	S	N	N	N	S	N
Displays-Group 2											
DL 3XXM/DI, 4XXM	S	N	N	N	N	N	S	N	S	N	S
DL 1414T	S	N	N	N	N	N	S	N	S	N	S
DL 1416T	S	N	N	N	N	N	S	N	S	N	S
DL 1416B	S	N	N	N	N	N	S	N	S	N	S
DL 1814	S	N	N	N	N	N	S	N	S	N	S
DL 2416H, T	S	N	N	N	N	N	S	N	S	N	S
DL 3416	S	N	N	N	N	N	S	N	S	N	S
DL 3422	S	N	N	N	N	N	S	N	S	N	S
IDA 1414	S	N	N	N	N	N	S	N	S	N	S
IDA 1416	S	N	N	N	N	N	S	N	S	N	S
IDA 2416	S	N	N	N	N	N	S	N	S	N	S
IDA 3416	S	N	N	N	N	N	S	N	S	N	S
PD 2816	S	N	N	N	N	N	S	N	S	N	S

S = Suitable
$\mathrm{N}=$ Not suitable
$\mathrm{X}=$ Substitute for specific part designation

# Moving Messages Using Intelligent Display ${ }^{\circledR}$ devices and 8748 Microprocessor <br> Appnote 20 

## Reprinted from Siemens Design Examples of Integrated Circuits Edition 1980/81

Output and display of texts including an important operator information are not only limited to devices of data processing systems but they are more and more applied in other fields of electronics, e.g. in industrial and consumer as well as control engineering. If data of different kinds (e.g. program results, error indications, decision criteria, test results, etc.) are displayed as moving news, they have a striking effect calling the operator's attention.
The text can easily be read when each character remains for 0.25 s on the display. A special advantage of a moving news panel being controlled by a microcomputer is in that the information can immediately be modified. The described circuit of Fig. 1 operates with SAB 8748. Its program memory capacity (EPROM) is 1K Byte and up to 900 characters can be stored. If the microcomputer is replaced by another one incorporating a different program, the information which is to be displayed is also exchanged.
The described circuit offers the advantage in requiring a minimum of components. The single-chip microcomputer SAB 8748 operates in conjunction with an alphanumeric 16 -segment-LED-display DL-2416. It incorporates memory decoder and driver.

## Hardware

The ASCII-coded data is transferred from the SAB 8748 to the display ICs via the bus port (DBø to DB6) and via the WR-output (strobe). The information at pins P20 and P21 addresses the specific digits of the display-IC DL2416.
The signals at P22 to P26 select the individual ICs via the chip enable input $\overline{\mathrm{CE}}$. When one pin of port 1 is connected to ground, the microcomputer supplies the corresponding text. An output of 4 different texts is possible.
The text may have any length as long as the memory capacity of 900 bytes is not exceeded. There are no additional components required than indicated in the circuit of Fig. 2.

## Software

The first 100 bytes of the EPROM are reserved for the program. As the program counter can only be read as data memory within 256 bytes, additional instructions are necessary (see listing). At the beginning of the program port 1 is read. If a signal with low level is available at one of the pins, the
starting address of the corresponding text is loaded to register 2 (low address) and 3 (high address). Now output registers 20 H to 32 H have to be filled with blanks. Then the first letter is transfered from text memory to data memory. Now the microprocessor operates in a waiting loop, determining the speed of the moving news. At an oscillator frequency of 3 MHz the timer has an overflow after $1 / 3 \times 10^{-6} \mu \mathrm{~s} \times 15 \times 32 \times 256=40.96 \mathrm{~ms}$. The moving-news text is stepping four times per second after 6 overflows have occurred, that means the 900 characters need in total $33 / 4$ minutes. If the 8 -bit-word zero (figure $\emptyset$, not the ASCII-character for $\phi$ ) is read as character, the text end is recognized by the program. Therefore a counting is not necessary, that means all characters have been transferred. Now the program returns to read port 1.
The flowchart is shown in Fig. 3 and Fig. 4 presents the complete listing.

## Components for circuit 2

18 -bit single chip microcomputer (1-KByte-EPROM, $3-\mathrm{MHz}$-version)

SAB 8748-8-D
5 4-digit alphanumeric LEDdisplays with memory, decoder and driver, $(4 \mathrm{~mm}$ character height, 16 segments) DL 2416
1 Crystal 3 MHz
4 Push buttons for pc board mounting, 2 break-make contacts, lateral operation


Fig. 1


Fig. 3


Fig. 4

## Silver Plated Tarnished Leads Appnote 21 <br> by Dave Takagishi

Silver plating, as an alternative to gold plating, has excellent electrical conductivity, LED die attach, and wire bonding properties. But tarnished leads can cause soldering difficulties. This application note will discuss silver tarnish and solderability.

## Effects of Tarnish

Solderability means the metals or surfaces to be soldered must be types that will go into solution with tin-lead alloys. When exposed to the atmosphere, all metals form oxides or tarnish of varying degree which reduce the ability of solder alloys to adhere to the metals. Silver tarnish is formed when silver chemically reacts with sulfur to form silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$. This tarnish is the reason for poor solderability of silver plated products. However, the amount of tarnish and the kind of solder flux used actually determine the solderability. As the tarnish increases, a more active flux must be used to penetrate and remove the tarnish.

## Prevention and Handling

Prevention is the best method for inhibiting the formation of tarnish and insuring good solderability of silver plated devices. To inhibit silver tarnish, do not expose the silver plating to sulfur and sulfur compounds. One source of sulfur is free air. Another is paper products such as bags and cardboard.
Listed below are a few suggestions for storing silver plated products.

1. Store the unused devices in polyethylene sheet to keep out free air.
2. Loose devices may be stored in zip-lock or sealed plastic bags.
3. For long term storage, place petroleum napthalene (mothballs) with product inside plastic packages to help keep out free air.
4. The silver leads may be wrapped in "Silver Saver" paper for protection. "Silver Saver"' is manufactured by:

> Daubert Coated Products
> 1200 Jorie Drive
> Oak Brook, III. 60521
> (312) $582-1000$
5. Tapes such as adhesive, electrical, and masking should not be used because the adhesive may leave a film and will need to be removed before soldering.
The best defense against the formation of tarnish is to keep silver plated devices in protective packaging until just prior to soldering.

## Fluxes

Depending on the amount of tarnish, different types of flux may be required. Below is a list of flux in order of increasing strength.

Type R: Un-activated Rosin Flux A pure water-white gum rosin without any additives. Flux and its residue are non-conductive and noncorrosive.

Type RMA: Mildly Activated Rosin Flux A WW rosin flux with a small amount of activating agent. Flux its residue are non-conductive and noncorrosive.
Type RA: Activated Rosin Flux
Similar to RMA flux but with greater amounts of activating agents. Flux and its residue are nonconductive \& non-corrosive.
Types AC: Organic Acid Flux
A fully active organic flux with greater flux ability than a rosin flux. Due to its organic nature, the flux residues decompose at soldering temperatures but must be removed to prevent conductive and corrosive aftereffects.
Recommended flux types with respect to the various tarnish amount:

1. Tarnish free may be soldered with Alpha 100, Kester 135, or equivalent Type R flux. (Identified by a bright surface)
2. Minor tarnish will require Alpha 611, Kester 197, or equivalent Type RMA flux.
(Identified by a medium bright surface)
3. Mild tarnish will require Alpha 711, Kester 1544, or equivalent Type RA flux.
(Identified by a light tint surface)
4. Moderate tarnish will require Alpha 830, Kester 1429, or equivalent Type AC flux. (Identified by a light tan color on the surface)
5. If severe tarnish is present, as identified by a dark tan to black color, a cleaner/surface conditioner Alpha 140, Kester 5560, or equivalent must be used. A few seconds and at room temperature is all that is required. These conditioners are acidic; therefore, a thorough wash and rinse is recommended. Care is advised to only immerse the leads and not the body, because optical properties may be damaged.

## Soldering

To obtain reliable circuit operation, good soldering is necessary. For wave soldering, Sn60 is the most commonly used solder for electronic components. Two alternatives are Sn 63 and Sn 62 solder. A high quality rosin core flux is recommended for hand solder operations. Typically the core is an RMA type flux.
Two major soldering suppliers are:
Alpha Metals
600 Rt 440
Jersey City, NJ 07304
(201) 434-6778

Kester Solder
4201 Wrightwood Ave.
Chicago, Ill 60639
(312) $235-1600$

Regardless of the flux and solder technique used, care should be taken to assure the optical properties of the optoelectronic product are not degraded in any manner.
Siemens does not assume any responsibility for damage caused by products mentioned above.

## Socket Selection Guide <br> Appnote 22

by Dave Takagishi

This application note is a guide to locate a suitable socket for various Siemens products.
The selection of a socket is first based on the number of pins and the pin spacing required. Sockets for displays require an orientation and sometimes stackability. Other requirements may be:

Contact type (ie. side vs edge)
Plating type (ie. tin vs gold)
PCB mounting (ie. solder vs wirewrap)
Height of socket
To use this guide, (1) Find Siemens product part number, (2) Note number of pins, (3) Note spacing \& orientation. . . (Example 300 H ) (4) Go to chart, find \# of pin with corresponding spacing/orientation and follow to suggested socket.
The purpose of this application note has been to guide you to possible vendors and suggest one out of many possible socket choices. It is recommended that the part numbers given be used as a starting point with a vendor for choosing a socket. The part number will depend on your requirement and application.
This guide is not intended to imply specific endorsement or warranty of other manufacturer's products by Siemens.

## List of possible vendors.

ARIES ELECTRONICS COMPANY P.O. Box 130

Frenchtown, New Jersey 08825 201-996-6841
GARRY MANUFACTURING
1010 Jersey Ave.
New Brunswick, New Jersey 08902 201-545-2424

Part Number		\# of pins	Spacing
DL-330M		12 pins	. 300 H
DL-340M		14 pins	. 300 H
DL.430M		12 pins	. 300 H
DL-440M		12 pins	. 300 H
DL-1414		12 pins	. 600 H
DL-1416		20 pins	(SPC)
DL-2416		18 pins	. 600 H
DL-3416		22 pins	. 600 H
DL-3422		22 pins	. 600 H
DL-7750R,775	1R,7756R,7760R	14 pins	. 300 V
DL-5735, DLG	-5735	12 pins	. 300 V
DL-7670G,767	1G,7673G,7676G	14 pins	. 300 V
DL-76500,765	1O,7653O,7656O	14 pins	. 300 V
DL-7660Y,766	1Y,7663Y,7666Y	14 pins	. 300 V
HD-1075G,107	750,1075R,1075Y	10 pins	(SPC)
HD-1077G, 107	770,1077R,1077Y	10 pins	(SPC)
HD-1105G,110	05O,1105R,1105Y	10 pins	. 300 V
HD-1107G,1107	70,1107R,1107Y	10 pins	. 300 V
HD-1131G,113	10,1131R,1131Y	10 pins	. 600 H
HD-1132G,113	32O,1132R,1132Y	10 pins	. 600 H
HD-1133G,113	330,1133R,1133Y	10 pins	. 600 H
HD-1134G,1134O,1134R,1134Y		10 pins	. 600 H
Optocouplers	6 pin	6 pins	. 300 B
	8 pin	8 pins	. 300 B
	16 pin	16 pins	. 300 B
Arrays		2 pins thru	
		20 pins	. 100 B


$\begin{aligned} & \hline \text { \# of } \\ & \text { pins } \\ & \hline \end{aligned}$	row-row spacing	$\begin{gathered} \text { ARIES } \\ \text { N.J. } \\ \hline \end{gathered}$	GARRY MFG N.J.	$\begin{aligned} & \text { R-N } \\ & \text { IND. } \end{aligned}$	$\begin{gathered} \hline \text { SAMTEC } \\ \text { IND. } \\ \hline \end{gathered}$
12	. 300 H	12-513-10	(2)102-06-X	(2)ICN-063-X	
14	. 300 H	14.511-10	102-14-X-X - ${ }^{\text {d }}$	ICL-143-S6-X	ICC-314-T
18	. 600 V	18-6511-10	300-18-X-X-X		IC-618-X
22	. 600 V	24-6513-10	300-22-XX-X		ICC-624-X
22	SPC				
13	SPC				
12	300 V	12-513-10			
14	. 300 V	14-511-10	102-14-X-X-X	ICL-143-S6-X	ICC-314
14	. 600 V	14-6511-10	300-14-X-X-X		IC-614-X
20	. 300 H	20-511-10	102-20-CC-X-X	ICL-203-S6-X	ICC-320
10	SPC	-_---	_-_-_	-_-.-...-	
10	. 300 V				IC-310-X
10	. 600 V	10-6511-10			IC-610-X
18	. 300 V	18-511-10	102-18-X-X-X		ICC-318
6	. 300 B	6-513-10	102-06-X	ICN-063-S3.X	IC 306-X
8	. 300 B	8-511-10	102-8-X-X-X	ICN-083-S3-X	ICC-308
16	. 300 B				
2-20	. 100 B	PIN-LINE SERIES	SERIES 200 SERIES 2002	SB-25-100X	$\begin{aligned} & \text { SSA-1XX-XSE } \\ & \text { ICK-1XX-XSE } \end{aligned}$
Others		yes	yes	yes	

NOTES:

1. All sockets are 0.100 pin-to-pin spacing.
2. Products listed are generally tin plated PCB solder type. Contact vendor for other types.
3. Row-row spacing of pins (H)-pins are horizontal w/respect to viewing of display (V)-pins are vertical w/respect to viewing of display (B)-pins can be either horz or vert (SPC)-pins not standard 0.100 or row-row spacing
4. Others-Special sockets for display such as Rt angle, etc. Contact vendor for details.
5. Consult vendor for stackability.
6. Strip in-line sockets may be used. (Cut to length, req'd)
7. Vendor may have other products also suitable for your application.

# LED Filter Selection Appnote 23 

by Dave Takagishi

The most important design consideration for a piece of equipment using LED products is the ability to display information to an observer clearly. This information must be easily and accurately recognized in various ambient light conditions. This application note will discuss the design considerations and recommendations for filtering.
Since the quality of readability is very subjective, the best judge of the performance of a product is the human eye and in the user's conditions. To improve the readability of a display it will be necessary to employ certain techniques such as contrast enhancement, wavelength filtering, special filtering, and mounting.

## Contrast Enhancement

The objective of contrast enhancement is to maximize the contrast between the display segments 'ON' and 'OFF' states. This is done by reducing the ambient light reflected from the surface of the display and allowing as much of the emitted light to reach the observer. This can be accomplished by painting the front surface of the display to match as close as possible the color of an 'OFF' segment. This reduces the distracting areas around the display and therefore enhances the 'ON' segments.
Contrast enhancement may be improved further by the use of selected wavelength filters. Under bright ambient conditions, contrast enhancement is more difficult and additional techniques such as louvered filters and/or shading may be necessary.

## Filters

The majority of display applications use plastic filter material for their low cost and ease of assembly. The filter requirements for different ambient lighting conditions and different color displays make it necessary to become familiar with the various relative transmittance characteristics. Most filter manufacturers will provide transmittance curves for their products.
When selecting a filter, the shape of the transmittance curve vs wavelength should be considered in relationship to the LED radiated spectrum to obtain maximum contrast enhancement. For standard red displays, a long wavelength pass filter having a sharp cutoff in the 600 nm to 620 nm range is ideal. The same applies for high efficiency red displays with a long wavelength pass filter in the 570 nm to 590 nm range. The yellow and green displays are more difficult to filter effectively. The most effective filter for yellow displays is a yellow-orange or amber filter. Yellow-only filters are very poor for contrast enhancement. Green displays will require a band-pass yellow-green filter which peaks at 565 nm .

A choice among available filters must be made on the basis of which filter and LED combination is most effective, but experimentation with each choice must be made to choose the most esthetic combination.

## Effectiveness of Wavelength Filters with Different Lighting

Contrast is very dependent upon the ambient lighting. If the ambient light is outside the spectrum of the LED, then it is very easy to reduce the reflected light. This is the case for a red LED display in fluorescent lighting or a green LED in incandescent lighting. Bright sunlight has a flat spectral distribution curve and when it is directly incident upon a display the background may meet or exceed the light output of the display. It should be obvious that a wavelength filter alone is not sufficient in daylight ambient conditions.

## Other Techniques

An acceptable contrast is difficult to achieve if high ambient light is parallel to the viewing axis (the incident light is perpendicular to the face of the display). If the incident light is not parallel to the viewing axis, the use of louvered filters or shading and recessing is recommended. It is the shading of louvered filters that reduces the incident light to allow for more contrast. The drawback to this filter is the restricted viewing angle.
Circular polarizing filters are effective in reducing the reflected light from the highly reflective (glossy) surfaces of bubble lensed products, such as the Intelligent Displays. Glare can still be present from the surface of filters, therefore, an anti-reflection surface is recommended. This can be incorporated into the filter. The trade-off is that both ambient and display light are diffused and the display may appear fuzzy if not mounted close enough to the filter.
Care should be taken to design the printed circuit board to keep all reflective surfaces away from dispiay area or display side of the board or consider a dark coating on the reflective surfaces.

## Mounting Considerations

The designer should consider recessing the display and bezel assembly to add some shading effect. The shading will reduce the indirect lighting for better contrast.
It is essential to design the unit to allow sufficient air flow for circulation and mount current limiting resistors on another board or any heat generating components away from the displays.

Filter Material Manufacturers
Panelgraphic Corporation
10 Henderson Drive
West Caldwell, New Jersey 07006
201-227-1500
SGL Homalite
11 Brookside Drive
Wilmington, Delaware 19804
302-652-3686
3M Company
Visual Products Division
3M Center, Bldg 220-10W
St. Paul, Minnesota 55101
612-733-0128
Rohm and Haas
Independence Mall West
Philadelphia, Penn 19105
215-592-3000
Polaroid Corporation
Polarizer Division
549 Technology Square
Cambridge, Mass 02139
617-864-6000
Dontech Inc.
P.O. Box 889

Doylestown, PA 18901
215-348-5010
ESCO Products Inc.
171 Oak Ridge Road
Oak Ridge, NJ 07438
201-697-3700

## Bezel \& Filter Assembly Manufacturers

R.M.F. PRODUCTS
P.O. Box 413

Batavia, Illinois 60510
312-879-0020
NOBEX COMPONENTS
Nobex Division
Griffith Plastic Corp
1027 California Dr.
Burlingame, Ca 94010
415-342-8170
PHOTO CHEMICAL PRODUCTS OF CALIFORNIA
1715 Berkeley Street
Santa Monica, Ca 90404
213-828-9561
I.E.E.-Atlas

Industrial Electronic Engrs Inc.
7740 Lemona Avenue
Van Nuys, Ca 91405
213-787-0311

Filter Recommendation

## Visible Filters

Manufacturer	Red	Hi-Eff	Ylw	Grn	Spcls
Homalite	1605	1670	1720   1726	1425   1440	
Panelgraphic	Red 60   Red 63	Red 65	Ylw 25   Amb 23	Grn 48	Gray 10
Rohm \& Haas	2423	2444			2412
3-M					Louvered   Filters
Polaroid				Circular   Polarizing	

## Near IR Filter

Rohm \& Haas	Red \#2711

# Drivers For Light Emitting Displays Appnote 24 

by Dave Takagishi

The purpose of this application note is to provide some information on the integrated circuits presently available to drive Light Emitting Diodes (LED) displays and how to interface them to the various displays.

## Background

LED displays come in various sizes ( $0.1^{\prime \prime}$ to $0.8^{\prime \prime}$ ), colors (red, high-efficiency red, green, yellow), fonts (7/9/14/16 segment, dot-matrix, or bar graph), and types (common anode, common cathode, multi-digit). The brightness is essentially proportional to the current through an LED and each element within a display should have the same current or a brightness variation may be apparent. A display subsystem can be made up from several elements.


The partitioning of these elements are dependent on the drivers used; therefore, the display driver chosen is dependent on the specifications of the display and the application.
Also some types of displays require using a multiplexing technique because of the internal interconnections. This is only applicable for multi-digit displays.

## Typical Circuits

Figure 1 shows a very basic circuit for driving an LED. The series resistance can be easily calculated from the following formula.
$R s=\frac{V b-V f}{\text { If }}$


FIGURE 2

For circuits using TTL Logic or transistors (fig 3).
Rs $=\frac{V_{c c}-V_{c e}-V_{f}}{\text { If }}$


TTL or Transistor


Darlington Transistor

FIGURE 3

It can be seen that the term Vce(saturation voltage) for the driver is going to be a factor in determining the series limiting resistor. Therefore, a darlington vs a single output transistor will have different current limiting resistor values to maintain a constant current through the LED.

## Selection

One factor in choosing the display and/or driver will be whether the display is a common cathode or common anode type display.


Common Cathode Display
FIGURE 4

## Multiplexing

In a multiplex system, the corresponding segment of each digit is bussed together and driven from one segment drive via the usual current limiting resistors. The display data is presented serially by digit to the decoder driver together with the appropriate digit signal (figure 10). For more information on multiplexing, see Appnote \#3 (Multiplexing LED Displays).


One way to simplify the design procedure for alphanumeric displays would be to consider the Siemens Intelligent Displays ${ }^{\circledR}$. This device family incorporates all necessary interface control with drivers and memory built-in with the display. This means the designer need not be concerned about the memory, multiplex circuitry, character generator, or drivers for these are provided inside a modular unit. More information on these products is available in the Siemens Opto Short Form Catalog or general catalog.

Circuits herein mentioned are not the responsibility of Siemens Opto and are for reference only. Products are continually being improved by vendors and/or are obsoleted; therefore, consultation with the factory is recommended.

## Block Diagram of a 4-Digit Multiplexed Display FIGURE 10

## TABLE 1

## Single Digit Decoder/Drivers

PART \#	MFGR	1f/seg	TYPE	COMMENTS
$\begin{aligned} & 7447 \\ & 74247 \\ & 7446 \end{aligned}$	Fairchild Hitachi Motorola National Signetics Teledyne TI	40 ma	CA	BCD-to-7 seg, open coll, ripple blnkng
$\begin{aligned} & 7448 \\ & 74248 \end{aligned}$	Fairchild Hitachi Motorola National Signetics TI	6 ma	CC	BCD-to-7 seg, int pull-up, ripple blnkng
$\begin{aligned} & 7449 \\ & 74249 \end{aligned}$	Fairchild Hitachi Motorola National Signetics TI	8 ma	CC	BCD-to-7 seg, open coll, blnkng input
DS8857	National	60 ma	CA	BCD-to-7 seg decoder, ripple bInkng
DS8858	National	50 ma	CC	BCD-to-7 seg decoder, ripple bInkng
$\begin{aligned} & \text { CD4511 } \\ & 4511 \mathrm{~B} \\ & \text { MC14511 } \\ & \hline \end{aligned}$	Fairchild National Motorola	25 ma	CC	BCD-to-7 seg, latched, blnkng
$\begin{aligned} & \text { DS8647 } \\ & \text { DS8648 } \\ & \hline \end{aligned}$	National	10 ma	CC	9 seg drivers
NE587	Signetics	50 ma	CA	BCD-to-7 seg, latched, ripple blnkng, vari current
NE589	Signetics	50 ma	CC	BCD-to-7 seg, latched, ripple blnkng, vari current
CA3161E	RCA	25 ma	CA	BCD-to-7 seg, constant current drivers
9368	Fairchild	20 ma	CC	BCD-to-7 seg, ripple blnkng
9374	Fairchild	15 ma	CA	BCD-to-7 seg, ripple blnkng

## TABLE 1, Continued

## Multi-Digit Display Drivers:

MM5450	National	25 ma	CA	34 seg serial input, brightness control
MM5451	National	25 ma	CA	35 seg serial input, brightnes control
MM74C912	National	100 ma	CC	6 digit, 7 seg+decimal, BCD decoder, output enble
MM74C911	National	100 ma	CC	4 digit, 8 seg controller/seg driver
MM74917	National	100 ma	CC	6 digit, 7 seg+decimal, Hex decoder, output enble
DS8669	National	25 ma	CA	Dual BCD-to-7 seg decoder/driver
CA3168E	RCA	25 ma	CA	Dual BCD-to-7 seg decoder/driver
ICM7212   ICM7212A   ICM7212M   ICM7212AM	Intersil	8 ma	CA	4 digit, latched, 28 seg drivers, brightness cntl
ICM7218A	Intersil	20 ma	CA	8 digit, 8 seg (decoded/spcl), w/mem/drivers
ICM7218B	Intersil	10 ma	CC	8 digit, 8 seg (decoded/spcl), w/mem/drivers
ICM7218C	Intersil	20 ma	CA	8 digit, 8 seg(hex/bcd), w/mem drivers
ICM7218D	Intersil	10 ma	CC	8 digit, 8 seg(hex/bcd), w/mem/drivers
ICM7218E	Intersil	20 ma	CA	8 digit, 8 seg (decoded/spcl), w/mem drivers, cntls avble
TSC700A	Teledyne	11 ma	CA	4 digit decoder/driver, parallel output, brightness entl
TSC7212A	Teledyne	5 ma	CA	4 digit decoder/driver, parallel output, brightness cntl
SAA1060	Signetics	40 ma	CA	16 element serial in/parallel out driver
SDA2014	Siemens	12 ma	CC	2 or 4 digit, serial bod input
SDA2131	Siemens	20 ma	CA	16 element, serial input

## Other Drivers:

XR-2000	Exar	400 ma	sink	5 darlington transistors, MOS-to-LED
XR-2201   XR-2202   XR-2203	Exar	500 ma	sink	7 darlington transistors, open collector w/diodes
XR-2204				

## Bar Graph Drivers:

UAA180	Siemens	10 ma	n.a.	12 element bar driver
LM3914	National	$2-20 \mathrm{ma}$	n.a.	10 element dot/bar linear output driver
LM3915	National	$1-30 \mathrm{ma}$	n.a.	10 element dot/bar log output driver



## Common Anode Display <br> FIGURE 5

Another factor is the different drivers go low or high,


Common Cathode Display w/Driver
FIGURE 6


## Common Anode Display w/Driver FIGURE 7



Open Collector Type Driver w/Common Anode Display FIGURE 8


## Open Collector Type Driver w/Common Cathode Display FIGURE 9

From figures 6/7/8/9, it may appear obvious to combine the seven (7) series resistors (Rs) into one common resistor in the common line. However this should not be done because of the possible variation in Vf from segment to segment. This variation in Vf can cause a variation in current, resulting in segment brightness differences.
Table 1 is a list of some of the most common LED drivers available. Besides having different current drive capabilities, one product may have a feature which may make them easier to use in a particular application.

- Serial vs parallel input data
- Data latching type drivers
- Blanking
- Drive the ripple blanking input (rbo) with pulse width modulation to very brightness.
- Multi-digit drivers
- Constant current drivers
- Advantage of a constant current driver is the change of Vf will not affect the brightness. This is important with different color LED's.


# The DLX 713X, $5 \times 7$ Dot Matrix Intelligent Display ${ }^{\circledR}$ Device Appnote 25 

by Dave Takagishi

This application note is intended to serve as a design and application guide for users of the DLO 7135. and DLG 7137 Siemens Optoelectronics Division Intelligent Displays. The information presented covers device electrical description. operation. general circuit design considerations, and interfacing to microprocessors.

## Electrical Description

If you have never designed a system using a dot matrix display before, you cannot appreciate the simplicity of using the DLX 713x Intelligent Alphanumeric $5 \times 7$ Dot Matrix Display. The intelligent display contains memory, character generator, multiplexing circuits, and drivers built into a single package.
Figure 1 is a block diagram of the $\mathrm{DLX} 713 x$. The unit consists of 35 LED die arranged in a $5 \times 7$ pattern and a single CMOS integrated circuit chip. The IC chip contains the segment drivers, digit drivers, 96 character generator ROM, memory, multiplex and blanking circuitry.


DLX-713x Block Diagram FIGURE 1

## Package

The 35 dots form a $0.48 \times 0.68$ inch overall character size in a $0.700 \times 0.800$ inch dual-in-line package. The $\pm 50$ degree wide viewing angle complements the large display and is the ideal display for the industrial control application. Display construction is a filled reflector type with the intregrated circuit in the back and then filled with IC-grade epoxy. This results in a very rugged part which is quite impervious to moisture, shock, and vibration.


Physical Dimension Inches FIGURE 2

Electrical Inputs

PIN	Name	PIN	Name
1	Vcc		D6 data input (msd)
2	LT lamp test	13	D5 data input
3	$\overline{\mathrm{CE}}$ chip enable		D4 data input
4	WR write		D3 data input
5	BL1 brightness		D2 data input
6	BLO brightness	9	D1 data input
7	GND		D0 data input (Isd)

## Pin Description

Vcc	Positive Supply +5 volts   GND   DO-D6
$\overline{\text { Ground }}$	
Data Lines	
see figure 3 for character set	
Chip Enable (active low)	
This determines which device in an	
array will accept data	
Write (active low)	
Data and chip enable must be	
present and stable before and after	
the write pulse (see data sheet for	
timing)	



## Display Blanking and Dimming

The DLX $713 x$ Intelligent Display has the capability of three levels of brightness plus blank. Figure 5 shows the combination of $\overline{B L O}$ and $\overline{B L 1}$ for the different levels of brightness. The $\overline{B L O}$ and $\overline{B L 1}$ inputs are independent of write and chip enable and does not affect the contests of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a 1-2 hertz rate. Either $\overline{B L O}$ or $\overline{B L 1}$ shouid be held high to light up the display.

Dimming and Blanking Control		
Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BLO }}$
BLlank	0	0
$1 / 4 \mathrm{brightness}$	0	1
$1 / 2$ brightness	1	0
full brightness	1	1

## Lamp Test

The lamp test when activated causes all dots on the display to be illuminated at half brightness. It does not destroy any previously stored characters. The lamp test function is independent of chip enable, write, and the settings of the blanking inputs.
This convenient test gives a visual indication that all dots are functioning properly. Because of the lamp test not affecting the display memory, it can be used as a cursor or pointer in a line of displays.

## General Design Considerations

When using the DLX $713 x$ on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all of the input lines. A non-inverting 74365 hex buffer can be used. The object is to prevent transient current into the DLX $713 x$ protection diodes. The buffers should be located on the display board and as close to the displays as possible.
Because of high switching currents caused by the multiplexing, local power supply by-pass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having 5-10 uf capacitance. The capacitors may only be required every 6-7 displays depending on the line regulation and other noise generators.
If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100 ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply.
The 5 volt power supply for the DLX $713 x$ should be the same one supplying the Vcc to all logic devices. If a separate supply must be used, then local buffers should be used on all the inputs and these buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic signals to be higher than Vcc during power up.

## Interfacing

For an eight digit display using the DLX $713 x$, interfacing to a single chip microprocessor such as the 8748 is easy and straight forward. One approach may be to dedicate one port for the seven data signals and another 8 -bit port for the write signals. The schematic is shown in Figure 6.


DLX 713x with 8748
Figure 6

INIT:	ORL	P1,\#OFFH
	ORL	P2,\#00H
	MOV	R1,\#OFH
	MOV	R2,\#OFEH
	MOV	R3,\#O8H
START:	INC	R1
DATA:	MOV	A,@R1
	OUTL	P2,A
	MOV	A,R2
	RR	A
WRITE:	MOV	R2,A
	OUTL	P1,A
	MOV	A,\#OFFH
	OUTL	P1,A
	DJNZ	R3, START
	RET	

SUBROUTINE TO LOAD AN 8-DIGIT DISPLAY USING THE DL7135
DATA IN RAM 10H-17H (MSD-LSD)
PATA IN RAM HIGH (WRITE)
PORT 1 ALL HIGH (WRITE)
PORT 2 ALL LOW (DATA)
PORT 2 ALLLLOW (DA
RAM ADDRESS -1
WRITE PULSE
COUNTER
INCREMENT RAM POINTER
FETCH DATA FROM RAM
LOAD PORT 2
RECALL WRITE
SHIFT A TO NEXT WRITE
SAVE WRITE
SEND WRITE PULSE
WAIT
RESET WRITE PULSE
LOAD COMPLETE?
RETURN TO MAIN PROGRAM

## I/O or Memory Mapped System

For a memory mapped system using a processor such as the 8080 or 8085 , the interfacing is also straight-forward. Each display is treated as a memory location with its own address, like another I/O or RAM Iocation.


Block Diagram for 8-Digit DLX 713x Dot Matrix Display

Figure 7


## Conclusion

Note that although other manufacturer's products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the DLX 713x Dot Matrix Intelligent Display. Slight timing differences may be encountered for various microprocessors, but can be resolved similar to those encountered when using different RAM's. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

## SFH 900 - A Low-Cost Miniature Reflex Optical Sensor Appnote 26

Whether for an industrial plant or a hobbyists' drilling machine, an electric drive will hardly be acceptable nowadays without speed control. Incremental bar patterns simply applied to rotating shafts can be detected by the new Siemens reflex optical sensor, the SFH 900. The information can be processed with a minimum of circuitry, whether for a high rate of black-to-white transitions or just single, slow transitions.

## Construction

The SFH 900 optical sensor is a remarkable component even by virtue of its shape alone. Its maximum height of 2.2 mm is in the trend of today's electronics, of putting a large number of functions into a very small space. The small dimensions allow it to be used where ordinary optical sensors run into space or other problems. Fig. 1 is an enlarged picture of the device. Dimensions and pin configuration are shown in Fig. 2.

Fabricated by lead frame technique in a thermoplastic package, the sensor uses a GaAs infra-red diode as a radiation emitter and a large-area phototransistor as the detector. High sensitivity is ensured by a $1 \mathrm{~mm}^{2}$ radiation sensitive area and a current gain of almost 1000. The effect of unwanted ambient light is almost screened out by a filter.

Two fixing notches are a help in mounting the device. Lead frame technology accurately locates the optically active areas relative to these notches and thus to the component body. Fig. 3 is an example of one form of mounting.

Fig. 1 SFH 900 reflex optical sensor, front and back view, shown here three times normal size


Fig. 2 Outline dimensions and pin connections of SFH 900


## Characteristics

Main technical data are given in the Table. Turn-on and turn-off times are also important. These depend essentially on the collector current $I_{\mathrm{C}}$ and the load resistance $R_{\mathrm{L}}$. Typical switching times for $I_{\mathrm{C}}=1 \mathrm{~mA}$ and $R_{\mathrm{L}}=1 \mathrm{k} \Omega$ are 50 to $70 \mu \mathrm{~s}$.
The user will be mainly concerned with the following points:

- What collector current, $I_{\mathrm{C}}$, can be expected under given static conditions?
- What are the signal amplitudes when scanning bar patterns of different pitches?
- What is the temperature dependence of the collector current and what is the repeatability of the measured values?


## Collector current

Dependence of collector current on emitter diode forward current $I_{F}$ is almost linear at forward currents above 10 mA , as can be seen from Fig. 4. At currents below 1 mA the dependency shows almost a square law. The measurement was made with a standard reflector (Kodak neutral white test card, $r=90 \%$ ) at a distance of 1 mm . Fig. 5 shows $I_{C}$ characteristics for distances of 0.2 to 10 mm at a constant forward current of 10 mA . The curves are for four different reflecting materials: two standard Kodak reflectors with $15 \%$ and $90 \%$ reflection, polished aluminium and a strongly absorbing foil. DC-fix adhesive tapes and other tapes commonly used for printed circuit layouts proved particularly suitable. It should be mentioned that the curve for polished aluminium in Fig. 5 is very similar to the Kodak reflector response with $r=90 \%$, in spite of the reflection being mirrored by the metal and diffused by the standard reflector, as a result of the wide directional characteristics of the emitter and detector.
At short distances (e. g. $d=0.25 \mathrm{~mm}$ ) very large changes of current per unit distance are obtained. Because of these steep edges, which can only be used dynamically, the SFH 900 may also be utilized as a microphone.

Fig. 3 Suggestion for mounting the SFH 900.
Projections N in the flexible plastic clamp locate in corresponding notches in the body of the optical sensor


Fig. 4 SFH 900 collector current $I_{\mathrm{C}}$ as a function of forward current $I_{\mathrm{F}}$ with $90 \%$ diffuse reflectin at distance $d=1 \mathrm{~mm}$ and with $U_{\mathrm{s}}=5 \mathrm{~V}$


Fig. 5 SFH 900 collector current $I_{C}$ as a function of reflector distance $d$ with different reflector materials


Forward current $I_{\mathrm{F}}=10 \mathrm{~mA}$ Operating voltage $U_{S}=5 \mathrm{~V}$.

Emitter (GaAs infra-red diode)				
Reverse voltage		$U_{\text {R }}$	6	V
Forward dc current		$I_{\text {F }}$	50	mA
Surge current ( $t \leq 10 \mu \mathrm{~s}$ )		$i_{\text {FSM }}$	1.5	A
Power dissipation ( $T_{\text {amb }}=40^{\circ} \mathrm{C}$ )		$P_{\text {tot }}$	80	mW
Thermal resistance		$R_{\text {thJu }}$	750	KW
Detector (silicon phototransistor)				
Collector-emitter voltage		$U_{\text {CEO }}$	30	V
Emitter-collector voltage		$U_{\text {ECO }}$	7	$\checkmark$
Collector current		$I_{\text {C }}$	10	mA
Total power dissipation ( $T_{\text {amb }}=40^{\circ} \mathrm{C}$ )		$P_{\text {tot }}$	100	mW
Collector-emitter leakage current ( $U_{\text {CE }}=10 \mathrm{~V}$ ) Photocurrent under ambient light ( $U_{\mathrm{CE}}=5 \mathrm{~V}$ )		$I_{\text {CEO }}$	$20(\leq 200)$	$n A$
( $E_{\mathrm{E}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}$ )		$I_{\text {F }}$	$\leq 3$	mA
Reflex optical sensor				
Storage temperature range		$T_{\text {S }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Ambient temperature range		$T_{U}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Junction temperature		$T_{\text {j }}$	100	${ }^{\circ} \mathrm{C}$
Total power dissipation ( $T_{\text {amb }}=40^{\circ} \mathrm{C}$ )		$P_{\text {tot }}$	150	mW
Collector current	SFH 900-1	$I_{\text {CE }}$	$\geq 0.3$	mA
( $I_{\text {F }}=10 \mathrm{~mA} ; U_{\text {CE }}=5 \mathrm{~V} ; d=1 \mathrm{~mm}$ )	SFH 900-2	$I_{\text {CE }}$	$\geq 0.5$	mA

Table Selective characteristics of SFH 900

## Resolution of black-and-white patterns

As can be seen from Fig. 5, strongly reflecting and badly reflecting materials give collector currents differing by a factor of about 25 . Strongly reflecting means »white«, badly reflecting "black".
If a black-to-white transition is scanned, the displacement distance between the "fully white" signal and the "fully black" signal is 4 to 5 mm (Fig.6).
If, in contrast, a regular bar pattern is scanned, the signal amplitude becomes smaller the smaller the bar width. Fig. 7 shows clearly how the excursion is affected: the maximum white signal becomes smaller with decreasing bar width, while the minimum black signal becomes larger. Fig. 8 shows the signal excursion itself, to make it clearer. Here a regular pattern and a single white bar are compared. The excursion is referred to a single black-towhite transition corresponding to a $100 \%$ signal excursion.
A bar width of 3 mm can thus be detected without significant loss of sensitivity. The signal excursion, however, drops to as low as $10 \%$ using a grid of 1 mm bar

Fig. 6 Resolution of a black-to-white transition. Relative collector current as a function of sensor position $s$


Reflector distance $d=1 \mathrm{~mm}$ Emitter diode current $I_{F}=10 \mathrm{~mA}$

Fig. 7 Maximum and minimum collector current when scanning a black-white pattern


Fig. 8 Relative signal excursion as a function of white bar width
$I_{\mathrm{F}}=10 \mathrm{~mA}, d=1 \mathrm{~mm}$

width. An apparently higher signal excursion is obtained when a single 1 mm wide white bar on a black background is scanned. The result is then about a $30 \%$, as shown in Fig. 8.
The optical sensor can be used for scanning in any position, regardless of whether the emitter-detector axis is at right-angles to the scanning direction. Tests have shown that the device sensitivity is independent of direction. If a white spot on a black background (or viceversa) is to be detected without loss of sensitivity, this should have a minimum area of $5 \times 5 \mathrm{~mm}$. From this we can conclude that a pattern bar must not be larger than 5 mm .
Thus the resolution capability of the SFH 900 seems to be limited to bar widths of 1 to 2 mm minimum. In fact, however, considerably higher resolutions can be obtained when gratings are used. An example is given below.

## Temperature dependence

The temperature dependence of the output signal is shown in Fig. 9. This fortunately very small dependence results from the combination of the temperature dependent diode emission (approx. $-0.55 \% / \mathrm{K}$ ) with the temperature dependent current gain of the phototransistor (approx. $+0.9 \% / \mathrm{K}$ ). As these two parameters partly compensate for each other the temperature dependence of the output signal is fairly small.
There is a spread of characteristics in the different devices but they remain within the specified tolerance range, allowing for ageing, with a probability of at least 95\%.

## Applications

## Speed control for dc motors

A simple speed regulator circuit for small dc motors can be designed using the TCA 955 device. Fig. 10 is an example. The teeth of a toothed wheel on the motor shaft serve as reflectors ( 40 teeth on a wheel of approx. 60 mm diameter). Pulses from the optical sensor are converted by the TCA 955 into a dc voltage proportional to speed. The pulse signal is first amplified, then frequency doubled, then fed to a monostable which produces a square wave with a constant pulse duration determined by the $R_{1} C_{1}$ product. The mean value of this pulse train is determined by capacitor C 2 and an $8.7 \mathrm{k} \Omega$ internal resistor.
The voltage present at C 2 , still with a slight triangular modulation, is compared with an internal set value. The difference is amplified and determines the duty cycle in the subsequent mark-to-space ratio converter. The motor is connected to the operating voltage via a BD 675 switching stage, which runs to the rhythm of the duty cycle. A larger mark-to-space ratio causes the speed to increase. The desired frequency can be set by P1 over a wide range.

## Speed control for ac motors

This is mainly intended for use in the consumer field, in such things as kitchen appliances and drilling machines. It is important that the speed indicator should have a very low current consumption as it is supplied from a simple line rectifier circuit using a series resistor. The specimen circuit in Fig. 11 has an emitter diode current of only

Fig. 9 Relative collector current as a function of temperature


$$
\begin{array}{ll}
U_{\mathrm{s}}=5 \mathrm{~V} & d=1 \mathrm{~mm} \\
I_{\mathrm{F}}=10 \mathrm{~mA} & r=90 \% \\
\hline \text {-- typical response } \\
\text { (including long-term effects) }
\end{array}
$$

2 mA . Signal processing and triac triggering are done by the new TLB 3101 phase control IC. Total current needed for control is around 7 mA , including the SFH 900.
Pulses from the optical sensor are first amplified, then converted by a monostable to constant pulse width and finally filtered to give a mean value. By comparison with a sawtooth voltage the gate trigger time for the triac is fixed. A soft start is given by transistor T1.
The range of speed regulation is 5000 to 15000 rpm . The reflector is a disc mounted on the motor shaft, and at its periphery this disc has, as an example, 5 pairs of black and white segments.

## Shaft encoder with direction sensing

This example shows how gratings can be used to give a considerable increase in resolution. A transparent disc of about 130 mm diameter has an array of 200 opaque bars at its periphery (Fig. 12a). The bar width is thus about 1 mm . A second grating with reflecting white bars is placed under the disc. If the disc pattern and the grating beneath are set gap to gap, the detector "sees« $100 \%$ black. If the bars of the two gratings are on top of each other the image appears as $50 \%$ white. So, when the disc is rotating the useful amplitude is therefore about $50 \%$ of the full black-to-white excursion.
The grating pattern is constructed so that one half is displaced by $90^{\circ}$ of a grid period with respect to the other half. If a reflex optical sensor is assigned to each half, on rotation of the disc the output signals will be roughly sinusoidal and displaced by $90^{\circ}$ from each other. This means that patterns of half bar width can be successfully resolved.
In further processing both sinewave voltages are converted into square waveforms, also phase-shifted by $90^{\circ}$ (Fig. 13).

Fig. 10 Speed regulator using SFH 900 reflex optical sensor and TCA 955 integrated speed control


Fig. 11 Speed regulator for an ac motor using SFH 900 and TLB 3101


The rising edge of on square-wave (signal 1 ) is used for counting. It triggers a monoflop which generates a pulse of short duration relative to the square-wave period. The other, $90^{\circ}$ shifted, square-wave controls the direction of the counter (Low = forward, High = backward).
According to the direction command, the conditions in Fig. 13 come into effect. The active clock edge coincides with either the low level or the high level of signal 2. Counting therefore takes place in accordance with forward or backward rotation of the shaft. Fig. 14 gives the detailed circuit diagram of the shaft encoder.
The counter used has a range of two decades and gives the BCD separately for each digit.
A 7-segment decoder-driver follows this for-each of the two LED displays. The number of digits can be increased by cascading several stages.
For the purposes of explanation any bar in the pattern can be considered as the starting point and the counter reset to zero using the reset key. If now the disc is turned at any speed in either direction with respect to the stationary mark, the counter indicates the bar number difference with respect to the starting point. As only dc voltage coupling is used the rotational speed may have any arbitrary minimum value.

Fig. 12 Example of a patterned disc (a) and its counting grid (b)


Fig. 13 Waveforms showing the operation of a shaft encoder with direction sensing


Fig. 14 SFH 900: circuit for shaft encoder with direction sensing


# The DLO 4135/DLG 4137 $5 \times 7$ Dot Matrix Intelligent Display ${ }^{\circledR}$ Appnote 28 

by Dave Takagishi

This application note is intended to serve as a design and application guide for users of the DLO 4135 and DLG 4137 Siemens Opto Intelligent Displays. The information presented covers device electrical description, operation, general circuit design considerations, and interfacing to microprocessors.

## Electrical Description

If you have never designed a system using a dot matrix display before, you cannot appreciate the simplicity of using the DLO 4135/DLG 4137 Intelligent Alphanumeric $5 \times 7$ Dot Matrix Display. The intelligent display contains memory, character generator, multiplexing circuits, and drivers built into a single package.
Figure 1 is a block diagram of DLO 4135/DLG 4137. The unit consists of 35 LED die arranged in a $5 \times 7$ pattern and a single CMOS integrated circuit chip. The IC chip contains the segment drivers, digit drivers, 96 character generator ROM, memory, multiplex and blanking circuitry.


DLO 4135/DLG-4137 BLOCK DIAGRAM FIGURE 1

## Package

The 35 dots form a $0.30 \times 0.43$ inch overall character size in a $.500 \times 1.00$ inch dual-in-line package. The $\pm 50$ degree wide viewing angle complements the display and is the ideal display for industrial control applications. Display construction is a filled reflector type with the integrated circuit in the back and then filled with ICgrade epoxy. This results in a very rugged part which is quite impervious to moisture, shock, and vibration.


Physical Dimensions in Inches ( mm ) FIGURE 2

DLO 4135/DLG 4137 PIN FUNCTIONS					
PIN	FUNCTION		PIN	FUNCTION	
1	$\overline{\text { LT }}$	LAMP TEST	9	D0	DATA LSB
2	$\overline{\text { WR }}$	WRITE	10	D1	DATA
3	$\overline{\text { BL1 }}$	BRIGHTNESS	11	D2	DATA
4	$\overline{\text { BLO }}$	BRIGHTNESS	12	D3	DATA
5	NO	PIN	13	D4	DATA
6	NO	PIN	14	D5	DATA
7	$\overline{\text { CE }}$	CHIP ENABLE	15	D6	DATA MSB
8	GND	16	+ VCC		

## Pin Description

Vcc	Positive Supply +5 volts
GND	Ground
D0-D6	Data Lines see figure 3 for character set
$\overline{\mathrm{CE}}$	Chip Enable (active low)   This determines which device in an array will accept data
WR	Write (active low)   Data and chip enable must be present and stable before and after the write pulse (see data sheet for timing)
$\overline{B L 0}, \overline{B L 1}$	Blanking Control Input (active low) Used to control the level of display brightness
$\overline{L T}$	Lamp Test (active low) Causes all dots to light at $1 / 2$ brightness



## Character Set <br> FIGURE 3

The waveforms of Figure 4 shows the relationship of the signals required to generate a write cycle. Check the data sheet for minimum values required for each signal.


## Timing Characteristics FIGURE 4

## Display Blanking and Dimming

The DLO 4135/DLG 4137 Inteiligent Display has the capability of three levels of brightness plus blank. Figure 5 shows the combination of $\overline{B L \varnothing}$ and $\overline{B L 1}$ for the different levels of brightness. The $\overline{B L \emptyset}$ and $\overline{B L 1}$ inputs are independent of write and chip enable and does not affect the contents of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a $1-2$ hertz rate. Either $\overline{B L \emptyset}$ or $\overline{B L 1}$ should be held high to light up the display.

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BLO }}$
Blank	0	0
$1 / 4$ brightness	0	1
$1 / 2$ brightness	1	0
full brightness	1	1

## Dimming and Blanking Control FIGURE 5

## Lamp Test

The lamp test when activated causes all dots on the display to be illuminated at half brightness. It does not destroy any previously stored characters. The lamp test function is independent of chip enable, write, and the settings of the blanking inputs.
This convenient test gives a visual indication that all dots are functioning properly. The lamp test can be used as a cursor or pointer in a line of displays because it does not affect the display memory.

## General Design Considerations

When using the DLO 4135/DLG 4137 on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all of the input lines. A noninverting 74365 hex buffer can be used. The object is to prevent current transient into the DLO 4135/DLG 4137 protection diodes. The buffers should be located on the display board and as close to the displays as possible.
Because of high switching currents caused by the multiplexing, local power supply by-pass capacitors are also needed in many cases. These should be 10 volt, tantalum type having 5-10 uf capacitance. The capacitors may onty be required every 6-7 displays depending on the line regulation and other noise generators.
If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100 ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply.

The 5 volt power supply for the DLO 4135/DLG 4137 should be the same one supplying the Vcc to all logic devices. If a separate power supply must be used, then local buffers should be used on all the inputs. These buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic signals to be higher than Vcc during power up

## Interfacing

For an eight digit display using the DLO 4135/DLG 4137 interfacing to a single chip microprocessor, such as the 8748, is easy and straight forward. One approach may be to dedicate one port for the seven data signals and another 8-bit port for the write signals. The schematic is shown in Figure 6.

## Subroutine to Load an 8-Digit Display using the DLO 4135/DLG 4137

INIT:	ORL	P1,\#OFFH	DATA IN RAM 10H-17H (MSD-LSD) PORT 1 ALL HIGH (WRITE)
	ORL	P2, \#00 H	PORT 2 ALL LOW (DATA)
	MOV	R1,\#OFH	RAM ADDRESS - 1
	MOV	R2.\#0FEH	WRITE PULSE
	MOV	R3,\#08H	COUNTER
START: DATA:	INC	R1	INCREMENT RAM POINTER
	MOV	A,@R1	FETCH DATA FROM RAM
	OUTL	P2,A	LOAD PORT 2
	MOV	A.R2	RECALL WRITE
	RR	A	SHIFT A TO NEXT WRITE
	MOV	R2,A	SAVE WRITE
WRITE:	OUTL	P1, A	SEND WRITE PULSE
	MOV	A,\#OFFH	WAIT
	OUTL	P1,A	RESET WRITE PULSE
	DJNZ	R3, START	LOAD COMPLETE?
	RET		RETURN TO MAIN PROGRAM

## I/O or Memory Mapped System

For a memory mapped system using a processor such as the 8080 or 8085 , the interfacing is also straight-forward. Each display is treated as a memory location with its own address, like another I/O or RAM location.

Routine for an 8-Digit Display using the DLO 4135/DLG 4137 and 8085 or 8080 Microprocessor


## Conclusion

Note that although other manufacturer's products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the DLO 4135/DLG 4137 Dot Matrix Intelligent Display. Slight timing differences may be encountered for various microprocessors, but can be resolved using similar methods as those used when using interfacing microprocessors with various RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.


DLO 4135/DLG 4137 with 8748
FIGURE 6


Block Diagram for 8-Digit
DLO 4135/DLG 4137 Dot Matrix Display
FIGURE 7

# Serial Intelligent Display Appnote 29 

by Dave Takagishi

This application note describes a method of obtaining a serial input display with a selected number of digits using an 8051/8031 microprocessor and DL 2416 Intelligent Displays. The very popular DL 2416 has been selected as the example for this Application Note; however, the information contained herein can also be applied to other Intelligent Displays. (Refer to Intelligent Display Product Guide)

## Introduction

A parallel bus configuration is frequently used to transfer data to a microprocessor when it is used on a single card system. However, if the system is not physically small in number of chips or has multiple cards, data handling becomes cumbersome and costly. For long distances, serial communications over a two (2) or four (4) wire link is desirable and is economically attractive. However, the trade-off between cost and speed has to be considered by the designer.

## Description

The DL 2416 'Intelligent Display' is a . 160 " four (4) character, 17 segment, LED display module with "OnBoard" memory, character generator, multiplexer and display drivers integrated into a custom integrated circuit. This eliminates the necessity to design external circuitry normally required to drive a multiplexed display. Using these important attributes of the Intelligent Display, the designer now only has to provide for interfacing, which is a seven-bit ASCII parallel code, a two-bit address, and a write signal. The procedure for writing these commands is similar to those used for an external Random Access Memory.
The serial/parallel and parallel/serial conversion is normally accomplished by using a UART (Universal Asynchronous Receiver/Transmitter) or a USART (Universal Synchronous/Asynchronous Receiver/Transmitter). The 8031 is a very attractive mircrocontroller to use in this application because it has an integral UART. This integral UART provides the designer with the means for controlling the conversion of serial into parallel information or vice-versa. The 8031 has more RAM than the popular 8048, but the operation and instruction sets are very similar. Refer to the 8031 data sheet for a complete description of the product.

## Circuit Description

The block diagrams of the 8031 (Fig. 1) and the DL 2416 (Fig. 2) show the internal structure of these devices. By combining the DL 2416, an easy to use peripheral device in a parallel system, and the 8031 results in a low cost, simple serial display system. A 32-digit system can be built using an 8031 microprocessor, an 8212 or equivalent latch, a 2716 EPROM, and a 75189 IC for interfacing to 20 mA or RS232 input lines. Buffers were added to minimize the long cable noise spikes and interface loading on the bus. See Figure 3 for system schematic.

## Software Considerations

This system, as described, is set up to receive data only at 100 baud rate. Additional software is required for transmit routine. For a given data rate and (data format is start bit, 9 -data bits and a stop bit) three (3) sections of software and possibly a special crystal oscillator frequency may be required for a given transmit rate. On power-up or reset, the serial port and timer control words must be initialized.

Special control functions have been included in this program as follows:

## Power Up <br> Return

Backspace
Line Feed
See Figure 5 for the actual program listing.

## Conclusion

This Application Note has introduced the reader to the ease of interfacing the DL 2416 to any microprocessor. By combining the DL 2416 and the 8031, difficulties usually associated with serial conversion using software and its attendant timing problems can be easily overcome.
SIEMENS OPTOELECTRONIC DIVISION does not endorse or guarantee other manufacturer's products used in this Application Note.

FIGURE 1	8031 BLOCK DIAGRAM
FIGURE 2	DL 2416 BLOCK DIAGRAM
FIGURE 3	SYSTEM SCHEMATIC
FIGURE 4	FLOW CHART
FIGURE 5	PROGRAM LISTING



FIGURE 1 - 8031 BLOCK DIAGRAM
Reprinted By Permission Of Intel Corp.
Copyright 1982


FIGURE 2 - DL 2416 INTERNAL BLOCK DIAGRAM


FIGURE 3 - SYSTEM SCHEMATIC


FIGURE 4 - SERIAL IDA FLOW CHART

FIGURE 5 - PROGRAM LISTING

					;SERIAL IDA USING 8031 UP ;AND IDA2416-32	
			ORG	0000H		
0000	020040		LJMP	${ }^{\text {INIT }}$		
			ORG	0003H	;EXTERNAL INTERRUPTO	
0003	32		RTI			
			ORG	000BH	;TIMER 0 OVERFLOW	
000B	32		RTI			
			ORG	0013H	;EXTERNAL INTERRUPT 1	INTERRUPTS
0013	32		RTI			NOT USED
			ORG	001BH	:TIMER 1 OVERFLOW	
001B	32		RTI			
			ORG	0023H	;SERIAL I/O INTERRUPT	
0023	32		RTI			
					;SETUP SERIAL PORT	
					;9 BIT UART MODE 3	
					;SET TIMER	
			ORG	0040H		
0040	75A800	INIT:	MOV	IE,\#OOH	;ENABLE INTERRUPTS	
0043	758922		MOV	TMOD,\#22H	;TIMER O \& 1 AUTO RELOAD	
0046	758 D 72		MOV	TH1,\#72H	;RELOAD FOR 110	INITIALIZE
0049	759870		MOV	SCON,\#70H	;MODE 3 RCV	$8031 \mu \mathrm{P}$
004C	D28E		SETB	\#8EH	;TIMER 1 ON	
004E	7920	CLRAM:	mov	R1,\#RAM	;RAM INITIAL ADDRESS	
0050	E4		CLR	A		
0051	7820		MOV	R3,\#CNTR	;LOAD \# OF DIGITS	CLR RAM
0053	F7	CLR1:	MOV	@R1,A	;LOAD RAM	
0054	09		INC	R1		
0055	DBFC		DJNZ	R3, CLR1		
0057	7820		MOV	Ro,\#RAM	;SET RAM INPUT PNTR TO INITIAL	CLR RAM PTR
0059	7820	DISPRM:	MOV	R3,\#CNTR	;R3=COUNTER	
0058	900000		MOV	DPTR,\#DSPTR	;DPTR=DISPLAY POINTER	
005E	793 F		MOV	R1,\#RAME	:R1=RAM DISPLAY POINTER+LENGTH	DISPLAY
0060	E7	DISP1:	MOV	A,@R1	;FETCH DATA FROM RAM	
0061	F0		MOVX	@DPTR,A	;LOAD DISPLAY	
0062	19		DEC	R1		
0063	A3		INC	DPTR		
0064	DBFA		DJNZ	R3, DISP1		
0066	3098FD	SERIN:	JNB	RI,SERIN	;WAIT UNTIL AN INPUT	
0069	C298		CLR			INPUT CHAR
006B	E599		MOV	A, SBUF		INPUT CHAR
006D	FC	CNTLWD:			;CHECK FOR CONTROL WORDS	
006E	2460	CNTLWD.	ADD	A, \# 060 OH		
0070	4013		JC	LDATA	;JUMP IF DATA	
0072	EC		MOV	A,R4		
0073	2473		ADD	A, \#073H		
0075	4007		JC	CLRAM	; CR	
0077	EC		MOV	A, R4		DATA = CR
0078	2476		ADD	A,\#076H		-
007A	40D2		JC	CLRAM	:LF	
007 C	EC		MOV	A, R4		DATA $=$ LF
007 D	2478		ADD	A, \#078H		
007 F	50E5		JNC	SERIN	;OTHER CONTROL	DATA $=\mathrm{BS}$
0081	18		DEC	R0	;BS	DATA BS
0082	020066		AJMP	SERIN		
0085	EC	LDATA:	MOV	A,R4		
0086	F6		MOV	@RO,A	;LOAD RAM	LOAD
0087	08		INC	R0		
0088	E8		MOV	A, RO		DATA
0089	24 CO		ADD	A, \#OCOH		INTO
0088	5002		JNC	LDAT1		
008 D	7820		MOV	Ro,\#RAM		RAM
008F	020059	LDATt:	AJMP	DISPRM		RAM

# Blue-Light Emitting Silicon-Carbide Diodes - Materials, Technology, Characteristics 

Appnote 31

by Dr. Claus Weyrich<br>Siemens Research Laboratories<br>Munich, West Germany

## Introduction

Light-emitting diodes (LEDs) are widely used in the field of electronics as indicator lamps and seven-segment displays because of their excellent characteristics such as high mechanical stability, low operating voltage, compatibility with semiconductor drive circuits, low operating temperature and long service life. LEDs are now massproduced in the colors red, super-red, yellow and green. The semiconductor materials that are used are III-V compounds such as gallium arsenide phosphide ( $\mathrm{GaAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}$ ), gallium phosphide (GaP) and, recently, also gallium aluminum arsenide ( $\left.\mathrm{Ga}_{1-x} \mathrm{~A} 1_{\mathrm{x}} \mathrm{As}\right)$. An extension of the color of LEDs into the blue region of the spectrum has been wished by many users. The materials that are suitable for blue-light diodes are discussed here, foilowed by a survey of the technology and characteristics of blue-light diodes based on silicon carbide ( SiC ), the material that is preferred for this application by the Siemens company.

## Semiconductor materials for blue-light emitting diodes

For emission in the blue region of the spectrum $\mathrm{GaAs}_{1-x} P_{x}$ or GaP is out of the question because the band gap is too small, limiting the wavelength of the emitted radiation towards the lower end. But there are other semiconducting compounds such as gallium nitride ( GaN ), zinc sulfide ( ZnS ), zinc selenide ( ZnSe ) and silicon carbide $(\mathrm{SiC})$. GaN was investigated quite intensively for the purpose of creating blue-light LEDs at the beginning of the 70s. With but one exception however, industrial research into this semiconductor material was then discontinued. The major drawback is the fact that GaN cannot be pdoped with sufficiently low resistance. Thus the light in this semiconductor is not produced by the radiative recombination of injected charge carriers at the pn junction
as with the other HI-V materials, but by highly accelerated electrons that are generated in the very high-resistance i layer of a metal-i-GaN-n-GaN layer by collision-ionization processes and thus lead to the emission of light. The efficiency of this mechanism, which results in higher operating voltages of the device, decreases with increasing current density (and thus luminous intensity of the diode). The situation is similar in the case of blue-light diodes using ZnS and ZnSe materials, in which likewise no low-resistance pn junction can be produced. The result of this is that with all the materials mentioned, despite the direct band-gap structure that is favorable for the generation of light and which leads to very efficient photoluminescence or cathodoluminescence for instance, the efficiency of the internal conversion of electrical energy into light is lower in comparison.
SiC is the only material that allows reproducible p and n doping and possesses a suitable band gap for the emission of light in the blue region of the spectrum. The advantage of a device that can easily be controlled in all its physical characteristics more than makes up for the fact that SiC has an indirect band-gap structure, which is less favorable for generating light.
Groundwork on SiC blue-emitting LEDs has been performed in Great Britain, the USSR, Japan and in the Federal Republic of Germany at Hannover Technical University. Proceeding from the work done in Hannover, the development of SiC blue-emitting LEDs was pursued in the Siemens research laboratories and diodes were created with the highest efficiencies known to date. Siemens is one of the first semiconductor manufacturers to have successfully produced such diodes in the laboratory.

## Technology and design of SiC LEDs

An essential feature of SiC is its appearance in several modifications with different band gaps. For the production of blue-light LEDs the hexagonal modification 6 H ( $\alpha \mathrm{SiC}$ ) is the most favorable. As with all known LEDs, with SiC LEDs too the active light zone consists of epitaxial, monocrystalline material deposited on a ptype substrate crystal. The layer is grown from an Si melt saturated with carbon (liquid-phase epitaxy) at temperatures between 1600 and $1700^{\circ} \mathrm{C}$, the p-type layer being doped with aluminum and the $n$-type layer additionally with nitrogen. The contacting and the diode structure are produced using the technologies already familiar with LEDs. The structure of an SiC lamp is shown in fig. 1.


In additon to the, compared to other semiconductor materials, high process temperatures, the major problem in SiC LED technology is the lack of large-area substrate crystals - an absolute necessity where low manufacturing costs are concerned. Up to now it has been necessary to make do by preparing small crystal wafers of the appropriate modification from the kind of crystal clusters that appear as a by-product in the largescale industrial synthesis of SiC for producing grinding powder, but their diameter is no more than 10 to 14 mm . The big disadvantage of this is that the yield of suitable substrate crystals is only very small. At Siemens a substantial step towards a solution has now been taken. By
means of a newly devised process, involving sublimation followed by condensation, monocrystals with a diameter of 15 mm and a length of 25 mm - that makes about 30 substrate wafers - were produced on a nucleus. This technology is, admittedly, considerably more elaborate than the technology of III-V semiconductors, so one cannot expect the price of blue-emitting diodes from SiC to fall to the level of more common LEDs; on the other hand though, an appreciable step towards mass production has thus been taken.

## Characteristics of SiC LEDs

The emission spectrum of SiC LEDs and the dependence of the light current on diode current are illustrated in figs 2 and 3 in comparison with other LEDs. Fig. 4 shows the color locations of different LEDs on a standard color diagram. Whereas the red-, yellow- and green-emitting diodes lie practically on the spectrum locus, the blueemitting SiC diodes exhibit two peculiarities. Their color location is not on the spectrum locus, and the dominant wavelength experienced by the observer shifts slightly with increasing diode current towards shorter wavelengths. Associated with this is a decrease in the rise and decay

Figure 2
Photopic luminosity (normal vision) $V_{h}$ and the emission spectra of different light-emitting diodes based on $\mathrm{GaAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}, \mathrm{GaP}, \mathrm{Ga}_{1-\mathrm{x}} \mathrm{Al}_{\mathrm{x}} \mathrm{As}$ and SiC in the visible spectral range

time of the luminescence from typically $0.9 \mu \mathrm{~s}$ ( $90-10 \%$ ) at 5 mA to typically $0.5 \mu \mathrm{~s}$ at 50 mA . For a diode current of 20 mA the diodes have a luminous intensity of typically 4 mcd , the luminous efficiency being approx. $10^{-2} \mathrm{Im} / \mathrm{W}$. A typical current/voltage characteristic is shown in fig. 5 .

## Applications and prospects

The possible applications for SiC LEDs are all those in which small light emitters are required that are capable of emitting in the blue spectral range and are suitable for fast modulation (up to 500 kHz ), in the scientific and technical field as a calibration light source for photomultipliers for example, in TV-camera engineering and photography, and as a radiation source in spectroscopy, biophysics and medicine.
It will no doubt be possible to make this technology cheaper through continuing development of the individual process steps that are involved. It should be emphasized once more, however, that the fundamental problems of SiC technology are such that the prices of conventional LEDs are not likely to be approached. This does not only apply to SiC , incidentally, but also to the other materials being considered for blue-light emitting diodes.

Figure 3
Light current/diode current characteristics $\Phi$ (I) of different LEDs
(VPE $=$ vapor-phase epitaxy, LPE $=$ liquid-phase epitaxy)


[^83]6 GaP:N-VPE
7 GaP:NZn,O-LPE
$8 \mathrm{GaAs}_{0.6} \mathrm{P}_{0,4}$-VPE
$9 \mathrm{SiC}: A \mathrm{I}, \mathrm{N}-$ LPE
10 GaN-MiS-VPE

Figure 4
Color location of SiC LEDs (dotted) compared to other LEDs


```
1 GaP:X
GGaP:N
3 GaAs
\(4 \mathrm{GaP}: \mathrm{Zn}, \mathrm{O}\) and \(\mathrm{GaAs}_{0,35} \mathrm{P}_{0.65}: \mathrm{N}\)
\(5 \mathrm{GaAs}_{0.6} \mathrm{P}_{0,4}\) and \(\mathrm{Ga}_{0,65} \mathrm{Al}_{0,35} \mathrm{As}\)
```

Figure 5
Current/voltage characteristic $/\left(V_{F}\right)$ of a typical SiC LED


## SIEMENS

## Light Activated Switches Appnote 33

## 1. Miniature Light Barrier for a Shaft Position Encoder or a Revolution Counter

Miniature light barriers are required for shaft position encoders, since light transmitter and receiver are closely facing each other by a distance of a few millimeters. For this application a practical combination is achieved by using the light emitting diode LD261 and the phototransistor BPX81. Both components have the same epoxy case with an edge length of 2.2 mm . The LED operates in the infrared range at about 950 nm , since the efficiency is essentially higher than that of the visible radiation. The circuit described in the following converts interruptions of a light beam into electrical pulses for counting.

The construction of a shaft position encoder is shown in Fig. 1.1. The distance between the transmitting and the receiving components is about 3 to 5 mm . Both are inserted in a hole with a diameter of 3 mm , whereby the opening is diminished to 1.4 mm at its front ends. A plastic disc carrying a line pattern at its circumference as shown in Fig. 1.2 is rotating between transmitter and receiver. A pervious section follows a non-pervious one and the angle position of the disc is determined by counting the quantity of sections having passed.

Fig. 1.1


Fig. 1.2


Assuming that the rotating disc with a diameter of about 50 mm has a pattern of 600 lines, the distance between two lines is about 0.25 mm . To increase the light-to-dark ratio at the receivers side a plate with the same grid structure is mounted in front of the transmitter-hole as shown in Fig. 1.3. If the position of the grid on the rotating disc coincides with the one of the plate, the phototransistor receives a maximum of light. If both grid patterns are displaced with half the distance of two lines, the received light becomes a minimum. As the transmitter is rotatable and adjustable in its position an efficiency maximum can be achieved.

Fig. 1.3


The circuit is shown in Fig. 1.4. The emitting diode LD261 is operated at a current of about 20 mA .

Fig. 1.4


## Technical Data

Supply voltage $V_{s}$	5 V
Supply current (total) $I_{\mathrm{s}}$	35 mA
Wave-length of the transmitted light	950 nm
Maximum counting frequency	40 kHz
Duration of the output pulses	$10 \mu \mathrm{~s}$
Amplitude of the output pulses	4 V

The collector current of the potentiometer varies between about $3 \mu \mathrm{~A}$ (minimum) and about $12 \mu \mathrm{~A}$ (maximum) when the disc is rotating. Since the minimum value is to be kept constant, strong ambient light influences have to be eliminated.

The current variation is sufficient to safely trigger the op amp TAA 861, which serves as a Schmitt-trigger. The fol-
lowing NAND-gates (FLH101) operating as monostable multivibrator produce a definite square pulse with a duration of about $10 \mu \mathrm{~s}$, for each line passing the light barrier. The circuit operates up to a frequency of 40 kHz , which corresponds to about 4000 r.p.m. of the disc.

## 2. Light Barrier using TCA105

The light barrier shown in Fig. 2.1 consists of the GaAs lightemitting diode LD261, the phototransistor BPX81 and the integrated threshold switch TCA105. The LED is operated at a constant current to meet the total range of the power supply voltage being between 4.5 V and 27 V . The IC itself is specified for a wider range. The constant current source is realized by the transistor $T_{1}$, the diodes $D_{1}$ and $D_{2}$ as well as the two resistors $R_{1}$ and $R_{2}$. By the two diodes an independent, nearly constant voltage is achieved at the base of $T_{1}$. The constant current of the transistor can be adjusted by the potentiometer $R_{2}$.

Fig. 2.1


Parameter changes of the components created by temperature and aging effects are compensated for if the photocurrent of the phototransistor is chosen four times higher than the required input threshold current of the TCA105, i.e. about $200 \mu \mathrm{~A}$. The output signal is available at the two antivalent outputs of the 1 C (pins 4 and 5).

## Adjustment

The light barrier is adjusted by setting the LED-current. If the IC is operated in the test circuit as shown in Fig. 2.2, the current of the LED has to be set in such a way that a voltage of 400 mV is available between pins 1 and 2 of the TCA105.

Fig. 2.2


## Technical Data

Supply voltage	4.5 to 27 V
Supply current	3.5 to 11.3 mA
LED current	2 to 8 mA
Supply current of the IC	3.3 mA
Ambient temperature range	-25 to $+70^{\circ} \mathrm{C}$.

## 3. Optical Weight-Quantizer for Large Scales

The optoelectronic circuit described in Fig. 3.1 facilitates the weight quantization of large scales, whereby a 3 -stage LEDdisplay indicates the difference of the adjustment.

Fig. 3.1


The incandescent lamp $G I_{1}$ illuminates the two photodiodes $P D_{1}$ and $P D_{2}$. The first is covered by a slot diaphragm, which is moved up and down by the balance arm of the scale with a stroke of 4.5 mm , corresponding to the balance difference. A voltage, being proportional to the balance difference, drops across the resistor $R_{1}$ and is supplied to the three op amps TCA335 operating as threshold switches. The reference voltages $V_{1}, V_{2}$ and $V_{3}$ are produced by the photocurrent of the photodiode $P D_{2}$ and drop across the resistors $R_{2}, R_{3}$ and $R_{4}$. They are supplied to the non-inverted inputs of the TCA335. If the voltage across the resistor $R_{1}$ exceeds the reference value then the corresponding LED's $L D_{1}, L D_{2}$ and $L D_{3}$ are switched on. An inverse function can be achieved by interchanging inputs 2 and 3 of the op amps. Since both photodiodes are illuminated by the same incandescent lamp, brightness changes created by aging or supply voltage variations are ineffective.

The common mode voltage, necessary for operating the op amps drops across the diodes $D 1, D_{2}$ and $D_{3}$.

## 4. Optically Code Reading Regardless of whether Different Kinds of Papers have Different Reflexion Coefficients

When identifying stroke markings placed on different kinds of papers, the uncertainty exists that the code is erroneously read due to different reflexion coefficients.
The circuit described in the following and shown in Fig. 4.1 avoids this difficulty by means of an additional compensation track. The two phototransistors $F T_{1}$ and $F T_{2}$ being connected in series serve as a voltage divider, the center tap of which is joint to the inverted input of the amplifier OP. To each phototransistor belongs an LED.

Fig. 4.1


Both are connected in parallel, whereby the pair consisting of $L e_{1}$ and $F T_{1}$ serves for the compensation track and the one incorporating $L e_{2}$ and $F T_{2}$ functions for the reading track.

Therefore, the influence of a reflexion coefficient of the paper is eliminated and the reading result is determined only by the different reflexion of the strokes.

## Adjustment Procedure

Firstly, the potentiometer $P_{2}$ is adjusted so that a level of 0.5 $\times V_{\mathrm{s}}$ is measured at point $A$. During this procedure the phototransistors have to be completely covered. Then a paper of any kind without stroke markings is inserted into the readchannel and $P_{1}$ is adjusted in such a way that point $A$ has a level of $0.5 \times V_{S}$. The threshold for the stroke markings is determined by the potentiometer $P_{3}$.

## 5. Light Barrier Indicating the Direction of Interruption

It is generally important to know not only that a light barrier has been passed but also from which direction the passing occurred. These requirements can be met by using the window discriminator TCA965 with RS memory function. Two receiver diodes are necessary to indicate the passing direction (see Fig. 5.1).
The LED IRL400 operates as a transmitter diode. It is supplied with short current pulses of approx. 1A peak value and a repetition period of 30 ms . These pulses are generated by the programmable unijunction transistor BRY56. The emitted light pulses are received by the diodes BP104. They are connected to two transistors operating as emitter followers. The transistors are connected to a differential amplifier via a 15 nF -capacitor each. The output signal of the TCA971 is supplied to pin 8 of the window discriminator.

Fig. 5.1


No signal is available from the differential amplifier if both receiver diodes are covered and when both receive light. If the diode $A$ is not met by the light beam, the voltage $V_{8}$ at pin 8 is greater than that at pin 7 . If the diode $B$ is not met by the light beam, $V_{8}$ is lower than $V_{6}$ (see Fig. 5.2).

Fig. 5.2


Curve I for passing direction

Curve II for passing direction

$$
\text { (B) } \rightarrow \text { (A) }
$$



If the light barrier is passed from $A$ to $B$, an L-level is available at pin 14 (curve I ). But if it is passed from B to A , pin 14 shows an H -level (curve II).
The sensitivity of the curcuit is adjustable by potentiometer $P_{2}$. Potentiometer $P_{1}$ sets the dc level of the output symmetrically to $V_{6}$ and $V_{7}$. The five transistors are combined in the transistor-array TCA971.
Thus, a very good temperature behaviour of the differential amplifier is obtained. The reference voltage $V_{10}$ at pin 10 of the TCA965 is also utilized by the constant-current source of the TCA971.

## 6. Infrared Reflex-Light Barrier with IRL400 and TDA4050

The transmitter of this circuit is an IR-LED, type IRL400, emitting a strongly focused light beam. TDA4050B is used as receiving preamplifier. When using a triplet mirror with an area of about $20 \mathrm{~cm}^{2}$ as reflector, the maximum distance is at least 10 m . The allowed interfering light in lens axis is up to 200 lux (incandescent lamp light). This corresponds to a white surface illuminated at 50 klx over the whole irradiation of the receiver. Emitter and receiver can be placed in the same housing. The circuit is particularly suited for decoding fast changing codes (e.g. running bar patterns) and as a light barrier.

Contrary to IR remote controls, IR reflex-light barriers require only very narrow emitting and receiving characteristics. Because of the short reaction time required, a continuous emitter signal is also needed. Therefore, the pulse currents cannot be as high as with remote controls as this operation would exceed the admissible power dissipation.

## Transmitter

A circuit consisting of 2 CMOS-NAND-gates (Fig. 6.1) generates a square-wave oscillation with a frequency of approx. 30 kHz . The pulse duty factor is fixed at $4: 1$. According to experience, a good efficiency is achieved herewith. To obtain the desired ratio between pulse duration and pulse space, the discharging resistor is partially bypassed by a diode. The 30 kHz -carrier is 1 kHz -modulated by a second pair of gates. When decoding running bar patterns, this modulation is not necessary as the object itself will be the source for the modulation.

A Darlington stage with BC875 drives the transmitter diode with peak currents of 200 to 250 mA , resulting in a mean diode current of around 25 mA . Without modulation, the mean diode current would reach twice this value.

Fig. 6.1


## Recelver

The IR signal received by the photodiode BP104 (Fig. 6.2) is amplified through a transistor stage by 20 dB . The gain is determined by the collector resistance of $4.7 \mathrm{k} \Omega$ as well as by the $1.8 \mathrm{k} \Omega$-input impedance of TDA4050B. The coupling capacitance of 22 nF and the RC circuit of the emitter reduce drastically low frequency-signals, especially the 50 and 100 Hz -components mainly present in artificial light.
The integrated circuit TDA4050B has a gain of about 60 dB between input and output. In order to limit the bandwidth, an active filter consisting of a double- T -section is connected between pin 4 and 5 . Thus, the bandwidth is limited to approx. 10 kHz .

The gain of the TDA4050B depends on the potential at the control input (pin 2). Normally only a capacitor, being charged to a level of 1 V without signal, is connected to this terminal. In the circuit, according to Fig. 6.2, a bias of 1.85 V is set via a voltage divider and the gain is reduced by approx. 20 dB therewith. This is necessary as otherwise, with the increased gain at the output, short-time peaks could result from the control action and would disturb the function. Notwithstanding the adjustment of the basic gain at pin 2, the automatic control is preserved, avoiding an overdrive of the receiver. Due to different charging and discharging resistors of the TDA4050B, downward control is very fast but upward control is relatively slow. The controlling time-constant is determined by the capacitor connected to pin 2.

When the input signal at the photodiode exceeds a signal current of $5 \mathrm{nA}_{\mathrm{pp}}$, the output at pin 3 becomes negative.

## Acoustic Indication and Evaluation

Should the incoming signal be acoustically indicated, pin 3 has to be connected to an evaluation circuit. It consists, for example, of a loudspeaker with a transistor BC309. Besides that, with this circuit the limit range can be easily defined as the tone becomes undefined when the maximum range is exceeded.

## Optics

For the receiver, a collecting lens with a diameter of 15 mm and a focal length of 30 mm is used. Thus an effective receiver area 30 times larger than with photodiode BP104 is achieved. At the same time the angle of irradiation is restricted to $\pm 3^{\circ}$. With an increase of the lens diameter the range increases proportionally. But an increase of the focal length at the same time will limit the angle of irradiation.
For the transmitter, no additional optic is used, but the parasitic radiation remainder outside the cone becomes inoperative by means of a blackened tubus.

## Electrical Features

The transmitter must be well shielded against the receiver so that the highly-sensitive receiver input cannot be disturbed. The electrical separation of the lines signals is sufficiently obtained by the filter circuits mentioned.

Fig. 6.2


## Technical Data

a) Transmitter

Supply current at $V_{\mathrm{s}}=15 \mathrm{~V}$	
$\quad$ unmodulated	60 mA
with 1 kHz -modulation, duty cycle 0.5	34 mA
Carrier frequency (square wave oscillation)	30 kHz
Duty cycle of carrier	0.25
Carrier-pulse-peak radiant intensity	$100 \mathrm{~mW} / \mathrm{sr}$
Opt. wavelength	950 nm
Cone of radiation (half-angle)	$6^{\circ}$

b) Receiver
$\begin{array}{ll}\text { Supply current at } V_{s}=15 \mathrm{~V} \\ \text { without load (loudspeaker) } & 10 \mathrm{~mA}\end{array}$ load (loudspeaker) only 18 mA
Angle of irradiation with lens $\pm 3^{\circ}$
Intermediate frequency $\quad 30 \mathrm{kHz}$
Bandwidth (3 dB) $\quad 10 \mathrm{kHz}$
Min. pulse-peak-radiant-power to diode BP 10410 nW
$\begin{array}{ll}\text { Max. modulation frequency } \\ \text { at standard sensitivity } & 5 \mathrm{kHz}\end{array}$ at reduced sensitivity $\quad 10 \mathrm{kHz}$

Dynamic range 60 dB
Max. interfering light (incandescent lamp light in lens axis) 200 lux
c) Total circuit
Supply current at $V_{s}=15 \mathrm{~V} \quad \max .70 \mathrm{~mA}^{1}$ )

Range with simple triplet mirrors as reflector Seize of reflector $20 \mathrm{~cm}^{2}$
approx. 12 m
Seize of reflector $1000 \mathrm{~cm}^{2}$
approx. 80 m
Range with top-quality pentaprism as reflector seize of reflector $25 \mathrm{~cm}^{2}$
approx. 20 m
${ }^{1}$ ) Without modulation and load (loudspeaker)

## 7. Current Control of LEDs as a Function of Ambient Light

A brightness control of LEDs is required especially when the ambient light intensity varies within a wide range. Fig. 7.1 shows a circuit for this application. It operates sufficiently even at a supply voltage of only 2.5 V . In complete darkness the LED is driven with a current of $100 \mu \mathrm{~A}$. If the intensity of the ambient light rises, the current, i.e., the brightness of the LED, increases accordingly. At daylight the LED is operated by an impressed current of $5 \mathrm{~mA} / 100$ lux.
The ambient light intensity is sensored by the Silicon photodiode BPW32. The signal is amplified through the Darlington operational amplifier TCA315. The sensitivity of the circuit is determined by the resistances of $R_{1}$ and $R_{2}$. The LED current exceeds the one of the photodiode by a factor of 1000 with the exception of in darkness, where the LEDcurrent is $100 \mu \mathrm{~A}$, as described above.

Fig. 7.1


The current referring to a complete darkness is adjusted by the potentiometer $P_{1}$. The total supply current is $220 \mu \mathrm{~A}$ plus the LED-current (at $V_{\mathrm{s}}=2.5 \mathrm{~V}$ ).

## 8. Temperature-Response Compensation of the LED IRL401

Fig. 8.1 shows a circuit which is especially favored for compensating temperature effects of the LED IRL401. It is used in a light barrier operating with modulated light. The max. diode current is rated to $50 m A_{\text {pp }}$ and the temperature range is $+10^{\circ}$ to $+55^{\circ} \mathrm{C}$.

Fig. 8.1


The NTC-resistor K 164 has been connected to the base of the transistor BC238 and not directly to the LED as usually practiced. This measure reduces the self-heating of the thermistor. The control characteristic is adjustable by the two $1-\mathrm{k} \Omega$-potentiometers. To obtain a temperature drift of only $2.5 \%$ for the complete circuit in the mentioned temperature range, the resistance of the potentiometers should be set to a value of approx. $500 \Omega$ each.

It should be mentioned for comparison purposes that the output voltage shifts about $20 \%$ when the circuit has no compensation.
The photovoltaic cell BPY64P operates as a detector in conjunction with an amplifier circuit. For processing a squarewave voltage with a frequency of 6 kHz , it is recommended to drive the photovoltaic cell BPY64P in a short-circuit operation. This will advantageously be realized by using the operational amplifier TAA761A operating with an impressed input current.

## 9. Reflection Light Barrier

This circuit is applicable for realizing a reflection light barrier. If, however, there are no requirements for improved sensitivity and reduced immunity against undesired influence of ambient light, this circuit can be simplified.
The circuit described in the following reacts within a range of 1 m , regardless as to whether the light is reflected from the human skin or from textiles.

## Transmitter

The pulse generator of the transmitter circuit shown in Fig. 9.1 operates with a CMOS-gate, type HEF40111, and produces pulses with a duration of $10 \mu \mathrm{~S}$ and a repetition frequency of 100 Hz . The peak current of 1.5 A required by the LED, type LD27, is supplied by the Darlington stage consisting of $T_{1}$ and $T_{2}$. The electrolytic capacitor $C_{1}$ operates as a buffer. The pulse duration is adjustable by potentiometer $P_{2}$ and the repetition frequency is set by potentiometer $P_{1}$. Under the assumption of a duty cycle 1000:1, an average current of 1.7 mA is required for the complete transmitter circuit.

[^84]Fig. 9.1


## Characteristics

Supply voltage	6 V
Supply current	1.7 mA at $V_{\mathrm{s}}=6 \mathrm{~V}$
Pulse interval	10 ms
Pulse duration	$10 \mu \mathrm{~s}$
Half angle of the radiation cone	$35^{\circ}$

## Receiver

The broadband receiver circuit shown in Fig. 9.2 is applicable if the ambient light is less than 500 lx . For realizing the infrared filter in front of the photodiode BPW34 a nonexposed but developed color film, type CT18 (Agfa) is used. The signal supplied from the BPW34 is amplified by the transistors $T_{1}$ to $T_{5}$ and is available at the output with an amplitude of $6 V_{p p}$. The gain is about 20,000. The operating point of $T_{5}$ is adjusted by the potentiometer $P_{2}$, setting a dc-level of 3 V to the base of $T_{5}$. The output signal is symmetrized by potentiometer $P_{1}$ which determines the operating point of the transistor $T_{2}$.

Fig. 9.2


## Characteristics

Supply voltage
9 V
Supply current
Gain
Output voltage
5 mA at $\mathrm{Vs}=9 \mathrm{~V}$
20,000
$6 V_{\text {pp }}$
Noise (without ambient light)
approx. 0.5 V

## 10. Optoelectronic Steel Tape Reader

Under more adverse conditions steel tape is often used instead of normal punched tape for reading control data into numerically controlled machine tools. The circuit proposed here is based on a configuration with 12 bit parallel read-in. The LEDs associated with the 12 bit are connected in series and supplied through the resistor $R_{1}$ from the 24 V supply. Each bit is allocated a phototransistor BPX81 and operational amplifier TCA335A. The phototransistor is connected to the inverting input of its associated operational nected to the inverting input of its associated operational
amplifier, so with incident light (hole in the tape) the voltage at pin 3 of the TCA335A drops. A positive pulse then appears at the output.
Up to an ambient temperature of $40^{\circ} \mathrm{C}$ the LEDs require no additional cooling. Compared with tape readers employing additional cooling. Compared with tape readers employing
light bulbs, the LED configuration is more robust, requires less maintenance and its power consumption is a factor of less maintenance and its power consumption is a factor of
10 lower. Reader errors cannot occur in practice because if a LED goes open circuit all 12 are without current and the fault is immediately apparent.

Fig. 10.1 instead of normal punched tape for reading control data


Operating range in conjunction with the above described transmitter, reflection from skin or textiles

## SIEMENS

## Remote Control

 Appnote 34
## 1. Simple Infrared Remote Control with Low Current Consumption

For remote-controlled switch operation only a very simple circuit is needed. The infrared signal consists of a 20 kHz burst with a duration of approx. 1 ms . To reduce the interference by ambient light and flashes, an integrating circuit is connected to the receiver, which will only supply a trigger pulse after having been applied by a series of pulses.

## Transmitter

A 20 kHz -oscillator consisting of two CMOS-NAND gates (Fig. 1.1) is used. As long as gate 2 has L-level, the oscillation is interrupted. After pressing key T, H-potential is applied to the input of gate 1 as well as to the output of gate 2 and the oscillator starts operating. After a certain time, determined by the time constant of the $C_{1} R_{1}$-circuit, the voltage at the input of gate 1 drops below the minimum H -level threshold and thus the oscillation is interrupted. The

Fig. 1.1

time constant of $R_{1} C_{1}$-circuit is dimensioned for a burstlength of 1 ms . The 1 nF -capacitor, connected to output of gate 1 , suppresses pulse spikes during turn-on.
Due to the oscillation at the output of $G_{4}$, the Darlington transistor BC875 is periodically conductive. The transmitter diodes, type LD271 are operated at peak currents of up to 1 A . The energy is supplied during 1 ms by the $470 \mu \mathrm{~F}$ capacitor. Its voltage drops by a value of 1 V during the burst.

## Receiver

The photodiode BP104 with integrated IR filter is used as a load with a resistance of $56 \mathrm{k} \boldsymbol{\Omega}$ (Fig. 1.2). At normal ambient light this resistance is low enough to generate no voltage drop. The next stage is an emitter follower with an input impedance of approx. $1 \mathrm{M} \Omega$. In conjunction with the second stage a gain of 100 is achieved. The dc operating point is controlled by means of an inverse feedback. By the next two stages, being also part of the inverse feedback circuit, the signal is further amplified by a factor of approx. 100.

The input signal, amplified totally by a factor of 10,000 is supplied to an integrated rectifier circuit. At each pulse the 10 nF -capacitor is charged by a certain voltage depending on the ratio of the capacitors ( 680 pF and 10 nF ). As soon as the threshold of the transistor, being connected to the rectifying circuit is reached, a pulse with a positive switching edge is generated. It is steepened by means of four inverters. This edge triggers the following JK-flip-flop 4027 operating as a monoflop. At its output a defined pulse is available for triggering the following flip-flop 4027. In this case antivalent outputs are used to drive a red or a green LED.

Fig. 1.2


## Technical Data

## Transmitter

Supply voltage	9 V
Pulse width (single pulse)	approx. 1 ms
Carrier frequency	approx. 20 kHz
Peak current	approx. 1 A

## Receiver

Supply voltage
Supply current (without LED)
Intermediate frequency
Gain
Range

## 9 V

2 mA
approx. 20 kHz
approx. 80 dB $\geqq 15 \mathrm{~m}$

## 2. Power-Saving Infrared Transmission for One Channel

With the transmitter-receiver combination described in the following it is possible to transmit simple instructions, e.g. on-off, over a distance of about 20 m by using the light emitting diode LD271 and the receiving photodiode BPW34. Therefore this device is favored for remote control operations of electrical equipment, e.g. dimmers, motors, switches, model railways or even installations carrying high tensions. Besides that, it can be advantageously used to realize light barriers, since the high carrier frequency guarantees a high interference immunity against continuous and low-frequency modulated light. If an optical system is used for the transmitter as well as for the receiver, much greater distances than the above mentioned can be covered.

An extension to more than one channel is possible, but the current consumption will increase by the number of channels. Thus this operating principle is also applicable for remote controlling of TV-receivers and of other devices demanding higher requirements. If the number of channels is $n, 2^{n-1}$ different instructions can be transmitted.

Since the information is only transmitted for a short period, the average power dissipation is reduced by a factor of 500 in comparison to the peak power. In the described application the repetition frequency is 10 Hz , i.e. the interval between two instructions is 100 ms .

By the ambient light a noise voltage is generated in the photodiode BPW34. Therefore, the input circuit of the receiver operates with a narrow-band-filter, keeping the noise influence low. Each instruction consists of a pulse train with constant pulse interval (e.g. 50 kHz ). The number of pulses per train required for processing a statement depends on the amplifier. Therefore, it has to be considered that a narrow-band amplifier has a transient response which is not
to be negligible. For instance, a resonant circuit with a determined quality factor $Q$ needs pulses in a quantity of $(Q / 3)$ in order to reach $50 \%$ of the maximum resonant amplitude. Assuming a carrier frequency of 50 kHz , a quality factor of 16 and a bandwidth of $3 \mathrm{kHz}, 5$ pulses are required to obtain a value, which is $50 \%$ of the maximum resonant-circuit voltage. In the described circuit the interval for the total pulse train was chosen with $400 \mu$ s which refers to 20 pulses.

## Transmitter

Only one CMOS-IC, type HEF4011 ${ }^{1}$ has been utilized to realize the two oscillating circuits of the transmitter, operating at 10 Hz resp. 50 kHz (see Fig. 2.1). The 10 Hz -oscillator has a duty cycle of 250:1.

Fig. 2.1


These different intervals are obtained through by-passing the charging capacitor by means of the diode BAY61. The 50 kHz -oscillator is modulated by 10 Hz , i.e. it operates only during a time of $400 \mu \mathrm{~s}$. The LD27, emitting infrared light, is square-wave modulated by a Darlington stage with reference to the rhythm of the output signal. If the peak current is a 1 A , the average value is only 2 mA . As this peak current is not available from the battery, it is supplied from a $470 \mu \mathrm{~F}$ capacitor, the voltage of which decreases by a value of 0.5 $V$ for the duration of the pulse train. The diode current being higher at the start positively effects the resonant circuit of the receiver.

## Characteristics

Supply voltage	6 V
Supply current	2 mA at 6 V
Subcarrier frequency	50 kHz
Duration of pulse train to train repetition   period	$400 \mu \mathrm{~s}: 100 \mathrm{~ms}$
Emitted peak power	$80 \mathrm{~mW} / \mathrm{sr}$
Half-angle of the radiation cone	$35^{\circ}$

## Receiver

The receiver shown in Fig. 2.2 operates with the photodiode BPW34, which is matched to an input impedance of approx. $80 \mathrm{k} \Omega$ at 50 kHz . The dc diode-current should not exceed a value of $20 \mu \mathrm{~A}$. For the infrared filter placed in front of the photodiode, a non-exposed but developed color film, type CT18 (Agfa) has been used. In the following circuit the pulses are amplified, clipped, rectified and applied to a monostable multivibrator, which covers the space between two pulse trains. Therefore a dc voltage is available at the output of the receiver as long as the push button of the transmitter is operated. Thus the required function can be realized.

The amplifier consisting of transistors $T_{1}$ to $T_{5}$ offers a gain of 20,000. $T_{1}$ operates as an impedance former. The bandwidth is adjusted to a value of 3 kHz by a selective feedback between $T_{3}$ and $T_{4}$. $T_{6}$ operates as the threshold switch and limiter. The signal is integrated by the capacitor $C_{s}$ and delayed, so that after the start of the pulse train three to four 50 kHz -oscillations pass before the following monostable multivibrator is triggered. Thus it is guaranteed that short pulse-interferences do not trigger the monovibrator, consisting of two NAND-gates, type HEF4011 ${ }^{1}$. The duration of the monovibrator pulse is 100 ms . Thus it is assured that the steady state is obtained after a period of 100 ms , if the following pulse train is not emitted from the LED.
'HEF4011 refers to RCA CD4011

## Characteristics

Supply voltage
Required current (without output circuit)
Receiving bandwidth
Centre frequency
Admissible ambient light
day light
incandescent light
fluorescent tamp light
IR-filter, cut-off wavelength

9 V
10 mA at $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V}$ 3 kHz 50 kHz
max. 4,000 lux max. 500 lux max. 10,000 lux 870 nm

## 3. IR Preamplifier with the IC TCA440 for Infrared Remote Control Systems

Preamplifiers for IR remote control systems with pulse code modulation must meet additional overdrive requirements compared with frequency coded systems.
Receiver overdrive in conjuction with tuned circuits results in falsification of the envelope pulse duration. However, the receiver can only process such pulse "distortion" to a certain degree. As the input signals can differ by a factor of more than $10^{5}$, a control loop must be introduced to prevent overdrive. The control circuit must act fast enough to assure correct transmission of the first bit. This is especially important for the transmission of single instructions. The requirements are less critical for repetition instructions; here it suffices when the correct control state condition is achieved by the time transmission of the second instruction commences.
With single instructions, the signal AGC circuit must act within a fraction of the bit duration. This necessitates a response time of less than $100 \mu \mathrm{~s}$. The dwell time in the control state must, however, be much longer, ideally more than 100 ms so that for repetition instructions a more-or-less steady control state condition already exists for the second instruction.
In addition to this control loop driven by the useful signal for single instructions, a control circuit dependent on light level is also advisable. This assures maximum sensitivity under low ambient light conditions and reduces the amplification with increasing light level to maintain the light noise just below its disturbing level.

In practice, the operator can bring the transmitter very close to the receiver. When this form of overdrive occurs it must be assured that correct recognition of the signal is not prevented. For guidance purposes, a minimum separation of 5 cm can be assumed. The resultant level differences of more than 100 dB generally can not be fully handled by the internal control circuit of the IC; additional measures such as peak level limiting are therefore required to hold pulse distortion within the admissible limits.

Fig. 2.2


Fig. 3.1 shows a circuit incorporating the IC TCA440 which essentially meets all the above requirements.

Fig. 3.1


It is assumed that the transmitter radiates an IR signal with a carrier of approximately 30 kHz modulated with information as 7 bit instructions in biphase code. The bit length should be about 1 ms , the repetition frequency, if present, about 10 Hz .

In series with the IR diode BP104, which is similar to the photodiode BPW34 but with integral IR filter, is a resonant circuit tuned to 31.25 kHz and having a resonant impedance of $50 \mathrm{k} \Omega$. Damping is provided by the $100 \mathrm{k} \Omega$ resistor and transformed input impedance of the TCA440. With a transformation ratio of $5: 1$, the TCA input impedance of about $4 \mathrm{k} \Omega$ appears as $100 \mathrm{k} \Omega$ on the primary side. The bandwidth of 10 to 12 kHz is relatively large, but this makes the input circuit design uncritical and assures short rise and fall times. The capacitive loading is mainly on the secondary side, only the BP104 junction capacitance loads the primary side. The bandwidth can be halved if required by removing the $100 \mathrm{k} \Omega$ resistor.

In the TCA440 the preamplifier stage with inputs 1, 2 and output 15 and the controlled IF amplifier with input 12 and output 7 are utilized. The latter requires a resonant circuit at the output, otherwise the output voltage is too low. The AGC starts to operate through pin 9 when the output circuit voltage exceeds $2.5 \mathrm{~V}_{\mathrm{pp}}$.
Under high ambient light conditions the input amplifier gain can also be controlled. The DC output current of the BP104 causes a small voltage drop at the bottom end of the primary winding which is utilized for gain control. Input 3 is current biassed such that the AGC already acts at relatively low photocurrent levels.

The output circuit bandwidth is about 4 kHz and contributes decisively to the receiver sensitivity. The output voltage is limited by the TCA440 to about 4 to $5 V_{p p}$. When designing this circuit, care should be taken to prevent inductive feedback from the circuit inductance $L_{1}$ to the input transformer.

## Technical Data

Input IR irradiance ( $\Lambda=950 \pm 30 \mathrm{~nm}$ )
Minimum
Maximum
a) without wall influence (free room)

Angle $0^{\circ}$	$>12 \mathrm{~m}$
Angle $30^{\circ}$	$>8 \mathrm{~m}$

b) with wall influence (corridor)

Corridor 2 m wide $\times 2.5 \mathrm{~m}$ high
Angle $0^{\circ} \quad>20 \mathrm{~m}$
under the following conditions:

- Transmitter peak power 160 mW (i.e. 2 lower limit LD 271 with 1 A peak current)
- Low outside light
(Max. illumination 500 Lux, caused by daylight or fluorescent lamp)


## Outside light influence

With incandescent light $E=1000$ Lux
Range reduction $<50 \%$
Admissible variation in pulse group length $\pm 10 \%$
(rated value 500 or $1000 \mu$ s)
AGC time constants

Gain reduction	$<100 \mu \mathrm{~m}$
Gain increase	$>100 \mathrm{~ms}$
Center frequency	31.25 kHz

## Bandwidth

for small signals approx. 3 kHz
(AGC not operating)
referred to output 7

Output signal	$15 \mathrm{~V}_{n 0}$ modulated
Supply voltage	$15 \mathrm{~V}+3 \mathrm{~V},-5 \mathrm{~V}$
admissible ripple	$<2 \%$

Input transformer: B65531-L0250-A028
Pot core $11 \times 7, A_{L}=250 \mathrm{nH}$
$n_{1}=565$ turns, 0.07 dia.
$n_{2}=111$ turns, 0.07 dia.
Primary inductance approx. 85 mH
$L_{1}$ : B65517-A0250-A028
Pot core $9 \times 5, A_{\mathrm{L}}=250 \mathrm{nH}$
$n=100$ turns, 0.1 dia.

## 4. Single Channel IR Receiver with High Interference Resistance

Fig. 4.1 shows an IR receiver circuit which is especially suitable for light barriers or simple IR transmission systems. It features increased resistance to extraneous light interference, for example the switch-on pulses of fluorescent lamps.
The pulse groups emitted by the transmitter ( $f_{0}=40 \mathrm{kHz}$, $t=1 \mathrm{~ms}, T=100 \mathrm{~ms}$ ) are received and amplified by approximately 60 dB on OP 1. $P_{3}$ sets the switching threshold for the following threshold switch OP 2, at the output of which the pulses are again available at TTL level. The first pulse received by the diode triggers MF1 which produces a pulse of duration $t_{1}$ (see Fig. 4.2). This in turn releases after approximately 90 ms a pulse of duration $t_{2}$ ( $G_{1}$ and $G_{2}$ ). The second transmitted pulse can only pass $G_{4}$ during the period $t_{2}$. The output signal A (continuous signal) is delivered by MF3, a post-triggered monoflop with $t_{3}>T$.
The circuit is therefore insensitive to incoming interference pulses for a time $T_{-t 2}$ and only responds when at least two pulse groups are received with a spacing $T$.
It is possible to replace the TTL IC's MF1 to MF3 by C-MOS monoflops (4047). This reduces the power requirements and permits the use of a higher supply voltage, for example from a 9 V battery. The Zener voltage of diode $D_{1}$ must in this case be about half the supply voltage.

## Technical Data (TTL Version)

Supply voltage	5 V
Supply current	55 mA
Carrier center frequency $f_{0}$	40 kHz
Input circuit bandwidth	4 kHz
Pulse group duration $t$	1 ms
Pulse group repetition frequency $1 / T$	10 Hz
Response threshold (max sensitivity)   referenced to the photodiode useful current	approx. 3 nA
Range measured with a transmitter fitted   with $3 \times$ LD271, $/ \mathrm{t}=1 \mathrm{~A}$	$>12 \mathrm{~m}$

Fig. 4.2


Fig. 4.1


## 5. Simple Battery-Operated IR Remote Control Transmitter for Single Instructions

The IR transmitter circuit is shown in Fig. 5.1. The capacity of a normal 9 V battery ( 240 mAh ) suffices for about 30,000 switching operations; thus it is not the switching rate which normally determines the battery life but its storage capacity.

Fig. 5.1


When the switch $S_{1}$ is operated, the transmitter radiates a single IR pulse of about 5 ms duration modulated with 31.25 kHz (see Fig. 5.2). After demodulation of the signal, 5 ms square wave pulses corresponding to the envelope of the modulated pulses emitted by the transmitter appear at

Fig. 5.2

the receiver output. These can be used for various purposes, for example to change over a flip-flop state for switching equipment off or on, to drive counter circuits that actuate different switching processes, etc. The modulating frequency of 31.25 kHz is generated by a stable multivibrator incorporating CMOS NAND gates to minimize the power consumption. The multivibrator supplies the driver stage $T_{1}, T_{2}$ for the GaAs LEDs (IR radiators) $D_{2}, D_{3}$ and $D_{4}$. With $S_{1}$ in its rest position $C_{1}$ charges up through $R_{1}$. When $S_{1}$ is pushed, $C_{1}$ is connected as a voltage source to the transmitter circuit which then starts to oscillate. The current consumption of the circuit and the value of $C_{1}$ determine the duration of transmission.
The center frequency of 31.25 kHz is determined by $P_{1}$ and $P_{2}: P_{1}$ affects the pulse duration $t_{1}$ and $P_{2}$ the interval $t_{2}$.
The duty cycle $v=t_{1} / T$ should be between 0.3 and 0.5 . This gives the longest range for minimum power consumption. Because of resistance tolerances within the CMOS circuit, the frequency can only be calculated roughly:

$$
f=\frac{1}{T} \approx \frac{1}{1.1\left(P_{1}+2 P_{2}\right) C_{2}}
$$

## Technical Data

DC supply voltage 9 V
Center frequency (adjustable) . 31.25 kHz
Duration of transmission per single pulse
( $C_{1}=1000 \mu \mathrm{~F}$ )
Energy consumption per switching operation 25 mWs

## 6. Preamplifier for IR Remote Control Systems

Infrared remote control receivers with MOS-ICs usually require a digital input signal with TTL-levels. Therefore a preamplifier has to be connected between the photodiode and the MOS-circuit. Such a preamplifier has already been described (see 【3). In the following, a circuit, using the IC DA4050 is commented. The TDA4050 was especially developed for applications of IR remote control systems. It comprises a controlled prestage, an amplifier and a threshold amplifier. This IC offers excellent large-signal characteristics, an output with short-circuit protection and a simple driver circuit for active band-pass filters. Although solutions without coils are cheaper, an LC-network is connected to the input of the circuit shown in Fig. 6.1 to obtain a higher selectivity. The photodiode SFH205 is connected directly to the resonant circuit. It is reversely operated and biased with 11 to 14 Volt. The signal from the resonant circuit is supplied to the input of the IC via transistor BC414C. Thus, the signal-to-noise ratio is improved. An active filter is connected to pins 4 and 5 . It is
part of the reverse feedback circuit of the operational amplifier. The output signal is available at pin 3 , offering a protection against short-circuits to ground ( $R_{\mathrm{i}}=10 \mathrm{k} \Omega$ ). At L-level, the output has a low impedance.

Fig. 6.1


Fig. 6.2 shows a circuit without coils. The large-signal characteristics and noise immunity are improved by a network consisting of resistors and diodes.

Both circuits should advantageously be mounted in a double-screened case.

Fig. 6.2


Without any influence of extraneous light, a distance of 25 to 30 m between transmitter and receiver can be easily realized, whereas the distance is much higher if the circuit with LC-network is used.

The described preamplifier circuit is also applicable for IR remote control systems used in TV sets. In this case, only a range of 15 to 18 m is covered because of the wire-netting protection and the stray influences of the TV defection coils.

# Photographic Aperture, Exposure Controls, and Electronic Flash Appnote 35 

## 1. Solar Cell Generator for Exposure Control in Cameras without Moving Parts

Exposure meters normally work with a moving coil instrument. With a field effect liquid crystal display and a solar generator with two photovoltaic cells, type BPY64 a fully electronic light control without mechanical moving parts can be realized. The reversal point of the indicator is reached at an illumination of 100 lux (color temperature of 2850 K ). Thus exposure-time display for low-priced cameras is possible.

## Circuit Description

A basic requirement is an oscillator which starts oscillating at a voltage below 100 mV . Two photovoltaic cells, type BPY64, feed a blocking oscillator with transistor AC121 VII as shown in Fig. 1.1. Because of the low photo-electric voltage available at low illuminations a germanium transistor with a low threshold voltage has to be used. In operation, the transistor is at first conductive so that a magnetic field can be built up in the primary winding of the transformer Tr . Through the secondary winding, a reverse voltage is induced to the base circuit which turns off the transistor. At this moment the magnetic field of the coil collapses. The potential difference between collector and base is momentarily approx. 5 V at the break-down point of the liquid

Fig. 1.1


Coil Pot Core $14 \times 8$
Material N30
$n_{1}=666$ turns
$\mathrm{n}_{2}=333$ turns
0.07 ECu
$L=1.84$
crystal display. To avoid a too strong damping of the base circuit by the capacitor of the display, two diodes are connected in series to the LCD. The pulse duration of the blocking oscillator signal is mainly defined by the selfinductance and self-capacitance of the coil, while the repeating frequency depends on the time constant of the base circuit. The optimum output voltage is achieved at a repeating frequency of approx. 3 kHz . The oscillations start at a collector voltage $V_{C E}$ of -60 mV and a mean current $/ \mathrm{C}$ of $30 \mu \mathrm{~A}$.

## 2. Phototransistor Used In a Computerized Photoflash Unit

A new circuit has been designed for the receiving part of the computerized photoflash unit. It offers the advantage in that it essentially compensates all the undesired influences produced by exposure time errors, ambient light, temperature, and tolerances of the photosensitivity. A phototransistor in conjunction with an integrating capacitor connected to the emitter serves as a photodetector.
A computerized photoflash unit differs from a standard one in that the duration of the photoflash is determined by a photodetector. Therefore, the exposure time for a camera film is constant and does not depend on the intensity of the reflected light, i.e. the flash is interrupted sooner or later in dependence on the quantity of reflected light. Fig. 2.1 shows on principle the control circuit of a computerized photoflash unit. The photocurrent of the phototransistor charges the capacitor $C_{1}$ and thus the turn-off thyristor shown in the figure with broken lines is triggered.

Fig. 2.1


A trial was conducted to find out how far exposure time errors of photoflash devices using the circuit of Fig. 2.1 depend on the sensitivity of the phototransistor. It has been experienced that the sensitivity changes by about $25 \%$ in a distance between 0.9 m to 4.0 m . This variation is generated through the change of the current gain depending on the collector current.
The compensation of the linearity error of a phototransistor is only partially possible because of its unavoidable characteristic tolerance. Therefore it is more convenient to use a circuit in which the value of the current gain does not essentially influence the exposure time of a computerized photoflash unit.

The base collector current dependence on the luminous intensity is completely linear whereas this is contrary to the one of the emitter collector current. This is founded in the fact that the base-collector-junction serves as a photodiode. Therefore, a special circuit has been designed. The current generated through the light is integrated by a capacitance not being connected to the emitter of the phototransistor but to its base as shown in Fig. 1.1. At the beginning of the exposure the capacitor is not charged, i.e. the base-emitterjunction is not conductive. If the phototransistor is illuminated charge carriers are generated. A hole moves to the base terminal and positively charges the capacitor $C_{1}$ with reference to ground potential. When the capacitor is charged so that the base-collector-junction becomes conductive, the phototransistor starts to amplify, i.e. the emitter current increases. The amplified photocurrent produces a voltage drop across the load resistor $R_{2}$ and thus the following turnoff thyristor is triggered.
The disadvantage of the circuit shown in Fig. 2.1 is that the signal slewing rate is not fast enough, because the capacitance of the integrating capacitor $C_{1}$ is increased by the gain of the phototransistor at that instant when the base-emitterjunction becomes conductive, i.e. when there is an amplification effect. In order to improve the signal slewing rate the circuit shown in Fig. 2.2 is recommended. Here the capacitor $\mathrm{C}_{1}$ is connected to the base and emitter. If the voltage across the load resistor $R_{4}$ increases, the level at the capacitors low end also rises with nearly the same amount as at the high end of $C_{1}$ connected to the base. Therefore, the capacitor $C_{1}$ usually requires no charge. The circuit according to Fig. 2.3 assures that at the beginning of each photoflash the capacitor $C_{1}$ always has the same charge impedance of the illumination which previously occurred. The resistors $R_{2}$ and

Fig. 2.2

$R_{3}$ serve as voltage divider, at which a positive voltage of 1 V reterred to the level of the phototransistor emitter is disposable before the photoflash is started. The diode $D_{1}$ is turned off. Its voltage difference effects that a current flows via the resistor $R_{1}$ into the base of the phototransistor. At its base-emitter-junctions a voltage drop, not being essentially increased by the external illumination is produced. At the beginning of the photoflash, a negative pulse is applied via terminal $B$ to the resistor $R_{2}$. By the current flowing through $R_{2}$ the diode $D_{1}$ becomes conductive and its level changes from +1 V to -0.7 V . This potential difference is fully transmitted via the integrating capacitor $C_{1}$ to the base of the phototransistor, which is therefore reversely biased by this voltage. Thereafter, this bias is compensated by the photocurrent. The negative voltage pulse required at the beginning of the photoflash can be derived from the same voltage source, which generates the collector-emitter-voltage at the beginning of the photoflashing. The voltage at terminal $A$ is taken from a divider being in parallel to the photoflash capacitor, i.e. it is also available before the photoflashing occurs.

Fig. 2.3


The advantageous features of the circuit according to Fig. 2.3 compared to the one of a conventionally computerized photoflash unit are as follows:
a. Exposure time failures are nearly not detectable presuming an objective lux meter ( $<5 \%$ ).
b. The phototransistors must not be selected according to their photosensitivity since their base-collector-junction is utilized and there is no difference in sensitivity amongst the phototransistors.
c. No neutral absorber is required, since the internal base-collector-diode of the phototransistor operates linearly. Therefore, the photodetector is able to receive more light, i.e. signals with a higher amplitude are produced and the operation is trouble-free. The gate current of the thyristor does not influence the exposure time control. The total temperature coefficient is low (about $0.3 \% \mathrm{~K}^{-1}$ ). If necessary the TC can be additionally decreased by applying at terminal $B$ a pulse with a higher amplitude. The charging of the integrating capacitor is extremely low when the supply voltage is suddenly applied to the phototransistor.

## General Photoelectric Application Circuits Appnote 36

## 1. Suppression of DC Component in Photocurrent of Phototransistors

In many applications, phototransistors are intended to transmit only intensity-modulated light signals. Non-modulated light intensity interferes; the dc component caused by it must be suppressed.

Two circuits are described here in which the dc component remains ineffective. In the first circuit the direct current is kept constant through an automatic control system, in the second an active, frequency-dependent external resistance is used which is much smaller at low frequencies than at high ones.

Phototransistors are particularly suitable as light detectors for many applications since they are economical and, due to their amplification, offer a larger output signal than photodiodes. Thus they are less sensitive to external interferences.

In optoelectronics, a number of applications are used in which an intensity-modulated signal is superimposed upon a non-modulated one, e.g. in optical flame control, in light barriers involving moving objects, and in computerized flashlight equipment as well as slave flashlight equipment in which the primary illumination can cause interference. In many instances the suppression of the dc component is required because of the danger of overdriving through unmodulated light intensity.

Using phototransistors, the dc component of the photocurrent cannot be suppressed by a coupling capacitor.

## Circuit for Phototransistors with Base Terminal

In Fig. 1.1 phototransistor $T_{1}$ and transistor $T_{2}$ form an automatic control system which regulates the voltage drop at resistor $R_{1}$, maintaining it at a constant value, independent of the unmodulated light intensity at phototransistor $T_{1}$. When the light intensity rises, a larger photocurrent $/$ plows through $T_{1}$, and the voltage drop at resistor $R_{1}$ becomes greater. As a result, a larger current flows to the base of $T_{2}$. The rising collector current $T_{2}$ keeps reducing the primary photocurrent of $T_{2}$ until the voltage drop at resistor $R_{1}$ reaches its original value.

Due to the by-passing of the base-emitter junction of $T_{2}$ by capacitor $C_{1}$, this control mechanism is ineffective during rapid changes. The cut-off frequency above, which the control becomes ineffective, is determined by capacitor $C_{1}$ and resistor $R_{2}$.

Resistor $R_{1}$ determines the quiescent current. $R_{2}$ should be as large as possible to permit small values for $C_{1}$. However, when resistance of $R_{2}$ becomes too large, the drive of $T_{2}$ is too weak. As a result the maximum light intensity at which the control still works is reduced. The maximum light intensity is also limited by the power supply voltage, because the voltage drop at $R_{1}$ must not exceed a fixed maximum value.
For the dimensioning given in Fig. 1.1, the maximum light intensity can be $25,000 \mathrm{~lx}$; the voltage drop at $R_{1}$ must not exceed the value $V_{R 1}=4 \mathrm{~V}$. The photosensitivity of phototransistor BPY62 is $2 \mathrm{~mA} / 1000 \mathrm{~lx}$. The dark current of the circuit is smaller than the dark current/CEO of the simple phototransistor, because part of the dark current is split as residual current from $T_{2}$. The lower cut-off frequency of the circuit in the above dimensioning is $f_{\text {gu }}=16 \mathrm{~Hz}$, the upper frequency $f_{\text {go }}=2.5 \mathrm{kHz}$. If an increase in the upper cut-off frequency $f_{\text {go }}$ is required, resistance of $R_{1}$ must become smaller.
To exclude interference signals, the connection between the collector of $T_{2}$ and the base of phototransistor $T_{1}$ must be held as short as possible.

Fig. 1.1


## Circuit for Phototransistors Without Base Connection

The circuit shown in Fig. 1.2 is intended for phototransistors without base connection. At low frequencies the base voltage of transistor $T_{2}$ remains constant, and is determined by the voltage divider of resistors $R_{1}$ and $R_{2}$. The collector resistance of phototransistor $T_{1}$ is determined by the relatively low diffusion resistance of the base-emitter junction of transistor $T_{2}$. A large collector current can flow without resulting in a substantial decrease of the collector voltage of phototransistor $T_{1}$. For the diffusion resistance it applies that

$$
R_{0}=\frac{k \times T}{e \times I},
$$

$k$ standing for Boltzmann constant ( $1.38 \times 10^{-23} \mathrm{WsK}^{-1}$ ); $T$ for absolute temperature of phototransistor $T_{1}$, in Kelvin; e for elementary charge ( $1.6 \times 10^{-19} \mathrm{As}$ ); and / for emitter current of transistor $T_{2}$ in Ampere.
At high frequencies the base-emitter junction is shortcircuited by capacitor $C_{1}$. As a result the considerably larger differential resistance of the emitter-collector junction of transistors $T_{2}$ functions as external resistance. Parallel to it there is the series circuit consisting of capacitor $C_{1}$ and the resistors $R_{1}$ and $R_{2}$, parallel-connected through the power supply. In the circuit presented in Fig. 1.2, the maximum light intensity for the given dimensions can amount to 20,000 lx.

Fig. 1.2


The sensitivity of phototransistor BPX81, used in the experimental circuit, is $2.5 \mathrm{~mA} / 1000 \mathrm{~lx}$. The lower cut-off frequency is $f_{\mathrm{gu}}=80 \mathrm{~Hz}$, the upper frequency is $f_{\mathrm{go}}=40 \mathrm{kHz}$. The ac voltage at point $A$ can be raised by increasing the resistance of $R_{1}$ and $R_{2}$. For a maximum light intensity of $20,000 \mathrm{~lx}$, resistances of up to $10 \mathrm{k} \Omega$ are permissible.

## List of Capacitors Used in the Circuit 1.1

1 pc Ceramic Capacitor
$0.1 \mu \mathrm{~F} / 63 \mathrm{~V}$

## List of Capacitors Used in the Circuit 1.2

1 pc
Electrolytic Capacitor
$22 \mu \mathrm{~F} / 40 \mathrm{~V}$

## 2. Power Supply Using the Photovoltaic Cell BPY64P for Low-Consumption-Devices

In the following, a circuit using the photovoltaic cell BPY64P and a blocking oscillator is described. It is utilized for supplying energy to small electronic devices of low power consumption, e.g., transmitter of infrared remote control systems. Generally a buffer accumulator is connected in parallel to this circuit and thus an operation without any batteries or other power supplies is realized.

On sunny days, transmitted energy of approx. 1 mWh can be generated by a Silicon-diode area of $2 \mathrm{~cm}^{2}$ (corresp. to $6 \times$ BPY64P) even in standard-size living rooms. But on cloudy or winter days, a maximum value of only 0.2 mWh can be expected.

Assuming a current of 10 mA for the short operation period of an $I R$ remote control transmitter, a power of 60 mW at a battery voltage of 6 V is necessary. As the sum of all operations for remote control of a TV set does not exceed one minute per day, an electric energy of 1 mWh per day is required.
Under ideal conditions (i.e. power matching $R_{\mathrm{i}}=R_{0}$, meeting exactly the color temperature for the sensitivity maximum) the photovoltaic cell BPY64P supplies approx. $60 \mu \mathrm{~W}$ at 1000 lx and at a color temperature of 2856 K . In practice, however, an average power generation between 15 and $16 \mu \mathrm{~W}$ can be obtained at diffused daylight and cloudy sky ( $\mathrm{E}=1000 \mathrm{~lx}$ ).
Six photovoltaic cells, type BPY64P, connected in series as shown in Fig. 2.1 guarantee a safe starting of the blocking oscillator even at a low illuminance of 100 lx (daylight). The oscillator operates at 10 kHz . Its frequency strongly depends on the illuminance and the load. The basic current is adjusted by resistor $R_{1}$. A value of $82 \mathrm{k} \Omega$ can be considered as a good compromise especially at a low illuminance. The resistance of $R_{1}$ should be lower for higher illuminance values.
The circuit offers an efficiency of approx. 60 to $65 \%$.
Five NiCd-cells (20 DK, Varta, ordering number 3910020001) can be suitably utilized as buffer accumulators. They supply an open-circuit voltage of approx. 6.2 V at a $100 \%$ charge. The capacity is 20 mAh .

Fig. 2.1


Fig. 2.2 shows the accumulator current as a function of illuminance at an open-circuit voltage of 5.8 V and at a charge without load. The two curves show the dependence on incandescent lighting ( 60 W -bulb, matt, with white reflector) and on daylight (diffuse, near the window).

Fig. 2.2


Fig. 2.3 shows the time necessary per day as a function of the illuminance. As reference an energy of $1000 \mu \mathrm{~Wh}$ is assumed. This is required by the accumulator if the remote control transmitter is operated 60 times per day for a period of 1 s .

Fig. 2.3


## Coil Data

$n_{1}$ : 15 turns 0.07 enamelled copper wire $n_{2}: 340$ turns 0.07 enamelled copper wire

## SIEMENS General IR and Photodetector Information Appnote 37

## 1. Detectors (Radiation-sensitive components)

## Charge Carrier Generation in a Photodiode

Fig. 1.1 shows the basic design of a planar silicon photodiode with an abrupt pn transition. Due to the differing carrier concentrations, a field region free of mobile carriers,

Fig. 1.1
Planar silicon photodiode (schematic)

the space charge region, builds up between the $p^{+}$and $n$ region, which only reaches into the $n$ region if there is an abrupt $p^{+} n$ transition. The following applies to the width of the space charge region:

$$
\begin{equation*}
w \sim \sqrt{\frac{V_{\mathrm{D}}+V}{n_{\mathrm{D}}}} . \tag{1}
\end{equation*}
$$

In this case, $V_{D}$ is the diffusion voltage, $V$ is the external voltage and $n_{\mathrm{D}}$ is the donor concentration on the $n$ side. For the junction capacitance $C_{j} \sim \frac{1}{w}$ with $w$ from equation (1) the g is obtained:

$$
\begin{equation*}
c_{\mathrm{i}} \sim \sqrt{\frac{n_{\mathrm{D}}}{V_{\mathrm{D}}+V}} \tag{2}
\end{equation*}
$$

If photons with an energy $h v \geq E_{g}$ penetrate into the diode, electron hole pairs are generated on both sides of the pn junction. The energy difference $\left(h v-E_{\mathrm{g}}\right)$ is dissipated to the grid on the form of heat. The electrical field in the space charge region repels the majority carriers and attracts the minority carriers on the other respective side (thus, holes from the $n$ side to the $p$ side and, vice versa, electrons from the $p$ side to the $n$ side). In this way, the charge carrier pairs are separated and a photocurrent flows through an external circuit, also without an additional voltage (photovoltaic effect). Carriers occurring in the space charge region are immediately sucked off due to the field prevailing in this layer. The carriers from the other regions must first of all diffuse into the space charge region in order to be
separated. If they recombine beforehand, they are lost with respect to the photocurrent. Thus, the photocurrent $/ \mathrm{p}$ consists of a drift current $/$ drift of the space charge region and of a diffusion current $I_{D}$ from the remaining regions.
Should the $\mathrm{p}^{+}$region be far thinner than the penetration depth $\frac{1}{\alpha_{\lambda}}\left(\alpha_{\lambda}=\right.$ absorption coefficient) of the radiation, the photocurrent from the $p^{+}$region can be neglected and the following relationship can be derived for the photocurrent $/ p$.

$$
\begin{equation*}
I_{\mathrm{p}}=q \Phi_{0}\left[1-\frac{e^{-\alpha_{\lambda} w}}{1+\alpha_{\lambda} L_{\mathrm{p}}}\right] \tag{3}
\end{equation*}
$$

$L_{O}$ is the diffusion length of the holes in the $n$ region, $q$ is the elementary charge and $\Phi_{\mathrm{O}}$ the radiant flux. The absorption coefficient $\alpha_{\lambda}$ is the only variable in the equation which depends on the wavelength. It predominantly determines the spectral characteristic of the diode's photosensitivity. In accordance with equation (1), the space charge region width $w$ depends on the voltage and the doping which, in addition to the crystal quality, also influences $L_{D}$. High sensitivity is achieved with high values for $w$ and/or $L_{D}$.
With respect to the electrical mode of operation, we differentiate between diode mode (with bias voltage) and cell mode (without bias voltage). In cell mode, the diode acts as a current generator which converts the radiant energy into electrical energy. If the photodiode is considered as a current source with the photocurrent $I_{0}$ and a diode of equal polarity is connected in parallel to the load resistance $R_{\mathrm{LE}}$ (idealized equivalent circuit diagram), the relationship between the current and voltage can be expressed as follows:

$$
\begin{equation*}
I=I_{\mathrm{S}}\left[\mathrm{e}^{\frac{V}{n \cdot v_{T}}}-1\right]-I_{\mathrm{p}} . \tag{4}
\end{equation*}
$$

In this case, $I_{p}$ is the photocurrent, $I_{\text {sat }}$ the saturation current, $V$ the voltage between the $p$ and $n$ contact, $V_{T}$ the voltage equivalent of the temperature and $n$ is the diode factor. In the case of $I_{p}=0$, equation (4) is reduced to a normal diode equation and describes the dark characteristic ( $E_{\mathrm{v}}=0$ ). When subjected to light, the characteristic is shifted downwards corresponding to the illuminance. The opencircuit voltage

$$
\begin{equation*}
V_{\mathrm{L}}=n V_{\mathrm{T}} \ln \left[1+\frac{I_{\mathrm{p}}}{I_{\mathrm{s}}}\right] \tag{5}
\end{equation*}
$$

belongs to $I=0\left(R_{\mathrm{LE}}=\infty\right)$ and the short-circuit current $I_{\mathrm{S}}=-I_{\mathrm{p}}$ belongs to $\mathrm{V}=0\left(R_{\mathrm{LE}}=0\right)$.
There is a linear relationship, depending on the diode type, between the illuminance $E_{\mathrm{v}}$ and the photocurrent $I_{\mathrm{p}}$, which covers several powers of ten (eight and more). However, due
to $I_{\mathrm{p}} \sim E_{\mathrm{v}}$ and $I_{\mathrm{p}}>I_{\mathrm{s}}$, a logarithmic relationship prevails between the open-circuit voltage $V_{\mathrm{L}}$ and the illuminance $E_{\mathrm{V}}$. The forward current $/$ F belonging to the open-circuit voltage $V_{\mathrm{L}}$ is equal to the impressed photocurrent. In diode mode, the photocurrent of one or the other diode type may slightly change together with the applied voltage. This is due to the voltage dependence of the space charge region. In the case of silicon photodiodes, the dark current [first term in equation (4)] once again only plays a role with extremely low illuminances (in the millilux range).

## Spectral Sensitivity

Fig. 1.2 shows the graph of the spectral sensitivity of a silicon and a germanium photodiode. The positions of the emission maxima of the most important light emitting diodes and the sensitivity of the human eye are also shown.

Fig. 1.2
Relative sensitivity of a silicon and a germanium diode


The two photodiodes cover the wavelength band from approximately 300 to 1800 mm . In this case, the silicon diode is of greater significance; it covers the visible range and, with its maximum sensitivity in the near infrared area, is well matched to the GaAs infrared emitting diode, whose bestknown field of application covers IR remote controls and light barriers.

The sensitivity limit of semiconductor detectors in the long wave spectral wave band $\lambda_{g}$ is determined by the energy gap $E_{\mathrm{g}}$.

$$
i_{\mathrm{g}}[\mathrm{~nm}]=\frac{h \cdot c}{E_{\mathrm{g}}}=\frac{1,24}{E_{\mathrm{g}}[\mathrm{eV}]}
$$

The run of the spectral sensitivity curve in the remaining wave band is determined by the absorption coefficient $\alpha_{\lambda}$ and the recombination relationships in the interior and on the surface of the semiconductor (carrier loss). The drop in the curve towards shorter wavelengths is due to the higher absorption for shortwave radiation; for this reason, carrier pairs are only generated in the regions near the surface but, due to the high prevalent recombination rate, are mostly lost with respect to the photocurrent.

## Photodiodes (PN and PIN diodes)

Photodiodes can optimally be matched to the desired application by choosing the correct mode of operation and by means of a suitable internal structure. In addition to the schematic structure of each individual diode type, figure 1.3 shows the doping behavior and the field pattern as well as the region in which the avalanche effect takes place at a sufficiently high voltage (ionization region).

Fig. 1.3
Doping behavior and field pattern of photodiodes


In the case of the PN photodiode, the radiation which, as a rule, enters the $\mathrm{p}^{+}$region vertically, is absorbed in the mainly quasi-neutral $p$ and $n$ regions due to the narrow space charge region; thus, the photocurrent predominantly consists of the diffusion current. As the characters are diffused relatively slowly, PN diodes are frequently used in applications in which the stress is placed rather more on low dark currents than on high speed. (For complete diffusion of a $5 \mu \mathrm{~m}$ thick p layer, an electron needs 3 ns , and a hole needs 15 ns for the same distance in the n region). Therefore, silicon PN diodes can be found in exposure meters which still operate perfectly under starlight; this presupposes dark currents of less than approximately $10^{-11} \mathrm{~A} / \mathrm{mm}^{2}$. Solar cells also belong to the group of PN photodiodes.

Contrary to the PN diode, in the case of PIN photodiodes most of the light is absorbed in the space charge region. These photodiodes are mostly used in applications requiring high speeds. In order to achieve a large space charge region, if possible, in accordance with equation (2), the semiconductor material must be intrinsic (intrinsic l) (mostly weak $n$ or weak $p$ doped) into which a $p^{+}$region is diffused on the one side and an $n+$ region is diffused on the other side. A P+ IN+ structure ("sandwich" structure) is obtained. In accordance with equation (3), the junction capacitance $C_{j}$ is low due to the large space charge region of the PIN diode. $C_{j}$ values are used between a few picofarad and a few tenths of a picofarad. The product from $C_{j}$ and $R_{L}$ (load resistance) is the time constant of the measurement circuit.

In order to achieve PIN diodes which are as "fast" as possible, the voltage is increased to such an extent that the carriers drift through the space charge region at saturation
speed $V_{\text {sat }}$. In silicon and germanium, a saturation speed $V_{\text {sat }}$ from $5 \times 10^{6}$ to $1 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$ is achieved with fields of approximately $2 \times 10^{4} \mathrm{~V} / \mathrm{cm}$. Accordingly, a carrier requires approximately 50 ps to completely drift through a 5 $\mu \mathrm{m}$ thick region.

## Photovoltaic Cells

Voltaic cells are active dipole components which convert optical energy into electrical energy without requiring an external voltage source.

The properties of a voltaic cell are essentially characterized by the open-circuit voltage and the short-circuit current. In the case of a short circuit $(V=0)$, the current $/ s$ is a linear function of the illluminance and thus also proportional to the area subjected to radiation. The open-circuit voltage $V_{O}$ initially increases logarithmically with the luminous intensity.
This is independent of the size of the cell and amounts to approximately 0.5 V at 1000 lx . In order to extract the maximum amount of energy from a voltaic cell, the load resistance $R_{\mathrm{L}}$ must lie in the order of magnitude of $R_{\mathrm{i}}=\sqrt{V_{\mathrm{O}} / /_{\mathrm{S}}}$. The internal resistance $R_{i}$ of a voltaic cell should be as low as possible in order to prevent unnecessary loss.

In order to measure the luminous intensity, the proportional relationship between the optical and electrical signals is important, and in practice, this applies up to a load resistance of $R_{\mathrm{i}} \approx V_{0} / 2 / 2$.
In principle, voltaic cells can also be operated in diode mode by applying a voltage in reverse direction. Obviously, this voltage must not exceed the maximum reverse voltage.

## Phototransistors

In principle, a phototransistor corresponds to a photodiode (collector-base diode) with a series-connected transistor as amplifier. The phototransistor is the simplest integrated photoelectric component. Figure 1.4 shows one of the practical designs of a bipolar phototransistor (cross-section and

Fig. 1.4
Bipolar phototransistor

$c=$ speed of light, $\lambda=$ wavelength, $E_{\mathrm{g}}=$ energy gap). This is shown in figure 2.1 in the energy diagram for a pn junction.

Fig. 2.1
The pn junction of a light emitting diode


The probability of radiant recombination essentially depends on the band structure type of the corresponding semiconductor material. In the case of direct semiconductors with GaAs as the most important representative, an electron can directly fall from the conduction band into a free state in the
valence band (hole), in which case the reieased energy is given off as a photon (cp figure 2.2, left). In the case of the so-called indirect semiconductors with $\mathrm{Si}, \mathrm{Ge}$, and GaP as the most important representatives, however, this transition is linked with a pulse change of the electron. Recombination is then only possible with the participation of third partners, for example, phonons or impurities. These must ensure pulse compensation. The energy released during the transition is mainly dissipated as heat to the grid. In indirect semiconductors, this leads to the probability of radiant recombination being less by orders of magnitude than in direct semiconductors. Nevertheless, effective radiant recombination can be generated in some indirect semiconductors. This is achieved by doping with isoelectronic impurities. The two most efficient isoelectronic impurities in GaP are the nitrogen atom and the zinc-oxygen pair. Radiant recombination is then achieved by way of the decay of an electron hole pair (exciton) bonded to the isoelectronic impurity (cp figure 2.2, right).
A high degree of crystal perfection is a precondition for the creation of effectively radiant recombination as crystal defects act as centers for non-radiating recombination. For this reason, the active layers of light emitting diodes are produced epitaxially at temperatures far below the melting point of the semiconductor material.

III-V compound semiconductors and mixtures of these can be used as materials for light emitting diodes as their energy gaps cover wide spectrum and the band structure, contrary to the classical semiconductors Si and Ge , enable the creation of effective radiant recombination. Above all, the semiconductors $\mathrm{GaAs}, \mathrm{GaP}$, and the terniary mixtures $\mathrm{Ga}(\mathrm{As}, \mathrm{P})$ and ( $\mathrm{Ga}, \mathrm{Al}$ ) As have practical significance.

Fig. 2.2
Dependence of energy states on the wave number vector $k$ in the case of direct (GaAs) and indirect (GaP) semiconductors.


## Infrared Emitters (IR LEDs)

IR emitters are based on GaAs which has an energy gap of approximately 1.43 eV , corresponding to emission of approximately 900 nm . Higher external quantum efficiencies can be achieved with these diodes than with light emitting diodes for the visible wave band. The left-hand side of figure 2.3 shows the schematic of the diode body of a silicondoped GaAs IRED. By means of liquid phase epitaxy (LPE), the active layer with a high crystal perfection can be grown onto a GaAs substrate. Due to the amphoteric characteristic of the silicon impurity, the pn junction forms automatically during the process of epitaxy. Due to the silicon doping, the emission lies at 950 nm and is thus so far underneath the band edge that the radiation created in the diode body is only absorbed to a slight extent. Part of the radiation leaves the diode body on a direct path through the near surface. However, radiation emitted in the direction of the substrate is also useful. For this purpose, the rear of the diode body is mirrored and serves as a reflection surface.
GaAs-IREDs are fitted in plastic packages or in hermetically sealed glass-metal housings.
An essential piece of information for the user is the radiation characteristic. If the light emitting diodes are used in an arrangement without optical lenses, for example, in a punch tape reading head, the radiation should have a small half angle. This is the case with LD260 to 269 and CQY77.
In conjunction with optical lens systems, designs are preferred in which the radiation leaves the component through a flat window (CQY78, SFH402).
Array designs are suitable for a wide range of applications as they can be rowed up in any configuration.

Further developments in the field of silicon-doped liquid phase epitaxial IREDs is aimed at expanding the wave band. The amphoteric character of the silicon doping is retained in the terniary mixed crystal (GaAl) As in that the energy gap can be varied by means of the amount of AI. In this way, it is possible to produce emission wave bands
between 850 and 900 nm and to tune the emitter diodes to the maximum detector sensitivity. With selectively sensitive detectors, it would be possible to create transmission systems with two (or more) optically separate channels.

## Electrical and Optical Characteristics of IR LEDs

Figure 2.4 shows the emission spectrum of the most important LEDs and the relative spectral contact sensitivity $\backslash \lambda$. With respect to the emission spectrum of the IRED relative to the sensitivity curve of the silicon photodiode, see figure 1.2.
The emission spectrum of the GaP diode ranges from the yellow to the green wave band. By dying the plastic seal, the emission band can be limited in such a way that the emitted light appears yellow ( $\lambda_{p}=575 \mathrm{~nm}$ ) or green $\left(\lambda_{p}=560 \mathrm{~nm}\right)$ to the viewer.

Fig. 2.4
Emission spectra of the most important LEDs


Fig. 2.3
Structure of the diode body of an IRED


In the case of GaAs diodes and the red $\mathrm{GaAs}_{0.6} \mathrm{P}_{0.4}$ diode, the emitted radiation (or luminous intensity, respectively) of IREDs and LEDs changes in the normal operating range in a linear relationship with the forward current while, in the case of TSN diodes and GaP diodes, it rises slightly overproportionally (figure 2.5).

Fig. 2.5
Light current - diode current characteristic


If the forward current is very high, the curve asymptotically approaches a threshold value. This is caused by a strong heating of the semiconductor system. The linearity range can be widened by switching from static to pulse operation. Non-linearity also turns up at small forward currents. It is caused by excess current not contributing to the radiation and cannot be influenced by the customer. Figure 2.6 shows the radiant power versus the forward current.

Fig. 2.6
Radiant power versus forward current


At constant current, the radiant intensity or luminous intensity, respectively, decreases with rising temperature. The temperature coefficient is $-0.7 \%$ per degree for GaAs, $-0.8 \%$ per degree for GaAsP, and $-0.3 \%$ per degree for GaP . This is negligible for many applications. If the temperature dependence proves disturbing, it can widely be eliminated by compensation circuits.

The radiant power emitted by LEDs declines with increasing length of operation ("aging"). A "life" of components was introduced to describe the degree of degradation. It is defined as the time after which the radiant power has fallen to half the value. In the case of IREDs, for example, the average life dependent on the operating current and ambient temperature is approximately $10^{5} \mathrm{~h}$ (extrapolated from continuous tests). Refer to figure 2.7.

Fig. 2.7
Radiated power versus operating life


## 3. Measuring Technique

## Detectors (Radiation sensitive components)

Radiation-sensitive semiconductor devices serve to convert radiation energy into an electrical one. Radiation energy can be offered to the component in manifold forms, depending on the source of radiation. For measuring purposes only such radiation sources can be taken into consideration which, in their spectral energy distribution, can easily be covered and are reproducible, i.e. thermic radiation sources like the tungsten filament lamp, which at least in the wavelength range here of interest comes very close to the black body and monochromatic light sources that means those emitting radiation of only one wavelength or at least of a very narrow wavelength range, above all light emitting diodes and a combination of whatever emitters with narrow band filters. Especially for applications with infrared emitting diodes (IREDs), this measurement of the spectral photosensitivity is increasingly gaining significance and is taking the place of integral measurement with standard light $A$.

Because of its high energy, the tungșten filament lamp is mainly used for measuring the radiation sensitivity when set to a "color temperature" of 2856 K , corresponding to standard light A as per IEC306-1 part 1 and DIN5033 while light emitting diodes are primarily employed for cut-off frequency and switching time measurements as they can be modulated or pulsed up to high frequencies. At this instance, we want to draw your attention to the following. The definition "color temperature" is limited in its use for the optoelectronic measuring technique, quasi only as auxiliary. But unfortunately the term has come to stay. In practice the lamps are not calibrated to color temperature but to "relative temperature in the visible range", mostly to a green-red relation. An extension to a red-green-infrared relation and thus an approach to the, for our measuring technique solely correct, "distribution temperature" in the wavelength range 350 to 1200 nm , or even better 300 to 1800 nm , is worth aspiring after. This still meets with objections on the part of lamp manufacturers to extend their calibration equipment and the relatively small quantity of lamps required.
The tungsten filament lamps used for measuring purposes have to be set to a relative spectral energy distribution that corresponds to that of the black body at a temperature of normally 2856 K at least in the wavelength range 350 to 1200 nm , and have to be operated under very stable conditions. It is necessary to have the lamp operated with constant current, the deviation from the rated value must be kept less than $\pm 0.1 \%$. This requirement seems to be very high, but one has to consider that a deviation of the lamp current by $0.1 \%$ brings about a change of the radiant intensity by $0.7 \%$ and, of the color temperature, by 2 K . Naturally, the lamp can also be operated with constant voltage but this is hard to realize in practice because of the inevitable and varying contact resistances in the lamp socket, therefore an operation with constant current is to be preferred.

A lamp voltage check at the same time permits a control of the lamp with regard to a change in its characteristics, for example, by evaporating of coiled filament material which would point to the fact that the lamp is no longer suitable for measuring purposes and has either to be replaced or calibrated anew. This check is mainly recommended for the "standard lamps" which are standard for color temperature, radiant and/or luminous intensity.

For general measuring purposes, serial measurements in particular, the standard lamps gauged by the PTB or the manufacturer are usually not used because of the calibration costs. Therefore, the service lamps are set to the given ratings by a comparison with these standard lamps.

## Photosensitivity

For photosensitivity measurements (photocurrent or photovoltage) the components to be measured are placed at the position predetermined for the specific irradiance and there they are held in such a way that the radiant sensitive surface of the semiconductor chip is vertical to the direction of light. Cylindric components such as in TO18, TO5 or similar plastic packages are put up so that the package axis coincide with the direction of radiation. This is of prime importance for components with a highly focusing lens. A holder with a sliding socket for the terminal wires proved useful (see figure 3.1).

Fig. 3.1
$I_{p}$ test set-up for photoelectric devices


## Solid Angle

The solid angle is a part of space. It is limited by all the beams which radiate conically from one point (radiation source) and which end on a closed curve in the space. If this closed curve lies on the unitary sphere (radius $R=1 \mathrm{~m}$ ) and envelopes an area of $1 \mathrm{~m}^{2}$, and if all rays originate from the center point of the unitary sphere, the solid angle has one sterad (sr).

Fig. 3.2
Solid angle (1 sterad)


## Short-circuit Current

When measuring the short-circuit current $I_{\mathrm{s}}$ of photovoltaic cells care has to be taken that the internal resistance of the measuring instrument used is small enough compared to the internal resistance of the photovoltaic cell. The same applies to measuring the open circuit, the internal resistance of the measuring instrument is large compared to the internal resistance of the photovoltaic cell.

Fig. 3.3
I or $V$ versus load resistance for photovoltaic cell BPY11


## Switching Times

The switching times are measured oscillographically by a set-up as shown in the circuit diagram below (figure 3.4) by means of a pulsed infrared emitting GaAs diode as a measuring source and a double-beam oscillograph. The switching times of the GaAs must, of course, be small compared to the switching times of the component to be measured.

Fig. 3.4
"Measuring the switching times of detectors"


Fig. 3.5
Switching time definitions


Turn-on time $t_{o n}$ :
The time in which the collector current $I_{C}$ rises to $90 \%$ of its maximum value after activation of the drive current $I_{F}$.
Rise time $t_{r}$ :
The time in which the collector current $I_{\mathrm{c}}$ rises from $10 \%$ to $90 \%$ of its final value.
Turn-off time $t_{\text {otf }}$ :
The time in which the collector current $I_{\mathrm{c}}$ drops to $10 \%$ of its maximum value after deactivation of the drive current $I_{F}$
Fall time $t_{t}$ :
The time in which the collector current $I_{C}$ drops from $90 \%$ to $10 \%$ of its maximum value.

## Radiation in the Infrared Range

The radiant intensity $I_{e}$ in the direction of the case axis should be measured by a wavelength independent detector (thermocouple element) but low sensitivity, inertia, and temperature sensitivity cause difficulties. For this reason, one usually measures with a correspondingly calibrated photovoltaic cell. In such case, the spectral sensitivity curve of the photovoltaic cell has to be considered and the
measuring result corrected with regard to the deviations in the emitted wavelength of the radiator to be measured (for example IRED with different production technology). If the total radiation of the component shall be measured, the IRED has to be fitted in a parabolic like reflector to ensure that all radiation emitted by the component reaches the photovoltaic cell that forms the end of the parabola.

Figure 3.6 shows the outline of such a measuring parabola. As for the rest, the same requirements apply as for radiant intensity measurements.

Fig. 3.6
Calibrated photodiode with amplifier (for example BPW33)


In cases where IRED emitting diodes are used in connection with mirrors or lenses, for example in light barriers, it can prove useful to state the radiant power (radiation capacity) $\Phi_{\mathrm{e}}$ defined in a cone with the half angle $\varphi$, or the curve $\boldsymbol{\Phi}_{\mathrm{e}}=\mathrm{f}(\varphi)$, respectively (see figure 3.7).

Fig. 3.7
Radiation cone and radiant flux $\Phi_{\mathrm{e}}$ versus the half angle $\varphi$


## Switching Times

For measuring the switching times the same applies as to the radiant sensitive components except that now a photodiode serves as detector and its switching time must be small compared to that of the IRED or LED to be measured.


## 4. Terms and Definitions

## Radiation and Light Measurements

	Radiometric terms				
No.	Term	Sym-   bol	Unit	Relation	Simplified definition
Radiant					
power					

Indices "e" (= energetic) and " $v$ " (= visual) may be omitted unless danger of confusion
DIN 1301, DIN 1304, DIN 5031, DIN 5496
International Dictionary of Light Engineering, 3rd Ed. publ. by CIE and IEC

	Spectral radiometric terms			Photometric terms		
No.	Term	Symbol	Unit	Term	Symbol	Unit
1	Spectral radiant power distribution	$\Phi_{\text {ex }}$	$\frac{W}{n m}$	Luminous flux	$\Phi_{v}$	Im Lumen
Emitter						
$2$	Spectral radiant intensity distribution	$\mathrm{I}_{\text {e }}$	$\frac{\mathrm{W}}{\mathrm{srnm}}$	Luminous intensity	Iv	$\frac{\mathrm{Im}}{\mathrm{sr}}=\mathrm{cd}$   Candela
$3_{d A_{1}}$	Spectral radiance distribution	$L_{\text {ei }}$	$\frac{\mathrm{W}}{\mathrm{~cm}^{2} \mathrm{srnm}}$	Luminance	$L_{v}$	$\frac{c d}{\mathrm{~cm}^{2}}=\mathrm{sb}$   Stilb
Sensor						
4	Spectral irradiance distribution	$E_{\text {er }}$	$\frac{W}{m^{2} \mathrm{~nm}}$	Illuminance	$E_{v}$	$\frac{\mathrm{lm}}{\mathrm{~m}^{2}}=1 \mathrm{~lx}$   Lux


$d A_{1}=$ element of area of emitter $d A_{2}=$ element of area of detector $\varepsilon_{1} \quad=$ angle of radiation

## Photometric Basic Law

$d^{2} \Phi=L \frac{d A_{1} \cdot \cos \varepsilon_{1} \cdot d A_{2} \cdot \cos \varepsilon_{2}}{R^{2}} \Omega_{0}$

Inverse Square Law
$E=\frac{I}{R^{2}} \cos \varepsilon_{2} \Omega_{0}$
( $r$ should be 10 times the max.
spacing of emitter-detector to keep error below 1\%).
$\varepsilon_{2}=$ angle of irradiation
$R=$ spacing emitter-detector
$\Omega_{0}=\mathbf{s r}$

## Radiation Characteristics

Designation	Symbol	Meas. quant.	Abbr.	Definition
Quantity of radiation	Q	Joule   Wattsecond	$\begin{aligned} & \mathrm{J} \\ & \text { Ws } \end{aligned}$	Quantity of radiation through a surface
Radiant power	$\Phi$	Watt	W	Quantity of radiation Q per second through a surface
Point source of radiation	-	-	-	... is a source viewed from such a great distance $R$ that all rays seem to emanate from one point. The max. linear expansion of the source must be substantially smaller than the distance $R$ (example: sun for observer on earth).
Solid angle	$\Omega$	Sterad	sr	$\Omega=\frac{A_{1}}{R_{1}{ }^{2}}=\frac{A_{2}}{R_{2}{ }^{2}}=\frac{A_{3}}{R_{3}{ }^{2}}=\frac{A}{R^{2}}$   the radiant power $\Phi[\mathrm{W}]$ of a point source is constant in solid angle. (Prerequisite: homogenous, undamping medium.) $\Omega=1 \text { is } A=R^{2} \text { so that } \Omega_{\text {nemisphere }}=\Omega_{\varnothing}=2 \pi \mathrm{sr} ; \Omega_{\text {ful sphere }}=\Omega_{\mathrm{O}}=4 \pi \mathrm{sr}$
Radiant intensity	I	$\frac{\text { Watt }}{\text { sterad. }}$	$\frac{\mathrm{W}}{\mathrm{sr}}$	$\ldots$.. is the solid angle density of the radiant power $\left(\frac{\mathrm{d} \Phi}{\mathrm{d} \Omega}\right)$   $I$ of one source generally varies depending upon viewing direction.   $I$ only defined when $\mathrm{R} \rightarrow \infty$
Total radiant power of a source	$\Phi_{\text {tot }}$	Watt	w	$\Phi_{\mathrm{tot}}=\int_{0}^{4.7} \mathrm{I} \mathrm{~d} \Omega$
Irradiance	$E$	$\frac{\text { Watt }}{\text { meter }^{2}}$	$\frac{W}{m^{2}}$	... is the surface density of the radiant power (spherical surface) for a point source. $E=\frac{\mathrm{d} \Phi}{\mathrm{~d} A} ; \mathrm{d} A=R^{2} \mathrm{~d} \Omega \quad E=\frac{\mathrm{d} \Phi}{\mathrm{~d} \Omega R^{2}}=\frac{\mathrm{I}}{R^{2}} ; \quad \mathrm{I}=E R^{2}$
Radiance	$L$	$\frac{\text { Watt }}{\mathrm{m}^{2} \text { sterad }}$	$\frac{W}{m^{2} s r}$	...is the radiant intensity referred to the radiant surface viewed by the observer. (Surface projection $A_{\rho}=A \cos \varepsilon$, when $\varepsilon$ is the angle by which the radiant surface is rotated against the connecting line to viewer. $\left.L=\frac{I}{A_{p}}=\frac{I}{A \cos \varepsilon}\right)$. Important optical quantity.   1) In an undamped beam path $L$ is maintained and cannot be increased by any optical measure.   2) The human eye sees differences in radiance as differences in brightness.
Sensitivity of detector	$S=\frac{I}{E}$	$\frac{\text { Ampere }}{\text { irradiance }}$	$\frac{A \cdot m^{2}}{W}$	Electrical quantity (current, voltage or resistance) in relation to irradiance

## Illuminance (units and conversion factors)

	lx	mlx	ph	fc	
1 Lux $=\mathrm{lx}$	$=$	1	$10^{-3}$	$10^{-4}$	$9.29 \times 10^{-2}$
1 Millilux $=\mathrm{ml} \mathrm{x}$	$=$	$10^{-3}$	1	$10^{-7}$	$9.29 \times 10^{-5}$
1 Phot $=\mathrm{ph}$	$=$	$10^{4}$	$10^{7}$	1	929
1 Footcandle $=\mathrm{fc}^{4}$ )	$=$	10.76	10760	$1.076 \times 10^{-3}$	1



Illuminance



[^85]Figure 5.1
Conversion of illuminance $E_{v}$ into irradiance $E_{e}$
(Planck's black body)


Figure 5.2
Conversion of illuminance $E_{\mathrm{v}}$ into irradiance $E_{\mathrm{e}}$ at 2856 K
(Planck's black body)

Lux $=\frac{\text { Lumen }}{m^{2}}$
$10^{6}$

(10
$10^{2}$
5

$10^{1}$


Luminous density (units and conversion factors)

Units	sb	$\mathrm{cd} / \mathrm{m}^{2}$	$\mathrm{cd} / \mathrm{ft}^{2}$	$\mathrm{cd} / \mathrm{in}^{2}$	asb	L	Lm	ftL
1 Stilb $=\mathrm{cd} / \mathrm{cm}^{2}=\mathrm{sb} \quad=$	1	$10^{4}$	929	6.45	31400	3.14	3140	2920
$1 \mathrm{~cd} / \mathrm{m}^{2}=\mathrm{Nit}=\mathrm{nt} \quad=$	$10^{-4}$	1	$9.29 \times 10^{-2}$	$6.45 \times 10^{-4}$	3.14	$3.14 \times 10^{-4}$	0.314	0.292
$1 \mathrm{~cd} / \mathrm{ft}^{2}$ =	$1.076 \times 10^{-3}$	10.76	1	$6.94 \times 10^{-3}$	33.8	$3.38 \times 10^{-3}$	3.38	3.14
$1 \mathrm{~cd} / \mathrm{in}^{2}$	0.155	1550	144	1	4870	0.487	487	452
1 Apostilb = asb $=$	$3.18 \times 10^{-5}$	0.318	$2.96 \times 10^{-2}$	$2.05 \times 10^{-4}$	1	$10^{-4}$	0.1	$9.29 \times 10^{-2}$
1 Lambert = L or la	0.318	3183	296	2.05	$10^{4}$	1	$10^{3}$	929
1 mL or mla $=$	$3.18 \times 10^{-4}$	3.18	0.296	$2.05 \times 10^{-3}$	10	$10^{-3}$	1	0.929
1 footlambert =								
1 equivalent footcandle $=$	$3.43 \times 10^{-4}$	3.43	0.318	$2.21 \times 10^{-3}$		$1.076 \times 10^{-3}$		
1 apparent footcandle ftL or ftla $=$	$3.43 \times 10^{-4}$	3.43	0.318	$2.21 \times 10^{-3}$	10.76	$1.076 \times 10^{-3}$	1.076	1



## Electromagnetic radiation

## Figure 5.3

Frequency and wave bands


Figure 5.4
Relative sensitivity of different light-sensitive detectors



Figure 5.5
Nomogram for electromagnetic radiation


Figure 5.6
Visual efficiency $\eta$ of the total radiation of a black body versus temperature



## SIEMENS Surface Mounting Appnote 38

## 1. What is Surface Mounting?

In conventional board assembly technology the component leads are inserted into holes through the PC board and connected to the solder pads by wave soldering on the reverse side (through-hole assembly). In hybrid circuits (thick and thin film circuits) "chips", i.e. leadless components, are reflow soldered (see chapter 7.2) onto the ceramic or glass substrate in addition to the components already integrated on the substrate. Surface mounting evolved from these two techniques (fig. 1).

In through-hole technology the components are placed on one PCB side (component side) and soldered on the other (solder side) (fig. 1, top), whereas in surface mount technology the components can be assembled on both sides of the board (fig. 1, bottom). The components are attached to the PCB by solder paste or non-conductive glue and then soldered.

In the near future mixed assemblies, i.e. a combination of leaded and surface mounted components, will prevail, since not yet all component types are available as surface mount version.

Automatic assembly machines are a must for an expedient production; there are systems for simultaneous and for sequential assembly (see chapter 12).

The following explanations point out what actually new in surface mounting is:

- Up to now the connection of materials with large differences in the thermal coefficient of expansion, such as plastic boards and ceramic components, by rigid soldering has been regarded as a serious problem. Practice has shown, however, that this is feasible owing to the elasticity of board and solder; of course, component size and thermal stress are subject to certain restrictions (see chapter 4).
- Components for surface mounting have to withstand high thermal stress during the soldering procedure. Not all component types meet these requirements; therefore new components suitable for surface mounting are constantly developed (see chapter 4).

In some cases the components are non-conductively glued to the PCB before soldering.

- As compared to through-hole technology there is a closer interrelation between the individual steps in design and production.
- Automatic assembly gains prior importance.

Figure 1 Through-hole assembly - Hybrid technology Surface mounting


## 2. What are SMDs?

The abbreviation SMD* for Surface Mounted Device is the most common designation for this new component. SMDs are designed with soldering pads or short leads and are much smaller than comparable leaded components. In contrast to conventional components, the leads of which must be inserted into holes, SMDs are directly attached to the surface of the PCB and then soldered. In figure 2 and the section below the various SMD types are summarized. Surface mountable components include "chips"** with cubic dimensions, cylindrical SMDs, plastic packages with solder pins (SOT, SO, VSO package), chip carrier packages, miniature IC packages (Quad Flat Pack, Flat Pack), TAB components and special SMDs such as inductors, trimmers, quartz crystals, switches, plugs, relays etc.

* Besides, the terms SMC (Surface Mounted Component), SMT (Surface Mount Technology), SMA (Surface Mount Assembly) are used.
** The designation "chip" should only be used when confusion with semiconductor chip as used in semiconductor technology can be excluded.

SMD types:
(see also chapter 13 "Siemens SMD Product Spectrum")
Cubic components ("chips")
Preference types 0805, 1206, 1210, 1812, 2220, ...
Cylindrical components
MELF ${ }^{1}$, MINIMELF, MIKROMELF
TUBULAR (e.g. tubular capacitors)
SOD 80 (MELF-similar diodes)
SOT 23, 143, 89, 192
$\mathrm{SO}^{2)} 4 \ldots 28$ pins (SOIC)
$\mathrm{VSO}^{3)} 40$ pins
CHIP CARRIER
Plastic case ( PLCC 4 )
Ceramic case (LCCC ${ }^{5}$ )
ICs with gull-wing leads
Flat Pack
Quad Flat Pack
MIKROPACK TAB ${ }^{6)}$
Special packages for: Inductors, SAWs ${ }^{77}$, trimmers, quartz crystals, switches, plugs, relays etc.
${ }^{1)}$ Metal Electrode Face Bonding
2) Small Outline
${ }^{3)}$ Very Small Outline
4) Plastic Leaded Chip Carrier
${ }^{5}$ ) Leadless Ceramic Chip Carrier
${ }^{6)}$ Tape Automated Bonding
${ }^{\text {7) }}$ Surface Acoustic Wave Filter

Figure 2 SMD types


Most of these components are suitable for dip soldering; chip carriers, TAB (MIKROPACK) and some special versions require other soldering methods.
Resistors, ceramic capacitors and discrete semiconductors represent at $80 \%$ the largest part of the SMD spectrum. In the range of SMDs the cubic shape prevails over cylindrical versions, as the latter can only have two pins thus being exclusively suitable for resistors, capacitors and diodes.

If development of a special SMD package is not advisable for electric or economic reasons, the DIP package can be converted into a surface mountable version by bending the leads (see chapter 13.2, optocouplers in DIP 6 SMD package).

Package	Dimensions (mm)	Standard
$\begin{aligned} & 0805 \\ & 1206 \\ & 1210 \\ & 1812 \\ & 2220 \end{aligned}$	$\begin{aligned} & 2.0 \times 1.25 \\ & 3.2 \times 1.6 \\ & 3.2 \times 2.5 \\ & 4.5 \times 3.2 \\ & 5.7 \times 5.0 \end{aligned}$	IEC   IEC   IEC   IEC   IEC
MELF   MINIMELF   MIKROMELF   SOD 80	$\begin{aligned} & 5.9 \times 2.2 \phi \\ & 3.6 \times 1.4 \varnothing \\ & 2.0 \times 1.27 \varnothing \\ & 3.5 \times 1.6 \varnothing \end{aligned}$	
SOT 23   SOT 143   SOT 89   SOT 192	$\begin{aligned} & 3.0 \times 1.3 \\ & 3.0 \times 1.3 \\ & 4.5 \times 1.5 \\ & 4.5 \times 4.0 \end{aligned}$	DIN 23 A 3 JEDEC TO-236 DIN 23 A 3 JEDEC TO-243
$\begin{aligned} & \text { SO } 4 \ldots 28^{1)} \\ & \text { VSO (SOT } 158)^{2)} \\ & \text { PLCC } \\ & \text { LCCC } \end{aligned}$	spacing 1.27   spacing 0.76   spacing 1.27   spacing 1.27	JEDEC MO-046...   JEDEC MO-04...   JEDEC MO-04...


| 1) SO 6 | $3.9 \times 4.0$ or $3.9 \times 6.2$ (incl pins) |
| :--- | :--- | :--- |
| SO 8 | $5.2 \times 4.0$ or $5.2 \times 6.2$ (incl. pins) |
| SO 14 | $8.8 \times 4.0$ or $8.8 \times 6.2$ (incl. pins) |
| SO 20 L $12.8 \times 7.6$ or $12.8 \times 10.7$ (incl. pins) |  |
| 2) VSO | $15.5 \times 7.6$ or $15.5 \times 12.8$ (incl. pins) |

An important factor for automatic assembly is the components' adequate and uniform geometry. Some packages are already standardized (IEC) or are proposed for standardization (JEDEC Recommendation).

For more than ten years Siemens has offered its customers SMDs and thus has gained considerable experience in the field of SMD production through continual modernization and development. The spectrum of active and passive components available covers ICs, transistors, diodes, ceramic multilayer capacitors, NTC thermistors, as well as SIFERRIT miniature ferrites, and the product menu is growing larger almost daily.

## 3. Advantages of Surface Mounting

The three major benefits of surface mounting

- rationalization
- miniaturization
- reliability
are discussed in the following.
A consistent concept as regards components, board layout, assembly machines, processing and testing is essential for an efficient application of surface mount technology; in other words, the aim should be an optimized overall concept. The component price, for example, should not be seen isolated, but with regard to the total cost including placement, soldering and testing
which may already be considerably lower than with conventional board assembly technology.
In the following the advantages of surface mounting are analyzed as to component, PC board, automatic assembly, reliability and rework.


### 3.1 Components

- SMDs are much smaller than leaded components, thus enabling smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
- Light weight makes them ideal for mobile appliances.
- No leads means high resistance to shock and vibration.
- Cutting and bending of leads are eliminated.
- Parasitic inductance and capacitance due to leads are substantially lowered making SMDs particularly suitable for RF applications.
- Automatic assembly machines ensure accurate placement.
- MIKROPACKs, PLCCs and similar packages permit a considerably higher number of pins.
- Closer capacitance tolerances can easily be obtained for capacitors with low capacitance values.
- The growing demand for SMDs results in lower production costs, so that further cost reductions can be anticipated. The surface mount version of ceramic multilayer capacitors, for example, is even today cheaper than the leaded version.


### 3.2 Printed Circuit Board

- Surface mount technology makes PC boards smaller. When using SMDs on both sides of the board, size can be recuced by more than 50 per cent. On the other hand, maintaining the PCB size implies reduced packing density and thus higher yields and higer reliablity.
- In many cases the printed circuits can be shortened and reduced in number. Owing to the compact "leadless" construction the electrical characteristics can easily be reproduced, thus cutting the cost for adjusting RF circuits.
- Surface mount technology does not require a special PCB material; standard materials such as phenolic resin laminated paper and glass-fiber laminated epoxy material are quite suitable, but of course, special materials, e.g. for RF circuits, can be used, too. For normal packing density the printed circuit precision should meet current requirements.
- The elimination of through-holes entails a further cost reduction. This is quite an important factor, as the cost for the drilling of holes can amount up to $10 \%$ of the total PCB cost.
- Mixed assembly with leaded components is possible. The reason for using this assembly variation was explained in the beginning.


### 3.3 Assembly

The average cost per component for automatic assembly can be considerably cut by surface mounting, because the smaller number of assembly machines" entails less capital investment, maintenance, servicing and factory space.

- A major advantage of surface mounting are the high component placement rates attained by automatic placers. Fast machines can place several hundred thousand components on the PCBs per hour.
- Automatic placement systems for SMDs feature high placement reliability. Failure rates of less than or equal to 20 ppm (parts per million) can be obtained by machines capable of identity checking and defective recognition. This means that out of a million placed components only max. 20 are not at all or incorrectly assembled.
- In mixed assembly any ratio of SMDs and leaded components is possible, thus facilitating transition to the new technology.
- Some automatic placement systems can handle a wide range of different components. For details see chapter 12.3.


### 3.4 Reliability

The demands on quality and reliability of PCB assemblies increase steadily. It is a matter of fact, that in this respect SMDs have at least to meet the standard set by conventional through-hole technology.
As surface mount technology is a relatively new development, sufficient proven information on quality and reliability is not yet available. However, the following general statements can be made:

- The failure rate of SMDs does not exceed that of leaded components. Omission of leads means one point of contact less. Owing to their small size and light weight SMD assemblies feature a higher resistance to mechanical stress (vibration, shock) than the corresponding assemblies with leaded components.
- A quality approval for SMDs used in hybrid circuits can be usually applied to surface mounting, as well.
- High requirements are placed on the solderability of SMDs. The specifications for wetting, leaching and storage have to be observed (see chapter 7).
- In many cases the soldering methods are the same as with other mounting methods. The known advantages and disadvantages apply to surface mount technology as well. One should bear in mind, however, that the criteria for judging solder joints are different for wave soldering and reflow soldering (see chapter 7.2). For example, the filling of through-holes with solder is only possible with the wave soldering method, with reflow soldering the amount of solder is too small.
- If components have to be replaced because of incorrect assembly, reliablity of the board - although correctly assembled then - is diminished. Hence, automatic placement systems with their high degree of placement reliability enhance board reliability.


### 3.5 Rework

Elimination of component preparation, high placement reliability provided by automated systems, and careful planning of each step of the design and production process considerably reduce expensive rework of PCB assemblies with SMDs.

[^86]
## 4. Restrictions and Special Features of Surface Mounting

Maximum packing density - one of the primary goals in surface mount technology - requires the use of miniature components, i.e. certain IC packages (e.g. VSO or MIKROPACK). This involves problems, not necessarily resulting from surface mount technology as such, but from miniaturization in general.

- The use of high-pin-count ICs may require new PCB design (fine etching and super-fine etching) and an increased number of layers (multilayer) because the space between the IC pins is too narrow for printed circuits.
- Due regard must be paid to heat dissipation. The high packing density may cause thermal problems. Special PCBs with good thermal conductivity can aid heat removal, if necessary.
- The use of ceramic components is restricted. Due to the different thermal expansion coefficient of ceramic and PCB material, ceramic SMDs with edges longer than 6 mm should not be used on phenolic resin laminated paper and epoxy glass fiber boards.
- Not all SMDs are suitable for dip or wave soldering. This has to be considered when designing the PC board.
- Some components are not yet available as SMD version. Not all SMDs available are standardized.
- High voltages naturally require certain minimum spacings.
- Visual inspection of solder joints becomes difficult if the leads are partially beneath the component body. Therefore, soldering methods should be optimized so that visual inspection will become unnecessary.
- Test methods have to be adjusted to SMD assemblies. Development of new adapters may be required.
- Repair of SMD assemblies may be more costly as compared with conventional PCB assemblies.


## 5. Market Forecast for SMD Applications

Figure 3 shows the increasing share of surface mount technology in the market. Internationally, the replacement of leaded components on PCB assemblies by SMDs is expected to reach $50 \%$ by 1990.

Figure 3 Trends in mounting techniques


## 6. Fixing SMDs by Glue

New in surface mounting is the gluing procedure required for fixing the components when the PC board is to be turned upside down for soldering. The glue has to meet numerous requirements. It must provide reliable fixing of the components (also of heavy ones) on all kinds of PC boards. Furthermore, it should feature uniform viscosity to ensure easy handling; a pot life of at least several days is advisable. The glue should feature short curing time at low temperature. After curing the glue must not show chemical reactions in order not to impair board or components. On the one hand the adhesive is required to withstand high thermal stress, and on the other hand it must permit removal of SMDs from the assembled board in case of repair. For repairs the component body is heated, so that the adhesive becomes soft and allows the component to be removed without damaging the printed circuit below it. The glue has to be non-toxic, as odorless as possible, and free of solvents. Besides, it should feature good heat conductivity. Development of new adhesives is under way.

The component outline should be such that the adhesive can easily be applied, i.e. the distance between component body and board must be closely tolerated (fig. 4).

There are three methods of dispensing the glue

- by applicator
- by pin transfer
- by screen printing.

Not all adhesives are equally suitable for all methods.
The Siemens pick-and-place machine (see chapter 12.3) dispenses the glue by an applicator simultaneously with the placement process.

Figure 4 Form of the glue dot and component outline Component and glue dot have to be shaped such that the component is reliably wetted while the contact area remains free of glue.


## 7. Soldering Techniques

An appropriate soldering method is particularly important for obtaining good electrical contact and inhibiting short circuits. The choice of the soldering procedure depends on the PCB design (single or double-clad, multilayer etc.), the components supplied, and the production facilities. While many SMDs are suitable for all soldering methods, the soldering technique for ICs, for example, has to be chosen very carefully. Besides manual soldering, which should only be used for repair purposes, there are several automated soldering methods such as bath soldering (wave and dip soldering) and reflow soldering.
With bath soldering the solder is applied during the soldering process itself, whereas with reflow soldering the solder is applied before. For this reason the preconditions for bath soldering, e.g. component orientation and configuration are quite different from those for reflow soldering. The reflow method is particularly advisible for soldering certain ICs (see chapter 9).

### 7.1 Wave soldering

Wave soldering is the most popular automated soldering process in the production of PCB assemblies. The solder bath temperature lies between 240 and $260^{\circ} \mathrm{C}$ and the dwell time is 1 to 3 seconds. Before soldering the flux is applied.

High packing density on the PCB side to be wave soldered involves the problem of solder bridges and shadows (not completely wetted leads and pads). Therefore, PCB layout, i.e. component configuration, should match the soldering method used.
Dual-wave soldering best meets requirements of surface mounting. The first turbulent wave sends up a jet of solder to ensure good wetting of all metalization areas, while the second more laminar wave removes the excess solder (solder accumulations and bridges).

### 7.2 Reflow soldering

In reflow soldering a specific amount of solder, e.g. in form of solder paste, is applied to the PC board. After attaching the SMDs the reflow process is performed by one of the following methods:

- vapor phase soldering
- hot gas soldering
- heat collet soldering
- infrared soldering.

The latest reflow technique is vapor phase soldering, where the entire PC board is uniformly heated until a defined temperature is reached; there is no possibility of overheating. The defined temperature (e.g. $215^{\circ} \mathrm{C}$ ) in a saturated vapor zone is obtained by heating an inert (neutral) fluid to the boiling point. A vapor lock above this primary vapor zone prevents the expensive primary medium from escaping (fig. 5).

Figure 5 Principle of vapor phase soldering


When the assembled PC board is immersed in the vapor zone the vapor condenses at the cold parts and transfers its heat to the workpiece. Adequate heating control ensures continuous vapor supply. Summing up, it can be said that vapor phase soldering is a very gentle method that excludes overheating. At present it is the best reflow soldering method, if components with different thermal capacity are densely positioned or if adequate heating cannot be provided otherwise.

Other methods are hot gas and infrared soldering in continuous-type furnace. As compared to vapor phase soldering these methods have the disadvantage of poor heat transfer and nonuniform heating effect on components with different thermal capacity.
For heat collet or pulse soldering a collet or a soldering iron is used to transfer the heat to the component leads. It is important to force the leads into reliable contact with the solder pads before and during the soldering process. This method is preferably used for MIKROPACK and Flat Pack packages.

### 7.3 Iron soldering

Manual soldering with temperature-controlled miniature iron should only be used in exceptional cases (repair, etc.), because this method is not only uneconomic, but can also damage components or PC board.

### 7.4 Fluxes, cleaning agents

Wave soldering requires no other fluxes than those used for conventional techniques (e.g. collophony F-SW32 in accordance with DIN 8511).

Most of the solder pastes required for reflow soldering, however, contain aggressive fluxes the residues of which must be removed by a cleaning process.

### 7.5 Conductive adhesion

Conductive adhesion is not a soldering process, but shall be described here for the sake of completeness. It is not very often used since most conventional PC boards with a surface of tin or solder tin are not suitable for gluing. If components or PC board permit gluing, silver-filled mixed epoxy resin adhesives can be recommended. These can be spread by an applicator, screen printing, or by pin transfer. The times required for curing are between 1 min and 12 h depending on the temperature. The thermal stress imposed on the components is less than with soldering, but the adhesion process must be performed separately after soldering the other components.

## 8. Assembly Variations

Figure 6 shows the PCB assembly variations possible with SMDs: Assemblies exclusively with SMDs in the top row (fig. 6a and 6b), mixed assemblies, i.e. SMDs combined with leaded components in the middle (fig. 6 C and 6 d ), and mixed assembly consisting of dip solderable components (on solder side) and non-dip-solderable components (on component side) in the last row (fig. 6e). The versions illustrated in figures 6b, d, e require double-clad PC boards.

Figure 6 Variations of PCB assemblies


In mixed assemblies with SMDs and leaded components (fig. 6c and 7) the leaded components are usually placed first, then the board is turned over and the glue applied. Subsequently the SMDs are placed, the glue is cured and after a renewed turn over the board is wave soldered.

Figure 7 Mixed assembly of SMDs and leaded components (variant 1)


The second variant shown in figure 8 differs from the first in so far as the glue is applied by screen printing at first; the following production steps are executed as illustrated in figure 8 . This procedure has the advantage that the glue can be applied by screen printing, however, it has to be taken into account that because of the already mounted SMDs vacant board space is required for the mounting tools of the insertion machines, which are needed for cutting and bending the leads of conventional components.

Figure 8 Mixed assembly of SMDs and leaded components (variant 2)


The procedure for double-sided SMD mounting is as follows:

- Screen printing of solder paste
- SMD placement
- Reflow soldering
- Insertion of leaded components
- PCB turn over
- Application of glue
- Placement of SMDs on the reverse side
- Curing of the glue
- PCB turn over
- Mounting of components requiring special handling
- Fluxing, wave soldering

Here both reflow and wave soldering are used. Assemblies including leaded components always require wave soldering.

The aim is a uniform mounting procedure with the exclusive use of SMDs. Figure 9 shows examples for totally surface mounted assemblies with reflow soldering (top) and wave soldering (bottom).

Figure 10 is a flow chart for the various assembly and soldering variants.

Figure 9 PC board exclusively with SMDs, reflow soldered or wave soldered


Figure 10 Possible assembly procedures for SMDs and leaded components

SMDs single-sided wave soldering

SMDs singie-sided,
reflow soldering

SMDs double-sided

Mixed assembly,
SMDs single-sided

Mixed assembly,
SMDs double-sided


# Solderability of the Small Outline Coupler Appnote 39 

by Karsten Uhde<br>Jim Hopper

## OBJECTIVE

Investigate the effect of various surface mount component assembly operations on the electrical and mechanical performance of the small outline coupler (SOC).


## SUMMARY

The small outline coupler is an SOIC-8 package, modified in height to achieve adequate isolation between input and output. Because of the reduced package dimensions of the device and the rigorous soldering techniques that surface mount technology requires, the coupler was submitted for testing under wave solder, vapor phase, and IR reflow processes.

The SOC performed well in all the assembly and soldering tests. All three soldering processes can be safely used with no trade-off in electrical performance (data sheet compliance) or package integrity (hermeticity). For wave soldering, correct orientation of the devices is recommended to minimize solder bridging.

## DESCRIPTION

A test lot of 240 SOC's were processed through a state-of-the-art surface mount assembly line (see Table 3, Equipment). The couplers were mounted in lots of ten on $5^{\prime \prime}$ by $5^{\prime \prime}$ test boards using the Dyna Pert MPS-118 pick and place machine. The assembled boards were prepared for soldering by curing and preheating. The soldering processes chosen were the three most common techniques; wave soldering, vapor phase, and IR reflow. The tests varied the durations, temperature profiles, and repetitions. After the first and last soldering steps, the boards passed through a cleaning operation (See 4, Cleaning Conditions).

All 240 couplers were tested for compliance to the IL212 specification after each soldering step. For each soldering technique, read and record data was taken on twenty devices (see Table 2, Worst Case Examples). To study the effect of solder heat on package integrity and long term reliability, two lots of unmounted SOC's were submerged in $260^{\circ} \mathrm{C}$ solder and then subjected to pressure pot and $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ tests.

## 1. DUAL WAVE SOLDERING

## A. Process Description

The Dyna Pert MPS-118 was used for the automatic epoxy dispensing and the pick-and-placement of the SOC. After curing the epoxy for 3 min . at $110-120^{\circ} \mathrm{C}$ the boards passed through the Electrovert Century 3000 dual wave solder machine (Figure 1, Wave Soldering Procedure).
This equipment has 2 waves, $2^{\prime \prime}$ and $4^{\prime \prime}$ wide respectively and $4^{\prime \prime}$ apart. The first wave is turbulent to avoid shadowing on high density boards and to reach all exposed contacts with liquid solder. The second wave is homogeneous and removes excess solder, i.e., solder bridges.

After the first and the last pass through the solder equipment, the boards were cleaned to remove flux and other residue.
B. Process Conditions

NORMAL PROCESS
4 boards, 40 units
Preheating Temp/Time: $25^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}$, linear/12 min.
Solder Temp/Time: $256^{\circ} \mathrm{C} / 4$ seconds (submerged)
Cleaning
Number of passes: 2
Result: 0/40 failures to IL212 spec. (See Table 2, Group 1 for read/record data)

NORMAL PROCESS, Repetitive
2 boards, 20 units
Same as normal process except:
Number of passes: 5
Result: 0/20 failures to IL212 spec.

## 2. VAPOR PHASE SOLDERING

A. Process Description

After the solder paste screening of the boards, the couplers were placed on the PC boards. To harden the solder paste, the boards were heated to $110^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ for three minutes. This curing secures component positioning during handling. Curing is followed by preheating, vapor phase soldering (HTC IL-18), and cleaning after the first and last pass. (Figure 2).
B. Process Conditions

NORMAL PROCESS
8 boards, 80 units
Preheating Temp/Time: $25^{\circ} \mathrm{C}-120^{\circ} \mathrm{C}$, linear $/ 12 \mathrm{~min}$.
Primary Zone Temp/Time: $215^{\circ} \mathrm{C} / 18$ seconds (See
Figure 3, Temperature Profile)
Cleaning
Number of passes: 2
Result: $0 / 80$ failures to the IL-212 spec. (See Table 2, Group 2 for read/record data)

Figure 3. Typical Vapor Phase Profile


LONG FLOW PROCESS
2 boards, 20 units
Same as normal process except:
Primary Zone Temp/Time: $215^{\circ} \mathrm{C} / 46$ seconds
Number of passes: 2
Result: 0/20 failures to the IL-212 spec.
LONG FLOW PROCESS, Repetitive
2 boards, 20 units
Same as Long Flow process except:
Number of passes: 5
Result: 0/20 failures to the IL-212 spec.

Figure 1. Wave Soldering Procedure


Figure 2. Vapor Phase Soldering Procedure


## 3. IR REFLOW SOLDERING

## A. Process Description

Preparation and assembly were similar to the vapor phase process. The boards were passed through the SPT 770 for the reflow process and then cleaned (Figure 4, IR Reflow Soldering Procedure) using the Cougar 1000, and Dyna Pert pick and place machine except for the omission of the epoxy attachment operation.

## B. Process Conditions

NORMAL PROCESS
2 boards, 20 units
Preheating Temp/Time: $100^{\circ} \mathrm{C} / 30$ seconds
Reflow Temp/Time:
Zone $1 \quad 150^{\circ} \mathrm{C} / 1$ minute
Zone $2 \quad 180^{\circ} \mathrm{C} / 1.5$ minutes
Zone $3 \quad 235^{\circ} \mathrm{C} / 1.5$ minutes (includes cool down) (see Figure 5, Temperature Profile)
Cleaning
Number of passes: 2
Result: 0/20 failures to the IL212 spec. (See Table 2,
Group 3 for read/record data)
LONG FLOW PROCESS
2 boards, 20 units
Preheating Temp/Time: $100^{\circ} \mathrm{C} / 1$ minute
Reflow Temp/Time:
Zone $1 \quad 150^{\circ} \mathrm{C} / 2$ minutes
Zone $2180^{\circ} \mathrm{C} / 3$ minutes
Zone $3 \quad 235^{\circ} \mathrm{C} / 3$ minutes (includes cool down)
Number of passes: 2
Result: 0/20 failures to the IL212 spec.

Figure 5. Typical IR Reflow Profile


## 4. CLEANING CONDITIONS

Solvent: Freon TMS
Solvent Temp: $40^{\circ} \mathrm{C}$
Cleaning Zones:

1. Spray: 23 PSI top of PWB

16 PSI bottom of PWB
2. Emersion: 16 PSI top spray to create turbulence
3. Spray: 10 PSI top of PWB

8 PSI bottom of PWB
Dwell time: Approx. 1 minute in each Zone

LONG FLOW PROCESS, Repetitive
2 boards, 20 units
Same as Long Flow process, except:
Number of passes: 5
Result: $0 / 20$ failures to IL212 spec.

Figure 4. IR Reflow Soldering Procedure


Table 1. Reliability Test (after Solder Heat)
1A. Pressure Pot Test $\left(121^{\circ} \mathrm{C}, 15 \mathrm{psig}\right.$ steam)

Sample   Size	$260^{\circ} \mathrm{C}$   $3 \times 10 \mathrm{sec}$.	48 h	96 h	144 h	192 h	240 h	288 h	BViso	Overall
38	$0 / 38$	$0 / 38$	$0 / 38$	$1 / 38^{*}$	$0 / 37$	$0 / 37$	$0 / 37$	$0 / 37$	$1 / 38$

*failed $\mathrm{I}_{\mathrm{R}}\left(25 \mu \mathrm{a}\right.$ at $\left.\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}\right)$
1B. Temperature/Humidity $\left(85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}\right)$

Sample   Size	$260^{\circ} \mathrm{C}$   $3 \times 10 \mathrm{sec}$.	168 h	504 h	1 Kh	BViso	Overall
38	$0 / 38$	$0 / 38$	$0 / 38$	$0 / 38$	$0 / 38$	$0 / 38$

Note: Datasheet parameters were checked at each time point. BViso was only tested at the end of the test sequence.

## 5. PACKAGE INTEGRITY TEST

To simulate a worst case condition of heat exposure, the couplers were submerged in solder for 10 seconds, three times consecutively. Immediately thereafter, the parts were submitted to pressure pot test and high temperature/humidity to verify the package integrity as well as isolation breakdown voltage (see Table 1, Reliability Tests after Solder Heat). These tests could not be done mounted on a board. FR4 PC board material is not completely moisture resistant, therefore providing a leakage path.

No discoloring of the white outermold was observed. After 5 cycles of wave soldering the pc board started to discolor and flex.

The effect on CTR change was minimal.
The average change at $1 \mathrm{~mA} I_{F}$ was:

Dual Wave Soldering	$+1.5 \%$
Vapor Phase Soldering	$+.8 \%$
IR Reflow Soldering	$+1.8 \%$

The visual inspection showed no cracks or damages and the reliability test results were excellent. After a preconditioning of 3 times 10 seconds in $260^{\circ} \mathrm{C}$ solder, only 1 out of 38 units failed 288 h pressure pot (after 144 h one $\mathrm{I}_{\mathrm{R}}$ failure) and 0 failures out of 38 after $1000 \mathrm{~h} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$.

## 6. CONCLUSIONS

The small outline coupler, a modified SOIC-8 package, was easy to handle during assembly and processing. No electrical failures occurred as a result of the soldering processes. Visual inspection of the solder joints showed consistent results. Solder bridges tended to form in the wave soldering process due to the narrow lead spacing. This is a recognized phenomena for this process, although the increased component height may be another factor contributing a shadowing effect. This possible effect can be minimized by orienting the SOC with its length perpendicular to the solder wave (see Figure 6).

Figure 6. Orientation of Components on PC Board Before Wave Soldering


Table 2. Worst Case Examples of Read/Record Data
Group 1: Dual wave soldering

CTR (\%) at VCE $=5 \mathrm{~V}$									$\mathrm{H}_{\mathrm{FE}}$ at $\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$		
PRE	$\begin{aligned} & =1 \mathrm{~m} \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{aligned} & F=5 \mathrm{~m} \\ & \mathrm{POST} \end{aligned}$	CHG	PRE	$\begin{aligned} & =10 r \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{gathered} \mathrm{I}_{\mathrm{B}}=1 \mu \\ \text { POST } \end{gathered}$	CHG
90	85	-6\%	170	168	-1\%	200	200	0	600	620	+3\%
80	80	0	160	180	+12\%	195	200	+3\%	590	600	+2\%
80	85	+6\%	150	150	0	175	180	$+3 \%$	580	600	+3\%
Average of 20 samples: $\mathrm{PRE}=64, \mathrm{POST}=65, \mathrm{CHG}=+1.5 \%$											

Group 2: Vapor phase soldering

CTR (\%) at VCE $=5 \mathrm{~V}$									$\mathrm{H}_{\text {FE }}$ at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$		
PRE	$\begin{aligned} & F=1 \mathrm{~m} \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{aligned} & =5 \mathrm{~m} \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{aligned} & =10 \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{gathered} \mathrm{I}_{\mathrm{B}}=1 \mu \\ \text { POST } \end{gathered}$	CHG
70	80	+ 14\%	150	160	+ 7\%	170	180	+6\%	580	590	+2\%
60	62	+3\%	136	124	-8\%	150	155	+3\%	600	620	+3\%
77	80	+4\%	150	160	+6\%	170	180	+6\%	640	650	+2\%
Average of 20 samples: $\mathrm{PRE}=63, \mathrm{POST}=64, \mathrm{CHG}=+1 \%$											

Group 3: IR reflow soldering

CTR (\%) at VCE $=5 \mathrm{~V}$									$\mathrm{H}_{\text {FE }}$ at $\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$		
PRE	$\begin{aligned} & F_{F}=1 \mathrm{~m} \\ & \text { POST } \end{aligned}$	CHG	PRE	$\begin{gathered} F_{F}=5 \mathrm{~m} \\ \text { POST } \end{gathered}$	CHG	PRE	$\begin{aligned} & =10 \mathrm{r} \\ & \mathrm{POST} \end{aligned}$	CHG	PRE	$\begin{gathered} \mathrm{I}_{\mathrm{B}}=1 \mu \\ \text { POST } \end{gathered}$	CHG
62	65	+5\%	140	130	-7\%	155	160	+3\%	560	570	+2\%
53	57	+8\%	120	116	-3\%	140	145	+3\%	530	550	+4\%
74	84	+14\%	150	160	+7\%	170	180	+6\%	550	560	+2\%
Average of 20 samples: $\mathrm{PRE}=60, \mathrm{POST}=61, \mathrm{CHG}=+2 \%$											

## Table 3: List of Equipment

Procedure	Equipment Used
Solder Paste Screen	Cougar, 1000
Pick-and-Place	Dyna Pert, MPS-118
IR Reflow	SPT, 770
Vapor Phase	HTC, IL-18
Dual Wave	Electrovert, Century 3000
Solvent Clean	Detrex, PCBD - 18ER - A

Table 4: List of Materials

Procedure	Material
Mount Components	FR4 PC board, single side
Attach Wave   Soldered   Components to PWB	Locktite \#360 epoxy
Wave Solder	Alpha Flux RMA SM34-18
Wave Solder	Federated Fry Metals bar solder   (63Sn/37Pb)
  IR Reflow	Alpha Solder Paste RMA 390 DH3   (62Sn/36PB)
Vapor Phase	Fluoroinert 5312 (mfg. by 3M)
Cleaning	Freon TMS

## Semiconductor Group Sales Offices

- EASTERN REGION

Siemens Components, Inc. 103 Carnegie Center
Princeton, NJ 08540
Phone (609) 987-0083

Siemens Components, Inc.
P.O. Box 1483

119 Russell Street
Littleton, MA 01460
Phone (617) 486-0331

Siemens Components, Inc.
6575 The Corners Parkway
Suite 210
Norcross, GA 30092
Phone (404) 449-3981

- CENTRAL REGION

Siemens Components, Inc.
5600 North River Road
Suite 735
Rosemont, IL 60018
Phone (312) 692-6000

Siemens Components, Inc.
1105 Schrock Road
Suite 204
Columbus, OH 43229
Phone (614) 433-7500

Siemens Components, Inc.
3003 LBJ Freeway, \#204
Dallas, TX 75234
Phone (214) 620-2294

- WESTERN REGION

Siemens Components, Inc. 19000 Homestead Road Cupertino, CA 95014
Phone (408) 725-3566

Siemens Components, Inc.
625 The City Drive South
Suite 320
Orange, CA 92668
Phone (714) 385-1274


Intelligent Display ${ }^{\text {P }}$ Devices, Programmable
Displays, Intelligent Display Assemblies


LED Lamps


Numeric and Alphanumeric Displays


Bar Graphs, Light Bars


Optocouplers

\&



[^0]:    *Based on the life test results presented (at maximum rated conditions), an overall MTBF of 1,600,000 unit hours can be demonstrated on a
    "Best Estimate" basis.

[^1]:    X = DON'T CARE

[^2]:    Important: Refer to Appnote 18, "Using and Handling Intelligent Displays". Since this is a CMOS device, normal precautions should be taken to avoid static damage.

[^3]:    Specifications are subject to change without notice.

[^4]:    X = Don't Care
    NC = No Change

[^5]:    Specifications are subject to change without notice.

[^6]:    *Blinking Character
    ${ }^{\dagger}$ Character alternating with cursor (all dots lit)

[^7]:    Specifications subject to change without notice.

[^8]:    Note 1. The device heatsink is tied to $V_{c c}$. It should be electrically insulated from all data and ground lines.
    Note 2. 0 =Low, $1=$ High, $X=$ Don't Care, $\$=$ appropriate intensity code.

[^9]:    Specifications are subject to change without notice.

[^10]:    *Blinking Character
    ${ }^{\dagger}$ Character alternating with cursor (all dots lit)

[^11]:    Specifications are subject to change without notice

[^12]:    NOTES: 1. $T_{W R}=T_{W C}-\left(T_{W D}-T_{D H}\right)$ 2. All timing in nano-seconds
    3. Rise/Fall time is dependent upon external system

[^13]:    *Blinking Character
    ${ }^{\dagger}$ Character alternating with cursor (all dots lit)

[^14]:    Specifications are subject to change without notice.

[^15]:    *Blinking Character
    ${ }^{\dagger}$ Character alternating with cursor (all dots lit)

[^16]:    For Custom Lengths, in Increments of 4 Characters, Consult the Factory.

[^17]:    Specifications are subject to change without notice

[^18]:    Śpecifications are subject to change without notice.

[^19]:    Specifications are subject to change without notice.

[^20]:    Specifications are subject to change without notice.

[^21]:    Specifications are subject to change without notice.

[^22]:    Specifications are subject to change without notice.

[^23]:    Specifications subject to change without notice

[^24]:    Specifications are subject to change without notice.

[^25]:    Specifications are subject to change without notice.

[^26]:    Specifications are subject to change without notice.

[^27]:    Specifications are subject to change without notice.

[^28]:    Anode G
    No Connection
    Common Cathode
    Anode C
    Anode DP
    Anode B
    No Connection
    Common Cathode
    Anode HJK
    No Connection

[^29]:    Specifications are subject to change without notice.

[^30]:    -The ratings indicated for the forward current $I_{F}$ or the surge current $i_{F S}$, respectively, are maximum ratings of the component. If both chips are operated simultaneously, the sum of the forward current ratings is not allowed to exceed the indicated maximum value.

[^31]:    Specifications are subject to change without notice.

[^32]:    Specifications are subject to change without notice.

[^33]:    Specifications are subject to change without notice.

[^34]:    Specifications are subject to change without notice.

[^35]:    Specifications are subject to change without notice.

[^36]:    Siemens Components Inc., Optoelectronics Division, 19000 Homestead Road, Cupertino, California 95014 (408) 257-7910/TWX 910-338-0022

[^37]:    Specifications are subject to change without notice

[^38]:    Specifications are subject to change without notice.

[^39]:    Specifications are subject to change without notice.

[^40]:    1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of 0.4 mA$)^{\circ} \mathrm{C}$.
    2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
    4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
    5. DC current transfer ratio is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{\mathrm{F} \text { times }} 100 \%$
    6. Pin 7 open.
    7. Device considered a two-terminal device: pins $1,2,3$ and 4 shorted together and pins 5,6,7, and 8 shorted together.
    8. Use of a resistor between pin 5 and 7 will decrease gain and delay time.
    9. Common mode transient immunity in logic high level is the maximum tolerable (positive) $\mathrm{d} / \mathrm{Vcm} / \mathrm{dt}$ on the leading edge of the common mode pulse, $V_{c m}$, to assure that the output will remain in a logic high state (i.e. $V_{0}>2.0 \mathrm{~V}$ ) common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $V_{\mathrm{cm}}$, to assure that the output will remain in a logic low state (i.e. $V_{p}<0.8 \mathrm{~V}$ ).
    10. In applications where dv/dt may exceed $50,000 \mathrm{v} / \mathrm{us}$ (such as state discharge) a series resistor, $R_{\mathrm{CC}}$ should be included to protect $I_{\mathrm{C}}$ from destructively high surge currents. The recommended value us $R_{\mathrm{cc}} \approx$ IV
    k .
[^41]:    Specifications are subject to change without notice.

[^42]:    Specifications subject to change without notice.

[^43]:    Specifications are subject to change without notice.

[^44]:    Specifications are subject to change without notice.

[^45]:    Specifications are subject to change without notice．

[^46]:    Specifications subject to change without notice

[^47]:    Specifications are subject to change without notice.

[^48]:    Specifications are subject to change without notice

[^49]:    Specifications subject to change without notice.

[^50]:    Specifications subject to change without notice

[^51]:    Specifications subject to change without notice

[^52]:    Specifications are subject to change without notice.

[^53]:    Specifications are subject to change without notice.

[^54]:    Specifications are subject to change without notice.

[^55]:    Specifications are subject to change without notice.

[^56]:    Specifications are subject to change without notice

[^57]:    Specifications are subject to change without notice.

[^58]:    Specifications are subject to change without notice.

[^59]:    Specifications are subject to change without notice.

[^60]:    Specifications are subject to change without notice.

[^61]:    Specifications are subject to change without notice.

[^62]:    Specifications are subject to change without notice.

[^63]:    Specifications are subject to change without notice.

[^64]:    Specifications are subject to change without notice.

[^65]:    ${ }^{1}$ The illuminance indicated refers to unfittered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5030 and IEC publ. 306-1).

    Specifications are subject to change without notice.

[^66]:    ${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1.)

[^67]:    ${ }^{1}$ The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306-1).

[^68]:    Specifications are subject to change without notice.

[^69]:    ${ }^{1}$ The illuminance indicated refers to unfittered radiation of a tungsten filament lamp at a color

[^70]:    Specifications are subject to change without notice.

[^71]:    1) The illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of
    2856 K (standard light A in accordance with DIN 5033 and IEC publ. 306 -1).
[^72]:    The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC publ. $306 \cdot 11$ ). Irradiance $\mathrm{E}_{\mathrm{e}}$ measured with HP radiant flux meter 8334 A with option 013.
    ${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm}$. $\mathrm{I}_{\text {PCE }}=$ Photocurrent of transistors; $\mathrm{I}_{\mathrm{PCB}}=$ Photocurrent of Collector-Base-Diode.

[^73]:    The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC 306-1). Irradiance $E_{e}$ measured with HP radiant flux meter 8334A with option 013.
    ' Measured with LED $\lambda=950 \mathrm{~nm}$. $I_{P C E}=$ Photocurrent of transistors; $I_{P C B}=$ Photocurrent of
    Collector-Base-Diode.

    Specifications are subject to change without notice.

[^74]:    The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light $A$ in accordance with DIN 5033 and IEC $306-1$ ). Ifradiance $E_{e}$ measured with HP radiant flux meter 8334A with option 013.
    ${ }^{1}$ Measured with LED $\lambda=950 \mathrm{~nm}$. $\mathrm{I}_{\text {PCE }}=$ Photocurrent of transistors; $\mathrm{I}_{\mathrm{PCB}}=$ Photocurrent of Collector-Base-Diode.

    Specifications are subject to change without notice.

[^75]:    Specifications are subject to change without notice.

[^76]:    $V$
    $V$ $V$
    $m A$
    $C$
    $C$
    $m W$

[^77]:    Specifications are subject to change without notice.

[^78]:    Specifications are subject to change without notice.

[^79]:    Specifications are subject to change without notice.

[^80]:    Specifications are subject to change without notice.

[^81]:    *Minimum hFE is obtained using the specification at ICE $=$ 2A and the "Normalized DC Current Gain" graph given in the Motorola "Semiconductor Data Book," 5th Edition, pp. 7-232, 3.

[^82]:    1) Registered trademark (Shell Chemical)
    2) Registered trademark (BASF)
    3) Registered trademart (Sichel-Werke, Hannover)
[^83]:    $1 \mathrm{Ga}_{0,65} \mathrm{Al}_{0,35} \mathrm{As}-\mathrm{LPE}$
    2 GaP:N-LPE
    $3 \mathrm{GaAs}_{0,35} \mathrm{P}_{0,65}$ :N-VPE
    4 GaP:X-LPE
    $5 \mathrm{GaAs}_{0,45} \mathrm{P}_{0,85}$ :N-VPE

[^84]:    1 HEF4011 refers to RCACD4011

[^85]:    ${ }^{1}$ ) equivalent footcandie apparent footcandle \}

[^86]:    " At present three assembly machines are usually required for leaded components:
    insertion machine for radial-leaded components. insertion machine for axial-leaded components. insertion machine for DIPs.

